
CVJ

T

Analytic Performance Models Of Parallel Battlefield Simulation

t'siiiü; Conservative Processor Synchronization

TIIKSIS

James li. Hiller
Captain. I'SAF

AFIT/aCS/KNC/fHD-O.x

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-08

Analytic Performance Models Of Parallel Battlefield Simulation

Using Conservative Processor Synchronization

THESIS
James B. Hiller
Captain, USAF

AFIT/GCS/ENG/94D-08

B7X0 QUZXTv v- LC&.-Z0-2ED 2

Approved for public release; distribution unlimited

AFIT/GCS/ENG/94D-08

Analytic Performance Models Of Parallel Battlefield Simulation

Using Conservative Processor Synchronization

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

James B. Hiller, B.S.C.S

Captain, USAF

December 1994

Aooasalon Vor

ins SRA&I w
DUG TAB D
Unannounced □
JmStjLf ICEtiOB _

By
Dist-rifeutloa/

Availability C&ä&B

Met

J'1

Avail astd/or
Special

■

^1

Approved for public release; distribution unlimited

Acknowledgements

My first gratitude goes to Dr Hartrum. His patience, pragmatism, and fairness

guided me through this thesis and hopefully rubbed off on me as I untangled the webs of

confusion. My thesis committee, Maj Luginbuhl and Dr Santos, were most supportive of

the ideas I conjured up in this work. And, while Dr Lamont wasn't on my committee, his

guidance through CSCE 786 and Gödel, Escher, and Bach fostered ideas and awareness

that undoubtedly influenced my thesis work and everything else I'll do.

I owe a sincere thanks to the latest BATTLESIM developers, Ken Bergman and

Wally Trachsel. Their hard work gave me a parallel battlefield simulation that worked

extremely well. They'll probably never see this, but I want the record to show that there

has been at least one GCS thesis at AFIT that wasn't bogged down in code repair.

I'm also indebted to a number of people who graciously extended their patience and

friendship during the hundreds of nights at work. Around the clock and just about every

day, George Gates, Jay Graham, and Mike Gudaitis were always willing to listen and help

when they could. But most of all, I owe everything to my wife and daughter, Pam and

Shana. It was only with their quiet love and strength from 1300 miles away that I was able

to learn as much as I did. Their sacrifice for the last nineteen months was far greater than

mine. I hope I'm worthy of it. Thank you both for keeping Texas under control without

me.

James B. Hiller

11

Table of Contents

Page

Acknowledgements n

List of Figures 1V

List of Tables v

Abstract vi

I. Introduction 1

1.1 Background 1

1.1.1 Computer Simulation 1

1.1.2 Department of Defense (DoD) Applications of Simulation

Technology 2

1.1.3 Battlefield Simulation and Parallel Computation Tech-

nologies 3

1.1.4 Performance Modeling for Insight 4

1.2 Problem Statement 5

1.3 Research Objectives 5

1.4 Scope and Exclusions 6

1.4.1 Model Development and Experimentation 7

1.4.2 Other Excluded Areas 8

1.5 Desired End Results 9

1.6 Methodology 9

1.6.1 Literature Review 9

1.6.2 Model Development and Validation 9

1.7 Structure of Thesis 10

in

Page

II. Background and Literature Review 11

2.1 Simulation Architecture and Design 11

2.1.1 Control Flow 11

2.1.2 Major DES Software Components 12

2.1.3 Typical Architecture 13

2.1.4 Software Engineering Principles 14

2.2 Problem Decomposition 15

2.2.1 Proximity Detection 15

2.2.2 Decomposition in PDES 16

2.3 Processor Synchronization in PDES Execution 18

2.3.1 Logical Process (LP) Distributed Computation Model . 18

2.3.2 Synchronization Strategies 19

2.4 Anatomy of PDES 20

2.5 Performance Modeling and Analysis 20

2.5.1 Model Usage 21

2.5.2 Model Development Considerations 22

2.6 Software Engineering Principles Revisited 23

2.7 Summary 24

III. Design Study and Definition Framework 26

3.1 Overview 26

3.2 Simulation Design and Limitations 26

3.2.1 Simulation Architecture 26

3.2.2 BATTLESIM Application Layer and 00 Design 27

3.2.3 Design Limitations 32

3.3 Definition Framework 35

3.3.1 Notation and conventions 35

3.3.2 Definition Framework 37

3.4 Summary 40

IV

Page

IV. Performance Model Derivation 41

4.1 Performance Model Definitions and Descriptions 42

4.1.1 Cardinality and Arithmetic Definitions 42

4.1.2 Reference Conventions 42

4.1.3 Abstract Data Types and Function Definitions 43

4.1.4 Operation Definitions 44

4.2 Sequential Simulation 45

4.2.1 Canonical Sequential Simulation Algorithm 45

4.2.2 Sequential Performance Model 45

4.3 Parallel Simulation 54

4.3.1 Canonical Parallel Simulation Algorithm 54

4.3.2 Input Protocol Model 58

4.3.3 Output Protocol Model 67

4.3.4 Integrated Parallel Performance Model 70

4.4 Summary 70

V. Model Analysis and Demonstration 72

5.1 Performance Models and Reduction 72

5.1.1 Assumption Set 1 76

5.1.2 Assumption Set 2 78

5.1.3 Parallel Overhead Model Reduction 81

5.1.4 Algorithm and Performance Model Review 83

5.2 Measurements and Demonstration of Model Results 87

5.2.1 Basic Operation Timing 87

5.2.2 Simulation Experiments 92

5.3 Analysis 94

5.3.1 Parallel Performance Issues 94

5.3.2 General Performance Issues 105

5.4 Summary 108

v

Page

VI. Summary of Results and Recommendations 109

6.1 Summary of Results 109

6.2 Research Contribution 110

6.3 Recommendations for Further Study Ill

6.3.1 General Directions Ill

6.3.2 Specific Issues 112

6.4 Summary 114

Appendix A. Data Dictionary and Function Definitions 115

A.l Data Dictionary 115

A.1.1 Definitions and Descriptions 115

A.1.2 Structural Constraints 121

A. 1.3 Data Model Interpretation 121

A.2 Performance Model Definitions and Descriptions 122

A.2.1 Cardinality and Arithmetic Definitions 122

A.2.2 Reference Conventions 123

A.2.3 Abstract Data Types and Function Definitions 124

A.2.4 Operation Definitions 124

A.3 Summary 125

Appendix B. The General Task Allocation and Scheduling Problem 126

B.l Task Allocation and Scheduling Approaches 126

B.l.l Nearest-Neighbor (NN) and Recursive Clustering (RC) 127

B.l.2 Heavy Node First (HNF) and Weighted Length (WL) . 128

B.2 Summary 130

Appendix C. AFIT PDES Research 131

C.l AFIT PDES Testbed 131

C.2 Object-Oriented Parallel Simulation 133

C.3 Parallel Simulation Task Scheduling Research 134

VI

Page

Bibliography 136

Vita 141

Vll

List of Figures

Figure Page

1. General DES Architecture 13

2. Simulation Architecture with Components 21

3. BATTLESIM, TCHSIM, and SPECTRUM 28

4. Canonical Sequential Algorithm 46

5. Canonical Parallel Algorithm - Initial Step 55

6. Canonical Parallel Algorithm 56

7. Completely Independent Event Schedules 99

8. Dependent Event Schedules 99

Vlll

List of Tables

Table Page

1. BATTLESIM Operation Time Measurements 88

2. Collision Prediction Times 90

3. Individual Collision Execution Times (in msec) 91

4. NEQ Operation Measurements 92

5. Synchronization Algorithm Improvement Results 93

IX

AFIT/GCS/ENG/94D-08

Abstract

This study investigated the development and use of analytic models for performance

analysis of parallel discrete event battlefield simulation using conservative synchroniza-

tion. A simulation architecture with layered application, simulation, and host machine

services provided the model development basis. Simulation entities were modeled with

set-theoretic definitions. Deterministic performance models using these definitions were

developed for event prediction, scheduling, and execution in sequential battlefield simula-

tion. The sequential model was expanded to include relative bounds for overhead factors

introduced when the simulation is spatially decomposed for a parallel distributed mem-

ory machine. Comparison of sequential and parallel models instantiated for a simulation

with uniform workload showed a potential for unbounded processor blocking. A synchro-

nization algorithm modification to limit per-iteration blocking is shown theoretically to

decrease finishing time. Modification results were demonstrated on a hypercube archi-

tecture. Demonstration showed that a sequential simulation requiring 60 seconds to run

was limited to a best time of 30 seconds on four processors without algorithm modifica-

tion. The time was improved to 17 seconds using the modification. A number of basic

timing measurements also showed that event list operations on a sequential structure take

significantly longer than interactive event prediction algorithms using simulation entities

maintained in similar structures.

x

Analytic Performance Models Of Parallel Battlefield Simulation

Using Conservative Processor Synchronization

/. Introduction

Large-scale simulation requirements are often accompanied by a need for speed. Se-

quential simulations may be insufficient for modeling complex processes with large data

requirements or irregular periods of intense activity over a long time interval. Detailed

combat simulations involving campaign activities such as logistics operations, complex

air engagement patterns, electronic warfare operations, and ground attack present such

challenges. Parallel implementation provides an opportunity to capitalize on advanced

architectures.

The goal of this research is to model the performance of spatially decomposed parallel

discrete event battlefield simulation using conservative processor synchronization. Analytic

performance models reflecting the relationships between structural algorithm components

are developed as the primary vehicle for the investigation.

1.1 Background

1.1.1 Computer Simulation. Computer simulation allows flexible experimen-

tation with real-world entity and process models. Simulation is often useful when the

simulated system is too expensive, time-consuming, or deadly to observe directly. Sim-

ulation also permits abstraction of details present in the real system that may obscure

understanding of the system at a higher level. Used as a training aid, simulation provides

a mock-up of the real system that may not otherwise be effectively replicated without

undue expense or exposure to operational hazards. As a decision support tool, computer

simulation can reduce risks of failure. Simulations can also be used in system development

to assess design and implementation decisions before a real commitment is made.

Computer simulation benefits from the theoretical underpinnings of discrete mathe-

matics, computation theory, and areas of mathematics pertinent to the simulated system.

A simulation can be run in a manner consistent with prudent experimentation principles

to explore statistical hypotheses about the simulated system. The simulation itself can

be subjected to analysis and reasoning with an eye towards improving its performance or

representative quality.

1.1.2 Department of Defense (DoD) Applications of Simulation Technology. The

DoD exploits simulation technology in many application areas, including cockpit training

and development, force employment strategy, communication system modeling, Very Large

Scale Integrated (VLSI) circuit design, medical diagnosis and procedures, and airframe

development. Simulation and modeling has been identified by the DoD as one of twenty

technologies "critical to ensuring the long-term qualitative superiority of United States

weapon systems" (42:519). "Simulation and modeling offer an affordable alternative to

extensively testing hardware, to training with actual systems, and to developing new battle

tactics and force employment concepts" (42:519). Battlefield simulation is an example of

the last of these areas and is the application of interest for this research.

Simulation architecture design has become a pressing issue within DoD in recent

years. The need for multi-service, interoperable simulation and modeling capabilities has

given rise to the Joint Modeling and Simulation System (J-MASS) and related development

projects. The thrust of these efforts is to develop platform-independent simulation systems

for sequential and distributed environments, capable of supporting rapid model component

exchange.

Realization of this goal offers the potential of a single, joint simulation architecture

to provide flexible support while saving costs associated with software redesign. However,

it also requires modular designs that separate application and simulation implementation

details. A better understanding of the balance between application specifics and perfor-

mance expectations is needed to construct architectures that can be used to meet cost,

performance, and usability requirements.

1.1.3 Battlefield Simulation and Parallel Computation Technologies. Battlefield

simulation is an inherently intensive computational task. With current and projected DoD

fiscal restructuring and planned long-term reliance on simulation as a cost-saving strategy,

combat simulation size and complexity is likely to grow over time. Parallel computing

technologies hold the most promise for meeting future battlefield simulation performance

demands. "The most significant improvements in performance now come from widespread

exploitation of parallelism, and only secondarily from faster circuit technologies" (18:213).

Discrete event simulation (DES) is an event-driven simulation approach in which the

simulation changes state upon event execution. This technique differs from time-driven

methods in which time and simulation state are updated at uniform intervals, regardless

of whether the resulting state change is of interest to the observer. Though suitable for

modeling synchronous systems and processes, the performance of time-driven techniques

suffers in applications in which the time intervals between observable events vary widely.

DES is typically the best approach for combat and force employment simulation models

(18:221).

Parallel discrete event simulation (PDES) is normally viewed as the decomposition

of a single DES program into logical units that can be executed concurrently on distributed

processing architectures (18:214). Many of the difficult problems associated with parallel

algorithm design affect DES decomposition and concurrent execution: optimal resource

and task scheduling, data consistency, workload balance, processor synchronization, and

design tradeoffs against performance. Many challenges are related to the combinatoric

complexity of finding the best approach for a given problem.

Synchronous behavior in some parallel algorithms allows for somewhat more reliable

performance optimization techniques. As an asynchronous approach, PDES tends to be

a difficult parallel algorithm design problem. Moving object PDES, exemplified by bat-

tlefield simulation, further complicates matters with highly irregular structures and data

dependencies that vary unpredictably in space and time.

I.I.4 Performance Modeling for Insight. Performance modeling is a useful step

in understanding relationships between algorithm components and data dependencies that

affect performance. Performance models provide abstract algorithm representations as a

basis for formal reasoning about and exploration of the relationships between algorithm

components. When a simulation is the subject of study, analytic modeling techniques can

provide insight useful for improving the simulation and its ability to support operational

requirements.

The published research dealing with PDES design issues has often focused on mea-

sured performance or analytic study using queueing system and circuit models. These

approaches can provide very good results and when applied to PDES systems modeling

environments with similar behavior. However, many of the dynamic aspects in combat

models do not resemble those in other problem models. Treatment of combat simula-

tion in the literature has focused on empirical studies using application-specific simulation

environments (53) (18:218) (12).

1.2 Problem Statement

The goal of this research is to develop analytic performance models of sequential

and parallel discrete event battlefield simulation using spatial problem decomposition, a

layered simulation architecture, and conservative parallel synchronization. The models are

intended to support identification of factors that determine parallel performance.

1.3 Research Objectives

Sequential algorithm performance models provide a comparative foundation to de-

termine the effectiveness of decomposition strategies prior to design and implementation.

Sequential performance models can be expanded and manipulated to postulate data struc-

ture and organization impacts. Parallel performance models provide a means for evaluating

and improving data distribution and process synchronization methods. Along these lines,

several issues are analyzed for simulations exhibiting predictable behavior.

1. Decomposition granularity. Research activities to date have not identified heuris-

tic methods, break-even points, or cost-benefit tradeoffs for spatial decomposition in

moving object simulations (53). Methods for estimating decomposition costs are

proposed.

2. Conservative processor synchronization. The usefulness of conservative syn-

chronization protocols for parallel battlefield simulations has been challenged based

on the dynamic character of combat environments (36:515) (4:87). No formal analysis

has been offered to support such challenges. This effort includes an initial examina-

tion of a general conservative algorithm with deadlock prevention. The examination

is based on algorithm structure analysis guided by the performance models developed.

The underlying goal is to support efficient production of decomposition and syn-

chronization alternatives that offer predictable performance with minimum reliance on

application knowledge or simulation architecture.

1.4 Scope and Exclusions

The ability to achieve revolutionary results is determined by the existence of a sig-

nificant framework of validated theoretical work that can be analyzed and applied to the

current problem. The literature provides such a framework, both analytically and em-

pirically, for general parallel algorithms with regular structure and conservative processor

synchronization algorithms for certain types of simulations. However, many of the premises

behind the results reported do not hold for battlefield simulations using spatial decompo-

sition.

The intent of this effort is to lay a theoretical foundation upon which future work

can advance. Accordingly, certain considerations scope performance model development

and experimentation.

I.4.I Model Development and Experimentation. Performance models are based

on abstractions of battlefield simulation algorithms used at the Air Force Institute of

Technology (AFIT). The resulting models represent general battlefield simulation solutions

to the extent that simulation design approaches used at AFIT represent approaches used

elsewhere.

Previous research at AFIT has focused on design issues associated with paralleliza-

tion of sequential battlefield simulations. Performance model development in this work is

an initial effort to formally capture basic performance elements. Impacts introduced by

object-oriented (00) implementation, advanced application feature modeling, alternative

decomposition strategies, and different synchronization protocols are not addressed.

Probabilistic performance models are useful when random variables can be associated

with known probability distributions. Without such knowledge, performance models can

be derived but may be of little use in studying behavior. Since descriptions of dynamic

behavior for battlefield entities are not available, the models capture predictable, static

algorithm structure rather than dynamic application behavior.

No attempt is made to improve the representative or functional quality of the BAT-

TLESIM validation platform. Flaws discovered in BATTLESIM are resolved to the extent

necessary to complete demonstrative experiments and measurements. Battlefield behav-

ior implementation is comparable to that used in similar studies (for example, (12:719)

(29:143)).

The effects of significant performance parameters that are intrinsically dynamic for

general battlefield simulations are analyzed informally. Performance models capture these

parameters to some extent but do not address the complex effects of dynamic parameters

allowed to vary over their entire domain. This is a refinement left open for examination

should probability functions for battlefield entity behavior become available. Reduction

is used to demonstrate algorithm behavior of these parameters over constrained limits of

measurability.

The deadlock avoidance algorithm described by Chandy and Misra (7) is the basis

for synchronization protocol study. The algorithm is described in detail in Chapter IV.

Processor utilization on the validation system is limited to one process per physical

processor. Workload distribution among processors is dynamic based on simulation object

movement in the battlefield space as mapped to physical processors during compilation.

System measurement and result demonstration is conducted using the Intel iPSC/2.

The machine is a hypercube architecture, representative of current distributed memory

machines.

I.4.2 Other Excluded Areas.

I.4.2.I Operating System Interface. The system-level component of the

simulation architecture supporting BATTLESIM is the Simulation Protocol Evaluation

Testbed using Reusable Models (SPECTRUM) (34). SPECTRUM provides the sole in-

terface to operating system communication services for BATTLESIM. SPECTRUM also

implements the parallel processor synchronization protocol. The current implementation

of SPECTRUM is used generically for a variety of simulation tools (21).

I.4.2.2 PDES Input and Output. PDES interaction with mass storage and

other peripherals has been shown to degrade parallel implementation performance benefits

(6:80). No special support for parallel mass storage is used. Since BATTLESIM does not

use mass storage after initialization, performance models and demonstration do not extend

in that direction.

1.5 Desired End Results

The intended result is a set of performance models that can be used to study the

performance impact of design changes to battlefield PDES strategies using conservative

processor synchronization with deadlock prevention.

1.6 Methodology

1.6.1 Literature Review. The literature review surveyed recent work and results

pertaining to general parallel algorithms; PDES using conservative processor synchroniza-

tion; and analytic modeling techniques. Special emphasis areas included problem decom-

position methods, predictive performance modeling, and results for parallel battlefield

simulations.

1.6.2 Model Development and Validation. Performance model development was

based on a framework of set-theoretic simulation structure definitions. Canonical simu-

9

lation algorithms operating on data model entities and relationships were developed as a

starting point for analytic performance model derivation. Modeling assumptions and re-

duction results were demonstrated using battlefield simulations developed for a distributed

memory parallel machine.

1.7 Structure of Thesis

This chapter describes the motivation, objectives, and approach for this thesis. Chap-

ter II summarizes relevant parallel discrete event simulation literature. Chapter III de-

scribes the design of the simulation environment used as the basis for performance analysis

and modeling and delineates a basic set of data definitions used for performance model

construction. Chapter IV develops an expanded set of definitions used explicitly in perfor-

mance modeling, canonical sequential and parallel battlefield simulation algorithms, and

resulting performance models. Chapter V details performance model derivations, test de-

scriptions and data associated with measurement and demonstration, and result analysis

with respect to battlefield simulation algorithm design. Chapter VI concludes the thesis

with a summary of results and recommendations for further research.

10

77. Background and Literature Review

The problem addressed in this investigation involves concepts and issues spanning

several different research areas, including:

• Simulation architectures

• Problem decomposition and parallel algorithm design

• Processor synchronization

• Object-oriented software design

• Performance modeling

This chapter presents background and recent research results that frame this inves-

tigation. The survey includes journal and conference articles published over the last seven

years.

2.1 Simulation Architecture and Design

Designing an application to exploit parallelism requires an understanding of its in-

herent structure. Several basic aspects characterize most DES designs. Design choices

are predicated on intended simulation use and include consideration of control flow strat-

egy, software design, and overall resource requirements. This section reviews the general

DES architecture commonly used with respect to problems and issues in parallel algorithm

design.

2.1.1 Control Flow. An event-driven policy models asynchronous behavior in the

physical system. State updates occur in simulation time only as they occur in real time,

11

dispensing with computation at intervals between event occurrences in the physical system.

Time is used passively to order event execution and state update. In this capacity, time

ordering preserves causality relationships among physical system entities and processes.

The event-driven method is used to simulate environments in which time intervals

between observations of interest vary widely during the simulation (17:19). Battlefield

simulations fit into this category. Combat activity takes place at different intensities de-

pending on operational tempo. Intensive activity in combat engagements occurs in minutes,

while supply operations may run for months. Thus, discrete event simulation (DES) is the

natural subject for this investigation.

2.1.2 Major DES Software Components. Typical DES designs incorporate several

data components to generate and organize events.

• Simulation Clock. The clock is a passive entity that tracks simulation progress.

The clock provides a basis for future event generation and ordering.

• Next Event Queue (NEQ). The NEQ is a time-ordered priority queue that holds

scheduled events awaiting processing. The event at the head of the queue is the next

event for the simulation.

• State Variables. State variables model entities in the simulated system. State

variable values change in accordance with the behavior model representing processes

in the simulated system and reflect its current state.

Major processing activities include event generation, scheduling, retrieval, and pro-

cessing. Event generation is accomplished in software by implementation of a computa-

12

tional model that reflects the causal requirements for and results of simulated processes

acting on simulated entities. The implementation uses current state variable values to

compute events to be scheduled. A scheduler manages event placement in the NEQ. An

event dispatcher retrieves the next event from the queue to be processed in accordance

with the behavior model.

Many design and implementation approaches exist for DES data components and

processing activities. Requirements for simulation correctness, performance, flexibility,

and maintenance determine which options are most appropriate for a given simulation

need.

Target System

Physical Model

Simulation Application

Simulation Kernel

Host System

Figure 1. General DES Architecture
(32:52)

2.1.3 Typical Architecture. A typical layered DES architecture can be represented

as shown in Figure 1. The target systemis the system being simulated. The physical model

represents the target system that models simulated entities, relationships among them,

13

and behaviors associated with entities, along with conditions and constraints that define

a context in which relationships hold and behaviors occur.

The simulation application represents the physical model (32:52) as a computational

model in which state variables capture the observable simulated entity states and algorith-

mic representations effect state changes in accordance with the relationships, conditions,

and constraints found in the physical model. The application includes algorithms for event

generation and execution. The simulation kernel contains data and algorithm components

that form the abstract machine used to interpret the simulation application (32:52). These

include the NEQ, clock, event scheduler, and dispatcher. Finally, the host system is the

physical machine and set of services that interprets the simulation kernel.

2.1-4 Software Engineering Principles. Within and between layers, many soft-

ware engineering maxims and 00 design principles are useful in DES design. In the

application layer, simulated entities and behaviors are captured as objects and methods,

permitting modular replacement and design component reuse. Abstract relationships can

be implemented as decentralized management objects under application control. Similar

approaches apply to abstract data types and operations in the simulation kernel. Modular

interfaces between layers enforce loose coupling to facilitate portability and reuse among

layer designs and implementations.

00 design issues and tradeoffs such as instance management and object communica-

tion overhead pose challenges in simulation as well as in other applications. Nonetheless,

00 simulation offers enough benefit to encourage its use (38:280). The benefits realized

14

from these principles are especially important with respect to requirements for flexible,

interoperable simulation architectures for DoD applications.

2.2 Problem Decomposition

Problem division for allocation to available processors is one of the first areas of

interest in parallel algorithm design. The goal is to reduce processor idle time while

maintaining correct behavior in spite of distributed execution. The proximity detection

problem serves to show the potential effect of decomposition on performance, whether for

sequential or parallel moving object DES.

2.2.1 Proximity Detection. Event prediction in a DES requires efficient algo-

rithms for simulating autonomous and interactive object behavior. Object locations and

distances from other objects determine the opportunity for both types of behavior. Dis-

tance and event calculations involve object location and velocity data. As object at-

tributes, such information should be hidden within each object rather than centrally man-

aged (39:249). Centralized position data management in sequential simulations can be

extremely expensive since every event computation for an object requires reference to the

data of every other object in the simulation.

Battlefield sectoring has been proposed as a way to restrict the number of players

that must be considered during event prediction (53:916). Sector boundaries are added

to the battlefield representation and boundary crossing events are added to the behaviors

modeled by the simulation. Before two objects in neighboring sectors can interact, one

15

must cross into the other sector. Sectoring allows event prediction for a given object to be

limited to consideration of objects in the same sector.

Sector boundaries serve as an implicit proximity-based indexing structure that allows

computable, direct reference to object groups. In effect, sectoring provides a finer indexing

granularity for data structures holding object state data. Boundary crossing events and

their associated event handlers provide a clean, dynamically computable mechanism within

an 00 DES design by which to update the player library within any particular indexed

sector area.

2.2.2 Decomposition in PDES. When decomposing a spatially oriented simula-

tion for parallelism, sectoring provides an immediate way to divide the group of objects

into easily represented subgroups for allocation to different processors. Data allocation

in this fashion is referred to as Single Program Multiple Data (SPMD) decomposition, a

method well-suited for distributed machine architectures (14:8).

SPMD decomposition is a strategy for localizing dependent data items on each pro-

cessor (14:8). For application to battlefield PDES, groups of sectors are mapped to pro-

cessors in the parallel architecture. Objects move between sectors, and thus processors,

based on their changing location values. Decomposition also distributes the NEQ and the

event generation, scheduling, and execution mechanisms.

Spatial decomposition is a reasonable approach for moving object PDES. Since object

interaction is limited by distance, state variable references among several objects can often

be confined to a single processor. However, object features such as sensor range or physical

size can result in the need to share object attribute values across several processors. A data

16

replication scheme must be used to ensure that all shared state variables among processors

are consistent with respect to simulation time (17:21).

Object movement across sector boundaries requires object remapping from one sector

to another to preserve the relationship between object locations and sector definitions.

Similarly, objects must be transferred among processors when crossing sector boundaries

coincident with processor boundaries. Processor synchronization is required to ensure

correct processor state update with respect to time (17:21). Synchronization tends to be

a key problem in PDES design.

Decomposition techniques include both static and dynamic approaches. Static ap-

proaches capitalize on regularities in problem structure and data representations to achieve

reasonable parallel performance without incurring dynamic reallocation overhead. Dy-

namic, or adaptive, approaches shift workload after initial static decomposition so as to

maintain processor efficiency in the face of changing data or task dependencies.

Static approaches used alone virtually guarantee an imbalanced workload among

processors (32:52). Processor workload is dependent on both the number of objects on the

processor and the number and complexity of events processed for each object over a given

time interval. Workload imbalance affects the overhead attributable to synchronization

and decreases exploited problem parallelism by forcing some processors to be idle while

others have considerable work to do.

17

2.3 Processor Synchronization in PDES Execution

When state variables and operations on them are distributed over a processor net-

work, computation results must be shared to cooperatively determine the next event or

correctly update state variables. Distributed algorithms must have provisions to send and

receive data across the network and either prevent or detect and predictably recover from

state inconsistency, or causality, errors (17:20). Synchronization actions normally cause

a process to wait an arbitrary amount of time until a communication is received from

another process. Processors may deadlock if cyclic dependencies exist between them. Em-

phasis is placed on preventing or recovering from deadlock and minimizing synchronization

activities (33:61).

The most general synchronization algorithms tend to approach the performance of

barrier synchronization (17:24). Research directed at optimizing synchronization normally

assumes some problem and solution knowledge. Resulting performance improvements sup-

port domain knowledge usage in removing synchronization delay and increasing exploited

parallelism (19:3).

Interest in algorithms that guarantee causality correctness in PDES has led to de-

velopment of a computation-theoretic process model (27:51) over which formal simulation

correctness proofs can be derived. The model is similar to models associated with commu-

nicating sequential processes (22).

2.3.1 Logical Process (LP) Distributed Computation Model. A logical process

(LP) is a computational entity that can "execute sequential code and two special com-

mands: receive and send!'' (27:51). A receive command specifies a communication channel

18

from which to take an incoming message, while a send command specifies a channel upon

which to place an outgoing message. When an LP executes a receive, there may be an

arbitrarily long delay until the next message is available. When the next message arrives,

the LP continues sequential execution. A message sent by an LP may take an arbitrary

but finite time to arrive at its destination. In all cases, communication channels observe a

first-in-first-out discipline with respect to messages carried. (27:51)

The LP model supports layered simulation PDES design by encapsulating synchro-

nization and communication operations. Designs and implementations based on the model

benefit from decoupling between the simulation kernel, the synchronization protocol, and

the underlying operating system communication services. Inherent modularity imposed by

the model also facilitates independent behavior analysis of the synchronization protocol

and other simulation components.

2.3.2 Synchronization Strategies. Strategies for achieving cooperation between

processors are known as synchronization protocols. Protocol development and speculation

about performance properties has produced a vibrant body of research activity. Two

protocol families, conservative and optimistic, have emerged in the literature. The main

difference between the two families is the error handling policy enforced.

Conservative protocols prevent causality errors, while optimistic protocols detect and

recover from causality errors (18:216) (17:6,17). Arguments have been offered asserting

that synchronization is more aptly viewed as a continuum that ranges from conservative

to optimistic (35:671). Regardless of the taxonomy, synchronization methods depend on

knowledge of dependencies determined by the application and are thus tied to its dynamics.

19

Shifting data dependencies across processors such as those found in moving object and

battlefield PDES appear to exacerbate performance problems in conservative protocols

(17:21).

24 Anatomy of PDES

By applying the problem decomposition process to the general DES architecture and

adding a synchronization mechanism, a sequential DES can be readily transformed into

a PDES and mapped to a parallel machine. The host machine provides physical process

entities and process management services represented abstractly by the LP model. The

host also provides interprocess message primitives described abstractly in the LP model.

Synchronization algorithms are logical operators that control interprocess message flow.

In PDES designs based on the LP model and that resemble the general DES architecture,

the message passing and synchronization components are both part of the host machine

layer. Replication over multiple processors results in transformation from sequential DES

to SPMD PDES.

The general simulation architecture diagram is annotated in Figure 2 to show how

the various simulation components might be mapped to the architecture for a particular

application and machine.

2.5 Performance Modeling and Analysis

Performance models capture relationships between parallel application components

that affect execution time, throughput, or other useful metrics (45:271). In addition to

20

Event Predictors
Objects

Event Scheduler
Event Dispatcher

Channels
Comm Services

Target System

Physical Model

Simulation Application

Simulation Kernel

Host System

Problem Space Divisions
Computational Behavior Models

NEQ Shared State Manager
Clock

Synchronization Protocol

LPs

Figure 2. Simulation Architecture with Components

providing a cogent understanding of component relationships, an accurate performance

model may be used to predict absolute performance resulting from particular decisions.

2.5.1 Model Usage. Performance models can be either deterministic or proba-

bilistic. A deterministic model is one in which all variables are deterministic rather than

random. A probabilistic model has at least one random variable. Deterministic perfor-

mance models often sacrifice accuracy for simplicity, while probabilistic models offer the

opposite tradeoff (15:123,160-5). Model parameters associated with static algorithm struc-

ture or fixed data dependence are often deterministic, while parameters associated with

unknown computation results or input values are at best probabilistic. Little can be done

with a probabilistic parameter if its probability functions are unknown. The accuracy and

predictive abilities of a model decrease as knowledge of significant parameters decreases.

Performance model utility, regardless of type, comes from the ability to alter model

parameters that correspond to configurable portions of the system being modeled. De-

pending on model accuracy, changes realized by altering parameters can be used to predict

21

results from similar changes in the modeled system. In the best case, the model can serve

as a descriptive function upon which a decomposition or tool can be developed. Such tools

allow the application designer to project the results of particular decomposition strategies

and ultimately can be used to automate the task. (54:164)

2.5.2 Model Development Considerations. Parallel algorithm performance met-

rics are normally based on comparisons, either modeled or measured, between parallel and

sequential implementations (25:117-21). The comparison requires accurate model-based

estimates or empirical measurements to produce useful results. Model accuracy depends

on how well the model captures the combined effects of the algorithm, data management,

operating system, and parallel hardware architecture.

Application data dependencies often determine algorithm behavior. In moving object

PDES, data dependence affects sequential application algorithm performance and paral-

lel synchronization algorithm behavior. For example, sectoring may speed up an event

prediction algorithm but total cumulative savings depend on object movement. Likewise,

the amount of concurrent execution achieved varies with many factors, including object

and event distribution over processors and time. Complex data dependence challenges the

development of usable moving object PDES performance models.

Basic system operating characteristics influence the performance of a parallel imple-

mentation. Time needed to send, receive, and process messages can be significant with

respect to computation performed. Unpredictable variations in basic functions can influ-

ence model accuracy as well, but the impact from variability may be overshadowed by

22

inefficiency in implementation (12:718). Incorrect model assumptions about the amount

of variation can also lead to inaccuracy (1:61).

2.6 Software Engineering Principles Revisited

The primary factors affecting PDES performance are problem decomposition, syn-

chronization algorithm behavior, and communication costs induced by synchronization.

Improvements accrue from embedding application knowledge in the synchronization al-

gorithm design (17:24). However, encapsulation that supports generality and reusability

removes application knowledge from synchronization. The modeling task then becomes to

show how much application knowledge is needed for minimum acceptable performance. The

complementary design task is to develop an architecture that provides the right amount

of application knowledge without compromising flexibility.

Appendix B contains a brief explanation of the general task allocation and scheduling

problem for parallel algorithms. The explanation is accompanied by descriptions of sev-

eral heuristic approaches recently proposed in the literature: Nearest-Neighbor, Recursive

Clustering, Heavy Node First, and Weighted Length.

To allay the intractability of the general scheduling problem, each approach uses

application knowledge developed statically or dynamically to demonstrate the possibil-

ity of acceptable performance using the approach. When fundamental relationships can't

be determined prior to execution, static decomposition must include assumptions about

precedence, as well as provisions for correction when the assumptions are violated during

execution (14:8). In PDES using SPMD decomposition, data dependencies replace task

dependencies, and the synchronization algorithm replaces the scheduling algorithm. Ap-

23

plication knowledge needed to yield acceptable performance is likely to have a counterpart

as well. The survey of methods in Appendix B demonstrates the types of application

knowledge that have been used with varying degrees of success in parallelization efforts.

The need to make application knowledge available to the synchronization algorithm

when using conservative methods has been shown empirically (17:22) (16). Since the ap-

proach works entirely with event and message timestamp information, extraction of par-

allelism is dependent on accuracy of future event times available to the algorithm (17:22).

One inherent limitation is the fact that two sets of events may be completed unrelated to

one another and thus could be executed independently regardless of their time relationship.

Since the synchronization algorithm does not use event dependency information, this type

of parallelism cannot be recognized.

2.7 Summary

Military combat models differ from many traditional simulation application ar-
eas (e.g., circuit simulation) in that any of the entities may potentially interact
and that these interactions are difficult to predict. The highly dynamic nature
of these problems thus precludes the static mapping or determination of simu-
lation actor interaction. Thus, in the general case, the conservative approach
can not be effectively utilized in this class of problem. (36:515)

This position discounts the use of application knowledge to restrict potential interactions.

Spatial restriction and conservative synchronization have been used to achieve promis-

ing processor efficiencies in time-driven battlefield simulations (29:141), (12:718). Similar

techniques, combined with judicious use of application knowledge, may produce acceptable

results in battlefield PDES using conservative synchronization. Recent work alludes to this

possibility (16).

24

The performance models developed in Chapter IV provide a starting point for for-

mal examination of the parallel performance benefits that may be associated with use of

application knowledge. The next chapter contains a design description of the simulation

environment used to develop the performance models.

25

1/7. Design Study and Definition Framework

3.1 Overview

This chapter describes the salient details and limitations of the simulation model used

for the performance analysis. The description is followed by a design-based data definition

framework that formally describes the significant data entities used in performance model

development.

3.2 Simulation Design and Limitations

This section discusses the design of BÄTTLESIM, the AFIT environment used to

investigate parallel battlefield simulations. BATTLESIM is integrated with TCHSIM, a

collection of general DES mechanisms and services, and SPECTRUM, a parallel simulation

protocol testbed based on the LP model. The environment is similar to many kinds

of parallel simulators using coarse-grained, SPMD decomposition; spatial relationships

among interacting simulated entities; an event-driven discipline; and conservative processor

synchronization.

3.2.1 Simulation Architecture. BATTLESIM is a battlefield PDES application

supported by several lower-level components. The underlying simulation kernel is TCH-

SIM, an object-oriented collection of structures and operations that provide basic simula-

tion services. TCHSIM provides a simulation clock, a NEQ, a top-level event dispatcher,

and structural definitions for simulation events and relationship mappings. The structural

definitions are part of the abstract interface between the application layer and the simula-

26

tion kernel. The remainder of the interface is explicit as defined by methods in TCHSIM

services.

Host machine process management and communication services supporting TCHSIM

are provided by the AFIT version of SPECTRUM. SPECTRUM manages the creation of

and communication between each LP. In this case, the sequential code in each LP is a

complete DES. Support processing within SPECTRUM includes both an input/output

message handler and synchronization logic for inter-LP message flow control. Flow control

logic is known in SPECTRUM nomenclature as a filter. Coupling between the top-level

process manager and the filter is designed to permit easy filter removal and replacement for

experimentation with various protocols. Data moved vertically through the architecture

is wrapped and unwrapped in layer envelopes similar to the way many network protocols

function to provide independent services.

Figure 3 shows the major BATTLESIM, TCHSIM, and SPECTRUM components in

the context of the general DES architecture (32:52).

3.2.2 BATTLESIM Application Layer and 00 Design. The BATTLESIM ap-

plication is an object-oriented discrete event battlefield simulation. Most aspects of BAT-

TLESIM design do not incorporate any notion of parallelism since SPECTRUM handles

all aspects of communication and synchronization between coarse-grained processes. BAT-

TLESIM features designed to support graphics and interactive control are not used in this

study.

27

BATTLES1M

Sectors

Player classes and players

Event classes, predfctors, and hamflers

Events

Player sets

Object manager

Event scheduler

Mappings

SPECTRUM

LPs
LP manager

I/O channels and clocks

Filter logic lor event sequencing,
null messages

Message buffers

Simulation Application

Simulation Kernel

Host System

TCHSIM

NEQ

Clock

Driver

Low Level

Processor manager

Message transmission and receipt

Processors

Interconnection network

Figure 3. BATTLESIM, TCHSIM, and SPECTRUM

The mechanics of major design choices for BATTLESIM are explained in detail

elsewhere (4, 51). However, an overview here provides the foundation necessary for the

performance analysis.

3.2.2.1 Players and Player Classes. Battlefield entities are represented as

player objects. Each player has a small common core of attributes, supplemented through

inheritance by attributes used for battlefield modeling. These attributes capture the state

of each player and include such features as player class, location, velocity, heading, and

performance characteristics. A player's class describes a variety of characteristics shared

with other players of the same class, thus establishing the types of behavior applicable

to the player. The connection of behaviors to a player class is the basis for next event

determination, or prediction, for a player in the class.

28

3.2.2.2 Events. Player actions, reactions, and interactions are represented

as events occurring at particular times. The BATTLESIM design allows up to three players

to be affected by one event, though two at a time is normally sufficient and is used in the

performance models developed subsequently.

3.2.2.3 Event Classes. Event classes represent the behaviors modeled in

BATTLESIM. Event classes capture actions, reactions, and interactions associated with

each player class. Each event class is characterized by the types of players to which it

applies, the number of players affected by an event instance, and the computation model

of the behavior represented by the event class. Event instances in classes affecting a single

player are noninteractive, while those in classes affecting two players are interactive.

3.2.2.4 Event Prediction. The interaction model in BATTLESIM uses the

association of player classes with event classes along with current player state data to

determine the next event for a player. When the next event for a player is needed, the

prediction manager invokes an event predictor for each behavior that applies to the player.

A predictor determines the time of the next instance of its associated event class for the

player and returns the result as a temporary event to the prediction manager. If the event

class is interactive, the temporary event contains a reference to the other player affected.

The prediction manager filters the hypothesized result from each predictor and provides

the event instance with the lowest time to the event scheduler. The event instance contains

the time, event type, and identifier(s) of the player(s) involved.

The use of independent predictors maintains player state data encapsulation. Pre-

dictors are the only entities that have visibility to state data from more than one player

29

at a time. This design facilitates integration of new player types. Similar approaches to

event prediction for moving objects do not address the 00 paradigm specifically, but do

not appear to be significantly different in terms of efficiency (53).

3.2.2.5 Event Processing and Scheduling. The main simulation loop initi-

ates calls to the prediction manager. Initially, the next event for each player is predicted

and placed on the NEQ in time order. The loop then retrieves the next event from the

queue and sends it to the handler associated with the event type. The handler executes

the event, updating player state data as prescribed, and calls the prediction manager to

determine the new next event(s) for the player(s) involved in the event just executed. After

enqueuing the prediction result(s), the loop repeats until all events are processed or the

maximum simulation time is reached. The prediction strategy limits the queue to holding

at most one event per player at any time.

3.2.2.6 Player Management and Event Prediction with Sectoring. A cur-

sory analysis of the event processing and scheduling processes shows that a significant

amount of work is needed to predict a single interactive event. For an individual player,

an interactive event predictor must use state data from all other players to determine the

next event of that type for the player. Each of the interactive event predictors must do

this, and the whole process is invoked for every event executed in the simulation.

Division of the battlefield into sectors is one way to reduce work associated with event

prediction in both sequential and parallel simulation. However, the scheme introduces

correctness and execution cost issues that don't exist in an unsectored design.

30

In a purely sequential simulation using sectoring, all player state data is immediately

accessible on the processor. In contrast, if the simulation is to be run in parallel, some

of the sector boundaries may coincide with LP boundaries. When a player of size passes

over a boundary, a proper spatial mapping may place the player on two LPs, and thus two

processors, at once. The player could then interact with other players on either processor

while straddling the boundary.

Several choices are available to maintain player state data consistency and proper

event prediction across LPs and processors. At one extreme, all player data can be repli-

cated and updated in all LPs. On the other hand, an LP gaining a player can query the

losing LP to send state data for just the player in question (17:21). A compromise solution

was chosen for BATTLESIM (4:37). This approach is used when a player crosses any

sector boundary, regardless of whether the boundary coincides with an LP boundary or

not. If it doesn't, the process is applied in the same way except that events generated are

scheduled on the local NEQ.

Front Crossing. When a player's front contacts a boundary, the losing

LP sends a copy of the player to the gaining LP. The player is transmitted by generating

an instance of a special, non-predicted event class, ADDJPLAYERXOPY. The event time

is set for execution at the losing LP's current simulation time. Along with the time, the

event contains a full copy of the player (4:36).

The gaining LP receives the event and places it in sorted order in its NEQ. The LP

processes the event, creating a copy of the player from the data in the event and adding

the copy to a special data structure. The LP treats the copy as any other player, using

31

it in event predictions. Events predicted for the copy are sent to the losing LP, which

remains designated as the owning LP until the center of the player crosses the boundary.

The owning LP executes all events for the player, updating its state and sending state

updates to any other LP that has a copy. Instances of another non-predicted event class,

UPDATE_PLAYER_COPY, serve as the vehicle for passing state data to and causing state

update on LPs with copies. The simulation time associated with state updates is the same

as the time at which the original player is updated (4:36).

Center Crossing. When the player's center crosses into the gaining

sector, the player image in the gaining LP becomes the original while the losing LP begins

treating the image as a copy. Both LPs adhere to the player management scheme but with

reversed roles, using UPDATE_PLAYER_COPY events to transmit state updates (4:36).

Back Crossing. When the player's back crosses into the new sec-

tor, the gaining LP generates an instance of a different non-predicted event class, RE-

MOVE-PLAYER-COPY, and sends the event to the losing LP. The losing LP executes

this event to remove its copy of the player image (4:36).

3.2.3 Design Limitations. The BATTLESIM design addresses many issues cen-

tral to analysis of static properties of the problem. However, some limitations exist that

place practical constraints on the scope of the analysis.

3.2.3.1 Loss of Detailed Functionality From 00 Redesign. The primary

emphasis of BATTLESIM is to model the behavior of objects moving and interacting in

three-dimensional space. In this case, behavior modeling is intended to be representative

32

of autonomous battlefield objects such as planes, tanks, and trucks that move according

to physical laws involving space and time.

Early BATTLESIM versions (46, 37) contained a more fully functional implemen-

tation of the details of battlefield entities. The design and implementation was based on

functional decomposition rather than the 00 paradigm. The most recent work defined

and implemented an object interaction model that could support parallel simulation using

the 00 paradigm (4, 51). Detailed functionalities such as range-limited sensors, evasive

maneuvering precipitated by sensor contact, and combat engagement are not present in

the 00 design. These types of features affect the dynamic behavior of the simulation.

Since the primary concern is the study of static problem attributes, little net loss accrues

from their absence.

3.2.3.2 Sensor Capabilities. Sensors are typically simulated either as a

solid or hollow projection of a player. With solid projection, interactions constantly occur

between the player and objects within the projection range. With hollow projection,

interactions occur when the projection boundary intersects another player. The original

BATTLESIM design used a hollow projection.

The use of sectors affects sequential and parallel performance for both solid and

hollow projection. In a sequential simulation using sectoring, sensor capability requires

that all sectors covered by any part of the projection range be considered in player event

prediction. This affects sequential performance by potentially increasing the number of

players that must be used in event prediction. The frequency of event prediction for the

player with the sensor also determines the cumulative effect on performance. In a parallel

33

simulation, further impacts occur when sensor range boundaries cross LP space boundaries.

The problem is analogous to the situation in which a player straddles processor boundaries

for a period of time. Some method for shared state must be implemented. This forces

the affected processors to run in complete synchronization for the duration of the crossing

(53:917) (17:21).

The performance models in Chapter IV address the notion of shared state by dis-

tinctly modeling the number of players in each sector at individual simulation times. This

provides a starting point performance impact analysis associated with sensor capabilities.

However, the dynamic behavior generated by players having different sensor ranges that

move with the player over time is not modeled.

3.2.3.3 Fixed Sector Adjacency. The spatial model upon which BAT-

TLESIM is based restricts sector adjacency to at most two sectors along a single boundary.

This structure precludes the use of sectors with irregular adjacencies, such as those that

might be produced by a recursive bisection method popular in many parallel applications.

Irregular adjacencies are normally used as part of load balancing schemes (3:571).

3.2.3.4 Simplified Event Scheduling Policy. The current design uses a

simple scheduler that does not cancel superceded events. Event supercession occurs when

event prediction for one player schedules an interactive event for that player, but the other

involved player executes some other that nullifies the scheduled interactive event (53:917).

Cancellation was implemented in earlier versions but not carried through the 00 redesign.

As with sensor capability, the effects of the scheduling policy fall primarily in the dynamic

portion of the problem.

34

3.3 Definition Framework

This section establishes the primary data definition framework used to develop per-

formance models for both the sequential and parallel battlefield simulation algorithms.

Appendix A contains the complete set of definitions. The definitions are developed from

the design study and reflect the principal data components of the application, simulation

kernel, and host machine level.

To assist in capturing and exploiting group, or inheritance, relationships, several

set partitions are established. Set partitioning based on equivalence classes is helpful in

characterizing behavior across a class of related data items. Most of the partition definitions

are abstract levels not explicitly used in the performance models and thus are found in the

Appendix.

A particular simulation context establishes underlying relations formally captured in

the data definitions. Dynamic relation membership is reflected in the performance models

by discrete functions. Function values may be fixed, assumed, or left unknown. The use of

discrete functions in the performance models allows for easy transition to nondeterministic

models.

3.3.1 Notation and conventions. General set and algebraic symbols are consistent

with usage defined by Stanat and McAllister (48). Naming conventions are established to

reduce conflict among operators and semantics associated with set definitions.

35

• Sets are named with upper case Arabic letters. Names may be single letters, but

normally use multiple letters for clarity and distinction from symbols used in the

performance models.

• Set elements are named with one or more lower case Arabic letters found in the

set name. Subscripted element names are used for reference via implicitly defined

sequencing.

• For each countable set in the data model, there is an ordering bijection to Z+ that

establishes denumerability. The details of the bijections are not significant for the

performance models. For each such set A, the integers in the bijection are assumed

to lie in [1, |A|] unless otherwise noted.

• Relations and functions explicitly defined over sets are named with upper case Arabic

letters.

• Functions representing abstract computation operations are named with lower case

Greek letters to set them apart from functions explicitly defined over sets.

• Tuples forming relations are subscripted for distinguishability. Reference to a com-

ponent of a tuple is made using the dot notation.

• Set cardinalities are represented with a single lower case symbol appearing in the

name of the set. A cardinality symbol for a set is distinguished from the symbol

representing an element of the set by the absence of a subscript: x for cardinality vice

Xi to denote an element. Cardinalities of subsets of a particular set are distinguished

from one another by judicious use of the ' mark.

• Arithmetic multiplication is shown explicitly with the X operator.

36

3.3.2 Definition Framework. The data definitions are outlined in terms of set

composition rules, informal descriptions, structural constraints, and general restrictions

and assumptions.

• TIMES = {x\x is a simulation time}

TIMES is the set of simulation times projected or used in a simulation.

• PLYR = {(z,ATTz)\z G Z+ A ATTZ C V(ATT) - {0}}

PLYR is the set of instances of simulated entities, hereafter called players. As a

model of a physical component or system, each player has a unique identifier drawn

from the positive integers and a single, non-null set of attributes. Attribute set

commonalities may exist among players, providing the basis for player classes. Each

player has an associated type that is the first attribute in the attribute tuple. Each

player's attribute set remains static throughout its existence, though attribute values

may change. The value of the type attribute for a given player remains constant

during the player's existence.

• BHVR — {x\x is a simulated behavior}

BHVR is the set of behaviors or processes that operate on physical components or

systems modeled in the simulation. The number of behaviors modeled in a simulation

must be finite. Members of BHVR are modeled by iterative computational processes.

• INTACT = {TIMES x (BHVR U {0}) x (PLYR U {0})2}

INTACT is the set of all possible applications of behaviors or processes that can be

applied to up to two players at any time.

37

def e = (t, b,p, q)\(t,b,p, q) G TIMES X (BHVR U {0}) X (PLYR U {0})2

e is the general form of a particular event in a DES.

EC = {ECx\x e BHVR}

EC is the set of all distinct event classes in a simulation.

PC = {PCx\x G SIM-ENT)

PC is the set of all player classes distinguished by a type attribute value.

A' : EC x PC -»• {0,1}

A' defines the association between event classes and player classes for a simulation:

A'(eci,pcj) = <
1 if eC{ applies to pCj

0 otherwise

A: EC x PLYR -» {0,1}

A defines the association between event classes and individual players in a simulation:

A(eci,pj-) = <
1 if A'(eci,pck) = 1 A pj G pcfc

0 otherwise

7iV : PZYi? -► SECTS

JJV is a function mapping a player, either owner or copy, to the sector in which it

currently resides. \IN\ = p; /iV_1(a;) is the set of players in sector x; |/iV_1(a;)| is

the number of players in sector x.

C : PLYR -» P'\P' G V(PLYR)

38

def

C is a function mapping a player to copies of itself resident in other sectors. Elements

of C are created when the front of a player crosses a sector boundary and are removed

when the player's back crosses the same boundary.

m = (t, f, A)\(t, /, A) G TIMES x {R} U {N} x V(ATT)

m is the general form of a message in a PDES. t is the time of the message. / is

the message type, either R or N for Real and Null. Real messages convey state data

passed from one LP to another, while null messages distribute clock data among

processors.

ch d= {s, d, t, m)\{s,d,t, m) G LP2 X TIMES x MSGS U {0} x Am ± 0 =► t = m.t

ch is the general form of a communication channel between two LPs in a PDES where

s is the source LP, d is the destination LP, and t is the current channel time. The

channel time is set to be the time of the message currently in transit on the channel.

If there is no message in transit, the channel time remains set to the time of the

previous message.

ICX = {ch\ch G CHX AxELPA ch.d = x}

ICX is the set of all input channels defined for LP x.

OCx = {{ch,d)\che CHxAx G LP A ch.s = x A d E TIMES}

OCx is the set of all output channels defined for LP x. Each output channel has an

associated delay time, d. The designator is distinct from the d destination attribute

present at the base class level. The destination attribute is never used explicitly in

subsequent modeling.

39

• LP = {(x,n,t,b,C)\x is a logical process An is a NEQAi e TIMES Abis a buffer A

C = CHX}

This model uses a specialization of the general LP model (27:51) described on page 18.

In addition to sequential code, message handling capability, and communication chan-

nels, each LP has a NEQ, a clock, and a message buffer. The NEQ and buffer are

described on page 43. The sequential code corresponds to a particular simulation and

(possibly null) interprocess synchronization algorithm. The message buffer contains

all messages received by the LP that have not yet been processed.

• AD J : LP -* V(LP)

ADJ is a function that maps an LP to its adjacent LPs. In this model, all LPs

are adjacent to at least one other LP. Adjacent LPs have both an input and output

channel going in each direction. This determines causal dependence.

3.4 Summary

The BATTLESIM application, TCHSIM simulation kernel, and SPECTRUM host

machine service designs are analyzed in detail in this chapter. The analysis includes de-

scriptions of significant data structures and application algorithms used to construct the

simulation environment. A detailed description of the synchronization algorithm used in

the parallel version of the simulation is presented in Chapter IV in the context of perfor-

mance model development.

40

IV. Performance Model Derivation

This chapter introduces performance models for sequential and parallel battlefield

DES involving interactive moving objects related in time and space. The performance

models are developed over the framework of base set data definitions summarized in the

previous chapter and defined in detail in Appendix A. Abstract data types, primitive

abstract functions, and canonical algorithm models are used to formulate the sequential

and parallel performance models.

The goal of performance modeling is to capture relationships among significant parts

of the simulation design. Thus, the models are defined deterministically in terms of an

arbitrary simulation with observable or measurable parameters that bind the sizes of the

sets defined. These sizes are expressed as unspecified constants or computable functions

that are unique to a particular simulation scenario. Algorithm models used as the basis for

the performance models are representative of the battlefield simulation design described

in Chapter III.

For each algorithm, the operations to be accomplished are modeled as primitives in

terms of elements from the sets in the data definitions. Computation processes are mod-

eled as abstract functions defined in this section. Discrete functions or relations capture

the relationships established in the data definitions. Resulting primitives are combined

through the use of summations to capture iterative behavior over data structures. Set car-

dinalities provide limits of summation. Summations are then combined through addition

or multiplication as appropriate for the structure of the algorithm.

41

4-1 Performance Model Definitions and Descriptions

The performance models express the behavior of the canonical algorithms quantita-

tively by reference to data elements, relation membership, and algorithm structure. Set

and relation membership and cardinality are the primary vehicles for translation between

the abstract collective view found in the data definitions and the iterative, elemental view

needed in the performance model. Additional definitions used in the performance mod-

els are cardinality expressions and abstract computation functions describing the work

outlined in the algorithm.

4.1.1 Cardinality and Arithmetic Definitions. All cardinalities are parameters

taken from the simulation of interest. With the exception of the number of events in the

simulation, s', all are observable or measurable at some point prior to completion of the

simulation. As a practical matter, the value of s' is not known prior to termination of

simulation represented by SIM.

• c' = \IND\, the number of noninteractive event classes.

• c" = \INTER\, the number of interactive event classes.

• c = c' + c" — \EC\, the total number of event classes.

• p = \PLYR\, the number of players.

• s1 = \SIM\, the number of events in the simulation.

4.1.2 Reference Conventions. Individual set elements are referenced with sub-

scripts resolved by summation indices.

42

• pi refers to the ith player p £ PLYR.

• eci refers to the ith event class ec £ .EC.

• e,- refers to the ith event e £ SIM.

• r(op) refers to the real time needed to perform operation op.

• r$ti refers to the real time needed to perform the ith iteration of step s where the

step is referenced to an algorithm model. Steps not falling in loops are referenced as

• LPX refers to the logical process labeled x.

• EC ordering. Noninteractive event classes are ordered so as to precede interactive

event classes. Special class ordering is unspecified.

4.1.3 Abstract Data Types and Function Definitions. The primary abstract data

types used in the models are the NEQ and message buffers. Every LP has one of each. A

NEQ is a generic priority queue with defined but unspecified operations. Each operation

completes in finite, measurable time and thus can be provided as an argument to an

appropriate measurement function. A buffer is essentially identical to a NEQ except that it

holds queued interprocessor messages rather than events. Each LP in a parallel simulation

has a message buffer that holds messages coming from the input channels associated with

the LP. Messages are maintained in a buffer in nondecreasing order by time.

Several functions are defined for both data types. Functions subscripted with n

operate on a NEQ and events, while functions subscripted with b operate on a buffer and

messages.

43

• in,ib - Insert item into structure. This representation does not explicitly model

structure operation efficiency. Dependency on simulation progress is introduced when

needed by use of additional subscripts.

• 7„,7J - Remove and return the first item from structure.

• (n,(b - Delete item from structure.

4.I.4 Operation Definitions. An untyped function, T(X), represents the real

simulator time or work to do a;. Typed functions model particular primitive operations in

the canonical algorithms. In each definition, px £ PLYR and e,- £ SIM.

• x(ec,-,pj) and x(eciiPjiPk) - Calculate next instance of event class ec,- for player pj

or for player pj with respect to player pk for Pj,Pk G PLYR.

• 6(pi) - Determine next event for player pt.

• r/(ecj) - Execute an event e, in class ecj for players e,-.p or e{.p and e,-.g as specified.

This is an event class-wide worst case execution.

• v(PSET), PS ET C PLYR - Update the players in P.SET. Used to update player

copies to maintain consistency with respect to simulation time.

• fi(CSET, i,g), C-SET C CH - Return the minimum time of the channels in C.SET

with respect to loop i and protocol iteration g.

• a(N),a(R) - Send a real or null message between two processors. This function

represents the activity needed for the sending process to send the message and be able

to resume further processing. Message transit time on the interconnection network

is not modeled.

44

• a(pi) = IN~1(IN(pi)) - Shorthand notation to construct the set of players, including

copies, in the same sector with player p{.

• u(ADJ(x),i,g) - Denotes LP x waiting on receipt of null messages from its adjacent

LPs as part of the gth. input protocol iteration before processing the ith event.

4-2 Sequential Simulation

4-2.1 Canonical Sequential Simulation Algorithm. The basic sequential simu-

lation algorithm, presented in Figure 4, is a simple loop that retrieves the next event;

executes it by updating the state of, and determining the next event(s) for, the player(s)

involved; and schedules the next event(s) on the queue in time order. The loop continues

until the queue is empty or an End event is executed.

The algorithm captures both the unsectored and sectored approaches. The unsec-

tored approach is a specialized subset in which there is one sector and the number of

players per sector is the number of players in the simulation. As a result, there are no

copies generated. Procedural differences are shown parenthetically.

The algorithm description includes expansions of the processes used to determine and

schedule an event for a player. Scheduling in step 1 assumes that no event cancellation

occurs. Descriptive expansions occur once and then are included by reference. The algo-

rithm assumes the existence of a deterministic resolution scheme to order events occurring

at the same simulation time.

4-2.2 Sequential Performance Model. Performance model development captures

several aspects of each simulation iteration. These include event prediction, player copy

45

begin simulation

Step 1. For each player:

Determine next event; i.l

Expansion:

For each noninteractive event class: 1.1.1

if the event class applies to the player: 1.1.2

calculate next event class instance; 1.1.3

For each interactive event class: 1.1.4

if the event class applies to the player: 1.1.5

For each other player (in the sector): 1.1.6

if the event class applies to the other player: 1.1.7

calculate next event class instance 1.1.8

Insert determined event in queue in time order 1.2

Loop:
Step 2. Remove and return first event; sim time = event time;

Step 3. Execute event;

Step 4. For each player affected by event:

(Update copies; 4.1

Expansion:

For each copy: 4.1.1

Insert update event in NEQ; 4.1.2)

Determine next event; 4.2

Schedule next event; 4.3

Expansion:

If no event exists on the queue for this player (and 4.3.1

its copies) with earlier time than determined event:

Insert determined event; 4.3.2

If there is an event on the queue for this player 4.3.3

(or its copies) with later time than

determined event:

Delete subsequent event; 4.3.4

If subsequent event affected another player (or 4.3.5

its copies):

Step 4 for other player; 4.3.6

until END or queue empty

end Loop;

end simulation.

Figure 4. Canonical Sequential Algorithm

46

management, and simple NEQ operations. The performance model does not reflect com-

plex NEQ operations such as event cancellation and rescheduling, or continuing overheads

that accompany these types of operations. The performance effects of these types of opera-

tions depend largely on the implementation chosen for the NEQ and the dynamic behavior

of the simulation (11) (9).

4.2.2.1 Actions Prior to Loop. T(x(ecnPj)) denotes the time to calculate

the next instance of event class i for player j, corresponding to step 1.1.3. A(eCi,pj)

specifies the applicability of event class i to player j, corresponding to step 1.1.2. Since

there are c' noninteractive event classes, calculation of the next instance of each of them

for a target player denoted pj is modeled as

c'

J2Meci>Pj)XT(x(eCi,Pj)) (!)
t=i

corresponding to the total of 1.1.1-1.1.3.

For each interactive event class, calculation of the next instance involves all pairings

of the target player pj and all other players in the same sector that can be affected by

the event class. r(x(eciiPjiPk)) represents the time to calculate the next instance of event

class i for player j with respect to player k, corresponding to step 1.1.8. A{eCi,ph) is the

applicability of event class i to player k, corresponding to step 1.1.7. a(pj) is the set of

players in the same sector as player j. Computation of event instances in the class for each

of the other players, corresponding to steps 1.1.6-1.1.8, is represented by

Y, A(eci,pk) X T(x(eci,pj,pk)) (2)

47

In implementation, pk = pj would not be chosen, reducing one iteration from this expres-

sion.

A(eci,pj) specifies the applicability of event class i to player j, corresponding to step

1.1.5. Iteration over all c - c' interactive event classes, corresponding to steps 1.1.4-1.1.8,

is represented by

J2 Meci,Pj) x

«=c' + l

^2 A(eci,pk) X r(x(eci,Pj,Pk))
Pk€a(pj)

(3)

The time to determine the next event for a particular player pj, denoted by r(S(pj)) and

corresponding to step 1.1, is expressed by combining (1) and (3):

T(s(Pj)) = ^MeciiPj)XT(x(eCiiPj)) +
«=i

Yl A(.eci,Pi)x

i=c'+l

Y, ^(ecJ-,^)xr(x(eci,pi,pfc))
Pk€a(pj)

(4)

When the next event for the jth player is determined, events for j — 1 players have

been placed in the queue. r(inj_i) represents the time needed to insert the event for

the jth player, corresponding to step 1.2. Combining expressions for steps 1.1 and 1.2

results in the time TX needed to determine and schedule the next event for all p players,

corresponding to step 1:

ri = EK<%)) + ^n,;-i)] (5)

48

4.2.2.2 Model for Loop.

Dynamic NEQ Length and Searches. Upon entering the loop to pro-

cess the first event in the simulation, the NEQ holds p events since one event was scheduled

for each of p players. Scheduling and processing noninteractive events results in the re-

placement of each event executed, causing queue length to vary trivially from p to p - 1.

Player interaction results in dynamic NEQ length. When a scheduled event for one

player is executed, a new event is predicted and scheduled. If the new scheduled event

is interactive, the existing but as yet unprocessed event for the other player must be

cancelled. Interaction is a function of simulation progress and, in general, can result in

significant variance in NEQ length, from the initial length p to any integral value down to

\p/2]. While shorter queue lengths may result in less time spent on queue operations, the

overhead added by queue searches and event comparisons may offset this. Other queue

searches are needed on every scheduling operation to preserve consistency when multiple

events are scheduled for the same simulation time.

The algorithm model reflects cancellation and replacement. For simplicity, the per-

formance model does not include these operations explicitly. However, NEQ insertion

during each loop iteration is modeled as a function of the previous loop iteration. Repre-

sentation of this dependency maintains an accurate abstraction regardless of the efficiency

or implementation characteristics of the NEQ.

49

Static Performance Model. The time needed to remove and return

the first event from the queue, denoted r2); and corresponding to step 2, is:

T2,i = r(7„) (6)

Execution time for an event instance e in some event class ecj is dependent on the

computation model of behavior simulated by the event's class and the number of players

affected by events in that class. The time is represented as r(rj(ecj)). An event instance

can belong to only one class. Summation over the event classes using a conditional test

provides an explicit representation of mutual exclusion among event classes. The time r3:i

to execute a particular event e; in class ecj corresponding to step 3, is

c
r3,i = S(e< G ecj) X r(7?(ecJ)) (7)

Player copies in other sectors must be updated for each player affected by the event.

The update action corresponds to step 4.1. The set of copies associated with player p is

C(p). For each copy, an update event is inserted in the NEQ with time set to the current

simulation time. Thus, the extra work needed for update is a function of NEQ insertion

time, leading to an expression for r(v(C(p))), corresponding to steps 4.1.1-4.1.2:

r(v(C(p))) > \C(p)\ X rK,.!) (8)

This expression is left as a lower bound since the NEQ insertion time is not modeled to

the granularity of multiple event insertion on a single simulation loop iteration.

50

The time to update one or two players, depending on how many are involved in an

event e{, is represented by r(u(C(e,-.p))) + ((et.q / 0) X r(u(C(e,-.g)))), corresponding to

step 4.1.

Next event determination occurs either once or twice, depending on whether event

e,- is interactive. The time needed to determine the next event for the players affected by

event e,-, corresponding to step 4.2, is

T(S(ei.p)) + ((ei.q^Hi)XT(S(ei.q))) (9)

where et.p and e,-.g refer to the first and second players affected by the event using the

dot notation to reference tuple members. Step 4.3 is represented by r(4„i,-_1), the time to

insert an event in the queue. As with copy updates and event determination, insertion

will happen either once or twice, depending on the number of players involved in the event

being executed. The time to insert is r(in>,-_i) + ((e,-.# # 0) x r(inii)).

Combining expressions for steps 4.1, 4.2, and 4.3 gives r4)i, an expression for the time

to update copies, determine the next event, and schedule the next event for each player

possibly affected by event e,-, corresponding to step 4:

n,i = T(v(C(ei.p))) + T(8(ei.p)) + T(tnii-1) +

(e(.q ? 0) x (r(u(C(c,-.g))) + r(%^)) + r^,,-)) (10)

51

Combining r2i,-, r3ji, and r4),- results in the time to completely process event e,- corresponding

to a loop iteration:

T-M + T3,i + r4,i = r(7«) + X)(c< e eCj) X r(7/(cc;-)) +

r(u(C(e,-.p))) + r(%.p)) + r^,^) +

(ei.q ? 0) X (r(v(C(e,-.g))) + r(%.9)) + r(Vi)) (11)

The loop iterates s' times, corresponding to the number of events in the simulation. Com-

bining Ti with the total time spent in the loop gives an expression for sequential finishing

time, rseq:

rseq = n + ^(r2>!- + T3ti + T4ii) (12)
J=I

4-2.2.3 Complexity Analysis. The complexity of most simulations is related

to the number of players, p. In a simulation with one or more interactive event predictors,

the generation of each of the s' events requires p2 player comparisons. If there is at least

one event per player in the simulation, s' > p. Thus, the complexity of such a simulation

is at least 0(p3). This is a best case complexity as well, since all comparisons must be

made. Thus, the complexity can be expressed as 9(p3).

Different simulations may have different numbers of events. For simulations in which

s' > p2, the complexity is Q(pA). This progression holds as s' grows.

To decrease sequential simulation execution time for a particular simulation, the

number of players involved in each interactive event class prediction cycle must be reduced.

No other reduction opportunity exists, since neither the number of players or events in the

simulation can be decreased without altering the problem being simulated.

52

4-2.2.4 Estimating the Number of Sector Crossings. The cost of sectoring

arises from execution of boundary crossing events, additional prediction cycles caused by

crossings, and prediction over player copies duplicated while players straddle boundaries.

The number of sector crossings can be estimated by examining all player routes in the

simulation. Each moving player has a route as an attribute. A route is a finite sequence

of points in 2D space of length /.

For a battlefield of width W distributed uniformly over r' sectors in one dimension,

each sector is of width w = W/r'. The number of times a route crosses boundaries

perpendicular to a given axis and occurring every w units can be determined.

Let bxjiW denote the number of boundary crossings for the route of player pj with

boundaries placed every w units along the x axis. Each point in the route is a tuple of the

form {x,y). Then

K> = EILSJ-&I (i3)
8 = 1

For all players in the simulation, the number of boundary crossings, denoted bxw, is

p

bxw = ^2/bxjtW (14)

Crossings of boundaries that cut the y axis are tabulated in a similar fashion, substituting

y for x and using the y values of route points.

The additional cost of prediction over players and player copies in each sector is

already embedded in the model by treating player copies as regular players and updating

player copies on every iteration. However, there must be at least one additional event

for each boundary crossing to trigger data structure reorganization. The actual number

53

of events per crossing is an implementation detail. The approximate cost of sectoring is

reflected by adjusting the limit of summation for loop execution by the number of additional

events due to sectoring. Using X to denote the number of events per crossing gives a total

number of events Xbxw. Combining this result with TX gives an expression for sequential

finishing time, rseq:
s •\-Xbxw

Tseq = n + ^2 (r2,,- + T3ii + T4,i) (15)
» = 1

4-3 Parallel Simulation

4.3.1 Canonical Parallel Simulation Algorithm. In the SPMD parallel simula-

tion approach, identical copies of the sequential algorithm are placed on each available

processor. Data is initially supplied to each processor in accordance with the chosen de-

composition scheme. In this case, battlefield sectors and the players they contain are

placed on each processor. The sector-to-processor mapping remains static throughout the

simulation. Players migrate among processors as they move between sectors mapped to

different processors.

4.3.I.I Algorithm Abbreviations. Several abbreviations in the algorithm

description clarify its presentation.

• msg - message, either real or null.

• (i)(o)chan - input or output channel respectively.

• delay - propogation delay associated with LP.

• min - arithmetic minimum.

54

begin simulation
Step 1. For each player:

Determine next event; 1.1
Expansion:

For each noninteractive event class: 1.1.1
if the event class applies to the player: 1.1.2

calculate next event class instance; 1.1.3
For each interactive event class: 1.1.4

if the event class applies to the player: 1.1.5
For each other player in the prediction range: 1.1.6

if the event class applies to the other player: 1.1.7
calculate next event class instance 1.1.8

Insert event instance with minimum time (determined event) 1.2
in queue in order

Figure 5. Canonical Parallel Algorithm - Initial Step

Figure 5 reiterates the initial portion of the algorithm prior to the main simulation

loop. Figure 6 introduces the input and output portions of the synchronization protocol

into the main loop.

As an abstract algorithm, the description does not include a specific input message

buffer or buffer management. The algorithm assumes the presence of an infinite input

buffer into which messages arriving from input channels are placed in time order. Buffering

techniques are normally used in implementation to mollify the effects of communication

latency (27:60).

4-3.1.2 Protocol Description. Each sequential process on a processor is a

Logical Process (LP). Each LP has a Next Event Queue (NEQ), a local clock, input channels

from predecessor, or upstream, LPs, and output channels to successor, or downstream, LPs.

The output channels from an LP are the input channels to its successor LPs. Each channel

has an associated timestamp set to the time of the last message that traversed the channel.

55

Loop:

Step 1A. Input protocol

Expansion:

Loop Inner:

Case (real msg):

Update msg chan time to msg time;

Insert msg data in NEQ; 1A.1

Case (null msg):
Update msg chan time to msg time;

Discard null msg; 1A.2

If (NEQ time <= min (ichan times)):

exit Loop Inner; 1A.3

else

Send nulls on ochans with msg time = 1A.4

min (NEQ time, (min (ichan times) + ochan delay)));

Wait for msg; 1A.5

end Loop Inner;

Step 2. Remove and return first event; sim time = event time;

Step 3. Execute event;

Step 4. For each player affected by event:

Update copies; 4.1

Expansion:

For copies on this LP: 4.1.1

Insert update event in NEQ; 4.1.2

For copies on other LPs: 4.1.3

Send update events to other LPs; 4.1.4

Determine next event; (1.1.1-1.1.8) 4.2

Schedule next event; 4.3

Expansion:

If player is on another LP: 4.3.1

Send event to other LP with current time; 4.3.2

Send null messages on all remaining output chans; 4.3.3

else
Schedule according to cancellation policy 4.4

until (END executed or queue empty)

end Loop;

end simulation.

Figure 6. Canonical Parallel Algorithm

56

Channels obey a First-In First-Out discipline, and messages arriving on a channel have

monotonically increasing timestamps.

The objective of the protocol is to ensure that every event removed from the NEQ

and processed by the LP is in fact the next event that could possibly be executed. If an

event-bearing message could arrive with an earlier timestamp, the LP must wait until that

message actually arrives.

Input Protocol. The input portion of the protocol is exercised prior

to every attempt to retrieve and execute the next event from the NEQ. The behavior of

the protocol, both on entry and on each protocol iteration once entered, is dependent on

whether or not any messages have been received since the last protocol iteration. Within

this dependency, protocol behavior is based on the relationship between the times of mes-

sages received over input channels and the time of the first event on the NEQ. The order of

evaluation in the protocol reflects the inherent dependency on input channel state change.

If there is a message in the input buffer, the input channel times are updated to

reflect the time of the message. If the message is a real message, it is inserted in the NEQ

for eventual execution.

After the buffer check, the next step is to decide whether any NEQ events are safe

to process as indicated by the first event time being less than the minimum input channel

time. If any are safe, the first event must be safe. Thus, the protocol exits and the event

is returned from the NEQ. Otherwise, none are safe, so the LP reports the next possible

time it could send an event to its downstream LPs. This time is either the time of the first

event on the NEQ, since that event could be a boundary crossing, or the minimum input

57

channel time plus the LP delay, since the incoming message at the lowest input channel

time could be a boundary crossing.

If there is no message in the buffer, the LP must wait for one to arrive. The process

is then repeated with the new information provided by the message.

Output Protocol. The output portion of the protocol is less complex

than the receiving portion. When the LP sends a real message to a downstream LP, it

sends a null message with the same timestamp to each of its other downstream LPs as long

as sending the null increases the channel time. The real and null messages both contain

the LP's current simulation time which was set when executing the event. This time

transmission increases the input channel time of all downstream LPs, possibly allowing

them to execute some number of events.

The output portion of the protocol does not significantly affect the model already

established for copy updating. The iterative behavior of copy updating is addressed as a

portion of the sequential part of the algorithm. Since message transmission is asynchronous,

the sending LP does not wait for message receipt. All waiting time is modeled in the input

protocol model for a receiving LP. Since the receiving LP does not know whether the next

communication it is waiting for is a real message or a null message, no distinction is made

for waiting periods based on message type.

4-3.2 Input Protocol Model. The input protocol model evolves somewhat dif-

ferently than the sequential model since the parallel algorithm involves a dynamically

determined, mutually exclusive condition over two factors, one of which is dependent on

58

the simulation scenario (steps 1A.1 and 1A.2); two steps that can iterate many times de-

pending on the simulation time progress of other LPs (steps 1A.4 and 1A.5); and one step

with a real-time component r that is a dynamic composite function of the total real-time

components of other LPs (step 1A.5).

Component expressions are developed for a single occurrence of each factor and

grouped in a conditional model. Logical properties determining protocol iteration bounds

within each event processing cycle are used to establish potential upper bounds on iteration.

4.3.2.1 Input Protocol Initial State. When the input protocol for LP x

commences, the state of LP x and its adjacent LPs can be described as follows:

• Let EXii — {eXii,eXii+i,.. .,ex>i+n) denote the sequence of events in the NEQ for LP

x prior to processing event ex>i where i corresponds to the ith iteration of the main

loop for LP x.

• Let Ezj = {eZij,ezj+i,.. .,ezj+0) denote the sequence of events in the NEQ for an

arbitrary LP z G ADJ(x) when LP x enters the protocol prior to processing its next

event. In this case, the index j corresponds to the jth iteration of the main loop for

LP z.

• LPx.ti = e^i-i.* and LPz.tj = ezj_i.t. The simulation time for an LP is the time of

the last event executed by the LP.

Index g is used when necessary to distinguish among input protocol iterations for a

particular LP. Values for g always begin with 1 prior to execution of the ith event on LP a;.

The index is incremented for every return to Loop Inner prior to exiting the loop. Where

59

necessary, expressions for minimum input channel times and waiting times are expressed

in terms of g to distinguish between different protocol iterations. If distinction is needed

among input protocol progress for two LPs at the same time, g' is used as well. Usage is

clear in context.

4.3.2.2 Individual Components. Each input protocol iteration has two

behaviorally independent phases. In the first phase, the message buffer is checked. In

the second phase, the time of the first event on the NEQ is compared to the current

minimum input channel time, fi(ICx,i,g). Let iP,.rU]i|,pi and LPx.r1Aiitg>2 denote the

time according to each phase. Several cases are possible in each phase.

• Phase 1.

1. Qualified Real Message Present. LPx.b represents the first message buffer po-

sition for LP x. If there is a message m in that position and m.f = R, the

message is carrying an event to be inserted in the NEQ. The time for the input

channel on which the message arrived is updated to the message time, the mes-

sage is removed from the buffer, and the message data is inserted in the NEQ.

The time to remove the message and insert the message data is represented as

T(fb) + 7"(in,»',j-i) an(i corresponds to step 1A.1. If g - 1, V = i - 1 and g is

referenced to the last protocol iteration of the previous loop iteration. Other-

wise, i' = i. This reflects the dependence of the time to insert an event on the

state of the NEQ at the completion of the previous input protocol iteration.

2. Null Message Present. If LPx.b = m and m.f — N, indicating that a null

message is present in the buffer, the time for the input channel on which the

60

message arrived is updated to the message time. The message itself is removed

and destroyed. This action is represented as r{^b) + r(£&) and corresponds to

step 1A.2.

• Phase 2.

1. Qualified NEQ Event Present. The first event in the NEQ is represented by

exi. If eXii.t < n(ICx,i,g), the event can be processed. No significant time is

spent in the loop. This corresponds to step 1A.3. The time for event retrieval

is modeled for step 2 outside the protocol.

2. Qualified NEQ Event Not Present. If ex<i.t > fj,(ICx,i,g), the first event on the

NEQ cannot be processed. If null messages with the current null message time

have not already been sent to neighboring LPs, they must be sent to maintain

simulation progress. The time needed to transmit and subsequently wait for

new null messages is modeled as part of step 1A.5.

3. Awaiting Message. Once null messages are sent, the LP must wait for some

new message to arrive in its buffer. The minimum amount of time that LP x

must wait is 2 X r(a(N)), the time needed for two neighboring LPs to send null

messages to one another in direct succession. If no neighbor is waiting to receive

the null and return one, then LP x must wait 2XT(a(N)) + T(u(ADJ(x),i,g)),

corresponding to step 1A.5.

61

The resulting components are summarized for the «7th input protocol iteration during

the ith event iteration for LP x:

LPX.TIAA n,1 — "

T(ln) + r(i„,j-,5-i) if LP„.b = m; m.f = R

TM + T(Ct) if LPx.b = m;m.f = N

and

LPx-TlA,i,g,2 — <

0 if exA.t < fi(ICx,i,g)

2 x T(a(N)) + T(u(ADJ(x),i,g)) if cs,,-.i > ß(ICx,i,g)

The time for the iteration is expressed as the sum of its two phases:

LPx.TiAti,g — LPx.TiAJigii + LPx.TiA,i,g,2

(16)

(17)

(18)

4.3.2.3 Bounds on Null Message Iteration. The number of null receipts,

input channel time updates, and null transmissions during the ith event iteration is denoted

hX}i and determined by several factors depending on the operation of adjacent LPs.

The timestamp of a null message sent by an LP z £ ADJ(x) before processing event

eZij is derived from one of three values. If fj,(ICz,j,g') + OCz.dx < eZij.t, n(ICz,j,g') +

OCz.dx is used. If the reverse is true, ezj.t is used. The former represents the time at

which the earliest possible incoming message, real or null, could generate some outgoing

message. The latter represents the time of the first event on the NEQ. The lowest of these

two times is the earliest time the LP could generate an outgoing message.

62

The third possible value for time applied to the outgoing null message is the current

simulation time. If the null message is generated as a result of LP z sending a real message

to some other LP y, the time of the real message is used for the null message as well.

The three choices present several possibilities for hXii. Consideration of behavior over

multiple protocol iterations establishes assumptions for analysis.

If two adjacent LPs each go through a protocol iteration and report their next event

times to one another, each will be able to execute an event after the other on subsequent it-

erations. If this continues repeatedly, execution consists of cycles of null message exchange

followed by sequenced pairs of event executions. The other extreme is the continual ex-

change of messages using only minimum input channel times incremented by fixed delays

as timestamps on null messages. For an event to be executed, this must eventually be

ended by one LP reporting its next event time to the other. Thus, the analysis focuses on

the situation in which the channel delay time increment is sufficiently small with respect

to initial minimum input channel times and next event times on both LPs so as to cause

some number of null messages to be generated.

Let Aj.|t- denote the simulation time interval between the current simulation time and

the next event time for LP x, eXii_i.t and eXti.t respectively. Since the ith iteration for

LP x begins after execution of event eXii_i, the simulation time for LP x is the time of

the event just executed: LPx.t = ex>i_i.t. Likewise, let Azj denote the simulation time

interval from ezj^x.t to ezj.t.

After processing event e^-i, LP x must enter its input protocol loop before process-

ing event eXii. By construction, fi(ICx,i, 1) < ex<i.t. Thus, at least one new message must

(

63

arrive before LP x can process its next event. Let z denote an LP in ADJ(x) such that

OCx.dz is the minimum for all output delays on channels from LP x. Within \ADJ(x)\

input protocol iterations, LP z must send a message to LP x which may or may not allow

event ex>i to be processed.

Again by construction, LP x is unable to process its next event after receiving the

message from LP z, so fj,(ICz,j,g') + OCz.dx < ex>i.t. LP x always adds OCx.dz to the

time of any null received from LP z. If LP z sends no real messages to some other LP

y adjacent to it, any null received by LP x represents some fi(ICz) < ezj.t. Further, if

OCz.dx = 0, then hXii = 0QX,i
d • An expression for hXji for LP x with LP z 6 ADJ(x) that

sends no real messages to other LPs during the interval Ax>i is:

»■' ä |AWWI * oc,A + oc,.d, <19>

The inequality accounts for LPs in ADJ(x) other than z possibly sending a null message

to a; as a result of sending a real message to some other LP. If this happens, the null

message sent increments ß(ICx) by an amount less than OCx.dz. This slows the rate at

which n(ICx) advances toward eXii.t. As the difference between the normal increment and

smaller increments accumulates over the interval A^,-, the total number of nulls sent and

received by LP x may increase over the number that would be sent and received if this

behavior did not happen. The aperiodic jumps in fi(ICx,i,g) cause an effect similar to

jitter delay (43:75).

Extra null messages received by LP x for each real message LP z sends to some LP

other than x during the interval denoted by A^,- can be captured by using Equation 19 as

64

the lower bound of a range for hXii and establishing the upper bound. Let m,,,/ denote

the number of real messages sent by LP z to LPs in ADJ(z) other than x during this

interval. The range for hXii is expressed as:

I-""«I* ocuoci, s *■'£ I^WIx OCJ+OCA,
+ ">-<' (20>

The upper bound term can be further expressed as a summation over the LPs in ADJ(x) to

model the effect of those LPs cumulatively. Since this factor is inherently dynamic based

on the simulation scenario, it is left as a simple term in further treatment to preserve

model clarity. The actual value of mZtXJ is a multiple of the number of boundary crossings

occurring either into or out of LP z during the interval A^,-. For each boundary crossing, LP

z sends some application-specific number of messages, but at least one, to the gaining LP

y to establish or terminate shared state data maintenance. Since the number of boundary

crossings in any interval is problem dependent and based on cumulative player movement,

it is not modeled in further detail. The estimation approach for sector crossings described

on page 53 provides one method for determining the actual number of crossings for a

deterministic trace-driven simulation.

The range expression for hx>i shows algebraically why a cycle among LPs must have

an additive nonzero delay in order to prevent deadlock. As the additive delay approaches

zero, the number of inter-event increments for each of the LPs in the cycle grows without

bound. Thus, the next event for each LP becomes unreachable.

4-3.2.4 Waiting Time. The time LP x spends waiting to receive a null

message is also developed without consideration of a null arriving as the result of an

65

adjacent LP sending a real message to some other LP. Regardless of whether LP x receives

such a null message earlier than a periodic null, it still must wait for all events on adjacent

LPs with times that fall between eXji_1.t and eXti.t to be processed. The waiting periods

are simply shifted in simulation time.

When LP x sends a null message to LP z with time min(fj,(ICx, i,g) + OCx.dz,eXii.t)

for 1 < g < hXii, there may be a number of events that LP z is able to process. When

LP z receives this null, it processes up to the time allowed by the null. Thus, LP x must

wait as long as it takes LP z to process those events before the next null is sent from LP

z. LP z begins execution of ezj and finishes with some other event, denoted ezji. Thus,

after the «7th iteration of the input protocol for x, the time spent waiting for the next null

message from a single LPzG ADJ(x), denoted T(U(Z, i,g)), is:

i'
T(üj(z,i,g)) = J2(LP*.T2,v + LPZ.T3,V + LPz.TAtV) (21)

Each LP z G ADJ(x) may process a different number of events; each event may take

different amounts of real time to process. Though individual null messages sent by LP x

to adjacent processors must be captured separately by considering \ADJ{x)\, the time LP

x spends waiting after sending the messages is bounded by the longest wait for any of the

LPs, m.axyZ£ADJ{x){T(w(z,i,g))). For the interval A(x,i), the wait can be expressed as:

T(OJ(ADJ(X, i))) =]T maxvzeADJ(x)(T(üj(z, i, g))) (22)
9=1

4-3.2.5 Maximum Number of Real Messages. The last term to be developed

is an expression for the number of real messages that LP x can receive during AX:i. The

66

time a message is sent by LP z and the time it is to be executed on LP x are always

identical in the current design. In order for LP z to send a real message with time ro.in its

own clock must be set at that time. Since the clock value is equal to the time of the event

currently being executed on LP z, and that event can only be executed if a null message

with time m.tn > ezj.t was sent from LP x, it follows that any real message sent by LP z

can be processed when z finally blocks. Thus, any real message from LP z to x ends the

interval A*,,- and begins A^i+i-

LP z may send more than one real message to LP x with the same simulation time.

The actual number depends on implementation specifics as well as player crossings at that

time in the simulation scenario. Scenario dependence makes reflection of a realistic upper

or lower bound unlikely, so the quantity is modeled as an unspecified constant Mx,i- When

multiple events with the same simulation time, or simulation times in an interval less than

OCz.dx, are sent from z to x, LP x will be able to process all the events sequentially

with no additional null message processing or synchronization time. Thus, modeling the

quantity as a simple unknown constant applied to message retrieval time is suitable.

4-3.3 Output Protocol Model. The output protocol occurs in two places: copy

updating in step 4.1 and next event scheduling in step 4.3. In copy updating, copies may

reside on different LPs. When this occurs, real messages with time set to the current

simulation time are sent to transmit an update event to each LP containing a copy. Null

messages with the same time are sent to adjacent LPs that do not contain a copy. When all

player images reside in sectors on one LP, Equation 10 suffices for the parallel performance

model. This corresponds to step 4.1.

67

Message transmission during event scheduling is similar to that during copy update,

except that at most a single real message is sent at a particular simulation time, and

only under certain circumstances. In particular, a real message is sent when a player

copy in a sector on an LP other than the LP with the owning player image predicts an

interactive event. This is the mechanism by which player visibility is maintained across LP

boundaries. When the copy is in a sector on the same LP as the owning copy, the event is

simply inserted in the NEQ. This corresponds to step 4.3.

Except for fine-grained decompositions in which many sectors or LPs are used, or

pathological simulations in which players line up along LP boundaries and operate there

continuously, the output protocol will be used infrequently and occur unpredictably. Thus,

other portions of the algorithm will tend to dominate overall sequential and parallel execu-

tion time. Rather than burden the general model with complicated conditional expressions,

the output protocol is represented as a single abstract term. However, a detailed expression

is given for step 4 that can be used for analysis of special cases.

Copy update analysis is simplified by assuming that, from the time the front of a

player contacts a boundary until the back of the player crosses the boundary, update events

are generated by the primary, or owner, player image, transmitted as real messages to LPs

with copy images, and scheduled on the NEQ in each receiving LP for subsequent execution.

Further, each such message is tagged with the current simulation time. Thus, while copies

of a player exist on multiple LPs for the duration of a crossing, each LP executes the same

number, though not necessarily the same type, of events. This assumption is reasonable

under the design criteria that all actions on one LP affecting objects on another LP be

handled through the simulation mechanisms. In other words, if there are c copies, the

68

owner sends c messages to effect an update. Under this assumption, the real message

generated by a copy that goes to the owner to inform the owner of a required state update

is captured as one of the c messages. This is suitable because the owner need not actually

send a message back to the LP with that copy.

The time to insert an event in the NEQ at a receiving LP is modeled as part of the

input protocol, as is the time the receiving LP might spend waiting for the message. Since

the receiving LP does not know whether the next message it receives will be a real message

or a null message, the model for waiting time need not distinguish between the two.

In the parallel model, the updating function is essentially the same, except that

copy structures are distributed among LPs and the LP generating the update must also

generate the requisite real and null messages. When the LPs reside on several processors,

copy retrieval occurs in parallel rather than sequentially as on a single processor.

The cost of copy updating on LPs receiving update events is covered in event execu-

tion. For the generating LP, a distinction is needed for those player copies resident on the

LP and those resident elsewhere. Let L(C(p)) be a function returning a subset of C(p) for

some player p such that the copies returned are resident on the local LP. Let L' = C(p) — L.

The LP must update player images represented by X, and then distribute messages. This

is expressed by modifying Equation 10 from the sequential model and specializing terms

for both e{.p and ei.q:

T{v(L{C{ei.p))) + (|2/(C(e„p))| x r{a(R))) + ((\OCx\ - |£(C(e„p))|) x r(cr(N))) +

r(Ä(ej.p)) + r(tnii_i) +

69

(ei.q # 0) X (r(v(L{C(ei.q))) + (|X'(C(e,-.g))| X r(a(R))) + r(tf(e,-.g)) + r(Vi))) (23)

This equation does not contain a representation for null messages when player q is updated,

since that update happens at the same simulation time as the update for player p. Duplicate

null messages need not be sent at the same simulation times.

4.3.4 Integrated Parallel Performance Model. Using limits for iterative execution

of the input protocol, the time spent in the input protocol for the ith iteration of LP x,

denoted TXA,i, is:

TiA,i = MXii X (r(7„) + Tiinyj-i)) + hx<i X (r(76) + r(Ct)) + T(U(ADJ(X, *))) (24)

This model is combined with models for other steps in the algorithm to produce a model

for the finishing time of LP x running the parallel algorithm, rparx:

s -\-Xbxw

Tparx =n+ Yl (T^,i + T2,i + T~3,i + T4,i) (25)
t = l

4-4 Summary

Models for sequential and parallel discrete event battlefield simulation algorithms

developed in this chapter provide a basis for analysis of parallel performance. A method

for estimating the number of boundary crossing events is shown for use in cost estimation

of sectored decomposition. Use of the sequential model with sectoring incorporated allows

more accuracy in comparisons between sequential and parallel performance by providing

an abstract view of the better sequential approach. A model for the output portion of the

protocol provides a detailed representation that can be used for special case analysis.

70

The models are used in Chapter V to examine performance factors theoretically for

both the sequential and parallel algorithms. Model reduction is used to identify control

parameters that may assist in improving the amount of concurrency extracted from a

simulation. Empirical results are used to demonstrate potential improvements shown by

model manipulation. Finally, several conclusions are drawn about potential algorithm

improvements.

71

V. Model Analysis and Demonstration

This chapter contains manipulations and analysis of the models developed in Chapter

IV to identify factors important to parallel performance. The manipulations focus on the

effects of elements in the conservative synchronization algorithm. Measurements taken on

the Intel iPSC/2 are used to demonstrate theoretical results obtained for special cases of

model instantiation.

This chapter is presented in three sections. The first section contains the fully ex-

panded models developed in Chapter IV and a series of model reductions to verify alge-

braically that input protocol behavior is isolated from simulation behavior when no real

messages pass between LPs. This allows analysis of the minimum synchronization impact

for any simulation. The second section outlines tests developed to demonstrate the an-

alytic results and shows comparative execution time data collected during testing. The

final section analyzes the results from the analytic and empirical studies in the context

of the battlefield domain and provides several heuristics for parallel performance improve-

ment and problem decomposition. The analysis includes identification of several design

challenges identified in the modeling process.

5.1 Performance Models and Reduction

The complete finishing time models developed for a sequential simulation and a

generalized LP in a parallel simulation are:

72

E Y^Aecd,Pi) x T(x(ecd,pj))+

Y, A(ecd,pj) x
d=c' + l

s'+Xbx

E

J2 A(ecd,pk) X r^ec^,^))
Pk€a(pj)

+ r(t„J_l) +

i = l
<ln) + E t(e* G CC") X r(r?(eCd))] + T(u(C(ei.p))) +

d=l

Y^A(ecd,ei.p) X r(x(ecd,ej.p)) +
=1

c

^ A(ecd,e;.p)x

d=l

d=c'+l

]T A(ec,i,pjfc)x r(x(ecd,ei.p,pfc))
Pfe€a(Pj)

+ T(tn)i_i) +

(ei.q ^ 0) X (r(u(C(e,^))) + ^ A(ecd,e;.g) X r(x(ecd,e,-.g)) +
d=l

]T) A(ecd,ei.q) X
d=c' + l

53 ^(eCd.PtJx^xCeCrfjei.gjPt))
Pk€a(e;?)

+ T(in,i)) (26)

and

'parxz

E J^ACccd.p,-) x r(x(ecd,^))+
d=l

J2 A(ecd,pj)x Y2 A(ecd,pk) Xr(x(ecd,pj,pk)) + r(in,j-i) +
d=c'+l

E [-M«.< x (r(^") + T(in,i>,g-i)) + Kti X (r(74) + r(C»)) + r(u;(ADJ(i, »)))+

^(7n) + E Ke< e ec<*) x TWec'))] + r(v(i(C(c,-.p))) + (|i'(C(ei.p))| X r(a(A))) +
d=l

c'

((\0CX\ - |£(C(e,-.p))|) x r(a(iV))) + ^A(ecd,^) x T(x(ecd,e{.p)) +
d=l

73

]T A(ecd,ei.p) x J2 A(ecd,pk)XT(x(ecd,ei.p,pk))
Pk€a(ei-p)

(ei.q ? 0) X (r(u(X(C(e,,g))) + (|£'(C(e,,9))| X r(a(£))) +

+ T(in.i-l) +

J2 A(ecd, ei.q) X r(x(ecd, e<.g)) +
d=l

]T A(ecd,ei.q)x
d=c'+l

Y, A(ecd,pk)XT(x(ecd,ei.q,pk))
PkSa(ei.q)

+ r(in,i))) (27)

OCx.dz,z G AZ>J(a;), the output channel delay from LP x to each adjacent LP, is the

single static control parameter in the parallel model. The parameter is embedded in the

range for hXji developed in Equation 20. The parameter is shown explicitly after several

reduction steps since usage requires an assumption to instantiate either the upper or lower

bound for hXi{.

The number of sectors in the sequential model, the number of processors in the

parallel model, and the particular configurations of sectoring strategies and mappings to

processors are control parameters as well. The effects of the sectoring strategy are modeled

by the dynamic behavior associated with a for each sector, the function that describes the

number of players in the sector for each loop iteration. The effects of the sector-to-LP

mapping, and thus of the processors used, build up from this as the number and kind of

events that occur on an LP during a given time interval. The parallel performance model

is expressed as the finishing time of a single LP. The LP with the largest number of events

is chosen for model instantiation. However, no explicit combination of LPs and processors

is considered at a lower level of detail.

74

General simulator parameters are c', the number of noninteractive event predictors

and classes; c", the number of interactive event predictors and classes; and A, the applica-

bility function mapping event classes to player classes. The number of players, p, and the

initial state of a for each sector are the scenario parameters.

In its general form, the sequential model could be used to calculate the finishing

time of a sequential simulation by expanding each summation iteration and substituting

measured or assumed values for each term. The parallel model could likewise be used by

replicating it for each LP in a parallel simulation and expanding each term for each LP

used. The maximum result over all the replications would be the predicted finishing time

of the parallel simulation.

The primary interest of this study is the analysis of the conservative synchronization

protocol on parallel simulation performance. To focus on this in the performance model,

two sets of simplifying assumptions are made. The first set of six assumptions removes

treatment of special cases and possible execution time variance from dynamic NEQ and

player copy set lengths. Variance from different NEQ lengths between sequential and

parallel implementations is also removed by the first set of assumptions.

The second set of four assumptions permits algebraic verification of input protocol

isolation from simulation behavior for the perfectly parallel simulation in which no events

on an LP cause events on other LPs.

75

5.1.1 Assumption Set 1.

1. All event classes apply to all player classes. Thus, all values of the applicability func-

tion A are 1. This eliminates event prediction variance due to selective applicability

of event types to players.

2. The initial step for both algorithms is excluded. The time taken by this step is

assumed to be small in comparison to the time taken by the main loop. Inclusion

would bias performance results in favor of the parallel implementation since each LP

works with a smaller portion of the total player complement than does the sequential

implement ation.

3. The main loop in the sequential model is indexed for iteration over S events. The

main loop in the parallel model, which is expressed in terms of the work to be done

by one of P LPs collectively executing S events, is indexed for iteration over S/P

events. This assumes a uniform distribution of events per LP.

4. Event execution, prediction, and the input protocol are executed for every simulation

loop. Thus, they are more likely to affect performance than sporadic activities such as

copy updating and boundary crossing events. Model terms expressing copy updates

and movement across sector and LP boundaries can be left in simple terms of the

form T(V(C(P))) and Mi>x, rather than expanded to distinguish among numbers of

copies, distribution of copies, and real messages passed among LPs.

5. NEQ size remains constant in a sequential simulation and on each LP in a paral-

lel simulation. NEQ operations can be modeled as a constant, r(i„), rather than

distinguishing NEQ sizes on each iteration.

76

6. Variance in NEQ size between a sequential and parallel implementations is not suf-

ficient to cause significant variance in NEQ insertion time between the two versions.

With these assumptions, the sequential and parallel performance models become:

£
«=i

r(7n) + r(t„) + r(v(C(e,-.j>))) + ^0* G ecd) x r{r){ecd))+
d=l

YjT(x(eCd,ei-P))+ Yl X) TU(eCd,ei.p,Pk)) +
rf=c' + lpk6a(ei.p) d=l

(et.q ? 0) X T(L„) + T(v(C(et.q))) + Y, T(x(ecd, ef.q))+
d=l

Y2 X T(x(ecd,ei.q,pk))
d=c' + l pk€ct(ei.q)

(28)

' parx

S/P

£ T(7„) + r{in) + r(u(C(e,-.p))) + £(e< G ecd) X r(i/(ecd))+
rf=i

Er(x(ccd,c*.p))+ £ E T(x(ecd,ee-.p,pfc)) +
d=c'+lpkea(ei.p) d=\

(e,-.? # 0) X r(i„) + T(u(C(ej.g))) + ^ r(x(ecd, e0q))+
d=l

+ £ £ T(.X(ecd,ei.q,pk))
d=c' + lpkea(ei.q)

MXti X (T(7„) + r(t„)) + /^ x (r(7j) + r(C»)) + r(w(A£J(a:,t)))] (29)

77

The sequential model is now expressed in terms of insertions and removals in a

single NEQ, player insertion, removals, and updates in multiple player sets, and event

execution and prediction. The parallel model includes each of those features as well as

event scheduling across multiple NEQ structures, protocol message processing, and time

spent waiting on protocol messages. The perfectly parallel simulation of K x B players

distributed uniformly over K sectors, where each sector is allocated to a single LP, is

modeled with the remaining assumptions, 1-4. Since each sector is allocated to a single

LP and each LP resides on a separate processor, K = P where P is the number of processors

used.

5.1.2 Assumption Set 2.

1. No interactive events are executed: Vi : e,.g = 0.

2. No boundary crossings are executed, and thus no player copy updates are required.

The number of players in a sector remains constant over time: V« : C(e8vp) = 0 and

|a(ef.p)| = B.

3. The times to retrieve an event from the NEQ, insert an event in the NEQ, exe-

cute an event, predict a noninteractive event, and predict an interactive event are

constants and interactive event predication takes V times as long as noninteractive

event prediction: r(jn) = C0; T(A„) = Cx; Vd : T(r)(ecd)) = C2; Vi,d|l < d < c' :

T(x(ecd,ei.p)) - C3; Vi,fc,d|c' < d < c : T(x(ecd,ei.p,pk)) - V x C3.

4. The times to retrieve a message from a buffer and destroy a message are constants:

r(7») = C4; r(C») = C5.

78

The finishing time of the parallel simulation, tpar, is equal to longest finishing time of any

of the LPs used, max tpar;c.

By Assumption 1, the terms representing interactive event processing are eliminated,

leaving:

' seq

»=i L

r(7„) + r(*„) + T(U(C(C,-.J>))) + £(e,- 6 ecd) x r(??(ecd))+
<J=1

Y^T(x(ecd,ei.p))+ Yl J2 T(x(ecd,ei.p,pk))
d=c' + lpkea(ei.p) d=l

(30)

and

1 parx

S/P

£ T(7„) + r(i„) + r(u(C(e,-.p))) +]T(e,- e ecd) x r(?7(ecd))+
<f=l

$^r(x(ec(f,e,-.p)) + J2 J2 T(x(ecd,ei.p,pk)) +
d=l d=c'+lpkea(ei.p)

Mx>i X (T(7„) + r(t„)) + A,,,- X (r(7i) + T(Q) + T(U(ADJ(X, »)))] (31)

By Assumption 2, no time is spent updating player copies. Further, the limit of summation

for predicting interactive events is bound to B. This yields:

' seq

r(7n) + T(tn) + Yj(ei € ecd) X 7-(?7(ecd))+
d=l

J2TMecd,ei.p))+ J2 J2T(x(eCd,ei.p,pk))
d=l d=c'+l *=1

(32)

79

and

•parx

S/P

E
«=l L

r(7n) + TM + Yj(ei e eCd) x r(7?(ecd))+

c B

Er(x(ec*>e<-P)) + ^ X^^(x(eccj,ei.p,^)) +
d=l d=c' + lfc = l

•M^ X (r(7„) + r(in)) + /^ x (r(7&) + r(C*)) + r(w(i4DJ(z,»)))] (33)

In addition to simplifying other terms, substitution of appropriate constants from Assump-

tion 3 permits resolution of the summation used to model mutually exclusive event class

execution times:

E
«=i

c' c B

C0 + CX + CJ + 53C3+ J2 EFxC3
d=l d-c'+lk=l

(34)

and

s/p

E
«=1

c B

fcl d=c'+l k=l

A4*,,- X (r(7„) + r(i„)) + hXti X (r(7i) + r(C6)) + T(U(ADJ(X, i)))] (35)

Simplification and regrouping of constants yields:

rseq = Sx(C0 + C1 + C2 + c'xC3 + (c-c')xBxVxC3) (36)

80

and

'parx

(S/P) x (C0 + Ci + C2 + d x C3 + (c - d) x B x V x C3) +

s/p

£ [MXti x (r(7„) + r{tn)) + hXii x (r(7i) + r((b)) + r(u(ADJ(x, i)))] (37)
»=i

Letting C = C0 + Cx + C2 + c' x C3 + (c - c') x 5 x V x C3 yields:

7seg — <-> X G (38)

and

s/p

rparic = (S/P)xC'+Y, [MXti x (r(7„) + r(in)) + Ä,,,- X (r(7») + <&)) + r(u(ADJ(x,i)))]
2 = 1

(39)

The impacts and relationships of the parallel overhead can now be more carefully examined.

5.1.3 Parallel Overhead Model Reduction. Expanding the overhead portion using

Equations 16 and 17 on page 62 yields:

(S/P) xC' +

s/p
]T [MSii X (r(7„) + r(in)) + hXii x (r(7j) + r(Cj))+
«=i

£ max^(iP^.ra,« + LPZ.T3>V + LPZ.TAIV)
g=l v=j

(40)

81

where z G ADJ(x), v denotes the next event for LP z such that /j,(ICx,i,g) < ez>v.t <

fi(ICx,i,g + 1), j and j' are the first and last indices, respectively, of all such events

executed by LP z, and LPZ .r2>„ +... + LPZ .r4|„ is the real time needed for LP z to execute

event v.

Before further expanding hXii, several immediate simplifications can be made. Let

S(ez<v,g) denote the total processing time of the vth event on LP z. Then £(eZiV,g) =

LPZ.T2IV + LPZ.T3IV + LPZ.T4JV. Modeling the event processing time as a function of the

event on LP z permitted to be processed by the </th protocol iteration on LP x addresses

the fact that the gth. iteration may produce a null message that increases p(ICz), possibly

allowing 1 or more events to be processed on LP z. By Assumption 2, Mx>i — 0. Finally,

with Assumption 4, the reduction produces:

S/P

Tparx = (S/P) XC + J2
»=1

hx,i

hXiix(C4 + C5) + Y^ max^£(e^,#) (41)

The upper bound for hx<i from Equation 19 can be used since, by Assumption 2, no

boundary crossings are executed.

hXii < \ADJ(x)\ X
■**-#,«

OCx.dz + OCz.dx
(42)

Setting the parameters involved by using this upper bound for hx>i yields:

'parx

S/P

(S/P) XC + J2
! = 1

\ADJ(x)\ x
A*

\ADJ(x)\x OCx.dz+OCz.dx

OCx.dz + OCz.dx

j'

mm^2£(eZ:V,g)

X(C4 + C5)+

V=J

(43)

82

With the exception of the constants, none of the terms reduce further without making

overly constraining assumptions.

5.1.4 Algorithm and Performance Model Review. The first term in Equation

43, (S/P) X C", represents the total time LP x spends processing events. The second

term aggregates the total time spent sending null messages and waiting for null messages

to be returned by adjacent LPs. While a precise measure of the run time for the LP

must consider these terms iteratively over each event processed by LP x, consideration

without the multiplier (S/P) permits analysis of the time spent processing null messages

and waiting for null messages between each pair of events processed.

A single iteration of the summation term of Equation 43 models each iteration of

the S/P iterations in the parallel simulation. The form of Equation 43 shows that the

amount of time LP x spends waiting between productive computation cycles depends on

two factors: the LP's own progress rate in covering the time interval between the last event

and the next event to be executed, Ax>i, and the real time adjacent LPs z £ ADJ(x) spend

executing events in the same simulation time interval. A reduction in synchronization time

requires reduction of one or both of these factors.

Reducing the time LP z spends executing events during Axj reduces exploited con-

currency over K LPs, since those events are the ones most likely to be able to be executed

concurrently with events on LP x. The rate of progress through A^,» can be reduced only

if the next event happens earlier or a larger channel delay amount is used. The former is

problem-dependent and thus uncontrollable. The latter is controllable, but a brief analysis

83

on page 103 shows how arbitrary channel delay increases can constrain the model fidelity

of moving object simulations.

A review of the parallel algorithm model at step 1A.4 shows the dependency problem

directly. LP x sends null messages to neighbors only when it can do nothing else. This

forces LPs adjacent to x to wait when there may be an event that is safe to process. In fact,

since every LP in any pair must wait on the other, a maximum speedup of P/2 is forced

on even the most parallel simulation for any number of processors. A different approach

may be indicated.

Placing null message transmission in step 1A.3 of the algorithm, prior to checking

the NEQ for a safe event to process, allows adjacent LPs in any pair the opportunity to

proceed even when each is processing an event. The change does not impact the ability to

avoid deadlock, since LP x will still send null messages when it finally has no events safe

to process.

The performance model changes in several ways. The parallel component model

given in Equation 17 becomes:

LPx-TiA,i,g,2 — <

r(a(N)) if eXii.t<ß{ICx,i,g)
(44)

r(a(N)) + V X C3 if eXii.t>ß(ICx,i,g)

The time an LP spends per iteration waiting for a required null message is now bounded

by a constant in the worst case, rather than a function of the progress of adjacent LPs.

Continuing from Equation 43, the performance model using this algorithm modification

84

becomes:

(S/P) x C +
s/p

£ \ADJ(x)\ x(l + •L*-x,i

OCx.dz + OCz.dc
-) X (C4 + C6) + r(a(7V)) + V X C3 (45)

The additional null message received from each adjacent LP is grouped with OCx.d,+oc,.dx

null messages received from adjacent LPs. The new component for waiting time, r(a(N)) +

V X C3, captures the null message sent for each event since it is included inside the sum-

mation. Since all terms inside the summation are constants, the final form is:

(S/P) XC' +

\ADJ{x)\ x K,i
(S/P) x

OCx.dz + OCz.dx
x (C4 + C5) + r(a(N)) + VxC3 (46)

Without the algorithm modification, the best case waiting time for LP x occurs when

there is only one event in the NEQ on LP z with a time in the interval A^. Returning to

Equation 43 with this best case assumption, j — j' so the equation can be rewritten as:

'parx

(S/P) x C +
S/P

E \ADJ(x)\ x l*-x,i

\ADJ(x)\ x

OCx.dz + OCz.dx
x (C4 + C5)+

OCx.dz + OCz.dx
x £(ez,j,g) (47)

85

which, when factored, yields:

Tparx

(S/P) xC' +

'" 'iADJ^ * OC,.t+OC,A, X (C> + Cs + ««"■«» (48)

Taking the single event represented by £(eZij,g) to be executable in maximum constant

time of T(<T(N)) + V X C3, Equation 48 reduces to:

(S/P) x C +

(S/P) x \ADJ(x)\ x A:-'0 X (C4 + C) + T(O(N)) + VXC3 (49)

Equivalence of Equation 49, reflecting the best waiting time for LP x before the algorithm

modification, with Equation 46, reflecting maximum waiting time for LP x after the mod-

ification, shows that the modified version never exhibits a null message wait longer than

the shortest wait possible with the original algorithm. This holds as long as each LP in

a pair has an event within the same simulation time interval, permitting concurrent event

execution. The only cost is the additional null message generation. If the concurrently

processed events take longer to execute than the null message takes to generate, the cost

is absorbed. If either LP does not have an event in the interval, it wouldn't be processing

anyway, so no penalty is incurred. As the number of events processed concurrently in the

simulation increases, the relative expense in additional null message processing decreases.

A similar result has been reported by Nicol (30:306).

86

5.2 Measurements and Demonstration of Model Results

This section describes measurements used to demonstrate model reduction results.

The methods for measurement of basic simulation operations and specific time values are

presented, as well as the details of simulation scenarios used to collect the measurement

data. Basic operation time values were measured using a sequential simulation with uni-

form distributions of events over players with respect to simulation time; players over

battlefield sectors in two dimensions; and, for parallel simulation operations and scenarios,

uniform sector distribution over LPs and LPs over processors in one and two dimensions.

All measurements are taken on the Intel iPSC/2 with no other users or background

tasks on the system.

5.2.1 Basic Operation Timing. The most significant operations in the simulation

are event prediction, event execution, and NEQ insertion and removal. Several different

scenarios with particular characteristics were used to collect average or minimum times for

each operation. All scenarios were run on a single processor except for the scenario used

to measure the time to generate and send a null message. This scenario was run on two

processors.

Several of the basic operations take less than one millisecond (msec) to complete.

Since the granularity of the system clock is one msec, these operations were timed by

placing calls inside a loop executing 100, 1000, or 10000 times as appropriate to measure

the operation. This method produces an average time measurement for the operation.

Each of the loops was measured 30 times to gauge their effect on operation measurement.

The 10000 cycle loop always takes either 13 or 14 msecs, while the 1000 cycle loop never

87

exceeds 2 msecs. The average time for the 1000 cycle loop over 30 samples is 1.4 msec,

consistent with expectations developed by the measurement for the 10000 cycle loop. The

contribution of the 100 cycle loop is negligible. All times reported for operations timed

over more than one iteration are adjusted to remove the effect of the loop.

Table 1 summarizes the minimum times measured for all BATTLESIM operations.

Detailed tables in several subsections show specific behavior characteristics for certain

operations based on numbers of players in sectors and ordering of data structures in the

implementation.

Table 1. BATTLESIM Operation Time Measurements

Operation Op Type Time
Prediction r(x) Route Point 496 //sec

Collision 284 //sec
Boundary 830 //sec

Execution T(J]) Route Point 710 //sec
Collision 22 msec
Boundary 4 msec

Null Msg rO(iV)) Make and Send 1 msec

5.2.1.1 Event Prediction and Null Message Generation. The scenario used

for timing event prediction included 20 players with 101 route points each. The scenario

used a 3x3 grid of sectors to create one sector with four hard boundaries. Five players

were placed in the center sector and one of the exterior sectors, and ten players were placed

in one of the other exterior sectors. Players were overloaded in one sector to observe the

degree of variation between collision prediction times in sectors with smaller and larger

numbers of players. Players stayed within the sector in which they started. The scenario

was configured to run with all sectors on a single processor. This scenario was also run on

two processors to time null message generation. Two processors are sufficient to time the

operation of generating and sending a null message.

Minimum times for event predictions collected over 1000 iterations are summarized

in Table 1. These times are included with minimums for other BATTLESIM operations

to provide relative comparisons.

As an interactive event class, collision prediction is affected by the number of players

per sector. Table 2 shows average times for collision prediction collected for each player

in the scenario. The times are grouped by sector and then by player reference within the

sector. Prediction times for players in the second and third sectors used are greater than

those for players in the first sector even though the first sector contained ten players while

the second and third each contained five players. Each sector data structure is itself stored

sequentially, with players referenced by the sector also stored sequentially. This leads to

longer absolute prediction times due to a longer access time required to index further into

the sector data structure. Within a sector, increasing times reflect the dependence of

prediction time on the number of players in the sector.

In each set of times for a sector, the first time is substantially less than all following

times. The first player reference is selected with a different function than all others, getJirst

vice getjiext. The getJirst function provides direct access to the first player, while the

get_next function advances to the second player and iterates from that point. The same

functions are used to retrieve the aggregate sector structures prior to referencing players

within.

89

Table 2. Collision Prediction Times

Sector No. Player in Sector Time
1 1 284 /tsec

2 812 /tsec

3 825 /tsec

4 844 /tsec

5 860 /tsec

6 880 /tsec

7 894 /tsec

8 917 /tsec

9 930 //sec

10 949 /tsec

2 1 527 /tsec

2 1054 /tsec

3 1069 /tsec

4 1087 /tsec

5 1104 /tsec

3 1 651 /tsec

2 1175 /tsec

3 1194 /tsec

4 1211 /tsec

5 1229 /tsec

5.2.1.2 Event Execution. Three scenarios were used to time event exe-

cution. Route point events were timed using the scenario with 20 players allocated to

four sectors. Collision execution was timed using a scenario with 60 players colliding with

one another in pairs. This scenario used one sector on one processor. Finally, bound-

ary crossing event times were collected using a scenario with 30 players crossing between

two sectors. The players were divided into two waves following one after the other. This

provided collision avoidance while keeping the scenario manageable.

Table 1 includes the lowest average times for execution of each event type. The

time for route point execution is stable regardless of the number of players in the sector.

The time is taken using 100 iterations of the event for each occurrence. The lowest time

90

for collision execution occurs when the last pair of players in the sector structure collide.

Collision execution times are high enough to omit multiple iterations for measurement.

Times shown for boundary event execution in Table 1 are simple averages. While the times

were sufficient to omit multiple iterations, they varied significantly from player to player.

This is attributable to a number of conditional evaluations exercised in each boundary

event execution.

Times for each collision in the 30-collision scenario are shown in Table 3. Values in

the table are listed from left to right, top to bottom in the order in which the collisions

occurred. Three of the player pairs apparently disappear from the simulation without

colliding. Cursory attempts to ascertain why this happens were unsuccessful.

Collision execution time generally decreases as players are removed from the scenario.

However, some times increase between collisions, reflecting the variations from colliding

players being referenced in different areas of the sequential data structure in the sector.

No attempt was made to have players collide in a particular order.

Table 3. Individual Collision Execution Times (in msec)

68 55 71 58 50 64 54 46 59
49 42 54 45 38 49 40 34 38
31 34 28 32 25 28 23 25 22

5.2.1.3 NEQ Operations. Table 4 shows average times to insert and remove

an event for several NEQ lengths, corresponding to model parameters r(tn) and r(7„).

These times demonstrate the contribution to simulation loop execution time added by the

NEQ for various numbers of players per LP. These measurements represent the average

91

time needed to insert an element at the end of a list of the given length and remove the front

element. Since insertion and removal occurs for every event executed, the two operations

were measured as an aggregate over 1000 samples.

Table 4. NEQ Operation Measurements

NEQ Length Time
1 13 msec
10 14 msec
100 18 msec
1000 60 msec
8000 394 msec

5.2.2 Simulation Experiments. The reduction of potential LP waiting time de-

scribed on page 83 was demonstrated using a scenario of 20 players. The route for each

player consisted of 101 points, resulting in 100 events per player. Each route formed a

straight line and did not intersect with any other route. All routes were designed to gener-

ate an event for each player at every time unit. The resulting simulation is balanced with

respect to event frequency per player and execution time per event.

For run time measurement, timing began with the first event to be executed and

ended with the last event executed. This removed the overhead associated with file input

and the initial round of event prediction and scheduling.

The first set of comparative measurements used the synchronization algorithm as

shown in Figure 6 on page 56. The second set of comparative measurements used the

algorithm with the modification proposed in Section 5.1.4 on page 83. In both sets of mea-

surements, the scenario was run first on a single processor using a single sector. Another

sequential test was run using 4 sectors, each with 5 players. Player routes did not cross

92

any sector boundaries. Finally, each set of measurements concluded with parallel tests in

which each sector was allocated to a processor. All player routes remained the same as in

the sequential simulation.

The sequential tests were run using a single LP representation. This adds a constant

amount of overhead per event execution since several function calls are made to determine

whether another LP has sent a message. The function calls would not be made in a strict

sequential simulation that does not implement the LP model. The overhead added per

event executed is approximately 60 fj,sec, so it is not significant. The parallel tests were

run using 4x1 and 2x2 processor configurations. Each configuration was run 10 times to

collect an average run time. The averages from each of these tests are shown in Table 5.

There was no time variance among the individual trials.

Table 5. Synchronization Algorithm Improvement Results

Test Set 1 Sequential 1 sector 78 sees
4 sectors 60 sees

Parallel 4x1 30 sees
2x2 30 sees

Test Set 2 Sequential 1 sector 78 sees
4 sectors 60 sees

Parallel 4x1 17 sees
2x2 17 sees

These results demonstrate the potential of using null messages to increase concur-

rent execution when available in the simulation scenario. For sequential processing, the

results demonstrate the potential savings available from sectoring when sector crossing

overhead is not sufficient to overshadow time savings from reducing player references in

event prediction.

93

5.3 Analysis

Conservative synchronization has been shown to be capable of recognizing differing

amounts of parallelism in different problem models (30:323). The goal of this work is

to identify factors and relationships that determine performance in parallel battlefield

simulation. This goal defines the context for analysis.

5.3.1 Parallel Performance Issues.

5.3.1.1 Control Parameters. Equation 46 shows that channel delay time,

OCx.dz for an LP x with adjacent LP z, is the,only control parameter that affects the

behavior of the input protocol. The general sequential and parallel performance models,

Equations 5.1 and 5.1 respectively, show that the sectoring strategy and sector mapping

to parallel processors remain as the only additional control parameters.

The sectoring strategy and processor mapping determine player relationships to one

another and to player groupings, as well as the maximum number of events that can be

processed at a given time. However, without explicit knowledge of player distributions in

space over time, the opportunity to control these parameters to improve performance is

limited.

To a large extent, the benefits and costs of sectoring and processor allocation vary

with player movement during each event iteration. Sectoring within the boundaries of

a single processor may reduce player references in event prediction, but it also adds the

potential for generating events that are not present in the sequential simulation. When

the time spent executing these events exceeds the time saved in player references, the sec-

94

toring scheme hurts performance. Since LP boundaries coincide with sector boundaries,

the implication for parallel processing is that the time spent processing boundary cross-

ings should not exceed the gains made from processing events concurrently. Concurrent

processing gains can only be made when players on different LPs have events that can be

executed during the same simulation time frame, and only then when the synchronization

algorithm can recognize the concurrency and permit multiple event execution.

Control of the channel delay increment with respect to the difference between the

last event and next event to be processed is a key factor in recognizing concurrency. Iden-

tification of unnecessary sequencing among processors shown on page 83 is the first step in

exploiting inherent concurrency. The next step is the reduction of protocol messages each

LP generates. Protocol messages add time to the processing of event schedules on both the

sending and receiving LPs. Real time is added by message production or consumption and

waiting for protocol messages with timestamps that permit processing of the next event.

By Equation 19, the number of null messages between two LPs x and z per event

processing iteration is inversely proportional to the total channel delay time between the

two LPs. Equally important, the timestamp change between successive messages is pro-

portional to delay time. Thus, increasing the delay time reduces messages produced and

consumed and increases the rate of progress of LPs throught their event schedules. The

delay time controls several rates of change in the algorithm and across the LP network.

1. Progress of LP x. The immediate cycle formed between every LP and its \ADJ(x)\

neighbors has the effect of injecting \ADJ(x)\ null message transmissions and re-

ceipts, at a minimum, between every event processed by LP x. This effect can be

95

limited by restricting the conditions under which null messages are sent, as in the

canonical algorithm, but at the expense of also limiting opportunities for concurrent

execution. The rate of progress of a single LP through its schedule is a function of

the ratio between its inter-event times and its output delay.

2. Progress of LP x with respect to LP z G ADJ(x). The rate of progress of one LP

through its event schedule establishes a maximum rate of progress for all LPs in its

adjacency set. The amount of concurrent event execution is determined by the inter-

event times among LPs in an adjacency relationship. This measure is only indirectly

related to the rate of progress of any one LP. Even with a slow rate of advance,

events can still be executed concurrently; the periods between concurrent execution

are simply longer.

3. Progress of LP x with respect to arbitrary LP I £ ADJ(x). Since each LP in a

mesh topology is directly dependent on neighbors and indirectly dependent on all

other LPs, the primary determinant of progress for a particular LP is the tightness

of binding in simulation time delay between adjacent LPs. As this is relieved, LPs

further away in the topology become more binding on progress. When considered

from the point of view of absolute simulation time, the difference between lowest

NEQ time and highest ß{LCx) establishes a window of concurrency, W, across all LP

schedules. All events in the window can be executed concurrently. The window's rate

of movement across the set of LP schedules is an aggregate measure of the 'speed' of

the simulation.

96

5.3.1.2 Inherent Concurrency. Performance assessment of a parallel algo-

rithm must be based on the amount of concurrency in the problem solved by the algorithm.

Data decomposition assumes that there is some amount of data independence that can be

used to allow parallel execution. If problem data is completely independent, decomposition

over p processors can result in p-fold speedup. As dependencies are added, the amount of

concurrency available in the problem decreases. In simulation, dependencies are added only

by changing the event trace, thus changing the simulation itself. The amount of inherent

concurrency, and thus performance potential, differs widely among possible simulations

regardless of the synchronization algorithm used.

In a deterministic simulation model, the amount of concurrency is embedded in the

initial state of the simulation. The simulator acts as a generator, producing an event

trace according to the rules of the simulation model. The parallel simulator uses multiple

processors that each begin with a portion of the initial state and execute the simulation

model rules sequentially.

Few metrics have been proposed to quantify the amount of concurrency inherent

in a problem as a function of time or event ordering. The Event Horizon, adapted from

physics, has recently been offered as an analytic model of inherent concurrency (49:39).

This appears to be the best metric yet described for establishing a baseline for synchro-

nization algorithm performance. Its application in battlefield simulation has been tested

with promising results, but specific use in algorithm construction is not yet widespread

(50).

97

Figures 7 and 8 represent event traces with different amounts of available concurrency.

Each square represents an event in a process schedule. Each event is defined to require one

unit of real processing time. Events occur at integral values of simulation time as shown

inside the squares.

The absence of inter-schedule arrows in Figure 7 indicates that no event dependen-

cies exist among schedules. This simulation could be run with no synchronization at all.

However, since this is not known beforehand, synchronization must be used. Synchro-

nization based on simulation time alone, using a channel delay of one unit between all

processors, forces nine iterations to process the total schedule when it could be done in

four with four processors. Though the scenario has a high degree of concurrency, con-

servative synchronization using next event times and fixed channel delays does not fully

recognize it.

Arrows in Figure 8 show event dependencies across schedules. This figure represents

a simulation with some inherent parallelism. However, conservative synchronization using

event time stamps alone would not recognize most of the concurrency. In this example,

four events are scheduled on each of four processors by some method associating events and

processors, such as spatial decomposition in battlefield simulation. Time-stamp ordering

forces sixteen iterations, exactly the minimum number needed to process the total schedule

sequentially.

5.3.1.3 Concurrency Recognition. In Figures 7 and 8, each event occurs at

uniform time intervals and is defined to require a unit amount of time to execute. When

98

Simulation

Time

1 2 3

Figure 7. Completely Independent Event Schedules

Simulation

Time

1 2 3

Figure 8. Dependent Event Schedules

11 8 8 9

8 6 7 6

7 4 6 2

1 3 2 1

Processor

Processor

similar conditions do not hold for event time distribution and real time execution duration,

they both become performance factors.

When events in the simulated system occur aperiodically, the number of increments

each LP takes to reach its next event increases over what would occur for simulation of a

synchronous real system. The reduced model on page 85 shows this explicitly, since the

number of null messages produced and received increases as the time between events on

an LP increases. Each null message between events constitutes an unnecessary synchro-

99

nization attempt. When events take different amounts of real time to execute, processes

arrive at logical synchronization points at different points in time, thus forcing dependent

processes to wait to receive protocol messages. The ability of the synchronization algo-

rithm to advance LPs quickly toward required synchronization points indicates its ability

to recognize concurrency in the problem.

In a battlefield context, the required synchronization points correspond to players

crossing LP boundaries. Inside each of the intervals between boundary crossings, there is

no need for processor interaction. Thus, each processor should be permitted to run every

event it generates up to the time of the next actual boundary crossing into or out of the

area covered by the processor. This suggests three possibilities for improved concurrency

recognition:

• Earliest possible LP boundary crossing times can be used to determine potential syn-

chronization points. After each event executed, or less frequently for efficiency, the

earliest crossing that coincides with an LP boundary can be computed using player

distances and maximum velocities. The time can be broadcast globally using the

interconnection network or distributed using null messages. As a global synchroniza-

tion, channel time management and error reporting under this scheme would have

to be relaxed so that null messages communicating the global minimum time would

not be considered to be out of time order.

• An LP may be able to use the simulation event structure to deduce limits of possibility

for incoming or outgoing events based on current state. The event structure can

be provided to the LP as an abstract tree or graph to preserve decoupling in the

100

general simulation architecture. The graph models the hierarchy of events and event

production rules used by the simulator to model player behavior.

• The Event Horizon concept could be used to develop a risk-free synchronization

algorithm suitable for battlefield simulations.

Each of these options may provide a performance improvement over the current

method for determining future earliest message times. The null message improvement,

similar in nature to the conditional event synchronization method (8), may provide rea-

sonable savings for the work expended. Abstract event structure specification and interface

design would be somewhat more complicated, but would provide the synchronization pro-

tocol with information more closely resembling the rules used to generate events in the first

place. Finally, use of the Event Horizon to construct a risk-free synchronization algorithm

(49:41) may provide the most payoff in the broadest variety of scenarios.

Sector Crossing Times. For each event executed, a player's state,

including position, is updated. This may determine a new earliest possible time in the

future for an LP boundary crossing. Thus, the earliest possible intersection of all player

routes with LP borders can be computed and substituted for the NEQ time component

used in determining the time on the next null message sent to that LP. Tables 3 and 4

show that border intersection calculations do not take significantly longer than collision

prediction, and are currently overshadowed by the NEQ operation times.

Minor modifications to this algorithm can be made and the resulting information

provided to the synchronization protocol for use in null message generation. An adjust-

ment has to be made when the player actually hits the border, since the computation at

101

that point would provide a zero time advance. Some small absolute minimum could be

substituted.

This approach would bring all currently available problem information to bear on

moving LPs forward in simulation time as fast as possible. When the difference between

the current time and the next possible crossing time is greater than the advance provided by

the current strategy, the approach will allow a larger simulation time window for concurrent

event execution. This type of approach amounts to an improvement in lookahead. The

absence of lookahead has been shown to be detrimental to performance in conservative

protocol applications (17:24).

Event Structure As a Parameter. An immediate weakness of using

event times as a synchronization device is that they only partially describe the range of

possible next events and next event times. Thus, if this is the only parameter available to

the synchronization protocol, the ability of an LP to determine its future may be overly

limited.

Event structure analysis has been proposed for various purposes in PDES, including

automatic lookahead computation (10) and simulation speedup estimation (47). This

idea could be extended to the design of a generic interface that allows simulation event

generation and precedence information to be passed to the synchronization protocol during

simulation initialization. The protocol logic could then use the structural information,

combined with time knowledge present during each state, to further limit and possibly

more accurately deduce next event time minimums passed to adjacent LPs.

102

The success of this approach is certainly dependent on the degree of detail specified

in the event structure. However, as the modeling details of the simulation application are

developed to finer levels of granularity, this approach would seem to offer some potential

in closing the gap between the concurrency recognition provided by event time data and

actual problem concurrency.

Event Horizon. Intuitively, the best synchronization algorithm would

deliver each process precisely to its next synchronization point without any delays along

the way. The Event Horizon concept appears to provide a theoretical approach to doing

this. In addition to serving as a metric for gauging inherent concurrency, the concept could

be used for synchronization algorithm construction.

5.3.1-4 Channel Delay and Replicated Players. The channel delay used by

an LP x to allow adjacent LPs to progress signifies the earliest time in the future that LP

x will send another message. If a vehicle of size s traveling through LP x at velocity v

contacts the boundary with another LP z at time t, LP x sends a message at time t to LP

z to create a copy of the vehicle in LP z. A similar action occurs at time t + (s/2v) when

the center of the vehicle hits the boundary. This second message causes LP z to generate a

null message back to LP x with time t + (s/2v) + OCz.dx, allowing LP x to process events

up to that time. However, if the vehicle continues at its current direction and velocity,

its back will cross the boundary at time t + s/v. LP z will send a message to LP x at

this time to report the crossing. If (s/2v) < OCz.dx, a causality error occurs. Preventing

the error requires either a redesign of the data replication approach or a requirement that

OCz.dx < (s/2v). For large v and small s, such as those characteristics exhibited by

103

aircraft, OCz.dx < (s/2v) compromises performance by inducing a large number of null

messages for each event processed. The relationship between the size of OCz.dx and time

between events to parallel performance is established in Equation 46.

In addition, LP x will process all events in its current permissible time interval before

an adjacent LP z can process events. If an interaction between players on adjacent LPs

occurs within this time interval, it cannot be correctly modeled by the simulation. When

LP z resumes processing, its simulation time will be less than that of LP x. Thus, if LP z

detects and attempts to schedule a shared event with LP a; at a time during LP z's current

processing interval, the event will necessarily be in error since it will be in the simulation

past for LP x.

This behavior was first observed during routine use of BATTLESIM. To isolate the

problem and explore a solution, a scenario was designed in which a single player crosses a

sector boundary coincident with an LP boundary between two sectors on two processors.

Several runs were made, varying the velocity and size of the player so that (s/2v) < OCz.dx

was both preserved and violated. When the constraint is preserved, the synchronization

protocol performs without incident. When it is violated, the algorithm consistently reports

a message ordering error, indicating a causality constraint violation.

To address this issue, a special function was developed to alter the channel delay time

when a player crosses a boundary. When the front end of the player hits the boundary, its

maximum velocity and size are used to determine the center crossing time with respect to

the current time. A special null message is sent around the cycle between the two involved

LPs to set the channel clock times appropriately, since the previous null message sets them

104

too far into the future. The new minimum increment is used until the back of the player

crosses into the gaining sector. At that point, another special null message is used to reset

the delay times to the previous value.

This approach was tested using the same scenarios that caused error reporting before

the approach was implemented. No errors were reported, and no opportunity for real

causality errors was introduced.

5.3.2 General Performance Issues.

5.3.2.1 Sectoring Benefits and Costs. Sectoring a sequential simulation

saves time if the number of player references needed for event prediction is reduced over a

non-sectored implementation and new events corresponding to sector crossings do not out-

weigh the reduction (53:916) (31:187). The intuition behind this approach is apparent and

was demonstrated in model reduction and testing. Table 1 shows measurements indicative

of this savings. However, the net benefit is affected by movement and feature interactions

that vary unpredictably over time. Both the savings and cost vary with interaction and

player movement.

Boundary event prediction takes as much time as the other two measured predictors

taken together. Boundary event execution is of moderate cost with respect to other event

execution times. The cost of interactive event prediction is driven by the insertion and

reference time requirements of the data structures used to hold players in sectors. Reduc-

tion of these times depends on either reducing the size of the data structure between index

points or reducing the overall complexity of data structure manipulations.

105

In the battlefield simulation application, the size between index points changes with

player movement on each iteration. While development of ways to predict player flow into

and out of the structures may prove useful in the long term, complexity reduction through

the use of more efficient data structures such as hash tables is likely to provide the easiest

observable improvement.

The dimensionality of sectoring is another consideration. For sequential simulation

with no knowledge of future motion, two-dimensional sectoring provides the least interior

boundary distance for a given number of sectors. This produces the smallest opportunity

for boundary crossings to be generated, and thus the lowest cost potential. For parallel

simulation with unknown motion characteristics, two dimensional decomposition provides

the highest possibility of concurrent execution. Decomposition in a single dimension forces

sequential execution of events for players that are in the same dimensional strip, even

though they may be very far away from one another. For most cases, two dimensional

decomposition for a given number of sectors should yield the best results.

5.3.2.2 Player Replication. In sequential processing, the player copy man-

agement scheme used to ensure proper player event prediction and state update increases

overhead by increasing the number of player images referenced in event prediction. This

type of overhead is similar in sequential simulations and SPMD simulations in which a

player's prediction range spans sectors but remains confined to a single processor.

When a player's prediction range spans processor boundaries in SPMD simulations,

the approach introduces an additional effect on top of the iterative complexity. Since player

state data is replicated in the sectors and associated processors into which the player has

106

visibility, state data update and event processing must occur in strict timestamp order

on all affected processors. This amounts to a strict time order dependency among the

processors, removing the possibility of parallel execution while the data is replicated.

Simple player crossings of joint processor/sector boundaries at high speed present

the least potential impact to parallel execution due to the player management scheme.

The greatest potential impact occurs when a player moves parallel to a boundary while

straddling it. Parallel execution that could occur otherwise is nullified, and protocol mes-

sages are generated at a rate of one in each direction between processors per minimum

time interval.

The impacts to parallel performance are a function of the movement of the player

and the time spent predicting events for the player over the other players in the sectors in

which it is replicated. Thus, the impacts are inherently unpredictable from the structure

of the simulated space unless significant constraints on detection range are levied. Even

with such limitations, the dynamic effects of event prediction are still present.

5.3.2.3 NEQ Performance. Time measurements in Table 1 show that NEQ

insertion time is a dominant factor in the sequential portion of the algorithm. This result

underscores the need to use efficient data structure implementations regardless of whether

the simulation is implemented sequentially or in parallel. The NEQ is a heavily used

data structure. From a practical point of view, efficient NEQ operation stands to reduce

expected run time substantially in any implementation. From a comparative perspective,

NEQ distribution over a distributed processor network will necessarily result in better

107

performance, and thus clouds any comparisons that might be made between parallel and

sequential implementations.

5.4 Summary

This chapter presents theoretical and empirical results that identify factors important

to parallel performance in battlefield simulation. Model analysis and test results provide

insight into improvements that can be made in conservative parallel synchronization algo-

rithms, as well as inherent limitations. Data structures used to maintain event lists and

player collections are identified by timing measurements as driving factors in simulation

loop iteration time. Hash table implementation is identified as a design approach that

would make data structure performance less sensitive to simulation dynamics. Reduction

of data structure complexity plays an important role in assessing true parallel algorithm

performance, since inefficiencies in sequential data management obscure algorithmic per-

formance differences attributable solely to parallel implementation.

108

VI. Summary of Results and Recommendations

6.1 Summary of Results

The objective of this research was to develop analytic performance models of sequen-

tial and parallel discrete event battlefield simulation using conservative synchronization for

use in identification of factors that affect sequential and parallel performance.

The objective was met. A general deterministic performance model was developed for

both sequential and parallel battlefield simulations in terms of finishing time. The model

structure was specialized and reduced to explore expected behavior attributable to certain

algorithm components. Model reduction that focused on exploring the static contribution

of the parallel synchronization algorithm revealed a design anomaly that limits potential

speedup by a factor of two. Empirical results confirmed this behavior for a perfectly

balanced simulation scenario. Model analysis also provided insight into potential solution

approaches. The synchronization design was modified as suggested by the analysis and

speedup within a constant of linearity was demonstrated for simulations with a high degree

of inherent concurrency. The potential for this type of result was not clear prior to model

development.

The modeling approach used was sufficient to capture relationships among static

synchronization algorithm components and the battlefield simulation model that had the

potential to limit exploitation of potential concurrency. In addition to supporting the

research objective, the approach was also sufficient to suggest directions for improvement

using domain-independent and domain-specific information.

109

The predictive quality of the model was sufficient to show expected orders of mag-

nitudes of difference in finishing times between sequential and parallel simulation imple-

mentations for test cases in which the degree of inherent concurrency was established.

While prediction of absolute finishing times was not a specific objective of the research,

the utility of developing the performance model in those terms was clearly demonstrated

for comparative purposes.

An indirect result of this work was the identification of inherent conflict between the

Chandy-Misra null message deadlock avoidance scheme and the current data replication

management approach used in BATTLESIM. While this is primarily an implementation

detail, it does show a need for better integration between the replication manager and the

synchronization protocol for effective simulation of objects that span a large geographic

region.

6.2 Research Contribution

This work contributed to current general knowledge in two ways. It demonstrated

the effectiveness of using deterministic modeling techniques to explore parallel performance

improvements in dynamic simulation models. It also provided a theoretical model for use in

evaluating the potential of conservative synchronization protocols to provide good parallel

performance in battlefield and moving object simulations.

In addition, this research provided a number of insights useful to the continuing

exploration of parallel discrete event battlefield simulation at the Air Force Institute of

Technology. The models developed can be used to focus on particular areas of algorithm

design that indicate tight coupling which forces unnecessary synchronization. They can be

110

refined to support study of potential heuristics that use domain-specific information, such

as the inclusion of combat operational doctrine and mission planning data, to improve the

performance of parallel battlefield simulations.

6.3 Recommendations for Further Study

6.3.1 General Directions. Fujimoto outlines four proposals to make the benefits

of ".. .parallel simulation more accessible to the simulation community" (18). The essence

of three of the proposals is to remove the burden of dealing with parallelism from the

application. Nonetheless, his assessment of the state of PDES research progress finds

that the best results have been obtained in cases in which application programmers were

experts with the synchronization algorithm, while the worst results have been cases in

which application programmers had limited experience with it (18:220). This implies

that a non-trivial coupling must exist between the application and the synchronization

algorithm if good performance is expected.

The general parallel simulation architecture, of which the testbed at the Air Force

Insitute of Technology is an example, supports information hiding and design modularity.

The next step should be to design a general interface that supports the transfer of lookahead

and event precedence information from the application down through each level while

maintaining semantic abstraction.

The simulation kernel needs access to event precedence information for proper event

scheduling and cancellation. The synchronization protocol needs abstract future event

time information to exploit concurrency as it unfolds in the simulation. The protocol

could also benefit from abstract knowledge of event precedence, since the structure defines

111

the rules by which events can be generated. Parameterized transfer of a precedence graph

representation could be used to maintain decoupling.

Several research efforts have examined formalizations of event precedence structure

and their use in synchronization (10) (47). Formalizations of inherent concurrency have

been somewhat more elusive. However, Steinman recently advanced the "Event Horizon"

as a formal metric of inherent simulation concurrency (49). It appears to apply to any

simulation model, and provides the insight needed to construct a general synchronization

algorithm that performs well regardless of the target application. His own research has

included implementation of the concept and produced excellent results in parallel battle-

field simulations using conservative synchronization (50). Future work should focus on

incorporating this notion into parallel simulation algorithm design.

6.3.2 Specific Issues. Several short-term areas for investigation are indicated,

involving issues in both parallel and sequential modeling and design. An overarching

recommendation for exploring any of these areas is that they be tackled individually rather

than all at once. A measured approach is likely to produce more readily verifiable results

than attempting to solve all of the issues in concert.

• Performance Model Validation. The models resulting from this research were devel-

oped using constructive analysis. Empirical studies were limited to exploration of a

very small set of model parameters. While the constructive process and details are

thoroughly described herein, complete validation and expansion of abstract terms

would provide a more complete and usable performance model repertoire for the

various components of the battlefield simulation design.

112

• Next Event Queue Design. Timing experiments confirmed that operations on se-

quential event list structures can quickly dominate computational complexity. While

this is neither new nor a particular impediment to this research, it does highlight the

need for incorporation of more efficient data structures if credible demonstration of

traditional speedup results becomes a research objective. This observation applies

to both the event list and data structures used for object collections. Operations on

both types of structures can obscure synchronization algorithm behavior. Structures

and techniques demonstrated to be efficient in other efforts, such as the SPEEDES

queue (49:40) and hash table implementations (50:9), may be beneficial.

• Domain-Specific Information. Generally, parallel simulation research efforts reported

in the literature have not indicated the use of actual combat model information in

the exploration of conservative synchronization protocols. State-of-the-art research

in simulation of dynamic systems often uses statistical data collected from the domain

of interest. Advanced work in theoretical performance modeling could benefit from

the use of this type of information, both in terms of finely tuned modeling and

academic credibility. As part of the Department of Defense infrastructure, AFIT is

uniquely positioned to take advantage of this type of information.

• Object Replication Scheme. The reliance of the current object replication scheme on

simultaneous events across logical processors fundamentally conflicts with the general

deadlock avoidance strategy. This was demonstrated both analytically and empiri-

cally. Synchronization protocol implementation improvements developed as part of

associated research may help to resolve the problem. However, future work dealing

113

with moving object simulations should look at this area in more detail, especially in

the context of performance degradation.

• Event Precedence. In addition to exploring the abstract event precedence specifica-

tion for performance improvement in the long term, it should be considered in the

short term as a way to resolve the occurrence of simultaneous events across logi-

cal process boundaries. The event structure implementation built explicitly in the

testbed software could be used to formulate a more abstract design.

6.4 Summary

This chapter summarizes the overall research effort in the scope of the initial ob-

jectives, methods, resulting model products, and demonstrative empirical results. The

chapter also describes recommendations for future research based on observations made

during model development and demonstration. The chapter concludes with recommenda-

tions for long- and short-term research objectives for both sequential and parallel simulation

component performance evaluation.

114

Appendix A. Data Dictionary and Function Definitions

This appendix details the entire complement of data definitions, abstract data types,

and abstract function definitions used in the development of performance models for par-

allel discrete event battlefield simulation. Data model interpretations and structural con-

straints on data definitions establish a context for model usage consistent with the moving

object problem domain. Definitions and functions described with the performance models

are replicated here for completeness.

A.l Data Dictionary

The data dictionary is composed of formal definitions, informal descriptions, struc-

tural constraints, and data model interpretations.

A. 1.1 Definitions and Descriptions.

• TIMES = {x\x is a simulation time}

TIMES is the set of simulation times projected or used in a simulation.

• SIM J5NT = {x |x is a simulated entity}

SIM-ENT is the set of types of physical components or systems that are simulated.

• ATT = {x|x is an attribute of a simulated entity}

ATT is the set of attributes that comprise the state space of instances of simulated

entities.

• PLYR = {(*, ATTz)\z G 2+ A ATT, C V(ATT) - {0}}

115

PLYR is the set of instances of simulated entities, hereafter called players. As a

model of a physical component or system, each player has a unique identifier drawn

from the positive integers and a single, non-null set of attributes. Attribute set

commonalities may exist among players, providing the basis for player classes. Each

player has an associated type that is the first attribute in the attribute tuple. Each

player's attribute set remains static throughout its existence, though attribute values

may change. The value of the type attribute for a given player remains constant

during the player's existence.

BHVR = {x|x is a simulated behavior}

BHVR is the set of behaviors or processes that operate on physical components or

systems modeled in the simulation. The number of behaviors modeled in a simulation

must be finite. Members of BHVR are modeled by iterative computational processes.

INTACT = {TIMES x (BHVR u {0}) x (PLYR u {0})2}

INTACT is the set of all possible applications of behaviors or processes that can be

applied to up to two players at any time.

e d= (t, b,p, q)\{t,b,p,q) G TIMES x (BHVR U {0}) X (PLYR U {0})2

e is the general form of a particular event in a DES.

ECX = {ee INTACT\e.b = x}

ECX is the set of all events that model a behavior or physical process. Each set

corresponds to a block in a partition of INTACT and is known as an event class. The

value of x distinguishing an event class remains constant throughout a simulation.

EC = {ECx\x G BHVR}

116

EC is the set of all distinct event classes in a simulation.

• PCX = {{i,ATTi) e PLYR\(ATTiA = x)}

PCX is the set of all players sharing a value for the type attribute. Each PCX is known

as a player class and corresponds to a block in a partition of PLYR. The value of x

distinguishing a particular player class remains constant throughout a simulation.

• PC = {PCx\x e SIM.ENT}

PC is the set of all player classes distinguished by a type attribute value.

• IS_AECx : INTACT -+ ECX

• IS-APCx : PLYR -> PCX

IS~AECX,PCX are functions mapping events and players to event and player classes,

respectively. The functions are alternative definitions of ECX and PCX for given x.

• A' : EC x PC -> {0,1}

A' defines the association between event classes and player classes for a simulation:

A'(eCi,pCj) = <
1 if ec{ applies to pcj

0 otherwise

A : EC x PLYR -> {0,1}

A defines the association between event classes and individual players in a simulation:

1 if A'(eCi,pck) - 1 A pj E pck
A(eci,pj)

0 otherwise

INTER={(t,b,p,q)\(t,b,p,q)eINTACTAp,q^0}

117

INTER is the set of all interactive events in a simulation that operate on exactly

two players. Event classes in a simulation may be subsets of INTER.

• IND = {(t,b,p,q)\(t,b,p,q) G INTACT A q ^ 0}

IND is the set of all events that operate on exactly individual player. Event classes

in a simulation may be subsets of IND.

• CNT = {{t,b,p,q)\{t,b,p,q) £ INTACT A p,q = 0}

CNT is the set of all events that are used to control aspects of the simulation but

do not directly operate on any players.

• SIM = {(e;)|(e,-) is an event and 1 < i < J\f where M is a fixed free integer}

SIM is the ordered set of event instances in the simulation of interest.

• PTS = (x,y)\x,yeTZ+

PTS is the set of all possible points in two-dimensional space.

• SECTS = {(«,I,u)\ieZ+,l,ue PTS}

SECTS is the set of physically disjoint but border-contiguous sectors, or regions, into

which a battlefield is divided. Each sector is uniquely described by an integer index

and both lower and upper two-dimensional, min and max. References to r £ SECTS

make use of only the first component of the tuple, the sector number, unless explicitly

noted otherwise.

• IN : PLYR -> SECTS

118

IN is a function mapping a player, either owner or copy, to the sector in which it

currently resides. \IN\ = p; IN~1(x) is the set of players in sector x; |JJV-1(x)| is

the number of players in sector x.

• C : PLYR -»■ P'\P' e V(PLYR)

C is a function mapping a player to copies of itself resident in other sectors. Elements

of C are created when the front of a player crosses a sector boundary and are removed

when the player's back crosses the same boundary.

• m d= (t, /, A)\(t, f, A) e TIMES x {R} U {N} x V(ATT)

m is the general form of a message in a PDES. t is the time of the message. / is

the message type, either R or N for Real and Null. Real messages convey state data

passed from one LP to another, while null messages distribute clock data among

processors.

• MSGS = {m\m is a message}

MSGS is the set of all messages generated between processors in a parallel simula-

tion.

ch= {s,d,t,m)\{s,d,t,m) e LP2 x TIMES x MSGS U {0} xAm^^i = mi

ch is the general form of a communication channel between two LPs in a PDES where

s is the source LP, d is the destination LP, and t is the current channel time. The

channel time is set to be the time of the message currently in transit on the channel.

If there is no message in transit, the channel time remains set to the time of the

previous message.

CH = {ch\ch is a channel}

119

•

CH is the set of channels defined for a particular set of LPs.

• CHX = {ch\ch eCH Axe LP}

CHX is the set of channels defined for LP x. CHX C CH.

• ICX = {ch\ch G CHX Ax £ LP A ch.d = x}

ICX is the set of all input channels defined for LP x.

• OCx = {{ch,d)\ch € CHX AxELPA ch.s = xAde TIMES}

OCx is the set of all output channels defined for LP x. Each output channel has an

associated delay time, d. The designator is distinct from the d destination attribute

present at the base class level. The destination attribute is never used explicitly in

subsequent modeling.

• LP - {{x,n,t,b,C)\x is a logical processAn is a NEQAi G TIMES Ab is a bufferA

C = CHX}

This model uses a specialization of the general LP model (27:51) described in Chapter

2. In addition to sequential code, message handling capability, and communication

channels, each LP has a NEQ, a clock, and a message buffer. The NEQ and buffer are

described in Section 4.1.3. The sequential code corresponds to a particular simula-

tion and (possibly null) interprocess synchronization algorithm. The message buffer

contains all messages received by the LP that have not yet been processed.

• AD J : LP -»■ V(LP)

120

ADJ is a function that maps an LP to its adjacent LPs. In this model, all LPs

are adjacent to at least one other LP. Adjacent LPs have both an input and output

channel going in each direction. This determines causal dependence.

A. 1.2 Structural Constraints.

1. TIMES. TIMES c TZ+

2. PLYR. PLYR must be a function, though it is neither surjective or injective.

\/p\p G PLYR =>• 3i, c\i G IS-APC* A i = {p, c) A c G PC

3. Disjoint classes. All classes at the same level of abstraction (PCX and ECX;

INTER, IND, and CNT) are disjoint.

A. 1.3 Data Model Interpretation. A meaningful universe of discourse for each of

the sets is assumed. In addition to the structural constraints, several other restrictions are

applied in consideration of the performance models.

1. The simulator terminates by scheduling and eventually executing an End event, a

member of CNT. The simulator does not modify itself.

2. Player creation and destruction during the simulation does not affect termination.

3. Class membership, as well as membership in either of the IS-A relations, varies

with creation or destruction of members rather than change in the distinguishing

characteristic of the class.

121

4. Event classes are an abstraction independent of the existence of particular event

instances. Derived event class memberships in INTER, IND, CNT, and A do not

vary during a simulation.

5. Motion and locations are considered over one or two dimensions (ID or 2D) as spec-

ified in context.

6. Sector divisions are uniform in either dimension.

A. 2 Performance Model Definitions and Descriptions

The performance models express the behavior of the canonical algorithms quantita-

tively by reference to data elements, relation membership, and algorithm structure. Set

and relation membership and cardinality are the primary vehicles for translation between

the abstract collective view found in the data definitions and the iterative, elemental view

needed in the performance model. Additional definitions used in the performance mod-

els are cardinality expressions and abstract computational functions describing the work

outlined in the algorithm. Abstract data types and functions are used to model major

simulation data components.

A.2.1 Cardinality and Arithmetic Definitions. All cardinalities are parameters

taken from the simulation of interest. With the exception of the number of events in the

simulation, s', all are observable or measurable at some point prior to completion of the

simulation. As a practical matter, the value of s' is not known prior to termination of

simulation represented by SIM.

• c! = \IND\.

122

• c" = \INTER\.

• c = c' + c"= \EC\.

• p= \PLYR\.

• s' = \SIM\.

• r' = \SECTS\.

A.2.2 Reference Conventions. Individual elements of sets needed for explicit

reference in the performance model are appended with appropriate subscripts resolved by

indices of summation.

• pi refers to the ith player p £ PLYR.

• eci refers to the ith event class ec £ EC.

• Ti refers to the ith sector r £ SECTS.

• e; refers to the ith event e £ SIM.

• r(op) refers to the real time needed to perform operation op.

• TSti refers to the real time needed to perform the ith iteration of step s where the

step is referenced to an algorithm model. Steps not falling in loops are referenced as

rs.

• LPX refers to the logical process labeled x.

• EC ordering. Noninteractive event classes are ordered so as to precede interactive

event classes. Special class ordering is unspecified.

123

A.2.3 Abstract Data Types and Function Definitions. The primary abstract data

types used in the models are the NEQ and message buffers. Every LP has one of each. A

NEQ is a generic priority queue with defined but unspecified operations. Each of the op-

erations completes in finite, measurable time and thus can be provided as an argument to

an appropriate measurement function. Message buffers are used in the parallel algorithm.

A buffer is essentially identical to a NEQ except that it holds queued interprocessor mes-

sages rather than events. Each LP in a parallel simulation has a message buffer that holds

messages coming from the input channels associated with the LP. Messages are maintained

in a buffer in nondecreasing order by time.

Several functions are defined for both data types. Functions subscripted with n

operate on a NEQ and events, while functions subscripted with b operate on a buffer and

messages.

• i„,4j - Insert item into structure. This representation does not explicitly model the

operating efficiency of the structure. Dependency on the progress of the simulation

is introduced when needed by use of additional subscripts.

• Inilb - Remove and return the first item from structure.

• Cm(b - Delete item from structure.

A.2.4 Operation Definitions. An untyped function, T(X), represents the real

simulator time or work to do a;. Typed functions model particular primitive operations of

interest in the canonical algorithms. In each definition, px G PLYR A e,- G SIM.

124

• x(eci->Pj) and x(eciiPjiPk) - Calculate next instance of event class ec,- for player pj

or for player pj with respect to player pk for Pj,Pk G PLYR.

• S(pi) - Determine next event for player pf.

• f](ecj) - Execute an event e,- in class ecj for players e8-.p or e{.p and et.q as specified.

This is an event class-wide worst case execution.

• v(PJSET),PJSET C PLYR - Update the players in PS ET. Used to update the

copies of a player to maintain consistency with respect to simulation time.

• n{CSET, i,g), CJSET C CH - Return the minimum time of the channels in C„SET

with respect to loop i and protocol iteration g.

• <T(JV), cr(R) - Send a real or null message between two processors.

• a(pi) = IN~1(IN(pi)) - Shorthand notation to construct the set of players, including

copies, in the same sector with player p{.

• u(ADJ(x),i,g) - Denotes LP x waiting on reception of null messages from its adja-

cent LPs as part of the gth input protocol iteration before processing the ith event.

A.3 Summary

This appendix enumerates the complete data dictionary and symbol legend used to

construct the performance models for sequential and parallel battlefield simulation. Several

additional symbols are introduced in the text during performance model construction.

However, their meanings are evident in context. They arise primarily as a result of model

manipulation and simplification.

125

Appendix B. The General Task Allocation and Scheduling Problem,

This appendix summarizes several heuristic approaches to the general task scheduling

problem for parallel algorithms. These approaches are formulated in the context of task

dependencies and control flow parallelism, rather than data dependencies and parallelism

used in battlefield PDES decomposition. However, at the next higher level of abstraction,

the two types of problems are very similar. Thus, these examples serve to show generals

ways in which the problem can be solved, the work needed to achieve these results, and

the performance benefits that might be expected.

B.l Task Allocation and Scheduling Approaches

The result of decomposing a problem with respect to inherent parallelism is a set of

tasks to be scheduled on available processors. Typically, the goal of scheduling is to make

an assignment of tasks to processors that will achieve the shortest elapsed execution time

(14:8).

Each task in the set is often related by precedence of execution with respect to other

tasks in the set. If there are no such relationships, scheduling is known as task allocation.

A partial precedence among tasks may result in the ability to compute an optimal schedule

in polynomial time. The result may also be that computation of an optimal schedule is

NP-complete (14:8).

The computational complexity of the general scheduling problem has given rise to

a number of heuristic methods that attempt to provide good solutions with minimal con-

straints. The most fundamental of these have recently been summarized (14). Others are

126

variations that can generally be characterized as methods of "graph reduction, preemp-

tive scheduling, max-flow min-cut, domain decomposition, and priority list scheduling"

(44:223). Most are based on some form of graph or list representation of the problem and

make use of a particular hardware architecture to simplify experimentation. Usefulness

of the methods is measured in terms of their generality; the quality of decomposition and

mapping they provide; and their own computational complexity. The following techniques

for decomposition and mapping are representative.

B.l.l Nearest-Neighbor (NN) and Recursive Clustering (RC). Iterative parallel

programs can be modeled with an accurate Task Interaction Graph (TIG). This model

captures tasks as nodes for which weights are assigned based on the computational com-

plexity of each task. Edges between nodes are undirected and indicate a communication

requirement between their incident nodes. Edge weights describe the relative cost of com-

munication. For an iteration, all tasks can proceed independently but must synchronize to

exchange results. The NN and RC mapping approaches both attempt to balance load and

minimize communication costs. NN addresses load balance explicitly and communication

cost implicitly, while RC inverts these emphases (40:2-3).

The NN strategy first groups tasks into clusters and assigns the clusters to processors

while maintaining the nearest-neighbor property. The first mapping is modified iteratively

using boundary refinement in an attempt to improve processor loading within the con-

straints of the NN property. Conversely, the RC strategy starts with all tasks in one

cluster and proceeds to break this down recursively so as to minimize the total weight of

inter-cluster edges. Within this constraint, the load in each cluster is kept as nearly equal

127

to the load in other clusters as possible. The total number of clusters produced is equal to

the total number of available processors. The second step maps the resulting clusters to

processors so as to minimize total interprocessor communication (40:5-6,9).

Either method can be applied to any TIG. Experiments tracing the mapping time for

both methods show that random TIGs favor RC when message setup time is not considered.

Analysis using a representative cost model predicts that the NN strategy will yield better

speedup for hypercubes with high message setup times and programs with a large amount

of spatial locality, while RC is better suited for programs represented by random TIGS or

running on hypercubes with low message setup times (40:13-15).

B.1.2 Heavy Node First (HNF) and Weighted Length (WL). HNF and WL are

priority list scheduling methods based on algorithms that can be represented by a Directed

Acyclic Graph (DAG). A DAG is similar to a TIG in that the nodes of the graph represent

tasks in the problem and the weight of each node corresponds to the execution time of the

associated task. Unlike a TIG, the edges of a DAG are directed and represent dependencies

among tasks rather than simple interactions.

In HNF, tasks are grouped first by level and then sorted within each level by prece-

dence and complexity. Each task ready to be processed is placed in the current level; that

is, all tasks superior in precedence to the target task must have completed. This constraint

ensures preservation of task dependencies. If the target task has no superiors, this condi-

tion is trivially satisfied. Within a level, the next processor to be assigned a task is that

processor which has the lowest scheduled time thus far as determined by the weights of

tasks already assigned. In general, there will be more tasks in a given level than available

128

processors. Choosing the next task scheduled to be the one with the largest weight ensures

an equitable distribution of total load among processors. Dummy nodes with weight calcu-

lated to balance concurrent tasks are used to fill holes left when the current level contains

fewer tasks than available processors (44:224-5).

The WL algorithm is intended to be an improvement of the traditional Critical Path

Method (CPM). In CPM, the length of the critical path for each node is computed using

the node weights. As in HNF, the next processor to be scheduled is that which has the

shortest total accumulated weight yet scheduled. Of the tasks ready for processing, the one

with the longest critical path length is selected for the next processor. Dummy weighted

nodes are used to fill holes when unscheduled nodes remain but none are currently ready

for processing. Since CPM allows scheduling of a heavy node concurrently with possibly

lighter dependent nodes, the method can result in a number of processors idling awaiting

for completion of the heavy node. WL allows consideration of the weighted length of all

children of all currently contending nodes. Rather than selecting the node with the longest

remaining path as in CPM, WL selects the node with greatest weighted length. In the

worst case, the schedule generated by WL will be the same as that generated by CPM.

However, consideration of the weighted length in a manner similar to HNF provides a

better schedule in most cases (44:225-9).

While the algorithmic complexity of WL is shown to be greater than that of HNF,

experimental results indicate that for all DAGs except their respective worst cases, the two

algorithms tend to produce schedules of similar quality. Since the worst case, especially

that for WL, is unlikely to occur in practice, this implies that the extra effort needed to

develop and build a WL implementation in the context of a real application may not be

129

justifiable. Further, the applicability of WL is limited by its need for information about

the entire DAG. Thus, problems represented by partitioned DAGs are not amenable to

solution by WL (44:231).

B.2 Summary

A number of heuristic approaches have been developed for the general task scheduling

problem. Each of these approaches uses application-specific data to make choices, either

statically or dynamically, to control parallel program execution.

In battlefield PDES with spatial decomposition, similar problems exist. The number

of application variables that change with respect to simulation time and player move-

ment far surpasses the simple application models used to describe these algorithms for

control-flow parallel processing. Nonetheless, these examples provide useful insight into

the effects of unknown data dependencies and processor load imbalance caused by spatial

decomposition can affect overall parallel performance.

130

Appendix C. AFIT PDES Research

AFIT PDES research activities have included investigations of battlefield, aircraft

system, queuing system, and circuit design simulation; synchronization protocol behavior;

use of software engineering design techniques; and graphic interface development. This

appendix summarizes those efforts to present a rough chronology of progress to date as a

platform for considering future work.

C.l AFIT PDES Testbed

The primary DES environments available for use at AFIT are battlefield simulation

(BATTLESIM and Parallel Ada Simulation Environment (PASE)), Very High Speed In-

tegrated Circuit (VHSIC) Hardware Description Language (VHDL) simulation (VSIM),

and queuing model simulation (QUEUESIM). These environments have evolved over the

course of the AFIT parallel simulation research program to employ parallelism using the

Chandy-Misra conservative synchronization approach as implemented in the SPECTRUM

host manager. Researchers have investigated a variety of problems using these environ-

ments for validation.

Rizza developed the first sequential battlefield simulation system at AFIT in 1990.

His research focused on modeling collisions between objects. To this end, the first genera-

tion of BATTLESIM kept track of object position and velocity in a master list, producing

collisions when two objects moved to the same position at the same time. This work

provided a starting point for AFIT DES research (37).

131

In 1991, Moser developed a parallel simulation of colliding pool balls. He used a

single dimension spatial decomposition to allocate regions of the table to processors. Each

processor was responsible for maintaining position and velocity information for the balls

in its region, as well as for communicating state information to adjacent processors when

balls crossed area boundaries (28). This approach is similar strip techniques analyzed in

the literature (20:315).

Soderholm's work in 1991 parallelized the discrete event battlefield simulation of

Rizza using conditional event execution (8), a performance economization within the con-

servative paradigm; and a variation of optimistic local rollback (13). Speedup measure-

ments on a distributed memory machine showed experimental evidence that battlefield

PDES execution could benefit from a hybrid synchronization approach. The work also

provided empirical evidence that expected speedup varies directly with event interleaving

(46).

Bergman combined the results of Rizza and Moser in 1992 to produce the next gen-

eration of BATTLESIM, a parallel discrete event simulation (PDES). Bergman used a two

dimension, fixed boundary decomposition corresponding to battlefield grid sectors, with

each square assigned to a logical process and subsequent one-to-one process-to-processor

assignment. Simulation players were handled by the processor associated with the bat-

tlefield square in which they were located. Bergman also increased the amount of object

interaction by adding a projecting sensor to each object, similar to radar in aircraft, which

allowed objects to detect and react to the presence of other objects at a defined distance

(4).

132

Looney demonstrated the feasibility of incorporating state retention and rollback with

conservative synchronization to support interactive user commands for graphic display. His

focus was on showing that the simulation could be halted, backed up to a previous point in

time, and restarted from that point without corrupting simulation results (26). Looney's

work combines concepts of conservative and local optimistic synchronization, supporting

the premise that synchronization is more appropriately envisioned as a continuum rather

than as two discrete paradigms (35).

C.2 Object-Oriented Parallel Simulation

Booth's research in 1991 focused on mapping the Software Engineering Institute's

(SEI) model for Object-Oriented Design (OOD) and simulation onto parallel architectures.

The paradigm is related to the OCU model developed by SEI and currently used as the

basis for DoD simulation development. Booth used an existing SEI implementation of a

Direct Current Electrical System simulation, written in Ada, as the basis for parallelization

in Ada. Booth's primary emphasis was on showing the propriety of OOD in the design of

parallel simulations (5).

In 1993, Trachsel further refined BATTLESIM to incorporate object-oriented design

principles. He designed and implemented an object model that allows for straightforward

incorporation of new players and environment objects. Trachsel maintained Bergman's

partitioning scheme and converted a portion of the existing code use object-oriented pro-

gramming techniques in C (51).

Belford examined the benefits of using object-oriented methods directly from the

beginning in his design of a Parallel Ada Simulation System. Belford used Rumbaugh's

133

object-oriented analysis and design methods (39) to construct the environment at a high

level. His prototype in Classic Ada used a simulation mechanism and battlefield applica-

tion similar to that found in BATTLESIM. For synchronization, Belford stayed with the

Chandy-Misra protocol. Belford's effort established a point of departure for investigating

simulation executive components that conform to recent DoD standards for modeling and

simulation (2).

C.S Parallel Simulation Task Scheduling Research

In 1989, Huson examined empirical approaches to static decomposition and dynamic

load rebalancing in parallel discrete time simulations. Using a commercially developed,

configurable Ballistic Missile Defense simulation, Huson laid out a set of guidelines for

both static decomposition and dynamic rebalancing (23).

Sartor's investigation in 1991 focused on task scheduling algorithm analysis in VHDL

simulation. The simulation is viewed as a constrained iterative task system. A polynomial

time scheduling algorithm, the level strategy, is proposed and validated both theoretically

and empirically. The level strategy minimizes latency, the time between successive itera-

tions of a given task. This result is amplified with theoretical formulation of upper and

lower bounds on latency for tasks of fixed and variable execution time (41).

Van Horn's work in 1992 compared four synchronization protocols based on algo-

rithms proposed by Reynolds and Chandy and Misra. These comparisons used Reynolds'

SPECTRUM filter with modifications to allow for easy protocol modification. Experimen-

tation centered on a queueing model simulation of a car wash. Van Horn began the research

with empirical guidelines postulated on his analysis of schematic graphs representing var-

134

ious simulation and filter configurations. He concluded with final guidelines adjusted for

a variety of decomposition and synchronization schemes across several Intel iPSC/2 node

configurations (52).

In 1993, Kapp examined the decomposition problem as it relates to VHDL simulation.

He proposed a method for measuring the cost of a decomposition developed using a variety

of strategies. His results validated the ability of the cost function to capture relative

differences among decompositions in the VHDL simulation environment (24).

135

Bibliography

1. Adve, Vikram S. and Mary K. Vernon. "The Influence of Random Delays on Parallel
Execution Times," Performance Evaluation Review, <?i(l):61-73 (June 1993).

2. Belford, James T. Object-Oriented Design and Implementation of a Parallel Ada
Simulation System. MS thesis, AFIT/GCE/ENG/93D-01, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson Air Force Base OH, December
1993.

3. Berger, Marsha J. and Shahid H. Bokhari. "A Partitioning Strategy for Nonuniform
Problems on Multiprocessors," IEEE Transactions on Computers, C-36(5):570-80
(May 1987).

4. Bergman, Kenneth C. Spatial Partitioning of a Battlefield Parallel Discrete Event
Simulation. MS thesis, AFIT/GCS/ENG/92D-03, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson Air Force Base OH, December 1992.
AD-A258911.

5. Booth, Guy R. Implementation of an Object-Oriented Flight Simulator D. C. Electri-
cal System on a Hypercube Architecture. MS thesis, AFIT/GCE/ENS/91D-01, School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force
Base OH, December 1991. AD-A243700.

6. Breeden, Thomas A. Parallel Simulation of Structural VHDL Circuits on Intel Hy-
percubes. MS thesis, AFIT/GCE/ENG/92D-01, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson Air Force Base OH, December 1992.
AD-A258999.

7. Chandy, K. M. and J. Misra. "Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs," IEEE Transactions on Software Engineering,
SE-5 (5):U0-52 (September 1979).

8. Chandy, K. M. and R. Sherman. "The Conditional Event Approach to Distributed
Simulation." Proceedings of the SCS Multiconference on Distributed Simulation, edited
by Brian Unger and Richard Fujimoto. 93-9. P.O. Box 17900 San Diego CA: Simu-
lation Councils Inc., March 1989.

9. Chou, Chien-Chun and others. "A Generalized Hold Model." Proceedings of the 1993
Winter Simulation Conference, edited by Gerald W. Evans and others. 756-61. De-
cember 1993.

10. Cota, Bruce A. and Robert G. Sargent. "A Framework for Automatic Lookahead
Computation in Conservative Distributed Simulations." Proceedings of the SCS Mul-
ticonference on Distributed Simulation, edited by David Nicol. 56-9. PO Box 17900
San Diego CA: Simulation Councils Inc, January 1990.

11. Davis, Nathaniel and others. "Distributed Discrete-Event Simulation Using Null Mes-
sage Algorithms on Hypercube Architectures," Journal of Parallel and Distributed
Computing, £(4):349-57 (April 1990).

136

12. Deo, Narsingh and others. "Processor Allocation in Parallel Battlefield Simulation."
Proceedings of the 1992 Winter Simulation Conference, edited by James J. Swain and
others. 718-25. December 1992.

13. Dickens, Phillip M. and Paul F. Reynolds. "SRADS With Local Rollback." Proceed-
ings of the SCS Multiconference on Distributed Simulation, edited by David Nicol.
161-4. PO Box 17900 San Diego CA: Simulation Councils Inc., January 1990.

14. El-Rewini, Hesham and others. Task Scheduling in Parallel and Distributed Systems.
Englewood Cliffs, New Jersey 07632: Prentice-Hall, 1994.

15. Ferrari, Domenico. Computer Systems Performance Evaluation. Englewood Cliffs,
New Jersey 07632: Prentice-Hall, 1978.

16. Fujimoto, Richard M. "Performance Measurements of Distributed Simulation Strate-
gies." Proceedings of the SCS Multiconference on Distributed Simulation, edited by
Brian Unger and David Jefferson. 14-20. PO Box 17900 San Diego CA: Simulation
Councils Inc., February 1988.

17. Fujimoto, Richard M. "Parallel Discrete Event Simulation." Proceedings of the 1989
Winter Simulation Conference, edited by Edward A. MacNair and others. 19-29.
December 1989.

18. Fujimoto, Richard M. "Parallel Discrete Event Simulation: Will the Field Survive?,"
ORSA Journal on Computing, 5(3):213-30 (Summer 1993).

19. Greenbaum, Anne. "Synchronization Costs on Multiprocessors," Parallel Computing,
iö(l):3-14 (March 1989).

20. Hanxleden, Reinhard and L. Ridgway Scott. "Load Balancing on Message Passing Ar-
chitectures," Journal of Parallel and Distributed Computing, i#(3):312-24 (November
1991).

21. Hartrum, Thomas C. AFIT Guide to SPECTRUM. Department of Electrical and
Computer Engineering, School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH 45433, September 1993.

22. Hoare, C. A. R. Communicating Sequential Processes. Englewood Cliffs, New Jersey
07632: Prentice-Hall International, 1985.

23. Huson, Mark Leslie. An Empirical Development of Parallelization Guidelines for
Time-Driven Simulation. MS thesis, AFIT/GCS/ENG/89D-10, School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base OH,
December 1989. AD-A215665.

24. Kapp, Kevin L. Partitioning Structural VHDL Circuits for Parallel Execution on
Hypercubes. MS thesis, AFIT/GCE/ENG/93D-07, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson Air Force Base OH, December 1993.
AD-A274390.

25. Kumar, Vipin and others. Introduction to Parallel Computing - Design and Analysis
of Algorithms. Redwood City, California 94065: The Benjamin/Cummings Publishing
Company, Inc., 1994.

137

26. Looney, Douglas Clifford. Interactive Control of a Parallel Simulation From a Remote
Graphics Workstation. MS thesis, AFIT/GCE/ENG/93D-9, School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson Air Force Base OH, De-
cember 1993. AD-A274217.

27. Misra, Jayadev. "Distributed Discrete-Event Simulation," Computing Surveys,
jfS(l):39-65 (March 1986).

28. Moser, Robert S. A Spatially Partitioned Parallel Simulation of Colliding Objects. MS
thesis, AFIT/GCS/ENG/91D-15, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson Air Force Base OH, December 1991. AD-A243967.

29. Nicol, David M. "Mapping a Battlefield Simulation onto Message-Passing Parallel
Architectures." Proceedings of the SCS Multiconference on Distributed Simulation,
edited by Brian Unger and David Jefferson. 141-6. P.O. Box 17900 San Diego CA:
Simulation Councils Inc., February 1988.

30. Nicol, David M. "The Cost of Conservative Synchronization in Parallel Discrete
Event Simulation," Journal of the Association for Computing Machinery, ^0(2):3O4-
33 (April 1993).

31. Nicol, David M. and Scott E. Riffe. "A Conservative Approach to Parallelizing the
Sharks' World Simulation." Proceedings of the 1990 Winter Simulation Conference,
edited by Osman Balci and others. 186-90. December 1990.

32. Nutt, Gary J. "Distributed Simulation Design Alternatives." Proceedings of the SCS
Multiconference on Distributed Simulation, edited by David Nicol. 51-5. P.O. Box
17900 San Diego CA: Simulation Councils Inc., January 1990.

33. Quinn, Michael J. Designing Efficient Algorithms for Parallel Computers. New York,
New York 10020: McGraw-Hill, 1987.

34. Reynolds, P. F. and P. M. Dickens. "SPECTRUM: A Parallel Simulation Testbed."
Proceedings of 4th Conference on Hypercubes, Concurrent Computers, and Applica-
tions. 865-70. P.O. Box 428 Los Altos CA: Golden Gate Enterprises, March 1989.

35. Reynolds, Paul F. "A Spectrum of Options for Parallel Simulation Protocols." Pro-
ceedings of the ACM Winter Simulation Conference. 671-9. December 1988.

36. Rich, David O. and Randy E. Michelsen. "An Assessment of the MODSIM/TWOS
Parallel Simulation Environment." Proceedings of the 1991 Winter Simulation Confer-
ence, edited by Barry L. Nelson and others. 509-18. 10662 Los Vaqueros Circle, PO
Box 3014, Los Alamitos CA 90720-1264: IEEE Computer Society Press, December
1991.

37. Rizza, Robert J. An Object-Oriented Military Simulation Baseline for Parallel Sim-
ulation Research. MS thesis, AFIT/GCS/ENG/90D-12, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson Air Force Base OH, December
1990. AD-A231030.

38. Roberts, Stephen D. and Joe Heim. "A Perspective on Object-Oriented Simulation."
Proceedings of the 1988 Winter Simulation Conference, edited by Michael A. Abrams
and others. 277-81. 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos CA
90720-1264: IEEE Computer Society Press, December 1988.

138

39. Rumbaugh, James and others. Object-Oriented Modeling and Design. Englewood
Cliffs, New Jersey 07632: Prentice-Hall, 1991.

40. Sadayappan, P. and others. "Cluster Partitioning Approaches to Mapping Parallel
Programs onto a Hypercube," Parallel Computing, 13(1):1-16 (January 1990).

41. Sartor, JoAnn M. Optimal Iterative Task Scheduling for Parallel Simulations. MS
thesis, AFIT/GCS/ENG/91M-03, School of Engineering, Air Force Institute of Tech-
nology (ATJ), Wright-Patterson Air Force Base OH, March 1991. AD-A238631.

42. Schuppe, Thomas F. "Modeling and Simulation: A Department of Defense Criti-
cal Technology." Proceedings of the 1991 Winter Simulation Conference, edited by
Barry A. Nelson and others. 519-25. 10662 Los Vaqueros Circle, PO Box 3014, Los
Alamitos CA 90720-1264: IEEE Computer Society Press, December 1991.

43. Sha, Lui and Shirish S. Sathaye. "A Systematic Approach to Designing Distributed
Real-Time Systems," IEEE Computer, 26(9):68-78 (September 1993).

44. Shirazi, Behrooz and others. "Analysis and Evaluation of Heuristic Methods for
Static Task Scheduling," Journal of Parallel and Distributed Computing, i#(3):222-32
(November 1990).

45. Shirazi, Behrooz and A. R. Hurson. "Special Issue on Scheduling and Load Balanc-
ing; Guest Editors' Introduction," Journal of Parallel and Distributed Computing,
i<?(4):271-4 (December 1992).

46. Soderholm, Steven R. A Hybrid Approach to Battlefield Parallel Discrete Event Sim-
ulation. MS thesis, AFIT/GCS/ENG/91D-23, School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson Air Force Base OH, December 1991.
AD-A24375.

47. Som, Tapas K. and others. "On Analyzing Events to Estimate the Possible Speedup
of Parallel Discrete Event Simulation." Proceedings of the 1989 Winter Simulation
Conference, edited by Edward A. MacNair and others. 729-37. 10662 Los Vaqueros
Circle, PO Box 3014, Los Alamitos CA 90720-1264: IEEE Computer Society Press,
December 1989.

48. Stanat, Donald F. and David F. McAllister. Discrete Mathematics in Computer Sci-
ence. Englewood Cliffs, New Jersey 07632: Prentice-Hall, 1977.

49. Steinman, Jeff S. "Discrete-Event Simulation and the Event Horizon." Proceedings
of the 8th Workshop on Parallel and Distributed Simulation, edited by D. K. Arvind
and others. 39-49. 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos CA
90720-1264: IEEE Computer Society Press, July 1994.

50. Steinman, Jeff S. and Frederick Wieland. "Parallel Proximity Detection and the
Distribution List Algorithm." Proceedings of the 8th Workshop on Parallel and Dis-
tributed Simulation, edited by D. K. Arvind and others. 3-11. 10662 Los Vaqueros
Circle, PO Box 3014, Los Alamitos CA 90720-1264: IEEE Computer Society Press,
July 1994.

51. Trachsel, Walter Gordon. Object Interaction in a Parallel Object-Oriented Discrete-
Event Simulation. MS thesis, AFIT/GCS/ENG/93D-22, School of Engineering, Air

139

Force Institute of Technology (AU), Wright-Patterson Air Force Base OH, December
1993. AD-A274084.

52. Van Horn, Prescott John. Development of a Protocol Usage Guideline for Conserva-
tive Parallel Simulations. MS thesis, AFIT/GCS/ENG/92D-19, School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base OH,
December 1992. AD-A258851.

53. Wieland, Frederick and others. "An Empirical Study of Data Partitioning and Repli-
cation in Parallel Simulation." Proceedings of the Fifth Distributed Memory Computing
Conference, edited by David W. Walker and Quentin F. Stout. 916-21. 10662 Los
Vaqueros Circle, PO Box 3014, Los Alamitos CA 90720-1264: IEEE Computer Society
Press, April 1990.

54. Woodside, C. Murray. "Fast Allocation of Processes in Distributed and Parallel Sys-
tems," IEEE Transactions on Parallel and Distributed Systems, ^(2):164-74 (Febru-
ary 1993).

140

Vita

Captain James B. Hiller was born September 11, 1964, in Mount Kisco, New York

and grew up in Tyrone, Pennsylvania. In May 1985, he graduated with a Bachelor of

Science degree in Computer Science from Worcester Polytechnic Institute and an Air Force

commission as a Second Lieutenant.

Captain Hiller's first assignment was to the Space and Warning Systems Center at

Peterson Air Force Base as a Missile Warning Software Analyst. He was responsible for

communication software maintenance for the Mission-Essential Backup (MEBU) system

supporting the North American Aerospace Defense Command (NORAD). In 1988, Captain

Hiller became the Network Software Security Officer responsible for system security engi-

neering and management for all space, missile warning, communication systems maintained

by the SWSC.

In 1991, Captain Hiller was assigned to the Air Force Cryptologic Support Center, Air

Force Intelligence Command, at Kelly Air Force Base. He served as C4 Systems Security

Policy and Doctrine Officer, responsible for development of Air Force system security policy

and technical support to major commands. Captain Hiller continued in this assignment

until his arrival at AFIT in May 1993.

While at AFIT, Captain Hiller was granted professional status as a Certified Infor-

mation Systems Security Professional (CISSP) by the International Information Systems

Security Certification Consortium.

Permanent address: 3 Laurel Drive
PO Box 95
Tyrone, PA 16686

141

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting ouraen for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operationsand Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Analytic Performance Models for Parallel Discrete Event
Battlefield Simulation with Conservative Synchronization

6. AUTHOR(S)
James B. Hiller, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583
8. PERFORMING ORGANIZATION

REPORT NUMBER

AFIT/GCS/ENG/94D-08

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Capt Rick Painter
2241 Avionics Circle, Suite 16
WL/AAWA-1 BLD 620
Wright-Patterson AFB, OH 45433-7765
(513)-255-4429

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This study investigated the development and use of analytic models for performance analysis of parallel discrete
event battlefield simulation using conservative synchronization. A simulation architecture with layered application,
simulation, and host machine services provided the model development basis. Simulation entities were modeled
with set-theoretic definitions. Deterministic performance models using these definitions were developed for event
prediction, scheduling, and execution in sequential battlefield simulation. The sequential model was expanded to
include relative bounds for overhead factors introduced when the simulation is spatially decomposed for a parallel
distributed memory machine. Comparison of sequential and parallel models instantiated for a simulation with uniform
workload showed a potential for unbounded processor blocking. A synchronization algorithm modification to limit
per-iteration blocking is shown theoretically to decrease finishing time. Modification results were demonstrated on a
hypercube architecture. Demonstration showed that a sequential simulation requiring 60 seconds to run was limited
to a best time of 30 seconds on four processors without algorithm modification. The time was improved to 17 seconds
using the modification. A number of basic timing measurements also showed that event list operations on a sequential
structure take significantly longer than interactive event prediction algorithms using simulation entities maintained
in similar structures.

14. SUBJECT TERMS

Parallel, Simulation, Performance, Modeling
15. NUMBER OF PAGES
153

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

aajUMir *äi*im

