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AFIT/GAE/ENY/94D-02 

ABSTRACT 

This research modifies the existing finite element formulation of 

a potential energy based large deformation and moderate rotation theory. 

Hermitian shape functions replace the existing linear bending angle 

interpolations.  Negligible differences between the two formulations 

indicate the underlying kinematics limit the accuracy, not the finite 

element interpolations.  Using the new program, numerous nonlinear arch 

geometries are modeled to investigate the effects of arc length and 

thickness variations.  Local and global snapping phenomena are captured 

as well as through the thickness shear driven nonlinearities. 
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INVESTIGATION INTO THE BEHAVIOR OF GEOMETRICALLY 

NONLINEAR COMPOSITE ARCHES 

I.  Introduction 

1.1 Background 

Composite shells, plates, arches, and beams are the building 

blocks for the majority of today's complex aerospace structures.  The 

critical nature of such structures requires accurate prediction of their 

behavior under any loading conditions.  However, analysis beyond the 

basic linear geometric and material regions is complex and time 

consuming. 

One type of complex shell analysis combines small strains with 

large displacements and rotations.  In this situation, the material 

remains linearly elastic while the geometry becomes non-linear. 

Geometric non-linearity causes dramatic structural stiffness changes 

without significant material changes.  Palazotto and Dennis present the 

Simplified Large Displacement/Rotation (SLR) theory and complementary 

FORTRAN code to analyze shells experiencing these loading conditions 

(19).  SLR theory determines the equilibrium path of orthotropic shells 

using a total Lagrangian approach and includes a parabolic transverse 

shear stress distribution.  Equations are solved using the finite 

element method.  The result is a FORTRAN code capable of analyzing 

linearly elastic behavior of isotropic and laminated orthotropic 

cylindrical shell structures undergoing geometric non-linearity with 

large deformations and moderate rotations. 

Creaghan reduced SLR theory to one dimension for the analysis of 

beams and arches (3; 4).  The resulting FORTRAN code combines all the 
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features of Palazotto and Dennis's work with extensible mid-plane strain 

terms from Smith (25; 26).  Creaghan also include displacement control 

and Riks methods for solving non-linear equations.  These modifications 

allow uninhibited observation of SLR displacement and rotation limits. 

Creaghan's theory produces accurate solutions through 23 degrees of 

rotation. 

Miller improved Creaghan's rotation limits to approximately 45 

degrees (13).  Miller replaced Creaghan's small angle approximation for 

the bending angle (\|/) with a truncated series representation of the 

tangent function, thereby introducing large rotation kinematic theory to 

Creaghan's formulation. 

The purpose of this thesis is to improve the rotation limit of 

Miller's code.  Miller's adaptation of the finite element method (FEM) 

will be altered to include higher order shape functions for \|f. 

Refining the finite element model will improve solutions within the 

limits of Miller's theory.  The resulting FORTRAN code will then be used 

to analyze arch classification parameters. 

1.2 Preview 

Thickness and depth primarily determine the behavior of shells and 

arches.  For example, shear plays a large role in thick structures but 

is negligible in thin shells; therefore, a theory which considers 

transverse shear should be used for analysis.  Also, it is important to 

note a shallow shell/arch behaves very much like a plate/beam whereas a 

deep shell/arch does not.  Obviously, the geometry of the structure 

should be classified before analysis begins. 

Huang proposes thin arches have a very small physical thickness 

{h)   vs. radius of curvature (r) ratio {h/r  «1) (10).  Miller also 
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considers the half chord length (c) , but his decision value (c/h<25)   is 

arbitrary (13). 

Smith proposes a shallow shell has a small depth (8) vs. half 

chord length ratio (8/c<0.3) (25).  Fung and Kaplan propose X = 2[3(\-v2)]-25(5 

/h)-5  as a classification criteria, limited to small opening angle (a«l) 

(8).  Kaplan revises this definition to remove the opening angle 

limitation resulting in X = [12(l-i>2)]-25(r/7i>5(a/2) (12).  Miller uses A,>8 to 

define deep shells (13). 

The complex nature of large deformation and rotation theory- 

requires solving numerous simultaneous, non-linear, differential 

equations.  Even with simplifying assumptions, these equations remain 

complex and extensive.  For this reason, most theories employ FEM for 

solution. 

Accurate FEM solutions require proper shape functions.  Cook, 

Gallagher, and Zienkiewicz all discuss shape functions at great length 

(2; 9; 29).  Shape functions interpolate quantities within an element 

and are generally classified as C^ or C^ continuous.  All shape 

functions must be C^ continuous; that is, the quantity they interpolate 

must be continuous at each node.  If a quantity is represented by C1 

shape functions, the first derivative of the quantity is continuous as 

well.  Obviously, C-*- or Hermitian shape functions are required if a 

quantity and its first derivative must have interelement continuity. 

Miller uses linear C^ shape functions to estimate \j/ (13) .  As such, the 

first derivative of \|/ (\y2) i-s constant within a given element and 

discontinuous at each node.  The current work will employ both quadratic 

C^ and Hermitian interpolations of \\f. 
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1.3 Literature Review 

Although primarily concerned with non-linear shell theory, this 

thesis also addresses arch classification parameters and finite element 

method shape functions.  Therefore, a brief review of these topics is in 

order. 

Kirchhoff's theory is one of the first for analysis of thin plates 

(22).  His assumptions allow two dimensional analysis of three 

dimensional plate behavior.  He assumed an inextensible mid plane and 

negligible normal strains.  Kirchhoff also eliminated transverse shear 

effects by disallowing cross sectional warping. 

Love took the next logical step in the development of shell theory 

(22).  He adapted Kirchhoff's plate theory to curved shells.  The 

Kirchhoff-Love theory obviously neglects transverse shear strain 

effects.  As a result, both Kirchhoff's theory and Love's revision only 

apply to thin, isotropic plates experiencing small deflections. 

Reissner and Mindlin improved Kirchhoff-Love theory through the 

addition of transverse shear considerations (14; 21).  Reissner-Mindlin 

(RM) theory assumes constant through the thickness shear and, as a 

result, cross sections normal to the datum surface rotate but do not 

warp.  This first order theory can cause shear locking in a finite 

element formulation because boundary conditions are not satisfied on the 

top and bottom of the shell.  Shear correction factors minimize this 

condition. 

Reddy adds a parabolic transverse shear strain representation to 

RM theory to eliminate shear locking (20).  Palazotto and Dennis, 

Creaghan, and Miller employ Reddy's theory (3; 13; 19).  As such, it is 

retained here. 
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Beam and arch theory spawn an enormous amount of research.  As 

with shell theory-/ arch theory refinements are directed towards 

improving displacement and rotation limits.  As a baseline for 

comparison, this thesis retains Miller's theory without changes (13). 

His theory combines total Lagrangian kinematics with the aforementioned 

trigonometric representation of the bending angle and vector 

decomposition of the displacement equations.  Miller also includes 

parabolic transverse shear, mid-plane extensibility, and all non-linear 

in-plane strain terms.  A finite element formulation approximates 

solutions. 

Oliver and Ofiate present a total Lagrangian finite element 

formulation which accurately calculates large displacements and 

rotations (18).  They include a parabolic shear representation and mid 

plane extensibility.  Degenerated shell elements similar to SLR theory 

are used as well as exact trigonometric relations.  This is a stress 

based theory whereas SLR is strain based. 

Surana also uses a vector decomposition of the displacement 

equations (27) . Total Lagrangian kinematics and a finite element 

representation are employed as well. 

Noguchi and Hisada use a finite element model to analyze post 

buckling shell response (17) . Their vector based, total Lagrangian 

kinematics provide a good comparison to the current derivation. 

Mondkar and Powell develop equations of motion based on total 

Lagrangian kinematics (16).  They retain higher order terms and consider 

mid-plane extension and transverse shear.  Solutions for isotropic 

structures are found using FEM. 

Huddleston uses a total Lagrangian formulation with no small angle 

assumptions to analyze deep, isotropic, circular arches (11). 
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Transverse shear is neglected while mid plane extension is allowed. 

Huddleston solves simultaneous, non-linear, first-order differential 

equations rather than using finite element or finite difference methods. 

Sabir and Lock also neglect transverse shear and eliminate some 

higher order mid-plane strain terms (23).  Total Lagrangian kinematics 

are used in conjunction with a finite element solution method to analyze 

isotropic, circular arches. 

DeDeppo and Schmidt present numerous approaches to solving non- 

linear circular arch problems (5; 6; 24),.  When they consider 

transverse shear, a first order representation is used.  When mid plane 

stretching is considered, higher order terms are neglected.  They use 

total Lagrangian kinematics with no small angle approximations and 

finite difference solution method. 

Epstein and Murray retain quadratic in-plane strain terms while 

neglecting transverse shear strain (7).  Mid-plane extension is 

considered with higher order terms retained.  Epstein and Murray use 

finite elements and a total Lagrangian approach to examine only 

isotropic beams. 

Belytschko and Glaum use small angle approximations in an updated 

Lagrangian basis (1).  Mid-plane stretch is allowed but higher order 

terms are eliminated.  Also, they ignore transverse shear. 

Minguet and Dugundji also use the co-rotational method; however, 

Euler angles are used for exact rigid body kinematics (15).  Transverse 

shear and mid-plane extensibility are considered without higher order 

terms. 
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II.  Theory 

2.1 Overview 

The current work is based on Miller's kinematic development, 

constitutive relations, strain relations, and beam energy considerations 

(13).  His work is reviewed here for completeness and to highlight 

certain inaccuracies in the theory.  Miller's FEM formulation is 

modified to include a higher order shape function for the bending angle. 

Numerical solution methods and arch geometry definitions are discussed 

as well. 

2.2 Kinematics 

Miller derives arch displacement equations in a vector format. 

The first step considers displacements due to pure bending as shown in 

Figure 2-1.  Points j and k are on the outer surface of the beam and 

z=h/2 or C=l 

midplane (z=0) 
 ($ä) 

thickness (h) 

Figure 2-1 Flat Beam Bending Rotation 

point i is on the mid plane.  The V coordinates are initially parallel 

to the original system and move with the normal of the cross section 

during deformation. The e coordinates are the global coordinates of the 

total Lagrangian system.  The vector V3i remains parallel to the cross 
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sectional thickness during bending.  The magnitude of V3i equals the beam 

thickness (h) .  V3i remains perpendicular to V2i during pure bending and a 

is the rotation angle about Vn.  The natural coordinate C,  is aligned in 

the e3 direction with magnitude 1 at the top of the beam (positive e3 

direction) and -1 at the bottom.  V3i is expressed in global coordinates 

as: 

y« = (yi-yt)ei-(zj-zt)e3 

with direction cosines: 

yj-yt 

(2-1) 

(2-2) 

Eqn(2-2) is substituted into Eqn(2-1), yielding: 

V3;=A(/n,V2+n3V3) (2-3) 

The n superscript denotes any deformed state. The position of any point 

P on the cross section is described by its location from the beam center 

line and the location of point i on the mid plane as 

r 
(2-4) 

The  total  Lagrangian displacement of any point  P is: 

ü(z)= 3 +|[V,?-VM°] (2-5) 

The superscript 0 denotes the original, undeformed state.  Miller 

assumes vertical displacement (w) is constant through the thickness. 

As shown in Figure 2-2, P only displaces horizontally due to bending. 

This assumption implies stretching of the beam normal.  Resulting normal 

strains are neglected.  Horizontal displacement is assumed in order to 

keep w constant through the thickness.  The resulting strains become 
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Figure 2-2 Bending Motion 

significant as a approaches 7t/2 .  This assumption changes Eqn(2-3) as 

follows: 

h 
V 

cos(a,) 

m, 

n% 

(2-6) 

where 

m3l. = - sin(a,.) 

n3l. = cos(a i) 

Eqn(2-6) is substituted into Eqn(2-5) at a0=0 yielding: 

u = u, H—h 
'    2 

1 

cos(a,) 

m, m3i 

so that (2-7) 

V = 
1   -tan(a,.)' 

0 1 
VM°=[Ä]VM° 

where ut   represents the motion of point P due to the motion of point i 

on the midplane and [R] is the bending rotation tensor.  The general 

displacement equation using natural coordinates is 

M = M,.+|[[R]-[1]]V3° (2-8) 

where [1] is the 2X2 identity matrix. 
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Adapting this derivation to curved beams requires consideration of 

the additional motion due to curvature.  Orthogonal curvilinear 

coordinates are used for arches as shown in figure 2-3.  The s direction 

AA 

I ■^.2ors 

3 orz 

View AA 

-=>   1 

V 

3 orz 

Figure 2-3 Global Arch Coordinates 

runs along the arch midplane and the 3 direction points toward the 

center of curvature. 
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The H, term in Eqn 2-8 represents the displacement of an arbitrary- 

point caused by non-bending motion.  For straight beams, mid-plane 

motion directly correlates to H, for any arbitrary point.  As shown in 

figure 2-4, the üt   becomes thickness dependent in a curvlinear system 

therefore requiring metric tensor coefficients (19; 22).  In this case, 

Figure 2-4 Mid Plane Displacement Effects 

the motion of point P due to midplane motion is: 

u, = v(l--) 
r 

w 
(2-9) 

where v and w are the motion of point i on the midplane.  Using the 

shell scale factors as did Palazotto and Dennis yields similar results 

(19) . 

Figure 2-5 shows the relationship between \|/ and slope ( w,2) .     A 

positive \|/ is defined as the angle which causes a point with a positive 
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s or 2 

W, 2 = -y 

Figure 2-5 Pure Bending Convention 

z coordinate to move in the positive s direction.  Since a is defined 

using the right hand rule in a positive direction about the 1 axis, 

\|/ = -a. 

Expressing Eqn(2-8) and Eqn(2-9) in global coordinates yields 

these displacement components: 

u2 = v| 1— |+ztan(\|/) 
(2-10) 

These are the displacement relationships for bending only.  Instead of 

using a small angle approximation for tan(\|/). Miller used shell 

displacement relationships developed by Palazotto and Dennis to retain 

the tangent function in the u2  component(13; 19).  As a result, the in 

plane displacement of Eqn(2-10) becomes: 

u2(s,z) = v| 1— |+ztan(\|0 + z k(y +w,2) 

where: (2-11) 

k = - 
3h2 
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Similar to \|/, a positive shear angle ß causes a point with a 

positive z coordinate to move in the positive s direction.  Figure 2-6 

shows the relationship between ß and w,2.  Mathematically, w,2, ß, and \\l 

are related by: 

w,2+Y=-ß (2-12) 

Eqn(2-12) is used to find ß after w,2 and \|/ are found using FEM.  The 

sign convention of these three quantities is shown in figure 2-7. 

s or 2 

Figure 2-6 Angular Shear convention 

The tangent function in Eqn(2-ll) is approximated using the 

following series expansion: 

tm(y) = ±-V-22'(2*'-l)B2lv^ (2-13) 

where the Bn's  are Bernoulli numbers and \|/ is in radians (12) .  This 

series expansion is truncated at two terms yielding: 

1 
tan(\)/)=\|/+^\|/3 (2-14) 
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sor 2 

sor 2 

Figure 2-7 Slope, Shear, and Bending Relationship 

Substituting Eqn(2-14) into Eqn(2-ll) for u2l   one obtains the final 

displacement components: 

W[ =0 

1 
«j(i,z) = vl—\+z(y +-y )+zJfc(\|/ + w,2) 

w,(s)= w 

(2-15) 

where v and w are midplane displacements in the 2 and 3 directions, 

respectively, z is the distance from the midplane,\|/ is angle due to 

bending, and w,2 is the slope of the midplane tangent. 
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2.3 Constitutive Relations 

Table 2.1 presents the explicit and contracted notation used for 

both the stress and strain tensors. 

A fiber composite lamina has the local coordinate system defined 

as shown in figure 2-8.  The 1' direction is aligned with the fibers of 

Table 2-1 Contraction Definitions 

Stress Strain 

Contracted Explicit Contracted Explicit 

CT, an £1 £n 

CT2 C22 £2 E22 

a3 o33 £3 £33 

c4 CT23 £4 2£23 

c5 a,3 £5 2£i3 

a6 CT12 £5 2£i2 

> 2 

Figure 2-8 Material vs. Global Coordinates 
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the composite.  The 2' and 3' directions are the transverse direction. 

In this work, the 3 and 3' directions are aligned and point into the 

page. 

Following these conventions, the stress and strain for a composite 

lamina are: 

ßu    0,2     o      0      0 f°:l 
°2 

<*; •= 

°4 

kJ 

Ö12     Qz ooo 
o    o   e66   o    o 
0 0 0 Ö44 0 

0       0       0       0     ß55 L£5j 

(2-16) 

The Qij's  represent the ply stiffness expressed in material coordinates, 

the C'±' s are ply stresses, and the 8^ ' s are the strains. 

These relations assume plane stress conditions exist, therefore a3 is 

negligible.  Through the thickness strain (63) is found through 

constitutive relations as shown by Palazotto and Dennis (19 

in terms of engineering constants are: 

E, 

The Qij's 

Qu = 

022  = 

l-v12v2I 

l-v12v21 

Qn = 
V12

£2       =      V21£! 

l-v12v21     l-v12v21 
(2-17) 

Ö44  = G23  Ö55  = Gn  Ö66  = GK 

In these relations, Ej_' s are Young's moduli, G^ j ' s are shear moduli, 

and V;;'s are Poisson's ratios. All values are expressed in material 

coordinates. 

When constructing a laminate composite, the stiffness (ßy) of 

each lamina must be converted to global coordinates.  This 

transformation is accomplished using the angle 9 defined in figure 2-8 

and the transformation equations found in Reddy (20).  These equations 

are presented in Appendix A and give the following constitutive 

relations for the kth  ply: 
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<*2 

°6   ■     = 

as\k 

ßn OH ßi6      0 0 

ß.2 ß22 ß_26          0 0 

ß16 ß26 ß66 _0 0      M                              (2-18) 
0           0 0 Ö44 0 

0       0 0      0 ß55 

where ß-,-' s represent the plane stress stiffnesses in global 

coordinates. 

The next developmental step requires simplifying the 2-D Eqn(2-18) 

to 1-D.  Because this work examines beams and arches which are narrow in 

the 1 direction, normal stresses in this direction Ci are negligible. 

Also, because the beam/arch is narrow and traction free at the sides, 

the in plane shear stress CT6 is neglected.  Stress and strain in the 5 

direction (a5 and 65) are neglected because beam twisting is not 

considered.  These assumptions reduce Eqn(2-18) to the following 1-D 

constitutive relations (3): 

o 4k =044*64* 

where (2-19) 

ß2* = ß -^2. *s22  — 

2^ 

Qnj 

Because twisted and torsional stiffness are not considered, Eqn(2- 

19) is limited to balanced, symmetric lay-ups.  This limitation drives 

ß16 to zero for the entire laminate. 
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2.4 Strain Relations 

Miller and Creaghan both employ the following relationship between 

Green strain and shell physical strains developed by Palazotto and 

Dennis (19). 

e =1± 
v    h.h, 

(2-20) 

In Eqn(2-23), the Yy's are Green strain tensor components and the ft,-'s 

are shell scale factors.  The previously discussed thickness dependence 

of it, drives the requirement for shell scale factors.  Because only in 

plane normal and through the thickness shear strains are considered, 

only the two Green strain tensor terms related to these strains are 

required. 

ft2M, h2Ui 

"AT y22 =h2u2a +-^2,3 +:jf^h2A 
ft, 

1 
+— 

2 

1 
+— 

2 

/ \2 

M
2,2 + .      "2,3 "*" ,     "2,1 

V k3 K J 

M3,2        ,      rt2,3 
V *3 J 

+—\ ",, — 
21*1'2    ft/2'1 

(2-21) 

Y23  =-ft«3,2 + /*2M2,3 -«2Ä2,3 ~ «3A3,2 ) 

1 u, 
H H,, ft. 

f 

21  2'3    ft2   
2'3, 

v \ 
M3   , U\   7 

M2,2 +Th2,3 +~rh2A n3 ft 

1 
+— 

2 
_«2_, 

M3,2        ,      "2,3 

v        *3      y 

»2   , «l 
M^ "t  "T" 1 O    •" fl-i i 

v 

If "2,1 M2   , 
+ -K2--ft2,1k,3-^^ 

\ 

(2-22) 

Here,   the   w(. 's  come  from Eqn(2-15) . 
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The scale factors for a cylinder with curvature in only the 2 or s 

direction are: 

/i, = h3 = 1 

z (2-23) 
A2=l-- 

r 

Since beam width does not affect these scale factors, they also apply to 

a curved beam or arch.  These factors match Eqn(2-9), which were 

developed graphically from figure 2-4. 

Inserting Eqn(2-15), Eqn(2-21), and Eqn(2-23) into Eqn(2-20) 

yields the in plane normal strain e2 terms.  All terms of Eqn(2-21) are 

retained because in-plane strain dominates thin beam bending problems. 

Representing the scale factors with truncated Taylor series simplifies 

expansion of Eqn(2-20).  The resulting sixty expressions are shown in 

Palazotto and Dennis (19).  For this work, only the following nine of 

the sixty scale factor approximations are required: 

— »1+zc -^- = -c-c2z      -^~l + 2zc 
h2 h2h3 n2 

Ki  ~-c-2c2z       ***-»c2+c3z       -^Uc2+2c3z (2-24) 
hlh3 h2h3 hi 

h2
2i~c2 ^.„^+C3Z       b£a-c-2c2z 

h2 h2
2 

where c =  1/r.     In plane normal  strain is  expressed in terms  of  the mid 

plane  strain   (8°)   and functions  independent of Z   (%2i) : 

e2=e0
2+iz"X2P (2-25) 

P=\ 

The mid plane strain and %2i'
s are defined as: 
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e2 =v2 -wc+.5(v2
2 +w2

2 +v2c2 + w2c2)+vw2c-v2wc 

%2i =V,2 -wc2 + w2
2c + w2c3 -c2(v2w-vw2) + vyc2 +V2V,2 

- cty i2 w -\|/wi2) +\|/ >2y
2 + v 2\|/ ,2V|/2 - wcMf jV2 

In =¥,2c+-5(¥,22 +V2c2) + v\)/c3-2c2(\|/ 2w-\|fw2)+\|/ 2v2c-1.5(cV+c2v2
2) 

-c2v2 +2c3(v2w-vw2) + c(v|/ 2\i/
2+\)/,2\|/

2v2)+\)/ 2V)/2 

X23 =^(w,22 +¥,2)
+c¥,22 +¥2c3 +kv,2(

w,22 +y,i)+vkc2(w2 +y)-wkc(wi22 +\|/,2) 

+ w2fc(w2+\|/) + c5v2+c3v2
2-2c2(c2vV|/+v2\|f 2) (2-26) 

X24 =fc(w,22 +V,2) + vfc3(w,2 +v|0+2&c2(-w22 -w2\|/ +w2
2 +w\|/ 2) 

+ ih|/ 2 (w 22 +\|/ 2) +ykc2 (w 2 +\|/) + v2kc{w 22 +\|/ 2) + ky >2\|/
2 (1 + w 22) 

X25 =2Ar[V ,2(w,22 +\(/i2)+\|/c2(w2 +V)-cv,2(w,22 +V,2)-c3v(w,2 +¥)+V,2¥
2w,22l 

k2 

Z26 = yK2 +2w,22\|/,2 +V|/,2
2 + c2(w2

2 +2wi2v +y2)] 

X27 =fc
2c[(w22+y)2)

2+c2(w2+\|02] 

In these equations, terms with combinations of c, \|/, \|/,2, and w,2 of order 

5 and higher are neglected as higher order terms. 

Because in-plane stress and strain dominate thin beam bending, 

through the thickness shear strain (64) is developed using only the 

linear terms of Eqn(2-22).  Combining these linear terms with Eqn(20) 

and Eon(23) yields the following expression for through the thickness 

shear strain: 

1 
84 — ZS 23 — ■ 

1-- 

z u2 
M32 +(1 )M23 ■*  r    '      r 

(2-27) 

Small angle approximations are used in the global displacement equations 

because shear strain is linear, resulting in: 

K, =0 

u2(s,z) = v\l--) + zm + z*KV +w,2) (2-28) 

M3(s)= W 

Substituting Eqn(2-28) into Eqn(2-27) using k = 4/(3h2), one obtains: 

1 

1-- 

4z2 .    , 8z3 . 
w.2 +V —TT^ + W^+^T^ +w,2> h 3h r 

(2-29) 
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The scale factor term in front of Eqn(2-29) is approximated with a 

truncated binomial expansion: 

1 . = i+i+__5 -+...= 1 (2-30) 

i-^    r A\-z- 

The z3 is also assumed negligible since z < h/2, leaving: 

£4 = ^ 4 "*"z X42 

where (2-31) 

—4 
e4=w,2+V and X42 =^r(w,2+V) 

as the expressions for through the thickness shear strain. 

2.5 Beam Potential Energy 

The potential energy np is defined as the sum of the internal 

strain energy (U)   and the external work (V) : 

Up = U+V (2-32) 

The internal strain energy is defined as: 

U=j\V'dV (2-33) 
vol 

where W is the strain energy density function: 

W =±aljkleijeu (2-34) 

The aw  term is an elasticity tensor. 

In this case, the internal strain energy is made up of two 

components, the in-plane strain (f/j) and the through the thickness shear 

strain (£/2) : 

h 

2 
1 A. 

Ul =-b\ \Q2kt\dzds (2-35) 
2   -,-* 
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U^hjJQ^eldzds (2-36) 

2 

Using Eqn(2-25) 

el=(e0
2)

2
+2^z"x2pe

o
2+1(z"x2P)

2 

P=\ p=\ 

(2-37) 

Now f/j is divided into three parts, each representing a strain component 

from Eqn(2-37): 

tfi=T*f0ii+H2+m) (2-38) 

where: 

_k 
2 

h 

2 7 

m = J2Q2k(e02)^x2pz
pdz = 2e°Bx2l +D%22 +Ex23 + F%U +G%25 + H%26 + I%21) 

_h 
2 

h 

p=l 

M-3 = Ja* Xx2p* rfz 
y 

2 

= 0X2. +2£%21X22 +^(2X21%23 +X22)+2G(x2,X24 +X22X23) + 2H(x21x25 +%22%24) (2-39) 

+2/(X21X26 +X22X25 +X23X24) + ^(2X2lX27 ^XllXlA +2X23X25 +X24) 

+2AT(X 22X27 +X23X26 +X24X25) + L(2X23X27 +2X24X26 +X25) + 2^(X24X27 +X25X26) 

+^(2X25X27 +X26)+2SX26X27 + 7*27 

The (ij's of Eqn(2-39) have been integrated through the thickness such 

that: 

(A, B, D, E, F, G, H, I, J, K, L, P, R, S, T) = 
h 
2 
fA U 2 _3 _4 _5 _6  7 _8 „9  10  11   12 _13 _14 \ 1 J Q2t (1, z, z , z , z , z , z , z , z , z , z  ,z  ,z  ,z  ,z  )dz 

(2-40) 

All other terms of Eqn(2-39) are independent of thickness. If composite 

materials are used, the balanced symmetric lay up drives the integration 

of any odd powers of z to zero. 
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Strain energy due to through the thickness shear is similarly 

derived.  In this case: 

U2=-b\\isds 
1   i 

where: (2-41) 

\i, = J044j(e2)2 +2eh42z
2 + (x42)V]<fe 

= AS(e°4)
2+2DSe'lXu+FS(x42)

2 

Again,   the elasticity terms   (AS,DS,FS)   are  found by integrating through 

the  thickness: 

[AS, DS, FS] =JQm[lz2,z4]dz (2 -42) 
_h 

2 

The strain expressions of Eqn(2-25) and Eqn(2-31) are divided into 

linear and nonlinear parts to facilitate placing them into the preceding 

strain energy formulations.  This is done by first defining the 

displacement gradient vector d such that: 

dT={v       v2       w     w2    w22     \|/     y 2} (2-43) 

Now the in plane strain can be expressed as: 

e»=LT
0d+|dTH0d 

(2-44) 
%,„ =LT„d+-dTH „d A.2/J     p 2     P 

where p =  1,2,3,4,5,6,7.  The Lj's are column vectors and the Hj-'s are 

symmetric matrices.  Combining the Lj-'s and Hj's with the displacement 

gradient vector creates the linear and nonlinear strain terms, 

respectively.  This is demonstrated for the mid plane strain term (£2): 
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e°={0  1 -c    0  0  0 0} 

v 

V,2 

w 

W,2 

W.22 

¥ 
V.2 

+I{v V,2  W  W,2 ¥ V,2} 

c2 0 0 c 0 0 

0 1 —c 0 0 0 

0 —c c2 0 0 0 

c 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

o" V 

0 V,2 

0 w 

0 w2 . 

0 W,22 

0 ¥ 

0 .Y.2. 

(2-45) 

The through the thickness shear strain (e4) expressions are less 

complicated due to the previous assumptions about linearity and small 

angle approximations: 

e?=S£d 
(2-46) 

%42=S2
rd 

Appendix A contains the complete H, L, and S matrices. 

Miller's derivation of the Ht- matrices contains non linear terms 

of V|/ whereas Creaghan's Hj-'s contained only constants.  Miller treats 

the Hj-'s as constants to maintain similarity with Creaghan and Palazotto 

and Dennis.  This linearization is accomplished by substituting the 

previous incremental value of V|/ into the current Hj-'s (3; 13; 19). 

Although this assumption simplifies the impending variational calculus, 

it limits the accuracy of Miller's theory because the behavior of the 

bending angle is not properly modeled and leads to inexact equilibrium 

equations.  This may be a major reason the theory is limited to moderate 

rotations (46 degrees).  Subsequent research should investigate this 

assumption. 
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The total beam strain energy can now be expressed as: 

U = lbjä 
2 , 

K+ 
N,(d) N2(d) dds (2-47) 

where K is a matrix of constants, Nj is a matrix of the linear 

functions of d, and N2 is a matrix containing quadratic terms from d. 

This expression is formed by substituting Eqns(2-44) and (2-46) into 

Eqns(2-38), (2-39), (2-41), and (2-42) as outlined by Palazotto and 

Dennis (18).  This form of the equation simplifies  finite element 

formulation.  As previously stated, the higher order terms of \|r are 

treated as constants in Nj and N2 .  The K , Nt , and N2 matrices are 

listed in Appendix A. 

2.6 Finite Element Formulation 

The beam finite element used for the current formulation is shown 

in figure 2-9.  The element has three nodes with degrees of freedom 

(DOF) v, w, w2, \|/, and \j/2 at the end nodes and only v at the middle 

node.  This element is similar to Miller's except for the addition of 

the y2  degree of freedom at the end nodes. 

The additional DOF facilitates Hermitian shape functions for the 

bending angle (\|/) .  This element maintains C1 continuity for w and \|/ 

and their derivatives and C° continuity for v.  Previous efforts only 

maintained C° continuity for \|/. 

Adding two DOF also mandates additional boundary conditions.  This 

element experiences clamped, hinged, free, and symmetric boundary 

conditions and \|/2 must be defined for each.  Because a physical 
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NODE 2 

W,2 , \f, W,2 

Figure 2-9 Beam Finite Element 

interpretation of \|f2 is impossible, the values for \j/2 under these 

conditions are derived mathematically from: 

92w M 
ds2 ~ El ^-TT-™ (2-48) 

Based on this assumption, \|f2 = 0 at any boundary condition incapable of 

supporting a bending moment.  Table 2-2 lists the resulting boundary- 

conditions used for the DOF at nodes 1 and 2.  For the current work, v 

at node 3 is never specified. 

Table 2-2 Specified Boundary Conditions 

V w W,2 V ¥.2 

clamped 0 0 0 0 free 

hinged 0 0 free free 0 

free free free free free 0 

point of symmetry 0 0 0 0 free 
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The values of the DOF q(T|) at any point can be expressed in 

natural coordinates in terms of the element's DOF using: 

?(Tl) = 

v 

V 
V.2 

w 
W,2 

Ö. 0 0 0 0 ß3 02 0 0 0 0 

0 #11 Hn 0 0 0 0 #21 #22 0 0 

0 #n,n #12,11 0 0 0 0 #21,11 #22,n 
0 0 

0 0 0 #11 #12 0 0 0 0 #21 #2 

0 0 0 #11,T| #i2,n 0 0 0 0 #21,11 #22 

v(1) 

,(2) 

V (2) 

(2) w 

w (2) 

(2-49) 
where the shape functions are: 

Q^=W-r\) Ö2=4oi2+il) ß3=(l-n2) 

(2-50) Hn =1(2-3TI+TI
3
) tf12 =^(1-T1-TI

2
 +il3) 

//21 =i-(2 + 3ri-T|3) #22=£(-i-T1+Ti2+ti3) 

The displacement gradient vector d of Eqn(2-43) must be related to the 

DOF before using the beam energy equation, Eqn(2-47).  The conversion is 

done in natural coordinates using the following equation: 

d(ri) = Dd = 

Q 0 0 0 0 a 02 0 0 0 0   " V? 
a. 0 0 0 0 03,1, 02,11 0 0 0 0 w(1) 

0 0 0 #1. #12 0 0 0 0 #211 #22 w« 

0 0 0 #11,11 #12,11 0 0 0 0 #21,11 #22,n v(3) 

0 0 0 #11,™ #i2,im 0 0 0 0 #2i,im "22,1m v(2) 

0 #1, #12 0 0 0 0 #21 #22 0 0 V2» 
0 #11,11 #12,11 0 0 0 0 #21,11 #22,11 0 0 V? 

¥ (i) 

w 
w 

(2-51) 
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where D is the shape function matrix used to relate the d to the DOF. 

By multiplying by the inverse of the Jacobian matrix (J) , Eqn(2-51) is 

converted to global coordinates. 

d(s) = J,d(h) = J1Dq = Tq (2-52) 

where    J'1 is defined as: 

10      0      0      0      0      0 
1 

J-' = 

0 0      0      0      0      0 

0      0      10      0      0      0 

0      0      0-000 
a 

0      0      0      0    \    0      0 
a 

0      0      0      0      0      10 

J_ 
a 

0      0      0      0      0      0 

(2-53) 

where a is half the element length. 

Now the beam strain energy from Eqn(2-47) based on the DOF is: 

N,  N, u=-bjq
rr 

3  6 
(2-54) 

Integrating along the beam length yields new terms used for a tangent 

stiffness matrix: 

K = bjTTKTds -N, = &jTTN,TYfc ■ N2 = fc|TTN2TVfc 
/ ; / 

Substituting Eqn(2-55) into Egn(2-54), one obtains this element's 

potential energy equation: 

(2-55) 

nP=Ti K+ 
N,(q) , N2(q)' q-qTR (2-56) 

3    6 

where R is a vector representation of external forces. 

Defining the beam equilibrium equation requires taking the first 

variation of Eqn(2-56) and setting it equal to zero: 
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sn =8^ K+Ni(q) + N2(q) q-R = 8qT[F(q)] = 0 (2-57) 
2     3 

where F is the resultant equilibrium equations.  The first variation is 

accomplished with respect to the vertical displacement (w) because the 

bending angle \|/ is taken to be a linearized function and the membrane 

displacement (v) is a linear function.  This is where the theory goes 

wrong.  The first variation should be accomplished with respect to the 

bending angle which includes a third order approximation as well as the 

vertical displacement.  The linearization of \)/ limits the exactness of 

the equilibrium equations as discussed in section 2.5. 

Because Sq is arbitrary and independent, F(q) = 0 becomes the set 

of algebraic nonlinear equilibrium equations.  To solve these equations, 

Eqn(2-57) is expanded in a truncated Taylor series 

such that: 

3F, 
F(q+5q) = F(q)+—8q = 0 

3q 

or: (2-58) 

|*8q = -F(q) 
3q 

Substituting the expression  for F and its derivatives  into Eqn(2-58) 

yields: 

KT8q = - K+ 
N,    N, 

q + R 
2       3 

where: (2-59) 

KT=[K + N,+N2] 

Eqn(2-59) is the final equation used to find the equilibrium values for 

the 11 DOF.  In any case, the nonlinear stiffness matrices vary with 

load and displacement throughout the structure. 
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2.7 Numerical Solution Methods 

Modifying Eqn(2-59) to include all elements of a finite element 

model, one obtains: 

fcjTT(K + N1+N2)T£fc 5q = -£ b\r 
s         *         ^    \ 

-    N,     N, I 
K+^+—L 'Yds 

2       3 ^                    ) _ 
q + R (2-60) 

where n  is the number of elements in the model and j  is the integration 

over the length of any particular element.  The global load vector R 

contains as many rows as DOF.  The q and 8q vectors are global 

displacement arrays constructed from the elemental displacement vectors. 

Eqn(2-60) is integrated using Gauss quadrature.  Although exact 

integration would require 7th order Gauss quadrature, 5th order 

quadrature is used with negligible difference (8; 13). 

Miller employed the Newton-Raphson solution methods which are 

retained for the current work.  Either the displacement control method 

developed by Dennis and Palazotto or a modified Riks-Wempner technique 

is used to generate equilibrium paths (13; 19; 27).  Both techniques are 

briefly reviewed here. 

The displacement control method iterates load values based on 

incremental displacements until equilibrium is achieved.  The initial 

displacement as well as each displacment increment are prescribed.  This 

method transverses horizontal limit points similar to point A in figure 

2-10; however, vertical limits such as point B cannot be evaluated 

because no unique solution exists at that displacement.  Figure 2-11 

graphically depicts the displacement control method.  Starting at an 

equilibrium point, the displacement is incremented and a load determined 

using: 

[K + N^J + N^Jq,,.^- K|
N1(qn_1)|N2(qL,y 

q„-i +R. (2-61) 
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Load 

Displacement 

Figure 2-10 Typical Load vs. Displacement Curve 

Load Equilibrium 
Curve 

Displacement 

Figure 2-11  Displacement Control 

Eqn(2-61) comes from Palazotto and Dennis (19).  Iteration of Eqn(2-61) 

is continued until convergence, for a given displacement increment, 

satisfies equilibrium 

The Tsai and Palazotto modified Riks-Wempner technique transverses 

limit points the displacement control method cannot (27).  This 

technique, which is referred to as the Riks method, modifies the 

equilibrium equation such that: 

F(qA) = |K+^+2k]q-m (2-62) 
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where X  is a user specified loading parameter.  Eqn(2-62) is expanded 

for a solution similar to Eqn(2-56), resulting in: 

Kr8q, =8A,R-F(q,.,?l,.) (2-63) 

A search radius, Al  is defined as the additional constraint required for 

Eqn(2-63) to be a solvable system.  This value is defined as: 

M2=Aq]+iAqM +A^.+1R
TR (2-64) 

The search radius establishes the distance of the new equilibrium point 

from the current equilibrium point.  Assuming A/ is small enough to 

accurately capture the equilibrium path, it may be approximated using: 

AZ2=Aq[+1Aq,.+1 (2-65) 

This definition causes an unsymmtrical global stiffness matrix. 

Reducing Sq, to two terms restores the required symmetry: 

8q, =5q„ +5A,,.8q,2 

where (2-66) 

8qn =-K-r
1F(q,a,). 5q,.2 =-K^R 

Each incremental displacement and load increment values are based on the 

results of the previous increment and a small change 8: 

M/+i=Aq,+8ql+1 

AX,.+1 = AXi+8Xi 
(2-67) 

Substituting Eqn(2-67) into Eqn(2-65) yields: 

a8X2
(+fc8X(.+c = 0 

where (2-68) 

a=8q£8q(2>    fc = 2Sq,T
2 (Aq,. +8q,.) 

c = (Aq,.+Sq,.)T(Aq,.+8q,.)-A/2 

The preceding system of equations converges when 8q,- becomes smaller 
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than a user defined value.  After convergence at load step m,   the total 

displacement qm, the total load parameter Xm,   and the incremental load 

step Alm  are calculated using: 

qm=qra-i+Aqm 

km=Xm.+Akm (2-69) m m-l m 

N 
AL = AL , —'— m m-l   w 

lym-l 

where Ns  is a user defined number of iteration prediction and Nm.j  the 

number of iterations required for convergence of step m-l.     Once the 

search radius for a step is defined, the initial load parameter is found 

using: 

AL 
AX,=± "^-ü- (2-70) 

2.8 Step by Step Riks Algorithm 

This Riks method example is presented by Creaghan and Miller and 

is repeated here for clarity (3; 13).  Figure 2-12 graphically depicts 

the process.  For each Riks solution, the estimated number of iterations 

(Ns),   total number of steps (m) , the incremental displacement limit 

(q,), and the initial load parameter (Ao) are user prescribed parameters. 

1. First increment, first iteration: compute only the constant 

stiffness matrix, K. 

2. First iteration, subsequent increments: compute 8q/2=-K^R. 

After the first increment, KT is composed from q„.; nonlinear 

displacement terms. 

3. Each iteration, each increment: compute Aq, = AAi5q,2.  For the first 

increment, AX; = Xo, which is a program input.  Current examples 
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Displacement 

Figure  2-12  Riks Method 

4. 

used Ao = 0.1 as did Creaghan and Miller with acceptable results (3; 

13).  For subsequent increments, AXj = Xi. 

Each iteration, each increment: compute in order: 

Sq^-K^Ffa,,*,,) 

8q,. =8q„ +SA,,.8q,7 

Aq,+1 = Aq,. +8q,+1 

(2-71) 

Compute A/ = (Aqf+1Aq,+i) . 

Update KT with q, = qm./ + Aq,-. 

Solve Eqn(2-68) for ±8A,;.  For complex roots, return to step 2 and 

arbitrarily adjust Alm,   which changes AXj. 

Choose ±8X,- based on which value yields a positive 0 in: 

Sq, =Sq,±8X,8q,2 

e=(Aq,.+8q,)Aq,. 

If both are positive, then 8Xi = -c/b. 

Update the displacement and loading parameters using: 

Aq,+1=Aq,.+8q,.+1 

AXM =AXi+5li 

(2-72) 

(2-73) 
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10. 

11. 

12. 

Check for convergence.  If no convergence, return to step 2.  upon 

convergence, update the displacement, load parameter, and search 

radius for the next increment: 

qm=qm-i+Aq„ 

m m—1      n (2-74) 

AL = AL , m     m-i 

#«-. 

where Ns  is a user defined number of iteration prediction and Nm.i 

the number of iterations required for convergence of step m-1. 

The current work uses Ns = 2.5. 

Compute the loading parameter for the first iteration of the next 

increment: 

AL 
AXl =±- 

\% 

Return to step 2 to begin the next increment. 

(2-75) 

2.9 Arch Geometry Considerations 

As previously discussed, geometry plays a significant role in the 

arch behavior.  Figure 2-13 presents a typical arch geometry.  Miller 

Figure 2-13 Arch Geometry Definitions 

considers an arch thick when (12; 
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-<25 (2-76) 
h 

He also defines a deep arch using: 

where (2-77) 

^W-'-f(i)f 
These classification will be used when comparing the current work with 

Miller's. 
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III.  Results and Discussion 

3.1 Overview 

This chapter is divided into two sections.  In the first section, 

the current work is compared to Miller's work to assess the effects of 

the Hermitian shape functions.  The second section presents the results 

of extensive arch analysis using the current program. 

3.2 Comparison 

3.2.1 Clamped Isotropie Shallow Thin Arch.  The first problem 

considered was originally presented by Belytschko and Glaum(l) and is 

o = 17.2° 
r = 3.381m 
h = 4.763xl0"3m 
8/c = 0.075 
E = 68.946 GPa 

Figure 3-1 Clamped Isotropie Shallow Thin Arch 

presented here in figure 3-1.  Miller and Creaghan also analyze this 

structure(3; 13).  Because the current work is an evolution of Miller's, 

comparisons are only made with his results. 

This first example combines large displacements and geometric 

nonlinearity with small rotations.  As such, it is used to validate the 

current work and demonstrate that the updated shape functions do not 

corrupt the program's capabilities.  The structure is symmetrically 

3-1 



100 

90 

80 

70 

60 

lg  SO 
o 
Ll_ 

•40 

30 

20 

10 

Miller 
Current 

/ 
/ 

_ / 
/ 
/ 

"X 

\ V 

\ 
\ 

.s 
-—, ^.^ 

0.01 0.02 0.03 0.04 
Displacement (w) (M) 

0.05 
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0.06 

modeled using 17 elements.  Miller's model contained 81 active degrees 

of freedom (DOF) while the current work used 99.  Both formulations use 

displacement control with a convergence tolerance of 0.1% and maximum of 

200 iterations per displacement increment.  Twenty increments are used 

with an initial displacement of 2.54mm.  Convergence is based on: 

of xl00% <TOL (3-1) 

where q^, qa
r-i# and q^ are elements of the global displacement vector, 

for the rth, (r - l)th, and the first load increment, i  =  1 to n  degrees 

of freedom, and TOL  is the user defined tolerance (19). 

Figure 3-2 compares the vertical displacement (w) at node 8 (the 

point of symmetry where P is applied) for each solution method.  The 

maximum difference is less than 1.0% at 10.16mm of displacement.  This 

figure is attained using: 

Miller' s - Current 
difference = 

Miller's 
xlOO (3-2) 
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This confirms correct introduction of Hermitian shape functions into the 

finite element formulation. 

Examining the derivative of the bending angle (\|/,2) demonstrates 

the effect of the higher order shape function.  Figure 3-3 compares 

(v|/,2) for the current work with Miller's results.  The linear shape 
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Figure 3-3 Clamped Shallow Thin Arch Rotation Rate of Change Comparison 

function of the previous effort create a curve with step discontinuities 

at each node.  The current work provides a continuous curve for the 

bending angle rate of change expression.  Thus, the higher order shape 

function is indeed properly incorporated and does not degrade the 

capabilities of the previous effort. 

To examine the efficiency of the two programs, the number of 

elements used to model the structure is incrementally reduced until the 

solutions deviated from the "approved" solution presented in figure 3-2 

by more than 1.0%.  Both formulations were run using the same setup as 

the initial solution with the exception of the reduced number of 

elements.  Using 12 elements and 56 active DOF, Miller's program 
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deviated 0.848%.  Using this model, his program required 23.1 seconds to 

solve using a Sun Sparc20 workstation.  The current work required only 7 

elements and 39 active DOF to achieve similar results, using the same 

convergence parameters.  This setup required only 17.3 seconds to run on 

the same workstation, a 25.1% reduction. 

3.2.2 Cantilever Isotropie Thin Beam.  Figure 3-4 presents the 

second problem examined.  This structure experiences large deflections 

10 m 

> 

h = 0.1m 
E=1.2GPa 

7~V 
Figure 3-4 Cantilever Isotropie Beam 

and moderate rotations.  Hsiao and Hou initially examine this beam using 

an updated Lagrangian formulation (14).  The structure is modeled with 

40 elements providing 200 active DOF for Miller's solution and 240 for 

the current program.  Displacement control was used with an initial 

displacement of 0.15m, 58 increments, a limit of 100 iterations per 

increment, and a tolerance of 0.5%.  Figure 3-5 compares the tip 

displacement (w) solution of the current method to Miller's.  Because 

this structure experiences large rotations, the current work should 

deviate from Miller's if the bending angle shape functions are the 

limiting factor of the previous work.  However, the two solutions are 

almost identical.  This is the first indication that the limit of the 
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previous effort is not in the finite element formulation, but in the 

derivation of the equilibrium equations. 

The derivative of the bending angle (V|/,2) is examined for the 

entire beam at maximum load.  Figure 3-6 presents these results.  As 

with the first example, the current effort generates a continuous curve 

o 
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whereas Miller's results are not.  This indicates the Hermitian shape 

functions do properly estimate the bending angle and its first 

derivative. 

The efficiency was also examined using the procedure outlined in 

section 3.2.1.  Miller's program required 14 elements and 70 active DOF 

to match the solution generated using 40 elements.  This model required 

45.4 seconds to solve.  The current work required fewer elements (13) 

but more DOF (78).  This caused the current program to run 70.7 seconds 

before reaching a solution. 

3.2.3 Very Deep Hinged Clamped Isotropie Arch.  The following 

example combines large rotations and large displacements.  The 

unsymmetrical boundary conditions combine with the very deep geometry, 

as shown in figure 3-7, to present a formidable test of any large 

a = 240° 
r = 2.54 m 
h = 0.00592 m 
8/c = 1.73 
E = 6.895 GPa 

Figure 3-7 Very Deep Hinged Clamped Isotropie Arch 

rotation and large displacement theory.  The arch was modeled with 100 

elements and the displacement control method was used.  A maximum of 100 

iterations was specified for each of the 200 increments, and the 

tolerance was set at 2.0%. 
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The comparison with Miller's work is shown in Figure 3-8.  The 

programs produce nearly identical results up to the collapse load of 
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Figure 3-8 Load vs. Displacement for a Very Deep Hinged Clamped Arch 

1.720 kn. and a displacement of 0.826 m.  At this point the solutions 

diverge.  However, Miller discovered solutions generated after collapse 

were unreliable due to large energy changes within the elements (13). 

As such, solutions reached after collapse are neglected. 

The rate of change of the bending rotation (V|/,2) is presented in 

figure 3-9 and shows the same results as the previous two examples. 

Again, C1 continuity of the bending angle is attained.  Even with the 

higher order continuity, the current model does not provide a better 

solution.  These results clearly indicate a limitation caused by the 

linearization of the rotation angle (V)0 during derivation of the large 

rotation kinematics. 

Although the rotation limits have not been improved, the current 

work does address another shortcoming of the previous efforts.  At large 

deflections, Miller noted a propensity for elements near the hinged 
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boundary to "kink over" (13) .  Figure 3-10 shows the undeformed and 

deformed shapes created by each model at 35 inches of vertical 

deflection at the middle node.  Despite providing similar solutions for 

the displacement at the middle of the arch, the kinking phenomenon 

Miller noticed is nonexistent in the current solution.  As a result, 

displacements near the hinged boundary are significantly different.  For 

this reason, the current model should be used for investigating large 

rotation problems. 

Another advantage of the current formulation is that erroneous 

solutions are eliminated.  In this example. Miller's formulation 

continued providing solutions after the model experienced element 

3-8 



0.12i— 

0.1 - 

0.08 - 

0.06 - 

0.04 - 

0.02 - 

O - 

-0.02 - 

-0.04 - 

-0.06 - 

-0.08 

Original Shape 

Current 

lement Kinking 

—O.OS 0.05 
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kinking despite the unstable nature of the structure (13).  The current 

program does not converge on a solution beyond this deflection level. 

The elimination of element kinking and inaccurate solutions 

clearly demonstrate the advantage of using Hermitian shape functions for 

interpolation of the bending angle (\|f) when modeling arches with large 

displacements and large rotations. 

For this example, the current program required 98 elements with 

586 active DOF to maintain an accurate solution.  Miller's program only 

required 88 elements and 440 active DOF.  As a result, the current 

formulation ran for 1049 seconds versus 805 seconds for the previous 

effort.  Clearly, the trade off for C1 continuity is a finer mesh and 

larger number of DOF, which in turn require more time to solve. 

3.3 Arch Evaluation 

This section makes use of the newly developed curved element to 

characterize certain geometric parameters.  Two classes of composite 

arches are evaluated.  The first group investigates how the arc 
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length (S)   affects the collapse load (Pc) .  The second group evaluates 

the effect of changing the thickness ratio {h/r)   versus Pc.  In either 

case, simply supported composite arches are symmetrically modeled using 

the current program.  All loads were applied and displacements (w) 

measured at the point of symmetry.  The arches are constructed of a 

[0/90]s lay-up of AS4-3501-6 graphite epoxy.  Each ply is 0.25mm thick, 

for a total thickness of 1mm.  The lamina material properties are: 

Ei=142 GPa; E2=9.8 GPa; Gi2=Gi3=6.0 GPa; G23=4.8 GPa; and v12=0.3.  These 

arches experience large deformations and moderate rotations.  Riks 

method is used for all simulations with a tolerance of 0.5%, a maximum 

of 500 increments, and a limit of 100 iterations per increment.  The 

initial load parameter (X0) was set at 0.1, with the number of 

iterations estimated as 2.5 (Ns) , and a maximum allowable load change 

(K^)   of 2.0. 

3.3.1 Constant h/r.   Variable Arc Length.  For this portion of the 

evaluation, five different thickness ratios are considered.  Each h/r was 

established by varying the radius while holding the thickness at 1mm. 

For each h/r  the arc length was varied to determine how boundary location 

affects arch behavior.  Table 3-1 presents the specifications of each 

arch analyzed for this section along with the depth and thickness 

parameters used for evaluation.  Representative figures are presented in 

Appendix B. 

Table 3-1 includes two classification parameters for thickness and 

depth evaluation.  For thickness, either h/r  or c/h  may be used.  The 

c/h parameter takes opening angle into account and is more accurate as 

the opening angle increases.  Either 8/c  or X  are used for depth 

classification. X  is calculated using X =   [12(1-u2)]-25(r/h)-5(a/2). 
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Table 3-1 Arch Investigation Matrix, Constant h/r,   h  = 0.001m 

h/r S (m) r (m) c/h 8/c X 
0.1 thick 0.01 0.01 4.79 thick 0.26 shallow 2.94 shallow 
0.1 thick 0.015 0.01 6.82 thick 0.39 deep 4.41 shallow 

0.1 thick 0.025 0.01 9.49 thick 0.72 deep 7.36 shallow 

0.1 thick 0.05 0.01 5.98 thick 3.01 deep 14.71 deep 

0.05 thick 0.015 0.02 7.33 thick 0.18 shallow 3.12 shallow 

0.05 thick 0.02 0.02 9.59 thick 0.26 shallow 4.16 shallow 

0.05 thick 0.025 0.02 11.70 thick 0.32 deep 5.20 shallow 

0.05 thick 0.03 0.02 13.63 thick 0.39 deep 6.24 shallow 
0.05 thick 0.05 0.02 19.98 thick 0.72 deep 10.40 deep 
0.05 thick 0.075 0.02 19.08 thick 1.36 deep 15.61 deep 
0.05 thick 0.1 0.02 11.97 thick 3.01 deep 20.81 deep 
0.01 thin 0.025 0.1 12.47 thick 0.06 shallow 2.33 shallow 
0.01 thin 0.05 0.1 24.74 thick 0.13 shallow 4.65 shallow 
0.01 thin 0.075 0.1 36.63 thin 0.19 shallow 6.98 shallow 
0.01 thin 0.1 0.1 47.94 thin 0.26 shallow 9.31 deep 
0.01 thin 0.15 0.1 68.16 thin 0.39 deep 13.96 deep 
0.01 thin 0.2 0.1 84.15 thin 0.55 deep 18.61 deep 
0.005 thin 0.05 0.2 24.93 thick 0.06 shallow 3.29 shallow 
0.005 thin 0.075 0.2 37.28 thin 0.09 shallow 4.93 shallow 
0.005 thin 0.1 0.2 49.48 thin 0.13 shallow 6.58 shallow 
0.005 thin 0.15 0.2 73.25 thin 0.19 shallow 9.87 deep 
0.005 thin 0.2 0.2 95.89 thin 0.26 shallow 13.16 deep 
0.005 thin 0.3 0.2 136.3 thin 0.39 deep 19.74 deep 
0.0025 thin 0.05 0.4 24.98 thick 0.03 shallow 2.33 shallow 
0.0025 thin 0.075 0.4 37.45 thin 0.05 shallow 3.49 shallow 
0.0025 thin 0.1 0.4 49.87 thin 0.06 shallow 4.65 shallow 
0.0025 thin 0.15 0.4 74.56 thin 0.09 shallow 6.98 shallow 
0.0025 thin 0.2 0.4 98.96 thin 0.13 shallow 9.31 deep 
0.0025 thin 0.4 0.4 191.8 thin 0.26 shallow 18.61 deep 
0.0025 thin 0.6 0.4 272.6 thin 0.29 deep 27.92 deep 

Similar to the thickness classification parameters, as a increases, the 

X. parameter is preferred because it directly accounts for the opening 

angle. 

Figures 3-11 presents a typical P0 vs. w  curve.  The critical load 

is defined as the local peak indicated by point A.  In the cases where 

no local peak exists, it is assumed the structure does not collapse but 

has post buckling features.   Figure 3-12 presents the Pc v S  data for 

h/r =  0.1.  As arc length approaches zero, Pc smoothly approaches 
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infinity except for the decrease at S =  0.01m.  Further examination 

indicates this arch experiences local snapping and does not totally 

collapse (total collapse is defined as global snapping).  That is, the 

arch geometry changes but is immediately able to support a load with 

3-12 



minimal deflection increases.  Figure 3-13 presents the load 

displacement curve for an arch with arc length of 0.01m and thickness 

ratio of 0.1.  As indicated, the arch initially collapses at 10.059 N at 
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Figure 3-13 Load v Displacement for S  = 0.01m, h/r  = 0.1 

a displacement of 0.75mm.  This arch is able tosupport the same load 

again after the displacement increases only 1.7mm to 2.45mm.  Figure 3- 

14 presents the actual arch shape at the collapse displacement.  The 

counterflexure points indicate the point on the arch where the radius 

changes signs.  Outside these points, the arch isconcave downward and 

between the counterflexure points the arch is concave upward.  The 

distance between the points is indicative of the stability the arch.  As 

the distance increases, stability decreases along with the ability to 

support a load.  As indicated in figure 3-14, the counterflexure points 

of the S  = 0.01m, h/r =  0.1 arch are separated by 1.5mm or 15% of the arc 

length.  This small separation, combined with the minimal displacement 

change, indicate that a local snapping occurs. 
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To demonstrate the total collapse of an arch, the typical load 

displacement curve for an arch with S =  0.025m and h/r  = 0.1 is 

considered.  This curve is presented in figure 3-15.  This structure 

initially collapses at a load of 10.76N and a displacement of 2.72mm. 
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Figure 3-15 Load v Displacement for S =  0.025m, h/r  = 0.1 
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As shown, the arch does not recover after the initial collapse point, 

indicating a global snapping or total collapse of the structure. 

The undeformed shape of this arch is presented in figure 3-16 

along with the shape at collapse.  The counterflexure points are 

original shape 

thick, deep arch 
r=.01m, s=.025m, h=.001r 

—2 O 2 
x coordinates (mm) 

10 

Figure 3-16 Undeformed and Collapsed Arch Shapes; S  = 0.025m, h/r  =0.1 

separated by 3.8mm (15.2% of S)   at collapse.  Both this arch (S  = 0.025, 

h/r  =0.1) and the previous arch (S  = 0.01, h/r  =0.1) have similar 

counterflexure separation distances (15% of S)and collapse loads 

(10.5N). 

Although both arches collapse at similar loads, the longer arch 

displaces almost 12% of its length before collapsing versus 7% for the 

shorter arch.  Also, the longer arch does not recover after initial 

collapse, indicating a that global snapping occurs. 

Similar results were observed for thickness ratios (h/r) of 0.05, 

0.01, 0.005, and 0.0025. These results are summarized in table 3-2 and 

presented graphically in Appendix B. 
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Table 3-2 Constant h/r  Results 

h/r S (m) Pc (N) wc   (mm) recover post snap 
disp (mm) 

type of 
snapping 

0.1 0.01 10.587 0.7471 yes 1.70292 local 
0.1 0.015 12.616 1.2727 no n/a global 

0.1 0.025 10.761 2.7196 no n/a global 

0.1 0.05 6.2709 7.059 no n/a global 
0.05 0.015 4.8981 0.8508 yes 1.9892 local 
0.05 0.02 5.8055 1.2548 no n/a global 
0.05 0.025 5.6238 1.7891 no n/a global 
0.05 0.03 5.1597 2.385 no n/a global 
0.05 0.05 3.5331 5.7071 no n/a global 
0.05 0.075 2.7036 12.055 no n/a global 
0.05 0.1 1.7821 14.187 no n/a global 
0.01 0.025 0.3848 0.66 yes 0.645 local 
0.01 0.05 0.67085 1.6038 yes 0.808 local 
0.01 0.075 0.52102 3.23 no n/a global 
0.01 0.1 0.40145 5.5168 no n/a global 
0.01 0.15 0.26823 11.795 no n/a global 
0.01 0.2 0.19992 19.769 no n/a global 
0.005 0.05 0.20175 0.97761 yes 2.31239 local 
0.005 0.075 0.2405 1.81 yes 5.6552 local 
0.005 0.1 0.1984 2.9864 no n/a global 
0.005 0.15 0.13688 6.4393 no n/a global 
0.005 0.2 0.10279 10.941 no n/a global 
0.005 0.3 0.06824 23.472 no n/a global 
0.0025 0.05 0.04979 0.6667 yes 0.6532 local 
0.0025 0.075 0.07853 0.9867 yes 2.8736 local 
0.0025 0.1 0.08843 1.654 yes 4.7291 local 
0.0025 0.15 0.06757 3.366 no n/a global 
0.0025 0.2 0.05178 5.829 no n/a global 
0.0025 0.4 0.02605 21.968 no n/a global 
0.0025 0.6 0.0133 47.795 no n/a global 

The results presented in table 3-2 highlight two important trends 

in arch behavior.  First, the arches that recover after collapse, or 

experience local snapping, are generally classified as shallow 

structures, based on the specifications listed in table 3-1.  It is 

interesting to note that for smaller radii (r =0.01m and 0.02m), the 8/c 

parameter correctly classifies shallow arches as those that experience 

local snapping, but as the radius increases, the A, parameter provides a 

more accurate prediction. 
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The second trend is for Pc to increase as h/r  increases for a 

given arc length.  This indicates the influence of through the thickness 

shear, as will be described in the next section. 

3.3.2 Constant Arc Length, Variable h/r.     Table 3-3 presents the 

specifications of each arch analyzed for this section along with the 

depth and thickness parameters used for evaluation. 

Table 3-3 Arch Investigation Matrix, Constant S,   h =  0.001m 

S (m) h/r r (m) c/h 8/c I 
0.025 0.1 thick 0.01 9.49 thick 0.72 deep 7.36 shallow 
0.025 0.05 thick 0.02 11.70 thick 0.32 deep 5.20 shallow 
0.025 0.01 thin 0.1 12.47 thick 0.06 shallow 2.33 shallow 
0.05 0.1 thick 0.01 5.98 thick 3.01 deep 14.71 deep 
0.05 0.05 thick 0.02 18.98 thick 0.72 deep 10.40 deep 
0.05 0.01 thin 0.1 24.74 thick 0.13 shallow 4.65 shallow 
0.05 0.005 thin 0.2 24.93 thick 0.06 shallow 3.29 shallow 
0.075 0.05 thick 0.02 19.08 thick 1.36 deep 15.61 deep 
0.075 0.01 thin 0.1 36.63 thin 0.19 shallow 6.98 shallow 
0.075 0.005 thin 0.2 37.28 thin 0.09 shallow 4.93 shallow 
0.075 0.0025 thin 0.4 37.45 thin 0.05 shallow 3.49 shallow 
0.1 0.05 thick 0.02 11.97 thick 3.01 deep 20.81 deep 
0.1 0.01 thin 0.1 47.94 thin 0.26 shallow 9.31 deep 
0.1 0.005 thin 0.2 49.48 thin 0.13 shallow 6.58 shallow 
0.1 0.0025 thin 0.4 49.87 thin 0.06 shallow 4.65 shallow 
0.15 0.01 thin 0.1 68.16 thin 0.39 deep 13.96 deep 
0.15 0.005 thin 0.2 73.25 thin 0.19 shallow 9.87 deep 
0.15 0.0025 thin 0.4 74.56 thin 0.09 shallow 6.97 shallow 
0.2 0.01 thin 0.1 84.15 thin 0.55 deep 18.61 deep 
0.2 0.005 thin 0.2 95.89 thin 0.26 shallow 13.16 deep 
0.2 0.0025 thin 0.4 98.96 thin 0.13 shallow 9.31 deep 

Figure 3-17 presents a Pc vs. h/r  curve for arches 0.025m long. 

This curve was constructed by varying the radius of curvature while 

maintaining a thickness of 1mm. As shown in figure 3-18, as h/r 

decreases due to the increasing radius, the depth of the arch decreases 

or becomes more like a flat beam. 
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Figure  3-17  Pc vs.   h/r for S = 0.025m 

Figure 3-18 Effects of Increasing Radius for a Constant Arc Length 

As expected, Pc increases as h/r  increases; however, as indicated 

in figure 3-17, the rate of change of the critical load decreases as the 

thickness ratio increases (radius decreases).  All three arches used to 

3-18 



generate the curve are considered thick based on c/h  < 25.  As such, the 

deviations observed in the Pc vs. h/r  curve demonstrate the nonlinear 

effects caused by significant through the thickness shear stresses 

experienced by thick beams and arches. 

Figure 3-19 presents the Pc vs. h/r  for an arc length of 0.2m.  A 

slight variation in the critical load rate of change was observed.  In 

this case, all three S =  0.2m arches were thin arches, based on the 

c/h >  25 criteria presented in table 3-3.  As such, the Pc vs. h/r  curve 
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Figure  3-19  Pc vs.   h/r for S = 0.2m 

indicates minimal nonlinear behavior caused by through the thickness 

shear. 

The critical displacement (wc) for these arches was also examined. 

Figure 3-20 shows the wc  vs. h/r  curve for S =  0.025m.  This curve 

deviates from the linear path as indicated.  Figure 3-21 presents the wc 

vs. h/r  curve for S =  0.2m.  In both cases, as the arches modeled become 
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deeper, the rate of change of the critical displacement decreases, 

irregardless of the presence of through the thickness shear effects. 

The analysis of arches with constant arc length and thickness and 

changing radius of curvature demonstrates the nonlinearities introduced 

as depth and through the thickness shear increase. 

Similar Pc vs. h/r  and wc vs. h/r  curves were constructed for arc 

lengths of 0.05m, 0.075m, 0.1m, and 0.15m.  These curves further 

exemplify the relationships between critical load and thickness and 

critical displacement and depth.  Appendix C contains these curves. 
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IV.  Conclusions and Recommendations 

4.1 Summary and Conclusions 

This effort successfully modified the existing finite element 

formulation of a potential energy based large deformation and moderate 

rotation theory.  Comparison with the unmodified formulation indicated 

proper incorporation of Hermitian shape functions for the bending angle 

(\|/) .  Despite the higher order shape functions, the rotation limit of 

the current work remained the same as the previous effort.  Although the 

limits were unchanged, the current formulation did eliminate element 

kinking experienced in previous efforts. 

Numerous arch configurations were modeled to analyze their 

behavior with respect to arc length and thickness variations.  As the 

arc length decreased for a given thickness ratio (h/r), the critical 

load (Pc) approached infinity except for a minor decrease as the arch 

became flatter.  This dip in the P0 vs. S  curve comes about because 

global snapping becomes a local phenomena before snapping disappears 

altogether.  The decrease in critical load does not represent a 

structural failure, but a geometry change which does not affect the load 

carrying capability of the arch.  An arch experiencing local snapping 

recovers its structural integrity with only a small displacement 

increase.  On the other hand, after global snapping, an arch experiences 

extremely large displacements before recovering.  The extent of snapping 

(local or global) can be accurately predicted by examining the depth of 

an arch.  Deep arches experience total collapse while shallow arches 

only undergo local snapping. 
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Varying the radius of curvature of an arch while holding the 

thickness and arc length constant demonstrated independence of depth and 

thickness.  Compared to an analysis where through the thickness shear is 

neglected, these stresses decreased the critical load of both shallow 

and deep arches as the thickness ratio increased.  Similarly, as the 

depth increased, nonlinearities decreased critical displacement for 

thick and thin beams alike. Thus, the critical load is dependent on the 

thickness and the critical displacement is a function of the depth of 

the arch. 

4.2 Recommendations 

The current model is limited to 45 degrees of bending rotation 

just as the previous effort was.  This indicates the previous finite 

element formulation was sufficient and the underlying equilibrium 

equations are limiting the accuracy of the program beyond the bending 

rotation limits.  As such, the equilibrium equations should be rederived 

taking the first variation of the potential energy equation with respect 

to the bending angle (\|/) as well as vertical displacement (w) .     Such a 

derivation could then be used with the current finite element 

formulation to increase bending angle limit. 
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Appendix A 

A.l Qjj  Transformations of Eqn(2-18) 

ß, = ß, cos4 e + 2(ß2 + 2ß66)sin2 6 cos2 9 +ß22 sin4 9 

ß,2 = (ßn + Ö22 -4Ö6« )sin2 9 cos2 9 + ß12 (cos4 9+sin4 9) 

QK = ß„ sin4 9 + 2(ß12 +2ß66)sin2 9 cos2 9 +ß22 cos4 9 

ß,« =(ß„ -OB -2ß66)sin9cos39+(ß12 -ß22 +2ßM)sin3 9cos9 

ß26 = (ß„ -ß,2 -2ß«)sin3 9 cos9 +(ß12 -ß22 +2G«)sine cos3 9 

ß66 = (ß., +ß22 -2ß„ -2ß66)sin2 9 cos2 9 +ß66(cos4 9 + sin4 9) 

ß44=ß55sin29+ß44cos29 

ß45=(ß44-ß55)cos9sin9 

ß55=ß44sin29 + ß55cos29 

0 0     0} 

0 0       0 1 

0 0       0 c 

A.2  L,   S,   and H Matrices  in Eqn(2-44)   and Eqn(2-46) 

Z^={0     1     -c 0 

L]={0       0     -c2 

L\ = { 0     -c2 0 

Z^T={0   0   0   0 *   0   k] 

L]={0    0     0 0    dt    0    ck} 

Ll={0   0   0   0 0   0   0} 

L]={0   0   0   0 00   0} 

5,T={0   0   0   0 0   0   0} 

S^-fO     0     0 3fe    0    3k    0} 

o' 
0 

0 

0 

0 

0 

0 

#o = 

c2 0 0 c 0 0 

0 1 —c 0 0 0 

0 -c c2 0 0 0 

c 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
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H,= 

H, = 

#, = 

HA = 

H<=    -: 

0 0 0 c2 0 c2 0 

0 0 -c2 0 0 0 l+\l/2 

0 -c2 2c3 0 0 0 -c(l+¥
2) 

c2 0 0 2c 0 c 0 

0 0 0 0 0 0 0 

c2 0 0 c 0 0 ¥ 

0 1+Y2 -c(l+v2 
) 0 0 ¥ 0 

"   -3c4 0 0 -2c3 0 c3 0 

0 -3c2 2c3 0 0 0 c(l+¥2) 

0 2c3 0 0 0 0 -2c2 

-2c3 0 0 0 0 2c2 0 

0 0 0 0 0 0 0 

c3 0 0 2c2 0 c2 c\y 

0 c(l+V
2) -2c2 0 0 cy \+2xf2 

"     2c5 0 0 kc2 0 -2c4 +kc2 0 

0 2c3 0 0 k 0 -2c2+fc 

0 0 0 0 -kc 0 -kc 

kc2 0 0 2kc 0 kc 0 

0 k -kc 0 0 0 0 

-2c4 +kc2 0 0 kc 0 2c3 0 

0 -2c2 +k -kc 0 0 0 2c 

0 0 0 ifcc3 0 kc' 0 

0 0 0 0 kc 0 kc 

0 0 0 0 -2kc2 0 -2kc2 

ike3 0 0 4/fcc2 0 3/fcc2 0 

0 kc -2*c2 0 0 0          jfc(l+y2) 

kcz 0 0 3kc2 0 2fcc2 0 

0 kc -2*e2 0 *(l+i|/2) 0         2k(l+y2) 

0 0 0 -2kc * 0 -2kc* 0 

0 0 0 0 -2kc2 0 -2fc2 

0 0 0 0 0 0 0 

-2ÄTC4 0 0 0 0 2kc3 0 

0 -2fc2 0 0 0 0 2fc(l+v2) 

-2ifcc4 0 0 -2kc .3 0 4fcc3 0 

0 -2*c2 0 0 2£c(l+\|/ 2)       o 4kc 

A-2 



ff< = 

H7 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 k2c2 0 *V 0 

0 0 0 0 k2 0 k2 

0 0 0 k2c2 0 *v 0 

0 0 0 0 k2 0 k2 _ 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 2*V 0 2*V 0 

0 0 0 0 2k2c 0 2k2c 

0 0 0 2JfcV 0 2*V 0 

0 0 0 0 2k2 c 0 2k2c 

A.3   Element  Stiffness Matrices  of Eqn(2-47) 

k = AL0L
T

0 +D(L0I2, +L2L
T

0 + £,!*) 

+F(L0 Lr
4 + L4 Ll + L, L] + L3Lj + L2 LT

2) 

+H(L2L4' + L4L\ + L3L
T

3)+JL4L
T

4 +ASS0Sj 

+DS(S0Sj +S2S0
T +)+FSS2S2

T 

+D(L0d
TH2 +L2d

TH0 + VTff, +dTL0tf2 +</TL2tf0 +dTL,//, + H2dLT
0+H0dLr

2 +HldLT
1) 

'L0d
TH4 + L4d

TH0 +L^T//3 +L3d
T#1 + Z,2rfTtf2 +<fTZ,0#4 +drL4H0+dJL1H3

> 

<+drL3Hl +dTL2H2 + H4dL\ +H0dL] + H3dL] +HldL] + H2dL2
c 

(L0d
rH6 +Lld

rH5 + L2d
TH4 + L3d

TH3 + L4d
TH2 +drL0H6 +dJLiHi +dTL2H^ 

K+d'TL3H3 + dTL4H2 +H6dLT
0 +H5dL] + H4dL] + H3dL] +H2dLT

4 

(L^E, +L2d
TH6 + L3d

TH5 + L4d
rH4 +d1LiH1 +dTL2H6 + dTL3Hs +dTL4H4" 

+F 

+H 

+J 
+H1dL] +H6dLl +H5dL] +H4dLr

4 

+L(L3d
7H7 +L4d

rH4 + d7L3H3 +dTL4H4 +H1dL] +H4dLr
4) 
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N2 =A(H0ddTH0 +^dTH0dH0 

+D 

+F 

rH0ddTH2 +-H2ddrH0+HlddTHl 

+-dTH,dH2 +-drH2dH0 +^-drHldHl \   4        °     2    4 2 

rH0ddTH, +-HiddTH0 + H{ddTH3 + H3ddTH1 +H2ddTH2 

+-drH0dH, +-dTHAdH0 +±-drHldH3 +±-dTH3dHl +±-drH2dH2 
V,   4 4 2 2 2 

n 
+H 

+/ 

+L 

H0ddTH6 +-H6ddTH0 +HlddrH5 +H5ddrH{ + H2ddTH4 +H4ddTH2 + H3ddTH3 
t. 2 

+-dTH0dH6 +-dTH6dH0 +^drHldHs +^-dTH5dHi +^-dTH2dHi +\dTHJH2 +\drH3dH3 
x   4 4 2 2 2 I z , 

'ff,dtfTff7 +H7ddTHl +H2ddrH6 +H6ddTH2 +H3ddTHs + H5ddTH3 +H,dd1H, 

+-dTH1dH7 +-dTH7dHi +-drH2dH6 +±-dTH6dH2 +±-dTH3dHs +\dTH5dH3 +±dTH4dH4 
2 2 2 2 2 2 2. 

'H3ddrH7 +H7ddTH3 +HAddTH6 +H6dd1Hi +H5ddrHs 

+-dTH3dH7 +-drH7dH3 +±dTH4dH6 +\dTH6dH4 +\dTH5dH5 

fH5ddrH7 +H7ddTH5 +H6ddTH6 

+R 1 1 1 
+-drH5dH7 +-dTH7dH5 +-dlH6dHi 

\   2 2 2 

YlfyH^H, +-dTH7dH7 
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Appendix B: Critical Load Comparison for Constant Thickness Ratio and 

Variable Arc Length 
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Appendix C: Critical Load and Critical Displacement Comparisons for 

Constant Arc Length and Variable Thickness Ratio 

Figure C-l Pc vs. h/r  for S  = 0.05m 
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Figure C-2   Pc vs.   h/r for S =  0.075m 
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Figure C-5  wc vs.   h/r for S =  0.05m 
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Appendix D: FORTAN Program Description 

D.l Overview 

The following program was initially developed by Creaghan and 

subsequently modified by Miller (3; 13).  The attached listing does not 

include all of the subroutines, but only the ones modified for the 

current work.  The majority of the modifications were done to 

incorporate the shape function changes presented in Chapter II.  Some 

minor changes were also incorporated to facilitate multiple simultaneous 

simulations. 

D.2 Data Input Format 

This is a line by line description of the user constructed, 

problem specific data input file recjuired by the program.  Each section 

represents a line and each variable on a line is separated by a comma. 

Variables are identified by italics. 

1. title:  problem title text string 

2. linear,   isotro,   isarch,   ishape: 

a. linear: 0 for nonlinear, 1 for linear 

b. isotro:   0 for composite, 1 for isotropic 

c. isarch:   0 for straight beam, 1 for circular arch 

d. ishape:   0 if half a symmetric arch is modeled, 1 for a full 

arch model 

3. inctyp,   nie,   imax,   kupdate,   tol: 

a. inctyp:   1 for displacement control, 2 for Riks method 

b. nine:   number of increments (load or displacement) desired 

c. imax:  maximum number of iterations per increment 
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d. kupdate:  not used, fill with 0 or 1 

e. tol: convergence tolerance for an increment 

4. pincr,   eiter,   tfcpi: include only for Riks method nonlinear solutions 

a. pincr:   initial load parameter, %0 

b. eiter: estimated number of iterations per increment, Ns not an 

integer 

c. ttpi: maximum load change for an iteration (X^) 

5 table{nine): include only for nonlinear displacement control; 

this is a list of nine numbers used to attain the incremental 

global displacement 

6. nelem:   number of elements 

7. delem(nelem): list of element lengths; 1 for each element 

8. nbndry:   number of nodes with specified boundary condition (BC) 

9. nbound(nbndry, 6) (v,\|/,\|/,2,w,w,2) : one line for each node with a 

specified BC the first number is the node number;  the next five 

numbers describe whether or not the dof for the specified node are 

free or specified in the order indicated;  l=prescribed, 0=free. 

10. vbond(ii):  prescribed displacements for the fixed dof indicated on 

the previous line 

11. ldtyp,   distld:  not used; fill with 0,0.0 

12. nconc:  number of concentrated loads or moments;  Riks needs at 

least 1. 

13. inconc{nconc) :  use only if nconoO;     dof numbers for concentrated 

loads,  middle node dof counts here (11 dof per element) in the 

following order: 

v1,4", %, wl, w'2, v3, v2, T2, ¥2, w2, w2 

14. vconc:   use only if nconoO;     values of loads specified on line 13 

15. ey,   nu,   ht,   width:   include for isotropic material 
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a. ey: Young's modulus 

b. nu:   Poisson's ratio 

c. ht:   thickness 

d. width: beam or arch width 

16. el,   e2,   gl2,   nul2,   gl3,   g23,   width:   include for composite 

materials 

a. el:   Young's modulus along fibers 

b. e2;   Young's modulus transverse to fibers 

c. gl2:   shear modulus g12 

d. nul2:   Poisson's ratio vi2 

e. g!3:   shear modulus gi3 

f. g23:   shear modulus g23 

g. width:   beam or arch width 

17. nplies,  pthick:   include for composite materials 

a. nplies:  number of plies 

b. pthick:   individual ply thickness; same for all 

18. theta (nplies):   include for composites;  list of ply orientation 

angles in degrees 

19. rad:   include for curved arch; arch radius of curvature 

20. nforc:   number of nodal resultant forces to be calculated 

21. iforce (nforce) :   include only for nforoO;     dof numbers for force 

calculations, include middle node in calculation 

22. nstres:   not used; fill with 0 

D-3 



0) 

D.3 Program Listing 

program beam 
c 
c    See bottom of file for variable and subroutine listing. 
c      This version is nl n2 updated to include tangent function and 
c      hermitian shape functions for the rotation d.o.f. 
c      remember -e compile option (will give 132 character lines) 
c      this version is also prompts for plot and shape file names 

implicit double precision (a-h,o-z) 
character*64 gname,fname,pname,sname 

c 
c 

common/chac/gname,fname 
c 

common/elas/ae,de,fe,he,ej,el,re,te,as,ds,fs 
common/input/tol,table(250),delem(250),vbound(2500),distld, 

vconc(2 5 00),ey,enu,ht,el,e2,gl2,enul2,enu21,gl3,g23,pthick, 
rad,linear,isotro,isarch,ishape,inctyp,ninc,imax, 
nelem,nbndry,nbound(250,6),ldtyp,nconc,iconc(2500), 
nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500), 
theta(20),idload(250),coord(251),width,nnod,pincr,eiter, ttpi 

common/stf/stif(11,11),elp(ll),eln(ll,ll),eld(ll) 

common/proc/gstif(2500,11),gn(2500,ll),gf(2500),gd(2500),vperm(250 

vpres(2500) 
c 

call rinput(pname,sname) 
call elast 
if(inctyp.eq.l)call proces(pname,sname) 
if(inctyp.eq.2)call rikspr(pname,sname) 

c********************************************************************** 
c 
C VARIABLES FOR BSHELL 
c 
c fname input file 
c gname output file 
c ae,de,     elasticity terms 
c fe,he,     elasticity terms 
c ej,el,     elasticity terms 
c re,te,     elasticity terms 
c as,ds,     elasticity terms 
c fs   elasticity term 
c ey   Young's modulus for isotropic case 
c enu  Poisson's ratio for isotropic case 
c ht   thickness of beam for isotropic case 
c el,e2,     laminate material properties 
c gl2,enul2, 
c enu21,gl3, 
c g23 
c pthick     laminate ply thickness 
c nplies     number of plies in laminate 
c theta(20)   ply orientation angles 
c tol  convergence tolerance, percent 
c table(250)  displacement increment multiplicative 
c factors 
c delem(250)  element lengths 
c vbound(2500)     values of prescribed displacement boundary 
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c conditions 
c distld     distributed load intensity 
c vconc(2500) concentrated load values 
c rad  arch radius of curvature 
c linear     =1 for linear analysis, =0 for nonlinear 
c isotro     =1 for isotropic, =0 for laminate 
c isarch     =1 for arch, =0 for straight beam 
c ishape     =1 to print x,y coordinates for each node at each 
increment 
c when a full arch is represented output to file pname 
c inclod     =1 to increment load(NA), =0 increment displacement 
c nine  total number of displacement increments 
c imax maximum number of iterations per increment 
c nelem total number of elements in model 
c nbndry     number of nodes with specified boundary conditions 
c nbound(250,6)    array of node numbers followed by l's for 
c fixed b.c.'s, zeros for unfixed 
c ldtyp =1 for distributed load, =0 no distributed load 
c nconc total number of concentrated loads input 
c iconc(2500) DOF's for specified loads 
c nforc number of forces(including moments)to be solved for 
c iforc(2500) DOF's at which to calculate forces 
c nstres     number of elements for stress calculation 
c istres(250) element #'s for stress calculation 
c ibndry(2500)     DOF numbers for b.c.'s 
c idload(250) elements with distributed load 
c coord(251)  coordinate of the nodes 
c width beam or arch width 
c nnod number of nodes 
c*********************************************************************** 
****** 
c 
c SUBROUTINES FOR BSHELL 
c 
c rinput     reads in and echos input data 
c elast computes elasticity terms 
c proces     drives the solution algorithm for displacement control 
c rikspr(pname,sname)  drives the solution algorithm for Riks method 
c stiff manages stiffness matrix computations 
c shape computes shape function array dsf 
c beamk computes constant stiffness array bmk 
c beamnl     computes linear stiffness array bmnl 
c beamn2     computes quadratic stiffness array bmn2 
c bndy applies displacement boundary conditions 
c solve solves simultaneous equations in banded array format 
c converge   checks solutions for convergence 
c postpr     computes nodal loads and sends to output file 
c 

c 
c 
c 

end 

subroutine rinput(pname,sname) 

character* 6 4 fname,gname 
character*4 title 
dimension title(20) 
implicit double precision (a-h,o-z) 

common/chac/gname,fname 
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common/input/tol,table(250),delem(250),vbound(2500),distld, 
vconc(2500),ey,enu,ht,el,e2,gl2,enul2,enu21,gl3,g23,pthick, 
rad,linear,isotro,isarch,ishape,inctyp,ninc,imax, 
nelem,nbndry,nbound(250,6),ldtyp,nconc,iconc(2500), 
nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500) , 
theta(20),idload(250),coord(251),width,nnod,pincr,eiter,ttpi 

c 
write(*,1000) 
read(*,1005)fname 
write(*,1010) 
read(*,1005)gname 
write(*,1011) 
read(*,1005)pname 
write(*,1012) 
read(*,1005)sname 
open(5,file=fname) 
open(6,file=gname,status='new') 
read(5,1015)title 
read(5,*)linear,isotro,isarch,ishape 
read(5,*)inctyp,nine,imax,kupdte,tol 
if(linear.eq.0.and.inctyp.eq.2)read(5,*)pincr,eiter,ttpi 
i f(1inear.eq.0.and.inctyp.eq.1)read(5,*) (table(i),i=l,nine) 
read(5,*)nelem 
read(5,*)(delem(i),i=l,nelem) 

c 
c    calculate nodal coordinates 
c 

nnod=nelem+l 
coord(1)=0.0 
do 5 ii=2,nnod 

5  coord(ii)=coord(ii-l)+delem(ii-l) 
read(5,*)nbndry 
do 10 i=l,nbndry 

10   read(5,*)(nbound(i,j),j=l,6) 
ifdof=0 

c 
c    ifdof=counter for enumber of fixed dof's 
c 

do 20 i=l,nbndry 
do 20 j=2,6 
if(nbound(i,j).eq.0)goto 20 
ifdof=ifdof+l 
ibndry(ifdof)=(nbound(i,l)-l)*6 + (j-1) 

20   continue 
read(5,*)(vbound(i),i=l,ifdof) 
read(5,*)Idtyp,distld 
if(ldtyp.eq.l)read(5,*)ndload 
if(Idtyp.eq.l)read(5,*)(idload(i),i=l,ndload) 
read(5,*)nconc 
if(nconc.ne.0)read(5,*)(iconc(i),i=l,nconc) 
if(nconc.ne.0)read(5,*)(vconc(i),i=l,nconc) 
if(isotro.eq.l)read(5,*)ey,enu,ht,width 
if(isotro.eq.0)read(5,*)el,e2,gl2,enul2,gl3,g23,width 
i f(isotro.eq.0)read(5,*)nplies,pthick 
if(isotro.eq.0)read(5,*)(theta(i),i=l,nplies) 
if (isarch.eq.Dread(5, *)rad 
read(5,*)nforc 
if(nforc.ne.0)read(5,*)(iforc(i),i=l,nforc) 
read(5,*)nstres 
if(nstres.ne.0)read(5,*)(istres(i),i=l,nstres) 
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c 
c 
c 

Echo the input to the output file 

c 
c 
c 
c 
c 

30 

write(6,1015)title 
i f(isarch.eq.1)write( 
i f(isarch.eg.0)wri te( 
if(linear.eq.l)write( 
if(linear.eq.O)write( 
i f(isotro.eq.1)write( 
i f(isotro.eq.0)write( 
if(ishape.eq.1)write( 
i f(inctyp.eq.1)write( 
i f(inctyp.eq.2)write( 
write(6,1065)nine 
write(6,1070)imax 
write(6,1075)tol 
i f(inctyp.eq.2)write( 
if(inctyp.eq.l)write( 
if(inctyp.eq.l)write( 
write(6,1085)nelem 
write(6,1090) 
write(6,1095)(coord(i 
write(6,1100) 
write(6,1105) 
do 30 i=l,nbndry 
write(6,1110)(nbound( 
write(6,1115)ifdof 
write(6,1120)(ibndry( 
write(6,1095)(vbound( 
if(ldtyp.eq.l)write(6 
i f(ldtyp.eq.1)write(6 
if(nconc.ne.0)write(6 
if(nconc.ne.0)write(6 
if(nconc.ne.0)write(6 
if(isotro.eq.l)write( 
if(isotro.eq.0)write( 
if(isotro.eq.0)write( 
if(isotro.eq.0)write( 
if(isarch.eq.l)write( 
write(6,1165)(iforc(i 
write(6,1170)(istres( 
close(5) 
close(6) 

R  M  A  T 

1000 
1005 
1010 
1011 
1012 
1015 
1020 
1025 
1030 
1035 
1040 
1045 
1050 

6,1020) 
6,1025) 
6,1030) 
6,1035) 
6,1040) 
6,1045) 
6,1050) 
6,1060) 
6,1055) 

6,1076)pincr,eiter,ttpi 
6,1078) 
6,1080) (tabled) ,i=l,ninc) 

),i=l,nnod) 

i,j),3=1/6) 

i),i=l,ifdof) 
i),i=l,ifdof) 
,1125)distld 
,113 0) (idload(i),i=l,ndload) 
,1135) 
,1120)(iconc(i),i=l,nconc) 
,1095)(vconc(i),i=l,nconc) 
6,1140)ey,enu,ht,width 
6,1145)el, e2,gl2,enul2,gl3,g23,width 
6,1150)nplies,pthick 
6,1155)(theta(i),i=l,nplies) 
6,1160)rad 
),i=l,nforc) 
i),i=l,nstres) 

format('Enter your input file name.') 
format(A) 
format('Enter your output file name.') 
format('Enter your plot file name.') 
format('Enter your shape file name.') 
format(20a4) 
format(/,lx,'Element type: arch') 
format(/,lx,'Element type: straight beam') 

format(/,lx,'Analysis type: linear') 
format(/,lx,'Analysis type: nonlinear') 
format(/,lx,'Material type: isotropic') 
format(/,lx,'Material type: laminate") 
format(/,lx,'Printout of nodal x,y coordinates requested') 
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1055 format(/,lx,'Riks method specified') 
1060 format(/,lx,'Displacement control method specified') 
1065 format(/,lx,'Increments specified:',2x,i3) 
1070 format(/,lx,'Maximum iterations specified:',2x,i3) 
1075 format(/,lx,'Percent convergence tolerance:',2x,dl2.5) 
1076 format(/,lx,'pincr=',2x,dl2.5,2x,'eiter=',2x,dl2.5,2x, 

■ttpi=',2x,dl2.5) 
1078 format(/,lx,'Displacement Increment Table') 
1080 format(8(2x,dl2.5)) 
1085 format(/,lx,'Number of elements:',2x,i3) 
1090 format(/,lx,'Nodal Coordinates:') 
1095 format(8(2x,dl2.5)) 
1100 format(/,lx,'DISPLACEMENT BOUNDARY CONDITIONS, 1=PRESCRIBED, 

X0=FREE') 
1105 format(/,4X,'NODE   V  PSI-S  PSI-SS  W  W-S  ') 
1110 format(4x,i4,3x,5(i3,3x)) 
1115 format(/,lx,"NUMBER OF PRESCRIBED DISPLACEMENTS:', 

.  i5,/,lx,'SPECIFIED DISPLACEMENT DOF AND THIER 

.  VALUES FOLLOW:') 
1120 format(16i5) 

1125 format(/,lx,'Distributed Load Intensity:',2x,dl2.5) 
1130 format(/,lx,'Elements with distributed load:',/,lx,16i5) 
1135 format(/,lx,'DOF and specified concentrated loadsfollow:') 
1140 format(/,lx,'Isotropie material properties ey, enu, ht, width: 

,/,lx,4dl2.5) 
1145 format(/,lx,'Composite material properties el, e2, gl2, enul2, 

.  gl3,g23, width:',/,lx,7dl2.5) 
1150 format(/,lx,'Number of plies:',2x,i3,2x,'Ply thickness:',2x, 

.  dl2.5) 
1155 format(/,lx,'Ply orientation angles:',/,lx,8(2x,dl2.5)) 
1160 format(/,lx,'Radius of curvature:',2x,dl2.5) 
1165 format(/,lx,'DOFs for equivalent load calculation:',/, 

.  Ix,16i5) 
1170 format(/,lx,'Elements for stress calculation:',/,lx,16i5) 
1175 format(/,lx,i5) 

return 
end 

c 
c 
c 

subroutine elast 

implicit double precision (a-h,o-z) 

dimension qbar(3,3),rtheta(20) 
c 
c 

character*64 gname,fname 
common/chac/gname,fname 
common/elas/ae,de,fe,he,ej,el,re,te,as,ds,fs 
common/input/tol,table(250),delem(250),vbound(2500),distld, 
vconc(2500),ey,enu,ht,el,e2,gl2,enul2,enu21,gl3,g23,pthick, 
rad,linear,isotro,isarch,ishape,inctyp,ninc,imax, 
nelem,nbndry,nbound(250,6),ldtyp,nconc, iconc(2500), 
nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500) , 
theta(20),idload(250),coord(251),width,nnod,pincr,eiter,ttpi 

c 
c 
c    Isotropie case 
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c 
c    write(6,1000)el,e2,gl2,enul2,enu21,gl3,g23,pthick 

if(isotro.eg.O)goto 100 
gs=ey/ (2*(l+enu)) 

denom=l.-enu**2 
qll=ey/denom 

ql2=enu*ey/denom 
q22=qll 
q2hat=q22-(ql2**2/qll) 
qs4=gs 
ae=q2hat*ht 

de=q2hat*ht**3/(3*2.**2) 
fe=q2hat*ht**5/(5*2.**4) 
he=q2hat*ht**7/(7*2.**6) 
ej=q2hat*ht**9/(9*2.**8) 
el=q2hat*ht**ll/(11*2.**10) 
re=q2hat*ht**13/(13*2.**12) 

te=q2hat*ht**15/(15*2.**14) 
as=qs4*ht 
ds=qs4*ht**3/(3*2.**2) 
fs=qs4*ht**5/(5*2.**4) 
goto 200 

c 
c    Laminate case 
c 
100 ht=pthick*nplies 

enu21=e2*enul2/el 
denom=l.-enul2*enu21 
qll=el/denom 
ql2=enul2*e2/denom 
q22=e2/denom 

c 
c************************************************** 
c    calculate the elasticity matrices * 
c 
c    remem that the z axis points down, * 
c    however, the first ply is the top ply, ie, * 
c    the ply with the most negative z ! ! ! * 
c************************************************** 
c 
c    initialize elasticity terms 
c 

ae=0. 
de=0. 
fe=0. 
he=0. 
ej=0. 
el=0. 
re=0. 

te=0. 
as=0. 
ds=0. 
fs=0. 

do 45 ii=l,nplies 
45       rtheta(ii)=theta(ii)*3.14159265/180. 

do 50 kk=l,nplies 

qbar(l,l)=qll*(cos(rtheta(kk))**4)+2*ql2*(sin(rtheta(kk))**2)* 
(cos(rtheta(kk))**2)+q22*(sin(rtheta(kk))**4) 
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50 
c 200 

200 
c 
1000 

c 
c 
c 

c 
c 

0), 

qbar(1,2)=(qll+q22)*(sin(rtheta(kk))**2)*(cos(rtheta(kk))**2)+ 
ql2*(sin(rtheta(kk))**4+cos(rtheta(kk))**4) 

qbar(2,2)=qll*(sin(rtheta(kk))**4)+2*ql2*(sin(rtheta(kk))**2)* 
(cos(rtheta(kk))**2)+q22*cos(rtheta(kk))**4 

qs4=gl3*dcos(rtheta(kk))**2+g23*dsin(rtheta(kk))**2 
q2hat=qbar(2,2)-(qbar(l,2)**2/qbar(l,D) 
zl=(kk*l. - nplies*.5)*pthick 

zu=zl-pthick 
ae=ae + q2hat*pthick 
de=de + q2hat*(zl**3-zu**3)/3. 

fe=fe + q2hat*(zl**5-zu**5)/5. 
he=he + q2hat*(zl**7-zu**7)/7. 
ej=ej + q2hat*(zl**9-zu**9)/9. 

el=el + q2hat*(zl**ll-zu**ll)/ll. 
re=re + q2hat*(zl**13-zu**13)/13. 
te=te + q2hat*(zl**15-zu**15)/15. 

as=as+qs4*pthick 
ds=ds+qs4*(zl**3-zu**3)/3. 

fs=fs+qs4*(zl**5-zu**5)/5. 
continue 
open(6,fiel=gname,status='old') 
write(6,1000)ae,de,fe,he,ej,el,re,te,as,ds,fs 
close(6) 
format(/,lx,'Elasticity terms:■,/,lx,8(2x,dl2.5)) 
return 
end 

subroutine proces(pname,sname) 

implicit double precision (a-h,o-z) 

character*64 gname,fname 

c ommon/chac/gname,fname 

common/elas/ae,de,fe,he,ej,el,re,te,as,ds,fs 

common/input/to1,table(250),delem(250),vbound(2500),distld, 
vconc(2500),ey,enu,ht,el,e2,gl2,enul2,enu21,gl3,g23,pthick, 
rad,linear,isotro,isarch,ishape,inctyp,ninc,imax, 
nelem,nbndry,nbound(250,6),ldtyp,nconc,iconc(2500), 
nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500) , 
theta(20),idload(250),coord(251),width,nnod,pincr,eiter, ttpi 

common/stf/stif(11,11),elp(ll),eln(ll,ll),eld(ll) 

common/proc/gstif(2500,11),gn(2500,ll),gf(2500),gd(2500),vperm(250 

vpres(2500) 

ndof=nnod*5+nelem 
ncount=l 
icount=l 
do 1 ii=l,ndof 
gd(ii)=0.0d0 
do 2 ii=l,nbndry*6 
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vpres(ii)=O.OdO 
2 vperm(ii)=vbound(ii) 

c 
c    start new increment or iteration/ 
c    zero out global stiffness matrices and global force 
c    vector 
c 

3 do 5 ii=l,ndof 
gf(ii)=0.0d0 
do 5 jj=l,H 
gstif(ii,jj)=0.0d0 

5  gn(ii,jj)=0.0d0 
kcall=0 

c 
c    increment prescribed displacement for displacement control 
c 

if(linear.eg.1)goto 9 
if(icount.ne.l)goto 9 
do 7 ii=l,nbndry*6 
if (ncount.eg.l)vbound(ii)=vperm(ii) * tabled) 
if(ncount.gt.1)vbound(ii)=vperm(ii)*(table(ncount) ■ 

table(ncount-1)) 

loop over all elements for stiffness and forces 
c 
c 
c 

9  do 30 ielem=l,nelem 
do 10 ii=l,H 

10  eld(ii)=gd(ii+(ielem-1)*6) 
c 

kcall=kcall+l 
call stiff(ielem,icount,ncount,kcall) 

c 
c    Assemble global stiffness array, gstif, global equilibrium 
c    stiffness, gn, in banded form. Half-bandwidth=ll.  Also 
c    assemble global force vector, gf. 
c 

nr=(ielem-1)*6 + 1 
do 30 jj=0,10 
gf(nr+jj)=gf(nr+jj)+elp(jj+1) 
do 30 kk=l,ll-jj 
gstif(nr+jj,kk)=gstif(nr+jj,kk)+stif(jj+l,kk+jj) 
if(linear.eq.l)goto 30 
if(icount.eq.l .and. ncount.eq.1)goto 30 
gn(nr+j j,kk)=gn(nr+j j,kk)+eln(j j +1,kk+j j) 

30  continue 
c 
c    impose force boundary conditions 
c    at this point, gf=R 
c 

if(nconc.eq.O)goto 45 
do 40 ii=l,nconc 
nb=iconc(ii) 

40  gf(nb)=gf(nb)+vconc(ii) 
45  continue 

c 
c    calculate the residual force vector for nonlinear 
c    analysis. -[gn]*{gd}+R=-[k+nl/2+n2/3]*{q}+R=gf 
c 

if(icount.eq.l)goto 65 
do 60 ii=l,ndof 
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add=0. 
do 50 kk=l,ii-l 
if(ii-kk+l .gt. ll)goto 50 
add=add+gn(kk,ii-kk+l)*gd(kk) 

50      continue 
res=0. 
do 55 jj=l,H 
if(jj+ii-l .gt. ndofjgoto 55 
res=res + gn(ii,jj)*gd(jj+ii-1) 

55      continue 
c 
c    add to existing gf which already contains R 
c 

gf(ii)=gf(ii)-res-add 
60 continue 
65 continue 

c 
c    impose displacement boundary conditions 
c 

if(icount.eg.1)call bndy(ndof,gstif,gf,nbndry,ibndry,vbound) 
if(icount.gt.l)call bndy(ndof,gstif,gf,nbndry,ibndry,vpres) 

c 
c    solve system of equations, result in gf 
c 

call solve(ndof,gstif,gf,0,detm,detml) 
c 
c update total displacement vector gd 
c 

do 70 ii=l,ndof 
70 gd(ii)=gd(ii)+gf(ii) 

if (linear.eg.Dgoto 80 
call converge(ndof,neon,icount,tol,imax) 

c 
c    if no convergence (ncon=0) start next iteration 
c 

if(neon.eq.0)goto 3 
80      continue 

if(ncon.eq.l .and. ncount.le.nine)then 
call postpr(icount,ncount,kcall,ndof,pname,sname) 
if(ncount.eq.nine)stop 
ncount=ncount+l 
icount=l 
goto 3 

endif 
return 
end 

c 
subroutine bndy(ndof,s,si,ndum,idum,vdum) 

c 
c  . . . . 
c    subroutine used to impose boundary conditions on banded equations 
c      
c 

implicit double precision (a-h,o-z) 
dimension s (2500,11),si(2500) 
dimension idum(ndum*6),vdum(ndum*6) 
do 300 nb = 1, ndum*6 
ie = idum(nb) 
sval = vdum(nb) 
it=10 
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i=ie-ll 
do 100 ii=l,it 
i=i+l 
if (i .It. 1)  go to 100 
j=ie-i+l 
sl(i)=sl(i)-s(i,j)*sval 
s(i,j)=0.0 

100 continue 
s(ie,l)=1.0 
si(ie)=sval 
i=ie 
do 200 ii=2,ll 
i=i+l 
if (i .gt. ndof)  go to 200 
si(i)=sl(i)-s(ie,ii)*sval 
s(ie,ii)=0.0 

200 continue 
300 continue 

return 
end 

c 
c 
c 
c 

subroutine converge(ndof,neon,icount,tol,imax) 
c  
c checks for convergnece using global displacement criterion 

implicit double precision (a-h,o-z) 
common/proc/gstif(2500,11),gn(2500,ll),gf(2500),gd(2500),vperm(250 

0) 

c 
vpres(2500) 

rcurr=0. 
do 10 m=l,ndof 

10 rcurr=rcurr + gd(m)*gd(m) 
if(icount.eq.l)rinit=rcurr 
if(icount.eg.1)ncon=0 
if(icount.eg.1)goto 20 

c new criteria 
ratio=100. * abs(sqrt(rcurr)-sqrt(pvalue))/sqrt(rinit) 
if(ratio.Ie.tol)ncon=l 

20 pvalue=rcurr 
write(*,100)neon,ratio,rinit,rcurr 

100 format(lx,'ncon= ',i3,3x,'ratio= ',dl4.6,' rinit= ",dl4.6, 
x ' rcurr= ',dl4.6) 
if(icount.eq.imax)write(6,200) 
if(icount.eq.imax)stop 

200 format(lx,'icount equals imax') 
if(ncon.eq.0)icount=icount+l 
return 
end 

c 
c 
c 

subroutine rikspr(pname,sname) 
c 

implicit double precision (a-h,o-z) 
c 

character*64 gname,fname 

D-13 



c 
c 

common/chac/gname,fname 
c 

common/elas/ae,de,fe,he,ej,el,re,te,as,ds,fs 
c 

common/input/tol,table(250),delem(250),vbound(2500),distld, 
vconc(2500),ey,enu,ht/el,e2,gl2,enul2,enu21,gl3,g23,pthick, 
rad,linear,isotro,isarch,ishape,inctyp,ninc,imax, 
nelem,nbndry,nbound(250,6),ldtyp,nconc,iconc(2500), 
nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500) , 
theta(20),idload(250),coord(251),width,nnod,pincr,eiter,ttpi 

common/stf/stif(11,11),elp(ll),ein(11,11),eld(ll) 
c 

coiranon/proc/gstif (2500,11) ,gn(2500,ll) ,gf (2500) ,gd(2500) ,.vperm(250 
0), 

vpres(2500) 
c 

dimension 
gld(2500),gld0(2500),gldl(2500),gdis(2500),gsti00(2500,11) , 

gf0(2500),gd00(2500) 
ndof=nnod*5+nelem 
ncount=l 
icount=l 
iicut=0 
do 1 ii=l,ndof 

1 gd(ii)=0.0d0 
do 2 ii=l,nbndry*6 
vpres(ii)=0.0d0 

2 vperm(ii)=vbound(ii) 
c 
c    start new increment or iteration/ 
c    zero out global stiffness matrices and global force 
c    vector 
c 

tpincr=0.0 
if(ncount.eq.l)goto 2993 

c 
c    start new increment 
c 

3 if(iicut.eg.O)dss=dss*eiter/icount 
2993 icount=l 

do 2992 ii=l,ndof 
gld0(ii)=0.0d0 

2992 gd00(ii)=gd(ii) 
c 
c    start new iteration 
c 

4 do 5 ii=l,ndof 
gf0(ii)=0.0d0 
do 5 jj=l,ll 
gstif(ii,jj)=0.0d0 

5 gn(ii,jj)=0.0d0 
kcall=0 

c 
c    increment prescribed displacement for displacement control 
c 
c    if (linear.eq.Dgoto 9 
c    if(icount.ne.l)goto 9 
c    do 7 ii=l,nbndry*6 
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c    if(ncount.eq.1.and.iicut.eq.0)vbound(i i)=vperm(i i)* table(1) 
c 7  if(ncount.gt.l.or.iicut.gt.O)vbound(ii)=vperm(ii)*(table(ncount)- 
c    .    table(ncount-1)) 
c 
c    loop over all elements for stiffness and forces 
c 

9 do 30 ielem=l,nelem 
do 10 ii=l,ll 

10 eld(ii)=gd(ii+(ielem-l)*6) 
c 

kcall=kcall+l 
call stiff(ielem,icount,ncount,kcall) 

c 
c Assemble global stiffness array, gstif, global equilibrium 
c stiffness, gn, in banded form. Half-bandwidth=ll.  Also 
c assemble global force vector, gf. 
c * 

nr=(ielem-l)*6 + 1 
do 30 jj=0,10 
gf0 (nr+j j)=gf0(nr+j j)+elp(j j +1) 
do 30 kk=l,ll-jj 
gstif(nr+jj,kk)=gstif(nr+jj,kk)+stif(jj+l,kk+jj) 
if (linear.eq.Dgoto 30 
if(icount.eq.l .and. ncount.eq.l .and.iicut.eq.0)goto 30 
gn (nr+j j , kk) =gn (nr+j j , kk) +eln (j j +1, kk+j j ) 

30  continue 
c 
c    impose force boundary conditions 
c    at this point, gf=R 
c 

if(nconc.eq.O)goto 45 
do 40 ii=l,nconc 
nb=iconc(ii) 

40  gfO(nb)=gf0(nb)+vconc(ii) 
45  continue 

do 47 ii=l,ndof 
47 gf(ii)=gf0(ii) 

do 48 ii=l,ndof 
do 48 jj=l,H 

48 gsti00(ii,jj)=gstif(ii, jj) 
call bndy(ndof,gstif,gf,nbndry,ibndry,vbound) 

c 
call solve(ndof,gstif,gf,0,detm,detml) 
dss0=0.0 
do 49 ii=l,ndof 
gdis(ii)=gf(ii) 

49 dss0=dss0+gf(ii)*gf(ii) 
if(icount.ne.l) go to 144 

detml=detm2 
detm2=detm 
if(ncount.eq.l.and.detm.It.0.0 .and.iicut.eq.0) pincr=-pincr 
if(ncount.eq.l.and.iicut.eq.0) dss=pincr*dsqrt(dssO) 
if(ncount.ne.1.or.iicut.gt.0) pincr= 

dss/dsqrt(dssO)*detm*detml 
*pincrl/dabs(pincrl) 

c 
c    attempt at offloading at bifurcation points 
c 
c    if(iicut.eq.l)pincr=-pincr 
c 

D-15 



pincrl=pincr 

prs=0.0 
do  142   ii=l,ndof 

142 prs=prs+gfO(ii)*gld(ii) 
stifpa=pincr*prs 
do  143  ii=l,ndof 

143 gld(ii)=pincr*gdis(ii) 
144 continue 

c 
c    calculate the residual force vector for nonlinear 
c    analysis. -[gn]*{gd}+R=-[k+nl/2+n2/3]*{q}+R=gf 
c 

if(icount.eq.l)goto 69 
do 60 ii=l,ndof 
add=0. 
do 50 kk=l,ii-l 
if(ii-kk+l .gt. 11)goto 50 
add=add+gn(kk,ii-kk+l)*gd(kk) 

50      continue 
res=0. 

do 55 jj=l,ll 
if(jj+ii-l .gt. ndof)goto 55 

res=res + gn(ii,jj)*gd(jj+ii-1) 
55      continue 

c 
c    add to existing gf which already contains R 
c 

gf(ii)=gf0(ii)*(pincr+tpincr)-res-add 
60 continue 
65 continue 

c 
c    impose displacement boundary conditions 
c 

call bndy(ndof,gstiO0,gf,nbndry,ibndry,vbound) 
c    if(icount.gt.l)call bndy(ndof,gstif,gf,nbndry,ibndry,vpres) 
c 
c    solve system of equations, result in gf 
c 

call solve(ndof,gstif,gf,1,detm,detml) 
c 
c    through line 69 copied from Tsai's program 
c 

al=dss0 
a2=0.0 
a3=0.0 
do 147 ii=l,ndof 
a2=a2+(gld(ii)+gf(ii))*gdis(ii) 

147 a3=a3+gf(ii)*(2.0*gld(ii)+gf(ii)) 
dl2=a2*a2-al*a3 

c    write(6,*) dl2,al,a2,a3 
c 
c 

if(dl2.lt.0.0)then 
c 
c    deal with complex roots by cutting the search 
c    radius (dss) in half 
c 

do 2991 ii=l,ndof 
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2991 gd(ii)=gdOO(ii) 
iicut=iicut + 1 
if(iicut.gt.lO)then 

write(6,3000) 
stop 
endif 

dss=dss/2.0 
goto 3 
endif 
iicut=0 
dpincl=(-a2+dsqrt(dl2))/al 
dpinc2=(-a2-dsgrt(dl2))/al 
thetal=0.0 
theta2=0.0 
do 148 ii=l,ndof 
gldO(ii)=gld(ii) 
gld(ii)=gld(ii)+gf(ii)+dpincl*gdis(ii) 
gldl(ii)=gldO(ii)+gf(ii)+dpinc2 *gdis(ii) 
thetal=thetal+gldO(ii)*gld(ii) 
theta2=theta2+gld0(ii)*gldl(ii) 

148 continue 
c     write(6,*) thetal,theta2 

thetl2=thetal*theta2 
if(thetl2.gt.0.0) go to 149 
dpincr=dpincl 
if(theta2.gt.0.0) call ensign(gld,gldl,dpincr,dpinc2,ndof) 
go to 150 

149 dpib=-a3/(a2*2.0) 
dpinl=dabs(dpib-dpincl) 
dpin2=dabs(dpib-dpinc2) 
dpincr=dpincl 
if(dpin2.lt.dpinl) call chsign(gld,gldl,dpincr,dpinc2,ndof) 

150 pincr=pincr+dpincr 
69 continue 

c 
c    update total displacement vector gd 
c 

do 70 ii=l,ndof 
70 gd(ii)=gd(ii)+gld(ii)-gldO(ii) 

if(linear.eq.l)goto 80 
call converge(ndof,neon,icount,tol,imax) 

c 
c    if no convergence (ncon=0) start next iteration 
c 

if(neon.eq.0)goto 4 
80      continue 

if(ncon.eq.l .and. ncount.le.nine)then 
call postpr(icount,ncount,kcall,ndof,pname,sname) 
if(ncount.eq.nine)stop 
ncount=ncount+l 
tpincr=tpincr+pincr 
goto 3 

endif 
3000   format(lx,'More than 10 consecutive imaginary roots') 
3010 format(/,lx,i2) 

return 
end 

c 
c 
c 
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subroutine solve(ndof,band,rhs,ires,detm,detml) 
c       
c    solve a banded symmetric system of equations 

implicit double precision (a-h,o-z) 
dimension band(2500,11),rhs(2500) 
meqns=ndof-l 
if(ires.gt.O)goto 90 
do 500 npiv=l,meqns 

c     print*,'npiv= ',npiv 
npivot=npiv+l 
lstsub=npiv+ll-l 
if(lstsub.gt.ndof) lstsub=ndof 
do 400 nrow=npivot, lstsub 

c    invert rows and columns for row factor 
ncol=nrow-npiv+l 
factor=band(npiv,ncol)/band(npiv,1) 
do 200 ncol=nrow,lstsub 
icol=ncol-nrow+l 
jcol=ncol-npiv+l 

200 band(nrow,icol)=band(nrow,icol)-factor*band(npiv,j col) 
400 rhs(nrow)=rhs(nrow)-factor*rhs(npiv) 
500 continue 

detm=l.0 
detml=0.0 
do 600 ii=l,ndof 

c     write (*,*) 'BAND(■,ii,'1)=',band(ii,1) 
detml=detml+dloglO(dabs(band(ii,l))) 

600 detm=detm*band(ii,l)/dabs(band(ii,1)) 
go to 101 

90 do 100 npiv=l,meqns 
npivot=npiv+l 
lstsub=npiv+ll-l 
if(lstsub.gt.ndof) lstsub=ndof 
do 110 nrow=npivot,lstsub. 
ncol=nrow-npiv+l 
factor=band(npiv,ncol)/band(npiv,1) 

110 rhs(nrow)=rhs(nrow)-factor*rhs(npiv) 
100  continue 

c    back substitution 
101 do 800 ijk=2,ndof 

npiv=ndof-ijk+2 
rhs(npiv)=rhs(npiv)/band(npiv,1) 
lstsub=npiv-ll+l 
if(lstsub.It.1) lstsub=l 
npivot=npiv-l 
do 700 jki=lstsub,npivot 
nrow=npivot-jki+lstsub 
ncol=npiv-nrow+l 
factor=band(nrow,ncol) 

700 rhs(nrow)=rhs(nrow)-factor*rhs(npiv) 
800 continue 

rhs(l)=rhs(l)/band(l,l) 
return 
end 

c 
c 
c 

subroutine chsign(gld,gldl,dpincr,dpinc2,ndof) 
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implicit double precision (a-h,o-z) 
dimension gld(2500),gldl(2500) 
do 100 i=l,ndof 

100 gld(i)=gldl(i) 
dpincr=dpinc2 
return 
end 

c 
c 
c 

subroutine stiff(ielem,icount,ncount,kcall) 

implicit double precision (a-h,o-z) 
character*64 gname,fname 
common/chac/gname,fname 

comroon/input/tol/table(250),delem(250),vbound(2500),distld, 
vconc(2500),ey,enu,ht,el,e2,gl2,enul2,enu21,gl3,g23,pthick, 
rad,linear,isotro,isarch,ishape,inctyp,ninc,imax, 
nelem,nbndry,nbound(250,6),ldtyp,nconc,iconc(2500), 
nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500), 
theta(20),idload(250),coord(251)/width,nnod,pincr,eiter,ttpi 

common/elas/ae,de, fe,he,ej,el,re,te,as,ds,fs 

common/stf/stif(11,11),elp(ll),eln(ll,11),eld(ll) 

common/shp/dsf(7,11) 

dimension bmk(7,7),bmnl(7,7),bmn2(7,7), 
.  gauss4(4),wt4(4),gauss7(7),wt7(7),q(7),dsftr(ll,7), 

pkt(7,7),pkn(7,7)/Pktd(7,ll),pknd(7,ll),gauss5(5) ,wt5(5) 

data gauss4/0.8611363115d0,0.3399810435d0,-0.3399810435d0, 
-0.8611363115d0/ 

data wt4/0.3478548451d0,0.6521451548d0,0.6521451548d0, 
0.3478548451d0/ 

data gauss5/0.9061798459d0,0.5384693101d0,0.0d0,-0.5384693101d0, 
-0.9061798459d0/ 

data Wt5/0.2369268851d0,0.4786286705d0,0.5688888889d0, 
0.4786286705d0, 0.2369268851d0/ 

data gauss7/0.9491079123d0,0.7415311856d0,0.4058451513d0; 
0.0d0,-0.4058451513d0,-0.7415311856d0,-0.9491079123d0/ 

data wt7/0.1294849662d0,0.2797053915d0,0.3818300505d0, 
0.4179591836d0,0.3818300505d0,0.2797053915d0,0.1294849662d0/ 

c 
c    initialize stiffness arrays and load array 
c 

do 10 ii=l,ll 
elp(ii)=0.0 
do 10 jj=l,ll 
stif(ii,jj)=0.0 

10 eln(ii,jj)=0.0 
c 
c    set number of gauss points for interpolation 
c 

ngp=5 
if(ncount.eq.l .and. icount.eq.l)ngp=4 
if(linear.eq.l)ngp=4 
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ekl=-4./(3.*ht**2) 
if (isarch.eq.l) pl=l./rad 
if(ncount.eq.l .and. icount.eq.l .and. kcall.eq.l .and. 

isarch.eq.l) 
call beamk(bmk,ekl,pl) 

if(ncount.eq.l .and. icount.eq.l .and. kcall.eq.l .and. 
isarch.eq.O) 

call sbeamk(bmk,ekl) 
c 
c    loop over gauss points 
c 

do 100 ii=l,ngp 
if(ngp.eq.4)eta=gauss4(ii) 
if(ngp.eq.5)eta=gauss5(ii) 
if(ngp.eq.7)eta=gauss7(ii) 
call shape(eta,ielem,aa) 

c 
c    multiply element displacement vector, eld (this is 'q' 
c    in the thesis) by the shape function matrix, dsf, to get 
c    the displacement gradient vector(d(s) in thesis, q here) 
c 

do 20 kk=l,7 
20 q(kk)=0.0 

c 
do 30 jj=l,7 
do 30 kk=l,ll 

30 q(jj)=q(jj)+dsf(jj,kk)*eld(kk) 
c 
c 
c    initialize bmnl, bmn2 
c 

do 35 kk=l,7 
do 35 jj=l,7 
bmnl(jj,kk)=0.0d0 

35 bmn2(jj,kk)=0.0d0 
c 
c    skip bmnl and bmn2 comps first time through 
c 

if(icount .eq. 1 .and. ncount .eq. l)goto 37 
c 

if(isarch.eq.1)call beamnl(q,bmnl,ekl,pi) 
if(isarch.eq.1)call beamn2(q,bmn2,ekl,pi) 
i f(isarch.eq.0)cal1 sbmnl(q,bmnl,ekl) 
if(isarch.eq.O)call sbmn2(q,bmn2,ekl) 

37   continue 
c 
c    transpose the shape function matrix 
c 

do 40 jj=l,7 
do 40 kk=l,ll 

40 dsftr(kk,jj)=dsf(jj,kk) 
c 
c    create element independent incremental stiffness array, 
c    pkt, and element ind. equilibrium stiffness array, pkn 
c 

do 50 jj=l,7 
do 50 kk=l,7 
pkt(jj,kk)=bmk(jj,kk)+bmnl(jj,kk)+bmn2(jj,kk) 

5 0 pkn(j j,kk)=bmk(j j,kk)+bmnl(j j,kk)/2.+bmn2(j j,kk)/3. 
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c 
c 

60 

post-multiply each array by the shape function matrix 

do 60 jj=l,7 
do 60 kk=l,H 
pktd(jj,kk)=0.0 
pknd(jj,kk)=0.0 
do 60 11=1,7 
pktd(jj,kk)=pktd(jj,kk) 
pknd(jj,kk)=pknd(jj,kk) 

c 
c 
c 
c 
c 
c 
c 
c 
c 

70 
100 

c 
c 
c 
c900 
1000 
1005 
1010 

c 
c 
c 

c 
c 

c 
c 

c 
c 
c 

+ aa*pkt(jj,ll)*dsf(11, kk) 
+ aa*pkn(jj,ll)*dsf(11,kk) 

Finally, pre-multiply these new arrays by the transpose 
of the shape function matrix to get the element incremental 
stiffness, stif, and element equilibrium stiffness, ein. 
Also multiply by the weighting factor for this particular 
gauss point.  Note that these arrays are zeroed outside the 
loop over the gauss points since they accumulate (integrate) 
data over all the gauss points. 

=wt4(ii) 
=wt5(ii) 
=wt7(ii) 

if(ngp.eq.4)wt= 
if(ngp.eq.5)wt= 
if(ngp.eq.7)wt= 
do 70 jj=l,ll 
do 70 kk=l,ll 
do 70 11=1,7 
stif(jj,kk)=stif(jj,kk)+wt*width*dsftr(jj,ll)*pktd(ll,kk) 
eln(jj,kk)=eln(jj,kk)+wt*width*dsftr(jj,ll)*pknd(ll,kk) 

continue 
continue 

write(6,1010)ielem 
write(6,1005) 
do 900 ii=l,ll 
write(6,1000) (stif(ii,jj),jj=l,ll) 
format(9(2x,dl2.5)) 
format (/, 'stif ) 
format(i4) 
return 
end 

subroutine shape(eta,ielem,aa) 

implicit double precision (a-h,o-z) 

10 

common/shp/dsf(7,11) 

common/input/tol,table(250),delem(250),vbound(2500),distld, 
vconc(2500),ey,enu,ht,el,e2,gl2,enul2,enu21,gl3,g23,pthick, 
rad, linear,isotro,isarch,ishape,inctyp,ninc,imax, 
nelem,nbndry,nbound(250,6),ldtyp,nconc,iconc(2500), 
nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500), 
theta(20),idload(250),coord(251),width,nnod,pincr,eiter, ttpi 

initialize shape function matrix 

do 10 ii=l,7 
do 10 jj=l,ll 
dsf(ii,jj)=0.0 
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aa=(coord(ielem+1)-coord(ielem))*0.5 
c 
c    enter values into dsf 
c    these include jacobian terms 
c 
c 
c    Ql,Q3,Q2 and derivatives 
c 

dsf(1,1)=0.5*(eta**2-eta) 
dsf(l,6)=1.0-eta**2 
dsf(1,7)=0.5*(eta**2+eta) 
dsf(2,l)=(eta-0.5)/aa 
dsf(2,6)=-2.0*eta/aa 
dsf(2,7)=(eta+0.5)/aa 
dsf(3,4)=0.25*(2.0-3.0*eta+eta**3) 
dsf(3,5)=0.25*aa*(1.0-eta-eta**2+eta**3) 
dsf(3,10)=0.25*(2.0+3.0*eta-eta**3) 
dsf(3,11)=0.25*aa*(-1.0-eta+eta**2+eta**3) 
dsf(4,4)=0.25*(-3.0+3.0*eta**2)/aa 
dsf(4,5)=0.25*(-1.0-2.0*eta+3.0*eta**2) 
dsf(4,10)=0.25*(3.0-3.0*eta**2)/aa 
dsf(4,11)=0.25*(-1.0+2.0*eta+3.0*eta**2) 
dsf(5,4)=0.25*6.0*eta/aa**2 
dsf(5,5)=0.25*(-2.0+6.0*eta)/aa 
dsf(5,10)=-0.25*6.0*eta/aa**2 
dsf(5,11)=0.25*(2.0+6.0*eta)/aa 
dsf(6,2)=0.25*(2.0-3.0*eta+eta**3) 
dsf(6,3)=0.25*aa*(1.0-eta-eta**2+eta**3) 
dsf(6,8)=0.25*(2.0+3.0*eta-eta**3) 
dsf(6,9)=0.25*aa*(-1.0-eta+eta**2+eta**3) 
dsf(7,2)=0.25*(-3.0+3.0*eta**2)/aa 
dsf(7,3)=0.25*(-1.0-2.0*eta+3.0*eta**2) 
dsf(7,8)=0.25*(3.0-3.0*eta**2)/aa 
dsf(7,9)=0.25*(-1.0+2.0*eta+3.0*eta**2) 

c 
c    temporary print 
c 
c    do 100 ii=l,7 
c 100 write(6,1000) (dsf(ii,jj),jj=l,ID 
c 1000     format (9(2x,dl2.5)) 

return 
end 

c 
c 
c 

subroutine postpr(icount,ncount,kcall,ndof,pname,sname) 
c 

implicit double precision (a-h,o-z) 

c 
c 

character*64 gname,fname 

common/chac/gname,fname 

common/elas/ae,de,fe,he,ej,el,re,te,as,ds,fs 

common/input/to1,table(250),delem(250),vbound(2500),distld, 
.  vconc(2500),ey,enu,ht,el,e2,gl2,enul2,enu21,gl3,g23,pthick, 

rad,linear,isotro,isarch,ishape,inetyp,nine,imax, 
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c 

c 

0) 

c 

.  nelem,nbndry,nbound(250,6),ldtyp,nconc,iconc(2500), 

.  nplies,nforc,iforc(2500),nstres,istres(250),ibndry(2500), 
theta(20),idload(250),coord(251),width,nnod,pincr/eiter,ttpi 

common/stf/stif(11,11),elp(ll),eln(ll,11),eld(ll) 

commori/proc/gstif(2500,11),gn(2500,11),gf(2500),gd(2500),vperm(250 

vpres(2500) 

dimension vforc(2500),xcoord(251),ycoord(251) 
pi=3.14159 

c 
c    if ishape=l print global x,y coords to file bshape 
c    if ishape=2 figure out symmetric coords as well 
c 

if (isarch.eq.0) then 
go to 423 

end if 
if(ishape.eq.l.or.ishape.eq.2.and.ncount.eq.l.and.isarch.eq.l)then 

open(8,file=sname,status='new') 
do 1 ii=l,nnod 
i f(ishape.eq.2)then 
xcoord(nnod-l+ii)=rad*cos(pi/2.0-coord(ii)/rad) 
xcoord(nnod+l-ii)=-rad*cos(pi/2.O-coord(ii)/rad) 
ycoord(nnod-1+ii)=rad*sin(pi/2.0-coord(ii)/rad) 
ycoord(nnod+1-ii)=ycoord(nnod-1+ii) 
else 
xcoord(ii)=-rad*cos(pi/2.0+coord(ii)/rad- 

coord(nnod)/(2*rad)) 
ycoord(ii)=rad*sin(pi/2.0+coord(ii)/rad-coord(nnod)/(2*rad)) 

endif 
1 continue 

do 100 ii=l,nnod 
100       write(8,2000)xcoord(ii),ycoord(ii) 

if(ishape.eq.2)then 
do 110 ii=2,nnod 

110       write(8,2000)xcoord(nnod+ii-l),ycoord(nnod+ii-1) 
endif 
write(8,2010) 

endif 
c 
c    global displacements for straight beams 
c 
423  if(ishape.eq.1.and.ncount.eq.1.and.isarch.eq.0)then 

open(8,file=sname,status='new') 
do 2 ii=l,nnod 
xcoord(ii)= coord(nnod)-coord(ii) 
ycoord(ii)=0.0 

2 write(8,2000)xcoord(ii),ycoord(ii) 
write(8,2010) 

endif 
c 
c    print out global displacements 
c 

write(6,1000) 
write(6,1010) 
write(6,1020)ncount,icount 
write(6,1030) 
do 90 ii=0,nnod-l 
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c 
c x,y  for arches 
c 

if(ishape.eq.1.and.isarch.eq.1)then 
if (ishape.eq. Land.isarch.eq.Land. ii.eq.O)write (8,2020)ncount 

xcoord(ii+l)=-(rad-gd(6*ii+4))* 
cos{pi/2.0+coord(ii+l)/rad-coord(nnod)/(2*rad)+ 

\ gd(6*ii+l)/rad) 
ycoord(ii+1)=(rad-gd(6*ii+4))* 

sin(pi/2.0+coord(ii+l)/rad-coord(nnod)/(2*rad)+ 
gd(6*ii+l)/rad) 

write(8,2000)xcoord(ii+l),ycoord(ii+l) 
endif 
if(ishape.eq.2.and.isarch.eq.1)then 
if(ii.eq.O)write(8,2020)ncount 

xcoord(nnod+ii)=(rad-gd(6*ii+4))* 
cos(pi/2.0-coord(ii+l)/rad +gd(6*ii+l)/rad) 

xcoord(nnod-ii)=-xcoord(nnod+ii) 
ycoord(nnod+ii)=(rad-gd(6*ii+4))* 

sin(pi/2.0-coord(ii+l)/rad+gd(6*ii+l)/rad) 
ycoord(nnod-ii)=ycoord(nnod+ii) 

endif 
c 
c    x,y for straight beams 
c 

if (ishape.eq. Land, isarch.eq.O) then 
if(ishape.eq.Land.isarch.eq.O.and.ii.eq.O)write(8,2020)ncount 

xcoord(ii+l)=coord(nnod)-coord(ii+l)-gd(6*ii+l) 
ycoord(ii+l)=-gd(6*ii+4) 
write(8,2000)xcoord(ii+1),ycoord(ii+1) 

endif 
write(6,1040)ii+L (gd(6*ii+jj),jj=l,5) 

90 write(6,1050)gd(6*ii+6) 
if(ishape.eq.2.and.isarch.eq.1)then 

do 95 ii=l,2*nnod-l 
95       write(8,2000)xcoord(ii),ycoord(ii) 

endif 
if(ishape.ge.l)write(8,2010) 

c 
c    compute equivalent forces requested 
c 

3  do 5 ii=l,ndof 
gf(ii)=0.0d0 
do 5 jj=l,ll 
gstif(ii,jj)=0.0d0 

5  gn(ii,jj)=0.0d0 
c 
c    loop over all elements for stiffness and forces 
c 

9  do 30 ielem=l,nelem 
do 10 ii=l,ll 

10  eld(ii)=gd(ii+(ielem-l)*6) 
c 

call stiff(ieiem,icount,ncount,kcall) 
c 
c    Assemble global stiffness array, gstif, global equilibrium 
c    stiffness, gn, in banded form. Half-bandwidth=ll.  Also 
c    assemble global force vector, gf. 
c 

nr=(ielem-1)*6 + 1 
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do 30 jj=0,10 
gf(nr+j j)=gf(nr+j j)+elp(j j +1) 
do 30 kk=l,ll-jj 
gstif(nr+j j,kk)=gstif(nr+j j,kk)+stif(j j +1,kk+j j) 
if (linear.eq.Dgoto 30 
gn(nr+j j,kk)=gn(nr+j j,kk)+eln(j j +1,kk+j j) 

30  continue 
c 
c    calculate the residual force vector for nonlinear 
c    analysis. -[gn]*{gd}+R=-[k+nl/2+n2/3]*{q}+R=gf 
c 

do 60 jj=l,nforc 
ii=iforc(jj) 

add=0. 
do 50 kk=l,ii-l 
if(ii-kk+l .gt. ll)goto 50 
add=add+gn(kk,ii-kk+1)*gd(kk) 

50      continue 
res=0. 
do 55 11=1,11 
if(ll+ii-l .gt. ndof)goto 55 
res=res + gn(ii,11)*gd(ll+ii-l) 

55      continue 
c 
c    compute nodal force 
c 

vforc(jj)=res+add 
60 continue 

c 
c    print nodal forces and create plot file 
c 

open(7,file=pname,status='new') 
if(ncount.eq.l)write(7,1065)0.0,0.0,0.0 
write(6,1060) 
do 70 ii=l,nforc 
write(7,1065)gd(iforc(ii)),gd(iforc(ii)-3),vforc(ii) 

70 write(6,1070)iforc(ii),vforc(ii) 
1000 format(/) 
1010 format(lx,'Results of nonlinear analysis') 
1020 format(lx,'increments,i3,' • iteration=',i3) 
1030 format(lx,'Node',7x,'V,12x,'Psi-s',9x,'Psi-ss',9x,'W,9x,'W-s') 
1040 format(lx,i4,5(2x,dl2.5)) 
1050 format(lx,'Midnode v:',3x,dl2.5) 
1060 format(lx,/,'Equivalent nodal forces:') 
1065 format(lx,dl2.5,2x,dl2.5,2x,dl2.5) 
1070 format(lx,'DOF no:',i4,2x,'Force:',lx,dl2.5) 
2000 format(lx,fl2.5,2x,fl2.5) 
2010      format(//) 
2020 format(/,lx,i4) 

return 
end 
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