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Abstract 

This thesis investigates advanced processing techniques for the detection of radar 

targets in the presence of clutter. It is assumed that the radar data available consist of 

multi-aspect angle, fully polarimetric Synthetic Aperture Radar (SAR) images. Various 

techniques are introduced and tested on available SAR data. These techniques attempt to 

exploit the multi-aspect angles in order to extract target characteristics not available in 

any single image. SAR images are manipulated in such a way to decrease the probability of 

false alarms in the target detection process. Target detection performance of the techniques 

is presented and compared. The techniques are shown to give superior results than that 

of regular SAR. 



Processing of Wide-Angle Synthetic Aperture Radar Signals for Detection of 

Obscured Ground Targets 

/.   Introduction 

1.1    Significance of Problem 

The detection and identification of military targets is a high priority mission of the Air 

Force for the purpose of reconnasaince and bombardment. The detection of highly obscured 

stationary ground targets is an ongoing problem since such targets are much harder to 

detect than airborne targets. Ground targets are obscured by the radar return from the 

ground, nearby foliage, and landscape. Airborne targets are relatively easy to detect since 

any energy not incident to the target is lost to the radar, therefore helping to eliminate false 

returns. Ground targets are surrounded by radar energy returning objects and features, 

obscuring the target signature with seemingly random noise. More advanced processing 

techniques would allow the detection of such targets with common surveillance and radar 

systems. By using all of the data available about a target such as fully-polarized Synthetic 

Aperture Radar (SAR) image [6, 9] and multiple aspect-angle views, new detection methods 

and algorithms could be developed in order to improve detection capabilities. This thesis 

takes a continuing look at improving the probability of detecting obscured ground targets. 
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1.2    Background 

Before beginning to talk about image processing and detection algorithms, it may 

be useful to discuss several terms used in this thesis. A key instrument used in target 

detection is the Synthetic Aperture Radar (SAR). SAR produces high resolution images 

of a scene of interest. SAR illuminates small "cells" of a scene with an electromagnetic 

field and records the intensity of the returned field (see Figure 1.1).     The resolution of 

Radar Platform 

Main Beam 

Range 

Azimuth - 

Figure 1.1    SAR Image Formation 

the cell is determined by the pulse width of the radar (range resolution) and the distance 

the radar platform travels (aspect resolution) [1]. All the cells are put together to form a 

radar image. The drawback to SAR is that only one view of the scene is produced. Thus, 

if a target is not visible from that angle, either before or after processing, detection is not 

possible. 
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Wide-Angle SAR (WASAR) improves SAR by offering several view angles of a target 

scene. As the radar platform passes the scene of interest, it takes SAR images at several 

angles (see Figure 1.2). It is believed that a target missed in one view can be detected in 

another view, or in some optimal combination of several views.    Currently, there are no 

Radar Platform 

Target Scene 

Figure 1.2    WASAR Image Formation 

systems or algorithms in common use exploiting the possible advantages of WASAR. This 

is due to the fact that WASAR for the purpose of detecting ground targets is fairly new 

technology. However, the use of WASAR is being explored by several groups, such as the 

Air Force's Wright Laboratories at Wright-Patterson Air Force Base, Ohio. This thesis is 

an attempt to prove the concept that WASAR is a viable and useful tool. 

Several problems arise with the use of WASAR. One problem is that in order to 

combine the images and perform various algorithms, the images need to be perfectly regis- 

tered. Perfect registration means that a target at a certain coordinate of an image is at the 

same coordinate in all images [2]. This presents a problem since it would be difficult for 

an aircraft to fly in the perfect path to keep the images properly registered, especially in a 
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combat environment. Another solution is to register the images through signal processing. 

With accurate knowledge of the aircraft's position and orientation, computer routines can 

be employed to correctly register the images. Fortunately, the data generated by Wright 

Labs used in this thesis are initially registered. Another problem of WASAR is that the 

multiple-aspect angles must be rotated to the same angle before using an algorithm that 

combines the images. Rotation of the data is a key part of this thesis, and will be discussed 

more extensively in Chapter II. 

Fully polarimetric SAR also improves on SAR by providing more information. Three 

images are formed of a scene, one with a vertically polarized incident field and vertically 

polarized receive antenna (VV), one with horizontally polarized incident field and horizon- 

tally polarized receive antenna (HH), and one with vertically polarized incident field and 

horizontally polarized receive antenna (HV). VH (vertical transmitted field, horizontally 

received) polarization is not used because, due to reciprocity, the VH return is identical to 

HV [6, 9]. With the use of fully polarimetric radar data, it is believed that targets missed 

at one polarization may be detected at another. Another use of the multitude of images is 

that the images can be combined through algorithms designed to reduce the background 

noise. The combination of Full Polarization and Wide-Angle SAR can provide many times 

the information gained by standard SAR. 

1.3   Problem 

The detection of targets in the presence of high intensity clutter is addressed by 

exploiting multiple view angles made available by WASAR. Clutter is information re- 

turned by the scene that is not useful in detection [4].  All data and target information 
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gained from WAS AR is used to improve the probability of detection for obscured targets. 

The improvements come through the use of new algorithms to extract target signatures 

available only in separate images. By exploiting the many images that can be formed 

with radar data, new detection schemes and algorithms are developed in order to better 

detect the presence of targets. There has been a fair amount of effort recently to improve 

detection by exploiting characteristics of fully-polarimetric radar data, but little devoted 

to exploiting WASAR. Novak [8, 7] developed several algorithms designed to reduce the 

high-frequency speckle of SAR data by combinations of the different polarizations. Speckle 

is defined as high frequency intensity changes from pixel to pixel. Novak's work succeded 

in reducing the speckle, but in doing so he had to combine the different polarimetric images 

without exploiting the differences in them. Knurr [3] worked on using Novak's polarimetric 

algorithms along with the various angle images from WASAR to improve detection char- 

acteristics. The research performed by Knurr only began exploring methods to exploit 

changes in targets in the various images. It is from Knurr's research that this research 

begins. 

The scope of this thesis is limited to improving the probability of detection of ground 

targets. Specifically, algorithms are developed to combine all data gathered to improve 

target detection performance. As the information available about the target increases due 

to WASAR, detection becomes an easier task. It should be stated that this thesis does not 

deal with the identification of targets. It only covers improving the probability of correctly 

deciding if a man-made target is present or not. Since the target is of unknown dimension, 

the signatures must be assumed to be somewhat abstract. A major, but valid, assumption 

of this research is that while man made targets tend to change significantly depending on 
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the angle from which they are viewed, trees and natural objects do not [10].  Figure 1.3 

Front 

Side ,ao o Side 

Figure 1.3    Radar Return from M35 Truck 

shows how a particular man-made object varies with view angle. The object in question is 

a Y5 scale model of an M35 truck, taken at 0° elevation and with HH polarization. It shows 

the radar return (scattered field magnitude) of the truck from one side, around the front, to 

the other side. The assumption that man-made targets change with angle is an important 

one. The argument that multiple-angle views of a scene will yield new information on the 

target depends on little or no new information being gained about the surroundings. 

Several things can be done to expand and improve on the body of knowledge cur- 

rently available. It is known that Novak's speckle reduction algorithms reduce unwanted 

noise, but they may also be wasting important data by averaging out certain characteristics 

of the targets. Knurr's [3] work involved using Novak's speckle reduction algorithms [8] 

and then trying to exploit the multiple angles of WASAR. Knurr developed an algorithm 

for rotating the WASAR images to a single aspect angle. This rotation is of great impor- 

tance to the research, since the scene must be rotated properly without losing information. 
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Since the SAR gathers discrete rather than continuous data sets, proper interpolation of 

data points is required in order to have the data in a usable form. After a good rotation 

scheme is implemented, algorithms are employed to extract the changes with respect to 

the target in the different views. These algorithms exploit the differences in target re- 

turns from image to image. The main characteristic exploited is that noise and clutter 

remain the same while man made objects give returns with large differences from image 

to image. Several algorithms, called WASAR Pre-Prossessing Algorithms, are developed 

to exploit this information. One such algorithm is to subtract the images from one an- 

other, eliminating the clutter that is of the same magnitude, and enhancing the target 

return which has a magnitude that changes in each image. Another algorithm developed 

uses statistical changes from image to image. This seems promising since with changes in 

aspect angle, the variance of the target is expected to change more that the surroundings. 

These algorithms are tested and compared to show that detection can be improved with 

the additional information provided by WASAR. 

1.4    Summary of Chapters 

Chapter II deals with the rotation of images taken at different angles to the same 

azimuth angle. Problems resulting from data being taken at an elevation angle are also dis- 

cussed. Chapter III covers the WASAR Pre-Processing methods used to improve detection 

performance. Each method is defined and compared visually and statistically. Chapter 

IV covers target detection, and finally, Chapter V discusses the conclusions and results 

reached, as well as recommendations for future work. 
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II.   Image Rotation and Registration 

2.1 Overview 

In this chapter, algorithms for rotating the images are discussed and compared. 

Specifically, two methods are evaluated for accuracy and efficiency. Problems with image 

rotation, such as down-sizing and data loss, are discussed. The need for a method to ensure 

all data are in the ground plane before rotation is discussed and demonstrated, and finally, 

the two data sets used in this thesis are rotated and compared. 

2.2 Background 

Before any processing and detection algorithms are performed and evaluated, all 

images must be transformed into the same coordinate system. Techniques have been 

developed in the past [3], and a new technique is developed in this thesis to try to improve 

performance. There are several problems to be addressed when trying to rotate images. 

First, when turning the images, parts of the new image do not overlap with data from the 

old image. So the new image can only be as large as the data overlapping the old image. 

This problem still exists with the method employed in this thesis. The data sets used in 

this thesis are 512 x 512 pixel images, and in the worst case (rotation angle = 45°), the 

overlap region is 363 x 363 pixels (Figure 2.1). This down-sizing of the image is necessary 

in order to keep the data as accurate as possible. Alternatives to size reduction are to 

either extrapolate the missing data (understandably difficult), or to use a circular image. 

The processing algorithms used in this thesis are written almost exclusively in Matlab, 

which is rectangular matrix oriented. It is for this reason that the smaller square images 
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363 Pixels 

Original Image Rotated Image 

512 Pixels 

Figure 2.1    Overlap of Rotated Image 

are used. Another problem with rotating images is that information is necessarily lost. 

This is due to the fact that the images are discrete points, and information originally in 

between the samples is not available for use in rotating the images. The discrete data 

presents a problem since in turning images, the data between points is often needed for 

points in the rotated image. 

2.2.1 Rotation Methods. At first, a simple routine is used to rotate the image 

using a nearest neighbor technique. The angle of rotation and the distance from the origin 

required are used to find the pixel corresponding to the (i,j) coordinates of the pixel in the 

original image. The images are referenced by the common (row, column) notation, with 

(1,1) being the upper left hand pixel. Since the image is discrete, the pixels locations are 

rounded off to the nearest integers, hence the name nearest neighbor. The code for this can 
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be seen in Appendix A in the Matlab function rotation.m. An example of how information 

is lost using a nearest neighbor technique can be seen in the rotation of the simple test 

pattern in Figure 2.2.    The image is first turned 45°, then turned 45° back to the original 

Figure 2.2    Simple Test Image for Rotation 

10 12 14 

Figure 2.3    Simple Test Image After Nearest Neighbor Rotation 

orientation, and the result is shown in Figure 2.3. Figure 2.3 shows that some of the 

information is lost, most probably due to rounding errors when determining the nearest 

neighbor. These figures also demonstrate the loss of information that occurs during the 

rotation process. Another algorithm developed to help eliminate loss of information due 

to rounding error uses 2-D interpolation. The Matlab code for this function is found in 
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Appendix A under elcorr2.m. The algorithm interpolates by a given number in between 

each row of an image, and then does the same to each column. Figure 2.4  shows that all 

2 jll^^Hi^^ 
4 „.«JÄH 
6 Hil^B         rauK; :%** ^Ä^HlSP^^B 

^BiH     S':'H 

10 llliSilillM 
12  >w?     p   ^^^B 

14 ill                            :    ■- 

10 12 14 

Pixel # 

Figure 2.4   Simple Test Image After Interpolated Rotation 

the original information is still present.  However, interpolation acts as a low-pass filter, 

and some "smearing" is evident. 

2.2.2 Performance of Rotation Methods. As a metric of how each method per- 

forms, the 2-D correlation of each method is computed with respect to the original image. 

When two images are correlated with one another, higher values mean the images are closer 

to being the same. So an image correlated with itself would have a higher correlation (nor- 

malized value of 1.0) than an image correlated with a slightly different one (normalized 

value less than 1). The interpolated image is slightly more correlated (max normalized 

value = 0.9481) than the nearest-neighbor method (max normalized value = 0.9298), as 

can be seen in Figure 2.5. 

Another metric worth considering is the relative error, defined as the Frobenius norm 

of the original image (X0) minus the rotated image (Xt), divided by the Frobenius norm 
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Max Value 0.9298 Max Value 0.9481 

Correlation Index Correlation Index Correlation Index 6 Correlation Index 

(a) (b) 

Figure 2.5    Correlation of Original Image and (a) Nearest-Neighbor Rotated Image, (b) 
Interpolated Rotated Image 

of the original image, or 

relative error = 
ll*o||/       ' 

(2.1) 

where ||X||/ is the Frobenius norm of the matrix X and defined as 

V v«,j 
(2.2) 

Using this metric, the relative error for the nearest-neighbor method is 0.2649, while for the 

interpolation method it is 0.2820. This metric indicates the first method is the superior 

one. Since the results support neither method conclusively, the more efficient nearest- 

neighbor method was chosen. The second method, in general, should be more accurate, 

but computationally is-too costly. Thus, the first method, the nearest neighbor method, 

was chosen to rotate all the images in this thesis. 
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2.3    Ground Plane Transformation 

Another issue that must be addressed when trying to combine images at different 

angles is that the images must all lie in the ground plane so distances in one image are 

correlated with distances in others. If the images are not in the same ground plane, 

distortions are introduced to the rotated images. This is due to the apparent change in 

lengths when the elevation angle is changed, as demonstrated in Figure 2.6. This figure 

Platform 1 

Platform     2 ,-'/ 

Figure 2.6    Example of Elevation Angle Distortion 

shows two radar systems imaging the same object, but at different elevation angles. It 

is apparent that the object will appear longer to the second radar than to the first. An 

example of this distortion on a real image can be seen in Figure 2.7. Figure 2.7 (a) shows 

a T-72 viewed from a 40° elevation angle and a 60° azimuth angle. The tank looks normal, 

but is viewed from some elevated angle. After rotating the image 60° it is clearly distorted, 

as seen in Figure 2.7 (b). Thus, to avoid distortion, it is required that the images be in the 

ground plane before rotation. Figure 2.7 (c) shows the tank image seen in Figure 2.7 (a) 

after it has been placed in the ground plane. After rotating the corrected image, it looks 

rectangular, as can be seen in Figure 2.7 (d). 
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Figure 2.7 Image of (a) T-72 from a 40° Elevation Angle, 60° Azimuth Angle, (b) Dis- 
torted T-72 Due to Elevation Angle, (c) T-72 at 60° Azimuth Angle After 
Correcting for Elevation Angle, and (d) T-72 After Correcting for Elevation 
Angle, Rotated from 60° to 0° 

2-4    Data Generation 

The two data sets for this thesis were generated using a pre-release version of software 

being developed by Loral for the Wright-Labs Target Recognition Branch. The first set 

consisted of Loral SAR images generated early in the development of the software. At that 

time, many features were not available. It was chosen because it was the primary data 

set for an earlier thesis [3], allowing comparisons to be made. The second data set (Data 

Set 2) consisted of images produced after many revisions of the software, and consequently 
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is easier to use. Data Set 2 was generated with more realistic target characteristics and 

statistics. Using this software, images of two scenes were produced for seven different view 

angles and three polarizations, for a total of 21 images in each data set. The seven aspect 

angles ranged from -45° to 45° in 15° degree increments. A SAR image at an aspect angle 

of 45° refers to an image generated from a swath of data whose center angle corresponds 

to a radar target orientation of 45°. Also, all data are magnitudes, with phase information 

being rejected. This was done since none of the pre-processing algorithms described in the 

following chapter use phase information. The pixel intensities in the original data ranged 

numerically from 0 to approximately 120. The pixel intensities reflect the average amount 

of signal (voltage) returned from the corresponding position in the image. However, the 

data were normalized to have a unit mean in order to have all information weighted equally 

in the processing algorithms. 

Another major assumption of this thesis is that the data used is a valid representation 

of radar data from an actual target scene. The Loral code that generates the target scenes 

has not yet been validated, but the absence of actual WASAR data necessitates the use of 

the non-validated code. 

The raw data from Data Set 1 is seen in Figure 2.8. Figure 2.9 shows Data Set 1 

after being rotated using the nearest neighbor method. A better view of the target scene 

is seen in Figure 2.10 (a), where the known targets are marked with an "*". The wide 

range of values makes the marked targets difficult to see, so Figure 2.10 (b) shows the 

locations of the targets without the actual image. 

2-8 



(-45, HH) (-45, HV) (-45, VV) 

(0, HH) (0, HV) 

(-30, HH) (-30, HV) (-30, VV) 

(-15, HH) (-15, HV) (-15, VV) 

(0, VV) 

(+15, HH) (+15, HV) (+15, VV) 

(+30, HH) (+30, HV) (+30, VV) 

(+45, HH) (+45, HV) (+45, VV) 

Figure 2.8    Data Set 1 Before Rotation 
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(-15, HH) 

(+15, HH) 

(+30, HH) 

(-15, HV) 

(0, HV) 
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(+30, HV) 

(-45, VV) 

(-30, VV) 

(-15, VV) 

(0, VV) 

(+15, VV) 
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Figure 2.9    Data Set 1 After Rotation 
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Figure 2.10    (a) Enlarged View of 0° aspect angle, HH Polarization, Data Set 1, (b) 
Ground Target Map of 0° 

The raw data from Data Set 2 is seen in Figure 2.11. Figure 2.12 shows Data Set 

2 after rotation, again with the nearest neighbor method. A better view of one of the 

images in the Data Set 2 (0°, HH polarization) is seen in Figure 2.13 (a). This figure is 

also marked with a "*" at the target locations. The ground truth map of Data Set 2 is 

seen in Figure 2.13 (b). The M-35 truck locations are marked with symbols as in Figure 

2.14, the circles are trees, and the lines are ground contours and roads. This map is a new 

feature of the software, and makes locating targets with respect to trees easier than before. 

2.5   Summary of Chapter 

This chapter deals with the rotation of images and the associated problems. The 

performance of the two rotation methods is then discussed. Rotation errors caused by 

elevation angle, and how to correct for the errors, are also discussed. The elevation error 

problem is then demonstrated. The generation of Data Sets 1 & 2 is discussed, and the 
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Figure 2.11    Data Set 2 Before Rotation 
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Figure 2.12    Data Set 2 After Rotation 
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Figure 2.13    (a) Enlarged View of 0" aspect angle, HH Polarization, Data Set 2, (b) 
Ground Truth Map of 0° 

Figure 2.14    Ground Truth Map Symbol for M-35 Truck 

various images available in the data sets are provided. The data sets are then shown in 

the original state and after rotation. 
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Z/7.   Image Processing 

3.1 Overview 

In this chapter various image processing methods for improving target detection 

characteristics are discussed. The methods are described in detail, and then implemented 

on Data Sets 1 and 2. Finally, various statistics of the processed data are given and 

discussed to show results of the processing. No actual target detection is performed in 

this chapter, only pre-processing methods to enhance detection characteristics. Target 

detection is discussed in Chapter IV. 

3.2 WAS AR Pre-Processing Methods 

Recall that the main purpose of this thesis is to improve target detection capabili- 

ties. Several methods are devised in order to accomplish this. The following methods are 

implemented on HH polarized data from each set, with images taken from the seven aspect 

angles. Since none of the methods use phase information, the phase information is elimi- 

nated by taking the magnitude of each pixel in the image. The data are also normalized 

in order to have all data weighted equally. It should be noted that in these methods the 

random variables are the pixels from image to image, not pixels within the same image. 

For example, if an image is formed by subtracting one image from another, the pixel value 

in the first row and column of the first image is subtracted from the pixel value in the 

first row and column of the second image, and the result is the pixel value of the resultant 

image.   An example of a random variable is the pixel in the first row and column of each 
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image. Thus X<(1,1) is the first realization of a random variable with seven realizations. 

Each image is a discrete sample of 512 X 512 random variables. 

3.2.1 Display of Images. After defining each method, a sample processed image 

is displayed using two methods. Both remove information from the images in order for 

the image to look "good" to the human eye. Matlab's image function takes a matrix as 

an input, and displays each element as a pixel in an image. The displayed pixels range 

in intensity depending on the corresponding elements value. Elements with a value of 

zero appear black in the displayed image, and elements with a value of 100 appear white. 

Elements with values in between 0 and 100 are displayed as shades of gray, and if the 

elements value is outside this range of values, it is truncated. For example, a value of 

101 is displayed as a 100 level element, and -5 is displayed as 0. This characteristic of 

the image function is used to truncate the data not needed to display the image for the 

human eye. In some of the images, an outlier may be many standard deviations above 

the mean. If the image is normalized to range from 0 to 100, most of the image would 

appear black due to the outlier. In this thesis, two methods of displaying the information 

are developed. The first method (Display 1) shows the image from one standard deviation 

below the mean to about three above, with the images mean manipulated to be 25. This 

allows the viewer to see the speckle due to the grass and ground, and to see how the trees 

and targets are dispersed. The second method (Display 2) shows the image from the mean 

to 10 standard deviations above the mean. The image is manipulated so the mean is at 0, 

and 100 is 10 standards of deviation above the mean. This method tends to completely 

suppress speckle and weak signals from trees. This method is useful in showing how the 
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tree signatures are suppressed and the target signatures enhanced in each image by the 

WASAR Pre-Processing Algorithms. It should be noted that the processing done on the 

images in the display methods is not used in the target detection. The images are displayed 

with both data sets, using both display methods. 

3.2.2 WASAR Pre-Processing Methods. In order to extract exploitable char- 

acteristics of WASAR data, such as a target's return varying with aspect angle, various 

algorithms are performed on the data before target detection. The algorithm is defined, 

and examples of the processed data displayed. As a point of reference, an image of unpro- 

cessed data is displayed in Figure 3.1. As discussed before, two display methods are used 

to show the images. Figures 3.1 (a) and (c) use Display 1. Figures 3.1 (b) and (d) use 

Display 2, the standard deviation method. 

3.2.3 Mean Method (Mean). The first method attempted is simply to add each 

of the seven images together pixel by pixel, and divide each pixel in the resulting image 

by seven (the total number of images in the HH polarization). Thus, if Xn represents the 

nth image, then 

Xmean(iJ)=± £ Xn(i,j), (3.1) 
iV    n=l 

and N is the total number on images in the data set. Figure 3.2 shows the resulting images 

from the mean method'for Data Sets 1 and 2, with JV=7. 

3.2.4 Subtraction Method (Sub & Sub45). This method uses change detection. It 

has been theorized regardless of aspect angle, trees look approximately the same to a radar. 

Man-made objects, on the other hand, are known to change dramatically with azimuth 
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Figure 3.1    Unprocessed Data (a) Data Set 1, Display 1; (b) Data Set 1, Display 2; (c) 
Data Set 2, Display 1; and (d) Data Set 2, Display 2 
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Figure 3.2    Data Processed by Mean Method (a) Data Set 1, Display 1; (b) Data Set 1, 
Display 2; (c) Data Set 2, Display 1; and (d) Data Set 2, Display 2 
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angle [10]. This is easily visualized when considering a cube-shaped metallic object. When 

such an object is illuminated along a flat face with SAR, a great deal of the incident 

energy is reflected back to the radar. Alternatively, when viewed from a corner between 

two faces, relatively less of the energy is returned. This simplistic explanation can easily 

be expanded to include angular objects such as trucks and tanks (see Figure 1.3). Thus, 

this method attempts to exploit the angular characteristic of man-made objects. One 

image is subtracted from another pixel-by-pixel, and the magnitude of the resulting image 

is used. If the targets are actually changing more than the trees from angle to angle, the 

magnitudes of the subtracted targets will on average be larger than that of the trees. All 

possible combinations of subtractions are used in order to exploit this characteristic, and 

the resulting images averaged. Again, with all seven images, where Xn is the nth image, 

X.ui(i,j)=^Y,   E   \Xn(i,j)-Xm(i,j)\, (3.2) 
n = l m=n + l 

where C is a constant with respect to N, and can be shown to be 

N2 -N 
2 

In this case, N=7 and C=21. Figure 3.3 shows the data after processing with the Subtrac- 

tion Method. A second method of subtraction attempts to further exploit the changes in 

man-made objects with angle, subtracting only those images 45° apart from one another. 

The reasoning behind this is that the maximum difference between a cube shaped reflector 

is at a 45-degree difference. Thus, with the available seven images, there are four possible 
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Figure 3.3    Data Processed by Subtraction Method (a) Data Set 1, Display 1; (b) Data 
Set 1, Display 2; (c) Data Set 2, Display 1; and (d) Data Set 2, Display 2 
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combinations of images 45° apart, and 

Xfu4_45(i,j) =  4 E WJ) - Yn(i,j)\, (^) 
n = l 

where Xn and Yn are 45° apart, and N=4.   The 45° subtraction images can be seen in 

Figure 3.4. 

3.2.5 Standard Deviation and Variance Methods (SDM & Var). The next two 

methods also exploit the angular characteristics of man-made objects. If the target to be 

detected is changing from angle to angle, and the trees are not changing as much, then 

the pixel-to-pixel standard deviation or variance of the targets should be greater than that 

of the rest of the image. Thus if the variance of the images is taken with respect to the 

mean image, then the average variance of the targets should stand out more than that of 

the surrounding clutter, and similarly for the standard deviation. The standard deviation, 

with X* being the complex conjugate of Xn, is defined as 

X,td^v(i,j) = j jt \/(Xn(i,J) ~ Xmean(i,j)y(Xn(i,j) - Xmean(i,j)). (3.4) 
n = l 

The processed data is seen in Figure 3.5. The variance Xvar is defined as 

Xvar(i,j) = j £(*„(*,j) - Xmean(i,j)Y(Xn(i,j) - Xmean(i,j)), (3.5) 
n = l 

with Xmean defined as before in Equation 3.1 and N=7. The variance method images are 

shown in Figure 3.6. 
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Figure 3.4    Data Processed by 45" Subtraction Method (a) Data Set 1, Display 1; (b) Data 
Set 1, Display 2; (c) Data Set 2, Display 1; and (d) Data Set 2, Display 2 
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Figure 3.5    Data Processed by Standard Deviation Method (a) Data Set 1, Display 1; (b) 
Data Set 1, Display 2; (c) Data Set 2, Display 1; and (d) Data Set 2, Display 2 
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Figure 3.6    Data Processed by Variance Method (a) Data Set 1, Display 1; (b) Data Set 
1, Display 2; (c) Data Set 2, Display 1; and (d) Data Set 2, Display 2 
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3.2.6    Subtraction of Powers Method (SPM). Another interesting processing 

method is similar to the subtraction of images method. The difference being the subtrac- 

tions take place between the computed powers of each image, or 

Xpow_sub = — J2    Y,   \x^,pow{i,J)~ XmiP0W(i,j)\, (3.6) 

with XniP0W defined as 

Xn,pow(i,j) = (Xn(i,j) - Xmean(i,j)T(Xn(i,j) - Xmean(i,j)) (3.7) 

and C-21 since N=7. Figure 3.7 displays the data after processing by the SPM method. 

3.2.7 Mean of Powers Minus Variance (MPMVM). The last method involves 

finding a mean variance, then computing each images power minus the mean variance, and 

finally averaging the magnitudes. This is expressed mathematically as 

1   N 

Xmean-pow-mean\h j) =  J7 /_^ \Xn,Pow\li J ) ~ Xvar(l, j)|, {-i. Ö) 
n — 1 

with XniP0W and Xvar defined in equations 3.7 and 3.5, respectively.  The images of the 

data processed by the MPMVM method are seen in Figure 3.8. 

3.3    Statistical Analysis of Various Methods 

A first measure of how the various detection methods perform is to compare their 

statistics with those of a single image. Novak [8, 9] states that a good measure for com- 
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Figure 3.7 Data Processed by Subtraction of Powers Method (a) Data Set 1, Display 1; 
(b) Data Set 1, Display 2; (c) Data Set 2, Display 1; and (d) Data Set 2, 
Display 2 
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Figure 3.8 Data Processed by Mean of Powers Minus Variance Method (a) Data Set 1, 
Display 1; (b) Data Set 1, Display 2; (c) Data Set 2, Display 1; and (d) Data 
Set 2, Display 2 
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parison is the standard deviation to mean ratio (SMR); 

SMR=-, (3.9) 

with the image standard deviation defined as 

-, N     M 
a = mhi £ ^(I(lij) -ß) {x{i>j) ~ßT' (3-10) 

1=1 i=i 

and the image mean denned as 

1=1;=i 

Notice that this statistic is for one image, i.e. the mean is the mean of all pixels in 

the respective image, not the WAS AR mean denned in Equation 3.1. As the SMR goes 

down, the "detectability" of the target should increase. This is because as the SMR is 

reduced, the clutter does not have high frequency variations, therefore eliminating more 

false alarms. The standard deviation of the targets is found by taking a small portion of 

the image around each of the targets, finding the standard deviation of the smaller images, 

and finding the average target standard deviation. Ideally, the SMR is reduced by the 

various WASAR Pre-Processing methods. Other statistics shown are the targets variance 

and power, and the noise variance and power. The target variance is found in the same 

manner as the standard deviation, and the noise variance is found by removing the targets 

from the scene. Comparisons between the various processing methods are seen in Tables 

3.1 and 3.2. The results in Table 3.1 indicate that little can be inferred from the change 

of target variance or power.  However, it should be noted that the standard deviation to 
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Table 3.1    Statistics of Various Methods, Data Set 1 

Method Targ Var Targ Pow Noise Var Noise Pow SMR (dB) 

SAR (0°) 88.0915 107.6635 1.7067 2.6565 3.8523 

Mean 6.9203 15.5877 1.1186 2.0900 0.7523 

Sub 10.3952 18.5418 0.4562 0.8746 1.0877 

Sub45 29.2450 30.7240 5.1515 5.6738 2.3599 

SDM 5.5611 9.5112 0.2048 0.3897 1.2811 

VAR 3584.20 3891.0 2.3681 2.6853 1.8123 

SPM 10523.0 11318.0 4.4150 4.9292 2.0124 

MPMVM 7014.60 7500.4 2.2496 2.4998 2.1183 

mean ratio (SMR) was reduced in all cases. This is one of the desired characteristics of 

processing mentioned earlier. Table 3.2 shows that little information about the algorithms 

Table 3.2    Statistics of Various Methods, Data Set 2 

Method Targ Var Targ Pow Noise Var Noise Pow SMR (dB) 

SAR (0°) 65.4793 97.7718 1.2833 2.2343 2.3975 

Mean 8.4394 27.1155 0.8104 1.7755 0.4153 

Sub 10.6645 24.8404 0.3460 0.7731 0.0206 
Sub45 21.9188 40.7590 0.3920 0.8152 1.0865 

SDM 5.5175 12.2150 0.1549 0.3435 0.1877 

VAR 1843.30 2197.10 1.1000 1.4000 1.5500 

SPM 4502.90 5188.10 2.1000 2.5000 1.7000 

MPMVM 2825.90 3192.60 1.1000 1.3000 1.7900 

can be gained from the variances and powers, while the SMR has been reduced. Being 

unable to judge performance by statistics alone, other methods are needed. The most 

enlightening method is to plot out the histograms of the targets and noise, which can be 

normalized to represent the approximate respective probability mass functions (PMFs). 

These results are discussed in Chapter IV. 
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3.4    Summary of Chapter 

This chapter deals with various image processing methods for improving target de- 

tection characteristics. The methods are described in detail, and then used on the two data 

sets. Images from the processed data sets are displayed for comparing the methods. Vari- 

ous statistics are given and used to show the results of the processing. In Chapter IV the 

data resulting from the pre-processing techniques are used by target detection algorithms, 

which will give a definitive comparison between the processing methods. 
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IV.   Target Detection 

4-1    Overview 

This chapter deals with target detection. First, basic detection theory is covered 

along with a discussion on probability of false alarms. The probability mass functions of 

the data resulting from the pre-processing methods are then displayed. These are used to 

show the improvements made by the processing algorithms towards more accurate target 

detection. Finally, the various methods are compared to one another by their actual 

detection performance. 

4.2    Detection Theory 

Before discussing detection of targets in the two data sets, it may be useful to dis- 

cuss some of the basics of target detection theory as it applies to this thesis. Assume 

xi,x2,- ■ -,xN denote N scalar measurements of the form x{ = 9st + n,-, with st a known 

signal, nt noise, and 9 a parameter in the parameter space 0. If 0 = 0O U ©1 U • • • U ®M-I 

is a disjoint set covering the parameter space, then the hypothesis tests H{ : 6 G 0,- may 

be formed as 

Ho versus Hi versus .. .HM-I- 

This type of test is called a multiple, or M-ary hypothesis test. If 0 = 0O U ©i> then we 

would have a binary test. If the constant 9 6 0O , then we assume the system is in its zero 

state and hypothesis H0 is in effect. Likewise, if 9 6 ©i, hypothesis #1 is in effect, or 

H0:9ee0 versus Hx\9e ©i- 
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Also, if ©o contains a single element 0,-, the hypothesis is said to be simple, otherwise it 

is composite. The detection problem is one of observing x(, i = l,...,N, and deciding 

between H0,Hi,.. .,or HM-i [H]- 

In this case, our signal is the radar pulse. If a target is present in an illuminated 

"cell" (or pixel), then the returned pulse will be some multiple 9 G ©i times the signal, 

plus added noise. Thus, when a target is present, 9 is an element of ©!, and in the absence 

of a target 9 is an element of 0O. Since the elements of ©i can be a wide range of numbers 

depending on the type of target (or portion of a target) illuminated, and the elements of 

©o can vary depending on the reflectivity of the surroundings, this is a binary composite 

test of hypothesis. 

4.2.1 Testing of Binary Hypothesis.. If X is a random vector with distribution 

F„(x) and 9 G © then a binary test of H0 : 9 G ©oversusJfi : 9 G ©i can be represented as 

0(x) = { 
l~#i,     xG R 

(4.1) 

0 ~ H0,    x G A 

This means that if the measurement x lies in the rejection region R, the test function </>(x) 

is 1, and hypothesis Hi is accepted. Otherwise, if x lies in the acceptance region A, then 

the test function equals zero and H0 is accepted [11]. 

Now suppose 9 G ©o but x G R, then H0 would be rejected when in fact it was in 

force. This is called a type I error, or a false alarm. Figure 4.1 demonstrates the probability 

of false alarm (P/o) between two Gaussian curves [11, 12, 5]. The shaded area represents 

the chance that x lies above the threshold, but H0 is in effect, which is the definition of 
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Figure 4.1    Example of Probability of False Alarm (Pfa) 

Pfa. It stands to reason that if the two curves were somehow separated from one another 

through some type of processing, then the Pfa would be lowered and detection performance 

would be improved. In this case the PMFs are not Gaussian, but the same principle holds; 

the farther apart the PMFs are, the lower the PJa will be. Figure 4.2 (a) shows the actual 

histogram of the unprocessed SAR data. It is difficult to get any feel for the distribution of 

the data since the ratio of target pixels to noise pixels is very low, so the noise curve almost 

completely suppresses the target curve. Figure 4.2 (b) shows the histogram after it has 

been normalized to show the approximate PMF of the same data. The histogram is also 

truncated to show more detail. Figure 4.2 (b) gives a better understanding of how the data 

are distributed. It should be noted that the tails extend up to the value of 1. The x-axis 

corresponds to the thresholds used for target detection, which range from zero to one (0% 

to 100%). Figures 4.3 and 4.4 show the normalized histograms (and approximate PMFs) 

of the targets and noise in Data Set 1 and Data Set 2, respectively. The histogram of the 

original SAR data shows a large overlap in the PMFs, therefore having a larger Pfa for 

a set threshold. The various processing methods show varying amounts of improvements 

in the separation of the PMFs, therefore signifying probable improvements in detection 

characteristics.  Notice that the histograms (and approximate PMF's) are actually lines 
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Figure 4.2 Correlation Between True Histogram and Normalized Histogram Meant to 
Approximate the Probability Mass Function of the same Data (a) Histogram 
of SAR (0°) and (b) Normalized and Truncated Histogram of Same Data 

connecting histograms. The apparent differences in areas under the functions are due to 

the fact that the histogram bin spacing is different for targets than for clutter. 

Perhaps a more useful way of demonstrating the WASAR Pre-Processing methods 

effects on the target detection characteristics is to look at the receiver operating charac- 

teristics (ROC) of the data before and after processing. Figures 4.5 and 4.6 show the 

ROC curves for Data Sets 1 and 2, respectively. In Data Set 1 (Figure 4.5), it is seen 

that the unprocessed SAR data would actually perform worse than chance. All WASAR 

techniques, however, show better than chance ROC curves. Unfortunately, they do not 

reflect the detection characteristics seen later in this chapter. This is explained when the 

fact that this is a single data set is considered. These are only crude estimates of the ROC 

curves, so they only give rough estimates of what the actual ROC curves would be. Also, 
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Figure 4.6    Receiver Operating Characteristics, Data Set 2 
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the ROC curves do not reflect the fact that in some instances, such as the Subtraction of 

Powers Method (SPM), all targets are detectable past the point of the threshold where 

no false alarm occur. Figure 4.6 reflects similar results. The SAR data gives a ROC even 

with chance, while all WASAR methods show marked improvement. 

4-3    Threshold Detection 

The method of detection in this thesis is threshold detection. Threshold detection 

simply sets a number as the threshold, and considers pixels with a magnitude greater than 

that number to contain a target. Pixels with a magnitude lower than the threshold are 

considered clutter. Grouping of the coordinates of detected pixels is then performed to 

eliminate redundant hits on targets and trees. For target grouping, the average radius 

of the targets is approximated using known target locations and estimating size from 

the images. Any hits within that grouping are considered as a detected target, and all 

counted as one target. For false alarms, the grouping is adjusted until the false alarms 

occur approximately once per tree detected, so the same tree is not counted twice. This 

turns out to be valid since the false alarm grouping is smaller than the target grouping. 

Target grouping is necessary since two tanks cannot be centered one or two feet from 

each other. So if the false alarm grouping is made to be as large as the targets, fewer 

false alarms will occur. It should be noted that simply saying a threshold is applied to 

an image is misleading, since it is not measuring radar return magnitude in all methods. 

For instance, in the variance method (VAR), the detection algorithm considers every pixel 

with a variance above the threshold as a target. So the algorithm in this case is checking 

variance, not magnitude. 
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There are two ways to set the threshold. The first (detect2.m in Appendix A) sets 

the threshold as a percentage of the range of the image. The threshold can range from 0 to 

1 (or 0% to 100%). Basically, it takes the maximum value pixel minus the minimum value 

as the range of the picture, and the threshold is a percentage of that range. So assuming 

an image with a threshold of 0.5 (50%), and pixels ranging from 1 to 100, the algorithm 

considers every pixel greater than 50 as a target. If the threshold is set at 0 every pixel is 

detected, and at a threshold of 100 one pixel is detected. This turns out to be an advantage 

when comparing the various processing methods. The drawback, as with any distribution, 

is that a large outlier could distort the results, causing one pixel to cover the upper third 

of the threshold. 

The second method (detect3.m in Appendix A) simply considers a number of stan- 

dards of deviation above (or below) the mean of the image. The threshold in this case 

can theoretically range from -oo to oo. So with a threshold of 3, the algorithm considers 

every pixel with a value greater than three times the standard deviation plus the mean as a 

target. The advantage of this method is that outliers do not have such a large effect on the 

threshold ranges as in the previous method. The drawback is that it would be harder to 

pick the number for the threshold such that you get all of the pixels detected (or rejected). 

4.4    Detection Performance of WASAR Pre-Processing Methods 

In order to quantify the performance of the various processing methods, each WASAR 

Pre-Processing method is given the data set and a range of values for the threshold. The 

methods then return a vector containing the possible targets for each threshold. This 

possible target vector is then manipulated as mentioned earlier to eliminate repeated de- 
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tections and false alarms. Since the percentage thresholding method lends itself to easily 

covering all pixel ranges, it is used. The performance of the various methods can be seen 

in Figures 4.7 and 4.8. The solid horizontal lines at 8 and 6 on the vertical axes are there 

to show the number of known targets in the first and second data sets, respectively. 

It should be noted that in Figure 4.7 (Data Set 1) the algorithms are necessarily 

halted after 20 false alarms, regardless of weather all targets are detected. In Figure 4.8 

(Data Set 2) the algorithms are halted after only 10 false alarms since by then all methods 

detect all targets. Also note that the false alarm curves shift around. Some shifting is 

expected from the processing, but not this amount. This is an example of how the outliers 

change the threshold axis significance. If the number of standard deviations method is used 

to set the threshold, the false alarm curves would be expected to be closer to the same 

areas. But then the question of what range to give the threshold axis arises. To get similar 

looking plots using the second thresholding method, the ranges of the threshold axis would 

have to be varied greatly. The performance figures verify that the WASAR Pre-Processed 

data gives better detection characteristics, as predicted earlier by the PMFs. Table 4.1 

shows some important numbers that can be seen in the graphs of Figure 4.8. A similar 

table is not presented for Data Set 1 for reasons to be explained. The first column is the 

threshold (threshold ranges from 0 to 1) at which all known targets are detected. The 

second column gives the threshold at which the first false alarm is detected. The third 

column is the difference of the first two, and the fourth is the threshold at which more than 

10 false alarms are detected. The final column gives the difference between the threshold at 

which all targets and more that 10 false alarms are detected. The third and fifth columns 
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Figure 4.7 Performance of Various WASAR Detection Methods, Data Set 1. The line at 
8 Detections on the vertical indicate there are 8 known targets. The threshold 
is set as described earlier as a percentage of the maximum pixel value. 
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Figure 4.8 Performance of Various WASAR Detection Methods, Data Set 2. The line at 
6 Detections on the vertical indicate there are 6 known targets. The threshold 
is set as described earlier as a percentage of the maximum pixel value. 
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Table 4.1    Performance of Various Methods, Data Set 2 (N/A signifies data not available) 

Method 

Threshold 
at which 

all Targets 
are Detected 

Threshold 
first 

False Alarm 
Detected 

Difference 
between all 
Targets Det 
and first FA 

Threshold 
at which 

10 FA 
Detected 

Difference 
between all 
Targets det 
and 10 FA 

SAR (0°) 0.1750 0.2000 -0.0250 0.1250 0.0500 

Mean 0.5000 0.4250 0.0750 0.3000 0.2000 

Sub 0.5750 0.3250 0.2500 0.2250 0.3500 

Sub45 0.3500 0.2250 0.1250 0.1500 0.2000 

SDM 0.5000 0.2750 0.2250 0.1750 0.3250 

VAR 0.1750 0.0500 0.1250 0.0250 0.1500 

SPM 0.1750 0.0250 0.1500 N/A N/A 

MPMVM 0.1500 0.0250 0.1250 N/A N/A 

are of importance because they give a metric for comparison between the various methods. 

Data Set 1 gives many more false alarms than Data Set 2, so most methods are unable to 

detect all targets before the algorithm ended due to false alarm saturation (in this case 20 

false alarms). This is the reason a similar table is not constructed for Data Set 1, since 

it would be filled with "N/A"s. The difference between all targets detected and the first 

false alarm detected would seem to be a good metric. By this metric, Table 4.1 seems to 

indicate that the Subtraction (Sub) method and the Standard Deviation method (SDM) 

did the best job of extracting target signatures. 

Figure 4.9 shows the correlation between the histograms in Figures 4.3 and 4.4 and 

the performance graphs in Figures 4.7 and 4.8. These particular histograms and perfor- 

mance curves are for the 0°, SAR data from Data Set 1. Figure 4.9 (a) is the performance 

curve for the unprocessed method SAR. Figure 4.9 (b) is its corresponding histogram of 

both noise and targets, while (c) is the targets data histogram and (d) is the noise his- 

togram.  Note that Figure 4.9 (a) shows a target at 1 and a false alarm at 0.25.  These 

4-14 



9 

i     1     i           i 

läT 1 

8? 1 ■ 

<B . 
Q   6 ■ ■ 

d) 
J2  S ■ 

b 
3   , z 4 

i    \ 2 \ 
\ 

0.3       0.4       0.5       0.6       0.7       0.8       0.9 

Threshold 

(a), 

0.25 

P
ro

ba
bi

lit
y 

o
i  

   
   

   
   

 to
 

- 

0.1 ' 

0.05 v_ 
0 . 

0.1 0.15 

Threshold 

(c), 

0.06 0.08 0.1 

Threshold 

(b) 

0.2       0.3       0.4       0.5       0.6       0.7 

Threshold 

(d) 

Figure 4.9 Correlation Between Histograms and Performance Graphs of the Unprocessed 
Data (Data Set 1, 0°, HH, SAR (a) Performance of SAR, (b) Histogram of 
SAR (0°), (c) Histogram of Clutter Data, and (d) Histogram of Target Data 

4-15 



correspond to the values of the histograms in (c) and (d). Part (c) shows that the noise 

histogram's tail goes out just past the normalized value 0.25, accounting for the first false 

alarm. After that, the other points shown on the noise histogram as you go down the 

x-axis toward zero account for more and more false alarms. Similarly, the target histogram 

in (d) shows a data point at normalized value 1, which is also where the first detection 

occurs. 

4-5   Summary of Chapter 

In this chapter basic detection theory is covered, and some insight on probability of 

false alarms is discussed. The probability mass function is then described and histograms 

displayed to show the improvements made towards more accurate target detection. Finally, 

the various methods are compared to one another by their actual detection performance 

graphically and numerically. 
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V.   Findings and Conclusions 

The final chapter of this thesis is dedicated to presenting results of this research. 

Conclusions on the performance and viability of WASAR are discussed, and several rec- 

ommendations for improvements and future work are made. 

5.1    Results of Research 

The purpose of this thesis was to improve detection characteristics by exploiting 

the inherent changes in the scattering from targets with respect to aspect angle. Several 

methods were developed to accomplish this. With the assumptions that Wide-Angle SAR 

data was available, techniques to rotate the data to the same aspect-angle were developed. 

With the data properly registered, various pre-processing algorithms were employed to 

improve the probability of detection of targets while reducing the probability of false alarm. 

The processed data was then used in threshold detection to quantify the improvements 

made by each. 

The difficulty in presenting results from this research was that there were few metrics 

(or measurements) that show the improvements. The best determination of the improve- 

ments was how the processed data performed in the target detection process. These results 

were presented in Figures 4.7 and 4.8. In Figure 4.7 (Data Set 1), the unprocessed Original 

SAR data was shown to have very poor performance characteristics, detecting less than 

half of the known targets at the false alarm saturation point (more than 10 false alarms). 

All WASAR methods were shown to improve upon this performance, with several of them 

detecting all targets before false alarm saturation. The improvements in detection charac- 
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teristics was even more visible in Figure 4.8. The unprocessed original SAR data reached 

100% target detection at the same time false alarms were beginning to be detected. How- 

ever, all WASÄR methods detected all targets before detecting any false alarms, some 

detecting all targets up to 20% of the threshold above the first alarm. Specifically, the 

Subtraction method and the Standard Deviation method performed much better than the 

standard SAR method. 

The detection of obscured ground targets was clearly made easier through the use 

of WASAR methods. The purpose of this thesis was to study how WASAR could be 

used to improve detection capabilities. The results of Chapter IV clearly indicated that 

improvements were made, and demonstrated the promising potential of WASAR. 

5.2   Recommendations 

While this thesis showed that marked improvement over SAR could be made with 

WASAR, it was only a basic study and much remains to be done. This research con- 

centrated only on the processing of the different angle images of a scene. Novak showed 

that speckle-reduction methods using fully-polarimetric images give large reductions (up 

to 3dB) in standard deviation to mean ratios, while improving detection capabilities [6, 8]. 

Work should be performed on combining methods of speckle reduction and WASAR Pre- 

processing. More information could be utilized through the use of a fully polarimetric 

WASAR detection scheme, as opposed to a WASAR scheme or a fully-polarimetric scheme 

alone. Results of this thesis also need to be verified by repeated testing with various data 

sets. 
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Statistics of the processed data must be studied and modeled. Attempts to show 

how the processing improves the data through statistics failed, due to an inaccurate model 

for the statistics. If the statistics of the data can be modeled accurately, better metrics 

could be devised to measure improvements. To do this, many realizations of the same 

scene and of different scenes must be produced. Repetitive data sets would help to verify 

the distributions of the target and clutter data. 

Only the basic principles of target detection necessary for simple threshold detection 

is covered in this thesis. More advanced principles, such as finding a minimum variance 

unbiased estimate of the target parameter 6, could provide even better performance. This 

problem fits the criteria for a uniformly most powerful test [11], which could also lead to 

better results. 

It may be possible to eliminate the 90° swath of data used in this thesis. Performance 

of the Subtraction method (Sub) was better than that of 45° Subtraction (Sub45). This 

was an unexpected result. As explained earlier, the greatest change between angles was 

expected at 45". But since this proved to not be the case, perhaps images taken with only 

a few degrees azimuth angle separation would perform equally as well. 

Grouping of pixels should improve upon the advancements made here. By adding up 

neighboring groups of pixels (or averaging), the tree signatures should be reduced further. 

It stands to reason that some of the target signature will be lost, but most targets are 

many pixels in area, and averaging would only weaken the outer pixels. 
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5.3    Conclusions 

WASAR is an interesting and promising field. This thesis shows that improvements 

over common SAR are made even with the most simple WASAR methods. More testing 

of WASAR methods on various data sets and the creation of more optimal WASAR Pre- 

processing methods may prove WASAR to perform even better. Combinations of WASAR 

and fully-polarized SAR would certainly give even better results. With the improvements 

made in target detection characteristics through the use of WASAR Pre-Processing meth- 

ods, WASAR is a valid and viable concept. 
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Appendix A.   Computer Routines 

The following computer routines are referenced in the thesis.   They are matlab.m 

files, and a short description of their function is included at the top of each file. 

A. 1    Rotation of Images 

A. 1.1    Nearest Neighbor Method. 

VI, FUNCTION rotation.m 
'/,    Purpose:    Rotates an image input by "number" of fifteen degree increments. 
•/, Also cuts  image down to overlapping square region. 
'/,    Called by: rot.m 
'/,    Quirks: 
'/,        1) Uses short cut for 0 and +/- 90 degree rotations. 

function [temp2]  = rotation(templ,number) 

*/, number indicates the number of 15 degree increment rotations, 
phi = number *  (-pi/12);      '/, angle of rotation 

•/,  (a,b)  central point of rotation 
a = round(size(tempi,l)/2); 
b = round(size(tempi,2)/2); 

if phi == 6 

temp2 = tempi; "/, 0 degree short cut 

elseif phi == pi/2 

temp2 = rot90(templ,-l); '/. 90 degree short cut 

elseif phi == -pi/2 

temp2 = rot90(tempi, 1); '/. 90 degree short cut 

else 
temp2 = min(min(tempi)) * ones(size(tempi,1).size(tempi,2)); 

for i=l:size(temp2,l) 

for j=l:size(temp2,2) 

r = sqrt((i-a)~2 + (j-b)"2); 

theta = atan2((j-b),(i-a)); 

x = round(r * cos(theta + phi)) + a; 

y = round(r * sin(theta + phi)) + b; 

if x>=l ft x<=size(templ,l) ft y>=l ft y<=size(templ,2) 

temp2(i,j) = templ(x,y); 

A-l 



end 
end 

end 
end 

'/, cutting down image to square image of overlapping region 
1 = ceil(a - round(sqrt(  (a"2)  / 2 ))); 
u = floor(size(templ,l) - 1); 
temp2 = temp2(l:u,l:u); 

A. 1.2   Interpolation Method. 

•/,•/. FUNCTION roti2.m 
Purpose:    Rotates an image by angle passed as a parameter.    Also 
cuts image down to size.    In order to get a close approximation to the 
actual value,  interpolates image first. 
Calls:  MATLABS interpolation program. 

*/,    Specs:  Interpolation performed by parameters L,  E,  and alpha. 
'/, Raising L and E greatly increase computation time. 

function[dataout]=roti2(data,azang,L,E,alpha) 

*/,'/, Error control 
if azang<=-180 

azang=azang+360*ceil(-azang/360); 
end 

if azang >180 
azang=azang-360*floor(azang/360); 
end 

CrO,cO]=size(data); 
al=r0/2; 
phi=azang*2*pi/360; 

maxl=sqrt(2*((rO/2)~2)); 

ll=ceil(ai-maxl/2); 

ul=ll+maxl-l; 

if azang==0 

dataout=data(ll:ul,11:ul); 
clear data 

elseif azang==90 

datao=rot90(data,-l);  '/.Quick 90 rotation 

clear data 

dataout=datao(ll:ul,ll:ul); 

clear datao 
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elseif azang==-90 
datao=rot90(data,i);        '/.Quick -90 rotation 
clear data 
dataout=datao(ll:ul,ll:ul); 
clear datäo 

elseif azang==180 
datao=flipud(data) 
clear data 
dataout=datao(ll:ul,ll:ul); 
clear datao 

else 
'/Interpolation 
for i=l:r0; 

tdata(i,:)=interp(data(i,:),L,E,alpha); 
end 

clear data 
for j=l:L*cO; 

dataic(:,j)=interp(tdata(:,j),L,E,alpha); 
end 

clear tdata 
Crl,ci]=size(dataic); 
datai=dataic(l:(rl-(L-l)),l:(ci-(L-l))); 

clear dataic 

a2=size(datai,1)/2; 

b2=size(datai,2)/2; 

[r2,c2]=size(datai); 

datao=zeros(r2,c2); 

mm=ones(r2,l)*(l:r2); 

i=mm(:); 

mm=mni'; 

j=mm(:); 
rad=sqrt((i-a2).~2+(j-b2)."2); 

theta=atan2((j-b2),(i-a2)); 

x=round((rad.*cos(theta+phi))+a2); 

y=round((rad.*sin(theta+phi))+b2); 

for ii=l:r2 

im=ii-l; 

for jj=i:c2 

if (x(im*r2+jj)<=r2 ft x(im*r2+jj)>=l ft y(im*r2+jj)<=c2 ft y(im*r2+jj)>=l) 

datao(ii,jj)=datai(x(im*r2+jj),y(im*r2+jj)); 

end 

end 

end 

clear datai 
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'/, Cut image down to size 
[r3,c3]=size(datao); 
a3=size(datao,1)/2; 
b3=size(datao,2)/2; 
maxli=sqrt(2*((r3/2)"2)); 
12=ceil(a3-maxli/2); 
u2=12+maxli-l; 
datac=datao(12:u2,12:u2); 
clear datao 

'/,  Decimate 

Cr4,c4]=size(datac); 

centl=a3-12; 

os=rem(centl,L); 

dataout=datac(os+1:L:r4,os+1:L:c4); 

clear datac 

end 

return 

A.2   Elevation Angle Correction 

VI.  FUNCTION elcorr2.m 
Purpose: Corrects distortion due to elevation angle. Places data into 

the ground plane. In order to get a close approximation to the actual 

value, interpolates image first. 

Calls: MATLABS interp program. 
Specs: Interpolation performed by parameters L, E, and alpha. 

•/,       Raising L and E greatly increase computation time. 

funct ion[dataout]=elcorr2(data,elang,L,E,alpha) 

rO=size(data,l); 

al=r0/2; 
phi=elang*2*pi/360; 

dt=cos(phi); 

for i=l:rO; 

tdata(i,:)=interp(data(i,:),L,E,alpha); 

end 

clear data 

cl=size(tdata,2); 

datai=tdata(:,l:(cl-(L-l))); 

clear tdata 

c2=size(datai,2); 
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a2=c2/2; 
xx=(ceil(a2-dt*L*al):dt*L:floor(a2+dt*L*al)); 
dataout=datai(:,round(xx)); 
return 

A. 3   Detection 

A.3.1    Maximum-Minimum Threshold Setting. 

'/,'/, FUNCTION detect2.m 
'/,    Purpose:    Try to detect targets using thresholding effect. 
'/.    Calls: 
'/,    Specs:    thresh is a percent value  (.0 to  1.0)  of the set threshold 

function[poss_targs]=detect2(data,thresh) 

data=abs(data); 
maxpix=max(max(data)); 
minpix=min(min(data)); 
range=maxpix-minpix; 
tval=thresh.*range+minpix; 
[ii,jj]=find(data>=tval); 
poss_targs=[ii jj]; 
return 

A.3.2   Standard Deviations Above Mean Setting. 

VI, FUNCTION detect3.m 
'/,    Purpose:    Try to detect targets using standard-dev. thresholding effect. 

'/,    Calls: 
'/, Specs: thresh is the number of std. deviations above the mean to 

*/,       threshold at. 

function[poss_targs]=detect3(data,thresh) 

data=abs(data); 
data_mean=mean(data(:)); 
data_std=std(data(:)); 
tval=thresh.*data_std+data_mean; 
[ii,jj]=find(data>=tval); 
poss_targs=[ii jj]; 
return 
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