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Abstract 

This thesis describes the design and implementation of a multiple domain capability 

for a domain-oriented application composition system, named Architect. The research goal 

was to show how object-oriented database management system (OODBMS) technology 

can be used to provide simultaneous access to multiple domain-oriented knowledge bases. 

Since the Architect system was originally designed using the object-oriented paradigm, 

insertion of OODBMS technology was relatively simple and many of the object-oriented 

concepts, such as inheritance and aggregation, proved beneficial. Inheritance was used to 

encapsulate domain knowledge by defining each domain as a subclass of Architect's software 

architecture. Aggregation was used to allow applications to cross domain boundaries by 

nesting components from multiple domains in an application. To validate this approach, 

domain extensions to two existing domain models were implemented to make the domains 

compatible in a multiple domain environment, and applications containing objects from 

both the logic circuits and digital signal processing domains were successfully developed. 

One of the primary benefits of this research is the potential for greater reuse of objects. 

To satisfy new requirements, domain engineers can now search for and access objects from 

other domains as an alternative to implementing them in their own domains. 

XI 



USING OBJECT-ORIENTED DATABASE TECHNOLOGY TO DEVELOP 

A MULTIPLE DOMAIN CAPABILITY FOR DOMAIN-ORIENTED 

APPLICATION COMPOSITION SYSTEMS 

I.   Introduction 

1.1 Overview 

The primary purpose of this research effort was to extend the object-oriented data- 

base management system (OODBMS) support for a prototype domain-oriented applica- 

tion composition system developed by the Knowledge Based Software Engineering research 

group at AFIT. The focus of the research was to use OODBMS technology to provide a ca- 

pability for multiple domain applications. The original capabilities of the prototype system 

limited the composition of applications to include primitive objects from only one domain. 

However, the capability to compose multiple domain applications adds greater flexibility 

to the application composition process by allowing domain knowledge to be shared and 

reused across domain boundaries. 

1.2 Background 

In previous research, Cecil and Fullenkamp (7) evaluated and implemented the con- 

cept of database support for domain-oriented application composition systems. In partic- 

ular, they applied their research to the Architect system. Architect has been developed 

by several researchers at AFIT, with the initial work being done by Anderson (2) and 
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Randour (17). Architect is a prototype system designed to allow a software engineer and 

an application specialist to work together to compose formally specified software artifacts 

into formal software system specifications. An application specialist is a highly competent 

user of the domain-oriented application composition system in a given domain. 

Prior to Cecil's and Pullenkamp's work, the persistent technology base of Architect 

was file-based. By implementing an OODBMS to serve as the technology base, domain 

data can be persistently stored in an object model form as opposed to being flattened into 

a file-based format. Figure 1.1 represents the domain-oriented application composition 

environment developed at AFIT, with the persistent technology base in the lower right 

corner. 

During the development of the OODBMS technology base, Cecil and Fullenkamp 

needed to develop two object models; one for the application domain and another for the 

software architecture. These models ultimately determined the structure in which the data 

was stored in the OODBMS. They used the domain of logic circuits as their validating 

domain, and thus, built an object model for logic circuits. However, to generalize captur- 

ing knowledge for all domains, they developed a meta-model that describes domain model 

definitions. In effect, the logic circuits object model is an instance of the domain definition 

meta-model. Since Architect's software architecture is based on the Object-Connection- 

Update (OCU) model, Cecil and Fullenkamp also developed a software architecture object 

model that corresponds to the OCU model. These object models guided the implementa- 

tion of the OODBMS technology base. 
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Figure 1.1    Domain-Oriented Application Composition Environment 

1.3   Problem 

Since the previous research validated the OODBMS technology base for the logic 

circuits domain only, further research was needed to determine the feasibility of incorpo- 

rating other domains. The previous designs were made scalable by encapsulating domain 

and architecture data separately, and relating them through inheritance, as shown in Fig- 

ure 1.2. For example, the logic circuits domain is modeled as a subclass of the "primitive" 

object class in the OCU model.   In fact, any number of domains can be added to the 
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Figure 1.3    Inheritance from OCU by Multiple Domains 

database as subclasses of the "primitive" object class. This concept is illustrated in Fig- 

ure 1.3. However, techniques for sharing components across domains needed to be further 

investigated. 

The capability to build multiple domain applications eliminates the need for ex- 

panding domain boundaries in some cases as indicated in the following scenario. When 

composing an application, a user might need a primitive that is unavailable in a given do- 

main. In this case, the domain engineer needs to expand the domain boundary to include 

the unavailable primitive. However, if the primitive already exists in another domain, it 

would be easier to simply use the primitive from the other domain. A multiple domain 

application capability would provide this benefit. To clearly identify the focus of this 

research, the following problem statement is offered. 

Problem Statement: 

Expand existing OODBMS technology base capabilities by incorporating additional 

application domains and providing the capability to include primitive objects from 

multiple domains in an application. 
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1.4 Scope 

The purpose of this research did not include modeling and developing knowledge for 

any particular domain. Other research had already been accomplished in the development 

of other domains, e.g., digital signal processing. As a result, this effort took advantage of 

those domain models already developed. 

1.5 Assumptions 

The ability to compose multiple domain applications is a very beneficial feature based 

on two assumptions. First, it is conceivable that domain boundaries will not always be 

clearly defined, that is, an individual primitive might be useful in more than one domain. 

However, having to implement the primitive in more than one domain is an unnecessary 

duplication of effort. Second, even when domain boundaries are clearly defined, two do- 

mains might naturally interface with each other. Either way, a multiple domain application 

capability resolves the issue. As explained in Section 1.3, a multiple domain application 

capability eliminates the need for defining a primitive in more than one domain. 

1.6 Approach 

The following steps were performed to achieve the capability of composing an appli- 

cation across multiple domains: 

• Conduct a literature search to assist in developing the best techniques for sharing 

components across domain boundaries for a domain-oriented application composition 

system. 



• Identify, analyze, and select application domains suitable for incorporation into the 

existing OODBMS technology base. 

• Design and develop object models for the selected application domains. 

• Develop database Schemas for the selected application domains. 

• Enhance the technology base by implementing chosen domains in the database. 

• Analyze the Architect system design and implementation to determine the feasibility 

of allowing a single application to include primitives from multiple domains. 

• Design and implement the changes to the Architect system to allow the composition 

of applications to cross domains. 

• Develop a set of objectives to use in the testing and validation of the enhanced 

Architect system. 

• Execute tests to validate the database and Architect system implementations. 

1.7   Summary 

This research was a follow-on effort to previous research which applied database 

technology to support a domain-oriented application composition system called Architect. 

The focus of this research was to enhance previous efforts by incorporating additional 

application domains into the Architect technology base and allowing a single application 

to include primitive objects from multiple domains. This provides the benefits of allowing 

domain knowledge to be shared and reused across domain boundaries. 
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1.8    Order of Presentation 

The remainder of this thesis is organized as follows. Chapter II is a literature review 

pertaining to object-oriented database management system support for domain-oriented 

application composition systems. Chapter III follows with an analysis of a multiple domain 

capability for Architect applications. Chapter IV explains the design and implementation 

used to create a multiple domain capability for Architect applications. Chapter V describes 

the testing and validation of the multiple domain application environment. Finally, Chap- 

ter VI contains the conclusions from this research and identifies recommendations for future 

research. 

This thesis also contains three appendices. Appendix A provides a sample script used 

to generate a multiple domain application on the Architect system. This research required 

new primitives to be implemented in Architect's technology base. Appendix B contains 

the code used to implement them. The digital signal processing domain was implemented 

in the database. Appendix C contains the object model diagrams for the domain. 
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II.   Literature Review 

2.1 Introduction 

This literature review pertains to object-oriented database management system sup- 

port for domain-oriented application composition systems. Object-oriented database man- 

agement systems (OODBMSs) are well suited for many scientific application areas such as 

software engineering. When compared to traditional technologies such as relational and hi- 

erarchical databases, OODBMSs provide many advantages for complex applications. Some 

of these advantages are identified in this chapter. Since OODBMS technology is relatively 

immature, much research on the subject is ongoing (12:42). 

In this chapter, a high-level overview of the Architect system described in Chapter I is 

presented. In addition, the rationale supporting the selection of ITASCA as the OODBMS to 

integrate with Architect is presented. Next, several fundamental concepts of OODBMSs, 

as applicable to the Architect system, are discussed. The concepts of objects, identity, 

aggregation, and inheritance are a few of the more important ones pertaining to this 

research effort. Occasionally, comparisons of OODBMSs versus relational databases are 

used to illustrate the merits of OODBMSs. Finally, the design of the software architecture 

used to implement the Architect system is discussed. 

2.2 Overview of the AFIT Architect System 

As stated in Chapter I, Architect is a software application composition system de- 

veloped by the Knowledge Based Software Engineering research group at AFIT. Architect 

allows an application specialist in a given domain to build software applications without 
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actually writing any software. The application specialist builds the software application by 

specializing primitive objects stored in Architect's technology base. The organization of 

these objects must be in accordance with a set of composition rules specified by a software 

architecture (7). 

To illustrate, consider the logic circuits domain supported by Architect and its 

OODBMS. Real-world logic circuit components such as and-gates, or-gates, switches, 

etc., are modeled as primitive objects in Architect. Rules of composition define how the 

various primitive objects can be interconnected. With a graphical user interface, the appli- 

cation specialist can build complex circuits using the primitive objects in accordance with 

the rules of composition. As a result, the application specialist can generate a software 

application simulating a circuit such as a full-adder without actually writing the software. 

Why is OODBMS support needed for Architect? Architect needs a means of persis- 

tent storage for all of the software artifacts it uses and generates. The OODBMS serves 

as the central repository for those software artifacts. More importantly, for this research, 

OODBMS technology was crucial in providing a capability to compose applications across 

domain boundaries. The original Architect system was limited to composing an application 

within a single domain (4). 

2.3   Selection o/lTASCA 

Before implementing database support for the Architect system, Cecil and Ful- 

lenkamp evaluated three OODBMSs: MATISSE, OBJECTSTORE, and ITASCA. They se- 

lected ITASCA for two primary reasons. First, ITASCA supports dynamic schema evolution 

without re-compilation of methods.   They felt this feature met their needs for a rapid 

2-2 



prototyping capability (7:3-16). Second, Architect was implemented with SOFTWARE RE- 

FINERY™, a formal-based specification and programming environment (7:3-9). SOFTWARE 

REFINERY and ITASCA both run in the Common Lisp environment. ITASCA provides a 

remote Lisp interface which makes it convenient for the Architect system to interface to 

the ITASCA database system. 

2.4    Fundamental Concepts of Object-Oriented Database Management Systems 

Several fundamental concepts characterize OODBMSs. The concepts of objects, 

identity, aggregation, and inheritance are a few of the more important ones pertaining to 

this research effort. These concepts give OODBMSs more powerful modeling capabilities 

than found in relational database systems (12:45). 

2.4-1 Objects. Object-oriented design is centered around the notion of an object. 

This provides the advantage of allowing the database designer to abstract the problem 

and solution space in terms of real-world entities. An object is defined in terms of its 

attributes (5:34). For example, a person could be modeled in a database as an object 

with the attributes of "name," "sex," "social security number," etc. In contrast, with a 

relational database the design is centered around tables. Information on a person would be 

stored in a table in record format (3:44). Each row in the table would have some number 

of fields, one field for each attribute. In essence, each relational table corresponds to an 

object class, with each field in the table corresponding to an object attribute. 

2.4-2 Identity. The concept of identity means the OODBMS provides a unique 

identifier for each instance of an object that exists. The identifier is simply a pointer to the 
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object instance allowing access to the object for data retrieval and manipulation (6:85). 

In contrast, a relational database does not provide a unique identifier for its entities. The 

entities in a relational database can only be retrieved and manipulated by their values 

(1:30). For example, a social security number could serve as an identifier for a "person 

table." The database designer must build identifiers into the tables of a relational system, 

whereas an OODBMS automatically provides the identifier. 

2.4-3 Aggregation. OODBMSs support the concept of object aggregation. With 

aggregation, objects are nested within other objects (5:35). For example, an automobile 

could be modeled as an object with the attributes of "identification number," "color," 

"engine," etc. However, these attributes do not have to be declared as primitive data 

types. Instead, they can be declared as object classes, and this is what brings about 

aggregation. Continuing with the example, the "engine" attribute could be declared as an 

object containing the attributes of "displacement," "number of cylinders," etc. As a result, 

the engine is nested within the automobile. The levels of object nesting is not limited. 

Relational databases do not support aggregation. This is because the Schemas in 

relational databases generally comply with first normal form. First normal form requires 

each field (corresponding to an attribute) in a relational table to be atomic, or of a primitive 

data type such as a number or character string. When all fields of a relational schema are 

atomic, the schema is said to be in first normal form (13:209). Since each attribute roust be 

of a primitive data type, "objects" can not be nested within other "objects" in a relational 

table. 
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2.4-4    Inheritance. Inheritance is the last OODBMS concept discussed here. 

Inheritance is essentially a reuse mechanism. Inheritance allows the extension or special- 

ization of existing classes by adding additional attributes (3:44). To illustrate, consider 

the "person" object described earlier. Next, suppose a "student" object was needed in 

the database. An OODBMS allows the student to inherit all the attributes of the person 

such as "name," "sex," etc., by simply defining the "student" object as a subclass of the 

"person" object. Then, additional attributes such as "grade point average" can be added 

to the "student" object. In contrast, relational databases do not support inheritance. 

2.5    Other Object-Oriented Database Management System Considerations 

2.5.1 Dynamic Schema Evolution. Much of the work done in software engineer- 

ing, and in particular on the Architect system, is of a rapid prototyping nature. The work 

environment is exploratory and evolutionary. Some OODBMSs provide features that sup- 

port a rapid prototyping environment. One of these helpful features is dynamic schema 

evolution. 

The database schema defines the structure of the data to be stored in the database. 

In a rapid prototyping environment, such as ours, schema changes are frequent and must 

be supported with minimal slowdown. The ability to modify relational schemas is limited 

(5:45). However, some OODBMSs allow schema modification to occur at runtime, instead 

of requiring a system shutdown (1:36). This is helpful in a rapid prototyping environment 

as objects tend to evolve rapidly. As mentioned in Section 2.3, one of the reasons Cecil 

and Fullenkamp selected ITASCA was because of its ability to support dynamic schema 

evolution. 
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2.5.2 Applicability of an OODBMS for the Architect System. All of the domains 

supported by Architect axe modeled using the object-oriented paradigm (7:1-4). As a 

result, the software artifacts used and generated by Architect can be cleanly mapped 

to an OODBMS. OODBMS support for the Architect system can be further justified 

by examination of some of the object models developed by Cecil and Fullenkamp. The 

object diagrams in their thesis adhere to the Object Modeling Technique as described in 

Rumbaugh's book, Object-Oriented Modeling and Design (21). The diagrams in this thesis 

also adhere to the Object Modeling Technique unless indicated otherwise. 

Cecil and Fullenkamp used the logic circuits domain in their efforts to provide 

OODBMS support for the Architect system. They made heavy use of inheritance in their 

object model for the logic circuits domain, as shown in Figure 2.1. For example, the "gate" 

object class has the attributes of "delay," "mil-spec?," and "power level." The "gate" ob- 

ject is a superclass for five subclasses: "and-gate," "or-gate," "nand-gate," "nor-gate," 

and "not-gate." Each of the subclasses inherits the attributes of "delay," "mil-spec?," and 

"power level" from the superclass. Another example of inheritance within the logic circuits 

domain is the "component" object class with its five subclasses: "counter," "mux," "half- 

adder," "decoder," and "JK flip-flop." With ITASCA, Cecil and Fullenkamp were able to 

build Schemas taking advantage of these inheritance associations. 

Cecil and Fullenkamp also developed a meta-model for domain models. The meta- 

model is a model from which all domain models can be built. In this regard, the logic 

circuits domain model described earlier can be thought of as an instance of the meta-model, 

shown in Figure 2.2. The meta-model makes heavy use of aggregation. A domain definition 

is composed of one or more object classes. Each object class is composed of zero or more 
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Figure 2.1    Object Model of Logic Circuits Domain 

data objects. Finally, each concrete object class contains one or more REFINE functions. 

With ITASCA, Cecil and Fullenkamp were able to build Schemas taking advantage of these 

aggregate associations. 

2.6   Software Architectures 

The software architecture becomes a major design consideration of a software system 

as its size and complexity increase. A higher level of abstraction is used in the design of the 
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software architecture when compared to the design of algorithms and data structures. This 

is because software architecture is concerned with the overall organization of the system 

(10), whereas individual algorithms and data structures impact parts of the overall system. 

The software architecture for the Architect system was built using the Object- 

Connection-Update (OCU) model. Software systems in compliance with the OCU model 

are composed of a group of communicating subsystems. A diagram of an OCU subsystem is 

shown in Figure 2.3. The controller manages control between a set of objects based on the 

subsystem's mission. The objects represent real-world or virtual components. The import 

area is the focal point for the subsystem to gain access to external data. Conversely, the 
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export area is the focal point to make internal data available to the environment outside 

the subsystem (14:17-19). 

The software architecture used to implement the Architect system has a direct impact 

on Architect's database schema design. The object model Cecil and Fullenkamp developed 

for the software architecture precisely defines the organization used to store many of Archi- 

tect's software artifacts in the database. Further information on the OCU architecture and 

alternative software architectures for domain-oriented application composition systems can 

be obtained from Gool's thesis (11). 

2.7   Summary 

Object-oriented database management systems provide better support than tradi- 

tional database systems for some scientific application areas. The fundamental concepts 

of objects, identity, aggregation, and inheritance give OODBMSs more modeling power 

than found in older database technologies. Discussion in subsequent Chapters identifies 

how these powerful modeling capabilities were crucial to solving the problem statement of 
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this thesis. In particular, the concepts of aggregation and inheritance allow much greater 

flexibility in the storage and retrieval of applications for Architect than is capable with the 

original file-based system. This flexibility allowed for the aggregation of primitives from 

multiple domains in an application. 

In addition, this chapter identified that OODBMSs provide support for a rapid pro- 

totyping environment with dynamic schema evolution. Finally, the software architecture 

design used for the Architect system was briefly discussed. 
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III.   Analysis of Multiple Domain Application Capability for Architect 

3.1 Introduction 

In this chapter, an assessment of Architect's baseline operational capabilities is pre- 

sented. This leads to a discussion of the desired operational capabilities required to support 

multiple domain applications. Next, Architect's software environment is analyzed to ex- 

plain the single domain limitation for applications in the baseline system. The software 

environment plays a different role in the original, file-based version of Architect than it does 

in the database version of Architect; these differences are analyzed. Domains participating 

in a multiple domain application must be compatible. A discussion of Architect's semantic 

checks provides insight into this compatibility requirement. Since the baseline database 

version of Architect has only one domain implemented, additional domains must be incor- 

porated. Thus, the meta-model for domain definitions is analyzed. Finally, object-oriented 

database techniques for sharing components across domain boundaries are discussed. 

3.2 Architect Operational Capabilities 

To fully understand the problem of providing a multiple domain application capabil- 

ity for Architect, the pertinent operational capabilities of the system need to be understood. 

A discussion of the baseline and proposed capabilities follows. 

3.2.1 Baseline Capabilities. The baseline Architect system is available in either 

the database version developed by Cecil and Fullenkamp, or the original file-based version. 

In either version, Architect allows a user to create, edit, save, load, and execute applications 

within a single domain. 
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Once the Architect system is loaded, the Architect Visual System Interface (AVSI) 

is presented to the user. AVSI is the graphical user interface developed by previous re- 

searchers, Weide (24) and Cossentine (8). The user may then interact with the system 

to perform operations on an application. The first operation usually performed is either 

"Create New Application" or "Load Saved Application." For these operations, Architect 

immediately prompts the user to specify a domain. If creating a new application, the user 

can begin composing the application and must include at least one subsystem. Eventually, 

the user reaches the "edit subsystem" phase. In this phase, the user is presented with 

a window containing an image of the OCU subsystem model. This window is shown in 

Figure 3.1. 
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Figure 3.1    Edit Subsystem Window 
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Next, the user can perform a mouse operation to click on the "objects" icon of Fig- 

ure 3.1, causing two windows to appear. One of these windows contains all the primitives 

belonging to the domain of the current application. The technology base window for the 

logic circuits domain is shown in Figure 3.2. The second window is the subsystem window 
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Figure 3.2    Technology Base Window for CIRCUITS 

where the user composes the subsystem by placing instances of all required primitive ob- 

jects into the window. The user is limited to choosing objects from the domain presented 

in the technology base window. Of course, this is to be expected since applications can 

contain primitives from only one domain. The user can place objects into the current sub- 

system by simply performing a mouse operation to drag instances of primitives from the 

technology base window into the subsystem window. An example of a subsystem window 

containing one "switch" instance and one "LED" instance is shown in Figure 3.3. Finally, 
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Figure 3.3    Subsystem Window 

after all the desired primitive objects have been placed into the subsystem window, the 

user can deactivate the subsystem and technology base windows and move on to other 

functions. 

3.2.2 Proposed Capabilities. If a multiple domain application capability is to 

be realized, the user needs an added option to select primitive objects from a domain 

other than the one originally specified when creating a new application or loading a saved 

application. This can be accommodated by enhancing the menu options AVSI provides. 

Two alternatives follow. 

• OPTION 1: This approach requires the user to specify all the required domains at the 

very beginning of the application composition process. When a user initially creates 

a new application, AVSI prompts the user for the domain of the application. This 
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would be considered the primary domain. AVSI could be enhanced to ask a follow-up 

question to determine if primitives from alternate domains are needed.1 With this 

information, AVSI could build a technology base window to include primitives from 

the alternate domains in addition to primitives of the primary domain. Then, when 

the user clicks on the "objects" icon of Figure 3.1, primitive objects from all the 

required domains would be displayed. 

• OPTION 2: This approach defers the choice of selecting primitives from alternate 

domains until the "edit subsystem" phase. When the user clicks on the "objects" 

icon of Figure 3.1, primitives from the primary domain would be presented in the 

normal fashion. The user would then place all the required primitives of the primary 

domain into the subsystem window of Figure 3.3. If primitive objects are needed 

from an alternate domain(s), the user could simply bring up a menu to make the 

request. This menu would be presented after clicking the mouse in the background 

of the window of Figure 3.2. After specifying the alternate domain, a new technology 

base window would appear allowing the user to include the needed primitives. At 

this point, the application composition process would proceed as usual. 

Option 2 was chosen as the preferred alternative for two reasons. First, Option 1 

assumes the user knows all the required primitive objects and their respective domains 

at the beginning of the application composition process. Option 2 provides the user the 

flexibility to include primitives from all available domains throughout the entire compo- 

sition process.  Second, Option 1 presents the user a single technology base of primitive 

1Use of the terms primary and alternate will be used from this point forward when referring to the 
domains of a multiple domain application. 
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objects from the primary domain and alternate domains. The potentially large number of 

primitive objects would make this window difficult to display in a pleasing manner. At any 

given instance, Option 2 presents a technology base of primitives from only one domain. 

The flowcharts in Figure 3.4 summarize the differences between the baseline and pro- 
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Figure 3.4    Baseline Versus Proposed Capabilities 

posed capabilities for Architect's application composition process. The baseline capabilities 

are shown on the left, and the proposed capabilities are shown on the right. 
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3.3   Analysis of Architect's Single Domain Limitation 

3.3.1 Software Environment. As mentioned in Section 2.3, Architect was im- 

plemented with SOFTWARE REFINERY™, a formal-based specification and programming 

environment. To begin an Architect session, the SOFTWARE REFINERY environment must 

first be loaded. The SOFTWARE REFINERY environment includes the products REFINE, 

DIALECT, and INTERVISTA. 

• REFINE is a specification and object base manipulation environment. It provides a 

wide-spectrum language and a structured object base capability (19). The Architect 

source code is written in the REFINE language. 

• DIALECT is used for manipulating formal languages (18:1-1). DIALECT was used 

to specify Architect's domain specific and architecture (OCU) grammars. DIALECT 

generates the parser which is used to transform saved applications in textual form 

to and from the REFINE object base. 

• INTERVISTA provides the tools necessary to create interactive user interfaces for RE- 

FINE applications. These interfaces include diagrams, pop-up menus, and mouse- 

sensitive text windows (20:1-1). 

3.3.2 File-Based Version of Architect. The Architect limitation for single do- 

main applications is related to the nature of DIALECT'S grammar inheritance capabilities. 

DIALECT allows the management of separate grammars to be handled efficiently with in- 

heritance. This approach uses a common base grammar along with variant grammars to 

express the differences. Each of the variant grammars inherits the vocabulary and produc- 
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tions from the base grammar. However, at any given instance, a grammar can only inherit 

from at most one other grammar (18:5-20). 

Architect uses DIALECT'S grammar inheritance capabilities for its domain specific 

grammars. Architect has a general grammar associated with the OCU architecture. Then, 

there is a domain specific grammar associated with each domain, such as logic circuits, 

digital signal processing, etc. These domain specific grammars inherit from the general 

software architecture grammar. As a result, each domain is associated with a grammar 

that contains the vocabulary and production rules for the OCU architecture, in addition to 

the vocabulary and production rules for the specific domain. This is beneficial because each 

grammar contains the knowledge it needs for the software architecture. The disadvantage 

is that all of the domain knowledge in the grammars is disjoint. In other words, the domain 

knowledge contained in any given domain specific grammar is not contained in any of the 

other domain specific grammars. Therefore, any given grammar that is invoked to parse 

an Architect application contains the vocabulary and production rules of only one domain. 

Given the current design of the Architect system, DIALECT can not create a parser powerful 

enough to save and load multiple domain applications. 

3.3.3 Database Version of Architect. The database version of Architect offers 

the same functionality as the file-based version of Architect. However, when applications 

are saved to the database or loaded from the database, DIALECT'S parsing capabilities are 

not used. Instead, a group of transformation functions developed by Cecil and Fullenkamp 

are used. When saving an application to the database, the transformation functions take 

the current Architect application in the REFINE object base, and then store an equivalent 
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representation of the application in the ITASCA database. Likewise, when loading a saved 

application from the database, the transformation functions take the database represen- 

tation of the application and create an equivalent representation in the REFINE object 

base. 

Since the database version of Architect does not use DIALECT'S parsing capabilities 

to save or load applications, the feasibility of multiple domain applications becomes more 

focused. In fact, the entire hypothesis of using database technology to bring about multiple 

domain applications for the Architect system is based on the fact that parsing textual 

representations of applications in and out of the REFINE object base is not required in the 

database version. 

Incidentally, the baseline database version of Architect also allows the user to save 

or load applications to or from a file just like the file-based version. When performing a 

save or load of a file in the database version, parsing is invoked in the usual manner. As 

such, the database version only adds to the user's options; it does not remove any options. 

However, this is not the case for multiple domain applications. They can only be saved or 

loaded with the database. 

3.4    Compatibility of Domains 

The domains participating in a multiple domain application must have some degree 

of compatibility. At least one primitive from the primary domain must be capable of 

interfacing with a primitive from an alternate domain. More precisely, primitives from 

different domains must be able to import and export data between each other. 
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The Architect system allows the exchange of data between primitives to occur only if 

semantic checks have been passed. To pass semantic checks, the import and export areas 

must be of the same type and category. For example, in the logic circuits domain, a switch 

can export data to the import area of a light. In this case, the type is "boolean" and the 

category is "signal" for both the export and import areas. If semantics checks fail, a fatal 

error results. 

3.5   Analysis of Meta-Model for Domain Definitions 

After Cecil and Fullenkamp completed their research, the database version of Ar- 

chitect was populated with one domain—logic circuits. Obviously, one of the first actions 

required to bring about a multiple domain application capability was to load another do- 

main in the database. This required an analysis of Cecil's and Fullenkamp's meta-model 

for domain definitions. The object diagram for the meta-model was shown earlier in Fig- 

ure 2.2 and is shown again in Figure 3.5 for convenience. The object diagram for the logic 

circuits domain was shown in Figure 2.1 and is shown again in Figure 3.6 for convenience. 

The meta-model was used to develop the object diagram for the logic circuits domain. 

Ultimately, the schema in the ITASCA database was implemented in accordance with the 

logic circuits domain model. 

3.5.1 Primitive Objects and their Attributes. One desired result of developing a 

domain definition is to provide a technology base of one or more primitive objects which 

an Architect user can choose from when composing an application. This is achieved in 

the meta-model by the association that requires a domain definition to be composed of 
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Figure 3.5    Domain-Definition Object Model 

one or more object classes. Each primitive object in a technology base corresponds to 

an instance of the "Object-Class" class in the meta-model. Each primitive object may 

have any number of attributes associated with it. This is achieved in the meta-model 

by the association that allows each object class to have any number data objects. The 

"Data-Object" class in the meta-model corresponds to an object attribute. 

To illustrate, consider the following example. One instance of an object class in the 

logic circuits domain is the "LED" primitive object class. One instance of a data object is 

the "color" attribute for the "LED" primitive object class. 
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Figure 3.6    Object Model of Logic Circuits Domain 

3.5.2 Hierarchy Among Object Classes. In providing a technology base of prim- 

itive objects, Cecil and Fullenkamp could have chosen to model each domain with a flat 

structure. With a flat structure, each primitive object would be positioned one level below 

the top-level domain definition class. However, they chose to introduce hierarchy among 

object classes as Figure 3.6 illustrates. This is achieved with the "superclass" attribute 

of an object class in the meta-model. Each instance of an object class is required to 

have a superclass, whether it is the top-level domain definition class or some other object 
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class below the domain definition class.   For example, the "LED" object class has the 

"CIRCUIT-ARTIFACT" object class as its superclass. 

The primary benefit of having hierarchy among object classes is to allow multi- 

ple levels of inheritance in the ITASCA database. Continuing with the previous exam- 

ple, the "LED" object class of Figure 3.6 inherits the "manufacturer" attribute from 

the "CIRCUIT-ARTIFACT" object class, as do all the subclasses of the "CIRCUIT- 

ARTIFACT" object class. Of course, the "LED" object class represents a primitive object 

in the technology base, while the "CIRCUIT-ARTIFACT" object class does not. The 

meta-model accounts for this by distinguishing each object class as either abstract or con- 

crete. Each object class representing a primitive object in the technology base is concrete 

while all other object classes are abstract. 

3.5.3 Primitive Object Update Functions. The Architect system requires each 

primitive object to have an update function. When an application is executed, the applica- 

tion executive ensures each subsystem in the application is updated in the order specified 

by the application's update algorithm. Likewise, the update function for each object in 

a given subsystem is executed in an order specified by the subsystem's update algorithm. 

To support execution of an update function for a primitive object, data can be imported 

from outside the primitive. Then, the state of the primitive is updated based on the im- 

ported data and the primitive's previous state. Finally, data can be made available for 

export outside the primitive. The meta-model accounts for the primitive update process 

by requiring each concrete object class to contain at least one REFINE (update) function, 

as shown in Figure 3.5. 
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3.5.4 REFINE Executable. Each domain definition must have a REFINE "FASL- 

Object" associated with it in order to make the domain executable in REFINE and Archi- 

tect. A "FASL-Object" corresponds to the executable file generated by a REFINE compila- 

tion. The source code used to generate the "FASL-Object" is automatically created by an 

ITASCA method named "make-refine-file," written by Cecil and Fullenkamp. After all the 

domain definition data is loaded into the ITASCA database, the "make-refine-file" method 

can be executed to generate the source code for the domain. The meta-model allows a 

domain definition to have a FASL-Object with the "Has-Refine-Executable" association, 

as Figure 3.5 illustrates. 

3.5.5 Other Considerations. Because Architect is a visual system, an icon bitmap 

must be developed for each primitive to fully define a domain. The icon bitmap information 

for each primitive object is included in the REFINE source file for the domain. This allows 

AVSI to generate the technology base window during the composition of an application. 

The last consideration here is the ITASCA schema, which enables the database to 

store instances of Architect applications, including all subsystems and primitive objects 

contained in those applications. Each domain definition developed from the meta-model 

must have a corresponding schema implemented in the database. Each object class iden- 

tified in a given domain must have a corresponding object class built in that domain's 

database schema. Also, each attribute must be included in the appropriate object class of 

the schema. 
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3.6   Database Techniques for Sharing Components Across Domain Boundaries 

As stated in Section 3.5.5, each domain supported by the database version of Archi- 

tect must have a schema implemented in the database to allow for storage of applications. 

As discussed in Chapter I and illustrated in Figure 1.3, each domain is defined as a separate 

subclass of the "OCU-Primitive" object class. However, to support multiple domain appli- 

cations, techniques for allowing a single application to include components across domain 

boundaries must be analyzed. An analysis of the "OCU-Application," "OCU-Subsystem," 

and "OCU-Primitive" database object classes provides insight for sharing components 

across domain boundaries. 

3.6.1 "OCU-Application" Object Class. An Architect application is modeled as 

an object class in the database. The object class is named "OCU-Application" and is 

shown with its attributes in Figure 3.7. An application has a "Domain" attribute, which 

OCU-APPLICATION 

Generic-Version 
Version-Number 
Version-Type 
Name 
Domain 
Update-Function 
ICO-Subsystems 
Description 
Application-Mode 
ICO-Connections 

Figure 3.7    Object Model of an OCU Application 

of course, identifies the domain from which the application was composed. In a multiple 
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domain application, the "Domain" attribute refers to the primary domain from which the 

application was composed; the use of alternate domains is not indicated by this attribute. 

The "ICO-Subsystems" attribute means "is composed of subsystems." This attribute 

makes use of aggregation as described in Section 2.4.3, since its type declaration is a 

set of "OCU-Subsystem" objects. In other words, "OCU-Subsystem" objects are nested 

within "OCU-Application" objects. This leads to an analysis of the "OCU-Subsystem" 

object class to provide an understanding of how an "OCU-Application" object can contain 

primitive objects from more than one domain. 

3.6.2 "OCU-Subsystem" Object Class. A subsystem is also modeled as an object 

class in the database. The object class is named "OCU-Subsystem" and is shown with 

its attributes in Figure 3.8. As with the "OCU-Application" object class, the "Domain" 

OCU-SUBSYSTEM 

Name 
Domain 
Update-Function 
ICO-Elements 
ICO-Exports 
ICO-Imports 
Description 
X-Coordinate 
Y-Coordinate 

Figure 3.8    Object Model of an OCU Subsystem 

attribute of the "OCU-Subsystem" object class identifies the domain from which the sub- 

system was composed. In a multiple domain application, the "Domain" attribute refers to 

3-16 



the primary domain from which the subsystem was composed; the use of alternate domains 

is not indicated by this attribute. 

The "ICO-Elements" attribute means "is composed of elements." This attribute 

also makes use of aggregation since its type declaration is a set of "OCU-Element" objects. 

As a result, there are two levels of aggregation in an "OCU-Application" object—"OCU- 

Element" objects are nested within "OCU-Subsystem" objects, and "OCU-Subsystem" 

objects are nested within "OCU-Application" objects. Consistent with the OCU software 

architecture, an element can be either a subsystem or a primitive. Next, an analysis of the 

"OCU-Primitive" object is needed to understand how an "OCU-Application" object can 

contain primitive objects from more than one domain. 

3.6.3 "OCU-Primitive" Object Class. A primitive is also modeled as an object 

class in the database. The object class is named "OCU-Primitive" and is shown with its 

attributes in Figure 3.9. The "Domain" attribute of an "OCU-Primitive" object refers to 

OCU-PRIMITIVE 

Name 

Domain 

Update-Function-Name 

ICO-Data-Objects 

X-Coordinate 

Y-Coordinate 

Figure 3.9    Object Model of an OCU Primitive 
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the domain in which the primitive belongs. In a multiple domain application, the domain 

of a primitive may differ from the domain of the subsystem and application to which it 

belongs. This difference in domains does not pose a problem in the database because the 

attribute "ICO-Elements" of an "OCU-Subsystem" object does not require all primitive 

objects nested within a given subsystem to be of the same domain. 

3.6.4 Summary of Domain Sharing Techniques. The object-oriented database 

concept of aggregation was the primary technique identified in this analysis to allow the 

sharing of domain components. ITASCA allows aggregation in the schema definition by 

declaring the type of any object's attributes to be an object instance or a set of object 

instances. Aggregation allows an Architect application to be stored in the database as 

one object. One or more subsystems can be nested within each application. Also, one or 

more primitives and one or more subsystems can be nested within each subsystem. The 

primitives included in a subsystem do not have to be of the same domain as the subsystem 

and application. As a result, a single instance of an Architect application in the database 

can contain primitives from multiple domains. 

The transformation functions discussed in Section 3.3.3 must keep track of the various 

domains involved in a multiple domain application. When loading an application from 

ITASCA to REFINE, the transformation functions use the "Domain" attribute of an "OCU- 

Primitive" object to determine if each primitive object is from an alternate domain. If 

so, the transformation functions must account for this in order to properly create the 

primitive in the REFINE object base.  When saving an application to the database, the 
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transformation functions determine the domain of each primitive in the application so it 

can store the primitive in the proper object class within its domain. 

3.7   Summary 

This chapter began with an assessment of Architect's baseline operational capabil- 

ities and a discussion of the desired operational capabilities required to support multiple 

domain applications. Next, Architect's software environment was analyzed to explain the 

single domain limitation for applications in the baseline system. Since the software envi- 

ronment plays a different role in the original, file-based version of Architect than it does 

in the database version of Architect, those differences were analyzed. A discussion of Ar- 

chitect's semantic checks provided an understanding of how domains must be compatible 

to participate in a multiple domain application. The meta-model for domain definitions 

was analyzed due to the need to incorporate additional domains in the baseline database 

version of Architect. The chapter concluded with a discussion of object-oriented database 

techniques for sharing components across domain boundaries. In particular, aggregation 

allows applications to be composed of subsystems, and subsystems to be composed of 

primitives. As a final key point, the OODBMS does not require all primitives contained 

in a subsystem to belong to the same domain. 
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IV.   Design and Implementation 

4-1    Overview 

This chapter describes the design and implementation of a multiple domain capability 

for Architect applications. The enhancements needed to support the use of primary and 

alternate domains while creating or editing an application are explained. At least one 

additional domain needed to be implemented in the database. This chapter explains the 

rationale for selecting the digital signal processing domain to complement the logic circuits 

domain. To cross domain boundaries, at least one pair of the logic circuits and digital 

signal processing primitives needed to be capable of exchanging (importing or exporting) 

data. This chapter describes the design and implementation of several new primitives in 

both domains, enabling the exchange of data across the domain boundaries. With these 

new primitives, the Architect system is capable of generating an application containing 

primitives from both domains. 

4-2    Architect System Enhancements - Primary and Alternate Domains 

In order for the Architect system to have the operational capabilities described in 

Option 2 of Section 3.2.2, several enhancements were implemented. These enhancements 

allowed for the use of primary and alternate domains during application composition. 

The Architect design and implementation uses the concept of a current domain. Ar- 

chitect was originally designed such that it has one and only one current domain at any 

given point in time. Many of the activities required in Architect's application composition 

process depend on knowledge contained in the current domain. For example, when bring- 
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ing up the technology base of primitive objects, Architect produces a window containing 

primitives of the current domain. However, in a multiple domain environment, the current 

domain needs to change during the composition of a single application. At any given point 

in time, the primary domain or one of the alternate domains must be able to assume the 

role of current domain. As a result, enhancements were needed to manage the dynamics 

involved with the current domain for activities in the following key areas. 

• Technology Base Window 

• Object Editing 

• Setting Icon Attributes 

• Database Transformation Functions 

A simple approach was taken to manage the domain dynamics. When performing an 

activity in one of the key areas on a primitive from an alternate domain, the alternate do- 

main gets temporarily established as the current domain. When the activity is completed, 

the primary domain gets re-established as the current domain. This idea is illustrated in 

Figure 4.1. A discussion of the design and implementation for the required enhancements 

follows. 

4-2.1 Technology Base Window. The mouse handler function for the technology 

base window allows the user to create instances of primitive objects from the technology 

base window and place them into the current subsystem window. Also, the mouse handler 

function provides the user a menu of several additional options by clicking on the diagram 

surface.    The option to select primitives from an alternate domain was added to this 
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Figure 4.1    Management of Domain Dynamics 

menu. When the user chooses this option, a function is invoked that asks the user to 

specify an alternate domain. If the alternate domain has not been previously loaded from 

the database into REFINE, it is loaded at this time. At this point, the mouse handler 

function establishes the alternate domain as the current domain in the Architect system, 

consistent with Figure 4.1. The mouse handler function then invokes another function 

to display the technology base window for the current domain. This allows the user to 

place instances of primitives from the alternate domain into the current subsystem window. 
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After all instances from the alternate domain have been created, the primary domain is 

re-established as the current domain. 

4-2.2 Object Editing. Each primitive object in an Architect application has some 

number of editable attributes. The user may start the editing process by requesting to 

edit an application, or a subsystem of an application. In either case, a window displaying 

the components of the application or subsystem is displayed. The user then clicks on the 

object to be edited. Architect provides a menu of options, including the option to view 

and edit the object's attributes. If the user selects that option, a function to display the 

list of editable attributes for the object is invoked. Next, the user may select any attribute 

in the list and edit its value. 

An enhancement was needed for the object editing process to allow objects from an 

alternate domain to be edited. When the function to display the list of editable attributes 

for an object is invoked, the function must ensure the object's domain is the current 

domain since the retrieval of attributes is limited to objects of the current domain. Thus, 

the enhancement here implements the management of domain dynamics of Figure 4.1. 

4-2.3 Setting Icon Attributes. The visual interface for Architect builds many 

icons for primitive objects during the application composition process. For example, the 

technology base window displays an icon for each primitive in a given domain. Also, the 

windows that are generated during editing of an application or subsystem include an icon 

for each object instance they contain. To build the icons, the Architect Visual System 

Interface (AVSI) invokes a function to set the icon attributes for a primitive as specified 
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by a bitmap associated with the primitive. The attributes for an icon define the physical 

appearance of the icon when displayed. 

The baseline Architect system is implemented such that the function to set the 

icon attributes can only be invoked for the primitives of the current domain. Thus, an 

enhancement was implemented similar to the enhancements described in the preceding 

sections, consistent with Figure 4.1. 

4-2.4 Database Transformation Functions. The database transformation func- 

tions discussed in Section 3.3.3 required an enhancement to save and load multiple domain 

applications. A discussion of this implementation follows. 

4-2.4-1 Saving Applications. When saving an application to the database, 

Architect's transformation functions create an instance of the "OCU-Primitive" object 

class in the ITASCA database for each instance of a REFINE primitive in the application. 

"Domain" is an attribute of an ITASCA "OCU-Primitive" instance and specifies the domain 

to which the primitive belongs. However, the design and implementation of the transforma- 

tion functions require the value of the primitive's domain to be set to the current domain. 

Since the domain of the application being saved is the current domain, an enhancement 

was implemented to accurately build ITASCA primitives from an alternate domain. Once 

again, the enhancement adhered to the logic of Figure 4.1. 

4.2.4-2 Loading Applications. This enhancement is similar to the one re- 

quired for saving applications. When loading an application from the database, Architect's 

transformation functions create an instance of a primitive in the REFINE object base for 
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every ITASCA "OCU-Primitive" object instance contained in the application. However, the 

design of the transformation functions limits the creation of REFINE primitives to those 

of the current domain. Since the domain of the application being loaded is the current 

domain, an enhancement consistent with Figure 4.1 was implemented so primitives from 

an alternate domain can also be created. 

4-3    Selection of Additional Domains 

After enhancing the Architect system to allow the use of primary and alternate 

domains, the next step was to implement at least one new domain in the database. The 

selection of the new domain must accommodate the fact that the domains participating 

in a multiple domain application must have primitive objects capable of interfacing with 

each other as explained in Section 3.4. This presented two alternatives. 

1. Implement at least one additional domain capable of interfacing with the logic circuits 

domain. 

2. Implement at least two additional domains capable of interfacing with each other. 

The first alternative was selected. Actually, two additional domains were imple- 

mented. The first was really an extension of the original logic circuits domain, but was 

implemented as a separate domain. This domain was named "Circuits-Additional" and 

added additional logic circuits primitives. This served two practical purposes. First, useful 

logic circuits primitives were added to the Architect technology base. Second, the "Circuits- 

Additional" domain is completely compatible with the original logic circuits domain. This 

4-6 



provided a simple and ideal environment for building multiple domain applications, aiding 

the development and validation of the enhanced Architect system. 

The digital signal processing (DSP) domain was the second domain implemented. 

This domain was implemented in the file-based version of Architect during previous re- 

search by Warner (23). The possibility of DSP primitives importing or exporting binary 

signals made this an attractive domain to combine with logic circuits in a multiple domain 

environment. 

4-4    Implement "Circuits-Additional" Domain 

To implement the "Circuits-Additional" domain, several tasks were accomplished. 

Specific primitives were selected for incorporation into the domain. The update functions 

for each primitive were designed and written. The database schema for the domain was 

designed and implemented. Information pertaining to the domain definition meta-model, 

which was analyzed in Section 3.5, was developed and entered into the ITASCA database. 

This enabled the REFINE source code for the domain to be generated. This section ad- 

dresses these tasks. 

4-4-1    Selection of Additional Primitives. As stated earlier, the objective of 

developing the "Circuits-Additional" domain was to add useful logic circuits primitives to 

the Architect technology base and to provide a simple environment to support multiple 

domain applications. Therefore, the following small set of logic circuits primitives was 

selected for implementation in the new domain. 
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• And-Gate-3Input - This primitive imports three binary signals, performs a "logical 

and" of the three signals, and outputs the result. 

• Or-Gate-3Input - This primitive imports three binary signals, performs a "logical or" 

of the three signals, and outputs the result. 

• Pull-Adder - This primitive imports three binary signals—an addend, an augend, and 

a carry-in. The output is two binary signals—the sum and carry-out. 

• Full-Adder-4Bit - This primitive imports two binary numbers, each number contain- 

ing four bits. The output is the four-bit sum and a carry-out bit. 

• Full-Subtractor - This primitive imports three binary signals—a minuend, a subtra- 

hend, and a previous borrow. The output is two binary signals—the difference and 

an output borrow. 

• Pull-Subtractor-4Bit - This primitive subtracts one binary number from another, 

each number containing four bits. The output is the four-bit difference and a borrow 

bit. 

The significance of adding the adder and subtractor primitives will become more apparent 

later since they participate with digital signal processing primitives to form a multiple 

domain application. 

The "Switch" and "LED" (light emitting diode) primitives, which are part of the 

original logic circuits domain, were also included in this domain. These primitives are 

necessary to build meaningful applications within the "Circuits-Additional" domain. The 

design and implementation of these primitives were simply reused from the original logic 

circuits domain. 
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Table 4.1    Truth Table for 3-Input And-Gate 

Imports Exports 
Inl In2 In3 Out 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Table 4.2    Truth Table for 3-Input Or-Gate 

Import s Exports 
Inl In2 In3 Out 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

4-4-2    Update Functions for the New Primitives. Domain information to de- 

velop the new logic circuits primitives was obtained from Mano's book, Digital Logic and 

Computer Design (15). Truth tables for the "And-Gate-3Input," "Or-Gate-3Input," "Pull- 

Adder," and "Pull-Subtractor" are illustrated in Tables 4.1, 4.2, 4.3, and 4.4, respectively. 

The size of the truth tables for the four-bit full-adder and four-bit full-subtractor makes 

them impractical to present. The truth tables identify the exports generated by each 

primitive's update function for all possible combinations of imports. The REFINE update 

functions for each of these primitives is located in Appendix B. 

4-4-3    Object Model for Schema Implementation.      Before implementing the schema 

for the "Circuits-Additional" domain, an object model for the domain needed to be de- 
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Table 4.3    Truth Table for Pull-Adder 

Imports Exports 
Addend Augend Carry In Sum Carry Out 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

Table 4.4    Truth Table for Full-Subtractor 

Import 3 Exports 
Minuend Subtrahend Previous Borrow Difference Output Borrow 

0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 
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veloped. The object model diagram is shown in Figure 4.2. This model was developed in 
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Figure 4.2    Object Model for "Circuits Additional" Domain 

accordance with the meta-model for domain definitions. 

"Circuits-Additional" is the top level object class and corresponds to the domain 

definition class of the meta-model. This class is simply a container class for the domain and 

can have no attributes. The design of Architect and the database requires each domain to 

inherit from the OCU software architecture. Therefore, "Circuits-Additional" is a subclass 

of the "OCU-Primitive" class in the database schema. Note, the "OCU-Primitive" class is 
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not part of the "Circuits-Additional" domain. It is actually part of the OCU architecture 

and is shown here to illustrate the connection between the domain and software architecture 

models. All the concrete and abstract classes in the domain are subclasses of the "Circuits- 

Additional" class. 

Each primitive in the domain corresponds to a unique concrete class and is a leaf 

class in the diagram. Since the primitives are concrete classes, each has a REFINE update 

function. The diagram identifies each primitive with its update function. The update 

functions are not ITASCA methods. They are simply the REFINE update functions required 

by Architect for its primitives. The update functions are stored as REFINE source code in 

the ITASCA database. Note that the switch primitive is named "Switch-Additional" and 

the LED primitive is named "LED-Additional." This avoids a naming conflict with the 

"Switch" and "LED" classes in the schema of the original logic circuits domain. 

The object model contains one abstract class named "Circuit-Superclass." This class 

really serves no purpose with the given design since there were no common attributes in 

the domain that could be inherited by all primitives. However, this abstract class was 

included as a subclass of "Circuits-Additional" in the schema because it might provide 

opportunities for inheritance in future designs. 

The attributes in the object model diagram belong to one of the following categories: 

OCU-ATTRIBUTE, OCU-INPUT, or OCU-OUTPUT. All attributes belonging to the 

OCU-ATTRIBUTE category are included as attributes in the schema. The attributes be- 

longing to the OCU-INPUT and OCU-OUTPUT categories are not included as attributes 

in the schema. Instead, they represent the imports and exports for the primitive classes of 
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the domain. These attributes are necessary to accurately generate the REFINE source and 

executable code for the domain. The next section summarizes the domain definition data 

used to generate the REFINE code. 

4-4-4    Domain Definition Inputs. Domain definition data was input into the 

database as specified by the object model from the previous section. The data was input 

into the following five ITASCA object classes. 

• Data Object - There were 47 instances of data objects. The data objects correspond 

to the attributes illustrated in the various object classes of Figure 4.2. 

• Concrete Object - There were eight instances of concrete classes corresponding to 

the primitives of the domain. These are illustrated in Figure 4.2. 

• Abstract Object - There was one instance of an abstract class, "Circuit-Superclass." 

• REFINE Function - There were eight instances of REFINE functions, one for each 

concrete class. 

• Domain Definition - There was one instance of a domain definition. 

After the domain definition data was loaded into the ITASCA database, the "make- 

refine-file" method of the "Domain Definition" class was executed. This generated the 

REFINE source code for the domain. Ultimately, the source code was compiled and the 

resultant executable code was stored in the database. With the database version, all of 

Architect's executable files are stored in the database and are loaded into REFINE as needed 

during an Architect session. 
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Table 4.5    DSP Primitives 

Stored-Signal Sinusoid Noise Time-Filter 
Piecewise-Linear Print-Signal Save-Signal Reverse-Signal 
Unit-Sample-Sequence Input-Buffer Delay Window-Signal 
Unit- Step- Sequence Output-Buffer Adder Truncate-Signal 
Graph-1-Signal Multiplier Signal-Adder User-Designed-Filter 
Graph- 2- Signal Signal-Multiplier DFT Complex-To-Real 
Graph-3-Signal Signal-Subtractor IDFT Scale-Signal 
Graph-4-Signal Signal-Divider Convolution Real-To-Complex 
Signal-Abs-Dif Frequency-Filter Pad-Signal 

4-4-5 Icon Bitmap Construction and Implementation. AVSI requires each primi- 

tive to be associated with an icon to allow the primitive objects to be displayed during an 

Architect session. The bitmaps for the "Circuits-Additional" icons were built using Icon 

Editor, an OPENWINDOWS™ tool. The data for each bitmap was then reformatted as 

a list to allow its storage in the "Icon-Obj" object class of the database. The COMMON 

WINDOWS function "bitmap-to-expr" can be used to convert bitmap data into a list. With 

this implementation, AVSI can load its icons from the database rather than files. After 

loading a list containing icon data, AVSI calls the COMMON WINDOWS function "expr-to- 

bitmap" to return a bitmap whose image is created from the list (9:4-12). For a thorough 

discussion of icon design and development for the Architect system, refer to Appendix B 

of Cossentine's thesis (8). 

4-5   Implement Digital Signal Processing Domain 

The DSP domain contains 35 primitives as implemented by Warner in the file-based 

version of Architect. All of these primitives are identified in Table 4.5. Warner's design 

and implementation of these primitives was reused for entry into the database version of 
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Architect. For a complete discussion of Architect's DSP domain, consult Warner's thesis 

(23). 

To implement the DSP domain, many of the same tasks required to implement the 

"Circuits-Additional" domain were accomplished. The database schema was designed and 

implemented. Information pertaining to the domain definition meta-model was developed 

and entered into the ITASCA database. This allowed the REFINE source and executable 

code for the domain to be generated. This section addresses these tasks. 

4-5.1    Object Model for Schema Implementation. Similar to the development 

of the "Circuits-Additional" domain, an object model for the DSP domain was needed. 

The model, developed in accordance with the domain definition meta-model, is shown in 

Figure 4.3. "DSP" is the top level object class and corresponds to the domain definition 

class of the meta-model. "DSP" has ten abstract subclasses. Nine of the ten abstract 

classes have concrete subclasses. There are a total of 35 concrete classes, one for each 

primitive in the domain. The concrete classes are grouped into single boxes according to 

their superclass. Grouping more than one class in a box deviates from Rumbaugh's Object 

Modeling Technique (OMT). This approach is more space efficient in this case and allows 

all primitive classes in the domain to be displayed reasonably in one diagram. However, 

the attributes for all the object classes do not reasonably fit into the diagram and are 

omitted. 

Similar to the "Circuits-Additional" domain, the ITASCA schema for the DSP domain 

was built according to the object model. For a complete representation of the DSP object 
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Figure 4.3    Object Model for DSP Domain 

model, refer to the diagrams in Appendix C. These diagrams adhere to Rumbaugh's OMT 

and show all attributes for each class. 

4-5.2   Domain Definition Inputs.      The following summarizes the domain definition 

data that was entered into the database for the DSP domain. 

• Data Object - There were 119 instances of data objects. The data objects correspond 

to the attributes contained in the various diagrams in Appendix C. 
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• Concrete Object - There were 35 instances of concrete classes corresponding to the 

primitives of the domain. 

• Abstract Object - There were ten instances of an abstract class. 

• REFINE Function - There were 35 instances of REFINE functions, one for each concrete 

class. 

• Domain Definition - There was one instance of a domain definition. 

As with the "Circuits-Additional" domain, after the domain definition inputs were com- 

pleted for the DSP domain, the REFINE code was generated and stored in the database. 

4-6   Digital Signal Processing Domain Enhancements 

In spite of implementing the "Circuits-Additional" and DSP domains, the ability to 

compose multiple domain applications was limited. The "Circuits-Additional" primitives 

were fully compatible with the original logic circuits primitives. Therefore, applications 

containing primitives from both logic circuits domains were possible. While this provided 

a good basis for doing some initial testing and validation of Architect's multiple domain 

enhancements, it did not provide any meaningful applications. This is because the primi- 

tives of the two logic circuits domains would not be implemented as separate domains in 

a realistic environment. Instead, they would have been merged into one domain. 

To generate more meaningful applications, the compatibility of the DSP and logic 

circuits domains was assessed. For primitives to exchange data, they must comply with 

Architect's semantic checks explained in Section 3.4. All of the logic circuits primitives 

have import or export areas with a type of "binary" and category of "signal." None of the 
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DSP primitives were compatible with any of the logic circuits primitives.  However, the 

possibility of augmenting the DSP domain with compatible primitives was promising. 

Two candidates for addition to the DSP domain were an analog-to-digital converter 

and a digital-to-analog converter. In digital signal processing, an analog-to-digital con- 

verter generates a binary code. This binary code could be exported to primitives in the 

logic circuits domain for manipulation. The logic circuits primitives could then export the 

manipulated binary code to a digital-to-analog converter, which receives a binary code as 

input and outputs its analog equivalent. 

4-6.1 Design of an Analog-to-Digital Converter. An analog-to-digital converter 

(ADC) samples an analog signal at some sampling rate or time interval. It converts each 

sample into a representative binary code. For example, a signal might represent the voltage 

for some electrical circuit. The ADC assesses the value of the voltage of the input sample 

and assigns the sample a binary code representing a quantized value or level. The ADC 

contains a number of quantization levels. The assigned binary code corresponds to the 

quantized value that most closely approximates the amplitude of the input (16:114). 

The full scale level of the ADC is the maximum amplitude it supports. To allow for 

negative values, the full range of values supported by the ADC is two times the full scale 

level. This range of values is divided into a fixed number of discrete quantization levels. 

As a result, the step size for each quantization level, denoted as A, is equal to two times 

the full scale level divided by the number of quantization levels (16:117-118). 

Since each sample from the analog signal is assigned to the nearest quantization level, 

the analog-to-digital conversion is not completely precise. The error generated by digital 

4-18 



conversion of a sample is less than or equal to one half of the step size for the quantization 

levels. Therefore, the precision of an ADC can be increased by merely increasing the 

number of quantization levels, which decreases the step size. Samples above the most 

positive quantization level are assigned to the highest level; those below the most negative 

quantization level are assigned to the lowest level. 

The number of quantization levels is limited by the number of bits used in the binary 

code. This relationship is defined by the formula, y = 2", where y is the number of 

quantization levels and n is the number of bits in the binary code. Since the number of 

quantization levels increases exponentially with the number of bits, increasing the size of 

the binary code decreases the step size and improves the precision of the analog-to-digital 

conversion. A 4-bit code was used for the ADC implemented for Architect, resulting in a 

maximum of 16 quantization levels. 

Each quantization level corresponds to a unique binary code. Several binary coding 

schemes exist and a couple of them are shown for a 4-bit ADC in Table 4.6. The offset 

binary code assigns a numeric ordering of the quantization levels, beginning with the most 

negative level. With a 4-bit ADC, the levels are assigned offset binary codes representing 

the values 0 through 15. However, in digital signal processing, it is sometimes preferable to 

do arithmetic directly where the code is a scaled representation of the quantized samples. 

The two's complement code provides this capability. Two's complement is obtained by 

complementing the most significant bit of the offset binary code. This is a convenient sys- 

tem of representing signed numbers and is used in most computers. Each two's complement 

code is associated with a specific quantized level, ranging from —8A to 7A (16:116-117). 
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Table 4.6    Binary Codes for 4-Bit Analog-to-Digital Converter 

Offset Binary Two 's Complement 
Code Code Quantized Level 

1111 0111 7A 
1110 0110 6A 
1101 0101 5A 
1100 0100 4A 
1011 0011 3A 
1010 0010 2A 
1001 0001 1A 
1000 0000 0A 
0111 1111 -1A 
0110 1110 -2A 
0101 1101 -3A 
0100 1100 -4A 
0011 1011 -5A 
0010 1010 -6A 
0001 1001 -7A 
0000 1000 -8A 

The following example shows how addition can be performed directly on two's com- 

plement codes. The codes 0110 and 1011 correspond to the quantized levels 6A and —5A, 

respectively. The binary sum of 0110 and 1011 is 0001, disregarding the most significant 

carry bit. The two's complement code 0001 corresponds to the quantized level of 1A, 

which is expected when summing 6A and —5A. A similar addition of the corresponding 

offset binary codes does not provide useful results. 

For another example, consider the following subtraction. Two's complement codes 

of 1110 and 1100 correspond to the quantized levels of —2A and —4A, respectively. Sub- 

tracting 1100 from 1110 yields 0010. The two's complement code 0010 corresponds to 

the quantized level of 2A, which is expected when subtracting —4A from —2A. Again, a 

similar subtraction of the corresponding offset binary codes does not provide useful results. 

Next, refer to Figure 4.4 for an example of how samples from an analog signal are 

converted to a binary code. The first sample is taken at time t0. Since the amplitude of this 
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Vertical Axis Represents Amplitude 

Horizontal Axis Represents Time 

Figure 4.4    Sampling of an Analog Signal 

sample is between 6.5A and 7.5A, it is assigned the quantized value of 7A and the two's 

complement code of Olli. The second sample is taken at time flt Since the amplitude of 

this sample is between —2.5A and —3.5A, it is assigned the quantized value of —3A and 

the two's complement code of 1101. Each of the remaining samples are processed in the 

same fashion. 

^.6.2 Design of an Digital-to-Analog Converter. A digital-to-analog converter 

(DAC) receives a binary code representing a sample of an analog signal and converts the 

binary code to its analog equivalent. As implemented in Architect, the DAC primitive 

basically reverses the actions performed by the ADC. Therefore, the discussion here is 

brief.   When the DAC receives a binary code, it determines which quantized level the 
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code represents. The value of the quantized level is an estimate of the amplitude for 

that particular sample. When all samples have been converted from binary to analog 

form, a curve can be fit through the samples providing an approximate representation of 

the analog signal. As with the analog-to-digital converter, the accuracy of the digital to 

analog converter increases as the size of the binary code increases. 

4-6.3 Implementation Actions. This section briefly summarizes the actions re- 

quired to implement the design of the DAC and ADC primitive classes. An object model 

including the new classes was developed. The portion of the diagram containing the new 

classes is shown in Figure 4.5.   Update functions for both primitives were written and 

Signal-Manipulations 

A 

D-To-A-Converter A-To-D-Converter 

Bill Bitl 

Biß BÜ2 

Bit3 Biß 

Bit4 Bit4 

Holder Done 

Output Holder 

Release Input 

Max-Magnitude Restart 

Max-Magnitude 

D-To-A-Converter-Update 

Figure 4.5    Object Model for ADC and DAC Primitives 

are located in Appendix B.  The database schema was modified to include the two new 
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DSP classes. They were both modeled as subclasses of the "Signal-Manipulations" class. 

To enable enhancement of the REFINE source and executable code for the DSP domain, 

additional domain definition data was entered into the database for the ADC and DAC 

primitives. The data is summarized as follows. 

• Data Object - There were 17 instances of data objects. The data objects correspond 

to the attributes contained in the diagram of Figure 4.5. 

• Concrete Object - There were 2 instances of concrete classes. 

• REFINE Function - There were 2 instances of REFINE functions, one for each primitive 

class. 

The final action taken was developing icon bitmaps for the new primitives. Icon Editor 

was used for that purpose. 

4-7   Summary 

This chapter began with a description of the design and implementation of a multi- 

ple domain capability for Architect applications. The Architect system was enhanced to 

support the use of primary and alternate domains while creating or editing an application. 

Next, the need for implementing at least one new domain in the database was discussed. 

Since the logic circuits domain was already implemented in the baseline database version 

of Architect, the digital signal processing domain was implemented due to its potential 

compatibility with the logic circuits domain. Finally, this chapter discussed the design 

and implementation of several new primitives in both domains, making the two domains 
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compatible. These new primitives make it possible for the two domains to exchange binary 

signals within a single application. 
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V.   Testing and Validation 

5.1 Overview 

This chapter explains the testing and validation of Architect's multiple domain ap- 

plication capability. Testing was actually performed incrementally during the development 

process. As mentioned in Section 4.3, the implementation of the "Circuits-Additional" do- 

main, in conjunction with the original logic circuits domain, provided a simple environment 

for doing initial testing and validation. Later, more substantial testing was possible after 

implementing Warner's DSP domain along with the analog-to-digital and digital-to-analog 

converters. 

5.2 Objectives 

Testing and validation of this research effort needed to confirm a set of primary and 

secondary objectives as follows. 

• Primary Objectives 

— Display the technology base window for alternate domains when appropriate. 

— Display icons for primitives from alternate domains in multiple domain appli- 

cations. 

— Edit objects from alternate domains in multiple domain applications. 

— Successfully save multiple domain applications from the REFINE object base to 

the database. 
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— Successfully load multiple domain applications from the database into the RE- 

FINE object base. 

— Properly execute multiple domain applications. 

• Secondary Objectives 

— Ensure the accuracy of the new logic circuits domain primitives. 

— Ensure the accuracy of the new DSP domain primitives. 

The primary objectives pertain to the design and implementation of the Architect system 

enhancements described in Section 4.2, which allow for the use of primary and alternate 

domains. The secondary objectives pertain to the accuracy of the new domain knowledge 

implemented in the technology base. While the knowledge in the original logic circuits and 

DSP domains was validated by previous research, the new primitives such as the full-adder 

and the digital-to-analog converter needed validation. 

The objectives pertaining to the Architect system enhancements are considered pri- 

mary because they relate directly to the problem statement of this thesis. These objec- 

tives provide the infrastructure enabling the composition of multiple domain applications 

for any compatible domains. The secondary objectives were needed to ensure the testing 

and validation of the primary objectives were not impacted by inconsistencies of the new 

primitives. 

5.3    Testing of Primary Objectives 

After the objectives for testing and validation had been identified, a series of tests 

were conducted. A discussion of the tests and results follows. 
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5.3.1 Technology Base Window for Alternate Domains. Displaying the technol- 

ogy base window for alternate domains was simple to confirm. Testing demonstrated the 

window for any of the available alternate domains could be displayed during the appli- 

cation composition process. However, an equally important consideration was confirming 

the primary domain gets re-established as the current domain after the technology base 

window for an alternate domain is deactivated. Recall from Chapter IV, when an activity 

is completed that requires an alternate domain to be established as the current domain, the 

primary domain should be re-established as the current domain. Testing confirmed that a 

request to redisplay the technology base window after previously displaying an alternate 

domain would result in the reappearance of the primary domain. This was a crucial result 

demonstrating the dynamics of the current domain are properly managed. 

5.3.2 Display Icons for Alternate Domains. After including primitives from an 

alternate domain in an application, testing needed to confirm icon images from both the 

primary and alternate domains could be displayed in a single window. This is required for 

several windows generated during application composition. Testing confirmed the satisfac- 

tion of this objective. An example of a subsystem window is located in Figure 5.1. This 

window contains a sinusoid primitive and an analog-to-digital converter primitive from the 

DSP domain. It also contains four LED primitives from the logic circuits domain. For this 

application, the DSP domain was the primary domain. The imports/exports window for 

this application is shown in Figure 5.2. 

5.3.3 Edit Objects from an Alternate Domain. After displaying primitives from 

an alternate domain, testing needed to confirm those primitives could be edited.   This 
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objective relates to the Architect enhancement that allows the display of editable attributes 

for a primitive from an alternate domain. Figure 5.3 shows a list of editable attributes 

generated during testing for one of the LED primitives of Figure 5.1, confirming the list of 

Attribute:   LED-COLOR: 
Value:   RED 

"led    1" 

Attribute: LED-MAHUFACTURER: 
Value: none specified 

"This is the name of the company that manufactured the 

Attribute: NAME: 
Value: LED-1 

Figure 5.3    Editable Attributes 

editable attributes gets properly displayed. Testing also confirmed objects can be edited 

by clicking on the desired attribute of Figure 5.3 and changing its value. 

5.3.4 Save Multiple Domain Applications. After composing a multiple domain 

application in the REFINE object base, testing needed to confirm the application could be 

saved to the database. This objective relates to the enhancement of the database trans- 

formation functions that allows any subsystem of a given application to contain primitives 

from an alternate domain. 

Testing confirmed the satisfaction of this objective. Inspection of multiple domain 

applications saved in the "OCU-Application" object class of the database revealed that 
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all of the primitive objects contained in a subsystem get properly aggregated into the 

subsystem. This includes primitives from an alternate domain. Recall from Section 3.6, in 

the database, subsystems are nested within applications, and primitives are nested within 

subsystems. Testing demonstrated that each "OCU-Primitive" instance gets stored in its 

proper object class of the database schema. 

5.3.5 Load Multiple Domain Applications. After saving a multiple domain ap- 

plication in the ITASCA database, Architect must be able to load it back into the REFINE 

object base. As with the objective of the preceding section, this objective relates to the 

enhancement of the database transformation functions. Testing confirmed that when load- 

ing a multiple domain application from the database, all primitives get properly restored 

in the REFINE object base, including those from an alternate domain. 

5.3.6 Execute Multiple Domain Applications. Architect must be able to execute 

multiple domain applications after they have been composed. Architect must also be able 

to execute previously saved multiple domain applications after they have been loaded from 

the database. Successful execution of an application requires each instance of a primitive 

contained in the application to be associated with the correct REFINE update function. 

Testing demonstrated that this association is maintained correctly in the multiple domain 

environment. As a result, all multiple domain applications, including those loaded from 

the database, executed properly during testing. 
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5-4    Testing of Secondary Objectives 

Validation of the secondary objectives depended primarily on the accuracy of the 

REFINE update functions for the new primitive classes implemented in the logic circuits 

and DSP domains. The new logic circuits domain primitives were tested by assessing 

their consistency with the truth tables from Chapter IV. All possible combinations of 

inputs were tested to ensure the correct outputs get generated in all cases. Testing results 

demonstrated each of the logic circuits primitives was implemented correctly. 

The new DSP domain primitives were tested by composing an application that sup- 

plies a sinusoid to an analog-to-digital converter, which outputs four binary signals (a 

four-bit code) for each sample of the sinusoid. The binary signals are delivered to a digital- 

to-analog converter, which outputs an approximation of the original sinusoid. Both the 

original sinusoid and the output of the digital-to-analog converter are supplied as input to 

a graph for comparison. Figure 5.4 is the Architect Imports/Exports window which shows 

the configuration for this application. Notice that a fifth binary signal is generated by the 

analog-to-digital converter and delivered to the digital-to-analog converter. This signal 

is set equal to true when the analog-to-digital converter has processed the last sample of 

the sinusoid. At this point, the digital-to-analog converter becomes aware that it has a 

complete signal ready for output to the graph. 

During execution, Architect applications containing a graph primitive spawn a Khoros 

graph, which is displayed on the workstation screen. The graph in Figure 5.5 displays the 

two sinusoids. One is the sinusoid supplied directly to the graph, indicated by the solid 

plot. The other is the sinusoid output by the digital-to-analog converter, indicated by the 
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dashed plot. The two signals almost overlay each other. The fact that they do not precisely 

overlay each other indicates a small amount of error was introduced by the analog-to-digital 

and digital-to-analog conversions. This, of course, was expected. 

5.5    Consolidated Example 

At this point, an example of a multiple domain application is presented that neatly 

consolidates the testing and validation objectives. Figure 5.6 shows the Imports/Exports 
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Figure 5.6    Multiple Domain Example 
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window for this application. The application contains two sinusoids (from the DSP do- 

main) that are added together, resulting in an additional signal. The sinusoids are labeled 

"SINUSOID1" and "SINUSOID2" in Figure 5.6. When adding signals, the amplitudes of 

the two input signals are sampled simultaneously at various times. Each pair of samples 

is summed to generate the amplitude of the additional signal. This application adds the 

two sinusoids using two different methods as explained in the following sections. 

5.5.1 First Method. The first method uses a signal-adder (from the DSP domain) 

to add the two sinusoids. The signal-adder is labeled "SIG-ADD" in Figure 5.6. The signal- 

adder, as modeled by Warner, simply adds each pair of samples from the two input signals, 

using ordinary arithmetic, to generate samples for the output signal. The signal-adder then 

supplies the resulting signal to the graph (from the DSP domain), labeled "GRAPH4." 

This method obviously generates an exact sum for each pair of samples. 

5.5.2 Second Method. The second method uses two analog-to-digital converters 

(from the DSP domain) to sample the two sinusoids at the same times as the signal- 

adder. The converters are labeled "ADC-1" and "ADC-2" in Figure 5.6. At each sampling 

time, both analog-to-digital converters produce a four-bit code. The two-four bit codes 

are summed using four full-adders from the logic circuits domain, labeled "FULLADD1," 

"FULLADD2," "FULLADD3," and "FULLADD4." The least significant pair of bits gen- 

erated by the analog-to-digital converters is summed by "FULLADD1." The second least 

significant pair of bits is summed by "FULLADD2," and so on. A switch from the logic cir- 

cuits domain, labeled "SWITCH," is used supply the carry-in bit for "FULLADD1." The 

full-adders supply the sum for each pair of four-bit codes to a digital-to-analog converter 
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(from the DSP domain), labeled "DAC." The digital-to-analog converter then supplies 

the resulting signal to the graph. Unlike the first method, this method introduces a small 

amount of error when summing the sample pairs. 

5.5.3   Key Observations.       Figure 5.7 shows the results of the application. Four 

SINUS0ID2     SINUS0ID1 Method1 Method2 

Figure 5.7    Sinusoid Plots 

signals are displayed—the two sinusoids, plus the two signals generated by summing the 

sinusoids. The two sinusoids have identical frequencies and are in phase with each other. 

This makes it easy to visualize how the two additional signals should appear on the graph. 

The two sinusoids differ only by their maximum amplitudes. "SINUSOID1" has a maxi- 

mum amplitude of 10.0 and "SINUSOID2" has a maximum amplitude of 20.0. Therefore, 

the two signals generated by summing the sinusoids should have maximum amplitudes of 
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30.0. As the graph indicates, they almost overlay each other. The solid plot represents the 

signal generated by the first method, while the dashed plot represents the signal generated 

by the second method. Again, the fact that they do not precisely overlay each other indi- 

cates a small amount of error was introduced by the analog-to-digital and digital-to-analog 

conversions. 

As stated earlier, this application consolidates the testing and validation objectives. 

Primitives from three domains were actually included in this application because the full- 

adders belong to the "Circuits-Additional" domain and the switch belongs to the original 

logic circuits domain. In fact, there is no limit on the number domains that can be included 

in an application. The instance diagram in Figure 5.8 shows all subsystem and primitive 

(OCU-Application) 

name: multidomain-example 

domain: DSP 

(OCU-Subsyatem) 

name: subsystem-1 

domain: DSP 

(Sinusoid) 

name: sinusoidl 

domain: DSP 

number-of-samples: 17 

amplitude: 10.0 

frequency: 0.125 

phase-shift: 0.0 

magnitude-offset: 0.0 

(Switch) 

name: switch 

domain: circuits 

the-i 

(Signal-Adder) 

name: sig-add 

domain: DSP 

(Sinu oid) 

name: simisoid2 

domain: DSP 

number-of-samples: 17 

amplitude: 20.0 

frequency: 0.125 

phase-shift: 0.0 

magnitude-offset 0.0 

(D-To-A-Converter) 

name: dac 

domain: DSP 

(A-To-D-Converter) 

name: adc-1 

domain: DSP 

(Full-Adder) 

name: fulladdl 

domain: circuits-additional 

(Full-Adder) 

name: fuUadd3 

domain: circuits-additional 

(Graph-4-Signal) 

name: graph4 

domain: DSP 

(A-To-D-Converter) 

name: adc-2 

domain: DSP 

(Full-Adder) 

name: nilladd2 

domain: circuits-additional 

(Full-Adder) 

name: fulladd4 

domain: circuits-additional 

Figure 5.8    OCU-Application Instance Diagram 
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instances contained in the application. The name, domain, and other pertinent attributes 

for each instance are also identified. 

This application was successfully executed, saved to the database, loaded from the 

database, and then successfully executed again. Also, this application required a primitive 

from an alternate domain to be edited. The switch, which supplies the carry-in to the 

first full-adder, had to be changed to the "off" position since its default position is "on." 

Finally, the accuracy of summing the sinusoids using two analog-to-digital converters, one 

digital-to-analog converter, and four full-adders demonstrates their correct implementation. 

5.6   Summary 

This chapter discussed the testing of Architect's multiple domain application capa- 

bility. A set of primary and secondary test objectives was developed to ensure the new 

functionality of the Architect system and the new domain knowledge in the technology 

base were properly validated. Each of the objectives was satisfactorily demonstrated dur- 

ing testing. Finally, a substantial example of a multiple domain application was presented 

that demonstrated successful accomplishment of the test objectives. 

5-13 



VI.   Conclusions and Recommendations 

The objective of this research was to determine if OODBMS technology could be 

used to provide a multiple domain application capability for a domain-oriented applica- 

tion composition system. The original Architect system did not allow the composition of 

applications to cross domain boundaries—all primitives contained in a given application 

had to come from the same domain. This limitation is due to the constraints imposed 

by the software environment used to develop the Architect system. The file-based version 

of Architect uses this software environment to parse saved applications to and from the 

technology base. The parsing of these files is defined by grammars developed for the do- 

mains. Each domain has a separate and unique grammar. When parsing an application for 

one domain, knowledge of another domain's grammar is unavailable. Therefore, crossing 

domain boundaries was not possible with the file-based Architect system. 

Previous research had already demonstrated that OODBMS technology could suc- 

cessfully provide the persistent technology base required by a system such as Architect. 

With the database version, Architect's applications are saved and loaded with a set of 

transformation functions, eliminating the need to parse files. Thus, the OODBMS tech- 

nology opened the door for multiple domain application support. 

Even after implementation of the OODBMS technology, there were obstacles asso- 

ciated with the design of the Architect system and the database transformation functions 

regarding multiple domain applications. Many of the activities associated with the compo- 

sition, storage, retrieval, and execution of an application depend on information specific to 

a given domain. The design of the Architect system and database transformation functions 
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provided the capability to obtain this information from only one domain—the domain of 

the application being composed. Naturally, in the single domain application environment, 

this is sufficient because management of domain dynamics during the composition of an 

application is not required. 

The concept of primary and alternate domains for application composition needed to 

be incorporated into Architect and the database transformation functions. A method was 

needed to manage the domain dynamics involved in the composition of multiple domain 

applications. A simple approach was taken. When performing certain activities associated 

with a primitive from an alternate domain, that alternate domain is temporarily estab- 

lished as the current domain. When the activity is completed, the primary domain is 

re-established as the current domain. 

In addition to providing a management capability for domain dynamics, an additional 

domain needed to be implemented in the database. The DSP domain was selected for two 

reasons. First, it had already been implemented and validated in the file-based Architect 

system. Second, it was potentially compatible with the logic circuits domain, which was 

already implemented in the database. Both domains were enhanced with new primitives, 

such as the full-adder and analog-to-digital converter, to make them compatible. As a 

result, meaningful multiple domain applications could be composed, saved, loaded, edited, 

and executed. 

6.1    Conclusions 

Using an OODBMS such as ITASCA to store the persistent technology base of a 

domain-oriented application composition system such as Architect is the right choice. 
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The Architect system was designed using the object-oriented paradigm. Therefore, an 

OODBMS provides an excellent mapping of data between the persistent technology base 

and Architect's working technology base in REFINE. An OODBMS is much better at 

this than a flattened file structure. As this research has demonstrated, this advantage 

allowed more flexibility in managing the domain dynamics required in multiple domain 

applications. 

A multiple domain application could not be achieved in the file-based version of 

Architect without a major redesign. The redesign would require that one large domain 

grammar be developed for all the domains. This approach would be poor design because 

domain knowledge would no longer be encapsulated for individual domains. This defies 

the logic of a "domain-oriented" system. Maintainability and extensibility would be neg- 

atively impacted because the modification or addition of just one domain would require 

the grammar for the entire system to be modified. The potential of introducing flaws into 

the system would increase. Because of these drawbacks, using OODBMS technology to 

achieve a multiple domain application capability is a better choice. 

6.2    Recommendations for Improvement and Further Research 

• Provide Generic Support for Software Architectures: Cecil and Fullenkamp 

provided generic support for domain definitions with implementation of their meta- 

model in the database. Similarly, generic support for software architectures should 

also be investigated and implemented in the database. This could result in the 

sharing of components across architecture boundaries, just as this thesis enabled the 

sharing of components across domain boundaries. 
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• Validate the Database Version of Architect for Other Execution Modes: 

Both the DSP and logic circuits domains implemented in the database operate in 

the non-event driven sequential mode. However, architect supports other execution 

modes. For example, Waggoner's (22) research led to the implementation of the 

cruise missile domain for execution in the time-driven sequential mode, and the 

logic circuits domain for execution in the event-driven sequential mode. Therefore, 

database support should be extended and validated for these execution modes. 

• Broaden the Scope of the Meta-Model for Domain Definitions: The DSP 

domain contains several user-defined types. For example, "sample-type" is defined as 

a real number, and "real-signal-type" is defined as a sequence of real numbers. The 

meta-model does not contain a mechanism for incorporating this type of information. 

As a result, the REFINE source code automatically generated by the database was 

manually augmented to specify the user-defined types. An approach for automating 

this task through enhancement of the meta-model needs to be investigated. 

• Make Architect's Semantic Checks More Robust: In order for two primitive's 

to be connected in an application, Architect's semantic checks require the connect- 

ing import and export areas to be of the same type and category. In this thesis, the 

binary signals of the digital-to-analog and analog-to-digital converters were given the 

type of "boolean" and the category of "signal" to be compatible with all components 

in the logic circuits domain. However, if the two domains had been developed inde- 

pendently, the converters very likely would have been assigned a category, such as 

"binary-signal," that does not precisely match the category of the logic circuits com- 

ponents. If that were the case, the components could not be connected, even though 
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they should be compatible. Techniques for making Architect's semantic checks more 

robust should be investigated to prevent this potential problem. Another approach 

would be to develop an interfacing mechanism allowing compatible components to 

communicate, even though they are not precisely categorized. Otherwise, domain 

engineers must redefine their domains to overcome this obstacle. 

6.3   Final Comments 

The Architect system has now demonstrated the capability of building multiple do- 

main applications. OODBMS technology played a vital role in achieving this capability. 

The ability to cross domain boundaries during application composition gives the applica- 

tion specialist greater flexibility in developing applications. This provides for the possibility 

of reuse, a benefit often achieved in the object-oriented arena. There is no need to im- 

plement a given primitive in more than one domain—primitives can now be shared. The 

knowledge gained in this research can provide valuable insight for future generations of 

domain-oriented application composition systems as they are developed. 
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Appendix A.   Sample Session: Multiple Domain Application 

This appendix contains a script for an Architect session which builds a multiple 

domain application. The application contains primitives from both the logic circuits and 

DSP domains. This script is adapted from the sample session of Appendix E in Cecil's 

and Fullenkamp's thesis. 

A.l    Start AVSI 

REFINE must be loaded in an EMACS window. Once this is accomplished enter: 

(load "dbl") 

When the prompt returns, enter: 

(dbl) 

It will take several minutes for this file to run because it loads the DIALECT and INTER- 

VISTA systems from the UNIX file system, and loads the Architect and AVSI files from the 

database. When the load is complete, the following prompt appears: 

Load Complete 

Type  "(AVSI)" to start AVSI 

Now enter the command: 

(avsi) 

This action loads the visual specification files for the domains currently defined for 

Architect.  After the visual information is parsed into the object base, the control panel 
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appears in the upper left-hand corner of the screen. Across the top of the window is a 

row of icons that will be used to invoke many of the application composition functions of 

AVSI. The lower portion of the window is a message area used by AVSI to display status 

and error messages. 

A.2    Create a New Application 

1. Click any mouse button on the icon labeled CREATE NEW APPLICATION. 

2. A pop-up window appears and prompts, SELECT DOMAIN. Click on the menu item 

DSP. At this time, the DSP domain definition is loaded from the database, as are the 

bitmap images for each primitive. DSP is the primary domain for this application. 

3. A pop-up window appears with the prompt, ENTER NAME OF APPLICATION. Type 

multidomain-example 

4. The name can be entered by hitting the "return" key or by clicking on Do IT at the 

bottom of the pop-up window. 

A.3   Edit the Application 

Now that the application has been created, the next step is to edit the applica- 

tion's make-up. Editing an application is composed of two separate operations: editing an 

application's components, and editing an application's update algorithm. 

A.3.1    Add the Controlling Subsystem-Obj to the Application. 

1. Click a mouse button on the EDIT APPLICATION control panel icon. 
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2. A pop-up menu appears with the prompt CHOOSE APPLICATION. Click on the menu 

item MULTIDOMAIN-EXAMPLE. 

3. A pop-up menu appears with the prompt CHOOSE. Click on the menu item EDIT AP- 

PLICATION COMPONENTS. A blue window appears containing a single icon labeled, 

APPLICATION - OBJ 

MULTIDOMAIN - EX 

4. Click on the diagram surface (anywhere on the blue surface except within the icon's 

boundary) of the window. A pop-up menu will appear. 

5. Select CREATE NEW SUBSYSTEM. 

6. A pop-up window appears, with the prompt ENTER A NAME. Enter multi-sub 

7. A box outline of an icon appears, attached to the mouse cursor. Place the icon below 

the application-obj icon by moving the cursor to the desired location and clicking. 

8. Click any mouse button on the newly created subsystem-obj icon and select the menu 

option LINK TO SOURCE. 

9. The mouse cursor changes from an arrow to an oval with a dot in it, signifying that 

an object needs to be selected. Place the mouse cursor on the application-obj's icon 

and click any mouse button. A link appears between the application-obj's icon and 

the subsystem-obj's icon. 

10. Close the edit-application-window by clicking on the diagram surface and selecting 

DEACTIVATE. 

A.3.2    Create the Application-Obj's Update Algorithm. 

1. Click a mouse button on the EDIT APPLICATION control panel icon. 
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2. A pop-up menu appears with the prompt CHOOSE APPLICATION. Click on the menu 

item MULTIDOMAIN-EXAMPLE. 

3. A pop-up menu appears with the prompt CHOOSE. Click on the menu item EDIT 

APPLICATION UPDATE. Three windows will appear. One contains a graphical view of 

the update algorithm, one contains a textual view of the algorithm, and the third (the 

Controllee Window) shows the icons that represent the application-obj's controllees 

(with two extra icons for if-then-else and while-do constructs). The graphical update 

window contains two icons, "Start" and "End", with a dotted arrow pointing from 

the start-icon to the end-icon. 

4. Click a mouse button on the icon in the controllee window labeled   SUBSYSTEM - OBJ . 
MULTI - SUB 

The cursor changes to an oval with a dot in it indicating that an object needs to be 

selected. 

5. Click on the "nub" on the dotted line midway between the start and end icons. This 

will cause the update sequence to redraw with the subsystem-obj included. Note the 

textual representation is automatically updated to reflect each change in the diagram 

window. 

6. Close the edit-update-algorithm windows by clicking on the black title bar at the top 

of the graphical update window and selecting DEACTIVATE. 
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A.4    Edit the Subsystems 

Building a subsystem is similar to building the application. This section illustrates 

how to instantiate primitive objects and link them to the controlling subsystem created in 

the previous section. 

The subsystem, MULTI-SUB, will control a sinusoid, an analog-to-digital converter 

and four LEDs. To add these objects, perform the following steps: 

A.4-1    Add the Primitive Objects. 

1. Click on the EDIT SUBSYSTEM icon in the control panel window. 

2. Click on the menu item MULTI-SUB. A white window opens (the subsystem win- 

dow) which contains an OCU representation of a subsystem. 

3. Click on the OBJECTS icon in the subsystem window.   The blue edit-subsystem- 

window for MULTI-SUB appears, containing a single icon labeled  SUBSYSTEM - OBJ . 
00 MULTI-SUB 

A green window, the technology-base window, also appears and contains an icon for 

each primitive-object in the current domain, DSP. 

4. Click on the icon in the green technology-base-window labeled SINSOID. 

5. A Sinusoid-icon is created and attached to the mouse cursor. Place this icon on the 

blue edit-subsystem-window near MULTI-SUB. 

6. Name the sinusoid by typing THE-SINUSOID in the pop-up window. 

7. Similarily, create an analog-to-digital converter object named THE-ADC. 

8. Next, obtain the technology base window for the logic circuits domain. Click on the 

diagram surface of the technology base window. A pop-up menu will appear. 
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9. Select GET-PRIMITIVES-FROM-AN-ALTERNATE-DOMAIN. Another pop- 

up menu will appear. 

10. Select CIRCUITS. The technology base window for the logic circuits domain will 

appear. Create four instances of the LED object named LED1, LED2, LED3, and 

LED4. 

11. Link the primitive objects to MULTI-SUB by clicking a mouse button on MULTI- 

SUB, and selecting LINK MULTIPLE TARGETS from the pop-up menu. 

12. A pop-up window will appear that lists all the unconnected objects in the edit- 

subsystem-window. Select ALL OF THE ABOVE, and click on Do IT. A link will 

appear from MULTI-SUB to each of the other icons. 

13. Close the edit-subsystem-window and the technology-base-window by clicking on the 

blue surface and selecting DEACTIVATE. The windows can be closed separately by 

selecting DEACTIVATE from their title bar menus. 

At this point, the subsystem window for MULTI-SUB will again be visible. 

A.4-2    Connect Imports and Exports.      To connect the import and export objects 

perform the following steps: 

1. Click a mouse button on the IMPORT AREA or EXPORT AREA icon in MULTI-SUB's 

subsystem window. 

2. Select MAKE CONNECTIONS from the pop-up window. A red window (the imports- 

exports window) will open and contain the sinusoid icon, the analog-to-digital con- 

verter icon, and the four LED icons. The black bars (these bars are actually high- 
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lighted subicons attached to the primitive's icon) on the sides of the primitive icons 

indicate connections that need to be made. 

3. Icons can be moved to new positions on the screen by clicking on the icon and 

selecting MOVE ICON from the pop-up menu. A square grid, attached to the mouse, 

appears. Move the grid to the new icon position and click to "drop" the icon. 

4. Connect sinusoid THE-SINUSOID to analog-to-digital converter THE-ADC by 

clicking on the black bar of THE-SINUSOID and then clicking on the black bar on 

the left side of THE-ADC. Connect BIT1 of THE-ADC to LED LED1. Connect 

BIT2 of THE-ADC to LED LED2. Connect BIT3 of THE-ADC to LED LED3. 

Connect BIT3 of THE-ADC to LED LED4. 

5. Close the imports-exports window by clicking on the red surface and selecting DE- 

ACTIVATE, or by selecting DEACTIVATE from each window's title bar menu. 

A.4-3 Build MULTI-SUB 's Update Algorithm. After the imports-exports win- 

dow has been closed, the white subsystem window will again be visible. Building the 

update algorithm for MULTI-SUB is similar to building the update algorithm for the 

application, and requires the following steps: 

1. Click the mouse on the CONTROLLER icon in the subsystem window. The three 

windows that were seen before are exposed, except the controllee window now con- 

tains the sinusoid, the analog-to-digital converter, and the four LEDs controlled by 

MULTI-SUB. 
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2. Add each controllee to the update sequence by clicking on the controllee icon and 

then clicking on the "nub" in the graphical update window that represents the proper 

sequence position for the controllee. The order in which the controllees must appear 

is: 

THE-SINUSQID      THE-ADC      LEDi      LED2      LED3      LED4 

Note that the textual update description is updated as the graphical update is built. 

3. Close the windows by clicking on the graphical update window title bar and selecting 

DEACTIVATE. 

A.5   Perform Semantic Checks 

Semantic checks are performed by Architect as part of the imports-exports connection 

process. However, the semantic checks may be run at any time by clicking on the control 

panel icon labeled CHECK SEMANTICS. The results of the semantic checks may be viewed 

in the EMACS window. 

A.6   Execute the Application 

Now that the application has been fully defined, it can be executed. Each time 

the application is executed, the analog-to-digital converter processes one sample of the 

sinusoid. The four LED objects identify the value of the four-bit code that is generated 

by the converter. Click on the control panel button labeled EXECUTE APPLICATION. The 

results are displayed in the EMACS window. 
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Appendix B.   REFINE Update Functions 

This appendix contains the REFINE source code for the update functions of all prim- 

itives developed for this thesis. 

B.l    And-Gate-3Input 

function AND-GATE-3INPUT-UPDATE  (subsystem  :   subsystem-obj, 
and-gate-3input   :  AND-GATE-3INPÜT)  = 

format (debug-on,   \"AND-GATE-3INPUT-ÜPDATE on "s"'/,\",  name(and-gate-3input)); 

let (inl : boolean = get-import('inl, subsystem, and-gate-3input), 
in2 : boolean = get-importCin2, subsystem, and-gate-3input), 
in3   :  boolean = get-importOin3,   subsystem,   and-gate-3input)) 

set-export(subsystem,  and-gate-3input,   'outl,   (inl & in2 & in3)) 

B.2    Or-Gate-3Input 

function 0R-GATE-3INPUT-UPDATE  (subsystem  :   subsystem-obj, 
or-gate-3input   :  0R-GATE-3INPUT) = 

format(debug-on,  \"0R-GATE-3INPUT-UPDATE on ~s~%\", name(or-gate-3input)); 

let (inl : boolean = get-import('inl, subsystem, or-gate-3input), 
in2 : boolean = get-importCin2, subsystem, or-gate-3input), 
in3   :  boolean = get-importCin3,   subsystem,   or-gate-3input)) 

set-export(subsystem,  or-gate-3input,   'outl,   (inl or in2 or in3)) 

B.3   Full-Adder 

function FULL-ADDER-UPDATE (subsystem : subsystem-obj, 

full-adder : FULL-ADDER) = 

format(debug-on, \"FULL-ADDER-UPDATE on ~s~%\",  name(full-adder)); 

let (inl : boolean = get-import('inl, subsystem, full-adder), 

in2 : boolean = get-importCin2, subsystem, full-adder), 

carry-in : boolean = get-import('carry-in, subsystem, full-adder)) 
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if "inl and "in2 and "carry-in then 

set-export(subsystem, full-adder, 'sum, nil); 
set-export(subsystem, full-adder, 'carry-out, nil) 

elseif inl and "in2 and "carry-in then 

set-export(subsystem, full-adder, 'sum, true); 

set-export(subsystem, full-adder, 'carry-out, nil) 

elseif "inl and in2 and "carry-in then 

set-export(subsystem, full-adder, 'sum, true); 

set-export(subsystem, full-adder, 'carry-out, nil) 
elseif inl and in2 and "carry-in then 

set-export(subsystem, full-adder, 'sum, nil); 
set-export(subsystem, full-adder, 'carry-out, true) 

elseif "inl and "in2 and carry-in then 

set-export(subsystem, full-adder, 'sum, true); 

set-export(subsystem, full-adder, 'carry-out, nil) 

elseif inl and "in2 and carry-in then 
set-export(subsystem, full-adder, 'sum, nil); 
set-export(subsystem, full-adder, 'carry-out, true) 

elseif "inl and in2 and carry-in then 
set-export(subsystem, full-adder, 'sum, nil); 

set-export(subsystem, full-adder, 'carry-out, true) 

elseif inl and in2 and carry-in then 

set-export(subsystem, full-adder, 'sum, true); 

set-export(subsystem, full-adder, 'carry-out, true) 

B.4    Full-Adder-4Bit 

function FULL-ADDER-4BIT-UPDATE (subsystem : subsystem-obj, 

full-adder-4bit : FULL-ADDER-4BIT) = 

format (debug-on, \"FULL-ADDER-4BIT-UPDATE on "s"'/.\", name(full-adder-4bit)); 

let (in-la : boolean = get-import('in-la, subsystem, full-adder-4bit), 
in-lb : boolean = get-import('in-lb, subsystem, full-adder-4bit), 
in-2a : boolean = get-import('in-2a, subsystem, full-adder-4bit), 
in-2b : boolean = get-import('in-2b, subsystem, full-adder-4bit), 
in-3a : boolean = get-import('in-3a, subsystem, full-adder-4bit), 
in-3b : boolean = get-import('in-3b, subsystem, full-adder-4bit), 
in-4a : boolean = get-import('in-4a, subsystem, full-adder-4bit), 
in-4b : boolean = get-importCin-4b, subsystem, full-adder-4bit), 
temp-carry : boolean = true) 

(if "in-la and "in-lb then 

set-export(subsystem, full-adder-4bit, 'out-lc, nil); 
temp-carry <- false 

elseif in-la and in-lb then 

set-export(subsystem, full-adder-4bit, 'out-lc, nil); 

temp-carry <- true 
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else 
set-export(subsystem, full-adder-4bit, 'out-lc, true); 

temp-carry <- false); 

(if "in-2a and "in-2b and "temp-carry then 
set-export(subsystem, full-adder-4bit, *out-2c, nil); 

temp-carry <- false 

elseif in-2a and in-2b and temp-carry then 
set-export(subsystem, full-adder-4bit, 'out-2c, true); 

temp-carry <- true 
elseif ("in-2a and in-2b and temp-carry) or 

(in-2a and "in-2b and temp-carry) or 

(in-2a and in-2b and "temp-carry) then 

set-export(subsystem, full-adder-4bit, 'out-2c, nil); 

temp-carry <- true 

else 
set-export(subsystem, full-adder-4bit, 'out-2c, true); 

temp-carry <- false); 

(if "in-3a and "in-3b and "temp-carry then 
set-export(subsystem, full-adder-4bit, >out-3c, nil); 

temp-carry <- false 

elseif in-3a and in-3b and temp-carry then 

set-export(subsystem, full-adder-4bit, 'out-3c, true); 

temp-carry <- true 

elseif ("in-3a and in-3b and temp-carry) or 

(in-3a and "in-3b and temp-carry) or 

(in-3a and in-3b and "temp-carry) then 

set-export(subsystem, full-adder-4bit, 'out-3c, nil); 

temp-carry <- true 

else 
set-export(subsystem, full-adder-4bit, 'out-3c, true); 
temp-carry <- false); 

(if "in-4a and "in-4b and "temp-carry then 
set-export(subsystem, full-adder-4bit, 'out-4c, nil); 

temp-carry <- false 

elseif in-4a and in-4b and temp-carry then 

set-export(subsystem, full-adder-4bit, 'out-4c, true); 

temp-carry <- true 

elseif ("in-4a and in-4b and temp-carry) or 

(in-4a and "in-4b and temp-carry) or 

(in-4a and in-4b and "temp-carry) then 

set-export(subsystem, full-adder-4bit, 'out-4c, nil); 

temp-carry <- true 

else 
set-export(subsystem, full-adder-4bit, 'out-4c, true); 

temp-carry <- false); 

(if temp-carry then 

set-export(subsystem, full-adder-4bit, 'carry-out, true) 
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else 
set-export(subsystem, full-adder-4bit, 'carry-out, nil)) 

B.5   Full-Subtracter 

function FULL-SUBTRACTOR-UPDATE (subsystem 
full-subtractor 

subsystem-obj, 
FULL-SUBTRACTOR) = 

format(debug-on, \"FULL-SUBTRACTOR-UPDATE on ~s~%\",  name(full-subtractor)); 

let (minuend 

subtrahend 

previous-borrow 

boolean = get-import('minuend, subsystem, full-subtractor), 
boolean = get-import('subtrahend, subsystem, full-subtractor), 

boolean = get-import('previous-borrow, subsystem, full-subtractor)) 

if "minuend and "subtrahend and "previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, nil); 
set-export(subsystem, full-subtractor, 'borrow-bit, nil) 

elseif minuend and "subtrahend and "previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, true); 

set-export(subsystem, full-subtractor, 'borrow-bit, nil) 
elseif "minuend and subtrahend and "previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, true); 

set-export(subsystem, full-subtractor, 'borrow-bit, true) 
elseif minuend and subtrahend and "previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, nil); 
set-export(subsystem, full-subtractor, 'borrow-bit, nil) 

elseif "minuend and "subtrahend and previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, true); 

set-export(subsystem, full-subtractor, 'borrow-bit, true) 

elseif minuend and "subtrahend and previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, nil); 

set-export(subsystem, full-subtractor, 'borrow-bit, nil) 

elseif "minuend and subtrahend and previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, nil); 

set-export(subsystem, full-subtractor, 'borrow-bit, true) 
elseif minuend and subtrahend and previous-borrow then 

set-export(subsystem, full-subtractor, 'difference, true); 
set-export(subsystem, full-subtractor, 'borrow-bit, true) 

B.6   Full-Subtractor-4Bit 

function FULL-SUBTRACT0R-4BIT-UPDATE (subsystem : subsystem-obj, 

full-subtractor-4bit : FULL-SUBTRACT0R-4BIT) = 

format(debug-on, \"FULL-SUBTRACT0R-4BIT-UPDATE on ~s~%\",  name(full-subtractor-4bit)); 
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let (minuend-1 : boolean 
minuend-2 : boolean 
minuend-3 : boolean 
minuend-4 : boolean 
subtrahend-1 : boolean 
subtrahend-2 : boolean 
subtrahend-3 : boolean 
subtrahend-4 : boolean 
temp-borrow : boolean 

get-import( 
get-import(' 

get-import(' 

get-import(' 

get-import(' 

get-import(' 

get-import(' 

get-import(' 

true) 

minuend-1, 
minuend-2, 

minuend-3, 

minuend-4, 

subtrahend-1, 

subtrahend-2, 

subtrahend-3, 

subtrahend-4, 

subsystem, 
subsystem, 

subsystem, 

subsystem, 

subsystem, 

subsystem, 

subsystem, 

subsystem, 

full- 
full- 

full- 

full- 

full- 

full- 

full- 

full- 

subtractor- 

subtractor- 

subtractor- 

subtractor- 

subtractor- 

subtractor- 

subtractor- 

subtractor- 

■4bit), 
■4bit), 
■4bit), 
■4bit), 
-4bit), 

-4bit), 

-4bit), 

-4bit), 

(if minuend-1 and "subtrahend-1 then 

set-export(subsystem, full-subtractor-4bit, 'difference-1, true); 

temp-borrow <- false 
elseif "minuend-1 and subtrahend-1 then 

set-export(subsystem, full-subtractor-4bit, 'difference-1, true); 
temp-borrow <- true 

else 
set-export(subsystem, full-subtractor-4bit, 'difference-1, nil); 
temp-borrow <- false); 

(if "minuend-2 and subtrahend-2 and temp-borrow then 

set-export(subsystem, full-subtractor-4bit, 'difference-2, nil); 

temp-borrow <- true 

elseif minuend-2 and "subtrahend-2 and "temp-borrow then 

set-export(subsystem, full-subtractor-4bit, 'difference-2, true); 

temp-borrow <- false 

elseif ("minuend-2 and "subtrahend-2 and "temp-borrow) or 
(minuend-2 and "subtrahend-2 and temp-borrow) or 

(minuend-2 and subtrahend-2 and "temp-borrow) then 

set-export(subsystem, full-subtractor-4bit, 'difference-2, nil); 
temp-borrow <- false 

else 
set-export(subsystem, full-subtractor-4bit, 'difference-2, true); 

temp-borrow <- true); 

(if "minuend-3 and subtrahend-3 and temp-borrow then 

set-export(subsystem, full-subtractor-4bit, 'difference-3, nil); 

temp-borrow <- true 

elseif minuend-3 and "subtrahend-3 and "temp-borrow then 
set-export(subsystem, full-subtractor-4bit, 'difference-3, true); 

temp-borrow <- false 

elseif ("minuend-3 and "subtrahend-3 and "temp-borrow) or 

(minuend-3 and "subtrahend-3 and temp-borrow) or 
(minuend-3 and subtrahend-3 and "temp-borrow) then 

set-export(subsystem, full-subtractor-4bit, 'difference-3, nil); 

temp-borrow <- false 
else 

set-export(subsystem, full-subtractor-4bit, 'difference-3, true); 
temp-borrow <- true); 

(if "minuend-4 and subtrahend-4 and temp-borrow then 
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set-export(subsystem, full-subtractor-4bit, 'difference-4, nil); 
temp-borrow <- true 

elseif minuend-4 and "subtrahend-4 and "temp-borrow then 

set-export(subsystem, full-subtractor-4bit, 'difference-4, true); 

temp-borrow <- false 

elseif ("'minuend-4 and "subtrahend-4 and "temp-borrow) or 

(minuend-4 and "subtrahend-4 and temp-borrow) or 

(minuend-4 and subtrahend-4 and "temp-borrow) then 

set-export(subsystem, full-subtractor-4bit, 'difference-4, nil); 
temp-borrow <- false 

else 

set-export(subsystem, full-subtractor-4bit, 'difference-4, true); 
temp-borrow <- true); 

(if temp-borrow then 

set-export(subsystem, full-subtractor-4bit, 'borrow-bit, true) 
else 

set-export(subsystem, full-subtractor-4bit, 'borrow-bit, nil)) 

B.7   Analog-To-Digital Converter 

function A-TO-D-CONVERTER-UPDATE (subsystem : subsystem-obj, 

the-a-to-d-converter : A-TO-D-CONVERTER) = 

format(dsp-debug, \"A-TO-D-CONVERTER-UPDATE on ~s~%\",  name(the-a-to-d-converter)); 

let (S : real-signal-type = a-to-d-converter-holder(the-a-to-d-converter), 

MM : real = a-to-d-converter-max-magnitude(the-a-to-d-converter), 

LowValue : real = 0.0 - a-to-d-converter-max-magnitude(the-a-to-d-converter), 
temp-bits : seq(boolean) = [true, nil, nil, true], 

LevelDelta : real = 2 * a-to-d-converter-max-magnitude(the-a-to-d-converter) / 15.0) 

(if a-to-d-converter-restart(the-a-to-d-converter) then 
S <- get-import('input, subsystem, the-a-to-d-converter); 

a-to-d-converter-holder(the-a-to-d-converter) <- S; 

a-to-d-converter-restart(the-a-to-d-converter) <- false); 

S(l) > (LowValue + LevelDelta * 1.0) —> (temp-bits <- [nil, true, nil, true]); 

S(l) > (LowValue + LevelDelta * 2.0) —> (temp-bits <- [true, true, nil, true]); 

S(l) > (LowValue + LevelDelta * 3.0) —> (temp-bits <- [nil, nil, true, true]); 

S(l) > (LowValue + LevelDelta * 4.0) —> (temp-bits <- [true, nil, true, true]); 

S(l) > (LowValue + LevelDelta * 5.0) —> (temp-bits <- [nil, true, true, true]); 

S(l) > (LowValue + LevelDelta * 6.0) —> (temp-bits <- [true, true, true, true]); 
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S(l) > (LowValue + LevelDelta * 7.0) —> (temp-bits <- [nil, nil, nil, nil]); 

S(l) > (LowValue + LevelDelta * 8.0) --> (temp-bits <- [true, nil, nil, nil]); 

S(l) > (LowValue + LevelDelta * 9.0) —> (temp-bits <- [nil, true, nil, nil]); 

S(i) > (LowValue + LevelDelta * 10.0) --> (temp-bits <- [true, true, nil, nil]); 

S(l) > (LowValue + LevelDelta * 11.0) —> (temp-bits <- [nil, nil, true, nil]); 

S(l) > (LowValue + LevelDelta * 12.0) —> (temp-bits <- [true, nil, true, nil]); 

S(l) > (LowValue + LevelDelta * 13.0) —> (temp-bits <- [nil, true, true, nil]); 

S(l) > (LowValue + LevelDelta * 14.0) —> (temp-bits <- [true, true, true, nil]); 

S(l) > MM or S(i) < LowValue --> 
format(dsp-debug, V'Sample is out of range; change upper or lower limitV1); 

set-export(subsystem, the-a-to-d-converter, 'biti, temp-bits(D) 
set-export(subsystem, the-a-to-d-converter, 'bit2, temp-bits(2)) 
set-export(subsystem, the-a-to-d-converter, 'bit3, temp-bits(3)) 
set-export(subsystem, the-a-to-d-converter, 'bit4, temp-bits(4)) 

S <- rest(S); 
a-to-d-converter-holder(the-a-to-d-converter)   <- S; 
set-export(subsystem, the-a-to-d-converter,   'done, false); 
(if size(S)  = 0 then 

a-to-d-converter-restart(the-a-to-d-converter)  <- true; 
set-export(subsystem,  the-a-to-d-converter,   'done,  true)) 

B.8   Digital-To-Analog Converter 

function D-T0-A-C0NVERTER-UPDATE  (subsystem  :   subsystem-obj, 
the-d-to-a-converter   :  D-T0-A-C0NVERTER)  = 

format (dsp-debug,   \MD-T0-A-C0NVERTER-UPDATE on "s"'/,\",  name (the-d-to-a-converter) ) ; 

let  (S  :  real-signal-type = d-to-a-converter-holder(the-d-to-a-converter), 
MM  : real = d-to-a-converter-max-magnitude(the-d-to-a-converter), 
LevelDelta : real = 2.0 * d-to-a-converter-max-magnitude(the-d-to-a-converter) / 15.0, 
bitl : boolean = get-import('bitl, subsystem, the-d-to-a-converter), 
bit2 : boolean = get-importCbit2, subsystem, the-d-to-a-converter), 
bit3 : boolean = get-import('bit3, subsystem, the-d-to-a-converter), 
bit4 : boolean = get-importCbit4, subsystem, the-d-to-a-converter), 
release   :  boolean = get-import('release,   subsystem,  the-d-to-a-converter)) 

(if size(S)  = 0 then 
set-export(subsystem,  the-d-to-a-converter,   'output,  S)); 
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(if bit4 and "bit3 and "bit2 and bitl then 

S <- append(S, (0.0 - MM + 0.5 * LevelDelta)) 

elseif bit4 and "bit3 and bit2 and "bitl then 

S <- append(S, (0.0 - MM + 1.5 * LevelDelta)) 

elseif bit4 and "bit3 and bit2 and bitl then 
S <- append(S, (0.0 - MM + 2.5 * LevelDelta)) 

elseif bit4 and bit3 and "bit2 and "bitl then 
S <- append(S, (0.0 - MM + 3.5 * LevelDelta)) 

elseif bit4 and bit3 and "bit2 and bitl then 
S <- append(S, (0.0 - MM + 4.5 * LevelDelta)) 

elseif bit4 and bit3 and bit2 and "bitl then 

S <- append(S, (0.0 - MM + 5.5 * LevelDelta)) 

elseif bit4 and bit3 and bit2 and bitl then 

S <- append(S, (0.0 - MM + 6.5 * LevelDelta)) 

elseif "bit4 and "bit3 and "bit2 and "bitl then 

S <- append(S, (0.0 - MM + 7.5 * LevelDelta)) 

elseif "bit4 and "bit3 and "bit2 and bitl then 

S <- append(S, (0.0 - MM + 8.5 * LevelDelta)) 

elseif "bit4 and "bit3 and bit2 and "bitl then 
S <- append(S, (0.0 - MM + 9.5 * LevelDelta)) 

elseif "bit4 and "bit3 and bit2 and bitl then 

S <- append(S, (0.0 - MM + 10.5 * LevelDelta)) 

elseif "bit4 and bit3 and "bit2 and "bitl then 

S <- append(S, (0.0 - MM + 11.5 * LevelDelta)) 
elseif "bit4 and bit3 and "bit2 and bitl then 

S <- append(S, (0.0 - MM + 12.5 * LevelDelta)) 
elseif "bit4 and bit3 and bit2 and "bitl then 

S <- append(S, (0.0 - MM + 13.5 * LevelDelta)) 

elseif "bit4 and bit3 and bit2 and bitl then 

S <- append(S, (0.0 - MM + 14.5 * LevelDelta))); 

d-to-a-converter-holder(the-d-to-a-converter) <- S; 

(if release then 

set-export(subsystem,  the-d-to-a-converter,   'output,  S); 
d-to-a-converter-holder(the-d-to-a-converter)   <-   []) 
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Appendix C.   Object Model Diagrams for the Digital Signal Processing Domain 

This appendix contains the diagrams for the object model of the digital signal pro- 

cessing domain. 

C.l    Abstract Classes of DSP 

Figure C.l shows the abstract classes in the DSP domain. 

Figure C.l    Abstract Classes of DSP Domain 
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C.2    Concrete Subclasses of "Signals" 

Figure C.2 shows the concrete subclasses of the "Signals" abstract class. 
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Figure C.2    Concrete Subclasses of "Signals" 
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C.3    Concrete Subclasses of "Displays" 

Figure C.3 shows the concrete subclasses of the "Displays" abstract class. 
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Figure C.3    Concrete Subclasses of "Displays" 
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C-4    Concrete Subclasses of "Filter Components" 

Figure C.4 shows the concrete subclasses of the "Filter Components" abstract class. 
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Figure C.4    Concrete Subclasses of "Filter Components" 
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C.5    Concrete Subclasses of "Signal Arithmetic" 

Figure C.5 shows the concrete subclasses of the "Signal Arithmetic" abstract class. 
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Figure C.5    Concrete Subclasses of "Signal Arithmetic" 
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C.6    Concrete Subclasses of "Signal Processing" 

Figure C.6 shows the concrete subclasses of the "Signal Processing" abstract class. 
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Figure C.6    Concrete Subclasses of "Signal Processing" 
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