
-■• V

Lv :■{

BEIE
JAN 0 3 1994 a

USING OBJECT-ORIENTED DATABASE TECHNOLOGY

TO DEVELOP A MULTIPLE DOMAIN CAPABILITY

FOR DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEMS

THESIS
Alfred William Harris, Jr

Captain, USAF

AFIT/GCS/ENG/94D-07

This document has been approved
for public release and sale; its
distribution is unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

cvi
CVI

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-07

EKSftV^iaLSAT!

!^ ü^ü K^.
j fe^y ««=* «ES* äHä9 \-jjf. Ü jfcj-S i-c .;■.; ■ ...

NX JAN 0 3 1994 [•'■■:

&£53^BOBSr&säS3S&V£SsZXtS

Accesion For l }

NT!S CRA&I d
DTIC TAB D
Unannounced D
Justification

 „„.„

fev —{
Distribution/ i

Avaiicbüity Cociss ",

Dist

U-l

Avail and/ or 1
Special !

1

USING OBJECT-ORIENTED DATABASE TECHNOLOGY

TO DEVELOP A MULTIPLE DOMAIN CAPABILITY
FOR DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEMS

THESIS
Alfred William Harris, Jr

Captain, USAF

AFIT/GCS/ENG/94D-07

"tttlO QP£
^Y 1KCPECSED 2

Approved for public release; distribution unlimited

AFIT/GCS/ENG/94D-07

USING OBJECT-ORIENTED DATABASE TECHNOLOGY TO DEVELOP

A MULTIPLE DOMAIN CAPABILITY FOR DOMAIN-ORIENTED

APPLICATION COMPOSITION SYSTEMS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Alfred William Harris, Jr, B.S., M.B.A.

Captain, USAF

December, 1994

Approved for public release; distribution unlimited

Acknowledgements

Many people provided valuable support to me throughout this research effort. First,

I'd like to thank my fellow KBSE researchers for having a "team" attitude. Everyone

always seemed willing to take valuable time and assist each other with any problems, both

simple and complex. Next, I'd like to thank Dr Potoczny and Capt Dan Cecil for serving

on my committee. Dan's early efforts in familiarizing me with ITASCA were invaluable. I

would also like to thank my thesis advisor, Maj Paul Bailor. Each time I sought advice on

an obstacle, he provided the ideas I needed to move forward. Last and most importantly,

I'd like to thank my family. Any time I needed to clear my mind, a trip to the park with

my children, Laura and Michael, always seemed to work best. My wife Kathy provided

more support to me than I could have ever imagined. Her love and understanding allowed

me to perform at my best.

Alfred William Harris, Jr

Table of Contents

Page

Acknowledgements ii

List of Figures viii

List of Tables x

Abstract xi

I. Introduction 1-1

1.1 Overview 1-1

1.2 Background 1-1

1.3 Problem 1-3

1.4 Scope 1-6

1.5 Assumptions 1-6

1.6 Approach 1-6

1.7 Summary 1-7

1.8 Order of Presentation 1-8

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Overview of the AFIT Architect System 2-1

2.a Selection of ITASCA 2-2

2.4 Fundamental Concepts of Object-Oriented Database Manage-

ment Systems 2-3

2.4.1 Objects 2-3

2.4.2 Identity 2-3

2.4.3 Aggregation 2-4

m

Page

2.4.4 Inheritance 2-5

2.5 Other Object-Oriented Database Management System Consid-

erations 2-5

2.5.1 Dynamic Schema Evolution 2-5

2.5.2 Applicability of an OODBMS for the Architect System 2-6

2.6 Software Architectures 2-7

2.7 Summary 2-9

III. Analysis of Multiple Domain Application Capability for Architect 3-1

3.1 Introduction 3-1

3.2 Architect Operational Capabilities 3-1

3.2.1 Baseline Capabilities 3-1

3.2.2 Proposed Capabilities 3-4

3.3 Analysis of Architect's Single Domain Limitation 3-7

3.3.1 Software Environment 3-7

3.3.2 File-Based Version of Architect 3-7

3.3.3 Database Version of Architect 3-8

3.4 Compatibility of Domains 3-9

3.5 Analysis of Meta-Model for Domain Definitions 3-10

3.5.1 Primitive Objects and their Attributes 3-10

3.5.2 Hierarchy Among Object Classes 3-12

3.5.3 Primitive Object Update Functions 3-13

3.5.4 REFINE Executable 3-14

3.5.5 Other Considerations 3-14

3.6 Database Techniques for Sharing Components Across Domain

Boundaries 3-15

3.6.1 "OCU-Application" Object Class 3-15

3.6.2 "OCU-Subsystem" Object Class 3-16

IV

Page

3.6.3 "OCU-Primitive" Object Class 3-17

3.6.4 Summary of Domain Sharing Techniques 3-18

3.7 Summary 3-19

IV. Design and Implementation 4-1

4.1 Overview 4-1

4.2 Architect System Enhancements - Primary and Alternate Do-

mains 4-1

4.2.1 Technology Base Window 4-2

4.2.2 Object Editing 4-4

4.2.3 Setting Icon Attributes 4-4

4.2.4 Database Transformation Functions 4-5

4.3 Selection of Additional Domains 4-6

4.4 Implement "Circuits-Additional" Domain 4-7

4.4.1 Selection of Additional Primitives 4-7

4.4.2 Update Functions for the New Primitives 4-9

4.4.3 Object Model for Schema Implementation 4-9

4.4.4 Domain Definition Inputs 4-13

4.4.5 Icon Bitmap Construction and Implementation . . . 4-14

4.5 Implement Digital Signal Processing Domain 4-14

4.5.1 Object Model for Schema Implementation 4-15

4.5.2 Domain Definition Inputs 4-16

4.6 Digital Signal Processing Domain Enhancements 4-17

4.6.1 Design of an Analog-to-Digital Converter 4-18

4.6.2 Design of an Digital-to-Analog Converter 4-21

4.6.3 Implementation Actions 4-22

4.7 Summary 4-23

Page

V. Testing and Validation 5-1

5.1 Overview 5-1

5.2 Objectives 5-1

5.3 Testing of Primary Objectives 5-2

5.3.1 Technology Base Window for Alternate Domains . . 5-3

5.3.2 Display Icons for Alternate Domains 5-3

5.3.3 Edit Objects from an Alternate Domain 5-3

5.3.4 Save Multiple Domain Applications 5-5

5.3.5 Load Multiple Domain Applications 5-6

5.3.6 Execute Multiple Domain Applications 5-6

5.4 Testing of Secondary Objectives 5-7

5.5 Consolidated Example 5-9

5.5.1 First Method 5-10

5.5.2 Second Method 5-10

5.5.3 Key Observations 5-11

5.6 Summary 5-13

VI. Conclusions and Recommendations 6-1

6.1 Conclusions 6-2

6.2 Recommendations for Improvement and Further Research . . 6-3

6.3 Final Comments 6-5

Appendix A. Sample Session: Multiple Domain Application A-l

A.l Start AVSI A-l

A.2 Create a New Application A-2

A.3 Edit the Application A-2

A.3.1 Add the Controlling Subsystem-Obj to the Application A-2

A.3.2 Create the Application-Obj's Update Algorithm . . A-3

VI

Page

A.4 Edit the Subsystems A-5

A.4.1 Add the Primitive Objects A-5

A.4.2 Connect Imports and Exports A-6

A.4.3 Build MULTI-SUB's Update Algorithm A-7

A.5 Perform Semantic Checks A-8

A.6 Execute the Application A-8

Appendix B. REFINE Update Functions B-l

B.l And-Gate-3Input B-l

B.2 Or-Gate-3Input B-l

B.3 Full-Adder B-l

B.4 Full-Adder-4Bit B-2

B.5 Full-Subtractor B-4

B.6 Full-Subtractor-4Bit B-4

B.7 Analog-To-Digital Converter B-6

B.8 Digital-To-Analog Converter B-7

Appendix C. Object Model Diagrams for the Digital Signal Processing Do-

main C-l

C.l Abstract Classes of DSP C-l

C.2 Concrete Subclasses of "Signals" C-2

C.3 Concrete Subclasses of "Displays" C-3

C.4 Concrete Subclasses of "Filter Components" C-4

C.5 Concrete Subclasses of "Signal Arithmetic" C-5

C.6 Concrete Subclasses of "Signal Processing" C-6

Bibliography BIB-1

Vita VITA-1

vn

List of Figures

Figure Page

1.1. Domain-Oriented Application Composition Environment 1-3

1.2. Combined Object Models Showing Circuits Inheriting from OCU . . . 1-4

1.3. Inheritance from OCU by Multiple Domains 1-5

2.1. Object Model of Logic Circuits Domain 2-7

2.2. Domain-Definition Object Model 2-8

2.3. OCU Subsystem Construction 2-9

3.1. Edit Subsystem Window 3-2

3.2. Technology Base Window for CIRCUITS 3-3

3.3. Subsystem Window 3-4

3.4. Baseline Versus Proposed Capabilities 3-6

3.5. Domain-Definition Object Model 3-11

3.6. Object Model of Logic Circuits Domain 3-12

3.7. Object Model of an OCU Application 3-15

3.8. Object Model of an OCU Subsystem 3-16

3.9. Object Model of an OCU Primitive 3-17

4.1. Management of Domain Dynamics 4-3

4.2. Object Model for "Circuits Additional" Domain 4-11

4.3. Object Model for DSP Domain 4-16

4.4. Sampling of an Analog Signal 4-21

4.5. Object Model for ADC and DAC Primitives 4-22

5.1. Subsystem Window 5-4

5.2. Imports/Exports Window 5-4

5.3. Editable Attributes 5-5

vm

Figure Page

5.4. ADC-DAC Example 5-8

5.5. Sinusoid Plots 5-8

5.6. Multiple Domain Example 5-9

5.7. Sinusoid Plots 5-11

5.8. OCU-Application Instance Diagram 5-12

C.l. Abstract Classes of DSP Domain C-l

C.2. Concrete Subclasses of "Signals" C-2

C.3. Concrete Subclasses of "Displays" C-3

C.4. Concrete Subclasses of "Filter Components" C-4

C.5. Concrete Subclasses of "Signal Arithmetic" C-5

C.6. Concrete Subclasses of "Signal Processing" C-6

IX

List of Tables

Table Page

4.1. Truth Table for 3-Input And-Gate 4-9

4.2. Truth Table for 3-Input Or-Gate 4-9

4.3. Truth Table for Full-Adder 4-10

4.4. Truth Table for Full-Subtractor 4-10

4.5. DSP Primitives 4-14

4.6. Binary Codes for 4-Bit Analog-to-Digital Converter 4-20

AFIT/GCS/ENG/94D-07

Abstract

This thesis describes the design and implementation of a multiple domain capability

for a domain-oriented application composition system, named Architect. The research goal

was to show how object-oriented database management system (OODBMS) technology

can be used to provide simultaneous access to multiple domain-oriented knowledge bases.

Since the Architect system was originally designed using the object-oriented paradigm,

insertion of OODBMS technology was relatively simple and many of the object-oriented

concepts, such as inheritance and aggregation, proved beneficial. Inheritance was used to

encapsulate domain knowledge by defining each domain as a subclass of Architect's software

architecture. Aggregation was used to allow applications to cross domain boundaries by

nesting components from multiple domains in an application. To validate this approach,

domain extensions to two existing domain models were implemented to make the domains

compatible in a multiple domain environment, and applications containing objects from

both the logic circuits and digital signal processing domains were successfully developed.

One of the primary benefits of this research is the potential for greater reuse of objects.

To satisfy new requirements, domain engineers can now search for and access objects from

other domains as an alternative to implementing them in their own domains.

XI

USING OBJECT-ORIENTED DATABASE TECHNOLOGY TO DEVELOP

A MULTIPLE DOMAIN CAPABILITY FOR DOMAIN-ORIENTED

APPLICATION COMPOSITION SYSTEMS

I. Introduction

1.1 Overview

The primary purpose of this research effort was to extend the object-oriented data-

base management system (OODBMS) support for a prototype domain-oriented applica-

tion composition system developed by the Knowledge Based Software Engineering research

group at AFIT. The focus of the research was to use OODBMS technology to provide a ca-

pability for multiple domain applications. The original capabilities of the prototype system

limited the composition of applications to include primitive objects from only one domain.

However, the capability to compose multiple domain applications adds greater flexibility

to the application composition process by allowing domain knowledge to be shared and

reused across domain boundaries.

1.2 Background

In previous research, Cecil and Fullenkamp (7) evaluated and implemented the con-

cept of database support for domain-oriented application composition systems. In partic-

ular, they applied their research to the Architect system. Architect has been developed

by several researchers at AFIT, with the initial work being done by Anderson (2) and

1-1

Randour (17). Architect is a prototype system designed to allow a software engineer and

an application specialist to work together to compose formally specified software artifacts

into formal software system specifications. An application specialist is a highly competent

user of the domain-oriented application composition system in a given domain.

Prior to Cecil's and Pullenkamp's work, the persistent technology base of Architect

was file-based. By implementing an OODBMS to serve as the technology base, domain

data can be persistently stored in an object model form as opposed to being flattened into

a file-based format. Figure 1.1 represents the domain-oriented application composition

environment developed at AFIT, with the persistent technology base in the lower right

corner.

During the development of the OODBMS technology base, Cecil and Fullenkamp

needed to develop two object models; one for the application domain and another for the

software architecture. These models ultimately determined the structure in which the data

was stored in the OODBMS. They used the domain of logic circuits as their validating

domain, and thus, built an object model for logic circuits. However, to generalize captur-

ing knowledge for all domains, they developed a meta-model that describes domain model

definitions. In effect, the logic circuits object model is an instance of the domain definition

meta-model. Since Architect's software architecture is based on the Object-Connection-

Update (OCU) model, Cecil and Fullenkamp also developed a software architecture object

model that corresponds to the OCU model. These object models guided the implementa-

tion of the OODBMS technology base.

1-2

DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM
INFERENCE ENGINE

- Control Algorithms and

Application Executive

- Requirements Ellicitation

- Component Harvesting

TECHNOLOGY BASE (OODBMS)

ARcmrEcrwE DOMAIN

META-MODEL

\ y

META-MODEL

/
\ /
OBJECT-MODEL

TRANSFORMATION

/

SEMANTIC

ANALYSIS
M

T

H

0

SYSTEM RULES

SCHEMA DATA
D

S EDITOR EDITOR

SUBSYSTEM

1

SUBSYSTEM

N

• ••

DOMAIN
MODEL

DOMAIN

ANALYSIS

PROCESS

• ••

Figure 1.1 Domain-Oriented Application Composition Environment

1.3 Problem

Since the previous research validated the OODBMS technology base for the logic

circuits domain only, further research was needed to determine the feasibility of incorpo-

rating other domains. The previous designs were made scalable by encapsulating domain

and architecture data separately, and relating them through inheritance, as shown in Fig-

ure 1.2. For example, the logic circuits domain is modeled as a subclass of the "primitive"

object class in the OCU model. In fact, any number of domains can be added to the

1-3

LOGICS
■CIRCUITS
; DOMAIN \

- y\'i --'.' «-.

AND-GATE « 1 OR-GATE NAND-GATE

Inl I
In2 i
rwi !

1 Inl Inl
In2
niiti

And-Gate-Updatel 1
And-Gate-Update2 |

| Or-Gate-Updatel
1 Or-Gate-Update2

Nand-Gate-Updatel
Nand-Gate-Update2

, ■.y^V'*' NOR-GATE NOT-GATE .■'-•■ '.:-•;

Inl
In2
n.,11

Inl
Oiitl ^^^^^fe Not-Gatc-Updatel
Not-Gate-Update2 Nor-Gate-Updatel

Nor-Gat e-Update2

CONCRETE CLASS

''--/ V ,; :;Vm

COUNT ER MUX HAL] "-ADDER

The-Count InO Inl
Clock Inl In2
React In2 s
Lib In3

<•■

Mab SI
Outl

HaV-Addcr-Updatel

Countcr-Updatel Mux-Updatel '_'■ ' ./. .,".% .)./ o,'.".r 'I ..

DECODER JK-FUP-FLOP •^^^^»^8
Inl J
In2 K
In3 Clk
MO Q
Ml Q-bar
M2 Sehip-deby
M3 Hold-delay
M4
MS
M6

State

JK-Fnp-Flop-Updatel
M7 JK-Fhp-Fk>p-Update2

Decoder-Updatel

Figure 1.2 Combined Object Models Showing Circuits Inheriting from OCU

1-4

ocu-PRiMrnvE

•

A

• • CIRCUITS
DIGITAL
SIGNAL
PROrHSSTOfi

OTHERS

Figure 1.3 Inheritance from OCU by Multiple Domains

database as subclasses of the "primitive" object class. This concept is illustrated in Fig-

ure 1.3. However, techniques for sharing components across domains needed to be further

investigated.

The capability to build multiple domain applications eliminates the need for ex-

panding domain boundaries in some cases as indicated in the following scenario. When

composing an application, a user might need a primitive that is unavailable in a given do-

main. In this case, the domain engineer needs to expand the domain boundary to include

the unavailable primitive. However, if the primitive already exists in another domain, it

would be easier to simply use the primitive from the other domain. A multiple domain

application capability would provide this benefit. To clearly identify the focus of this

research, the following problem statement is offered.

Problem Statement:

Expand existing OODBMS technology base capabilities by incorporating additional

application domains and providing the capability to include primitive objects from

multiple domains in an application.

1-5

1.4 Scope

The purpose of this research did not include modeling and developing knowledge for

any particular domain. Other research had already been accomplished in the development

of other domains, e.g., digital signal processing. As a result, this effort took advantage of

those domain models already developed.

1.5 Assumptions

The ability to compose multiple domain applications is a very beneficial feature based

on two assumptions. First, it is conceivable that domain boundaries will not always be

clearly defined, that is, an individual primitive might be useful in more than one domain.

However, having to implement the primitive in more than one domain is an unnecessary

duplication of effort. Second, even when domain boundaries are clearly defined, two do-

mains might naturally interface with each other. Either way, a multiple domain application

capability resolves the issue. As explained in Section 1.3, a multiple domain application

capability eliminates the need for defining a primitive in more than one domain.

1.6 Approach

The following steps were performed to achieve the capability of composing an appli-

cation across multiple domains:

• Conduct a literature search to assist in developing the best techniques for sharing

components across domain boundaries for a domain-oriented application composition

system.

• Identify, analyze, and select application domains suitable for incorporation into the

existing OODBMS technology base.

• Design and develop object models for the selected application domains.

• Develop database Schemas for the selected application domains.

• Enhance the technology base by implementing chosen domains in the database.

• Analyze the Architect system design and implementation to determine the feasibility

of allowing a single application to include primitives from multiple domains.

• Design and implement the changes to the Architect system to allow the composition

of applications to cross domains.

• Develop a set of objectives to use in the testing and validation of the enhanced

Architect system.

• Execute tests to validate the database and Architect system implementations.

1.7 Summary

This research was a follow-on effort to previous research which applied database

technology to support a domain-oriented application composition system called Architect.

The focus of this research was to enhance previous efforts by incorporating additional

application domains into the Architect technology base and allowing a single application

to include primitive objects from multiple domains. This provides the benefits of allowing

domain knowledge to be shared and reused across domain boundaries.

1-7

1.8 Order of Presentation

The remainder of this thesis is organized as follows. Chapter II is a literature review

pertaining to object-oriented database management system support for domain-oriented

application composition systems. Chapter III follows with an analysis of a multiple domain

capability for Architect applications. Chapter IV explains the design and implementation

used to create a multiple domain capability for Architect applications. Chapter V describes

the testing and validation of the multiple domain application environment. Finally, Chap-

ter VI contains the conclusions from this research and identifies recommendations for future

research.

This thesis also contains three appendices. Appendix A provides a sample script used

to generate a multiple domain application on the Architect system. This research required

new primitives to be implemented in Architect's technology base. Appendix B contains

the code used to implement them. The digital signal processing domain was implemented

in the database. Appendix C contains the object model diagrams for the domain.

1-8

II. Literature Review

2.1 Introduction

This literature review pertains to object-oriented database management system sup-

port for domain-oriented application composition systems. Object-oriented database man-

agement systems (OODBMSs) are well suited for many scientific application areas such as

software engineering. When compared to traditional technologies such as relational and hi-

erarchical databases, OODBMSs provide many advantages for complex applications. Some

of these advantages are identified in this chapter. Since OODBMS technology is relatively

immature, much research on the subject is ongoing (12:42).

In this chapter, a high-level overview of the Architect system described in Chapter I is

presented. In addition, the rationale supporting the selection of ITASCA as the OODBMS to

integrate with Architect is presented. Next, several fundamental concepts of OODBMSs,

as applicable to the Architect system, are discussed. The concepts of objects, identity,

aggregation, and inheritance are a few of the more important ones pertaining to this

research effort. Occasionally, comparisons of OODBMSs versus relational databases are

used to illustrate the merits of OODBMSs. Finally, the design of the software architecture

used to implement the Architect system is discussed.

2.2 Overview of the AFIT Architect System

As stated in Chapter I, Architect is a software application composition system de-

veloped by the Knowledge Based Software Engineering research group at AFIT. Architect

allows an application specialist in a given domain to build software applications without

2-1

actually writing any software. The application specialist builds the software application by

specializing primitive objects stored in Architect's technology base. The organization of

these objects must be in accordance with a set of composition rules specified by a software

architecture (7).

To illustrate, consider the logic circuits domain supported by Architect and its

OODBMS. Real-world logic circuit components such as and-gates, or-gates, switches,

etc., are modeled as primitive objects in Architect. Rules of composition define how the

various primitive objects can be interconnected. With a graphical user interface, the appli-

cation specialist can build complex circuits using the primitive objects in accordance with

the rules of composition. As a result, the application specialist can generate a software

application simulating a circuit such as a full-adder without actually writing the software.

Why is OODBMS support needed for Architect? Architect needs a means of persis-

tent storage for all of the software artifacts it uses and generates. The OODBMS serves

as the central repository for those software artifacts. More importantly, for this research,

OODBMS technology was crucial in providing a capability to compose applications across

domain boundaries. The original Architect system was limited to composing an application

within a single domain (4).

2.3 Selection o/lTASCA

Before implementing database support for the Architect system, Cecil and Ful-

lenkamp evaluated three OODBMSs: MATISSE, OBJECTSTORE, and ITASCA. They se-

lected ITASCA for two primary reasons. First, ITASCA supports dynamic schema evolution

without re-compilation of methods. They felt this feature met their needs for a rapid

2-2

prototyping capability (7:3-16). Second, Architect was implemented with SOFTWARE RE-

FINERY™, a formal-based specification and programming environment (7:3-9). SOFTWARE

REFINERY and ITASCA both run in the Common Lisp environment. ITASCA provides a

remote Lisp interface which makes it convenient for the Architect system to interface to

the ITASCA database system.

2.4 Fundamental Concepts of Object-Oriented Database Management Systems

Several fundamental concepts characterize OODBMSs. The concepts of objects,

identity, aggregation, and inheritance are a few of the more important ones pertaining to

this research effort. These concepts give OODBMSs more powerful modeling capabilities

than found in relational database systems (12:45).

2.4-1 Objects. Object-oriented design is centered around the notion of an object.

This provides the advantage of allowing the database designer to abstract the problem

and solution space in terms of real-world entities. An object is defined in terms of its

attributes (5:34). For example, a person could be modeled in a database as an object

with the attributes of "name," "sex," "social security number," etc. In contrast, with a

relational database the design is centered around tables. Information on a person would be

stored in a table in record format (3:44). Each row in the table would have some number

of fields, one field for each attribute. In essence, each relational table corresponds to an

object class, with each field in the table corresponding to an object attribute.

2.4-2 Identity. The concept of identity means the OODBMS provides a unique

identifier for each instance of an object that exists. The identifier is simply a pointer to the

2-3

object instance allowing access to the object for data retrieval and manipulation (6:85).

In contrast, a relational database does not provide a unique identifier for its entities. The

entities in a relational database can only be retrieved and manipulated by their values

(1:30). For example, a social security number could serve as an identifier for a "person

table." The database designer must build identifiers into the tables of a relational system,

whereas an OODBMS automatically provides the identifier.

2.4-3 Aggregation. OODBMSs support the concept of object aggregation. With

aggregation, objects are nested within other objects (5:35). For example, an automobile

could be modeled as an object with the attributes of "identification number," "color,"

"engine," etc. However, these attributes do not have to be declared as primitive data

types. Instead, they can be declared as object classes, and this is what brings about

aggregation. Continuing with the example, the "engine" attribute could be declared as an

object containing the attributes of "displacement," "number of cylinders," etc. As a result,

the engine is nested within the automobile. The levels of object nesting is not limited.

Relational databases do not support aggregation. This is because the Schemas in

relational databases generally comply with first normal form. First normal form requires

each field (corresponding to an attribute) in a relational table to be atomic, or of a primitive

data type such as a number or character string. When all fields of a relational schema are

atomic, the schema is said to be in first normal form (13:209). Since each attribute roust be

of a primitive data type, "objects" can not be nested within other "objects" in a relational

table.

2-4

2.4-4 Inheritance. Inheritance is the last OODBMS concept discussed here.

Inheritance is essentially a reuse mechanism. Inheritance allows the extension or special-

ization of existing classes by adding additional attributes (3:44). To illustrate, consider

the "person" object described earlier. Next, suppose a "student" object was needed in

the database. An OODBMS allows the student to inherit all the attributes of the person

such as "name," "sex," etc., by simply defining the "student" object as a subclass of the

"person" object. Then, additional attributes such as "grade point average" can be added

to the "student" object. In contrast, relational databases do not support inheritance.

2.5 Other Object-Oriented Database Management System Considerations

2.5.1 Dynamic Schema Evolution. Much of the work done in software engineer-

ing, and in particular on the Architect system, is of a rapid prototyping nature. The work

environment is exploratory and evolutionary. Some OODBMSs provide features that sup-

port a rapid prototyping environment. One of these helpful features is dynamic schema

evolution.

The database schema defines the structure of the data to be stored in the database.

In a rapid prototyping environment, such as ours, schema changes are frequent and must

be supported with minimal slowdown. The ability to modify relational schemas is limited

(5:45). However, some OODBMSs allow schema modification to occur at runtime, instead

of requiring a system shutdown (1:36). This is helpful in a rapid prototyping environment

as objects tend to evolve rapidly. As mentioned in Section 2.3, one of the reasons Cecil

and Fullenkamp selected ITASCA was because of its ability to support dynamic schema

evolution.

2-5

2.5.2 Applicability of an OODBMS for the Architect System. All of the domains

supported by Architect axe modeled using the object-oriented paradigm (7:1-4). As a

result, the software artifacts used and generated by Architect can be cleanly mapped

to an OODBMS. OODBMS support for the Architect system can be further justified

by examination of some of the object models developed by Cecil and Fullenkamp. The

object diagrams in their thesis adhere to the Object Modeling Technique as described in

Rumbaugh's book, Object-Oriented Modeling and Design (21). The diagrams in this thesis

also adhere to the Object Modeling Technique unless indicated otherwise.

Cecil and Fullenkamp used the logic circuits domain in their efforts to provide

OODBMS support for the Architect system. They made heavy use of inheritance in their

object model for the logic circuits domain, as shown in Figure 2.1. For example, the "gate"

object class has the attributes of "delay," "mil-spec?," and "power level." The "gate" ob-

ject is a superclass for five subclasses: "and-gate," "or-gate," "nand-gate," "nor-gate,"

and "not-gate." Each of the subclasses inherits the attributes of "delay," "mil-spec?," and

"power level" from the superclass. Another example of inheritance within the logic circuits

domain is the "component" object class with its five subclasses: "counter," "mux," "half-

adder," "decoder," and "JK flip-flop." With ITASCA, Cecil and Fullenkamp were able to

build Schemas taking advantage of these inheritance associations.

Cecil and Fullenkamp also developed a meta-model for domain models. The meta-

model is a model from which all domain models can be built. In this regard, the logic

circuits domain model described earlier can be thought of as an instance of the meta-model,

shown in Figure 2.2. The meta-model makes heavy use of aggregation. A domain definition

is composed of one or more object classes. Each object class is composed of zero or more

2-6

; Architecture j
Primitive

1
Circuits

£±.
CIRCUIT-ARTIFACT

Manufacturer

Delay
Mil-Spec?
Power-level

SWITCH

Delay
Debounced
The-Position
Outl
Switch-Update
Switch-new-update

LED

Color
Inl
Led-on-off-update
Led-t-f-update

COMPONENT

Delay
Mil-Spec?
Power-level

AND-GATE

Inl
In2
"■■*'
And-Gate-Updatel
And-Gate-Update2

OR-GATE

Inl
In2

Or-Gate-Updatel
Or-Gate-Update2

NOR-GATE

Inl
In2
Ollll
Nor-Gate-Updatel
Nor-Gate-Update2

NAND-GATE

Inl
In2
""'1
Nand-Gate-Updatel
Nand-Gate-Update2

NOT-GATE

Inl
Ojiti.
Not-Gate-Updatel
Not-Gate-Update2

COUNTER

The-Counl
Clock
Reset
Lib
Msb
Max-Count

Counter-Updatel

CONCRETE CLASS ABSTRACT CLASS

MUX
InO
Inl
In2
In3
SO
SI
Outl

Mux-Updatel

DECODER
Inl
In2
In3
MO
Ml
M2
M3
M4
MS
M6
M7
Decoder-Updatel

HALF-ADDER
Inl
In2

Half-Adder-Updatel

JK-FLff-FLOP

J
K
Clk
Q
Q-bar
Setup-delay
Hold-delay
State
JK-Flip-Flop-Updatel
JK-Flip-Flop-Update2

Figure 2.1 Object Model of Logic Circuits Domain

data objects. Finally, each concrete object class contains one or more REFINE functions.

With ITASCA, Cecil and Fullenkamp were able to build Schemas taking advantage of these

aggregate associations.

2.6 Software Architectures

The software architecture becomes a major design consideration of a software system

as its size and complexity increase. A higher level of abstraction is used in the design of the

2-7

DOMAIN-DEF

Name: String
Description: Siring

17
Has-Refine-Executable C FASL-OBJ

1+

OBJECT-CLASS
Name: String
Superclass: String
Description: String

0

DATA-OBJECT

Name: String
Type: String
Init-Val: String
Kind-Of: Kind-Enum
Category: String
Description: String

-A-

ABSTRACT CONCRETE

"^

1+
REFINE-FUNCTION

Type: Func-Type-Enum
Name: String
Code: String
Description: String

Func-Type-Enum (OCU-Active-Update, OCU-Update)
Kind-Enum (OCU-Attribute,OCU- Constant, OCU-Coefticient, OCU-lnput, OCU-Output)

Figure 2.2 Domain-Definition Object Model

software architecture when compared to the design of algorithms and data structures. This

is because software architecture is concerned with the overall organization of the system

(10), whereas individual algorithms and data structures impact parts of the overall system.

The software architecture for the Architect system was built using the Object-

Connection-Update (OCU) model. Software systems in compliance with the OCU model

are composed of a group of communicating subsystems. A diagram of an OCU subsystem is

shown in Figure 2.3. The controller manages control between a set of objects based on the

subsystem's mission. The objects represent real-world or virtual components. The import

area is the focal point for the subsystem to gain access to external data. Conversely, the

2-8

Controller

Exports

1
Figure 2.3 OCU Subsystem Construction

export area is the focal point to make internal data available to the environment outside

the subsystem (14:17-19).

The software architecture used to implement the Architect system has a direct impact

on Architect's database schema design. The object model Cecil and Fullenkamp developed

for the software architecture precisely defines the organization used to store many of Archi-

tect's software artifacts in the database. Further information on the OCU architecture and

alternative software architectures for domain-oriented application composition systems can

be obtained from Gool's thesis (11).

2.7 Summary

Object-oriented database management systems provide better support than tradi-

tional database systems for some scientific application areas. The fundamental concepts

of objects, identity, aggregation, and inheritance give OODBMSs more modeling power

than found in older database technologies. Discussion in subsequent Chapters identifies

how these powerful modeling capabilities were crucial to solving the problem statement of

2-9

this thesis. In particular, the concepts of aggregation and inheritance allow much greater

flexibility in the storage and retrieval of applications for Architect than is capable with the

original file-based system. This flexibility allowed for the aggregation of primitives from

multiple domains in an application.

In addition, this chapter identified that OODBMSs provide support for a rapid pro-

totyping environment with dynamic schema evolution. Finally, the software architecture

design used for the Architect system was briefly discussed.

2-10

III. Analysis of Multiple Domain Application Capability for Architect

3.1 Introduction

In this chapter, an assessment of Architect's baseline operational capabilities is pre-

sented. This leads to a discussion of the desired operational capabilities required to support

multiple domain applications. Next, Architect's software environment is analyzed to ex-

plain the single domain limitation for applications in the baseline system. The software

environment plays a different role in the original, file-based version of Architect than it does

in the database version of Architect; these differences are analyzed. Domains participating

in a multiple domain application must be compatible. A discussion of Architect's semantic

checks provides insight into this compatibility requirement. Since the baseline database

version of Architect has only one domain implemented, additional domains must be incor-

porated. Thus, the meta-model for domain definitions is analyzed. Finally, object-oriented

database techniques for sharing components across domain boundaries are discussed.

3.2 Architect Operational Capabilities

To fully understand the problem of providing a multiple domain application capabil-

ity for Architect, the pertinent operational capabilities of the system need to be understood.

A discussion of the baseline and proposed capabilities follows.

3.2.1 Baseline Capabilities. The baseline Architect system is available in either

the database version developed by Cecil and Fullenkamp, or the original file-based version.

In either version, Architect allows a user to create, edit, save, load, and execute applications

within a single domain.

3-1

Once the Architect system is loaded, the Architect Visual System Interface (AVSI)

is presented to the user. AVSI is the graphical user interface developed by previous re-

searchers, Weide (24) and Cossentine (8). The user may then interact with the system

to perform operations on an application. The first operation usually performed is either

"Create New Application" or "Load Saved Application." For these operations, Architect

immediately prompts the user to specify a domain. If creating a new application, the user

can begin composing the application and must include at least one subsystem. Eventually,

the user reaches the "edit subsystem" phase. In this phase, the user is presented with

a window containing an image of the OCU subsystem model. This window is shown in

Figure 3.1.

!
A CBtiimo n Wtiwi&vr :*':

1 Subsystem SUBSYS-1 i

Import NitiL 1 [Export MM J

f

y

conlroller

Objtcto

Figure 3.1 Edit Subsystem Window

3-2

Next, the user can perform a mouse operation to click on the "objects" icon of Fig-

ure 3.1, causing two windows to appear. One of these windows contains all the primitives

belonging to the domain of the current application. The technology base window for the

logic circuits domain is shown in Figure 3.2. The second window is the subsystem window

-<! : A Co mmo» WJntlow
■ Window for CIRCUITS

HOT-GATE

o
OR-GATE

o
HAND-GATE

o
NOR-GATE

HmrAoi £*
HALF-ADDER

- J Q_
O

-K =-
JK-FLIP-FLOP

EV ' u
> X

■4-t-

o
AND-GATE

COUNTER
Ä ™

Figure 3.2 Technology Base Window for CIRCUITS

where the user composes the subsystem by placing instances of all required primitive ob-

jects into the window. The user is limited to choosing objects from the domain presented

in the technology base window. Of course, this is to be expected since applications can

contain primitives from only one domain. The user can place objects into the current sub-

system by simply performing a mouse operation to drag instances of primitives from the

technology base window into the subsystem window. An example of a subsystem window

containing one "switch" instance and one "LED" instance is shown in Figure 3.3. Finally,

3-3

< A Common Window
SUBSYSTEM-OBJ: SUBSYS-1

*

SWITCH-!

kfcj 4tdMÜUA]

SUBSYSTEM-OBJ
SUBSV3-1

LED-1

Figure 3.3 Subsystem Window

after all the desired primitive objects have been placed into the subsystem window, the

user can deactivate the subsystem and technology base windows and move on to other

functions.

3.2.2 Proposed Capabilities. If a multiple domain application capability is to

be realized, the user needs an added option to select primitive objects from a domain

other than the one originally specified when creating a new application or loading a saved

application. This can be accommodated by enhancing the menu options AVSI provides.

Two alternatives follow.

• OPTION 1: This approach requires the user to specify all the required domains at the

very beginning of the application composition process. When a user initially creates

a new application, AVSI prompts the user for the domain of the application. This

3-4

would be considered the primary domain. AVSI could be enhanced to ask a follow-up

question to determine if primitives from alternate domains are needed.1 With this

information, AVSI could build a technology base window to include primitives from

the alternate domains in addition to primitives of the primary domain. Then, when

the user clicks on the "objects" icon of Figure 3.1, primitive objects from all the

required domains would be displayed.

• OPTION 2: This approach defers the choice of selecting primitives from alternate

domains until the "edit subsystem" phase. When the user clicks on the "objects"

icon of Figure 3.1, primitives from the primary domain would be presented in the

normal fashion. The user would then place all the required primitives of the primary

domain into the subsystem window of Figure 3.3. If primitive objects are needed

from an alternate domain(s), the user could simply bring up a menu to make the

request. This menu would be presented after clicking the mouse in the background

of the window of Figure 3.2. After specifying the alternate domain, a new technology

base window would appear allowing the user to include the needed primitives. At

this point, the application composition process would proceed as usual.

Option 2 was chosen as the preferred alternative for two reasons. First, Option 1

assumes the user knows all the required primitive objects and their respective domains

at the beginning of the application composition process. Option 2 provides the user the

flexibility to include primitives from all available domains throughout the entire compo-

sition process. Second, Option 1 presents the user a single technology base of primitive

1Use of the terms primary and alternate will be used from this point forward when referring to the
domains of a multiple domain application.

3-5

objects from the primary domain and alternate domains. The potentially large number of

primitive objects would make this window difficult to display in a pleasing manner. At any

given instance, Option 2 presents a technology base of primitives from only one domain.

The flowcharts in Figure 3.4 summarize the differences between the baseline and pro-

Create Application

'
Choose Domain

1

Edit Application

1

Create Subsystem

1

Edit Subsystem

Create Instances of Primitives

and Subordinate Subsystems

/Edi
/ Anotl

t \
her \ Yes

^Subsystem
7

No

Create Application

Choose Domain

Edit Application

Create Subsystem

Edit Subsystem

Create Instances of Primitives

and Subordinate Subsystems

Create Instances of Primitives

Figure 3.4 Baseline Versus Proposed Capabilities

posed capabilities for Architect's application composition process. The baseline capabilities

are shown on the left, and the proposed capabilities are shown on the right.

3-6

3.3 Analysis of Architect's Single Domain Limitation

3.3.1 Software Environment. As mentioned in Section 2.3, Architect was im-

plemented with SOFTWARE REFINERY™, a formal-based specification and programming

environment. To begin an Architect session, the SOFTWARE REFINERY environment must

first be loaded. The SOFTWARE REFINERY environment includes the products REFINE,

DIALECT, and INTERVISTA.

• REFINE is a specification and object base manipulation environment. It provides a

wide-spectrum language and a structured object base capability (19). The Architect

source code is written in the REFINE language.

• DIALECT is used for manipulating formal languages (18:1-1). DIALECT was used

to specify Architect's domain specific and architecture (OCU) grammars. DIALECT

generates the parser which is used to transform saved applications in textual form

to and from the REFINE object base.

• INTERVISTA provides the tools necessary to create interactive user interfaces for RE-

FINE applications. These interfaces include diagrams, pop-up menus, and mouse-

sensitive text windows (20:1-1).

3.3.2 File-Based Version of Architect. The Architect limitation for single do-

main applications is related to the nature of DIALECT'S grammar inheritance capabilities.

DIALECT allows the management of separate grammars to be handled efficiently with in-

heritance. This approach uses a common base grammar along with variant grammars to

express the differences. Each of the variant grammars inherits the vocabulary and produc-

3-7

tions from the base grammar. However, at any given instance, a grammar can only inherit

from at most one other grammar (18:5-20).

Architect uses DIALECT'S grammar inheritance capabilities for its domain specific

grammars. Architect has a general grammar associated with the OCU architecture. Then,

there is a domain specific grammar associated with each domain, such as logic circuits,

digital signal processing, etc. These domain specific grammars inherit from the general

software architecture grammar. As a result, each domain is associated with a grammar

that contains the vocabulary and production rules for the OCU architecture, in addition to

the vocabulary and production rules for the specific domain. This is beneficial because each

grammar contains the knowledge it needs for the software architecture. The disadvantage

is that all of the domain knowledge in the grammars is disjoint. In other words, the domain

knowledge contained in any given domain specific grammar is not contained in any of the

other domain specific grammars. Therefore, any given grammar that is invoked to parse

an Architect application contains the vocabulary and production rules of only one domain.

Given the current design of the Architect system, DIALECT can not create a parser powerful

enough to save and load multiple domain applications.

3.3.3 Database Version of Architect. The database version of Architect offers

the same functionality as the file-based version of Architect. However, when applications

are saved to the database or loaded from the database, DIALECT'S parsing capabilities are

not used. Instead, a group of transformation functions developed by Cecil and Fullenkamp

are used. When saving an application to the database, the transformation functions take

the current Architect application in the REFINE object base, and then store an equivalent

3-8

representation of the application in the ITASCA database. Likewise, when loading a saved

application from the database, the transformation functions take the database represen-

tation of the application and create an equivalent representation in the REFINE object

base.

Since the database version of Architect does not use DIALECT'S parsing capabilities

to save or load applications, the feasibility of multiple domain applications becomes more

focused. In fact, the entire hypothesis of using database technology to bring about multiple

domain applications for the Architect system is based on the fact that parsing textual

representations of applications in and out of the REFINE object base is not required in the

database version.

Incidentally, the baseline database version of Architect also allows the user to save

or load applications to or from a file just like the file-based version. When performing a

save or load of a file in the database version, parsing is invoked in the usual manner. As

such, the database version only adds to the user's options; it does not remove any options.

However, this is not the case for multiple domain applications. They can only be saved or

loaded with the database.

3.4 Compatibility of Domains

The domains participating in a multiple domain application must have some degree

of compatibility. At least one primitive from the primary domain must be capable of

interfacing with a primitive from an alternate domain. More precisely, primitives from

different domains must be able to import and export data between each other.

3-9

The Architect system allows the exchange of data between primitives to occur only if

semantic checks have been passed. To pass semantic checks, the import and export areas

must be of the same type and category. For example, in the logic circuits domain, a switch

can export data to the import area of a light. In this case, the type is "boolean" and the

category is "signal" for both the export and import areas. If semantics checks fail, a fatal

error results.

3.5 Analysis of Meta-Model for Domain Definitions

After Cecil and Fullenkamp completed their research, the database version of Ar-

chitect was populated with one domain—logic circuits. Obviously, one of the first actions

required to bring about a multiple domain application capability was to load another do-

main in the database. This required an analysis of Cecil's and Fullenkamp's meta-model

for domain definitions. The object diagram for the meta-model was shown earlier in Fig-

ure 2.2 and is shown again in Figure 3.5 for convenience. The object diagram for the logic

circuits domain was shown in Figure 2.1 and is shown again in Figure 3.6 for convenience.

The meta-model was used to develop the object diagram for the logic circuits domain.

Ultimately, the schema in the ITASCA database was implemented in accordance with the

logic circuits domain model.

3.5.1 Primitive Objects and their Attributes. One desired result of developing a

domain definition is to provide a technology base of one or more primitive objects which

an Architect user can choose from when composing an application. This is achieved in

the meta-model by the association that requires a domain definition to be composed of

3-10

DOMAIN-DEF

Name: String
Description; Siring

77
Has-Refine-Executable < FASL-OBJ

OBJECT-CLASS
Name: String
Superclass: String
Description: String

0

DATA-OBJECT

Name: String
Type: String
Init-Val: String
Kind-Of: Kind-Enum
Category: String
Description: String

.A

ABSTRACT CONCRETE

77

1+

HEFINE-FUNCTION

Type: Func-Type-Enum
Name: String
Code: String
Description: String

Func-Type-Enum (OCU-Active-Update, OCU-Update)
Kind-Enum (OCU-Attribute,OCU- Constant, OCU-Coefficient, OCU-lnput, OCU-Output)

Figure 3.5 Domain-Definition Object Model

one or more object classes. Each primitive object in a technology base corresponds to

an instance of the "Object-Class" class in the meta-model. Each primitive object may

have any number of attributes associated with it. This is achieved in the meta-model

by the association that allows each object class to have any number data objects. The

"Data-Object" class in the meta-model corresponds to an object attribute.

To illustrate, consider the following example. One instance of an object class in the

logic circuits domain is the "LED" primitive object class. One instance of a data object is

the "color" attribute for the "LED" primitive object class.

3-11

j Architecture '
! Primitive

Circuit!)

CIRCUIT-ARTIFACT

GATE
Delay

[Mil-Spec?
' Power-level

SWITCH

Delay
Debounced
The-Position
Outl
Switch-Update
Switch-new-update

Color
Inl
Led-on-off-update
Led-t-f-update

COMPONENT

D«Iay
Mil-Spec* ;

; Power-kvej

AND-GATE OR-GATE NAND-GATE

Inl
In2
0,iM

Inl
In2
Ontl

Inl
In2
Outl

And-Gate-Updatel
And-Gate-Update2

Or-Gate-Updatel
Or-Gate-Update2

Nand-Gate-Updatel
Nand-Gate-Update2

NOR-GATE NOT-GATE

Inl
In2
Outl

Inl
Outl
Not-Gate-Updatel
Not-Gate-Update2 Nor-Gate-Updatel

Nor-Ga te- Update2

COUNTER MUX HALF-ADDER
The-Count
Clock
Reset
Lsb
Msb
Max-Count

InO
Inl
In2
In3
SO
SI
Outl

Inl
In2
S
c

Half-Adder-Update]

Counter-Updatel
Mux-Updatel

DECODER JK-FLIP-FLOP
Inl
In2
In3
MO
Ml
M2
M3
M4
MS
M6

J
K
Clk
Q
Q-bar
Setup-delay
Hold-delay
State
JK-Flip-Flop-Updatel
JK-Flip-Flop-Update2

Decoder-Updatel
| CONCRETE CLASS | ABSTRACT CLASS

Figure 3.6 Object Model of Logic Circuits Domain

3.5.2 Hierarchy Among Object Classes. In providing a technology base of prim-

itive objects, Cecil and Fullenkamp could have chosen to model each domain with a flat

structure. With a flat structure, each primitive object would be positioned one level below

the top-level domain definition class. However, they chose to introduce hierarchy among

object classes as Figure 3.6 illustrates. This is achieved with the "superclass" attribute

of an object class in the meta-model. Each instance of an object class is required to

have a superclass, whether it is the top-level domain definition class or some other object

3-12

class below the domain definition class. For example, the "LED" object class has the

"CIRCUIT-ARTIFACT" object class as its superclass.

The primary benefit of having hierarchy among object classes is to allow multi-

ple levels of inheritance in the ITASCA database. Continuing with the previous exam-

ple, the "LED" object class of Figure 3.6 inherits the "manufacturer" attribute from

the "CIRCUIT-ARTIFACT" object class, as do all the subclasses of the "CIRCUIT-

ARTIFACT" object class. Of course, the "LED" object class represents a primitive object

in the technology base, while the "CIRCUIT-ARTIFACT" object class does not. The

meta-model accounts for this by distinguishing each object class as either abstract or con-

crete. Each object class representing a primitive object in the technology base is concrete

while all other object classes are abstract.

3.5.3 Primitive Object Update Functions. The Architect system requires each

primitive object to have an update function. When an application is executed, the applica-

tion executive ensures each subsystem in the application is updated in the order specified

by the application's update algorithm. Likewise, the update function for each object in

a given subsystem is executed in an order specified by the subsystem's update algorithm.

To support execution of an update function for a primitive object, data can be imported

from outside the primitive. Then, the state of the primitive is updated based on the im-

ported data and the primitive's previous state. Finally, data can be made available for

export outside the primitive. The meta-model accounts for the primitive update process

by requiring each concrete object class to contain at least one REFINE (update) function,

as shown in Figure 3.5.

3-13

3.5.4 REFINE Executable. Each domain definition must have a REFINE "FASL-

Object" associated with it in order to make the domain executable in REFINE and Archi-

tect. A "FASL-Object" corresponds to the executable file generated by a REFINE compila-

tion. The source code used to generate the "FASL-Object" is automatically created by an

ITASCA method named "make-refine-file," written by Cecil and Fullenkamp. After all the

domain definition data is loaded into the ITASCA database, the "make-refine-file" method

can be executed to generate the source code for the domain. The meta-model allows a

domain definition to have a FASL-Object with the "Has-Refine-Executable" association,

as Figure 3.5 illustrates.

3.5.5 Other Considerations. Because Architect is a visual system, an icon bitmap

must be developed for each primitive to fully define a domain. The icon bitmap information

for each primitive object is included in the REFINE source file for the domain. This allows

AVSI to generate the technology base window during the composition of an application.

The last consideration here is the ITASCA schema, which enables the database to

store instances of Architect applications, including all subsystems and primitive objects

contained in those applications. Each domain definition developed from the meta-model

must have a corresponding schema implemented in the database. Each object class iden-

tified in a given domain must have a corresponding object class built in that domain's

database schema. Also, each attribute must be included in the appropriate object class of

the schema.

3-14

3.6 Database Techniques for Sharing Components Across Domain Boundaries

As stated in Section 3.5.5, each domain supported by the database version of Archi-

tect must have a schema implemented in the database to allow for storage of applications.

As discussed in Chapter I and illustrated in Figure 1.3, each domain is defined as a separate

subclass of the "OCU-Primitive" object class. However, to support multiple domain appli-

cations, techniques for allowing a single application to include components across domain

boundaries must be analyzed. An analysis of the "OCU-Application," "OCU-Subsystem,"

and "OCU-Primitive" database object classes provides insight for sharing components

across domain boundaries.

3.6.1 "OCU-Application" Object Class. An Architect application is modeled as

an object class in the database. The object class is named "OCU-Application" and is

shown with its attributes in Figure 3.7. An application has a "Domain" attribute, which

OCU-APPLICATION

Generic-Version
Version-Number
Version-Type
Name
Domain
Update-Function
ICO-Subsystems
Description
Application-Mode
ICO-Connections

Figure 3.7 Object Model of an OCU Application

of course, identifies the domain from which the application was composed. In a multiple

3-15

domain application, the "Domain" attribute refers to the primary domain from which the

application was composed; the use of alternate domains is not indicated by this attribute.

The "ICO-Subsystems" attribute means "is composed of subsystems." This attribute

makes use of aggregation as described in Section 2.4.3, since its type declaration is a

set of "OCU-Subsystem" objects. In other words, "OCU-Subsystem" objects are nested

within "OCU-Application" objects. This leads to an analysis of the "OCU-Subsystem"

object class to provide an understanding of how an "OCU-Application" object can contain

primitive objects from more than one domain.

3.6.2 "OCU-Subsystem" Object Class. A subsystem is also modeled as an object

class in the database. The object class is named "OCU-Subsystem" and is shown with

its attributes in Figure 3.8. As with the "OCU-Application" object class, the "Domain"

OCU-SUBSYSTEM

Name
Domain
Update-Function
ICO-Elements
ICO-Exports
ICO-Imports
Description
X-Coordinate
Y-Coordinate

Figure 3.8 Object Model of an OCU Subsystem

attribute of the "OCU-Subsystem" object class identifies the domain from which the sub-

system was composed. In a multiple domain application, the "Domain" attribute refers to

3-16

the primary domain from which the subsystem was composed; the use of alternate domains

is not indicated by this attribute.

The "ICO-Elements" attribute means "is composed of elements." This attribute

also makes use of aggregation since its type declaration is a set of "OCU-Element" objects.

As a result, there are two levels of aggregation in an "OCU-Application" object—"OCU-

Element" objects are nested within "OCU-Subsystem" objects, and "OCU-Subsystem"

objects are nested within "OCU-Application" objects. Consistent with the OCU software

architecture, an element can be either a subsystem or a primitive. Next, an analysis of the

"OCU-Primitive" object is needed to understand how an "OCU-Application" object can

contain primitive objects from more than one domain.

3.6.3 "OCU-Primitive" Object Class. A primitive is also modeled as an object

class in the database. The object class is named "OCU-Primitive" and is shown with its

attributes in Figure 3.9. The "Domain" attribute of an "OCU-Primitive" object refers to

OCU-PRIMITIVE

Name

Domain

Update-Function-Name

ICO-Data-Objects

X-Coordinate

Y-Coordinate

Figure 3.9 Object Model of an OCU Primitive

3-17

the domain in which the primitive belongs. In a multiple domain application, the domain

of a primitive may differ from the domain of the subsystem and application to which it

belongs. This difference in domains does not pose a problem in the database because the

attribute "ICO-Elements" of an "OCU-Subsystem" object does not require all primitive

objects nested within a given subsystem to be of the same domain.

3.6.4 Summary of Domain Sharing Techniques. The object-oriented database

concept of aggregation was the primary technique identified in this analysis to allow the

sharing of domain components. ITASCA allows aggregation in the schema definition by

declaring the type of any object's attributes to be an object instance or a set of object

instances. Aggregation allows an Architect application to be stored in the database as

one object. One or more subsystems can be nested within each application. Also, one or

more primitives and one or more subsystems can be nested within each subsystem. The

primitives included in a subsystem do not have to be of the same domain as the subsystem

and application. As a result, a single instance of an Architect application in the database

can contain primitives from multiple domains.

The transformation functions discussed in Section 3.3.3 must keep track of the various

domains involved in a multiple domain application. When loading an application from

ITASCA to REFINE, the transformation functions use the "Domain" attribute of an "OCU-

Primitive" object to determine if each primitive object is from an alternate domain. If

so, the transformation functions must account for this in order to properly create the

primitive in the REFINE object base. When saving an application to the database, the

3-18

transformation functions determine the domain of each primitive in the application so it

can store the primitive in the proper object class within its domain.

3.7 Summary

This chapter began with an assessment of Architect's baseline operational capabil-

ities and a discussion of the desired operational capabilities required to support multiple

domain applications. Next, Architect's software environment was analyzed to explain the

single domain limitation for applications in the baseline system. Since the software envi-

ronment plays a different role in the original, file-based version of Architect than it does

in the database version of Architect, those differences were analyzed. A discussion of Ar-

chitect's semantic checks provided an understanding of how domains must be compatible

to participate in a multiple domain application. The meta-model for domain definitions

was analyzed due to the need to incorporate additional domains in the baseline database

version of Architect. The chapter concluded with a discussion of object-oriented database

techniques for sharing components across domain boundaries. In particular, aggregation

allows applications to be composed of subsystems, and subsystems to be composed of

primitives. As a final key point, the OODBMS does not require all primitives contained

in a subsystem to belong to the same domain.

3-19

IV. Design and Implementation

4-1 Overview

This chapter describes the design and implementation of a multiple domain capability

for Architect applications. The enhancements needed to support the use of primary and

alternate domains while creating or editing an application are explained. At least one

additional domain needed to be implemented in the database. This chapter explains the

rationale for selecting the digital signal processing domain to complement the logic circuits

domain. To cross domain boundaries, at least one pair of the logic circuits and digital

signal processing primitives needed to be capable of exchanging (importing or exporting)

data. This chapter describes the design and implementation of several new primitives in

both domains, enabling the exchange of data across the domain boundaries. With these

new primitives, the Architect system is capable of generating an application containing

primitives from both domains.

4-2 Architect System Enhancements - Primary and Alternate Domains

In order for the Architect system to have the operational capabilities described in

Option 2 of Section 3.2.2, several enhancements were implemented. These enhancements

allowed for the use of primary and alternate domains during application composition.

The Architect design and implementation uses the concept of a current domain. Ar-

chitect was originally designed such that it has one and only one current domain at any

given point in time. Many of the activities required in Architect's application composition

process depend on knowledge contained in the current domain. For example, when bring-

4-1

ing up the technology base of primitive objects, Architect produces a window containing

primitives of the current domain. However, in a multiple domain environment, the current

domain needs to change during the composition of a single application. At any given point

in time, the primary domain or one of the alternate domains must be able to assume the

role of current domain. As a result, enhancements were needed to manage the dynamics

involved with the current domain for activities in the following key areas.

• Technology Base Window

• Object Editing

• Setting Icon Attributes

• Database Transformation Functions

A simple approach was taken to manage the domain dynamics. When performing an

activity in one of the key areas on a primitive from an alternate domain, the alternate do-

main gets temporarily established as the current domain. When the activity is completed,

the primary domain gets re-established as the current domain. This idea is illustrated in

Figure 4.1. A discussion of the design and implementation for the required enhancements

follows.

4-2.1 Technology Base Window. The mouse handler function for the technology

base window allows the user to create instances of primitive objects from the technology

base window and place them into the current subsystem window. Also, the mouse handler

function provides the user a menu of several additional options by clicking on the diagram

surface. The option to select primitives from an alternate domain was added to this

4-2

Figure 4.1 Management of Domain Dynamics

menu. When the user chooses this option, a function is invoked that asks the user to

specify an alternate domain. If the alternate domain has not been previously loaded from

the database into REFINE, it is loaded at this time. At this point, the mouse handler

function establishes the alternate domain as the current domain in the Architect system,

consistent with Figure 4.1. The mouse handler function then invokes another function

to display the technology base window for the current domain. This allows the user to

place instances of primitives from the alternate domain into the current subsystem window.

4-3

After all instances from the alternate domain have been created, the primary domain is

re-established as the current domain.

4-2.2 Object Editing. Each primitive object in an Architect application has some

number of editable attributes. The user may start the editing process by requesting to

edit an application, or a subsystem of an application. In either case, a window displaying

the components of the application or subsystem is displayed. The user then clicks on the

object to be edited. Architect provides a menu of options, including the option to view

and edit the object's attributes. If the user selects that option, a function to display the

list of editable attributes for the object is invoked. Next, the user may select any attribute

in the list and edit its value.

An enhancement was needed for the object editing process to allow objects from an

alternate domain to be edited. When the function to display the list of editable attributes

for an object is invoked, the function must ensure the object's domain is the current

domain since the retrieval of attributes is limited to objects of the current domain. Thus,

the enhancement here implements the management of domain dynamics of Figure 4.1.

4-2.3 Setting Icon Attributes. The visual interface for Architect builds many

icons for primitive objects during the application composition process. For example, the

technology base window displays an icon for each primitive in a given domain. Also, the

windows that are generated during editing of an application or subsystem include an icon

for each object instance they contain. To build the icons, the Architect Visual System

Interface (AVSI) invokes a function to set the icon attributes for a primitive as specified

4-4

by a bitmap associated with the primitive. The attributes for an icon define the physical

appearance of the icon when displayed.

The baseline Architect system is implemented such that the function to set the

icon attributes can only be invoked for the primitives of the current domain. Thus, an

enhancement was implemented similar to the enhancements described in the preceding

sections, consistent with Figure 4.1.

4-2.4 Database Transformation Functions. The database transformation func-

tions discussed in Section 3.3.3 required an enhancement to save and load multiple domain

applications. A discussion of this implementation follows.

4-2.4-1 Saving Applications. When saving an application to the database,

Architect's transformation functions create an instance of the "OCU-Primitive" object

class in the ITASCA database for each instance of a REFINE primitive in the application.

"Domain" is an attribute of an ITASCA "OCU-Primitive" instance and specifies the domain

to which the primitive belongs. However, the design and implementation of the transforma-

tion functions require the value of the primitive's domain to be set to the current domain.

Since the domain of the application being saved is the current domain, an enhancement

was implemented to accurately build ITASCA primitives from an alternate domain. Once

again, the enhancement adhered to the logic of Figure 4.1.

4.2.4-2 Loading Applications. This enhancement is similar to the one re-

quired for saving applications. When loading an application from the database, Architect's

transformation functions create an instance of a primitive in the REFINE object base for

4-5

every ITASCA "OCU-Primitive" object instance contained in the application. However, the

design of the transformation functions limits the creation of REFINE primitives to those

of the current domain. Since the domain of the application being loaded is the current

domain, an enhancement consistent with Figure 4.1 was implemented so primitives from

an alternate domain can also be created.

4-3 Selection of Additional Domains

After enhancing the Architect system to allow the use of primary and alternate

domains, the next step was to implement at least one new domain in the database. The

selection of the new domain must accommodate the fact that the domains participating

in a multiple domain application must have primitive objects capable of interfacing with

each other as explained in Section 3.4. This presented two alternatives.

1. Implement at least one additional domain capable of interfacing with the logic circuits

domain.

2. Implement at least two additional domains capable of interfacing with each other.

The first alternative was selected. Actually, two additional domains were imple-

mented. The first was really an extension of the original logic circuits domain, but was

implemented as a separate domain. This domain was named "Circuits-Additional" and

added additional logic circuits primitives. This served two practical purposes. First, useful

logic circuits primitives were added to the Architect technology base. Second, the "Circuits-

Additional" domain is completely compatible with the original logic circuits domain. This

4-6

provided a simple and ideal environment for building multiple domain applications, aiding

the development and validation of the enhanced Architect system.

The digital signal processing (DSP) domain was the second domain implemented.

This domain was implemented in the file-based version of Architect during previous re-

search by Warner (23). The possibility of DSP primitives importing or exporting binary

signals made this an attractive domain to combine with logic circuits in a multiple domain

environment.

4-4 Implement "Circuits-Additional" Domain

To implement the "Circuits-Additional" domain, several tasks were accomplished.

Specific primitives were selected for incorporation into the domain. The update functions

for each primitive were designed and written. The database schema for the domain was

designed and implemented. Information pertaining to the domain definition meta-model,

which was analyzed in Section 3.5, was developed and entered into the ITASCA database.

This enabled the REFINE source code for the domain to be generated. This section ad-

dresses these tasks.

4-4-1 Selection of Additional Primitives. As stated earlier, the objective of

developing the "Circuits-Additional" domain was to add useful logic circuits primitives to

the Architect technology base and to provide a simple environment to support multiple

domain applications. Therefore, the following small set of logic circuits primitives was

selected for implementation in the new domain.

4-7

• And-Gate-3Input - This primitive imports three binary signals, performs a "logical

and" of the three signals, and outputs the result.

• Or-Gate-3Input - This primitive imports three binary signals, performs a "logical or"

of the three signals, and outputs the result.

• Pull-Adder - This primitive imports three binary signals—an addend, an augend, and

a carry-in. The output is two binary signals—the sum and carry-out.

• Full-Adder-4Bit - This primitive imports two binary numbers, each number contain-

ing four bits. The output is the four-bit sum and a carry-out bit.

• Full-Subtractor - This primitive imports three binary signals—a minuend, a subtra-

hend, and a previous borrow. The output is two binary signals—the difference and

an output borrow.

• Pull-Subtractor-4Bit - This primitive subtracts one binary number from another,

each number containing four bits. The output is the four-bit difference and a borrow

bit.

The significance of adding the adder and subtractor primitives will become more apparent

later since they participate with digital signal processing primitives to form a multiple

domain application.

The "Switch" and "LED" (light emitting diode) primitives, which are part of the

original logic circuits domain, were also included in this domain. These primitives are

necessary to build meaningful applications within the "Circuits-Additional" domain. The

design and implementation of these primitives were simply reused from the original logic

circuits domain.

4-8

Table 4.1 Truth Table for 3-Input And-Gate

Imports Exports
Inl In2 In3 Out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 4.2 Truth Table for 3-Input Or-Gate

Import s Exports
Inl In2 In3 Out

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

4-4-2 Update Functions for the New Primitives. Domain information to de-

velop the new logic circuits primitives was obtained from Mano's book, Digital Logic and

Computer Design (15). Truth tables for the "And-Gate-3Input," "Or-Gate-3Input," "Pull-

Adder," and "Pull-Subtractor" are illustrated in Tables 4.1, 4.2, 4.3, and 4.4, respectively.

The size of the truth tables for the four-bit full-adder and four-bit full-subtractor makes

them impractical to present. The truth tables identify the exports generated by each

primitive's update function for all possible combinations of imports. The REFINE update

functions for each of these primitives is located in Appendix B.

4-4-3 Object Model for Schema Implementation. Before implementing the schema

for the "Circuits-Additional" domain, an object model for the domain needed to be de-

4-9

Table 4.3 Truth Table for Pull-Adder

Imports Exports
Addend Augend Carry In Sum Carry Out

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 4.4 Truth Table for Full-Subtractor

Import 3 Exports
Minuend Subtrahend Previous Borrow Difference Output Borrow

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

4-10

veloped. The object model diagram is shown in Figure 4.2. This model was developed in

I
Circuits-Additional

/v.
Circuit-Superclass

And-Gate-3Ihput

Inl

In2

In3

Output

And-Gate-3Input-Update

Or-Gate-3Ipput

Inl

In2

In3

Output

Or-Gate-31hput-llpdate

FulI-AddeMBit

In-IA In-1B Out-lC
In-2A In-2B Out-2C

In-3A In-3B Out-3C

In-4A In-4B Out-4C

Cany-Out

FuIl-Adder-4Bit-Update

-A_

Inl

Ih2

Carry-In

Sum

Carry-Out

Full-Adder-Update

Minuend

Subtrahend

Previous-Borrow

Difference

Borrow-Bit

Full-Subusctor-Update

Switch-Additional

Outl

The-Fosition

Switch-Additlonal-Update

LED-Additional

LED-Additlonal-Update

Full-Subtractor-4Bit

Min-1 Sub-1 Ditf-1
Min-2 Sub-2 Diff-2

Min-3 Sub-3 Ditt-3

Min-4 Sub-4 Diff-4

Borrow-Bit

FuIl-Subtractor-4Bit-Dpdate

Figure 4.2 Object Model for "Circuits Additional" Domain

accordance with the meta-model for domain definitions.

"Circuits-Additional" is the top level object class and corresponds to the domain

definition class of the meta-model. This class is simply a container class for the domain and

can have no attributes. The design of Architect and the database requires each domain to

inherit from the OCU software architecture. Therefore, "Circuits-Additional" is a subclass

of the "OCU-Primitive" class in the database schema. Note, the "OCU-Primitive" class is

4-11

not part of the "Circuits-Additional" domain. It is actually part of the OCU architecture

and is shown here to illustrate the connection between the domain and software architecture

models. All the concrete and abstract classes in the domain are subclasses of the "Circuits-

Additional" class.

Each primitive in the domain corresponds to a unique concrete class and is a leaf

class in the diagram. Since the primitives are concrete classes, each has a REFINE update

function. The diagram identifies each primitive with its update function. The update

functions are not ITASCA methods. They are simply the REFINE update functions required

by Architect for its primitives. The update functions are stored as REFINE source code in

the ITASCA database. Note that the switch primitive is named "Switch-Additional" and

the LED primitive is named "LED-Additional." This avoids a naming conflict with the

"Switch" and "LED" classes in the schema of the original logic circuits domain.

The object model contains one abstract class named "Circuit-Superclass." This class

really serves no purpose with the given design since there were no common attributes in

the domain that could be inherited by all primitives. However, this abstract class was

included as a subclass of "Circuits-Additional" in the schema because it might provide

opportunities for inheritance in future designs.

The attributes in the object model diagram belong to one of the following categories:

OCU-ATTRIBUTE, OCU-INPUT, or OCU-OUTPUT. All attributes belonging to the

OCU-ATTRIBUTE category are included as attributes in the schema. The attributes be-

longing to the OCU-INPUT and OCU-OUTPUT categories are not included as attributes

in the schema. Instead, they represent the imports and exports for the primitive classes of

4-12

the domain. These attributes are necessary to accurately generate the REFINE source and

executable code for the domain. The next section summarizes the domain definition data

used to generate the REFINE code.

4-4-4 Domain Definition Inputs. Domain definition data was input into the

database as specified by the object model from the previous section. The data was input

into the following five ITASCA object classes.

• Data Object - There were 47 instances of data objects. The data objects correspond

to the attributes illustrated in the various object classes of Figure 4.2.

• Concrete Object - There were eight instances of concrete classes corresponding to

the primitives of the domain. These are illustrated in Figure 4.2.

• Abstract Object - There was one instance of an abstract class, "Circuit-Superclass."

• REFINE Function - There were eight instances of REFINE functions, one for each

concrete class.

• Domain Definition - There was one instance of a domain definition.

After the domain definition data was loaded into the ITASCA database, the "make-

refine-file" method of the "Domain Definition" class was executed. This generated the

REFINE source code for the domain. Ultimately, the source code was compiled and the

resultant executable code was stored in the database. With the database version, all of

Architect's executable files are stored in the database and are loaded into REFINE as needed

during an Architect session.

4-13

Table 4.5 DSP Primitives

Stored-Signal Sinusoid Noise Time-Filter
Piecewise-Linear Print-Signal Save-Signal Reverse-Signal
Unit-Sample-Sequence Input-Buffer Delay Window-Signal
Unit- Step- Sequence Output-Buffer Adder Truncate-Signal
Graph-1-Signal Multiplier Signal-Adder User-Designed-Filter
Graph- 2- Signal Signal-Multiplier DFT Complex-To-Real
Graph-3-Signal Signal-Subtractor IDFT Scale-Signal
Graph-4-Signal Signal-Divider Convolution Real-To-Complex
Signal-Abs-Dif Frequency-Filter Pad-Signal

4-4-5 Icon Bitmap Construction and Implementation. AVSI requires each primi-

tive to be associated with an icon to allow the primitive objects to be displayed during an

Architect session. The bitmaps for the "Circuits-Additional" icons were built using Icon

Editor, an OPENWINDOWS™ tool. The data for each bitmap was then reformatted as

a list to allow its storage in the "Icon-Obj" object class of the database. The COMMON

WINDOWS function "bitmap-to-expr" can be used to convert bitmap data into a list. With

this implementation, AVSI can load its icons from the database rather than files. After

loading a list containing icon data, AVSI calls the COMMON WINDOWS function "expr-to-

bitmap" to return a bitmap whose image is created from the list (9:4-12). For a thorough

discussion of icon design and development for the Architect system, refer to Appendix B

of Cossentine's thesis (8).

4-5 Implement Digital Signal Processing Domain

The DSP domain contains 35 primitives as implemented by Warner in the file-based

version of Architect. All of these primitives are identified in Table 4.5. Warner's design

and implementation of these primitives was reused for entry into the database version of

4-14

Architect. For a complete discussion of Architect's DSP domain, consult Warner's thesis

(23).

To implement the DSP domain, many of the same tasks required to implement the

"Circuits-Additional" domain were accomplished. The database schema was designed and

implemented. Information pertaining to the domain definition meta-model was developed

and entered into the ITASCA database. This allowed the REFINE source and executable

code for the domain to be generated. This section addresses these tasks.

4-5.1 Object Model for Schema Implementation. Similar to the development

of the "Circuits-Additional" domain, an object model for the DSP domain was needed.

The model, developed in accordance with the domain definition meta-model, is shown in

Figure 4.3. "DSP" is the top level object class and corresponds to the domain definition

class of the meta-model. "DSP" has ten abstract subclasses. Nine of the ten abstract

classes have concrete subclasses. There are a total of 35 concrete classes, one for each

primitive in the domain. The concrete classes are grouped into single boxes according to

their superclass. Grouping more than one class in a box deviates from Rumbaugh's Object

Modeling Technique (OMT). This approach is more space efficient in this case and allows

all primitive classes in the domain to be displayed reasonably in one diagram. However,

the attributes for all the object classes do not reasonably fit into the diagram and are

omitted.

Similar to the "Circuits-Additional" domain, the ITASCA schema for the DSP domain

was built according to the object model. For a complete representation of the DSP object

4-15

DSP

A,

Signals Displays

A_

Signal-Processing

Signals

Concrete Classes

Sinusoid

Stored-Signal

Noise

Piecewise-Linear

Unit-Sample-Sequence

Unit-Step-Sequence

-Z±.
Displays

Concrete Classes

Print-Signal

Save-Signal

Graph-1-Signal

Graph-2-Signal

Graph-3-Signal

Graph-4-Signal

Filter-Components Signal-Arithmetic

^V
Filter-Components

Concrete Classes

Adder

Delay

Multiplier

Input-Buffer

Output-Buffer

Linear-Operations

A

_Zv
Signal-Arithroeüc

Concrete Classes

Signal-Adder

Signal-Multiplier

Signal-Subtractor

Signal-Divider

Signal-Abs-Dif

Real-To-Complex

Complex-To-Real

Transforms

^A_

Filters

Linear-Operations

Concrete Classes

Convolution

A

Filter-Design

Transforms

Concrete Classes

DFT

IDFT

A

Signal-Manipulations

Fdters

Concrete Classes

Tune-Filter

Frequency-Filter

_A
Filter-Design

Concrete Qasses

User-Designed-Filter

A
Signal-Manipulations

Concrete Classes

Pad-Signal

Scale-Signal

Truncate-Signal

Window-Signal

Reverse-Signal

Figure 4.3 Object Model for DSP Domain

model, refer to the diagrams in Appendix C. These diagrams adhere to Rumbaugh's OMT

and show all attributes for each class.

4-5.2 Domain Definition Inputs. The following summarizes the domain definition

data that was entered into the database for the DSP domain.

• Data Object - There were 119 instances of data objects. The data objects correspond

to the attributes contained in the various diagrams in Appendix C.

4-16

• Concrete Object - There were 35 instances of concrete classes corresponding to the

primitives of the domain.

• Abstract Object - There were ten instances of an abstract class.

• REFINE Function - There were 35 instances of REFINE functions, one for each concrete

class.

• Domain Definition - There was one instance of a domain definition.

As with the "Circuits-Additional" domain, after the domain definition inputs were com-

pleted for the DSP domain, the REFINE code was generated and stored in the database.

4-6 Digital Signal Processing Domain Enhancements

In spite of implementing the "Circuits-Additional" and DSP domains, the ability to

compose multiple domain applications was limited. The "Circuits-Additional" primitives

were fully compatible with the original logic circuits primitives. Therefore, applications

containing primitives from both logic circuits domains were possible. While this provided

a good basis for doing some initial testing and validation of Architect's multiple domain

enhancements, it did not provide any meaningful applications. This is because the primi-

tives of the two logic circuits domains would not be implemented as separate domains in

a realistic environment. Instead, they would have been merged into one domain.

To generate more meaningful applications, the compatibility of the DSP and logic

circuits domains was assessed. For primitives to exchange data, they must comply with

Architect's semantic checks explained in Section 3.4. All of the logic circuits primitives

have import or export areas with a type of "binary" and category of "signal." None of the

4-17

DSP primitives were compatible with any of the logic circuits primitives. However, the

possibility of augmenting the DSP domain with compatible primitives was promising.

Two candidates for addition to the DSP domain were an analog-to-digital converter

and a digital-to-analog converter. In digital signal processing, an analog-to-digital con-

verter generates a binary code. This binary code could be exported to primitives in the

logic circuits domain for manipulation. The logic circuits primitives could then export the

manipulated binary code to a digital-to-analog converter, which receives a binary code as

input and outputs its analog equivalent.

4-6.1 Design of an Analog-to-Digital Converter. An analog-to-digital converter

(ADC) samples an analog signal at some sampling rate or time interval. It converts each

sample into a representative binary code. For example, a signal might represent the voltage

for some electrical circuit. The ADC assesses the value of the voltage of the input sample

and assigns the sample a binary code representing a quantized value or level. The ADC

contains a number of quantization levels. The assigned binary code corresponds to the

quantized value that most closely approximates the amplitude of the input (16:114).

The full scale level of the ADC is the maximum amplitude it supports. To allow for

negative values, the full range of values supported by the ADC is two times the full scale

level. This range of values is divided into a fixed number of discrete quantization levels.

As a result, the step size for each quantization level, denoted as A, is equal to two times

the full scale level divided by the number of quantization levels (16:117-118).

Since each sample from the analog signal is assigned to the nearest quantization level,

the analog-to-digital conversion is not completely precise. The error generated by digital

4-18

conversion of a sample is less than or equal to one half of the step size for the quantization

levels. Therefore, the precision of an ADC can be increased by merely increasing the

number of quantization levels, which decreases the step size. Samples above the most

positive quantization level are assigned to the highest level; those below the most negative

quantization level are assigned to the lowest level.

The number of quantization levels is limited by the number of bits used in the binary

code. This relationship is defined by the formula, y = 2", where y is the number of

quantization levels and n is the number of bits in the binary code. Since the number of

quantization levels increases exponentially with the number of bits, increasing the size of

the binary code decreases the step size and improves the precision of the analog-to-digital

conversion. A 4-bit code was used for the ADC implemented for Architect, resulting in a

maximum of 16 quantization levels.

Each quantization level corresponds to a unique binary code. Several binary coding

schemes exist and a couple of them are shown for a 4-bit ADC in Table 4.6. The offset

binary code assigns a numeric ordering of the quantization levels, beginning with the most

negative level. With a 4-bit ADC, the levels are assigned offset binary codes representing

the values 0 through 15. However, in digital signal processing, it is sometimes preferable to

do arithmetic directly where the code is a scaled representation of the quantized samples.

The two's complement code provides this capability. Two's complement is obtained by

complementing the most significant bit of the offset binary code. This is a convenient sys-

tem of representing signed numbers and is used in most computers. Each two's complement

code is associated with a specific quantized level, ranging from —8A to 7A (16:116-117).

4-19

Table 4.6 Binary Codes for 4-Bit Analog-to-Digital Converter

Offset Binary Two 's Complement
Code Code Quantized Level

1111 0111 7A
1110 0110 6A
1101 0101 5A
1100 0100 4A
1011 0011 3A
1010 0010 2A
1001 0001 1A
1000 0000 0A
0111 1111 -1A
0110 1110 -2A
0101 1101 -3A
0100 1100 -4A
0011 1011 -5A
0010 1010 -6A
0001 1001 -7A
0000 1000 -8A

The following example shows how addition can be performed directly on two's com-

plement codes. The codes 0110 and 1011 correspond to the quantized levels 6A and —5A,

respectively. The binary sum of 0110 and 1011 is 0001, disregarding the most significant

carry bit. The two's complement code 0001 corresponds to the quantized level of 1A,

which is expected when summing 6A and —5A. A similar addition of the corresponding

offset binary codes does not provide useful results.

For another example, consider the following subtraction. Two's complement codes

of 1110 and 1100 correspond to the quantized levels of —2A and —4A, respectively. Sub-

tracting 1100 from 1110 yields 0010. The two's complement code 0010 corresponds to

the quantized level of 2A, which is expected when subtracting —4A from —2A. Again, a

similar subtraction of the corresponding offset binary codes does not provide useful results.

Next, refer to Figure 4.4 for an example of how samples from an analog signal are

converted to a binary code. The first sample is taken at time t0. Since the amplitude of this

4-20

Vertical Axis Represents Amplitude

Horizontal Axis Represents Time

Figure 4.4 Sampling of an Analog Signal

sample is between 6.5A and 7.5A, it is assigned the quantized value of 7A and the two's

complement code of Olli. The second sample is taken at time flt Since the amplitude of

this sample is between —2.5A and —3.5A, it is assigned the quantized value of —3A and

the two's complement code of 1101. Each of the remaining samples are processed in the

same fashion.

^.6.2 Design of an Digital-to-Analog Converter. A digital-to-analog converter

(DAC) receives a binary code representing a sample of an analog signal and converts the

binary code to its analog equivalent. As implemented in Architect, the DAC primitive

basically reverses the actions performed by the ADC. Therefore, the discussion here is

brief. When the DAC receives a binary code, it determines which quantized level the

4-21

code represents. The value of the quantized level is an estimate of the amplitude for

that particular sample. When all samples have been converted from binary to analog

form, a curve can be fit through the samples providing an approximate representation of

the analog signal. As with the analog-to-digital converter, the accuracy of the digital to

analog converter increases as the size of the binary code increases.

4-6.3 Implementation Actions. This section briefly summarizes the actions re-

quired to implement the design of the DAC and ADC primitive classes. An object model

including the new classes was developed. The portion of the diagram containing the new

classes is shown in Figure 4.5. Update functions for both primitives were written and

Signal-Manipulations

A

D-To-A-Converter A-To-D-Converter

Bill Bitl

Biß BÜ2

Bit3 Biß

Bit4 Bit4

Holder Done

Output Holder

Release Input

Max-Magnitude Restart

Max-Magnitude

D-To-A-Converter-Update

Figure 4.5 Object Model for ADC and DAC Primitives

are located in Appendix B. The database schema was modified to include the two new

4-22

DSP classes. They were both modeled as subclasses of the "Signal-Manipulations" class.

To enable enhancement of the REFINE source and executable code for the DSP domain,

additional domain definition data was entered into the database for the ADC and DAC

primitives. The data is summarized as follows.

• Data Object - There were 17 instances of data objects. The data objects correspond

to the attributes contained in the diagram of Figure 4.5.

• Concrete Object - There were 2 instances of concrete classes.

• REFINE Function - There were 2 instances of REFINE functions, one for each primitive

class.

The final action taken was developing icon bitmaps for the new primitives. Icon Editor

was used for that purpose.

4-7 Summary

This chapter began with a description of the design and implementation of a multi-

ple domain capability for Architect applications. The Architect system was enhanced to

support the use of primary and alternate domains while creating or editing an application.

Next, the need for implementing at least one new domain in the database was discussed.

Since the logic circuits domain was already implemented in the baseline database version

of Architect, the digital signal processing domain was implemented due to its potential

compatibility with the logic circuits domain. Finally, this chapter discussed the design

and implementation of several new primitives in both domains, making the two domains

4-23

compatible. These new primitives make it possible for the two domains to exchange binary

signals within a single application.

4-24

V. Testing and Validation

5.1 Overview

This chapter explains the testing and validation of Architect's multiple domain ap-

plication capability. Testing was actually performed incrementally during the development

process. As mentioned in Section 4.3, the implementation of the "Circuits-Additional" do-

main, in conjunction with the original logic circuits domain, provided a simple environment

for doing initial testing and validation. Later, more substantial testing was possible after

implementing Warner's DSP domain along with the analog-to-digital and digital-to-analog

converters.

5.2 Objectives

Testing and validation of this research effort needed to confirm a set of primary and

secondary objectives as follows.

• Primary Objectives

— Display the technology base window for alternate domains when appropriate.

— Display icons for primitives from alternate domains in multiple domain appli-

cations.

— Edit objects from alternate domains in multiple domain applications.

— Successfully save multiple domain applications from the REFINE object base to

the database.

5-1

— Successfully load multiple domain applications from the database into the RE-

FINE object base.

— Properly execute multiple domain applications.

• Secondary Objectives

— Ensure the accuracy of the new logic circuits domain primitives.

— Ensure the accuracy of the new DSP domain primitives.

The primary objectives pertain to the design and implementation of the Architect system

enhancements described in Section 4.2, which allow for the use of primary and alternate

domains. The secondary objectives pertain to the accuracy of the new domain knowledge

implemented in the technology base. While the knowledge in the original logic circuits and

DSP domains was validated by previous research, the new primitives such as the full-adder

and the digital-to-analog converter needed validation.

The objectives pertaining to the Architect system enhancements are considered pri-

mary because they relate directly to the problem statement of this thesis. These objec-

tives provide the infrastructure enabling the composition of multiple domain applications

for any compatible domains. The secondary objectives were needed to ensure the testing

and validation of the primary objectives were not impacted by inconsistencies of the new

primitives.

5.3 Testing of Primary Objectives

After the objectives for testing and validation had been identified, a series of tests

were conducted. A discussion of the tests and results follows.

5-2

5.3.1 Technology Base Window for Alternate Domains. Displaying the technol-

ogy base window for alternate domains was simple to confirm. Testing demonstrated the

window for any of the available alternate domains could be displayed during the appli-

cation composition process. However, an equally important consideration was confirming

the primary domain gets re-established as the current domain after the technology base

window for an alternate domain is deactivated. Recall from Chapter IV, when an activity

is completed that requires an alternate domain to be established as the current domain, the

primary domain should be re-established as the current domain. Testing confirmed that a

request to redisplay the technology base window after previously displaying an alternate

domain would result in the reappearance of the primary domain. This was a crucial result

demonstrating the dynamics of the current domain are properly managed.

5.3.2 Display Icons for Alternate Domains. After including primitives from an

alternate domain in an application, testing needed to confirm icon images from both the

primary and alternate domains could be displayed in a single window. This is required for

several windows generated during application composition. Testing confirmed the satisfac-

tion of this objective. An example of a subsystem window is located in Figure 5.1. This

window contains a sinusoid primitive and an analog-to-digital converter primitive from the

DSP domain. It also contains four LED primitives from the logic circuits domain. For this

application, the DSP domain was the primary domain. The imports/exports window for

this application is shown in Figure 5.2.

5.3.3 Edit Objects from an Alternate Domain. After displaying primitives from

an alternate domain, testing needed to confirm those primitives could be edited. This

5-3

"■-.
1.>:.>i.^w.X.W<.i.l<.;^l.l.;.;.i.^^^

SUBSVSTEM-OBJ
sum

l£D-l LED-2 LED-3 LED-4

Figure 5.1 Subsystem Window

fW, A e&mmimWttiiiM
I mports/Exports

LED-2

Figure 5.2 Imports/Exports Window

5-4

objective relates to the Architect enhancement that allows the display of editable attributes

for a primitive from an alternate domain. Figure 5.3 shows a list of editable attributes

generated during testing for one of the LED primitives of Figure 5.1, confirming the list of

Attribute: LED-COLOR:
Value: RED

"led 1"

Attribute: LED-MAHUFACTURER:
Value: none specified

"This is the name of the company that manufactured the

Attribute: NAME:
Value: LED-1

Figure 5.3 Editable Attributes

editable attributes gets properly displayed. Testing also confirmed objects can be edited

by clicking on the desired attribute of Figure 5.3 and changing its value.

5.3.4 Save Multiple Domain Applications. After composing a multiple domain

application in the REFINE object base, testing needed to confirm the application could be

saved to the database. This objective relates to the enhancement of the database trans-

formation functions that allows any subsystem of a given application to contain primitives

from an alternate domain.

Testing confirmed the satisfaction of this objective. Inspection of multiple domain

applications saved in the "OCU-Application" object class of the database revealed that

5-5

all of the primitive objects contained in a subsystem get properly aggregated into the

subsystem. This includes primitives from an alternate domain. Recall from Section 3.6, in

the database, subsystems are nested within applications, and primitives are nested within

subsystems. Testing demonstrated that each "OCU-Primitive" instance gets stored in its

proper object class of the database schema.

5.3.5 Load Multiple Domain Applications. After saving a multiple domain ap-

plication in the ITASCA database, Architect must be able to load it back into the REFINE

object base. As with the objective of the preceding section, this objective relates to the

enhancement of the database transformation functions. Testing confirmed that when load-

ing a multiple domain application from the database, all primitives get properly restored

in the REFINE object base, including those from an alternate domain.

5.3.6 Execute Multiple Domain Applications. Architect must be able to execute

multiple domain applications after they have been composed. Architect must also be able

to execute previously saved multiple domain applications after they have been loaded from

the database. Successful execution of an application requires each instance of a primitive

contained in the application to be associated with the correct REFINE update function.

Testing demonstrated that this association is maintained correctly in the multiple domain

environment. As a result, all multiple domain applications, including those loaded from

the database, executed properly during testing.

5-6

5-4 Testing of Secondary Objectives

Validation of the secondary objectives depended primarily on the accuracy of the

REFINE update functions for the new primitive classes implemented in the logic circuits

and DSP domains. The new logic circuits domain primitives were tested by assessing

their consistency with the truth tables from Chapter IV. All possible combinations of

inputs were tested to ensure the correct outputs get generated in all cases. Testing results

demonstrated each of the logic circuits primitives was implemented correctly.

The new DSP domain primitives were tested by composing an application that sup-

plies a sinusoid to an analog-to-digital converter, which outputs four binary signals (a

four-bit code) for each sample of the sinusoid. The binary signals are delivered to a digital-

to-analog converter, which outputs an approximation of the original sinusoid. Both the

original sinusoid and the output of the digital-to-analog converter are supplied as input to

a graph for comparison. Figure 5.4 is the Architect Imports/Exports window which shows

the configuration for this application. Notice that a fifth binary signal is generated by the

analog-to-digital converter and delivered to the digital-to-analog converter. This signal

is set equal to true when the analog-to-digital converter has processed the last sample of

the sinusoid. At this point, the digital-to-analog converter becomes aware that it has a

complete signal ready for output to the graph.

During execution, Architect applications containing a graph primitive spawn a Khoros

graph, which is displayed on the workstation screen. The graph in Figure 5.5 displays the

two sinusoids. One is the sinusoid supplied directly to the graph, indicated by the solid

plot. The other is the sinusoid output by the digital-to-analog converter, indicated by the

5-7

Imports/Exports

ADC
JlTS-
Ji in-

ADC

\/

^ttw^-sifffoaa^

-MTl

-BITi

-BITJj

-«T4

DAC

GHATHT

DAC

Figure 5.4 ADC-DAC Example

Converted DT rect

Figure 5.5 Sinusoid Plots

5-8

dashed plot. The two signals almost overlay each other. The fact that they do not precisely

overlay each other indicates a small amount of error was introduced by the analog-to-digital

and digital-to-analog conversions. This, of course, was expected.

5.5 Consolidated Example

At this point, an example of a multiple domain application is presented that neatly

consolidates the testing and validation objectives. Figure 5.6 shows the Imports/Exports

I ■ Ar tu aäSBHHHHMHMMH^

kJ.2

51+52

SIHUS0ID1

Li

\

SINUSOID? \
ADC:

■**.
SWITCH

s

ADC

ADC-Z

~\

FuuAo

FULLADD1 "3
FUUAD

FULLA0D2 LADDZ 1

■ *

FULL ADD

ADD3 I FULLA003

DAC

DAC

FULL ADD

FULLADI am

GRAPH4

Figure 5.6 Multiple Domain Example

5-9

window for this application. The application contains two sinusoids (from the DSP do-

main) that are added together, resulting in an additional signal. The sinusoids are labeled

"SINUSOID1" and "SINUSOID2" in Figure 5.6. When adding signals, the amplitudes of

the two input signals are sampled simultaneously at various times. Each pair of samples

is summed to generate the amplitude of the additional signal. This application adds the

two sinusoids using two different methods as explained in the following sections.

5.5.1 First Method. The first method uses a signal-adder (from the DSP domain)

to add the two sinusoids. The signal-adder is labeled "SIG-ADD" in Figure 5.6. The signal-

adder, as modeled by Warner, simply adds each pair of samples from the two input signals,

using ordinary arithmetic, to generate samples for the output signal. The signal-adder then

supplies the resulting signal to the graph (from the DSP domain), labeled "GRAPH4."

This method obviously generates an exact sum for each pair of samples.

5.5.2 Second Method. The second method uses two analog-to-digital converters

(from the DSP domain) to sample the two sinusoids at the same times as the signal-

adder. The converters are labeled "ADC-1" and "ADC-2" in Figure 5.6. At each sampling

time, both analog-to-digital converters produce a four-bit code. The two-four bit codes

are summed using four full-adders from the logic circuits domain, labeled "FULLADD1,"

"FULLADD2," "FULLADD3," and "FULLADD4." The least significant pair of bits gen-

erated by the analog-to-digital converters is summed by "FULLADD1." The second least

significant pair of bits is summed by "FULLADD2," and so on. A switch from the logic cir-

cuits domain, labeled "SWITCH," is used supply the carry-in bit for "FULLADD1." The

full-adders supply the sum for each pair of four-bit codes to a digital-to-analog converter

5-10

(from the DSP domain), labeled "DAC." The digital-to-analog converter then supplies

the resulting signal to the graph. Unlike the first method, this method introduces a small

amount of error when summing the sample pairs.

5.5.3 Key Observations. Figure 5.7 shows the results of the application. Four

SINUS0ID2 SINUS0ID1 Method1 Method2

Figure 5.7 Sinusoid Plots

signals are displayed—the two sinusoids, plus the two signals generated by summing the

sinusoids. The two sinusoids have identical frequencies and are in phase with each other.

This makes it easy to visualize how the two additional signals should appear on the graph.

The two sinusoids differ only by their maximum amplitudes. "SINUSOID1" has a maxi-

mum amplitude of 10.0 and "SINUSOID2" has a maximum amplitude of 20.0. Therefore,

the two signals generated by summing the sinusoids should have maximum amplitudes of

5-11

30.0. As the graph indicates, they almost overlay each other. The solid plot represents the

signal generated by the first method, while the dashed plot represents the signal generated

by the second method. Again, the fact that they do not precisely overlay each other indi-

cates a small amount of error was introduced by the analog-to-digital and digital-to-analog

conversions.

As stated earlier, this application consolidates the testing and validation objectives.

Primitives from three domains were actually included in this application because the full-

adders belong to the "Circuits-Additional" domain and the switch belongs to the original

logic circuits domain. In fact, there is no limit on the number domains that can be included

in an application. The instance diagram in Figure 5.8 shows all subsystem and primitive

(OCU-Application)

name: multidomain-example

domain: DSP

(OCU-Subsyatem)

name: subsystem-1

domain: DSP

(Sinusoid)

name: sinusoidl

domain: DSP

number-of-samples: 17

amplitude: 10.0

frequency: 0.125

phase-shift: 0.0

magnitude-offset: 0.0

(Switch)

name: switch

domain: circuits

the-i

(Signal-Adder)

name: sig-add

domain: DSP

(Sinu oid)

name: simisoid2

domain: DSP

number-of-samples: 17

amplitude: 20.0

frequency: 0.125

phase-shift: 0.0

magnitude-offset 0.0

(D-To-A-Converter)

name: dac

domain: DSP

(A-To-D-Converter)

name: adc-1

domain: DSP

(Full-Adder)

name: fulladdl

domain: circuits-additional

(Full-Adder)

name: fuUadd3

domain: circuits-additional

(Graph-4-Signal)

name: graph4

domain: DSP

(A-To-D-Converter)

name: adc-2

domain: DSP

(Full-Adder)

name: nilladd2

domain: circuits-additional

(Full-Adder)

name: fulladd4

domain: circuits-additional

Figure 5.8 OCU-Application Instance Diagram

5-12

instances contained in the application. The name, domain, and other pertinent attributes

for each instance are also identified.

This application was successfully executed, saved to the database, loaded from the

database, and then successfully executed again. Also, this application required a primitive

from an alternate domain to be edited. The switch, which supplies the carry-in to the

first full-adder, had to be changed to the "off" position since its default position is "on."

Finally, the accuracy of summing the sinusoids using two analog-to-digital converters, one

digital-to-analog converter, and four full-adders demonstrates their correct implementation.

5.6 Summary

This chapter discussed the testing of Architect's multiple domain application capa-

bility. A set of primary and secondary test objectives was developed to ensure the new

functionality of the Architect system and the new domain knowledge in the technology

base were properly validated. Each of the objectives was satisfactorily demonstrated dur-

ing testing. Finally, a substantial example of a multiple domain application was presented

that demonstrated successful accomplishment of the test objectives.

5-13

VI. Conclusions and Recommendations

The objective of this research was to determine if OODBMS technology could be

used to provide a multiple domain application capability for a domain-oriented applica-

tion composition system. The original Architect system did not allow the composition of

applications to cross domain boundaries—all primitives contained in a given application

had to come from the same domain. This limitation is due to the constraints imposed

by the software environment used to develop the Architect system. The file-based version

of Architect uses this software environment to parse saved applications to and from the

technology base. The parsing of these files is defined by grammars developed for the do-

mains. Each domain has a separate and unique grammar. When parsing an application for

one domain, knowledge of another domain's grammar is unavailable. Therefore, crossing

domain boundaries was not possible with the file-based Architect system.

Previous research had already demonstrated that OODBMS technology could suc-

cessfully provide the persistent technology base required by a system such as Architect.

With the database version, Architect's applications are saved and loaded with a set of

transformation functions, eliminating the need to parse files. Thus, the OODBMS tech-

nology opened the door for multiple domain application support.

Even after implementation of the OODBMS technology, there were obstacles asso-

ciated with the design of the Architect system and the database transformation functions

regarding multiple domain applications. Many of the activities associated with the compo-

sition, storage, retrieval, and execution of an application depend on information specific to

a given domain. The design of the Architect system and database transformation functions

6-1

provided the capability to obtain this information from only one domain—the domain of

the application being composed. Naturally, in the single domain application environment,

this is sufficient because management of domain dynamics during the composition of an

application is not required.

The concept of primary and alternate domains for application composition needed to

be incorporated into Architect and the database transformation functions. A method was

needed to manage the domain dynamics involved in the composition of multiple domain

applications. A simple approach was taken. When performing certain activities associated

with a primitive from an alternate domain, that alternate domain is temporarily estab-

lished as the current domain. When the activity is completed, the primary domain is

re-established as the current domain.

In addition to providing a management capability for domain dynamics, an additional

domain needed to be implemented in the database. The DSP domain was selected for two

reasons. First, it had already been implemented and validated in the file-based Architect

system. Second, it was potentially compatible with the logic circuits domain, which was

already implemented in the database. Both domains were enhanced with new primitives,

such as the full-adder and analog-to-digital converter, to make them compatible. As a

result, meaningful multiple domain applications could be composed, saved, loaded, edited,

and executed.

6.1 Conclusions

Using an OODBMS such as ITASCA to store the persistent technology base of a

domain-oriented application composition system such as Architect is the right choice.

6-2

The Architect system was designed using the object-oriented paradigm. Therefore, an

OODBMS provides an excellent mapping of data between the persistent technology base

and Architect's working technology base in REFINE. An OODBMS is much better at

this than a flattened file structure. As this research has demonstrated, this advantage

allowed more flexibility in managing the domain dynamics required in multiple domain

applications.

A multiple domain application could not be achieved in the file-based version of

Architect without a major redesign. The redesign would require that one large domain

grammar be developed for all the domains. This approach would be poor design because

domain knowledge would no longer be encapsulated for individual domains. This defies

the logic of a "domain-oriented" system. Maintainability and extensibility would be neg-

atively impacted because the modification or addition of just one domain would require

the grammar for the entire system to be modified. The potential of introducing flaws into

the system would increase. Because of these drawbacks, using OODBMS technology to

achieve a multiple domain application capability is a better choice.

6.2 Recommendations for Improvement and Further Research

• Provide Generic Support for Software Architectures: Cecil and Fullenkamp

provided generic support for domain definitions with implementation of their meta-

model in the database. Similarly, generic support for software architectures should

also be investigated and implemented in the database. This could result in the

sharing of components across architecture boundaries, just as this thesis enabled the

sharing of components across domain boundaries.

6-3

• Validate the Database Version of Architect for Other Execution Modes:

Both the DSP and logic circuits domains implemented in the database operate in

the non-event driven sequential mode. However, architect supports other execution

modes. For example, Waggoner's (22) research led to the implementation of the

cruise missile domain for execution in the time-driven sequential mode, and the

logic circuits domain for execution in the event-driven sequential mode. Therefore,

database support should be extended and validated for these execution modes.

• Broaden the Scope of the Meta-Model for Domain Definitions: The DSP

domain contains several user-defined types. For example, "sample-type" is defined as

a real number, and "real-signal-type" is defined as a sequence of real numbers. The

meta-model does not contain a mechanism for incorporating this type of information.

As a result, the REFINE source code automatically generated by the database was

manually augmented to specify the user-defined types. An approach for automating

this task through enhancement of the meta-model needs to be investigated.

• Make Architect's Semantic Checks More Robust: In order for two primitive's

to be connected in an application, Architect's semantic checks require the connect-

ing import and export areas to be of the same type and category. In this thesis, the

binary signals of the digital-to-analog and analog-to-digital converters were given the

type of "boolean" and the category of "signal" to be compatible with all components

in the logic circuits domain. However, if the two domains had been developed inde-

pendently, the converters very likely would have been assigned a category, such as

"binary-signal," that does not precisely match the category of the logic circuits com-

ponents. If that were the case, the components could not be connected, even though

6-4

they should be compatible. Techniques for making Architect's semantic checks more

robust should be investigated to prevent this potential problem. Another approach

would be to develop an interfacing mechanism allowing compatible components to

communicate, even though they are not precisely categorized. Otherwise, domain

engineers must redefine their domains to overcome this obstacle.

6.3 Final Comments

The Architect system has now demonstrated the capability of building multiple do-

main applications. OODBMS technology played a vital role in achieving this capability.

The ability to cross domain boundaries during application composition gives the applica-

tion specialist greater flexibility in developing applications. This provides for the possibility

of reuse, a benefit often achieved in the object-oriented arena. There is no need to im-

plement a given primitive in more than one domain—primitives can now be shared. The

knowledge gained in this research can provide valuable insight for future generations of

domain-oriented application composition systems as they are developed.

6-5

Appendix A. Sample Session: Multiple Domain Application

This appendix contains a script for an Architect session which builds a multiple

domain application. The application contains primitives from both the logic circuits and

DSP domains. This script is adapted from the sample session of Appendix E in Cecil's

and Fullenkamp's thesis.

A.l Start AVSI

REFINE must be loaded in an EMACS window. Once this is accomplished enter:

(load "dbl")

When the prompt returns, enter:

(dbl)

It will take several minutes for this file to run because it loads the DIALECT and INTER-

VISTA systems from the UNIX file system, and loads the Architect and AVSI files from the

database. When the load is complete, the following prompt appears:

Load Complete

Type "(AVSI)" to start AVSI

Now enter the command:

(avsi)

This action loads the visual specification files for the domains currently defined for

Architect. After the visual information is parsed into the object base, the control panel

A-l

appears in the upper left-hand corner of the screen. Across the top of the window is a

row of icons that will be used to invoke many of the application composition functions of

AVSI. The lower portion of the window is a message area used by AVSI to display status

and error messages.

A.2 Create a New Application

1. Click any mouse button on the icon labeled CREATE NEW APPLICATION.

2. A pop-up window appears and prompts, SELECT DOMAIN. Click on the menu item

DSP. At this time, the DSP domain definition is loaded from the database, as are the

bitmap images for each primitive. DSP is the primary domain for this application.

3. A pop-up window appears with the prompt, ENTER NAME OF APPLICATION. Type

multidomain-example

4. The name can be entered by hitting the "return" key or by clicking on Do IT at the

bottom of the pop-up window.

A.3 Edit the Application

Now that the application has been created, the next step is to edit the applica-

tion's make-up. Editing an application is composed of two separate operations: editing an

application's components, and editing an application's update algorithm.

A.3.1 Add the Controlling Subsystem-Obj to the Application.

1. Click a mouse button on the EDIT APPLICATION control panel icon.

A-2

2. A pop-up menu appears with the prompt CHOOSE APPLICATION. Click on the menu

item MULTIDOMAIN-EXAMPLE.

3. A pop-up menu appears with the prompt CHOOSE. Click on the menu item EDIT AP-

PLICATION COMPONENTS. A blue window appears containing a single icon labeled,

APPLICATION - OBJ

MULTIDOMAIN - EX

4. Click on the diagram surface (anywhere on the blue surface except within the icon's

boundary) of the window. A pop-up menu will appear.

5. Select CREATE NEW SUBSYSTEM.

6. A pop-up window appears, with the prompt ENTER A NAME. Enter multi-sub

7. A box outline of an icon appears, attached to the mouse cursor. Place the icon below

the application-obj icon by moving the cursor to the desired location and clicking.

8. Click any mouse button on the newly created subsystem-obj icon and select the menu

option LINK TO SOURCE.

9. The mouse cursor changes from an arrow to an oval with a dot in it, signifying that

an object needs to be selected. Place the mouse cursor on the application-obj's icon

and click any mouse button. A link appears between the application-obj's icon and

the subsystem-obj's icon.

10. Close the edit-application-window by clicking on the diagram surface and selecting

DEACTIVATE.

A.3.2 Create the Application-Obj's Update Algorithm.

1. Click a mouse button on the EDIT APPLICATION control panel icon.

A-3

2. A pop-up menu appears with the prompt CHOOSE APPLICATION. Click on the menu

item MULTIDOMAIN-EXAMPLE.

3. A pop-up menu appears with the prompt CHOOSE. Click on the menu item EDIT

APPLICATION UPDATE. Three windows will appear. One contains a graphical view of

the update algorithm, one contains a textual view of the algorithm, and the third (the

Controllee Window) shows the icons that represent the application-obj's controllees

(with two extra icons for if-then-else and while-do constructs). The graphical update

window contains two icons, "Start" and "End", with a dotted arrow pointing from

the start-icon to the end-icon.

4. Click a mouse button on the icon in the controllee window labeled SUBSYSTEM - OBJ .
MULTI - SUB

The cursor changes to an oval with a dot in it indicating that an object needs to be

selected.

5. Click on the "nub" on the dotted line midway between the start and end icons. This

will cause the update sequence to redraw with the subsystem-obj included. Note the

textual representation is automatically updated to reflect each change in the diagram

window.

6. Close the edit-update-algorithm windows by clicking on the black title bar at the top

of the graphical update window and selecting DEACTIVATE.

A-4

A.4 Edit the Subsystems

Building a subsystem is similar to building the application. This section illustrates

how to instantiate primitive objects and link them to the controlling subsystem created in

the previous section.

The subsystem, MULTI-SUB, will control a sinusoid, an analog-to-digital converter

and four LEDs. To add these objects, perform the following steps:

A.4-1 Add the Primitive Objects.

1. Click on the EDIT SUBSYSTEM icon in the control panel window.

2. Click on the menu item MULTI-SUB. A white window opens (the subsystem win-

dow) which contains an OCU representation of a subsystem.

3. Click on the OBJECTS icon in the subsystem window. The blue edit-subsystem-

window for MULTI-SUB appears, containing a single icon labeled SUBSYSTEM - OBJ .
00 MULTI-SUB

A green window, the technology-base window, also appears and contains an icon for

each primitive-object in the current domain, DSP.

4. Click on the icon in the green technology-base-window labeled SINSOID.

5. A Sinusoid-icon is created and attached to the mouse cursor. Place this icon on the

blue edit-subsystem-window near MULTI-SUB.

6. Name the sinusoid by typing THE-SINUSOID in the pop-up window.

7. Similarily, create an analog-to-digital converter object named THE-ADC.

8. Next, obtain the technology base window for the logic circuits domain. Click on the

diagram surface of the technology base window. A pop-up menu will appear.

A-5

9. Select GET-PRIMITIVES-FROM-AN-ALTERNATE-DOMAIN. Another pop-

up menu will appear.

10. Select CIRCUITS. The technology base window for the logic circuits domain will

appear. Create four instances of the LED object named LED1, LED2, LED3, and

LED4.

11. Link the primitive objects to MULTI-SUB by clicking a mouse button on MULTI-

SUB, and selecting LINK MULTIPLE TARGETS from the pop-up menu.

12. A pop-up window will appear that lists all the unconnected objects in the edit-

subsystem-window. Select ALL OF THE ABOVE, and click on Do IT. A link will

appear from MULTI-SUB to each of the other icons.

13. Close the edit-subsystem-window and the technology-base-window by clicking on the

blue surface and selecting DEACTIVATE. The windows can be closed separately by

selecting DEACTIVATE from their title bar menus.

At this point, the subsystem window for MULTI-SUB will again be visible.

A.4-2 Connect Imports and Exports. To connect the import and export objects

perform the following steps:

1. Click a mouse button on the IMPORT AREA or EXPORT AREA icon in MULTI-SUB's

subsystem window.

2. Select MAKE CONNECTIONS from the pop-up window. A red window (the imports-

exports window) will open and contain the sinusoid icon, the analog-to-digital con-

verter icon, and the four LED icons. The black bars (these bars are actually high-

A-6

lighted subicons attached to the primitive's icon) on the sides of the primitive icons

indicate connections that need to be made.

3. Icons can be moved to new positions on the screen by clicking on the icon and

selecting MOVE ICON from the pop-up menu. A square grid, attached to the mouse,

appears. Move the grid to the new icon position and click to "drop" the icon.

4. Connect sinusoid THE-SINUSOID to analog-to-digital converter THE-ADC by

clicking on the black bar of THE-SINUSOID and then clicking on the black bar on

the left side of THE-ADC. Connect BIT1 of THE-ADC to LED LED1. Connect

BIT2 of THE-ADC to LED LED2. Connect BIT3 of THE-ADC to LED LED3.

Connect BIT3 of THE-ADC to LED LED4.

5. Close the imports-exports window by clicking on the red surface and selecting DE-

ACTIVATE, or by selecting DEACTIVATE from each window's title bar menu.

A.4-3 Build MULTI-SUB 's Update Algorithm. After the imports-exports win-

dow has been closed, the white subsystem window will again be visible. Building the

update algorithm for MULTI-SUB is similar to building the update algorithm for the

application, and requires the following steps:

1. Click the mouse on the CONTROLLER icon in the subsystem window. The three

windows that were seen before are exposed, except the controllee window now con-

tains the sinusoid, the analog-to-digital converter, and the four LEDs controlled by

MULTI-SUB.

A-7

2. Add each controllee to the update sequence by clicking on the controllee icon and

then clicking on the "nub" in the graphical update window that represents the proper

sequence position for the controllee. The order in which the controllees must appear

is:

THE-SINUSQID THE-ADC LEDi LED2 LED3 LED4

Note that the textual update description is updated as the graphical update is built.

3. Close the windows by clicking on the graphical update window title bar and selecting

DEACTIVATE.

A.5 Perform Semantic Checks

Semantic checks are performed by Architect as part of the imports-exports connection

process. However, the semantic checks may be run at any time by clicking on the control

panel icon labeled CHECK SEMANTICS. The results of the semantic checks may be viewed

in the EMACS window.

A.6 Execute the Application

Now that the application has been fully defined, it can be executed. Each time

the application is executed, the analog-to-digital converter processes one sample of the

sinusoid. The four LED objects identify the value of the four-bit code that is generated

by the converter. Click on the control panel button labeled EXECUTE APPLICATION. The

results are displayed in the EMACS window.

A-8

Appendix B. REFINE Update Functions

This appendix contains the REFINE source code for the update functions of all prim-

itives developed for this thesis.

B.l And-Gate-3Input

function AND-GATE-3INPUT-UPDATE (subsystem : subsystem-obj,
and-gate-3input : AND-GATE-3INPÜT) =

format (debug-on, \"AND-GATE-3INPUT-ÜPDATE on "s"'/,\", name(and-gate-3input));

let (inl : boolean = get-import('inl, subsystem, and-gate-3input),
in2 : boolean = get-importCin2, subsystem, and-gate-3input),
in3 : boolean = get-importOin3, subsystem, and-gate-3input))

set-export(subsystem, and-gate-3input, 'outl, (inl & in2 & in3))

B.2 Or-Gate-3Input

function 0R-GATE-3INPUT-UPDATE (subsystem : subsystem-obj,
or-gate-3input : 0R-GATE-3INPUT) =

format(debug-on, \"0R-GATE-3INPUT-UPDATE on ~s~%\", name(or-gate-3input));

let (inl : boolean = get-import('inl, subsystem, or-gate-3input),
in2 : boolean = get-importCin2, subsystem, or-gate-3input),
in3 : boolean = get-importCin3, subsystem, or-gate-3input))

set-export(subsystem, or-gate-3input, 'outl, (inl or in2 or in3))

B.3 Full-Adder

function FULL-ADDER-UPDATE (subsystem : subsystem-obj,

full-adder : FULL-ADDER) =

format(debug-on, \"FULL-ADDER-UPDATE on ~s~%\", name(full-adder));

let (inl : boolean = get-import('inl, subsystem, full-adder),

in2 : boolean = get-importCin2, subsystem, full-adder),

carry-in : boolean = get-import('carry-in, subsystem, full-adder))

B-l

if "inl and "in2 and "carry-in then

set-export(subsystem, full-adder, 'sum, nil);
set-export(subsystem, full-adder, 'carry-out, nil)

elseif inl and "in2 and "carry-in then

set-export(subsystem, full-adder, 'sum, true);

set-export(subsystem, full-adder, 'carry-out, nil)

elseif "inl and in2 and "carry-in then

set-export(subsystem, full-adder, 'sum, true);

set-export(subsystem, full-adder, 'carry-out, nil)
elseif inl and in2 and "carry-in then

set-export(subsystem, full-adder, 'sum, nil);
set-export(subsystem, full-adder, 'carry-out, true)

elseif "inl and "in2 and carry-in then

set-export(subsystem, full-adder, 'sum, true);

set-export(subsystem, full-adder, 'carry-out, nil)

elseif inl and "in2 and carry-in then
set-export(subsystem, full-adder, 'sum, nil);
set-export(subsystem, full-adder, 'carry-out, true)

elseif "inl and in2 and carry-in then
set-export(subsystem, full-adder, 'sum, nil);

set-export(subsystem, full-adder, 'carry-out, true)

elseif inl and in2 and carry-in then

set-export(subsystem, full-adder, 'sum, true);

set-export(subsystem, full-adder, 'carry-out, true)

B.4 Full-Adder-4Bit

function FULL-ADDER-4BIT-UPDATE (subsystem : subsystem-obj,

full-adder-4bit : FULL-ADDER-4BIT) =

format (debug-on, \"FULL-ADDER-4BIT-UPDATE on "s"'/.\", name(full-adder-4bit));

let (in-la : boolean = get-import('in-la, subsystem, full-adder-4bit),
in-lb : boolean = get-import('in-lb, subsystem, full-adder-4bit),
in-2a : boolean = get-import('in-2a, subsystem, full-adder-4bit),
in-2b : boolean = get-import('in-2b, subsystem, full-adder-4bit),
in-3a : boolean = get-import('in-3a, subsystem, full-adder-4bit),
in-3b : boolean = get-import('in-3b, subsystem, full-adder-4bit),
in-4a : boolean = get-import('in-4a, subsystem, full-adder-4bit),
in-4b : boolean = get-importCin-4b, subsystem, full-adder-4bit),
temp-carry : boolean = true)

(if "in-la and "in-lb then

set-export(subsystem, full-adder-4bit, 'out-lc, nil);
temp-carry <- false

elseif in-la and in-lb then

set-export(subsystem, full-adder-4bit, 'out-lc, nil);

temp-carry <- true

B-2

else
set-export(subsystem, full-adder-4bit, 'out-lc, true);

temp-carry <- false);

(if "in-2a and "in-2b and "temp-carry then
set-export(subsystem, full-adder-4bit, *out-2c, nil);

temp-carry <- false

elseif in-2a and in-2b and temp-carry then
set-export(subsystem, full-adder-4bit, 'out-2c, true);

temp-carry <- true
elseif ("in-2a and in-2b and temp-carry) or

(in-2a and "in-2b and temp-carry) or

(in-2a and in-2b and "temp-carry) then

set-export(subsystem, full-adder-4bit, 'out-2c, nil);

temp-carry <- true

else
set-export(subsystem, full-adder-4bit, 'out-2c, true);

temp-carry <- false);

(if "in-3a and "in-3b and "temp-carry then
set-export(subsystem, full-adder-4bit, >out-3c, nil);

temp-carry <- false

elseif in-3a and in-3b and temp-carry then

set-export(subsystem, full-adder-4bit, 'out-3c, true);

temp-carry <- true

elseif ("in-3a and in-3b and temp-carry) or

(in-3a and "in-3b and temp-carry) or

(in-3a and in-3b and "temp-carry) then

set-export(subsystem, full-adder-4bit, 'out-3c, nil);

temp-carry <- true

else
set-export(subsystem, full-adder-4bit, 'out-3c, true);
temp-carry <- false);

(if "in-4a and "in-4b and "temp-carry then
set-export(subsystem, full-adder-4bit, 'out-4c, nil);

temp-carry <- false

elseif in-4a and in-4b and temp-carry then

set-export(subsystem, full-adder-4bit, 'out-4c, true);

temp-carry <- true

elseif ("in-4a and in-4b and temp-carry) or

(in-4a and "in-4b and temp-carry) or

(in-4a and in-4b and "temp-carry) then

set-export(subsystem, full-adder-4bit, 'out-4c, nil);

temp-carry <- true

else
set-export(subsystem, full-adder-4bit, 'out-4c, true);

temp-carry <- false);

(if temp-carry then

set-export(subsystem, full-adder-4bit, 'carry-out, true)

B-3

else
set-export(subsystem, full-adder-4bit, 'carry-out, nil))

B.5 Full-Subtracter

function FULL-SUBTRACTOR-UPDATE (subsystem
full-subtractor

subsystem-obj,
FULL-SUBTRACTOR) =

format(debug-on, \"FULL-SUBTRACTOR-UPDATE on ~s~%\", name(full-subtractor));

let (minuend

subtrahend

previous-borrow

boolean = get-import('minuend, subsystem, full-subtractor),
boolean = get-import('subtrahend, subsystem, full-subtractor),

boolean = get-import('previous-borrow, subsystem, full-subtractor))

if "minuend and "subtrahend and "previous-borrow then

set-export(subsystem, full-subtractor, 'difference, nil);
set-export(subsystem, full-subtractor, 'borrow-bit, nil)

elseif minuend and "subtrahend and "previous-borrow then

set-export(subsystem, full-subtractor, 'difference, true);

set-export(subsystem, full-subtractor, 'borrow-bit, nil)
elseif "minuend and subtrahend and "previous-borrow then

set-export(subsystem, full-subtractor, 'difference, true);

set-export(subsystem, full-subtractor, 'borrow-bit, true)
elseif minuend and subtrahend and "previous-borrow then

set-export(subsystem, full-subtractor, 'difference, nil);
set-export(subsystem, full-subtractor, 'borrow-bit, nil)

elseif "minuend and "subtrahend and previous-borrow then

set-export(subsystem, full-subtractor, 'difference, true);

set-export(subsystem, full-subtractor, 'borrow-bit, true)

elseif minuend and "subtrahend and previous-borrow then

set-export(subsystem, full-subtractor, 'difference, nil);

set-export(subsystem, full-subtractor, 'borrow-bit, nil)

elseif "minuend and subtrahend and previous-borrow then

set-export(subsystem, full-subtractor, 'difference, nil);

set-export(subsystem, full-subtractor, 'borrow-bit, true)
elseif minuend and subtrahend and previous-borrow then

set-export(subsystem, full-subtractor, 'difference, true);
set-export(subsystem, full-subtractor, 'borrow-bit, true)

B.6 Full-Subtractor-4Bit

function FULL-SUBTRACT0R-4BIT-UPDATE (subsystem : subsystem-obj,

full-subtractor-4bit : FULL-SUBTRACT0R-4BIT) =

format(debug-on, \"FULL-SUBTRACT0R-4BIT-UPDATE on ~s~%\", name(full-subtractor-4bit));

B-4

let (minuend-1 : boolean
minuend-2 : boolean
minuend-3 : boolean
minuend-4 : boolean
subtrahend-1 : boolean
subtrahend-2 : boolean
subtrahend-3 : boolean
subtrahend-4 : boolean
temp-borrow : boolean

get-import(
get-import('

get-import('

get-import('

get-import('

get-import('

get-import('

get-import('

true)

minuend-1,
minuend-2,

minuend-3,

minuend-4,

subtrahend-1,

subtrahend-2,

subtrahend-3,

subtrahend-4,

subsystem,
subsystem,

subsystem,

subsystem,

subsystem,

subsystem,

subsystem,

subsystem,

full-
full-

full-

full-

full-

full-

full-

full-

subtractor-

subtractor-

subtractor-

subtractor-

subtractor-

subtractor-

subtractor-

subtractor-

■4bit),
■4bit),
■4bit),
■4bit),
-4bit),

-4bit),

-4bit),

-4bit),

(if minuend-1 and "subtrahend-1 then

set-export(subsystem, full-subtractor-4bit, 'difference-1, true);

temp-borrow <- false
elseif "minuend-1 and subtrahend-1 then

set-export(subsystem, full-subtractor-4bit, 'difference-1, true);
temp-borrow <- true

else
set-export(subsystem, full-subtractor-4bit, 'difference-1, nil);
temp-borrow <- false);

(if "minuend-2 and subtrahend-2 and temp-borrow then

set-export(subsystem, full-subtractor-4bit, 'difference-2, nil);

temp-borrow <- true

elseif minuend-2 and "subtrahend-2 and "temp-borrow then

set-export(subsystem, full-subtractor-4bit, 'difference-2, true);

temp-borrow <- false

elseif ("minuend-2 and "subtrahend-2 and "temp-borrow) or
(minuend-2 and "subtrahend-2 and temp-borrow) or

(minuend-2 and subtrahend-2 and "temp-borrow) then

set-export(subsystem, full-subtractor-4bit, 'difference-2, nil);
temp-borrow <- false

else
set-export(subsystem, full-subtractor-4bit, 'difference-2, true);

temp-borrow <- true);

(if "minuend-3 and subtrahend-3 and temp-borrow then

set-export(subsystem, full-subtractor-4bit, 'difference-3, nil);

temp-borrow <- true

elseif minuend-3 and "subtrahend-3 and "temp-borrow then
set-export(subsystem, full-subtractor-4bit, 'difference-3, true);

temp-borrow <- false

elseif ("minuend-3 and "subtrahend-3 and "temp-borrow) or

(minuend-3 and "subtrahend-3 and temp-borrow) or
(minuend-3 and subtrahend-3 and "temp-borrow) then

set-export(subsystem, full-subtractor-4bit, 'difference-3, nil);

temp-borrow <- false
else

set-export(subsystem, full-subtractor-4bit, 'difference-3, true);
temp-borrow <- true);

(if "minuend-4 and subtrahend-4 and temp-borrow then

B-5

set-export(subsystem, full-subtractor-4bit, 'difference-4, nil);
temp-borrow <- true

elseif minuend-4 and "subtrahend-4 and "temp-borrow then

set-export(subsystem, full-subtractor-4bit, 'difference-4, true);

temp-borrow <- false

elseif ("'minuend-4 and "subtrahend-4 and "temp-borrow) or

(minuend-4 and "subtrahend-4 and temp-borrow) or

(minuend-4 and subtrahend-4 and "temp-borrow) then

set-export(subsystem, full-subtractor-4bit, 'difference-4, nil);
temp-borrow <- false

else

set-export(subsystem, full-subtractor-4bit, 'difference-4, true);
temp-borrow <- true);

(if temp-borrow then

set-export(subsystem, full-subtractor-4bit, 'borrow-bit, true)
else

set-export(subsystem, full-subtractor-4bit, 'borrow-bit, nil))

B.7 Analog-To-Digital Converter

function A-TO-D-CONVERTER-UPDATE (subsystem : subsystem-obj,

the-a-to-d-converter : A-TO-D-CONVERTER) =

format(dsp-debug, \"A-TO-D-CONVERTER-UPDATE on ~s~%\", name(the-a-to-d-converter));

let (S : real-signal-type = a-to-d-converter-holder(the-a-to-d-converter),

MM : real = a-to-d-converter-max-magnitude(the-a-to-d-converter),

LowValue : real = 0.0 - a-to-d-converter-max-magnitude(the-a-to-d-converter),
temp-bits : seq(boolean) = [true, nil, nil, true],

LevelDelta : real = 2 * a-to-d-converter-max-magnitude(the-a-to-d-converter) / 15.0)

(if a-to-d-converter-restart(the-a-to-d-converter) then
S <- get-import('input, subsystem, the-a-to-d-converter);

a-to-d-converter-holder(the-a-to-d-converter) <- S;

a-to-d-converter-restart(the-a-to-d-converter) <- false);

S(l) > (LowValue + LevelDelta * 1.0) —> (temp-bits <- [nil, true, nil, true]);

S(l) > (LowValue + LevelDelta * 2.0) —> (temp-bits <- [true, true, nil, true]);

S(l) > (LowValue + LevelDelta * 3.0) —> (temp-bits <- [nil, nil, true, true]);

S(l) > (LowValue + LevelDelta * 4.0) —> (temp-bits <- [true, nil, true, true]);

S(l) > (LowValue + LevelDelta * 5.0) —> (temp-bits <- [nil, true, true, true]);

S(l) > (LowValue + LevelDelta * 6.0) —> (temp-bits <- [true, true, true, true]);

B-6

S(l) > (LowValue + LevelDelta * 7.0) —> (temp-bits <- [nil, nil, nil, nil]);

S(l) > (LowValue + LevelDelta * 8.0) --> (temp-bits <- [true, nil, nil, nil]);

S(l) > (LowValue + LevelDelta * 9.0) —> (temp-bits <- [nil, true, nil, nil]);

S(i) > (LowValue + LevelDelta * 10.0) --> (temp-bits <- [true, true, nil, nil]);

S(l) > (LowValue + LevelDelta * 11.0) —> (temp-bits <- [nil, nil, true, nil]);

S(l) > (LowValue + LevelDelta * 12.0) —> (temp-bits <- [true, nil, true, nil]);

S(l) > (LowValue + LevelDelta * 13.0) —> (temp-bits <- [nil, true, true, nil]);

S(l) > (LowValue + LevelDelta * 14.0) —> (temp-bits <- [true, true, true, nil]);

S(l) > MM or S(i) < LowValue -->
format(dsp-debug, V'Sample is out of range; change upper or lower limitV1);

set-export(subsystem, the-a-to-d-converter, 'biti, temp-bits(D)
set-export(subsystem, the-a-to-d-converter, 'bit2, temp-bits(2))
set-export(subsystem, the-a-to-d-converter, 'bit3, temp-bits(3))
set-export(subsystem, the-a-to-d-converter, 'bit4, temp-bits(4))

S <- rest(S);
a-to-d-converter-holder(the-a-to-d-converter) <- S;
set-export(subsystem, the-a-to-d-converter, 'done, false);
(if size(S) = 0 then

a-to-d-converter-restart(the-a-to-d-converter) <- true;
set-export(subsystem, the-a-to-d-converter, 'done, true))

B.8 Digital-To-Analog Converter

function D-T0-A-C0NVERTER-UPDATE (subsystem : subsystem-obj,
the-d-to-a-converter : D-T0-A-C0NVERTER) =

format (dsp-debug, \MD-T0-A-C0NVERTER-UPDATE on "s"'/,\", name (the-d-to-a-converter)) ;

let (S : real-signal-type = d-to-a-converter-holder(the-d-to-a-converter),
MM : real = d-to-a-converter-max-magnitude(the-d-to-a-converter),
LevelDelta : real = 2.0 * d-to-a-converter-max-magnitude(the-d-to-a-converter) / 15.0,
bitl : boolean = get-import('bitl, subsystem, the-d-to-a-converter),
bit2 : boolean = get-importCbit2, subsystem, the-d-to-a-converter),
bit3 : boolean = get-import('bit3, subsystem, the-d-to-a-converter),
bit4 : boolean = get-importCbit4, subsystem, the-d-to-a-converter),
release : boolean = get-import('release, subsystem, the-d-to-a-converter))

(if size(S) = 0 then
set-export(subsystem, the-d-to-a-converter, 'output, S));

B-7

(if bit4 and "bit3 and "bit2 and bitl then

S <- append(S, (0.0 - MM + 0.5 * LevelDelta))

elseif bit4 and "bit3 and bit2 and "bitl then

S <- append(S, (0.0 - MM + 1.5 * LevelDelta))

elseif bit4 and "bit3 and bit2 and bitl then
S <- append(S, (0.0 - MM + 2.5 * LevelDelta))

elseif bit4 and bit3 and "bit2 and "bitl then
S <- append(S, (0.0 - MM + 3.5 * LevelDelta))

elseif bit4 and bit3 and "bit2 and bitl then
S <- append(S, (0.0 - MM + 4.5 * LevelDelta))

elseif bit4 and bit3 and bit2 and "bitl then

S <- append(S, (0.0 - MM + 5.5 * LevelDelta))

elseif bit4 and bit3 and bit2 and bitl then

S <- append(S, (0.0 - MM + 6.5 * LevelDelta))

elseif "bit4 and "bit3 and "bit2 and "bitl then

S <- append(S, (0.0 - MM + 7.5 * LevelDelta))

elseif "bit4 and "bit3 and "bit2 and bitl then

S <- append(S, (0.0 - MM + 8.5 * LevelDelta))

elseif "bit4 and "bit3 and bit2 and "bitl then
S <- append(S, (0.0 - MM + 9.5 * LevelDelta))

elseif "bit4 and "bit3 and bit2 and bitl then

S <- append(S, (0.0 - MM + 10.5 * LevelDelta))

elseif "bit4 and bit3 and "bit2 and "bitl then

S <- append(S, (0.0 - MM + 11.5 * LevelDelta))
elseif "bit4 and bit3 and "bit2 and bitl then

S <- append(S, (0.0 - MM + 12.5 * LevelDelta))
elseif "bit4 and bit3 and bit2 and "bitl then

S <- append(S, (0.0 - MM + 13.5 * LevelDelta))

elseif "bit4 and bit3 and bit2 and bitl then

S <- append(S, (0.0 - MM + 14.5 * LevelDelta)));

d-to-a-converter-holder(the-d-to-a-converter) <- S;

(if release then

set-export(subsystem, the-d-to-a-converter, 'output, S);
d-to-a-converter-holder(the-d-to-a-converter) <- [])

B-8

Appendix C. Object Model Diagrams for the Digital Signal Processing Domain

This appendix contains the diagrams for the object model of the digital signal pro-

cessing domain.

C.l Abstract Classes of DSP

Figure C.l shows the abstract classes in the DSP domain.

Figure C.l Abstract Classes of DSP Domain

C-l

C.2 Concrete Subclasses of "Signals"

Figure C.2 shows the concrete subclasses of the "Signals" abstract class.

Sinusoid Stored-Signal Noise Piecewise-Linear

Output

Number-Of-Samples

Amplitude

Frequency

Phase-Shift

Magnitude-Offset

Output

File-Name

Output

Number-Of-Samples

Upper-Limit

Lower-Limit

Output

Number-Of-Samples

Upper-Value

Lower-Value
Period

Pulse-Width

Rise-Time

Fall-Time

Stored-Signal-Update

Noise-Update

Sinusoid-Update

Piecewise-Linear-Update

Unit-Sample-Sequence Unit-Step-Sequence

Output

Number-Of-Samples

Unit-Position

Unit-Magnitude

Output

Number-Of-Samples

Unit-Magnitude

Unit-Step-Sequence-Update

Figure C.2 Concrete Subclasses of "Signals"

C-2

C.3 Concrete Subclasses of "Displays"

Figure C.3 shows the concrete subclasses of the "Displays" abstract class.

Graph-2-Signal

Input-Signal 1

Input-Signal2

Graph-2-Signal-Update

Graph-3-Signal

Input-Signall

Input-Signal2

Input-Signal3

Graph-3-Signal-Update

Graph-4-Signal

Input-Signall

Input-Signal2

Input-Signal3

Input-Signal4

Graph-4-Signal-Update

Figure C.3 Concrete Subclasses of "Displays"

C-3

C-4 Concrete Subclasses of "Filter Components"

Figure C.4 shows the concrete subclasses of the "Filter Components" abstract class.

A

Adder Delay Multiplier Input-Buffer Output-Buffer

Inputl

Inpuß

Output

Input

Output

Buffer

Input

Output

Value

Input

Output

Done

Restart

Holder

Buffer-Position

Input

Output

Holder

Restart

Adder-Update Delay-Update Multiplier-Update

Output-Buffer-Update

Input-Buffer-Update

Figure C.4 Concrete Subclasses of "Filter Components"

C-4

C.5 Concrete Subclasses of "Signal Arithmetic"

Figure C.5 shows the concrete subclasses of the "Signal Arithmetic" abstract class.

Signal-Adder

SI

S2

Output

Tnmcate-To-Shorter-Signal

Signal-Adder-Update

Signal-Multiplier

SI

S2

Output

Truncate-To-Shorter-Signal

Signal-Multiplier-Update

Signal-Abs-Dif

SI

S2

Output

Truncate-To-Shorter-Signal

Signal-Abs-Dif-Update

Signal-Subtractor

SI

S2

Output

Truncate-To-Shorter-Signal

Signal-Subtractor-Update

Real-To-Complex

Input

Output

Conversion-Type

Optional-Part

Real-To-Complex-Update

Signal-Divider

SI

S2

Output

Truncate-To-Shorter-Signal

Signal-Divider-Update

Coraplex-To-Real

Input

Output

Conversion-Type

Complex-To-Real-Update

Figure C.5 Concrete Subclasses of "Signal Arithmetic"

C-5

C.6 Concrete Subclasses of "Signal Processing"

Figure C.6 shows the concrete subclasses of the "Signal Processing" abstract class.

Signal-Manipulations

A

Pad-Signal Scale-Signal Tnmcate-Signal Window-Signal Reverse-Signal

Input

Output

Pad-Value

Signal-Length

Input

Output

Scaling-Parameter

Input

Output

Signal-Length

Input

Output

Type

Input

Output

Reverse-Signal-Update

Scale-Signal-Update Truncate-Signal-Update Window-Signal-Update

Pad-Signa -Update

Filter-Design

Filters

A
User-Designed-Filter

The-Filter-Design

A-Values-File

B-Values-Fde

User-Designed-Filter-Update

-A.

DFT

Input

Output

Scale-By-Inv-N

DFT-Update

IDFT

Output

Scak-By-N

IDFT-Update

A

Time-Filter

Input-Signal

The-Filter-Design

Time-Filter-Update

Linear-Operations

Frequency-Filter

Input-Signal

The-Filter-Design

Frequency-Filter-Update

A
Convolution

SI

S2

Output

Convolution-Update

Figure C.6 Concrete Subclasses of "Signal Processing"

C-6

Bibliography

1. Ahmed, Shamim and others. "Object-Oriented Database Management Systems for
Engineering: A Comparison," Journal of Object-Oriented Programming, 5:27-44
(June 1992).

2. Anderson, Cynthia. Creating and Manipulating Formalized Software Architectures
in Support of a Domain-Oriented Application Composition System. MS thesis,
AFIT/GCS/ENG/92D-01, Air Force Institute of Technology, December 1992.

3. Atwood, Thomas M. "The Case for Object-Oriented Databases," IEEE Spectrum,
25:44-47 (February 1991).

4. Bailor, Paul D. and others. "An Integrated Technology Approach to the Development
of Software Composition Systems." Computers in Engineering Conference, (in press).
1995.

5. Bertino, Elisa and Lorenzo Martino. "Object-Oriented Database Management Sys-
tems: Concepts and Issues," IEEE Computer, 2^:33-47 (April 1991).

6. Cattell, R. G. G. Object Data Management. Englewood Cliffs, New Jersey: Prentice
Hall, 1991.

7. Cecil, Danny A. and Joseph A. Fullenkamp. Using Database Technology
to Support Domain-Oriented Application Composition Systems. MS thesis,
AFIT/GCS/ENG/93D-03, School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH, December 1993.

8. Cossentine, Jay A. Developing a Sophisticated User Interface to Support
Domain-Oriented Application Composition and Generation Systems. MS thesis,
AFIT/GCS/ENG/93D-04, Air Force Institute of Technology, December 1993.

9. Franz, Inc. Allegro COMMON WINDOWS on X Manual. Berkeley, CA, August
1990.

10. Garlan, David and Mary Shaw. "An Introduction to Software Architecture," Advances
in Soßware Engineering and Knowledge Engineering, I (1993).

11. Gool, Warren Evan. Alternative Architectures for Domain-Oriented Application Com-
position and Generation Systems. MS thesis, AFIT/GCS/ENG/93D-11, School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, Decem-
ber 1993.

12. Joseph, John V. and others. "Object-Oriented Databases: Design and Implementa-
tion," Proceedings of the IEEE, 70:42-64 (January 1991).

13. Korth, Henry F. and Abraham Silberschatz. Database System Concepts. New York:
McGraw-Hill, 1991.

14. Lee, Kenneth J. and others. Model-Based Software Development (Draft). Technical
Report CMU/SEI-92-SR-00, Software Engineering Institute, December 1991.

15. Mano, M. Morris. Digital Logic and Computer Design. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1979.

BIB-1

16. Oppenheim, Alan V. and Ronald W. Schäfer. Discrete-Time Signal Processing. En-
glewood Cliffs, New Jersey: Prentice Hall, 1989.

17. Randour, Mary Anne. Creating and Manipulating a Domain-Specific Formal Object
Base. MS thesis, AFIT/GCS/ENG/92D-13, Air Force Institute of Technology, De-
cember 1992.

18. Reasoning Systems, Inc. DIALECT User's Guide. Palo Alto, CA, July 1990.

19. Reasoning Systems, Inc. REFINE User's Guide. Palo Alto, CA, May 1990.

20. Reasoning Systems, Inc. INTERVISTA User's Guide. Palo Alto, CA, March 1991.

21. Rumbaugh, James and others. Object-Oriented Modeling and Design. Englewood
Cliffs, New Jersey: Prentice Hall, 1991.

22. Waggoner, Robert W. Domain Modeling of Time-Dependent Systems. MS thesis,
AFIT/GCS/ENG/93D-23, School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH, December 1993.

23. Warner, Russell Mark. A Method for Populating the Knowledge Base
of AFIT's Domain-Oriented Application Composition System. MS thesis,
AFIT/GCS/ENG/93D-24, School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH, December 1993.

24. Weide, Timothy. Development of a Visual System for a Domain-Oriented Application
Composition System. MS thesis, AFIT/GCS/ENG/93M-05, Air Force Institute of
Technology, March 1993.

BIB-2

Vita

Captain Alfred W. Harris Jr was born April 8, 1959 in Shelby, North Carolina and

graduated from East Rutherford High School in Forest City, North Carolina in 1977. He

earned a Bachelor of Science degree in Civil Engineering from North Carolina State Uni-

versity in 1982. In April 1984, he was commissioned through Officer Training School,

Lackland AFB, Texas. After receiving a year of technical training at Keesler AFB, Missis-

sippi, he served as a programmer/analyst on several command and control systems from

April 1985 to October 1989 at the Command and Control Systems Center, Tinker AFB,

Oklahoma. He managed the sizing and performance analyses of Air Force standard base

level computers from October 1989 to May 1993 while assigned to the Standard Systems

Center, Gunter AFB, Alabama. He earned a Master of Business Administration degree

from Auburn University at Montgomery in 1993. He entered the Air Force Institute of

Technology in May 1993 to pursue a Master of Science degree in Computer Science.

Permanent address: Montgomery, AL 36116

VITA-1

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1994
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

USING OBJECT-ORIENTED DATABASE TECHNOLOGY TO
DEVELOP A MULTIPLE DOMAIN CAPABILITY FOR
pOMATN-ORTENTEP APPLICATION COMPOSITION SYSTEMS.
6. AUTHOR(S)

Alfred W. Harris, Jr Captain, USAF

"7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Wright Laboratories/AAWA-1
Wright-Patterson AFB, OH 45433-7765

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/94D-07

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This thesis describes the design and implementation of a multiple domain capability for a domain-oriented application
; composition system, named Architect. The research goal was to show how object-oriented database management
system (OODBMS) technology can be used to provide simultaneous access to multiple domain-oriented knowledge
bases. Since the Architect system was originally designed using the object-oriented paradigm, insertion of OODBMS
technology was relatively simple and many of the objedt-oriented concepts, such as inheritance and aggregation,

' proved beneficial. Inheritance was used to encapsulate domain knowledge by denning each domain as a subclass
of Architect's software architecture. Aggregation was used to allow applications to cross domain boundaries by
nesting components from multiple domains in an application. To validate this approach, domain extensions to two
existing domain models were implemented to make the domains compatible in a multiple domain environment, and
applications containing objects from both the logic circuits and digital signal processing domains were successfully
developed. One of the primary benefits of this research is the potential for greater reuse of objects. To satisfy
new requirements, domain engineers can now search for and access objects from other domains as an alternative to
implementing them in their own domains.

0

, 14. SUBJECT TERMS

I object-oriented database management system, aggregation, inheritance, domain-
öriented application composition system

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

117

-n
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

