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Preface 

And God said, 

V-H = 0 

Vx£ = jkH 

V x H = -jkn2E 

V-(n2E) = 0 

and there was light. 

Bruce Edward Stribling 
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AFIT/GEO/ENG/94D-04 

Abstract 

Several observations of atmospheric turbulence statistics have been reported 

which do not obey Kolmogorov's power spectral density model. These observations 

have prompted the study of optical propagation through turbulence described by 

non-classical power spectra. This thesis presents an analysis of optical propaga- 

tion through turbulence which causes index of refraction fluctuations to have spatial 

power spectra that obey arbitrary power laws. The spherical and plane wave struc- 

ture functions are derived using Mellin transform techniques and are applied to the 

field mutual coherence function (MCF) using the extended Huygens-Fresnel princi- 

ple. The MCF is used to compute the Strehl ratio of a focused, constant amplitude 

beam propagating in non-Kolmogorov turbulence as the power law for the spectrum 

of the index of refraction fluctuations is varied from -3 to -4. The relative contri- 

butions of the log amplitude and phase structure functions to the wave structure 

function are computed. If inner and outer scale effects are neglected, no turbulence 

exists when the power law equals -3. At power laws close to -3, the magnitude of the 

log amplitude and phase perturbations are determined by the system Fresnel ratio. 

At power laws approaching -4, phase effects dominate in the form of random tilts. 

vm 



LASER BEAM PROPAGATION 

IN 

NON-KOLMOGOROV 

ATMOSPHERIC TURBULENCE 

/.   Introduction 

1.1    Background 

It is well known that atmospheric turbulence limits the performance of imaging 

and laser systems. Temperature variations associated with turbulent eddies cause 

random variations in the index of refraction. This random variation in the index 

of refraction distorts an optical wave as it propagates through the turbulent atmo- 

sphere. The distortions in the optical wave caused by the random index of refraction 

lead to significant blurring in imaging systems and increased scintillation (twinkling) 

and wander in a laser beam. 

To date, the performance of imaging and laser systems has been estimated as- 

suming the Kolmogorov model for atmospheric turbulence. The Kolmogorov model 

is a statistical model for the variations of the index of refraction in the atmosphere. 

The model is defined by a 3-dimensional power spectral density. While the Kol- 

mogorov model has shown good agreement with experiment in the past, recent ev- 

idence has shown significant deviations from the Kolmogorov model in certain por- 

tions of the atmosphere [1, 4, 6, 7]. The power spectrum of turbulence in portions of 

the troposphere and stratosphere may exhibit non-Kolmogorov statistics [6, 28]. The 

propagation of light through turbulence which does not obey Kolmogorov statistics 

is not well understood. 
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1.1.1 Air Force interests in non-Kolmogorov turbulence. Understanding 

the propagation of light through non-Kolmogorov turbulence is important to two 

distinct USAF missions: 

1. Theater ballistic missile defense. 

Phillips Laboratory has proposed developing a prototype airborne laser (ABL) 

system capable of destroying a SCUD-type missile at very long ranges. The 

system is intended to operate in the troposphere and stratosphere, and requires 

laser energy to be transmitted to the target over long, horizontal paths. This 

is precisely where non-Kolmogorov turbulence has been observed [28]. Under- 

standing the effects of non-Kolmogorov turbulence on laser beam propagation 

may play a key role in determining the operational limits of the ABL concept. 

2. Ground-based imaging of space satellites. 

Air Force Space Command has a mission to gather intelligence on foreign satel- 

lites in orbit. The mission is accomplished via the use of ground based tele- 

scopes. Unfortunately, turbulence limits the resolution that a telescope can 

achieve. Some turbulence effects can be overcome through the use of adaptive 

optics. The performance of adaptive optical systems can be further improved 

by using prior knowledge of turbulence statistics (e.g., Kolmogorov statistics). 

If the turbulence is modeled as Kolmogorov and is actually non-Kolmogorov 

through a portion of the atmosphere, the performance of these adaptive optical 

systems will be degraded. 

The research presented in this thesis is primarily devoted to addressing the problems 

stated above, but has potential application in the areas of laser radar systems and 

other remote sensing applications, airborne and earth-to-space laser communications 

systems, and satellite power beaming systems. 

1.1.2 The nature of refractive turbulence and its power spectrum. Refrac- 

tive turbulence is generated by the differential heating of the Earth's atmosphere, 
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winds, and large scale weather phenomena. As large pockets (or eddies) of warm air 

mix with colder air, energy is transferred from the larger eddies to eddies of smaller 

sizes. These smaller eddies transfer their energy to still smaller eddies. This en- 

ergy cascade continues until, at some small scale, viscous effects dominate, the flow 

becomes laminar and energy is dissipated as heat. 

In the seminal work on the statistics of atmospheric turbulence, Kolmogorov 

[15] derived the structure function for the velocity of a turbulent flow, 

Dv(r) = <[v(n + r) - viv,)}2) = C2r2^   l0<r< L0, (1.1) 

where the angle brackets denote the statistical expectation operator, 'ü(ri) is the 

velocity vector at point rx, C2 is the velocity structure constant, the scalar r is the 

magnitude of the vector r, and l0 and L0 are the inner and outer scales, respectively. 

The domain of r between l0 and L0 is known as the inertial subrange (See Fig. 

1.1). Tatarski [25] used the concept of a conservative passive additive to relate the 

velocity structure function to the structure function for potential temperature and 

then, using the Gladstone-Dale relation [5, 21], derived the structure function for 

the variations in the index of refraction, 

Dn(r) = <[n(n + r) - n(n)]2) = C2
nr

2'3   l0 < r < L0, (1.2) 

where n(ri) is the index of refraction at the point rx and C2 is the index structure 

constant. It is shown in Chapter 2 that Eq. (1.2) implies the random variations in 

the index of refraction obey a three dimensional power spectrum given by 

$„(«, Z) = 0.033C2(z)re-
n/3   2TT/L0 < K < 2TT/Z0, (1.3) 

where $n(K, z) is the power spectral density as a function of position along the optical 

path z, K is the spatial wavenumber and C2{z) is the index structure constant which 
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is allowed to vary smoothly along the optical path. (%(z) describes the strength of 

the turbulence and has units of m-2/3. Equation (1.3) is known as the Kolmogorov 

power spectrum. The Kolmogorov spectrum agrees well with experiment for vertical 

propagation paths [21]. 

The key assumptions in Kolmogorov's and Tatarski's derivations are those 

of homogeneity and isotropy. For our purposes, "homogeneous" turbulence means 

the turbulence's power spectrum does not depend on location in the atmosphere. 

"Isotropie" turbulence means the turbulence's power spectrum does not depend on 

the direction in which the optical wave is travelling. The Kolmogorov power spec- 

trum is valid in the inertial subrange (see Fig. 1.1), but clearly breaks down for 

physical reasons at the inner and outer scales. At the inner scale (smallest eddy 

sizes) the turbulent flow becomes laminar and the kinetic energy of the flow is dis- 

sipated as heat. At the outer scale (largest eddy sizes) the spectrum should be 

limited by the finite size of the atmosphere, thus the assumptions of homogeneity 

and isotropy are violated. Fortunately, it has been shown that many calculations 

of interest in propagation theory are insensitive to the exact nature of the power 

spectrum at the inner and outer scales. 

1.2    The Existence of Non-Kolmogorov Turbulence 

Von Karman [27], upon examination of Kolmogorov's assumptions, proposed 

an alternative power spectrum which addresses the problems at the inner and outer 

scales, but retains the 11/3 power law in the inertial subrange. Von Karman proposed 

the following power spectrum, 

*B(K,*) = 0.033C
2
(*)(K

2
 + ^r11/6exp 

«2_ 

K2 
K0<K< Km, (1.4) 

where K0 = 2ir/L0 and Km = 2ir/l0. In many optical calculations involving turbu- 

lence, the von Karman spectrum is used for mathematical convenience because it 
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does not diverge to infinity at zero wavenumber (infinite eddy size). Equation (1.4) 

also falls off rapidly at the inner scale. The attribute of finite energy coupled with 

a rapid decrease in energy for increasing wavenumber allows many of the integrals 

involved in turbulence theory to be evaluated numerically. Figure 1.1 shows the 

differences between the Kolmogorov and von Karman power spectra. 

-15 
1.10 

-19 
1.10 

■ 

■ 

""""^^ 

<5(K,Z)      _23 

1.10 ■ 

-27 
1.10 

' 

0.1 1 10. 100. 1000.     1000 

Kolmogorov Spectrum 

Von Karman Spectrum 

Figure 1.1 Kolmogorov and von Karman power spectra for C% = 10-14m~2/3. The 
plot is in terms of spatial wavenumber or 27r/eddy size, thus the inner 
scale (smallest eddies) are to the right and the outer scale (largest ed- 
dies) are to the left. The inertial subrange is the constant slope portion 
of the von Karman spectrum. 

Other authors have proposed extensions of Kolmogorov's work. Greenwood 

[14] and Hill [13] have found a slight peak before the exponential decay of the inner 

scale. Gurvich [11] has proposed a local axisymmetric model in place of the isotropic 

model to account for the existence of buoyancy forces due to temperature differentials 

between the turbulent eddies. 
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In addition to these theoretical works, several experimental observations have 

exhibited peculiar power spectra. Buser [4] has made measurements of turbulence 

power spectra in the Earth's boundary layer by using a 3-beam Mach-Zender opti- 

cal interferometer. By interfering several laser beams propagating at different paths 

through the turbulence and analyzing the interferograms, Buser found that the Kol- 

mogorov theory did not support his measurements. The statistics still obeyed a 

power law but the observed exponent was significantly lower than 11/3. Buser iden- 

tified 2 possible explanations for this: 

1. At ground level where these measurements were conducted, the conditions for 

vertical homogeneity and isotropy are most probably violated, especially at 

larger scale sizes. 

2. The buoyancy forces mentioned earlier may be large enough to effect the results 

of the experiment. 

Dayton, et. al. [6], have measured non-Kolmogorov phase structure functions 

with a Shack-Hartmann wavefront sensor. These measurements imply the existence 

of non-Kolmogorov turbulence power spectra. 

Dalaudier [7] has found direct evidence of temperature sheets in the upper 

atmosphere. These sheets are areas of strong laminar flow having significant tem- 

perature differentials with the surrounding air, thus the conditions of isotropy and 

homogeneity are not necessarily valid in the upper atmosphere. 

Additionally, the existence of non-Kolmogorov turbulence is supported by 

Wissler's [28] preliminary analysis of the ARGUS anemometer data. The ARGUS 

anemometer is a high frequency (12kHz) temperature probe mounted near the stag- 

nation point on the nose of a modified RC-135 aircraft. ARGUS has been tasked 

by Phillips Laboratory to measure refractive turbulence spectra at high altitudes for 

the Airborne Laser Program (ABL). The index of refraction at high altitude can be 

estimated by measuring temperature and pressure as a function of the flight path 
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and relating the measured temperature and pressure to refractive index through the 

Gladstone-Dale relationship. Many observations of non-Kolmogorov turbulence are 

believed to exist in the ARGUS data. However, due to the difficulties associated with 

the frequency response calibration of the anemometer probes, the ARGUS data is 

inconclusive at this time. 

Because of the increasing number of experimental observations of non-Kolmogorov 

turbulence, it has become necessary to develop a theory which provides a basis for 

estimating the performance of optical systems in non-Kolmogorov turbulence.  For 

purposes of this thesis, non-Kolmogorov turbulence is defined as turbulence whose 

three dimensional power spectrum obeys an arbitrary power law, 

$n{K,a,z) = a(a)ß{z)K-a, (1.5) 

where $n(/c, a, z) is the power spectral density as a function of position along the 

optical path z, K is the spatial wavenumber, a is the power law, ß(z) is the index 

structure constant along the path of propagation and has units of m3~a, and a(a) 

is a function which maintains consistency between the index structure function and 

its power spectrum (See Eq. 2.49). 

1.3   Methods for Analyzing the Effects of Turbulence on Laser Beam Propagation 

In order to determine a suitable method to analyze the effects of atmospheric 

turbulence, one must establish criteria for suitability. For purposes of this research, 

I use the following criteria: 

1. The chosen method must accommodate solutions for an arbitrary wave, not 

just a plane or spherical wave. 

2. The chosen method must accommodate solutions for a turbulence power spec- 

trum which obeys an arbitrary power law. 
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3. The chosen method must provide good physical insight to the problem. That is, 

the solution method must separate the geometry of the problem, the statistics 

of the atmosphere, and the characteristics of the optical wave to be propagated. 

Lee and Harp [16], solved the plane wave and spherical wave cases by breaking 

up the turbulent atmosphere into a sum of thin slabs perpendicular to the propaga- 

tion path. Each thin slab has its two dimensional refractivity field decomposed into 

its Fourier components. The effect of each Fourier component of the turbulence acts 

as a phase diffraction grating on the plane wave. Once these effects have been com- 

puted, the authors sum the contributions from each Fourier component in each slab 

statistically over the path. This approach yields a solution of three multiplicative 

terms: 

1. A term containing the power spectrum of the turbulence. 

2. A term relating the fluctuations of a wave at a point in the receiver plane with 

respect to another point in the receiver. 

3. A term which relates the relative efficiency of a turbulent eddy of a certain 

size, at a certain point in the path, in producing perturbations in the receiver 

plane. This term is known as a "filter" function. 

This method yields more physical insight to the problem, but is still limited to the 

plane and spherical wave cases. 

Lutomirski, Yura, and Buser [17, 18, 30], derived a method for propagating 

arbitrary fields through turbulence, using the definition of the mutual coherence 

function (MCF) and the extended Huygens-Fresnel principle. The mutual coherence 

function of a random wave is the ensemble average of the complex amplitude of the 

electric field at one point multiplied by the complex amplitude of the field at another 

point. Mathematically the MCF is given by, 

MCF(x1,y1,x2,y2) = {U{xl,y1)U*(x2,y2)), (1.6) 
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Figure 1.2 A wave propagating from the £,77 plane to the x,y plane, using the 
extended Huygens-Fresnel principle. The wavefront is the summation 
of the envelopes of spherical wavelets whose centers where located on 
an earlier wavefront. 

where U(xi,yi) and U(x2,y2) are the complex amplitudes of the field at the points 

(xi,yi) and (£2,2/2) an(^ t^ie anS^e brackets denote the ensemble average. The 

Huygens-Fresnel principle states (see Fig. 1.2): 

Each point on an optical wave can be regarded as the center of a sec- 
ondary disturbance which gives rise to spherical wavelets and the position 
of the wavefront at any later time is the envelope of all such wavelets. 

Thus, if one knows how turbulence effects a spherical wave, one can determine the 

effects of turbulence on an arbitrary wave. The MCF approach provides a solution 

to the general problem and provides a clear separation between the geometry of the 

problem, the statistics of the atmosphere, and the wave to be propagated. 

Beland [1], in an unpublished work, has used the methods and results of 

Tatarski [25] and Sasiela [23] to analyze the incoherent imaging case where the 

turbulence spectrum is non-Kolmogorov. In this work, Beland derives the general 

expression for the wave structure function for atmospheric turbulence which obeys 

an arbitrary power law. 

By combining Beland's structure function calculation [1] with the methodology 

of Lutomirski and Buser [17], a method is developed for propagating an arbitrary 

wave in atmospheric turbulence which obeys an arbitrary power law. 
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1.4    Organization 

In Chapter 2, the mathematical background required for this thesis is intro- 

duced. Mellin transform techniques are briefly reviewed. Next, the relationship 

between the index power spectrum of turbulence and the index structure function 

is examined. Next, the spherical wave structure function for non-Kolmogorov tur- 

bulence is derived and a generalized expression for Fried's coherence diameter r0 is 

found. Finally, an expression for the variance of the log amplitude fluctuations of an 

optical wave is defined and the limitations of weak fluctuation theory are examined 

for various power laws. 

Chapter 3 describes the extended Huygens-Fresnel principle for propagation 

of light in a vacuum and in a random medium. The mutual coherence function of 

an arbitrary wave in a random medium is derived. The MCF is then used to calcu- 

late the on-axis intensities of an arbitrary wave in vacuum and in non-Kolmogorov 

turbulence. 

In Chapter 4, an expression for the Strehl ratio of a focused, constant amplitude 

wave is derived. The asymptotic behavior of Fried's resolution metric Tl/IZmax is 

examined for various power laws. Additionally, several comparisons of Strehl ratio 

as a function of the power law are made under various constraints. 

In Chapter 5, the relative contributions of the log amplitude and phase struc- 

ture functions to the wave structure function are addressed. 

Chapter 6 discusses the major findings of this research and recommendations 

for future research. 
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77.   Mellin Transforms and the Wave Structure Function 

In order to understand the mathematical development of the non-Kolmogorov 

propagation theory, one must be familiar with Mellin transform techniques. The 

Mellin transform is a mathematical tool which allows many complicated real and 

complex integrals to be evaluated in a straightforward and efficient manner. The 

first section of this chapter is dedicated to a short review of Mellin transforms. After 

the section on Mellin transforms, the relationship between the index power spectrum 

$n(K,a,z) and the index structure function Dn(r) is derived. This relationship 

allows one to understand why the power law a of the index power spectrum can only 

take on certain values. In Section 2.3, the optical wave structure function Dw(p) is 

calculated from the spherical wave correlation function which can be derived from 

the method of small perturbations. The wave structure function Dw(p) will be 

used extensively in Chapters 3 and 4 to calculate the mutual coherence function 

(MCF) and Strehl ratio of a laser beam. Since many of the results contained in this 

research are normalized to atmospheric and path conditions, a generalized version 

of Fried's coherence diameter r0 is derived. Finally, the limitations of the non- 

Kolmogorov theory, imposed by the method of small perturbations [2, 5, 25] are 

examined. The limitations are examined by constraining the variance of the log 

amplitude fluctuations of the optical field to the regime in which the method of 

small perturbations is known to agree with experiment. 

2.1    Introduction to Mellin Transforms 

In many problems in propagation theory we are concerned with integrals of 

the form 

h(a) =y0Od«K$n(Ac,a,^)/1(a1K6l)/2(a2^
2).../nK«6"), (2.1) 
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where $W(K, a, z) is the 3-dimensional power spectrum of the turbulence and fn{anKbn) 

are functions of the integration variable. Because the Mellin transform defined in 

Eq. (2.2) has a form similar to the integral above (Eq. (2.1)), the Mellin transform 

is a very useful tool for evaluating integrals associated with propagation of light 

through turbulence. In this section, the Mellin transform is defined and some of 

its properties are proven. Euler's gamma function is discussed and some elemen- 

tary Mellin transforms are evaluated as examples. For more detailed discussions on 

Mellin transforms, one should refer to the works of Sasiela [22, 23, 24] and Marichev 

[19]. 

The Mellin transform and its inverse are defined as 

H(s) = M[h(x)]=       dxx'^hix) (2.2) 

and 

h(x) = M-^His)] = -^ fds xsH{s), (2.3) 
zirj Jc 

where the path of integration for the inverse transform is a straight line from — joo 

to joo.   The contour c crosses the real axis at a value of s for which the forward 

transform converges. This strip of the complex plane for which the contour c crosses 

the real axis is the domain of the transform V. 

2.1.1 Mellin transform properties. The Mellin transform possesses several 

properties which can be used to extend a table of Mellin transforms. In this section, 

the following Mellin transform properties are proven, 

M[h(ax)]   ^a-sH{s),   a>0 (2.4) 

M[xah{x)]   ^H{s + a) (2.5) 

M[Kx>)]     -^f,     P^O. (2.6) 
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Theorem II.1 Let h(x) be a Mellin transformable function on domain V, then 

M[h(ax)} -> a~sH{s)   a > 0. (2.7) 

Proof: 

Let 

/•oo 

M[h(ax)}=       dxx'^hiax) (2.8) 
</0 

then, 

Thus, 

and 

r = ax    dr = adz 

x = r/a   dx = dr ja 

/»OO   H?"    /7»\Ä — -1 

A«[M«)1 = j£   -(-)     *). (2.9) 

/■OO 

M[%a:)] = a"8 /    drr'"1/^) (2.10) 

M[h(ax)] -* a-sH{s)   a > 0. (2.11) 

Theorem II.2 Lei h(x) be a Mellin transformable function on domain V, then 

M[xah(x)} -» H(s + a). (2.12) 

Proof: 
/•OO 

M[xah(x)}=l    dxx'-^hix) (2.13) 

Lei r = s + a, then 

/•OO 

M[xah{x)}=       dxxr-1h{x)=H(r), (2.14) 
»/U 
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thus, 

M[xah{x)\ -+ H(s + a). (2.15) 

Theorem II.3 Let h(x) be a Mellin transformable function on domain V, then 

M[h(xp)}^^^-,   P^O. (2.16) 

Proof: 

Let 

/•OO 

M[h(xp)]=       dxxs~lh{xp) (2.17) 
Jxj 

r = xp   dr — pxp 1dx 

r — rl/p        Ar —     dr x — r ax — pxj,_1 

then, 

Thus, 

and 

/•OO (\T S_I 
MM^ = L   ^i^=Tp~h(r). (2-18) 

X[/i(xp)] = -/    drr?_1/i(r) (2.19) 
p Jo 

M[h(xp)}^^^-,   P^O. (2.20) 

2.1.2 Gamma functions and Mellin transform examples. Mellin transforms 

can typically be expressed as ratios of Euler's gamma functions. The gamma function 

is defined as 

T{s)= f   dxeM-xy^Y,       ,        '     +/    dxexv(-x)x°-\       (2.21) 
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The last integral is analytic on the entire complex plane. The gamma function 

possesses simple poles at the negative integers with residues (-l)n/n\. To express 

ratios of gamma functions the notation of Sasiela [23] is used, 

a.\   «2 OLr, 

ßi   ß2   ...   ß, 

r[ai]r[a2] • • • r[am] 
T[ß1}T[ß2]...T[ßn}' 

(2.22) 

Most of the integrals in this thesis can be evaluated by a simple change of variables 

and a table lookup, just as in Fourier transform theory. Tables can be found in Sasiela 

[22, 23, 24] and Marichev [19]. The example below is from a problem discussed in 

the following section. 

Example II. 1 In the Section 2.2, we wish to find the power spectrum associated 

with a structure function that obeys an arbitrary power law. Tatarski derived the 

following relation, 

$. 
1      f 00 sin(Kx) d 

Kr    dr 
^D,(r) dr, (2.23) 

where $„(«) is the isotropic 3-dimensional turbulence power spectrum and Dn(r) 

is the index structure function. Substituting the index structure function Dn(r) = 

ß(z)r1 (See Eq. (2.52)) into Eq. (2.23) and evaluating the derivatives yields 

*.frz) = fl«)(f + 7)rdr mr + v r 
AK

2
K

2
      JO 

sin(«x) 
r7. 

nr 
(2.24) 

Making a change of variables 

x — Kr    da; = «dr 

r — X/K   dr = dec/«, 
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Eq.  (2.24) becomes 

•.M-'-Mg^r***-1^ 
Equation (2.25) is the Mellin transform of sm(x). Using the transform 

M[sm(x)] -> 2Ä-1v/^r 
1/2 +s/2 

l-s/2 
|»(a)| < 1, 

Eq. (2.25) becomes 

$B(M) = r3^)(72 + 7K3/2r 

By defining a = 7 + 3, Eq. (2.27) becomes, 

*„(«, ^) = 2a-6
yÖ(^)(a2 - ha + 6)TT- 

1+7 
2 

2 

K -(3+7) <1. 

r 3/2 
'a-2' 

2 

r 5—a 
2   J 

«-a   2<a<4. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Notice the domain in Eq. (2.28) differs from Eq. (2.54) and Eq. (2.57). Equation 

(2.28) must be analytically continued to the domain 3 < a < 5, to ensure the power 

spectral density is positive. The analytic continuation is done automatically in the 

next example. 

In many turbulence problems it is necessary to evaluate the Mellin transform of a 

function minus the first term of its power series. The resultant transform is the same 

as the original function but the domain of the transform has moved past one pole. 

This is demonstrated in the following example. 
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Example II.2  To derive Beland's [1] expression for a(a) in Eq.  (1.5) we can use 

Eq. (2.48) which is derived later in the chapter, 

f°° 
Dn(r, z) - 8ir /    d« *„(«, Z)K? 1- 

sin(rer) 

KT 
(2.29) 

Substituting the definitions for the index structure function Dn(r, z) = ß{z)r1 and 

turbulence power spectrum $n(K, z) = a(a)/3(z)«Ta (See Eq. (2.52) and Eq. (2.56)) 

into Eq. (2.29) yields 

87ra(a) / 
Jo 

6.KK 2-a sin(«r) 

nr 

Letting s = 3 — a and making the change of variables, 

x — KT     da; = rd.K 

K = x/r   d« = dx/r, 

Eq. (2.30) becomes 

r-T = 8ira(a)ra-3 /    dx Xs'1 1- 
sin(x) 

x 

Multiplying Eq. (2.32) by -I yields 

f°° r 
= -87ra(a)ra"3 /    dz Xs'1 [x'1 sin(a;) - 1 

Applying the Mellin transforms 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

M[xah{x)] 

M[sm(x)\   ^2S-1^T 

H(s + a) 

1/2 +s/2 

l-s/2 
l»(«)l < 1 
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M[l]        -lim^ofe-Ä]        l^(s)l<e (2-34) 

yields 

r7 = 

-87ra(ai)ra~3rim< r-2V^r a/2 

(3-a)/2 

1 1 
+ 

a + e      a — e 

\U(s)\ < e.        (2.35) 

In the limit as e -> 0 tfie poZes ai 0 and -e additively cancel and the domain becomes 

-2 < U(s) < 0. -Since a = 3 - a, Eq. (2.35) becomes 

ri = -87ra(a)ra-321-aV7rr 
(3 - a)/2 

a/2 
3 < a < 5. (2.36) 

Equating the exponents of r and solving for a(a) yields 

a{a) = -(2)a-47r-3/2r 
a/2 

(3 - a)/2 
3 < a < 5. (2.37) 

TTie moving of a domain past a pole is an example of an analytic continuation of a 

function. 

2.2    The Relationship Between the Index Power Spectrum and the Index Structure 

Function 

The random variations in the index of refraction can be described by the three 

dimensional autocorrelation function 

rn(rl,r5) = f{n(fl)n(rl)}, (2.38) 

2-8 



where n(f{) and n(f*2) are the indices of refraction at points r"l and r^ and £ is the 

expectation operator. By assuming that the index variations are homogeneous (sta- 

tionary) throughout the atmosphere, the autocorrelation function can be expressed 

as a function of difference coordinates only, 

rn(?) = £{n(rl)n(rl-f)}, (2.39) 

where r = r^ - rl. The Weiner-Khinchine theorem states the autocorrelation and 

power spectral density of a wide sense stationary random process are Fourier trans- 

form pairs, therefore 

*•& = ■&? IH****"*1- {2M) 

Assuming the turbulence is isotropic (i.e., Tn(r) depends only on r = |r|), Eq. (2.40) 

can be written as a single integral [3], 

1      f°° 
$n(«0 = Ä</o   rTn(r)sm(Kr)dr (2.41) 

and the inverse relationship is 

Aqr      /»OO 

Tn(r) = —       K$n{K)sm(Kr)dK. (2.42) 
r Jo 

For isotropic turbulence, Eq. (2.41) and Eq. (2.42) are the fundamental rela- 

tionship between the autocorrelation of index variations and the index power spec- 

trum. It is through the use of Eq. (2.41) that the index structure function, denned 

below, is related to the index power spectrum. 

An extremely useful method of describing the random variations in the index 

of refraction is through the use of structure functions. The structure function of the 
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index of refraction variations is denned as 

Ön(rl,r5) = 5{[n(rl)-n(ra)]2}. (2.43) 

Expanding Eq. (2.43) and applying the linearity of the expectation operator yields 

Dn(vi, rl) = S {n(rl)2} - 2£ {n(rl)n(r5)} + S {n^)2} . (2.44) 

Since the turbulence is assumed wide sense stationary, 

5{n(rl)2}=f{n(rl)2} = rm(0). (2.45) 

Thus, the index structure function for isotropic turbulence can be written 

Dn(r) = 2[rn(0) - rB(r)]. (2.46) 

Substituting Eq. (2.42) into Eq. (2.46) yields 

r f 47T    P°° 1 47T    f°° 
DJr) = 2 lim \ — /    «$„(«) sin(«;r)dK \ /    K*n(«) sin(Kr)d« 

L»--*0 I r  Jo )       r  Jo 
,     (2.47) 

where the limit on the first term is required because of the pole at r = 0. Evaluating 

the limit yields 
f°° 

Dn(r) = 8TT /    $n{K)K2 1 
sin(«;r) 

KT 
d«. (2.48) 

Tatarski [26] solved for the inverse of Eq.  (2.48) in terms of the derivatives of the 

structure function, 

1      f 

^ = 4^4 
00 sin(«;r) d 

KT dr 
r^Dn(r) dr. (2.49) 

Equation (2.49) can be used to find the power spectrum from a given structure 

function.  For example, Tatarski [25] derived the index structure function in terms 
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of Kolmogorov's inertial subrange model 

Dn(r,z) = Cl(zy/\ (2.50) 

By substituting Eq. (2.50) into Eq. (2.49) one can show 

$n(K,z)=0.033C2(2)«rn/3. (2.51) 

To find the power spectrum associated with an arbitrary structure function, 

Dn(r,z)=ß{z)r\ (2.52) 

one substitutes Eq.  (2.52) into Eq.  (2.49) and evaluates the integral.  In Example 

II.2 7 was shown to be 7 = a — 3, thus, 

Dn(r,a,z) =ß(z)r a-3 (2.53) 

The power spectrum of the turbulence in terms of the arbitrary power law structure 

function was shown in Example II. 1 of the previous section to be, 

$B(K, z) = 2a-6ß(z)(a2 -5a + Q)^3/2-4^4^'a   3 < a < 5, (2.54) 
r 'a-2' 

2 

r 5—a 
2 

where ß(z) is the structure constant similar to C\{z) and has units of m3~a, r[x] is 

Euler's gamma function, and the power law a is defined as a = 7 + 3. The function 

a(a) which maintains consistency between the index structure function and its power 

spectrum (See Eq. (2.49)) is found by equating Eq. (1.5) and Eq. (2.54) and solving 

for a(a): 

a{a) = 2a-%a2 -5a + 6)TT' 
r 

3/2 
a-2' 

2 

r 5—a 
2 

3 < a < 5. (2.55) 
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Figure 2.1    The consistency function a(a). 

This result is mathematically equivalent to Eq. (2.37) derived in Example II.2 and 

Eq. (2.57) below. The consistency function a(a) is plotted in Fig. (2.1). Thus, the 

index power spectrum for an arbitrary power law is 

*n(K,a,2) = a(a)ß(z)K (2.56) 

Equation (2.56) reduces to the Kolmogorov power spectrum (Eq. (2.51)) if a = 11/3. 

Note that Beland [1] has derived an alternate but equivalent definition for a(a) 1, 

a(a) = _(2)a-47r-3/2 
rffl 

r|¥] 
3 < a < 5. (2.57) 

lThis problem was solved as an example in the previous section on Mellin transforms. 
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Equations (2.52) and (2.54) yield a very important physical interpretation. If the 

inner and outer scale effects are neglected, the power law a must be greater than 

3, because when a —> 3, a(a) —► 0 and the turbulence power spectrum vanishes. 

Likewise, the index structure function has no dependence on the separation r (i.e., 

Dn(r,z) — /?(z)r°), implying no random turbulence exists. We will see in the next 

section that the domain of a is further constrained in the wave structure function 

calculation. 

2.3    The Wave Structure Function 

In order to estimate the effects of turbulence on optical wave propagation, one 

must solve the wave equation for a random media, 

VJE + fcVE = 0, (2.58) 

where n is a random field of index variations over the region of propagation. If the 

turbulence is weak, homogeneous, and isotropic, the method of small perturbations 

can be used to solve Eq. (2.58) [2, 5, 10, 25]. The method of small perturbations 

yields the two dimensional spherical wave correlation functions (in a plane transverse 

to the direction of propagation) for the log amplitude and phase, 

/•L /"oo 

Bx(p) = 4n2k2      dz       d« KJ0 
KpZ) sin2 K

2
Z(L — z) 

2kL 
$n{K,z) (2.59) 

and 

/•L /*oo 

Bt(p) = A-K2k2      dz       dK KJQ ^W K
2
Z(L — z) 

2kL 
$n{K,z), (2.60) 

where Jo is a Bessel function of the first kind, order 0, k is the optical wavenumber, 

p is the geometrical separation between points in the plane, and L is the length of 

the optical path. 
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In this section, the wave structure function for non-Kolmogorov turbulence 

Dw(p) is derived using Eq. (2.59) and Eq. (2.60). The wave structure function is 

defined as the sum of the log-amplitude and the phase structure functions, 

DM = Dx(p) + D*(p)- (2-61) 

The relations 

and 

Dx(r) = 2[BX(0) - Bx(r)\, (2.62) 

D+(r) = 2[B,(0) - B,(r)], (2.63) 

can be derived in a fashion similar to Eq. (2.43). Using Eqs. (2.62) and (2.63) and 

substituting Eqs. (2.56), (2.59) and (2.60) into Eq. (2.61) yields 

Dw(p) = 8*2k2a(a) f ß{z) J™ K
1
"* [l - M^)] d«d*, (2.64) 

where a(a) is the consistency function, ß(z) is the index structure constant along 

the optical path, K is the spatial wavenumber of the turbulent eddies, J0 is a Bessel 

function of the first kind, order 0, and p is the geometric distance between two 

points in the plane transverse to the direction of propagation. Equation (2.64) can 

be evaluated using Mellin transforms. Sasiela [23] gives the necessary identity, 

Ml-■*>(*)] =-2J_1ipiy   -2<^(5)<0, (2.65) 

where T is Euler's gamma function. Making the change of variables 

x = 1^   dx = ^dK 
L L 

%L    , T , 
K = —   d/s = —da; 

pz P
Z 
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and letting s — 2 - a, Eq. (2.64) becomes 

Dw(p) = &ir2k2a(a) £ ß(z) £ -^ {^\      [1 - J0{x)]dxdz. (2.66) 
1-a 

Rearranging terms yields 

Dw(p) = 8n2k2a(a)L2-apa-2 /   ß{z)za~2dz /    x^l - J0(x)}dx. (2.67) 
JO « 0 

Applying the Mellin transform in Eq. (2.65) and remembering a(a) is defined from 

3 < a < 5, 

Dw(p) = -(^V^ajL^^r 
2-a 

2 
a 
2 

/  /?(2)2a-2d^   3<a<4.(2.68) 
./o 

If ß(z) is constant over the optical path, Eq.  (2.68) can be simplified. Evaluating 

the integral for this case yields 

DM = -{2f-air2k2a(a)L2-apa-zT 
2-a 

2 

a 
2 

ß^—r   3<a<4.       (2.69) 
a — 1 

Rearranging Eq. (2.69) yields, 

Dw{p) = -(2f-aTr'kza(a)ßL IW 2   7        „a-2 

(« - i)r(f) 
—pa-'   3<a<4. (2.70) 

Equation (2.70) is the spherical wave structure function for turbulence characterized 

by an arbitrary power law a. To get the plane wave structure function one excludes 

the (a - 1) term in the denominator of Eq. (2.70). Equation (2.70) will be used 

extensively in Chapters 3 and 4 to compute the mutual coherence function and Strehl 

ratio of a laser beam. 
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2.4    A Generalized Expression for Fried's Coherence Diameter r0 

Many of the results in this thesis are normalized by atmospheric and path 

conditions. Fried [8, 9] accomplished the normalization by defining a "coherence 

diameter", r0, which takes into account the strength of the turbulence and the path 

length. Fried [8] defines the plane wave structure function as 

Dw(p) = 6.88 (-£) 
5/3 

(2.71) 

where 
6.88 

3/5 

To=     ™        . (2.72) 

The arbitrary constant 6.88 is defined more accurately in [8] as 2(24/5r(6/5))5/6. 

This constant was chosen to force Fried's resolution metric Tl/Umax [8] to have a 

certain asymptotic behavior. Since Fried's definition of r0 only applies to an 11/3 

power law in the Kolmogorov spectrum, a more general expression is presented here. 

Our definition for the spherical wave structure function is rewritten from Eq. 

(2.70) 

2-a„a-2T Dw{p) = -(2)4-%Va(a)£   >     r 
2-a 

2 

a 
2 

[Lß{z)za-2dz   3<a<4.(2.73) 
Jo 

We need to find a parameter p0, which reduces to r0 when the power law a -> 11/3, 

such that 
a-2 

Dw(p) = Ct 
,Poj 

where 

ci = 2 
8 

(2.74) 

(2.75) 
,a-2    La-2J. 

The choice of c\ will become more apparent when the asymptotic behavior of Fried's 

Tlj^max is discussed in Chapter 4.   Setting Eq.   (2.73) equal to Eq.   (2.74) and 
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solving for p0 yields 

Po = 
Cl(a - i)r [f 

-(2)4-«7r2fc2a(a)L2-ar [2=2 S}ß(z)z?-*dz 
3 < a < 4.    (2.76) 

If /?(2r) is constant over the path then Eq. (2.76) reduces to 

ci(a - l)r [f]  
i 

a-2 

Po = 
-(2)4-«7r2fc2a(a)r [2=2] 0L 

3 < a < 4. (2.77) 

Again, for the plane wave expression of p0 the (a - 1) term is omitted. 

Figure (2.2) is a plot of p0 as a function of a for various values of ßL.   It 

is important to note that p0 scales with A2/(a_2). In Section 2.2, it was shown that 

Po 

10000. 

1000. 

100. 

10. 

1 

0.1 

-,—-.—.—.—1—1—1—1—1—.—1—1—1    1    ' 

' \ \ . 

■ \ v   ^—-—^ 
' 

"-^ """""X \ 

■ 
\ \ 

1 
1 ■ 

3.2 3.4 3.6 3.8 
a 

ßL = 4 x 10"15 

ßL = 4xlO"14 

ßZ. = 4xlO"13 

Figure 2.2   The generalized coherence diameter p0 as a function of a normalized by 
ßL. The wavelength is 1.3 microns. 
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turbulence with power laws a < 3 can not exist, because the index structure function 

has no dependence on r when a = 3. This is reflected in Fig. (2.2) as well, since 

po _► oo when a -» 3. When a -» 4 we see p0 -> 0, this can be explained by 

the square law dependence of the wave structure function (Eq. (2.74) when a = 4. 

Heidbreder [12] showed that the phase structure function in the near field limit, which 

is equivalent to the wave structure function presented here, induces pure random tilt 

on the wavefront. Since a pure random tilt shifts the beam off axis for each realization 

of turbulence (short exposure) the average irradiance (long exposure) will be the 

average of the unabberated beam shifted all over the observation plane. This results 

in a wide spot with a very low irradiance peak. This is exactly what is happening 

in Fig. (2.2). The worst turbulence to have in an uncompensated beam projection 

system is turbulence whose structure function only induces tilt on the wavefront, 

thereby shifting its short exposure spot continually around the observation plane. 

This effect will be discussed further in Chapter 4. 

2.5    The Variance of the Log Amplitude Fluctuations and Limitations of the Theory 

Using the method of small perturbations to solve the wave equation (See Eq. 

(2.58)) is limited to regimes where the tubulence is weak and the propagation dis- 

tance is short. For Kolmogorov turbulence the method of small perturbations has 

been shown to be valid when the log amplitude variance is small (for a2, < 0.3 - 0.5) 

[5]. When the log amplitude variance is greater than 0.3 - 0.5 a multiple scatter- 

ing theory is required. For purposes of this discussion, it is assumed the criterion 

a2 < 0.3 — 0.5 holds for propagation in an arbitrary power law turbulence spectrum. 

To prove the relation a2
x < 0.3 - 0.5 holds for an arbitrary power law turbulence 

spectrum requires comparison with a multiple scattering theory which is beyond the 

scope of this thesis. 

One can examine the variance of the log amplitude perturbations in order 

to understand the bounds the method of small perturbations places on turbulence 
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strength and range as the power law of the turbulence spectrum varies. Here the 

bounds are found by constraining the log amplitude variance to 0.1 - 0.5 and solv- 

ing for the system and atmospheric parameters of interest. From the plane wave 

correlation function [2], 

fL poo 
a\ = Bx{0) = 4TT2k2 /   dz /    d/cK sin 

K
2
(L - z) 

2k 
$„(«,«,*). (2.78) 

Substituting the turbulence spectrum given by Eq. (2.56) into Eq. (2.78) yields 

'K
2
{L - z) fL poo 

a2=4Tr2k2 /   dzß{z) /    dKK1-« 
x Jo Jo 

sin 
2k 

(2.79) 

Letting s = 2 - a and w = ^ gives 

fL /"oo 
a2 = 4TT2k2a(a) /   dz ß(z) /    d« «'_1 sin2 

x Jo Jo 
WK (2.80) 

Making the change of variable x — y/wK and da; = y/wdn yields 

fL f 

a2 = 47r2fc2a(a) /   dz ß{z) / 
x Jo Jo 

00 dx  / x 
s-l 

y/w    \\ftJU; 
in2 [x2] . (2.81) sin 

Simplifying Eq. (2.81) gives 

fL , foo , 
a2 = 4ir2k2a(a) [  dz w-s'2ß{z) /    dx (x)3'1 sin2 

x Jo Jo 
X (2.82) 

Equation (2.82) is the Mellin transform of sin2(s2). The applicable transform pair is 

M[sinV)] - -^r 
s/4 

1/2 - s/4 
-4 < 5R(s) < 0, (2.83) 
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thus, 

V*i a\ = -4ir2k2a(a) f  dzvj-s?2ß(z)^T 
x JO o 

2-a 
4 

a 
4 

2 < a < 6. (2.84) 

Substituting for w, 

°l = -\^l2k2a(*)j\ L '(W*v 
2-a 

4 
a 
4 

2 < a < 6.       (2.85) 

Simplifying Eq. (2.85) and remembering a(a) is defined on 3 < a < 5 gives 

a2 = _2-«/27r5/2A,^a(a)r 

2-a 
4 
a 
4 

/   dzß(z) (L - z)^   3<a<5.   (2.86) 
Jo 

If /?(z) is constant along the path, then we have 

"\ = 

c2T2LT>l2k i"a(a). 

a 

2-a 
4 ßL'    3 < a < 4. (2.87) 

In order to generalize a2 for various system and atmospheric conditions, we can 

multiply Eq. (2.87) by p*~2 jp*~2 and rearrange the terms to yield 

a —6 i/o,  2 —or  _ «—2 
2     2-irc17r1/2fc—Lir 

ffx = ^^ r 

Wo 

2—a a 
4 2 

a 2—a 
4 2 

(2.88) 

Define the Fresnel number 

FN = V\L, (2.89) 
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where A is the wavelength of the beam and L is the length of the optical path. 

Substituting the definition of Fresnel number into Eq. (2.88) yields 

o" = 

3-a 
Cl7T    2 

4a 

'FN_" 
*-2 2-a 

4 

a 
4 

a 
2 

2-a 
2 

(2.90) 

Figure (2.3) is a plot of the log amplitude variance as a function of power law 

normalized by (FN/p0)
a~2. Care must be used in interpreting this plot. Remember 

(FN\a-2 

ipo) 0.1 

0.05 

0.01 

Figure 2.3    The log amplitude variance a^ as a function of a for normalized by 
a-2 (FN/Po) 

for constant turbulence and path conditions p0 varies considerably with a (See Fig 

(2.2)). A key observation can be made at this point. When the spectrum contains 

fewer eddies of high wavenumber, corresponding to higher power laws (a -> 4), 

scintillation effects are reduced. This means phase effects dominate as a —> 4, 

supporting the conclusions of Heidbreder. Figure (2.4) contains plots of the minimum 
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(—) \FN> 

a-2 

a 

Figure 2.4    The minimum p0 normalized by Fresnel number FN for the conditions 
where o\ = 0.1,0.3,0.5. 

(polFN)a~2 which can be examined using this theory for various values of a\. One 

can reject errors due to multiple scattering effects by restricting use of the theory 

presented in this thesis to the areas above the curves. The area below the curves is 

considered "strong" turbulence and the theory presented here no longer applies. 
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III.   The Extended Huygens-Fresnel Principle 

In this chapter, the extended Huygens-Fresnel principle is used to derive the 

mutual coherence function for an arbitrary wave in a vacuum and in turbulence. 

Once the MCF for an arbitrary wave in turbulence is found, it is a simple matter to 

determine the intensity at any point in the observation plane. The on-axis intensity is 

of particular interest, because it allows one to easily generate a useful figure-of-merit; 

the Strehl ratio (STZ). The Strehl ratio can be shown to be the ratio of the on-axis 

intensity of a laser beam in turbulence to that of the laser beam in a vacuum. Thus, 

the Strehl ratio provides a useful metric for examining the impacts of turbulence on 

laser beam propagation. In this chapter, the general equations for the MCF and 

intensities are derived. In Chapter 4, the equations for the on-axis intensity of a 

general wave are used to calculate the Strehl ratio of a focussed constant amplitude 

beam. 

3.1    The Mutual Coherence Function for Quasi-monochromatic Waves in a Vacuum 

Following the approach of Lutomirski and Buser [17], the MCF for quasi- 

monochromatic light is defined as 

MCF(Pl, p2) = (U{Xl, yi)U*{x2, y2)), (3.1) 

where pi and p2 are points in the observation plane, (xi,yi) and (2:2,2/2) are the 

x and y coordinates of pi and p2 and the angle brackets denote the statistical 

expectation operator. Figure (3.1) shows the geometry of the propagation scenario. 

From the Huygens-Fresnel principle 

u(x, y) = ^7 // G(*> ^ t> V)UA(^ V)WV, (3-2) 
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where £ and rj are the coordinates of a point in the source plane and the Green's 

function for propagation of a spherical wave is 

GW) 

n  «2.T12) 

Source Plane 

Sphercal Wavetets       \ 

/     : (xi,yi) 
(x2,y2) 

Image Plane 
Turbulent Atmosphere 

Figure 3.1 A wave propagating from the (£,77) plane to the (x,y) plane, using the 
Huygens-Fresnel principle. The primary wavefront is the summation of 
the envelopes of spherical wavelets whose centers where located on an 
earlier wavefront. 

G(xty,£,7j) 
exp jk((x - £)2 + (y - v)2 + z2fl2 

((x -t)2 + (v- v)2 + z2))112 
(3.3) 

The integrals in Eq. (3.3) are evaluated over the source aperture. Using the paraxial 

approximation (z2 » (x-£)2 + {y-ri)2), the numerator of Eq. (3.3) is approximated 

by 

exp 'jk ((x - 02 + (y - v)2 + z2) 
1/2' 

exp ■ikß'-#£*->?+: (3.4) 

and the denominator by 

1/2 
{(x-O' + iy-vf + z2)1 -* (3.5) 

Substituting Eqs. (3.4) and (3.5) into Eq. (3.2) yields, 

£^y) = ^exp[JM// exp jk 
'(x-Q2 + (y-r,f 

2z 
UA(^v)^dv-     (3-6) 
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Expanding the terms of the exponential and rearranging, the field is 

U(x,y) = 

-jk 

2-KZ 

x / / exp 

exp[jfcz] exp jV + y2) 2z 

I!' §«2+"2) exp 
-jk 

(x£ + yrj) UA(t,v)dttV- (3-7) 

Eq. (3.7) is the standard Fresnel diffraction formula. Substituting Eq. (3.7) into the 

definition of the MCF, Eq. (3.1), yields 

MCF{x1,y1;x2,y2,z) 

fk 
2z &"» £(*? + vl) 

!«2+"2> X//H 

exp 

exp 

jk(4 + yl) 2z 

jk 

exp 
jk 

(a>i£i + ViVi) 

(326 + Jfe»te) 

*7A(£i.»7i)d£i<tyi 

^l(6,^2)d6d^2 .   (3.8) 

Since the wave is propagating in a deterministic fashion, the expectation operator 

can be neglected and the MCF for a coherent wave in a vacuum is 

MCF{x1,y1;x2,y2,z) = 

^)2^ 

j\xl + yl)-(xl + yl) 
2z 

x Ml- 
-jk 

g((tf + tf)-(£ + *) 
x exp (»1C1 + vivi + x^2 + j/2%) 

x UA(CI,VI)UA(^2, »te)d£id?7id6d7/2. (3.9) 

By defining 

■0 = exp J^l + y2i)-(4 + yl) 
IZ 

(3.10) 
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the MCF for a quasimonochromatic wave propagating in a vacuum is 

MCF{xuyi,x2,y2,z) = 

£r*JJJH -2TTZ' 

x exp 

fzm+vi)-(g+vi)) 
-jk 

(a?i6 + vim. + «26 + vim) 

XC/A(6, Vi)Ul(&, »te)dfid77id6d7/2. (3.11) 

3.1.1 The irradiance of a quasimonochromatic wave in a vacuum. The 

irradiance at a point (xi,yi) can be determined from the MCF by letting x2 -> x\ 

and y2 -»• yi in Eq. (3.11), 

J(a;i, yi, 2) = MCT(zi, 2/1; zi, 2/1,2) 

K ^1 r f f f       j fc 

jk 
x exp '■(x^i + yxr]i + x^2 + Vim) 

xt/A(6,m)^l(6,%)d6d?7id6d?72- (3.12) 

If we consider only the on-axis irradiance x\ -* 0 and j/i ->■ 0, Eq. (3.12) becomes 

1(0,0,2) = 

&JJJJ exp 
Zz 

xUA((urll)U*A{Z2iV2H1drhdZ2d7l2. (3.13) 

Equation (3.13) is a separable integral, 
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7(0,0,*) = 

exp &? + * 2* 

// 
exp 

Zz 
(3.14) 

3.2    T/ie Mutual Coherence Function for Quasimonochromatic Waves in Non-Kolmogorov 

Turbulence 

In this section the MCF for an arbitrary wave in non-Kolmogorov turbulence 

is derived. The derivation proceeds as in the last section, except for the substitution 

of a different Green's function. 

The MCF for quasimonochromatic light is defined as 

MCF(Pl,p2) = (U{x1,y1)U*(x2,y2)), (3.15) 

where pi and p2 are points in the observation plane, and (£1,3/1) and (22,2/2) are 

the £ and y coordinates of pi and p2. 

From the Huygens-Fresnel principle: 

U(x, y) = -l-JJ G(x, y, e, v)UA(t, v)d&V, (3.16) 

where £ and n are the coordinates of a point in the source plane and G(x, y, £, n) is 

the Green's function for propagation in turbulence. The integrals are again taken 

over the source aperture. If we define G'(x,y,£,rj) as the ratio of G(x,y,£,rj) to its 

value in the absence of turbulence [17], 

r(        t    \      exp[jfc((q; - jf + (y - rjf + *>)W\   , (3.17) 
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Applying the paraxial approximation and substituting Eq.   (3.17) into Eq.   (3.16) 

yields 

U(x,y) = — ex.p[jkz] 

x JJG'(x,y,£,r])exv jk( 
(x - Q2 + (y - rjf 

2z 
UA^V)^^.     (3.18) 

Substituting Eq. (3.18) into Eq. (3.15), 

MCF(x1,y1;x2,y2,z) = 

((2^)2 //// G'{XU VU 6' ri0'*^ V*> &>»») 

X exp \jk 
,(x1-Ci)2 + (yi-rh? 

2z 

X exp -jk 
,(x2-(2)

2 + (y2-r]2f 
2z 

x UAitumpAi&mWiArii^m )■ (3.19) 

Interchanging the order of integration and expectation and defining 

H{x1,yltZi,rh,X2,y2,t2,V2,z) = {G'{x1,y1^1,vuz)G'*{x2,y2^2,V2,z)),     (3.20) 

yields 

MCF(xuy1;x2,y2,z) = 

(-—)2 JJJJ H(x1,y1,ti,r]1,x2,y2,(2,V2,z) 

jk, 
x exp 

2z 
(On - 6)2 + (yi - m)2) - ((X2 - 6)2 + (y2 - V2)2)) 

xUA(Zi,Vi)U*A(&V2)dtidr)1dZ2dil2. (3.21) 
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Expanding the terms in the exponential and rearranging, Eq.(3.21) becomes 

MCF(xlty1;x2,y2,z) 

^/-» 
Jyz(4 + yi)-(4 + y22) 

x 1111 H(x1,y1, £1, T?I, x2, y2,£2, V2, z) 

x exp 
2z 

((£ + Vl) - (e2
2 + Vl) + 2x26 - 2zi£i + 22/2772 - 2yim) 

xC/^(ei,m)^l(6,%)d6dr?id6dr?2. (3.22) 

By defining 

ip — exp g(*2 + y2)-(^ + */22) (3.23) 

the MCF of a quasimonochromatic wave in non-Kolmogorov turbulence is 

MCF(x1,y1;x2,y2,z) = 

(—)V //// ^i» J/i. 6> »Ti» »2,2/2,6. V2,z) 

x exp f^((e? + vi) ~ (£2
2 + nl) + 2x26 - 2x^1 + 2y2V2 - 2y1rjl) yiz 

(3.24) 

Equation (3.24) is the major result of this chapter. We will see in the next chapter 

that H(x1,yi,£1,T]1,x2,y2,£2,V2,z) takes the form 

H(xi, yi, £1, m, X2,2/2,6, V2, z) = exp 2^(P) (3.25) 

where Dw(p) is the wave structure function derived in Chapter 2 and p is the geo- 

metric separation of the points (£1,771) and (£2,772) in the source plane. 

3.2.1    The irradiance of a quasimonochromatic wave in non-Kolmogorov tur- 

bulence.       The irradiance at a point (x, y) in the observation plane can be deter- 

3-7 



mined by letting x2 —> Xi and y2 -> y\ in Eq. (3.24), 

I{xi,yi,z) = 

(—)2JJJjH(xi,y1,Ci,rj1,X2,y2^2,V2,z) 

x exp 
2z 

((£1 + Vl) ~ (£2 + Vl) + 2si6 - 2ari£i + 2yi?72 - 2ylVl) 

x 1^(6» »71)^1(6, %)dCid»7id6d7fe. (3.26) 

Considering only the on-axis irradiance, let OJI —> 0 and yi -» 0, then 

7(0,0,2) = 
A; 

(g—f JjJJ H(x1,y1,^U7]Ux2,y2,^V2,z) 

x exp g(^2 + ^)-(C2
2 + %2) 

ZZ 

xt/A(6, m)^l(6, %)d6d»7id6d7te. (3.27) 

We will use the Eqs. (3.14) and (3.27) for the on-axis intensities in vacuum and 

in turbulence extensively in Chapter 4 to compute the Strehl ratio of a focussed, 

constant amplitude beam. 
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IV.   The Strehl Ratio of a Laser Beam in Non-Kolmogorov 

Atmospheric Turbulence 

In order to calculate the impact turbulence has on laser beam propagation, 

one can use many different performance metrics. A common performance metric is 

the Strehl ratio. The Strehl ratio is defined as 

Q^-f           \~1 "/in turbulence (A   \\ 

/in vacuum 

where 1(0, 0) is the on-axis irradiance. 

In this chapter the on-axis irradiances of a wave in a vacuum and in turbulence, 

hence the Strehl ratio, are calculated using the mutual coherence function (MCF) 

derived in Chapter 3 and the wave structure function Dw(p) derived in Chapter 2. 

In Section 4.2, the Strehl ratio as a function of power law a is plotted for constant 

values of the generalized coherence diameter p0. Next, the asymptotic behavior of 

Fried's resolution metric H/7lmax is examined [8]. It is from this behavior that the 

constant ct in Eq. (2.74) is determined. Additionally, ft/ftmax is shown to be the 

Strehl ratio multiplied by (D/p0)
2 or 

11 sA^\- («) 
^max \Po) 

Equation (4.2) is plotted for various power laws in Section 4.3. 

Great care must be used in finding a reasonable basis on which to compare the 

Strehl ratios of beams propagating through different power spectra. Consider the 

two power spectra 

*ni(«,ai,/?0) = a(a1)ß0K-ai   $n2(K,a2,/30) = a(a2)ß0K-a>. (4.3) 
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If cti does not equal a2, then the power in any finite bandwidth of the two spectra 

will not be equal. Thus, in a plot of the Strehl ratio as a function of the power law 

a, it is difficult to separate the effects of the total power in the turbulence from how 

that power is weighted in spatial wavenumber. We shall see in this chapter that, 

the choice of basis for comparing different power laws greatly impacts the trends of 

Strehl ratio. 

The latter sections of this chapter contain plots of the Strehl ratio as a function 

of the power law under different bases of comparison. Ultimately, any individual 

basis boils down to a rule on how ßL is chosen as the power law varies. First, 

ßL is fixed and the power law a is allowed to vary over the domain, 3 < a < 4. 

Following this comparison, ßL is chosen such that the power spectra are constant at 

a specific wavenumber K0. Next, ßL is chosen to be such that, the power over a finite 

bandwidth is constant as the power law varies. We will see that the results of the two 

previous comparisons are similar. Next, ßL is chosen such that, the piston-removed 

wave variance o?„    over the receiver aperture is constant as the power law varies. 
W—p A 

4.1    Strehl Ratio for a Focused Constant-Amplitude Beam 

In this section an equation for the Strehl ratio is derived using the wave struc- 

ture function derived in Chapter 2 and the extended Huygens-Fresnel principle de- 

scribed in Chapter 3. First, let the field in the source aperture be a constant- 

amplitude beam focussed at distance z, 

[/(£, rj) = exp 
LZ 

(4.4) 

4.I.I    Evaluation of the on-axis irradiance in turbulence.      Substituting Eq. 

(4.4) into Eq. (3.27) yields 

4-2 



X yv/) 'J) & }in turbulence 

(—)2 JJJJ H{x1,yh£1,r]l,x2,y2,Z2,ri2,z)dZ1drhdt2dr}2- (4.5) 

Lutomirski and Buser [17] show that H{xuyu 6, Vi,X2,V2,6,%, z) in Ecls-  (3-24), 

(3.26) and (3.27) is 

#(zi, J/i, &, »7i, «2,2/2,6. »72»2) = exP -^(((6-6)2 + (m-%)2)1/2) ,    (4-6) 

where DTO is the spherical wave structure function derived in Chapter 2 and p = 

((6. - 6)2 + (^i _ r72)2)1^2 is tne geometric distance between two points in the source 

plane. Substituting Eq. (4.6) into Eq. (4.5) yields 

1 ^U, U, Z J-ln turbule 

k (^)2////exp [-ZDM] d6dmd6d^: (4.7) 

Equation (4.7) is a four dimensional integral over the source aperture. We define the 

circular aperture function 

wfat + mv) = { 
1   \U + rnv\<D/2 

0   otherwise, 
(4.8) 

where | and r) are unit vectors in the source plane and D is the aperture diameter. 

Substituting Eq. (4.8) into Eq. (4.7) yields 

1 ^Uj Uj £Jin turbulence 

U /»OO     /"OO     /»oo     /*oo Ä A 

(^-)2/    /   /   /   wtfi* + w)W6£ + T&tj) 
Z7TZ      J—ooJ—ooJ—ooJ—oo 

x exp  --L>w(p)| d&d^d&.drfe. (4.9) 
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Equation (4.9) is converted to vector notation with the following change of variables 

thus, 

r = (6 - 6)£ + (% " V2)fj        dr = d^drn 

F = §((& + 6)£ + {vi + m)v)  d? = d6d%, 

Substituting Eqs. (4.10) and (4.11) into Eq. (4.9) yields 

1 ^U, \)y & Jin turbulence 

k 

xexp\--Dw{\f\) 

i(?)) 

dfd? 

(4.10) 

(4.11) 

(4.12) 

Because W(F + §(r)) and W(f - §(r)) represent circular apertures they are inde- 

pendent of orientation in the source plane, thus, Eq. (4.12) can be written as 

1 ^U, U, ZJm turbulence 

(2^)2 Jillw{li>+\w\)w(\? - \m 
xexp  --A»(|r|)  drdf. 

The integral over f can be evaluated in closed form [9], 

jW(\r' + \(?)\)W(\r>-l(T)\)dr> = 

| ^cos-Hg) - |r|(D2 - Irl2)1^ |r| <D 

otherwise, 

(4.13) 

(4.14) 

4-4 



where D is the diameter of the aperture.   Substituting Eq.   (4.14) into Eq.   (4.13) 

yields 

1 ^Uj U) Z )in turbulence 

(—? rl 
2irz    J-oo 2 

D2cos-\^) \v\{D2 - I?!2)1/2 

x exp -^w(\v\) dr. (4.15) 

Changing to polar coordinates, the on-axis irradiance becomes, 

k fD 

/(0,0, z)in turbulence = (T^)
2

2TT jo   rK0(r) exp -\DW(T) dr, (4.16) 

where, 

Ko(r) = 2 D2cos-\^)-r{D2-r2fl2 (4.17) 

4.1.2   Evaluation of the on-axis irradiance in a vacuum.      The on-axis irra- 

diance in vacuum is given by Eq. (3.14) 

/in vacuum 7(0,0, z). 

exp 3*/s-2   1   J2^ 
2z (tf + tf) UA(ti,rii)dZidVi 

x//exp^«l + ^) ^1(6,^2)^2^2- (4.18) 

Substituting the field (Eq. (4.4)) and the aperture functions (Eq. (4.8)) and evalu- 

ating the integrals yields 

/(0,0,4nvacuum = (—)V(-)   . (4.19) 
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Using the definition of Strehl ratio we obtain 

S1l = 
/(0,0). in turbulence 

/(o,o) in vacuum 

—^-4/   rif0(r)exp  --Dw(r) dr. (4.20) 

Equation (4.20) is evaluated numerically in the latter sections of this chapter, as 

the wave structure function is varied according to a rule on how ßL is chosen for a 

particular power law a. 

4.2   Asymptotic Behavior of Fried's Resolution Metric for Non-Kolmogorov Turbu- 

lence 

In the previous section, the Strehl ratio was found to be 

STl = J^°)';— = -^      [D rK0(r) exp 
i(o, o)in vacuum     n2(%YJo Mr) dr. 

Equation (4.21) can be simplified. Making the change of variables 

(4.21) 

u = —      r = Du 

dr 
(ju = —   dr = Ddu, 

(4.22) 

and substituting Eq. (4.17) into Eq. (4.21) yields 

Sn = ^-t \{D2 cos-\u) - DuVD2 - D2u2) exp 
7T.D4 Jo   2 

\DW{DU) D2udu.  (4.23) 

Substituting Eq. (2.74) into Eq. (4.23) and simplifying yields 

32  r1! 
STl = — /   -(cos 1(u) - uVl -u2)exp 

IT Jo   2 

1     ID   > 

2C' U", 
a-2" 

udu. (4.24) 

In order to evaluate Eq. (4.24) we need to choose an appropriate constant c\. This 

will be done in the same manner as Fried [8]. Fried chose the constant c\ based on 
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the asymptotic behavior of a performance metric similiar to the Strehl ratio.   He 

called this metric the resolution 11. The resolution 11 is defined as 

/•oo 

1Z = 2w       u)H(u)du, 
Jo 

(4.25) 

where H(OJ) is the long exposure optical transfer function (OTF) of an incoherent 

imaging system in the presence of turbulence. Fried examined the ratio TZ/TZmax, 

where Tlmax is defined as the resolution of an imaging system in turbulence with an 

infinite aperture diameter 

Timax = lim K. (4.26) 
D—»oo 

The ratio of ft/Umax yields an expression similar to Strehl ratio in Eq. (4.24). 

K/K™* = —rf  2^COS ^-«Vl-u^exp   ~2Ci( 
1     (D  \5/3' 
-^\70

U) udu,     (4.27) 

where r0 is the atmospheric coherence diameter for Kolmogorov turbulence (See Eq. 

(2.72)) [8]. Thus, Fried's resolution metric 1l/Tlmax for an arbitrary power law can 

be found by multiplying Eq. (4.24) by (D/p0)2 

ll/Kmax = sn{D/Po) 
rl 

^/o±(cos-V) - uvT^)exp \-\cx (fu)a-2 udu. (4.28) 

To find the constant ci, make the change of variables 

x 

dx 

Du 
Po 

£>dw 

u D 

du = ^ 
Po O 

Thus, Eq. (4.28) becomes 
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I\.J l\"max — 

32  rfol 

IT Jo     2 

x exp 

cos 
-1 fPoX 

D D 

PoX 

D 

-C\X 
a-2 xdx. (4.29) 

Let     the     aperture     diameter     increase     until     D oo, thus 

| (cos-^pox/D) - (p0x/D)yJl - (pox/D)2) -> TT/4 and Eq. (4.28) takes the form 

/•oo 

lim {n/TZmax} = 8 /    exp 
D-*oo JO 

-2ax a-2 xdx. (4.30) 

By making another change of variables 

Cl    a-2 v = —x 
2 

X 

dv = c^a-2Ka-3dx   dx = ^ (^v^-'dv, 

(4.31) 

Eq. (4.30) reduces to 

Urn ffiR^} = —- [-)       I   exp[-v]v—^dv. (4.32) 
D-»oo a — 2 Vci, 

The integral in Eq. (4.32) can be recognized as V[2/a - 2], thus Eq. (4.32) is 

8     /2\^2 
lim {n/nmax} = —- -1    r 

D->ool a — 2 Vci a-2 
(4.33) 

Since lim^oo^/ft™^} = Tlmax/'Jlmax = 1 solving for cx yields 

ci = 2 
a-2 a-2 

(4.34) 
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If we let a = 11/3, cx reduces to the constant in Fried's structure function 

6.88. (4.35) ,-2(?r-   ' 

To show the behavior of an imaging system when the aperture size is much smaller 

than p0 let D/p0 -> 0, the exponential term in Eq. (4.28) goes to 1 and 

n/TZmax = ^- /  ±(cos-V) - uvT^tidu. (4.36) 
■irpz  Jo  2 

Equation (4.36) reduces to 

**--?g)'(i-a-©'- 

Figure (4.1) shows Tl/TZmax as a function of D/p0 for various power laws. 

Notice the only effect the power law has on Tl/1Zmax is to round off the knee of the 

curve. This is another result of the definition of p0. Remember p0 varies greatly with 

the power law for a constant integrated turbulence strength. 

4.3    Comparing Strehl Ratios in Arbitrary Power Law Turbulence Spectra when 

DIp0 is Constant 

Figure (4.2) is a plot of the Strehl ratio as a function of the power law a for 

various values of D/p0. The Strehl ratio is computed using Eq. (4.24). Notice that 

the Strehl ratio does not seem to change appreciably with power law. Remember 

that for a fixed integrated turbulence strength ßL, p0 varies greatly with the power 

law a (See Fig. (2.2)). Thus, in Figure (4.2) D is varying just as greatly with the 

power law to maintain a constant ratio of D/p0. It is clear that another point of 

view must be taken to understand how the Strehl ratio varies with power law. 
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R 
Rn 

0.01 

0.001 

0.0001 

Figure 4.1   fc/llmax as a function of D/p0 for various power laws (See Eq. (4.28)). 

44    Comparing Strehl Ratios in Arbitrary Power Law Turbulence Spectra when ßL 

is Constant 

The next basis on which to compare Strehl ratios as the power law a varies is to 

leave ßL constant. This basis is appropriate for the ARGUS anemometer case where 

ß may be estimated correctly, but the uncertainty in the actual value of the power 

law is large due to the unknown anemometer probe frequency response. Figure (4.3) 

is a plot of the Strehl ratio as a function of the power law a for a 1 m diameter, 

circular source aperture. The wavelength is 1.3 microns. Notice Fig. (4.3) follows 

the same general trends as p0 in Fig. (2.2). We would expect this behavior since ßL 

is fixed in both cases. The Strehl ratio approaches 1 when a = 3, because as was 

shown in Chapter 2, the turbulence vanishes. The Strehl ratio approaches 0 when 

a = 4 because the abberations induced on the optical wave are pure random tilts in 
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a 

D/po=0.05 
D/po = 0.5 
D/po = 1.0 
D/p„ = 5.0 

Figure 4.2   The Strehl ratio as a function of a (See Eq. (4.24). Djp0 is fixed at the 
value specified in the legend. 

the source plane. These random tilts cause a greatly increased long exposure spot 

size due to beam wander. Note: this interpretation is only valid if inner and outer 

scale effects are neglected. 

4.5    Comparing Strehl Ratios in Arbitrary Power Law Turbulence Spectra when ßL 

is such that a(a.)ßLK~a is Constant 

In this comparison ßL is chosen such that the power spectrum for each arbitrary 

power law at a specific wavenumber K0 is constant. ßL is found using the following 

relation, 

a(a)ßLK~0
a - a(U/S)C2

nLK-n'3 = 0. (4.38) 
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Figure 4.3 The Strehl ratio as a function of a. ßL is constant and fixed at the 
value specified in the legend. The source aperture diameter D is 1.0 m. 
The wavelength is 1.3 microns. 

Solving Eq. (4.38) for ßL yields 

ßL = "^CILKT^. (4.39) 

This basis is also appropriate for the ARGUS data, where the frequency response of 

the anemometer probes may not corrupt the measurement of ß in certain wavenum- 

ber ranges. Figure (4.4) is a plot of the Strehl ratio as a function of the power law a 

for aim diameter, circular source aperture. The wavenumber at which the spectra 

are equal is K0 = lm_1. The wavelength is 1.3 microns. One can see from Figure 

(4.4) that the constraint forces ßL to be large when a = 3, thus p0 and the Strehl 

ratio are small. As the power law increases, the constraint forces ßL to become 

smaller until the effect of pure tilt dominates when a —» 4. 
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Figure 4.4 The Strehl ratio as a function of a. ßL is chosen such that Eq. (4.39) 
is satisfied for the values of C%L specified in the legend. The source 
aperture diameter D is 1.0 m. The wavelength is 1.3 microns. The 
wavenumber at which the spectra are equal is K0 — lm_1. 

4.6    Comparing Strehl Ratios in Arbitrary Power Law Turbulence Spectra when ßL 

is such that the Power in a Finite Bandwidth is Constant 

In this comparison ßL is chosen such that the power in a finite bandwidth is 

constant. ßL is found using the following relation, 

r dKa(a)ßLx,-a - r dKa(ll/3)CtL«-n/3 = 0. (4.40) 

The optimal way to accomplish this comparison would be to compute the total 

power in the spectrum instead of the power in a finite bandwidth. However, this is 

impossible for power law turbulence spectra since the total power is infinite. Figure 

(4.5) is a plot of Strehl ratio vs.   power law for a 1 m diameter, circular source 
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Figure 4.5 The Strehl ratio as a funtion of a. ßL is chosen such that Eq. (4.40) 
is satisfied for the values of C\L specified in the legend. The source 
aperture diameter D is 1.0 m. The wavelength is 1.3 microns. 

aperture. The bandwidth in which the spectral power is constrained to be equal is 

.001 < K < 100. One can see a similar effect on ßL as in the previous section. In 

Figure (4.5) the constraint forces ßL to be large when a — 3, thus p0 and Strehl ratio 

are small. As the power law increases, the constraint forces ßL to become smaller 

until the effect of pure tilt again dominates when a —»■ 4. 

4.7    Comparing Strehl Ratios in Arbitrary Power Law Turbulence Spectra when ßL 

is such that the Piston-Removed Wave Variance is Constant 

The last basis used to compare the Strehl ratios as a varies, is to choose ßL 

such that the turbulence power spectra produce equal piston-removed wave variance. 
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The wave variance is denned as 

°l = 4 + a% (4.41) 

where a2
x is the log amplitude variance and <j\ is the phase variance. Due to the 

infinite power in a general power law spectrum, the phase variance is infinite. Thus, 

Eq. (4.41) is infinite. However, if the piston component of the abberations to 

the optical wave is excluded, the phase variance is finite and the wave variance is 

calculable via Mellin transform techniques. Thus we are interested in the quantity 

~2       _  Jl        ,    Jl (4.42) 

where — p indicates the removal of the piston component. 

4.7.1 Derivation of the piston-removed wave variance. The spherical wave 

correlation functions for the scintillation and phase are rewritten from Eqs. (2.59 

and 2.60): 

^/L^rdKÄJo(^w **(?) = *># I** I 
K

2
Z(L - z) 

2KL 
*n(«,z) (4.43) 

and 

pL re 
T    iKPz'\ 2 

OLKKJO I —— I COS 
K

2
Z(L — z) 

2KL 
*B(«,2). (4.44) 

Since Bxj(0) = ax<j> and cos2(a;) + sin2(a;) = 1 the wave variance is 

rL /"OO 

a2 = 4-7r2fc2       dz        dKK$n(K,z). 
Jo      Jo 

(4.45) 

Equation (4.45) is valid for both plane and spherical waves. Following the approach 

of Sasiela [23] and Noll [20], we can remove the effects of any Zernike mode by 
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introducing a filter function which removes the effects of that mode. The plane wave 

piston removed filter function is 

F(K,Z) = 1-4 
J^KD/2) 

KD/2 
(4.46) 

Multiplying the integrand of Eq. (4.46) by the filter function gives 

al_p=47T2k2J    dzj     dKK$n(«,*)jl-4 
JI{KD/2) 

KD/2 
(4.47) 

Substituting the turbulence power spectrum (Eq. (2.56)) into Eq. (4.47) yields 

°l-p = 47r2fc2a(a) f dzß{z) J™ dKK1"" 11 - 4 
JxiKD/2) 

KD/2 
(4.48) 

Making the change of variables 

KD
    i        <1KD 

D   ' 

(4.49) 

yields 

al_p = A,2k2a{a) JQ  dzß(z) f ^(f)1"« [l - Ax^J^x) (4.50) 

If we let s = 2 - a, and multiply by -1, Eq. (4.50) becomes 

ol_  =-4*2k2a{a)2sD-s      dzß{z)       xs~l [AX~
2

 J^X)
2
 -1] . (4.51) 

J 0 « 0 

Equation (4.51) is now in the form of a Mellin transform. From the tables in Sasiela 

[22], 

M[xah(x)\   -+   H(s + a) 
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M[J2(x)} 

M[l] 

s/2 + v       1/2-3/2 

u + l-s/2     l-s/2 

li^o{i-i}   -e<M(s)<e. 

■2v < M(s) < 1 

(4.52) 

Applying the transforms in Eq. (4.52) to Eq. (4.51) yields 

al    = -A>K2k2a{a)2sD-a^= I  dzß(z) 
w~v V7T JO 

x lime_,.o i 
^2 + 1   1/2-^=2 

0 _ £=A        1  _ s~2 
z 2 ± 2 

$+e        a—e -    -e < »(s) < e.   (4.53) 

In the limit as e —► 0 the poles at s = 0 and s = — e cancel and the path of the 

integration in the complex plane moves to the left one pole. Thus, Eq. (4.53) 

becomes 

oj+ln-s 

w-p 
K    '        y/TT 

s jtzS 
2 2 

6—s 4—s 
2 2 

-2 < R(s) < 0. (4.54) 

Since s = 2 — a the piston removed wave variance is 

23-aDa-2 
= -47r2fc2a(a) /   ß(z)dz \ ^r 

Jo v71" 

2-a 1-« 
2 2 

4+a 2+a 
2 2 

-   2 < a < 4. (4.55) 

If ß(z) is constant over the path L, the piston removed wave variance is 

-25-aTrV2k2a{a)ßLF 
2-a 

2 
1-a 

2 

4+<*     2+a 
2 2 

£>a-2   2<a<4. (4.56) 

4.7.2 Comparing Strehl ratios in arbitrary power law turbulence spectra when 

ßL is such that the piston removed wave variance is constant. In this comparison 

ßL is chosen such that the piston removed wave variance is constant. ßL is found 
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using the following relation, 

al_(a(a),ß, L, a) - a2(a(ll/3), C2
n, L, 11/3) = 0. (4.57) 

Solving Eq. (4.57) for ßL yields 

ßL = 2-(ll/3+a) Q(ll/3) ^2^^11/3-ap 
a(a)      n 

5 
6 

8 
6 

4+a      2+a 
2           2 

33 
6 

16 
6 

2-a      1-a 
2           2     . 

2< a<4 (4.58) 

Figure (4.6) is a plot of the Strehl ratio as a function of the power law a for a 1 m 

diameter, circular source aperture. The wavelength is 1.3 microns. One can see in 

SR 
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- • ß(l 1/3)1-CJi-40xlff-" 

Figure 4.6 The Strehl ratio as a function of the power law. ßL is chosen such that 
Eq. (4.58) is satisfied for the values of C^L specified in the legend. The 
source aperture diameter D is 1.0 m. The wavelength is 1.3 microns. 
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Fig. (4.58) that the constraint on ßL now behaves differently depending the strength 

of the turbulence. If the turbulence is weak, changing the power law has little effect 

under this constraint. If the turbulence is strong ßL can be quite small at a = 3, 

thus Strehl ratio can approach 1. 
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V.   Contributions of the Log Amplitude and Phase Structure 

Functions 

Adaptive optical systems systems can only compensate for phase fluctuations 

in an optical beam. Therefore, if a distorted beam contains more phase fluctuations 

and less log amplitude fluctuations, an adaptive optic compensation system can be 

expected to perform a high percentage of correction. 

In the previous chapters we were concerned with the wave structure function 

Dw(p). It was shown in Chapter 2 that the wave structure function is actually the 

sum of the log amplitude and phase structure functions. The goal of this chapter is 

to determine the conditions under which either phase or amplitude perturbations to 

the optical beam dominate, as the power law a is varied from 3 < a < 4. This will 

be done by plotting the relative contributions of the log amplitude Dx(p) and phase 

D^p) structure functions to the wave structure function Dw(p). 

Rewriting Eqs. (2.61) and (2.62) gives 

Dw(p) = Dx(p) + D^p) (5.1) 

and 

Dx(p) = 2[BX(0) - Bx(p)} (5.2) 

and 

D+(p) = 2[B+(0) - B^p)}. (5.3) 

The log amplitude and phase correlation funtions are rewritten from Eqs. (2.59 and 

2.60) 

K
2
Z(L — z) /•L /"OO 

Bx(p) = 4TT
2
*!

2
 /   dz /    d« KJQ sin 

2kL *»(«>*) (5-4) 
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and 

/•L /-co 

B+(p) = 4ir2k2      dz       d« K^o 
KOZ \ 9 

' cos2 K
2
Z(L - z) 

2kL 
*»(K,Z), (5.5) 

where J0 is a Bessel function of the first kind, order 0, k is the optical wavenumber, p 

is the geometrical separation between points in the source plane, and L is the length 

of the optical path. By substituting Eqs. (5.4 and 5.5) into Eq. (5.2) we get 

Dx(p) = 8TT
2

AI
2
 /   dz /    dKK l-/o(^) BI2(^     ^W",*»,*)    (5.6) 

2fcz 

and 

I^(p) = 8ir2k2       dz       d« re l-'o(^) cos2f^—^)$n(K,a,z).   (5.7) 
2A;z 

The arbitrary power law turbulence spectrum from Eq. (2.56) is 

$n(«,a,z) =a(a)ß(z)K a. (5.8) 

Substituting Eq. (5.8) into Eqs. (5.6 and 5.7) yields 

DM = 
8ir2k2a(a)l   dzß(z) j    d« re1"" i-Jb(^) sin 

2 / K2Z(L-Z)' 

I       2kz 
(5.9) 

and 

^(p) = 

8ir2k2a{a) jL dzß{z) j°° dre Kl~a  1 - Jo(^) 
AC' 

COS 
'■z(L-zy 

2kz 
I.    (5.10) 
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To derive some general conclusions about the behavior of Eqs. (5.9) and (5.10) 

consider the change of variables 

-     dz' = ^ 
L L 

z = z'L   dz — dz'L, 

thus Eqs. (5.9) and (5.10) become 

DM = 
8ir2k2a(a) J* dz'ß(z'L) J™ dn K1

^ [1 - J0{KPZ')] sin2 H^ Z)   j (5.11) 

and 

D+{p) = 

8ir2k2a(a) £ dz'ß(z'L) j™ d« K1
^ [1 - JO(KPZ')} cos2 (^^T^) ■ (5-12) 

One can normalize the wavelength and path length dependencies by defining the 

parameter Fresnel ratio (FR) which is the ratio of the separation of points in the 

source plane divided by the Fresnel number scaled by 4TT 

Substituting Eq. (5.13) into Eqs. (5.11) and (5.12) yields 

Dx(p) = 8TT2k2a(a) 

fQ dz'ß(z'L) jT d/c K
1
- [1 - MKPZ')] sin2 ^M^)j (5.14) 

and 
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D+ip) = 8ir2k2a(a) 

£ dz'ß(z'L) 1°° dn K
1
- [1 - MKPZ')\ COS

2
 ^M^l^j.        (5.15) 

The problem is now reduced to a double integration over the turbulence frequency 

variable K and the normalized path z'. Eqs. (5.14) and (5.15) contain a product of 

functions in K which yield an integrand that is highly oscillatory in the K, Z' plane 

and does not decay rapidly. This makes numerical integration of Eqs. (5.14) and 

(5.15) over both K and z' quite difficult. Luckily, both integrals can be evaluated 

over K in closed form using advanced Mellin transform techniques according to the 

following procedure: 

1. Use the Mellin convolution theorem to transform the real integral into a Mellin- 

Barnes contour integral in complex plane. Consider the integral 

h{x) = /    y-1h0(y)h1(x/y)dy. (5.16) 
JO 

Take the Mellin transform of h(x) 

/•OO     /-oo 

M(h(x)) = J    jo   y-1h0(y)h1(x/y)xs-1dydx. (5.17) 

By making the change of variables w = x/y, thus x = wy and da; = ydw and 

interchanging the order of integration Eq. (5.17) becomes 

/■OO /"CO 

M(h(x)) = /    y-1h0(y)dy /   {wyY^h^ydw. (5.18) 

Simplifying Eq. (5.18) yields an integral of the Mellin transforms of h0 and hi 

/•OO /"OO 

M(h(x)) = I    ys'lh0{y)dy /   {wy-lhi{w)dw = H0(s)Hi(s).       (5.19) 
»70 «U 
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The inverse Mellin transform is now the contour integral 

h{x) = ^- [ H0(s)H1(s)x-sds, (5.20) 

where H0(s) and Hi(s) are the individual Mellin transforms of h0(y) and 

hi(x/y). Since the Mellin transforms of h0(y) and hi(x/y) in Eq. (5.20) can be 

expressed as ratios of gamma functions, the original integral h(x) (Eq. 5.16) 

can be expressed as a Mellin-Barnes integral of the following form: 

,, ,_J_/\    _,  Uf=1Y[ai + ais]Ilf=ir[bj-ßjs} 
h{x) ~ 27TJIasx  uc

k=1v[ck + 7fca]ns=1r[dm + sms] •      {-  } 

2. Close the path of the contour integral at infinity, subject to the conditions 

specified in [22] and perform the contour integration using Cauchy's residue 

theorem. Application of the residue theorem yields an infinite sum of the 

residues at the poles of the gamma functions in Eq. (5.21) 

h(x) = Y/^~3nRes(sn). (5.22) 
n 

The poles occur only when 5 = -(n + a^/on or s = —{n + bj)/ßj. 

3. Use the definition of a generalized hypergeometric function to convert the in- 

finite sum found in Step 2 into a sum of generalized hypergeometric functions. 

The definition of a generalized hypergeometric function is given by [22] 

SMl') = ±vW£Mi£- (5'23) 

where (a) = au a2,..., ap, (b) = bx,b2,...,bq and (a)k is the Pochhammer 

symbol defined as 
. ,       r[a + fc] ,_ 0., 
<">' =   rn  ' (5'24) 
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Although the procedure outlined above seems quite difficult to the uninitiated, 

the method reduces to a series of straightforward and logical, but somewhat tedious 

steps. The details are shown in Sasiela [22]. 

Fortunately in this case there is a short cut, the Kintegration in Eqs. (5.14) and 

(5.15) can be accomplished using Mathematica's [29] symbolic integration routines. 

Unfortunately Mathematica does not always produce symbolic output in the most 

convienient form, either for physical interpretation or numerical condition. In the 

case of Eqs. (5.14 and 5.15) the Mathematica solution is sufficiently well behaved to 

allow numerical integration over z' for the ranges of the parameters of interest (FR 

and a). The results of the K space integrations performed using Mathematica are 

contained in unreduced form in Appendix A. 

Once the integration over K is performed, the sum of generalized hypergeomet- 

ric functions created in Step 3 can be numerically integrated over the normalized 

path to get the log amplitude and phase structure functions. 

Since we are concerned with the relative contributions of the log amplitude 

and phase structure functions to the wave structure function, we can examine the 

ratios Dx(p)/Dw(p) and Dj,(p)/Dw(p) which are given by 

DM _ H MßVL) /o°° d/c K
1
-« [1 ~ JoJKpz1)] sin2 (^f^) 

Dw(p) Jo1 dz'ß(z'L) /0°° d« K1
-« [1 - JQ(Kpz')] 

and 

pM _ Jo1 dz'ß(z'L) J0°° d/c /c1-« [1 - Jo(Kpz')] cos2 (^f^1) 

DM ~ /o dz'ß(z'L) Jo°° d« «i- [1 - J0(KPZ')] 

(5.25) 

(5.26) 

Close examination of the equations for Dx(p) and D^p) in Appendix A shows both 

contain a dependence on pa~2. The wave structure function, Eq. (2.70) derived 

in Chapter 2, also contains a pa~2 dependence. Therefore ratios Dx(p)/Dw(p) and 

JD^(p)/Dw(p) do not depend on p directly.   However, the ratios Dx(p)/Dw(p) and 
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D^,(p)/Dw(p) do depend on p indirectly through the definition of Fresnel ratio in Eq. 

(5.13). 

Figure (5.1) contains a plot of the ratios Dx(p) and D^{p) as a function of 

the power law a for various Fresnel ratio's FR. The upper family of curves are 

the phase contributions D^p) to the wave structure function Dw(p) and the lower 

family of curves are the log amplitude contributions to the wave structure function 

Dw(p).  The sum of the log amplitude and phase contributions equals 1.  Two key 
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Figure 5.1 The relative contributions of the log amplitude and phase structure 
functions to the wave structure funtion as a function of the power law 
a. The Fresnel ratio FR is fixed at the value specified in the legend. 

observations can be made from this plot. Phase perturbations increase as Fresnel 

ratio increases. This is consistent with the definition of Fresnel ratio. For a fixed 

separation p in the source plane, the phase effects get large as the Fresnel number 

decreases. In other words phase effects increase when the optical path is short. The 
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second and most important observation is that phase effects dominate as the power 

law increases to a = 4. This is consistent with the work of Heidbreder [12] who 

showed that a wave structure function which had a p2 dependence corresponded to 

a pure random tilt in the aperture of an incoherent imaging system. 
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VI.   Results, Conclusions, and Recommendations 

This chapter summarizes the major results of this research. Following the 

summary, the implications for adaptive optical beamforming systems are discussed 

and recommendations for future research are made. 

6.1    Summmary of Results 

In Chapter 2, Section 2.2, the fundamental relationship between the index 

structure function and the index power spectrum were examined. Assuming the 

turbulence is isotropic and the index structure function obeys an arbitrary power 

law 

Dn(p)=ß(z)pa-3, (6.1) 

the corresponding index power spectrum is 

*B(K) = a{a)ß(z)K-a, (6.2) 

where the function a(a) maintains consistency between the index structure function 

and the index power spectrum and is given by 

a(a) = 2a~6(a2 - 5a + 6)^" 
r 3/2 

'a-2 
2 

r 5—a 
2   j 

3 < a < 5. (6.3) 

Inner and outer scale effects were neglected. 

In Sections 2.3 and 2.4 the wave structure function was derived using the log 

amplitude and phase correlation functions which can be derived from the method of 

small perturbations. The wave structure function is given by 

a-2 

Dw{p) = ci (6.4) 
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where c\ is given by 

ci 
a-2 a-2 

a-2 
2 

(6.5) 

and a new generalized definition for the coherence diameter is 

Po = 
ci(« - i)r [f 

-(2)4-a7r2Fa(a)L2-«r [^ /^(z)z--Mz 
3 < a < 4.       (6.6) 

The important conclusions to draw from Sections 2.3 and 2.4 are, if inner and 

outer scale effects are neglected, only power laws from 3 < a < 4 are allowed to 

exist. The physical interpretations for the mathematical results are: 

1. When the power law a —>■ 3, the index structure function, Eq. (6.1), has no 

dependence on p, therefore no turbulence exists. 

2. When the power law a —> 4, the wave structure function, Eq. (6.4), has a p2 

dependence and the resulting abberation to the optical wave is a random tilt 

in the source aperture which causes the beam to wander, thereby dramatically 

increasing the long exposure spot size. 

In Section 2.5 the variance of the log amplitude fluctuations was found to be 

o 4Ci7T 
3-a 

2 

a V Po , 

a-2 2 —a a 
4 2 

a 2-a 
4 2 

(6.7) 

where FN is the Fresnel number defined as 

FN = V\L. (6.8) 

The log amplitude variance is a maximum as a —> 3. The value of the maximum log 

amplitude variance is determined by the ratio of the Fresnel number to the coherence 

diameter (FN/p0). The log amplitude variance decreases greatly as a —> 4 and phase 

effects dominate. 
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In Chapter 3, the mutual coherence function of an arbitrary wave propagating 

through turbulence which obeys an arbitrary power spectrum was derived. The 

result is a 4-dimensional integral of the form 

MCF(xi,y1,x2,y2) = 

(TJTT)
2
^ //// H(xi>yuZum, x2,2/2,6, %, z) 

'2TTZ' 

\Jk, x exp   J—{{£ + 77?) - (el + 4) + 2^26 - 2an£i + 2y2r]2 - 2y1rfl) 

XUA(Cu Vl)U*A^2,V2)^ld7lld^2d7]2, (6.9) 

where H(xi,yi, £1, 771, z2, y2,£2, V2, z) is the second moment of the Greens function for 

propagation of a spherical wave in a turbulent medium. H(xt, yu £1, r]U x2, y2, £2, r)2, z) 

is shown in [17] to be 

H(xu yu 6, Vu X2, V2,6, V2, z) - exp ~zDM (6.10) 

From the general form of Eq. (6.9) many parameters of interest can be calculated, 

including intensity profiles and Strehl ratios for arbitrary apertures. 

The Strehl ratio of a constant amplitude beam is derived in Chapter 4. The 

MCF derived in Chapter 3 was reduced to a single numerical integral of the form 

STZ = — /   -(cos_1(ii) - uy/l - u2) exp 
7T  JO    2 

1       /Ö    > 

'2Cl\PoUj 

i-2' 

udu. (6.11) 

Several comparisons of the Strehl ratio as a function of the power law a were made 

under various constraints. It was necessary to use a variety of constraints to compare 

the Strehl ratio at power law ax to Strehl ratio at another power law a2 because 

changing a changes the total power in the turbulence spectrum, therefore biasing 

the results one way or another. In general, the resulting trends of the Strehl ratio 

depend on the constraint placed on the integrated turbulence strength ßL as the 
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power law a was varied. The consistent trend noticed in the behavior of the Strehl 

ratio was that the Strehl ratio approached zero as a —> 4, this behavior is consistent 

with the physical model of a pure tilt aberration in the source aperture. 

In Section 4.2 the asymptotic behavior of Fried's ft/7lm(M resolution metric 

was examined for a general power law. The design of this metric is such that when 

the power law a is varied from 3 < a < 4, it is possible to define the generalized 

coherence diameter p0 and the constant ci, such that the interpretation of p0 is the 

same as Fried's coherence diameter for Kolmogorov turbulence, r0. 

Finally, in Chapter 5 the relative contributions of the log amplitude and phase 

structure functions to the wave structure functions were calculated. This analysis 

showed conclusively that 

1. As the power law a —► 3 the relative contributions of the log amplitude and 

phase fluctuations are soley controlled by the Fresnel ratio of the system. 

2. As the power law a -*• 4 phase effects dominate the wave structure function 

regardless of Fresnel ratio. 

It is postulated from the results of Chapters 4 and 5 that if the perturbations of the 

wavefront in the source plane is decomposed into a series of Zernike polynomials, 

the energy in the series shifts toward the low order modes when the power law a 

increases towards 4. 

6.2   Implications for Adaptive Optical Beamforming Systems 

An adaptive optical beamforming system corrects for atmospheric effects by 

predistorting the phase of the wavefront to be transmitted with the conjugate of 

the phase perturbations induced in the atmosphere. Thus, atmospheric conditions 

which yield only phase perturbations are more conducive to the operation of adap- 

tive optical systems. This means turbulence power spectra which have power laws 

approaching 4 are more conducive to the operation of adaptive optical systems. For 
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equal turbulence strength, the ABL system can expect better performance in turbu- 

lence whose power law tends toward a = 4. The converse is also true, regardless of 

the Fresnel ratio of the system, the ABL system can expect worse performance as 

a —► 3. 

Additionally, if the limit on the method of small perturbations (cr£ < 0.3-0.5) 

is assumed to hold regardless of the power law, the method of small perturbations 

can be used at longer path lengths and greater turbulence strengths than previously 

determined if a —► 4. 

6.3    Recommendations for Future Research 

In this section several extensions of this research are proposed. 

1. Determine the frequency response of the ARGUS anemometer probes. This is 

the highest priority, because without an accurate calibration of the frequency 

response the ARGUS anemometer data is inconclusive. With the current data 

it is impossible to separate the effects of inner and outer scales of turbulence 

from the power law of the inertial subrange and from the probe response. Once 

the calibration has been accomplished, these effects are separable and one 

could determine the directions of further investigations into non-Kolmogorov 

propagation theory. 

2. Perform a modal decomposition of the propagating wavefront using Zernike 

polynomials. By estimating the average energy associated with each polyno- 

mial in the series, the postulate in Section 6.2 can be proved or disproved. 

3. The analysis presented in this thesis neglected the effects of an inner and outer 

scale. A generalized power spectrum incorporating the effects of an inner and 

outer scale can be defined as 

*B(«,a,z) = a'(a)ß(z)(K2 + ^)-«/2exp (6.12) 

6-5 



where Km and K0 are the inner and outer scales, respectively.  Note: a'(a) in 

Eq. (6.12) is not the a(a) defined in this thesis. 
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Appendix A.   Integration of the Log Amplitude and Phase Structure 

Functions 

In Chapter 5, Mathematica was used to evaluate the following integrals. The 

integrals over the turbulence wavenumber K were evaluated in closed form. The 

integrals over the path z' were evaluated numerically. Specifically, from Eqs. (5.14 

and 5.15) we have 

Dx(p) = 8Tr2k2a(a) 

-/(«pMl-zT x £ dz'ß(z'L) J~ d« K1- [1 - Mnpz')} sin2 \}KP)yR    
Z)\     (A.l) 

and 

D+{p) = 8ir2k2a(a) 

x £ dz'ß(z'L) J™ dK K1-« [1 - J0(KPZ')} cos2 ({Kp)2Zpl~Z>)) ■    (A.2) 

Integrating Eq. (A.l) symbolically over K gives 

Dx(p) = 8ir2k2a(a) f1 dz'ß(z'L) (A.3) 
J 0 

^  i FR,    z    I 

^J,fi2ir(p'«a)Taic(^)pFq({l-f,f-f},{l,f,|},M\(1_0/) 

128^* 2f (-1+f )PH1-Z? f±$* r(-i+f) 

a x a -(FR2 Z2) 

jT«?«''(^)'  csc(^)pFq({l-f,|-f},{l,f,f}, £~_J) 

5i25|?f2f(-i+f)PMi-)2^fl4r(-i+f) 

3|f^(p^2)f^§"f Bec(^) 

256 ^4 2f (f-f ) (l-f ) (-| + f ) FB? p2 ,4 r(-2+f) 

+ 3j^(p2*2)fg#"~f sect^f) 
64 5kT2f(|-f)(l-f)(-| + f)^2p2,3r(-2+f) 

A-l 



128^*2f(|-f)(l-f)(-| + f)^V2^r(-2+f) 

128 £.* 2* (|-f ) (l-f) (-§ + ?) FR* ? *> r(-2+f) 

+ l1"^2'2)^'"'8^' 
256^^21 (|-f)(l-f)(-| + f)^2p^2r(-2+f) 

if ^(y*2)^ r(l-f)sec(^) 

22*(-£+?)pa*2r(i+f)r(f) 

42T(_|+|)p2,2r(I+f)r(f) 

„ a ,    , -»9L -(FR
2
 Z

2
) 

128 ^* 2f (|-f ) (l-f ) (-| + f ) Fi?2 p2 ,* r(-2+f) 
a ,    , 3     a -(FR

2
 z2) 

lT"(^)Tff TpJ,,({|-f.i-fM^.^i}.ife^)gec^)  , 
256^»2f(|-f)(l-f)(-f + f)FiJ2p2^r(-2+f) 

Q , a ,    , 3-0. -fFR2 z2) 

64 ^* 2* (|-f ) (l-f ) (-|+f ) ™V *3 r(-2+f) 

if^(p2^)f^l"fp^({|-f,l-fK{|;|4},^ff)sec(^) 

128^7 2f (I-f)(l-f)(_| + f)fß2p2
23r(-2+f) 
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256^* 2* (*-*) (l-f) (-§ + ?) *«Vzar(-2+f) 

where pFq() is the generalized hypergeometric function.      Integrating Eq.   (A.2) 

symbolically over K gives 

D^p) = 8Tr2k2a{a) f dz'ß(z'L) (A.4) 

2(2-a)(l-f)(l-z)2r(-l+f)     +   (2-a)(l-f)(l-*)2r(-l+f) 
.1x2 
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