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Preface 

These notes are meant to provide an introduction to wavelet transforms. The first five sections can be 

accessed by readers with some exposure to signal processing tools. Sec. 9 - Sec. 13 present advanced 

material which is at the heart of wavelet research today. While maintaining a mathematically rigorous 

presentation level, we have attempted to make the presentation accessible to signal processors, and engineers 

in general. To make this possible, we have included three review sections on mathematics (Sec. 6 - Sec. 8), 

especially on L1 and L2 Fourier transforms, frames, and Riesz bases in infinite dimensions. 

A slightly reduced version is scheduled to appear in the Mathematics Section of the Circuits and 

Filters Handbook, to be published by CRC Press, Inc., next year. There is an appendix on Distributions 

which will probably be deleted from the version to be published. 

Remember that this is a handbook chapter, not a text book chapter. Proofs of many standard results 

are excluded, but with proper citations. We have given Sketches of Proofs for some of the recent wavelet 

results (Sec. 11 - Sec. 13, especially) which brought them to the level of importance they enjoy today. 

Comments and suggestions from you, the reader, are most welcome. Enjoy! 

P. P. Vaidyanathan and Igor Djokovic 

August 1994 
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An introduction to Wavelet Transforms 

P. P. Vaidyanathan and Igor Djokovic, Caltech, Pasadena, CA 91125 

A new idea is first attacked as absurd; then it is admitted to be true, but obvious; 

finally it is seen to be so important, that its adversaries claim that 

they themselves discovered it — William James 

1. INTRODUCTION 

Transform techniques such as the Fourier and Laplace transforms, and the z-transform have been used in a 

wide variety of scientific and engineering disciplines for a long time [Van Valkenburg, 1960], [Papoulis, 1962], 

[Oppenheim, et al, 1983]. In a number of applications where we require a joint time-frequency picture, it 

is necessary to consider other types of transforms or time-frequency representations. Many such methods 

have evolved. In particular the wavelet transform technique [Grossman and Morlet, 1984], [Meyer, 1986], 

[Daubechies, 1992], has some unique advantages over other kinds of time-frequency representations such as 

the short-time Fourier transform. For historical developments as well as many technical details and original 

material see [Daubechies, 1992]. In this chapter we will describe some of these representations, and explain 

the advantages of the wavelet transform, and the reason for its recent popularity. 

A subclass of wavelet transforms [Daubechies, 1988], has an intimate connection with the theory of 

digital filter banks. Filter banks have been known to the signal processing community for over two decades, 

see [Vaidyanathan, 1993] and references therein, especially [Croisier et al., 1976], [Crochiere and Rabiner, 

1983], [Vetterli, 1987], [Akansu and Haddad, 1992] and [Malvar, 1992]. It is this relation that makes it possible 

to construct in a systematic way a wide family of wavelets with several desirable properties such as compact 

support (i.e., finite duration), smoothness, good time-frequency localization, and basis-orthonormality (all 

these terms will be explained later). 

The connection between wavelets and filter banks finds beautiful mathematical expression in the theory 

of multiresolution [Mallat, 1989a]. This enables us to compute the wavelet transform coefficients using the so 

called Fast Wavelet Transform (FWT), which is essentially a tree structured filter bank. In addition to the 

practical value, many deep results from several disciplines find a unified home in the theory and development 

Work supported in parts by Office of Naval Research grant N00014-93-1-0231, Rockwell International, 

and Tektronix, Inc. 
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of the wavelet transform. This includes signal processing, circuit theory, communications, and mathematics. 

Our emphasis here will be this unification, and the beautiful big picture that it provides. Other tutorials 

on wavelets with different choices of emphasis can be found in Heil and Walnut [1989], Rioul and Vetterli 

[1991], Vetterli and Herley [1992], Strang [1993], Vaidyanathan [1993] and Gopinath and Burrus [1993]. 

Scope and Outline 

The literature on wavelets is enormous, and an attempt to do justice to everything would prove to be 

futile. Even a list of references that is fair to all contributors would be too long. We therefore restrict 

discussions to really basic, core material. Sections 1-5 give an overview, with the presentation given at a 

level that can be comprehended by most engineers. The more advanced results on wavelets, which really 

brought them great attention in recent years, are presented in the last five sections Sec. 9-13. At the heart 

of these results lie several powerful mathematical tools, which are usually not familiar to engineers. We have 

therefore presented a fairly extensive math review in three sections (Sec. 6-8). We suggest that the reader 

go through this review material once and then use it primarily as a reference. 

The advanced sections 9-13 are organized such that the main points, summarized as Theorems for con- 

venience of reference, can be appreciated even without the mathematical background material in Sec. 6-8. 

The mathematical sections do, however, facilitate a deeper understanding. It is our hope that these sections 

will bring most readers to a point where they can pursue wavelet literature without difficulty. 

Why Wavelets? 

A commonly asked question is "why wavelets?", that is, "what are the advantages offered by wavelets 

over other types of transform techniques such as, for example, the Fourier transform?" The answer to this 

question is fairly sophisticated, and also depends on the level at which we address the question. Several 

discussions addressing this question are scattered throughout this chapter. A convenient listing of the 

locations of these discussions is given in the concluding section (Sec. 14) under "Why Wavelets?" 

General Notations and Acronyms 

1. Bold faced quantities represent matrices and vectors. 

2. The notations AT, A* and At represent, respectively, the transpose, conjugate, and transpose-conjugate 

of the matrix A. 

3. The accent 'tilde' is defined as follows:  H(z) = Ht(l/z*); thus if H(z) = E„M")'"" then H(r) = 

£n ht(-n)2~n. On the unit circle H(z) = Ht(s). 

4. Acronyms.    BIBO (Bounded-Input Bounded-Output); FIR (Finite Impulse Response); IIR (Infinite 
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Impulse Response); LTI (Linear Time Invariant); PR (Perfect Reconstruction); STFT (Short-Time 

Fourier Transform); WT (Wavelet Transform). 

5. For LTI systems, "stability" stands for BIBO stability. 

6. 6(n) denotes the unit pulse or discrete-time impulse, defined such that 6(0) = 1 and 6(n) = 0 otherwise. 

This should be distinguished from the Dirac delta function [Oppenheim, et al., 1983], which is denoted 

as 6a(t). 

7. Figures. Sampled versions of continuous time signals are indicated with an arrow on the top (e.g., Fig. 

2.10 (a)). The sampled versions are impulse trains of the form £n c(n)6a(t - n), and are functions of 

continuous t. 

2. SIGNAL REPRESENTATION USING BASIS FUNCTIONS 

The electrical engineer is very familiar with the Fourier transform (FT) and its role in the study of linear 

time invariant (LTI) systems or filters. For example the frequency response of an LTI system is the FT of 

its impulse response. The FT is also used routinely in the design and analysis of circuits. As a reminder, the 

Fourier transform of a signal x(t) is given by the familiar integral X(UJ) = JZ, x(t)e~iutdt and the inverse 

transform byT 

xlt) = ± /     X{u)e>utdw (2-1) 
2TT V-OO 

From this equation we can say that x(t) has been expressed as a linear superposition (or linear combination) 

of an infinite number of functions gw(t)=ejut. Since the frequency u is a continuous variable, there are 

uncountably many functions gu(t) to be superimposed. Electrical engineers, in particular signal processors 

and commnications engineers are also familiar with two special classes of signals which can be regarded as 

a superposition of countably  many functions. That is, 

oo 

X(t)=   Y,   a"9n(t), (2-2) 
n= —CO 

where a„ are scalars (possibly complex) uniquely determined by x(t). These two examples are (i) time-limited 

signals for which we can find a Fourier series (FS), and (ii) bandlimited signals which can be reconstructed 

from uniformly spaced samples by weighting them with shifted sine functions (see below). 

First consider a time-limited signal x(t) with duration 0 < t < 1 (Fig. 2.1). Under some mild conditions 

such a signal can be represented in the form (2.2) with g„(t) = e>2*nt. The expression (2.2) is then the 

t At the moment it is not necessary to worry about the existence, invertibility, and the type (e.g., Ll or 

L2) of the FT. We return to the mathematical subtleties in Sec. 6.3. 
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Fouier series of x(t), and an are the Fourier coefficients. (In contrast we say that (2.1) is the Fourier integral 

of x(t).) The "transform domain" signal {an} is a sequence, and the transform domain variable is discrete, 

namely the frequencies un=2nn. Since eJ'2™' is periodic in t with period one, the right hand side of (2.2) is 

periodic, and it represents x(t) only in 0 < t < 1. It is sometimes convenient to replace the complex functions 

ej27mt with the set of reai functions 1, y/2cos{2init), %/2 sin(27rni), n > 0, especially in circuit analysis. 

X(t) 

o v   y   t 

Fig. 2.1. A finite duration signal, with support 0 < t < 1. 

Next consider a bandlimited signal x(t) with Fourier transform X(u) as demonstrated in Fig. 2.2. 

X(co) 

~ß 0 ß        © 

Fig. 2.2. Fourier transform of a signal bandlimited to \LJ\ < ß. 

If we sample the signal at the Nyquist rate 2ß radians/sec (i.e., sampling period T = n/ß), then multiple 

copies of the Fourier transform are generated [Oppenheim, et al., 1983], and we can recover x(t) from the 

samples by use of an ideal lowpass filter F(u) (Fig. 2.3). 

Lowpass filter F(co) 

copies created 
by sampling 

Fig. 2.3. Use of lowpass filter F(u) to recover x(t) from its samples. 



The impulse response of the filter is the sine function /(*) = ä|Ä so that the reconstruction formula is 

*(*)=   £   x(BD/(t-»T)=   ±   <nTf^_~nf\    T = */ß. (2.3) 
n=-oo n=-oo 

Comparing with (2.2) we see that the "transform domain coefficients" an can be regarded as the samples 

x(nT), whereas the functions gn(t) are the shifted sine functions. 

If a signal is time-limited or bandlimited, we can therefore express it as a countable linear combination 

of a set of fundamental functions (called basis functions, in fact an orthonormal basis — see below). If the 

signal is more arbitrary (i.e., not limited in time or bandwidth) can we still obtain such a countable linear 

combination? 

Suppose we restrict x{t) to be a finite energy signal (i.e., / \x(t)\2dt < oo; also called L2 signals, see 

Sec. 2.2). Then this is possible. In fact, we can even find an unusual kind of basis called the wavelet basis, 

fundamentally different from the Fourier basis. Representation of x{t) using this basis has, in some applica- 

tions, some advantages over the Fourier representation or the short-time (windowed) Fourier representation. 

Wavelet bases also exist for many other classes of signals but we will only consider the L2 class of signals. 

The most common kind of wavelet representation takes the form 

oo oo 

*(')=   E    E   ckn2
k'H{2kt-n) (2.4) 

fc=-oon=-oo . 
</>*n(t) 

The functions ipkn{t) are typically (but not necessarily) linearly independent and form a basis for finite energy 

signals. The basis is very special in the sense that all the functions ij)kn{t) are derived from a single function 

i>(t) called the wavelet, by two operations: dilation (t - 2kt) and time-shift (t -> t - 2~kn). The advantage 

of such a basis is that it allows us to capture the details of a signal at various scales, while providing a 

time-localization information for these "scales". Examples in future sections will make this idea clearer. 

Why Worry About Signal Representations? 

A common feature of all the above discussions is that we have taken a signal x(t) and found an equivalent 

representation in terms of the transform domain quantity {an} in (2.2), or {ckn} in (2.4). If our only aim is 

to compute an from x(t) and then recompute x(t) from a„, that would be a futile excercise. The motivation 

in practice is that the transform domain quantities are better suited in some sense. For example in audio 

coding, decomposition of a signal into frequency components is motivated by the fact that the human ear 

perceives higher frequencies with less frequency resolution. We can use this information. We can also code 

the high frequency components with relatively less precision, thereby enabling data compression. In this 

way we can take into account perceptual information during compression.  We could also account for the 
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fact that the error allowed by the human ear (due to quantization of frequency components) depends on the 

frequency masking property of the ear, and perform optimum bit allocation for a given bit rate. 

Other applications of signal representations using wavelets include numerical analysis, solution of dif- 

ferential equations, and many others [Daubechies, 1992], [Chui, 1992b], [Benedetto and Frazier, 1994]. 

The main point, in any case, is that we typically perform certain manipulations with the transform 

domain coefficients an [or ckn in (2.4)] before we recombine them to form an approximation of x(t) again. 

Therefore, we really only have 

£(*) = ES«3»(') (2-5) 

n 

where {S„} approximates {an}. This discussion gives rise to many questions: how best to choose the basis 

functions g„(t) for a given application? How to choose the compressed signal {an} so that for a given data 

rate the reconstruction error is minimized? What, indeed, is the best way to define the reconstruction error? 

These questions are deep and complicated, and will take us too far afield. We will not address them. 

Our goal is to point out the basic advantages (sometimes) offered by the wavelet transform over other kinds 

of transforms (e.g., the Fourier transform). 

2.1. The ideal bandpass wavelet 

Consider a bandpass signal x(t) with Fourier transform as shown in Fig. 2.4. 

*  X(G>) 

—CÖ2 — ©i 0 CÖ! 0>2   CO 

Fig. 2.4. Fourier transform of a bandpass signal. 

Such signals arise in communication applications. The bandedges of the signal are uj\ and w2 (and -u\ and 

-w2 on the negative side, which is natural if x(t) is real). Viewed as a lowpass signal, the total bandwidth 

(counting negative frequencies also) is 2u2. But viewed as a bandpass signal, the total bandwidth is only 2ß 

where ß = w2 - u\. Does it mean that we can sample it at the rate 2ß radians/sec (which is the Nyquist 

rate for the lowpass case)? 

In the lowpass case, sampling at Nyquist rate was enough to ensure that the copies of the spectrum 

created by sampling do not overlap (Fig. 2.3). In the bandpass case, we have two sets of such copies; one 

created by positive half of the frequency wj < w < ui2 and the other by the negative half -w2 < ^ < -^. 
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This makes the problem somewhat more complicated. It can be shown that for sampling at the rate 2/3 

there is no overlap of images if and only if one of the edges, wi or w2, is a multiple of Iß. This is called the 

bandpass sampling theorem. The reconstruction of x(t) from the samples proceeds exactly as in the lowpass 

case, except that the reconstruction filter F(u) is now a bandpass filter (Fig. 2.5) occupying precisely the 

signal bandwidth. The first part of the expression (2.3) is therefore still valid, i.e., x(t) = £„ x{nT)f{t-nT) 

where T = ir/ß again, but the sine function is replaced with the bandpass impulse response /(*). 

F(G>) 

7l/ß- 

-CÖ2 -CÖ! 

ß 

0 Cöj CÖ2   CO 

Fig. 2.5. Bandpass filter to be used in the reconstruction of 

the bandpass signal from its samples. 

A bandpass subband 

" <°3 -a2 
<o2<o2 1 ~ ~1 

Fig. 2.6. Splitting a signal into frequency subbands. 

03 

Given a signal x(t), imagine now that we have split its frequency axis into subbands in some manner 

(Fig. 2.6). Letting yk(t) denote the fcth subband signal, we can write x(t) = £fc yk(t). This can be visualized 

as passing x(t) through a bank of filters {Hk(uj)}, Fig. 2.7(a), with responses as in Fig. 2.7(b). Note that 

each subband region is symmetric with respect to zero frequency, and therefore supports positive as well 

as negative frequencies. If the subband region wk < \u\ < wk+1 satisfies the bandpass sampling condition, 

then the bandpass signal yk(t) can be expressed as a linear combination of its samples as before. Thus, 

*(*) = Efc »*(*) = Efc E„ Vk(nTk)fk{t - nTk), where Tk = n/ßk. Here fk(t) is the impulse response of the 

reconstruction filter (or synthesis filter) Fk(u) shown in Fig. 2.7(c). Fig. 2.7(a) also shows this reconstruction 

schematic. 



Analysis 
filters 

Synthesis 
filters 

x(t) 

Htl(a>)  KzJ— ^> sampler ii 1_L 
Ftl (CD) 

Hk(co) y,(t) 
 K. > sampler 

1111 Fk(co) 

Hki<B) 3^ sampler llLli 
Fk+1 (CD) 

(a) 

subband 
decomposition 

reconstruction 

k   analysis 
filter 

H(co)       ft 
■«  

It 

-Gfc+l   "^      0 CD* Cpk+i CD 

(b) 

k    synthesis 
filter 

F(CD) 
ft 

™CDk+l   -G^c      0 
CD 

Fig. 2.7. (a) Splitting a signal into subband signals, sampling and then recombining, 

(b) response of kth analysis filter and (c) response of kth synthesis filter. 

(c) 



. 

1 

. . . F2 F. F„ Fo F, F2 

- 71 71        271       371                           CO 

(a) 

1/2 
•F,     F2 

 L (b) 

n 2TC     47i 8rc        CO 

Fig. 2.8. Two possible schemes to decompose a signal into frequency bands, 

(a) uniform splitting, and (b) octave band splitting. 

The responses shown are those of synthesis filters. 

Fig. 2.8 shows the set of synthesis filters {Fk(w)} for two examples of frequency splitting arrangement, 

namely uniform splitting and nonuniform (octave) splitting. We will see later that the uniform splitting 

arrangement gives an example of the short time Fourier transform (STFT) representation (Sec. 3 and 

9). In this section we are interested in octave splitting. The bandedges of the filters here are uk = 2 7r 

(k = ... - 1,0,1,2,...). The bandedges are such that yk(t) is a signal satisfying the bandpass sampling 

theorem. It has ßk = 2kn according to the notation of Fig. 2.7. It can be sampled at period Tk = vIßk - 2~k 

without aliasing, and we can reconstruct it from samples as 

oo 

yk(t)=   J2  yk(2-kn)fk(t-2-kn). (2.6) 

As k increases, the bandwidths of the filters increase so the sample spacing Tk = 2~k gets finer. Since 

x(t) = Z)fc 2/fc(*) we see t*iat XW can be exPressed as 
oo oo 

*(*)=   E     £   yk(2-kn)fk{t-2-kn). (2.7) 
t=-oon=-oo 

Our definition of the filters shows that the frequency responses are scaled versions of each other, that is 

Fk{uj) = 2~k<i>(2~ku>) with $(w) as in Fig. 2.9. The impulse responses are therefore related as fk(t) = ip(2 *), 

and we can rewrite (2.7) as 
oo oo 

x(t)=   Y,    E   yk(2-kn)^(2kt-n) (2.8) 



We will write this as x(t) = £fc £n ckn^kn{t) by defining ckn = 2  k'2yk{2  kn) and 

tfjfen(0 = 2k'2i/,(2kt - n) = 2fc/2^(2fc(t - 2-fcn)) (2.9) 

Then the functions VfcnW will have the same energy / \ipkn{t)\2dt for a11 k'n- From the analysis/synthesis 

filter bank point of view (Fig. 2.7) this is equivalent to making Hk(u) = Fk(u>) and rescaling as shown in 

Fig. 2.10. With filters so reseated, the wavelet coefficients ckn are just samples of the outputs of the analysis 

filters Hk(üj). 

\|/(Cö) 

-2TC —71 0    7i    2rc 
Co 

Fig. 2.9. The fundamental bandpass function that generates a bandpass wavelet. 

" 
T=2 *     t 

* 

— H.!(a>) t  If F.i (co) —>  » sampler - 

(t) 
i        '  

T=l     | .           .   
C041 

■ 1111, IT   (ti\\ p.Yfrt^           » 
 —Bs  *>     ITQVOJ^ 

Q 1 
1 Uv1"/ L 

T=l/2 \ 
■♦ttittt. ' 

Hi(eo) 
. FiCco)  —- 

(a) 

Analysis 
bank 

Synthesis 
bank 

H-iandRi 

~^      1/2   / 
(b) 

0      Ji  2TC      4rc 8rc CO 

Fig. 2.10. The octave-band splitting scheme, (a) The analysis bank, 

samples and synthesis bank, and (b) the filter responses. 

The function ip(2kt) is a dilated version of ip(t) (squeezed version if k > 0 and stretched version if k < 0). 
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The dilation factor 2fc is a power of two, so this is said to be a dyadic dilation. The function ip{2k(t - 2~ n)) 

is a shifted version of the dilated version. Thus we have expressed x(t) as a, linear combination of shifted 

versions of (dyadic) dilated versions of a single function ip(t). The shifts 2~kn are in integer multiples of 2~k 

where k governs the dilation. For completeness note that the impulse response ip(t) corresponding to the 

function in Fig. 2.9 is given by 

sin(7ri/2) m = nt/2 
cos(37r£/2)        (ideal bandpass wavelet). 

This is plotted in Fig. 2.11. 

Fig. 2.11. The ideal bandpass wavelet. 

(2.10) 

In (2.8) we have obtained a wavelet representation for x(t) (compare with (2.4)). The function tp{t) is called 

the ideal bandpass wavelet. It has also been known as the Littlewood-Paley wavelet. We will now introduce 

some terminology for convenience and then return to more detailed definitions and discussions of the wavelet 

transform. 

2.2. L2 spaces, basis functions and orthonormal bases 

Most of our discussions will be restricted to the class of L2 functions or square integrable functions, that is, 

functions x(t) for which / \x(t)\2dt exists and has a finite value.  The norm or I? norm of such functions, 

denoted \\x{t)\\2 is defined as ||x(t)||2 = (/ \x{t)\2dt)1/2. The notation L2[a,b] stands for L2 functions that 

are zero outside the interval a < t < b. The set L2(R) is the class of L2 functions supported on the real line 

-oo < t < co. We often abbreviate L2(R) as L2. 

It turns out that the class of L2 functions forms a (normed) linear vector space, i.e., any linear com- 

bination of functions in L2 is still in L2. In fact it forms a special linear space such that there exists a 

countable basis. That is, there is a sequence of linearly independent functions {gn{t)} in L2 such that any 

L2 function x(t) can be expressed as x(t) = £n angn(t), for a unique set of {an}. We say that gn(t) are the 
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basis functions. In fact L2 spaces have orthonormal bases. For such a basis, the basis functions satisfy 

(gk(t),gm(t))=6(k-m) (2.11) 

where the notation {f(t),g(t))=Jf(t)g*(t)dt denotes the inner product between f(t) and g(t). For an or- 

thonormal basis, the coefficients an in the expansion x(t) = £~ _„, angn(t) can thus be computed using 

the exceptionally simple relation 

*n = (x(t),gn(t)) (2-12) 

We have already seen two examples of orthonormal basis above. The first is the Fourier series expansion of 

a time limited signal (0 < t < 1). Here the basis functions {e^nt} are clearly orthonormal (with integrals 

going from 0 to 1). The second example is the expansion (2.3) of a bandlimited signal; it can be shown 

that the shifted versions f(t- nT) of the sine functions form an orthonormal basis for bandlimited signals 

(integrals going from -oo to oo). 

Orthogonal projections. Suppose we consider a subset {gnk{t)} of the orthonormal basis {gn(t)}. 

Let S denote the subspace generated by {g„k{t)} (an accurate statement would be that S is the "closure of 

the span of {g„k(t)}"; see Sec.7.2). Consider the linear combination y(t) = Eka^9nk(t) where the Q„, are 

evaluated as above, that is a„k = (x(t),gnk(t)) for some signal x(t). Then y(t) € S, and it can be shown 

that among all functions in 5, y(t) is the unique signal closest to x(t) (i.e., ||a;(*) - y(t)\\2 is the smallest). 

We say that y(t) is the orthogonal projection of x(t) onto the subspace S, and write 

y(t) = Ps[x(t)] (2-13) 

2.3. Wavelet transforms 

If a signal x(t) is in L2, then its Fourier transform X(u) exists in the L2 sense (Sec. 6.3). We will see in 

Sec. 6.4 that the discussion which resulted in the expression (2.8) is applicable for any signal x{t) in I2. Eq. 

(2.8) means that the signal can be expressed as a linear combination of the form 

OO OO 

X(t)=   Y,     E   ckn2
k/2^2h-n\ (2-14) 

fc=-oon=-oo > ^T(t) 

where if,(t) is the impulse response (Fig. 2.11) of the bandpass function *(w) in Fig. 2.9.t Since the frequency 

responses for two different values of k do not overlap, the functions i/;kn{t) and ^mi{t) are orthogonal for 

t The above equality, and the convergence of the summation should be interpreted in the L2 sense, see 

Sec. 6.2. 
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k # m (use Parseval's relation). For a given fe, the functions ^fcn(t) are shifted versions of the impulse 

responses of the bandpass filter Fk{u). From the ideal nature of this bandpass filter we can show that ipkn{t) 

and 4>im(t) are also orthonormal for n±m. Thus, the set of functions {^fcn(*)} with k and n ranging over all 

integers forms an orthonormal basis for the class of L2 functions. That is, any L2 function can be expressed 

as in (2.14) and furthermore 

(i>kn(t), Tpmi(t)) = 6(k - m)6(n - 0- (2-15) 

Because of this orthonormality, the coefficients ckn are computed very easily as 

/CO 

x{t)2k'2r^kt-n)dt. (2.16) 
-CO 

Defining 

V(t) = r(-t), (2-17) 

this takes the form 
/oo 

x{t)2k'2r,{n-2kt)dt (2.18) 
-co 

resembling a convolution. 

Wavelet transform definitions. A set of basis functions ipk„(t) derived from a single function ip(t) 

by dilations and shifts of the form 

lM*) = 2fc/V(2*t-n) (2.19) 

is said to be a wavelet basis, and ip(t) is called the wavelet function. The coefficients ckn are the wavelet 

transform coefficients. The formula (2.16) which performs the transformation from x(t) to ckn is the wavelet 

transform of the signal x(t). Eqn. (2.14) is the wavelet representation or the inverse wavelet transform. 

While this is only a special case of more general wavelet decompositions outlined in Sec. 2.7, it is perhaps 

the most popular and useful one. 

Note that the kth dilated version ^(2kt) has the shifted versions ip{2kt - n) = ip(2k{t - 2-kn)), so the 

amount of shift is in integer multiples of 2~k. Thus the stretched versions are shifted by larger amounts and 

squeezed versions by smaller amounts. Even though we developed these ideas based on an example, the 

above definitions still hold generally for any orthonormal wavelet basis. For the ideal bandpass wavelet, the 

function rp(t) is real and symmetric (see (2.10)) so that T/(£) = ip(t). For more general orthonormal wavelets 

we have the relation n(t) = ip"{-t). We say that rj(t) is the analyzing wavelet (because of (2.18)) and tp(t) the 

synthesis wavelet (because of (2.14)). For the non orthonormal case we still have the transform and inverse 

transform equations as above, but the relation between rp(t) and n(t) are not as simple as n(t) = tp'{-t). 

We will not discuss this. 
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Before exploring the properties and usefulness of wavelets let us turn to a distinctly different example. 

This will show that, unlike the Fourier basis functions {e^nt}, the wavelet basis functions can be designed 

by the user. This makes them more flexible, interesting and useful. 

2.4. The Haar wavelet basis 

As early as 1910 an orthonormal basis for L2 functions has been found [Haar, 1910], which satisfies the 

definition of a wavelet basis given above! That is, the basis functions if>kn(t) are derived from a single function 

ip(t) using dilations and shifts as in (2.19). To explain this system first consider a signal x(t) E i2[0,1]. The 

Haar basis is built from two functions called <$>{t) and i/;(t), as described in Fig. 2.12. The basis function 4>{t) 

is a constant in [0,1]. The basis function rp(t) is constant on each half interval, and its integral is zero. After 

this, the remaining basis functions are obtained from V(0 by dilations and shifts as indicated. It is clear 

from the figure that any two of these functions are mutually orthogonal. We have an orthonormal set, and 

it can be shown that this set of functions is an orthonormal basis for Z2[0,1]. However, this is not exactly a 

wavelet basis yet, because of the presence of <j>(t).' 

If we eliminate the requirement that x(t) be supported or defined only on [0,1] and consider L2{R) 

functions then we can still obtain an orthonormal basis of the above form by including the shifted versions 

{ip(2kt - n)} for all integer values of n, and also including the shifted versions {<f>{t - n)}. An alternative to 

the use of {4>(t - n)} would be to use stretched (i.e., tp(2kt),k < 0) as well as squeezed (i.e., ip(2kt),k > 0) 

versions of iß(t). The set of functions can thus be written as in (2.19), which has the form of a wavelet basis. 

It can be shown that this forms an orthonormal basis for L2(R). The Fourier transform of the Haar wavelet 

ip(t) is given by 

WU)= ie-^/2sinV/4) (Haar wavelet). (2.20) 
v   ' OJ/4 

The Haar wavelet has limited duration in time, whereas the the ideal bandpass wavelet (2.10), being ban- 

dlimited, has infinite duration in time. 

t We will see in Sec. 10 that the function (p(t) arises naturally in the context of the fundamental idea of 

multiresolution. 
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Fig. 2.12. Examples of basis functions in the Haar basis for L2[0,1]. 
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2.5. Basic properties of waveSet transforms 

Based on the definitions and examples provided so far we can already draw some very interesting conclusions 

about wavelet transforms, and obtain a preliminary comparison with the Fourier transform. 

x(t) 

h.fi) 

h0(t) 

ht(t) 

Xi(0 
T=2 

sampler 

■l,n 

LJJ 

Ml T=l 0,n 

sampler t  t  t  t  t 

y,(t) 
T=l/2 

l,n 

sampler MMttt, 

f.i (0 

fo(t) 

fl(t) 

x(t) 
(a) 

Analysis bank 

h^t)=2k/Ti(2kt) 

T| (t) is the analyzing 
wavelet 

wavelet 
coefficients Synthesis bank 

k/2   . 

fk(t)=2¥(2t) 

^¥(t) is the synthesizing 
wavelet 

JJY 
IF.JCCö)! 

IF(Cö)NV(Cö)I 

lA/2~  S 
IFJ(Cö)I 

1/2 

IF2(o>)l 

0      n   2n       4n 8xt co 
Fig. 2.13. (a) Representing the diadic wavelet transform as an analysis 

bank followed by samplers, and the inverse transform as a synthesis bank. 

For the otrhonotmal case, ip(t) = »/*(-*), and fk(t) — h%(-t). 

(b) Filter responses for the example where rp(t) is the ideal bandpass wavelet. 

(b) 

1.  Concept of scale. The functions ipkn{t) are useful to represent finer and finer "variations" in the signal 

x(t) at various levels.   For large k, the function ipkn{t) looks like a "high frequency signal."   This is 
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especially clear from the plots of the Haar basis functions. (For the bandpass wavelets, see below.) Since 

these basis functions are not sinusoids, we do not use the term frequency but rather the term "scale". 

We say that the component i>kn(t) represents a finer scale for larger k. Accordingly k (sometimes 1/fc) 

is called the scale variable. Thus, the function x(t) has been represented as a linear combination of 

component functions that represent variations at different "scales". For instance, consider the Haar 

basis. If the signal expansion (2.14) has a relatively large value of c4,2 this means that the component 

at scale k = 4 has large energy in the interval [|r, jt] (Fig. 2.13). 

2. Localized basis. The above comment shows that if a signal has energy at a particular scale concentrated 

in a slot in the time domain, then the corresponding ckn has large value, i.e., ipkn{t) contributes more 

to x(t). The wavelet basis therefore provides a localization information in time domain as well as in 

the scale domain. For example, if the signal is zero everywhere except in the interval [Jr, 57] then the 

subset of the Harr basis functions which do not have their support in this interval are simply absent in 

this expansion. 

Note that the Haar wavelet has compact support, that is the function ip(t) is zero everywhere outside a closed 

bounded interval (namely [0,1] here). While the above discussions are motivated by the Haar basis, many of 

them are typically true, with some obvious modifications, for more general wavelets. Consider for example 

the ideal bandpass wavelet (Fig. 2.11) obtained from the bandpass filter *(o/) in Fig. 2.9. In this case 

the basis functions do not have compact support but are still locally concentrated around t = 0. Moreover, 

the basis functions for large k represent "fine" information, namely the frequency component around the 

center frequency of the filter Fk(u) (Fig. 2.10). The Haar wavelet and the ideal bandpass wavelet are two 

extreme examples (one is time limited and the other bandlimited). We will find later that many intermediate 

examples can be constructed. 

2.6. Filter Bank Interpretation and Time-Frequency Representation 

We know that the wavelet coefficients ckn for the ideal bandpass wavelet can be viewed as the sampled version 

of the output of a bandpass filter (Fig. 2.10(a)). The same is true for any kind of wavelet transform. For this 

recall the expression (2.18) for the wavelet coefficients. This can be interpreted as the set of sampled output 

sequences of a bank of filters Hk(u) with impulse response hk(t) = 2k'2h0{2kt) where h0(t) = n(t). Thus 

the wavelet transform can be interpreted as a nonuniform continuous-time analysis filter bank, followed by 

samplers. The Haar basis and ideal bandpass wavelet basis are two examples of the choice of these bandpass 

filters! 

The wavelet coefficients ckn for a given scale k are therefore obtained by sampling the output yk(t) of 
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the bandpass filter Hk(u), as indicated in Fig. 2.10(a). The first subscript k (the scale variable) represents 

the filter number. As it increases by one, the center frequency wk increases by a factor of two. The wavelet 

coefficients ckn at scale k are merely the samples yk{2-kn). As k increases the filter bandwidth increases, 

so the samples are spaced by a proportionately finer amount 2~k. The quantity ckn = yk{2-kn) measures 

the "amount" of the "frequency component" around the center frequency wfc of the analysis filter Hk(u), 

localized in time around 2~ 'n. 

In wavelet transformation, the transform domain is represented by the two integer variables k and n. 

This means that the transform domain is two dimensional (the time-frequency domain), and is discretized. 

We say that ckn is a time-frequency representation ofx(t). We will see in Sec. 3 that this is an improvement 

over another time-frequency representation called the short time Fourier transform (STFT) introduced earlier 

in the sinal processing context. 

Synthesis Filter bank and reconstruction. The inner sum in (2.14) can be interpreted as follows: 

for each k, convert the sequence ck„ into an impulse traint J^„ckn6a(t - 2~kn) and pass it through a 

bandpass filter Fk(u) = 2~fc/2tf (2~*u;) with impulse response /*(*) = 2k'2r^{2kt). The outer sum merely 

adds the outputs of all these filters. Figs. 2.7(a) and 2.10(a) show this interpretation. Therefore, the 

reconstruction of the signal x(t) from the wavelet coefficients ckn is equivalent to the implementation of 

a nonuniform continuous-time synthesis filter bank, with synthesis filters fk(t) = 2k/2fo{2kt) generated by 

dilations of a single filter fo(t)=ip{t). 

As mentioned in Sec. 2.3, the analyzing wavelet rj(t) and the synthesis wavelet 4>(t) are related by 

n(t) = ip*(-t) in the orthonormal case. So the analysis and synthesis filters are related as hk(t) = fk(-t), 

that is, Hk(uj) = Fk*{u). For the special case of the ideal bandpass wavelet (2.10), ip(t) is real and symmetric 

so that fk(t) = fi(-t), i.e., hk(t) = fk(t). Fig. 2.13 summarizes the relations described in the preceding 

paragraphs. 

Design of Wavelet Functions 

Since all the filters in the analysis and synthesis banks are derived from the wavelet function ip(t), the 

quality of the frequency responses depend directly on *(w). In the time domain, the Haar basis has poor 

smoothness (it is not even continuous) but it is well-localized (compactly supported). Its Fourier transform 

*(w), given in (2.20) decays only as 1/u for large u. The ideal bandpass wavelet, on the other hand, is 

poorly localized in time but has very smooth behavior. In fact since it is bandlimited, ip(t) is infinitely 

differentiable. But it decays only as 1/t for large t. Thus the Haar wavelet and the ideal bandpass wavelet 

t 6a{t) is the Dirac delta function [Oppenheim, et. al., 1983]. Here it is used only as a schematic. The 

true meaning is just that the output of fk{t) is Y,„ cknfk(t - 2~ n). 
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represent two opposite extremes of the possible choices we have. 

We could carefully design the wavelet ip(t) such that it is reasonably well localized in time domain, while 

at the same time sufficiently smooth or "regular". The term regularity is often used to quantify the degree 

of smoothness. For example the number of times we can differentiate the wavelet ip(t), and the degree of 

continuity (so-called Holder index) of the last derivative are taken as measures of regularity. We will return 

to this in Sec. 11-13 where we also present systematic procedures for design of the function ip(t). This 

can be designed in such a way that {2fc/2^(2fci - n)} forms an orthonormal basis with prescribed decay and 

regularity properties. It is also possible to design ip{t) such that we obtain other kinds of structures rather 

than an orthonormal basis, e.g., a Riesz basis or a frame (Sec. 7,8). 

2.7. Wavelet Basis and Fourier Basis 

Returning to the Fourier basis gk(t) = {ej2*kt} for functions supported on [0,1], we see that gk(t) = gi{kt) 

so that all the functions are dilated versions (dilations being integers rather than powers of integers) of 

gi(t)l However these do not have the localization property of wavelets. To understand this, note that ej2vkt 

has unit magnitude everywhere, and sines and cosines are nonzero almost everywhere. Thus if we have a 

function x(t) that is identically zero in a certain time slot (e.g., Fig. 2.14), then in order for the infinite 

series J2   anej2*nt to represent x(t), there has to be extreme cancellation of terms in that time slot. 

3/16 

0 / 
2/16 

Fig. 2.14. Example of an L2[0,1] signal x(t) for which the Haar component ^4,2 (*) dominates. 

In contrast, if we use a compactly supported wavelet basis, it provides us localization information, as well 

as information about "frequency contents" in the form of "scales" (Sec.   2.5).   The "transform domain" 
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in traditional Fourier transform is represented by a single continuous variable w. In the wavelet transform, 

where the transform coefficients are cfcn, the transform domain is represented by two integers k and n. 

It is also clear that wavelet transforms provide a great deal of flexibility because we can choose ^(t). 

With Fourier transforms on the other hand, the basis functions (sines and cosines) are pretty much fixed 

(see, however, Sec. 3 on short-time Fourier transform). 

2.8. More Genera! Form of Waweiet Transformation 

The most general form of the wavelet transform is given by 

X(a,b) = ^nr*(W(^)dt (2.21) 

where a and b are real. This is called the continuous wavelet transform (CWT) because a and 6 are continuous 

variables. The transform domain is a two dimensional domain (a, b). The restricted version of this where a 

and 6 take a discrete set of values a = c~k and b = c~kn where k and n vary over the set of all integers, is 

called the Discrete Wavelet Transform (DWT). The further special case where c = 2, that is, a = 2~k and 

b = 2-kn is the wavelet transform discussed so far (see eq. (2.16)) and is called the dyadic DWT. Expansions 

of the form (2.14) are also called wavelet series expansions by analogy with the Fourier series expansion (a 

summation rather than an integral). 

For fixed a, Eq. (2.21) is a convolution. Thus, if we apply the input signal x(t) to a filter with impulse 

response i/>(-t/a)/y/fi\, then its output, evaluated at time &, will be X(a, b). The filter has frequency response 

y/\ä\*(-au). If we imagine that *(w) has a good bandpass response with center frequency w0, then the 

above filter is bandpass with center frequency -a"1«*. That is, the wavelet transform X{a,b), which is 

the output of the filter at time b, represents the "frequency content" of x{t) around the frequency -a"1«*, 

"around" time b. Ignoring the minus sign (because rß(t) and x(t) are typically real anyway), we therefore see 

that the variable a~l is analogous to frequency. In wavelet literature, the quantity \a\ is usually referred to 

as the " scale" rather than "inverse frequency". 

For reasons which cannot be explained with our limited exposure so far, the wavelet function ip(t) is 

restricted to be such that J>(0* = °- For the moment notice that this is e<luivalent t0 *(°) = °' which is 

consistent with the bandpass property of tf(i). In Sec. 10.4 where we generate wavelets systematically using 

multiresolution analysis, we will see that this condition follows naturally from theoretical considerations. 

3. THE SHORT TIME FOURIER TRANSFORM (STFT) 

In many applications, we have to accomodate the notion of frequency that evolves or changes with time. 

For example, audio signals are often regarded as signals with a time varying spectrum, e.g., a sequence of 
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short lived pitch frequencies. This idea cannot be expressed with the traditional FT since X(u) for each w 

depends on x(t) for all t. 

The short time Fourier transform (STFT) was introduced to provide such a time-frequency picture of 

the signal [Gabor, 1946], [Flanagan and Golden, 1966], [Schäfer and Rabiner, 1973], [Allen and Rabiner, 

1977], and [Portnoff, 1980]. Here the signal x(t) is multiplied with a window v(t - r) centered or localized 

around time r (Fig. 3.1) and the FT of x(t)v(t - r) computed: 

/oo 
x(t)v(t - r)e-jutdt. (3.1) 

-OO 

V(t-T) Shifted version 

f-^ 
t 

Fig. 3.1. A signal x(t), and the sliding window v(t - r). 

This is then repeated for shifted locations of the window, i.e., for various values of r. That is, we compute 

not just one FT, but infinitely many. The result is a function of both time r and frequency w. If this has 

to be practical we have to make two changes: compute the STFT only for discrete values of w, and second 

use only a discrete number of window positions r. In the traditional STFT both w and r are discretized on 

uniform grids: 

w = kujs,    T = nTs. (3-2) 

The STFT is thus defined as 
/OO 

x(t)v{t-nTs)e-'
ku'tdt, 

-OO 

(3.3) 

which we abbreviate as Xstft(k,n) when there is no confusion. Thus the time domain is mapped into the 

time-frequency domain. The quantity Xstft(kujs,nTs) represents the FT of x(t) "around time raTs" and 

"around frequency kus". This in essence is similar to the wavelet transform: in both cases the transform 

domain is a two dimensional discrete domain. 
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We will compare wavelets and STFT on several grounds. We will give a filter-bank view, and compare 

time-frequency resolution and localization properties. In Sec. 9 we will compare them on deeper grounds. 

For example, when can we reconstruct a signal x(t) from the STFT coefficients Xstft(k, n)l Can we construct 

an orthonormal basis for L2 signals based on the STFT? And so forth. The advantage of wavelet transforms 

over the STFT will be clear after these discussions. 

3.1. Fitter Bank Interpretation 

The STFT evaluated for some frequency wfc can be rewritten as 

/oo 

x(t)v(t-T)e-^-^ 
-oo 

The integral looks like a convolution of x(t) with the filter impulse response 

dt. (3.4) 

(3.5) 

If v(-t) has a Fourier transform looking like a lowpass filter then hk(t) looks like a bandpass filter with center 

frequency wfc (Fig. 3.2). Thus, Xstft(^k,r) is the output of this bandpass filter at time r, downshifted in 

frequency by uik- 

X(a}Hk(a} 

Fig. 3.2. The STFT viewed as a bandpass filter followed by a downshifter. 
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The result is a lowpass signal yk(t) whose output is sampled uniformly at time r = nTs. For every frequency 

wk so analyzed, there is one such filter channel. With the frequencies uniformly located at uk = kojs, we get 

the analysis filter bank followed by downshifters and samplers as shown in Fig. 3.3. 

 » H_!(Cö)  »» 

x(t)   . ej0 
1 

H0(G>) 
' 1 

' 1 

 » Hi(CD)  »■ 

®- 
y.i(t) 

sampler Ts 

; y°(t)- 
t 

1 
<8>- 
t 

jö>st 

y,(t) 
sampler Ts 

4 l^i -'T 

samplerTs|—-">...,*'' ~>--''f 

T^-*--T 
t 

STFT coefficients 

HL/ffl) HO(<D)    H^a)) 

-ö)s    0 cos     2CöS © 

Fig. 3.3. The STFT viewed as an analysis bank of uniformly shifted filters. 

The STFT coefficients Xstft(kujs,nTs) can therefore be regarded as the uniformly spaced samples of 

the outputs of a bank of bandpass filters Hk(ui), all derived from one filter hk(t) by modulation: hk(t) = 

e^'^oW, i-e-, Hk(u) = H0(w - ku>s). (The filters are one-sided in frequency so they have complex coef- 

ficients in the time domain, but ignore these details for now). The output of Hk{u) represents a portion 

of the FT X(u) around the frequency kuis. The downshifted version yk(t) is therefore a lowpass signal. 

That is, it is a slowly varying signal, whose evolution as a function of t represents the evolution of the FT 

X(v) around frequency ku>s. By sampling this slowly varying signal we can therefore compress the transform 

domain information. 

If the window is narrow in the time domain, then Hk{uj) has large bandwidth. That is, we have good 

time resolution and poor frequency resolution. If the window is wide the opposite is true. Thus if we try to 

capture the local information in time by making a narrow window, then we get a fuzzy picture in frequency. 

Conversely in the limit as the filter becomes extremely localized in frequency the window is very broad, and 
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STFT approaches the ordinary FT. That is, the time-frequency information collapses to the all-frequency 

information of ordinary FT. We see that time-frequency representation is inherently a compromise between 

time and frequency resolutions (or localizations). This is related to the uncertainty principle: as windows 

get narrow in time they have to get broad in frequency, and vice versa. 

Optimal time-frequency resolution: the Gabor window 

What is the best frequency resolution one can obtain for a given time resolution? That is, for a given 

duration of the window v(t) how small can the duration of V{ui) be? If we define duration according to 

common sense we are already in trouble because if v(t) has finite duration then V(u) has infinite duration. 

There is a more useful definition of duration called the root mean square (rms) duration. The rms time 

duration Dt and the rms frequency duration Df for the window v(t) are defined such that 

p2     Jt2\v(t)\2dt S^Vj^du (36) 
U% ~   J\v(t)\*dt ' S       I\V(uj)\2duj 

Intuitively we can see that Dt cannot be arbitrarily small for a specified Df. The uncertainty principle says 

that DtDf > 0.5. Equality holds if and only if v(t) has the shape of a Gaussian, i.e., v(t) - Ae~at , a > 0. 

Thus the best joint time-frequency resolution is obtained by using the Gaussian window. This is also 

intuitively acceptable for the reason that the Gaussian is its own FT (except for scaling of variables and 

so forth). Gabor used the Gaussian window as early as 1946! Since it is of infinite duration, a truncated 

approximation is used in practice. The STFT based on the Gaussian is called the Gabor transform. A 

limitation of the Gabor transform is that it does not give rise to an orthonormal signal representation; in 

fact it cannot even provide a "stable basis" (in Sec. 7 and 9 we explain the meaning of this). 

3.2. Wavelet Transform Versus STFT 

The STFT works with a fixed window v(t). If a high frequency signal is being analyzed, many cycles are 

captured by the window, and a good estimate of the FT is obtained. But if a signal varies very slowly with 

respect to the window then the window is not long enough to capture it fully. From a filter bank viewpoint, 

notice that all the filters have identical bandwidths (Fig. 3.3). This means that the frequency resolution is 

uniform at all frequencies. That is, the "percentage resolution" or accuracy is poor for low frequencies and 

becomes better and better at high frequencies. The STFT therefore does not provide uniform percentage 

accuracy for all frequencies — the computational resources are somehow poorly distributed. 

Compare this with the wavelet transform which is represented by a nonuniform filter bank Fig. 2.8(b). 

Here the frequency resolution gets poorer as the frequency increases but the fractional resolution (i.e., the 

filter bandwidth Awfc divided by the center frequency u)k) is constant for all k. That is, the percentage 
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accuracy is uniformly distributed in frequency. In the time domain this is roughly analogous to having a 

large library of windows; the narrow window is used to analyze high frequency components and very broad 

windows are used to analyze low frequency components. In electrical engineering language the filter bank 

representing wavelet transforms is a constant Q filter bank, or an octave band filter bank. 

Consider, for example, the Haar wavelet basis. Here the narrow basis functions ^2,n(0 in Fig. 2.12 

are useful to represent the highly varying components of the input, and are correspondignly narrower (have 

shorter support than the functions V'l ,«(*)• 

•3TS    -2TS      -T. 0 Ts      2TS       3TS 

-2T, -Ts       Ts/2      0        Ts/2      Ts 

-6ü)S 

-5cos 

-4cos 

-3cos 

-2cos 

8cos 

4cos 

2co s 

2TS  
S/2 

(a) 

(b) 

Fig. 3.4. Time-frequency tiling schemes for (a) STFT and (b) the wavelet transform. 

A second difference between the STFT and wavelet transforms is the sampling rates at the outputs of 
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the bandpass filters. These are identical for the STFT filters (all filters have the same bandwidth). For the 

wavelet filters, these are proportional to the filter bandwidths, hence nonuniform (Fig. 2.10(a)). This is 

roughly analogous to the situation that the narrower windows move in smaller steps compared to the wider 

windows. Compare again with Fig. 2.12 where ^2,n(*) are moved in smaller steps compared to ipi<n(t), in 

the process of constructing the complete set of basis functions. 

The nonuniform (constant Q) filter stacking (Fig. 2.8(b)) provided by wavelet filters is also naturally 

suited for analyzing audio signals and sometimes even as components in the modeling of the human hearing 

system. 

The Time-Frequency Tiling 

The fact that the STFT performs uniform sampling of time and frequency whereas the wavelet transform 

performs non uniform sampling is represented by the diagram shown in Fig. 3.4. Here the vertical lines 

represent time locations where the analysis filter-bank output is sampled and the horizontal lines represent 

the center frequencies of the bandpass filters. The time frequency tiling for the STFT is a simple rectangular 

grid, whereas for the wavelet transform it has a more complicated appearance. 

Example 3.1. Wavelet Transform Versus STFT 

Consider the signal x(t) = cos(107rf) + 0.5COS(5JT*) +1.26a(t - 0.07) + 1.26tt(t + 0.07). It has impulses at 

t = ±0.07, in the time domain. There are two impulses (or "lines") in the frequency domain, at ui = 57r and 

w2 = lOfi". The function is shown in Fig. 3.5 (with impulses replaced by narrow pulses). The aim is to try to 

compute the STFT or WT such that the impulses in time as well as those in frequency are resolved. Figure 

3.6 (a)-(c) shows the STFT plot for three widths of the window v(t) and Fig. 3.6(d) shows the wavelet plot. 

The details of the window v(t) and the wavelet tp(t) used for this example will be described below, but first 

let us concentrate on the features of these plots. 

/ 

Fig. 3.5. Example 3.1. The signal to be analyzed by STFT and Wavelet transform. 

The STFT plots are time-frequency plots, whereas the wavelet plots are (a-1,6) plots where a and 6 are 
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defined by (2.21). As explained in Sec. 2.8, the quantity a"1 is analogous to "frequency" in the STFT, and 6 

is analogous to "time" in the STFT. The brightness of the plots in Fig. 3.6 is proportional to the magnitude 

of the STFT or WT, so the transform is close to zero in the dark regions. We see that for a narrow window 

with width = 0.1, the STFT resolves the two impulses in time reasonably well, but the impulses in frequency 

are not resolved. For a wide window with width = 1.0, the STFT resolves the "lines" in frequency very well, 

but not the time domain impulses. For an intermediate window width = 0.3, the resolution is poor in both 

time and frequency. The wavelet transform plot (Fig. 3.6 (d)), on the other hand, simultaneously resolves 

both time and frequency very well. We can clearly see the locations of the two impulses in time, as well as 

the two lines in frequency. 

Now for the details. The STFT for this example was computed using the Hamming window [Oppenheim 

and Schäfer, 1989] defined as v(t) = C[0.54+0.46COS(TT*/.D)] for -D < t < D and zero outside. The "widths" 

indicated in the figure correspond to D = 0.1,1.0, and 0.3 (though the two-sided width is twice this). The 

wavelet transform was computed by using an example of the Morlet wavelet [Daubechies, 1992]. Specifically, 

?P(t) = e-*'/1 V" - a). 

n CD 

Fig. 3.7. Example 3.1. Fourier transform magnitude for the Morlet wavelet. 

First let us understand what this wavelet function is doing. The quantity e~'2/16 is the Gaussain (except 

for a constant sealer factor) with Fourier transform Ayße~iu\ which is again Gaussian, concentrated near 

w = 0. Thus e~'2/1 Vxi has an FT concentrated around w = IT. Ignoringt the second term a in the expression 

for ip{t), we see that the wavelet is a narrowband bandpass filter concentrated around TT (Fig. 3.7). If we set 

a = 1 in (2.21), then X(l, b) represents the frequency contents around x. Thus, the frequencies w: = 5x and 

UJ2 = 10TT in the given signal x(t) show up around points a"1 = 5 and a'1 = 10 in the wavelet transform 

plot, as seen from Fig.  3.6(d). In the STFT plots, we have shown the frequency axis as UJ/TT so that the 

t The quantity a in the expression of if>(t) is there to ensure that j ip{t)dt = 0 (Sec. 2.8). Since a is very 

small, it does not significantly affect the plots in Fig. 3.6. 
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frequencies wj and u>2 show up at 5 and 10, making it easy to compare the STFT plots with the wavelet 

plot. 

Mathematical Issues to be Addressed 

While the filter bank view point places wavelets and STFT on a unified ground, several mathematical 

issues still remain to be addressed. It is this deeper study that brings forth further subtle differences, giving 

wavelets a definite advantage over the STFT. 

Returning to the STFT, let us say that we start from a signal x(t) € L2 and compute the STFT 

coefficients X{kujs,nTs). How should we choose the sampling periods Ts and u>s of the time and frequency 

grids so that we can reconstruct x(t) from the STFT coefficients? (Remember that we are not talking 

about bandlimited signals, and there is no sampling theorem at work). If the filters Hk{u) are ideal one- 

sided bandpass filters with bandwidth ws, the downshifted lowpass outputs yk{t) (Fig. 3.2) can be sampled 

separately at the Nyquist rate LJS or higher. This then tells us that Ts < 2TT/US, that is 

usTs < 2TT. (3-7) 

However the use of ideal filters implies an impractical window v(n). 

If we use a practical window (e.g., one of finite duration) then how should we choose Ts in relation to 

UJS so that we can reconstruct x{t) from the STFT coefficients X(ku„nTt)l Is this a stable reconstruction, 

that is if we make a small error in some STFT coefficient does it affect the reconstructed signal in an 

unbounded manner? Finally, does the STFT provide an orthonormal basis for L2? These questions are deep 

and interesting, and require more careful treatment. We will do this in Sec. 9. 

4. DIGITAL FILTER BANKS AND SUBBAND CODERS 

We will now discuss a totally different set up, namely a discrete-time filter bank or a digital filter bank. This 

has some qualitative resemblance to the continuous time filter banks which were used to represent the STFT 

and wavelet transform earlier. An example of a digital filter bank is shown in Fig. 4.1(a) where x(n) is a 

discrete time signal (sequence). Here Ga(z) and Ha{z) are two digital filters, typically lowpass and highpass 

which split x(n) into two subbands. The subband signals x0(n) and xx(n) are downsampled or decimated 

(see below for definitions). The total subband data rate counting both subbands is then equal to the number 

of samples per unit time in the original signal x{n). There are extensions of this system for more than two 

subbands, called M channel maximally decimated filter banks. 

There are several reasons for discussing digital filter banks in this chapter. First, they provide a time- 

frequency representation for discrete time signals, similar to the STFT and wavelet transforms for continuous 
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time signals. Second, there is a deep mathematical connection between this digital filter bank and the 

continuous time wavelet transform. This fundamental relation, discovered by Daubechies [1988], is fully 

elaborated later in Sec. 10-13, and is what makes the wavelet transform so easy to design, and attractive to 

implement in practice. This relation also opens up a little world of beautiful research problems for engineers 

as well as mathematicians. Indeed, the recent boom of interest in wavelet transforms can be traced back to 

the discovery of this relation. 

(a) 

x(n) 
G.(z) 

xo(n) m  yo(n)/ 

Subband 
signals 

|2 *2 <%<z) 

H,(z) 

x (n) 

|2 

y,(n) 

Analysis       Decimators 
filters 

*2 H,W 

Expanders       Synthesis 
filters 

x(n) 
-B».   Reconstructed 

signal 

(b) 

IG (ejm)l IH^eJ<a)l 

(C) 

Typical input spectrum 

Fig. 4.1. (a) The two channel digital filter bank, (b) Typical filter responses, and 

(c) Typical input spectr trum. 

A few words on subband coding. 

The most common application of the digital filter bank is in subband coding. The basic idea can be 

explained using the following simple example: suppose x(n) has its energy mostly in the lowpass region (e.g., 

as in speech or music). Then we can use lowpass and highpass filters Ga(z) and Ha(z) to split x(n) into 

subbands. This is demonstrated in Fig. 4.1(b),(c). We then assign more bits to the lower subband x0(n) as 
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compared to the higher subband Xl (n). For a fixed bit rate, this allows a judicious utilization of bits. This idea 

is used in practice in a more elaborate manner; for example x{n) is split into more than two bands, often into 

unequal bandwidths (using the so-called nonuniform filter banks). Then an optimal subband bit-allocation 

strategy is adopted. This allocation takes into account not only the energy distribution in the subbands, 

but also perceptive considerations such as the masking property of the ear as a function of frequency. In 

this way very significant compression rate can be achieved. For example, digital audio (CD music) has been 

compressed by more than a factor of four [Veldhuis, et al., 1989]. In image compression applications [Woods, 

1991] subband coding is often used in combination with other nonlinear filtering operations. Subband coding 

has a long history and a rich list of applications, but we will not go into these here. 

Detailed studies of filter banks and multirate systems can be found in a number of references, see for 

example [Vaidyanathan, 1993] and references therein. Our treatment here will be brief, the aim being to lay 

the foundation that will enable us to explain the connection to wavelet transforms. 

4.1. The Multirate Signal Processing Building Blocks 

The building blocks in the digital filter bank of Fig. 4.1(a) are digital filters, decimators, and expanders. 

The M-fold decimator or downsampler (denoted | M) is defined by the input-output relation y(n) = x(Mn). 

For example the two-fold decimator retains even numbered samples, and drops the odd ones. For M = 2 

the input output relation in the z-domain becomes 

Y{z) = 0.5[X(z1*)+X(-z1'2)],    thatis,    Y{e>») = 0.5 [X(c*"/2) + X(e^-2^2)]. (4.1) 

whereas for arbitrary M it is Y(z) = (1/M) ^=7 X{zl'Me~^^M). This relation is sometimes abbreviated 

by the notation Y(z) = X{z)\{M or Y(e>») = X(J")\iM. 

There are two terms in the expression (4.1) for Y{e>u). The first term X{e>u'2) represents a stretched 

version of X(e>u). The second term X(e^~2,T^2) is a shifted version of this stretched version, the shift 

being by an amount 2TT. In general the shifted version may overlap with the stretched version. In this case 

we cannot recover the input signal from the decimated version. This is exactly the effect of aliasing created 

by undersampling. If the original spectrum X{e*u) is bandlimited to [-TT/2, TT/2], 2-fold decimation does not 

cause aliasing. 

The M fold expander or upsampler (denoted T M) is defined by 

i  \ - \ x{n/M),    n - multiple of M, /42) 
™   ' ~ ^ 0, otherwise. 

Thus the expander simply inserts M - 1 zero-valued samples between adjacent samples of the input. In the 

transform domain the relation is Y(z) - X(zM), that is, F(e^) = X(e^). Thus the expander squeezes the 
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Fourier transform by M so that the period becomes 2ir/M rather than 2n. The basic shape of the spectrum 

is preserved, consistent with the fact that in the time domain there is no loss of information; we can always 

recover the input to the expander from its output, just by decimating it. 

4.2. Reconstruction from Subbands 

In many applications it is desirable to reconstruct x(n) from the decimated subband signals yk(n) (possibly 

after quantization). For this, we pass yk(n) through expanders and combine them with synthesis filters Gs(z) 

and Hs{z) as shown in Fig. 4.1(a). The system is said to have the perfect reconstruction (PR) property if 

x(n) = cx(n - n0) for some c ^ 0 and n0. In general the PR property is not satisfied for several reasons. 

First, there is subband quantization and bit allocation, which is the key to data compression using subband 

techniques. But since our interest here is in the connection between filter banks and wavelets, we will not 

be concerned with subband quantization here. 

Second, since the filters Ga(z) and Ha{z) are not ideal there is aliasing due to decimation. Using the 

above equations for the decimator and expander building blocks, we can obtain the following expression for 

the reconstructed signal 

X(z) =0.5[Ga(z)Gs(z) + Ha(z)Hs(z)]X(z) 
(4.3) 

+ 0.5[Ga(-z)Gs(z) + Ha(-z)Ha(z)]X(-z). 

The second term having X(-z) arises from the term X{-z1/2) created by the decimator (see (4.1)) and is 

therefore the aliasing term. This can be eliminated by designing the filters such that 

Ga(-z)Gs(z) + Ha(-z)Hs(z) = 0, (alias cancellation). (4.4) 

Assume that this has been satisfied. By setting 

Ga{z)Gs{z) + Ha(z)Hs(z) = 1 (4.5) 

we can then obtain X(z) = 0.5X(z), implying perfect reconstruction. 

There are many ways to satisfy the perfect reconstruction conditions [Smith and Barnwell, 1984], [Vai- 

dynathan, 1987], [Vetterli, 1987]. For this chapter we are interested in a particular technique to satisfy (4.4) 

and (4.5). This has been called the conjugate quadrature filter (CQF) method, and was independently re- 

ported in [Smith and Barnwell, 1984] and [Mintzer, 1985]. It was shown later [Vaidynathan, 1987] that these 

constructions are examples of a general class of M channel filter banks called paraunitary filter banks. The 

two channel CQF solution was later rediscovered in the totally different contexts of multiresolution analysis 
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[Mallat, 1989] and compactly supported orthonormal wavelet construction [Daubechies, 1988]. These will be 

discussed in future sections. 

The CQF solution. Suppose the analysis filter Ga(z) is chosen such that it satisfies the condition 

Ga(z)Ga(z) + Ga(-z)Ga(-z) = 1       for all z. (4.6) 

If we now choose the analysis filter Ha(z) and the two synthesis filters as 

Ha(z) = z-1Ga(-z),    G.(z) = Ga{z),    Hs(z) = Ha(z), (4.7) 

then substitution shows that (4.4) and (4.5) are satisfied indeed.  There is perfect reconstruction, that is 

x(n) = 0.5x(n). In the time domain the above equations can be written as 

Äa(n) = -(-l)Bfl£(-n+l),    g.{n) = g*a(-n),    hs(n) = h'a(-n). (4.8) 

The synthesis filters are time reversed conjugates of the analysis filters. If we design a filter Ga{z) satisfying 

the single condition (4.6) and determine the remaining three filters as above, then the system has the PR 

property! A filter Ga(z) satisfying (4.6) is said to be power-symmetric. Readers familiar with half-band 

filters will notice that the condition (4.6) says simply that Ga(z)Ga(z) is half-band! We will return to this 

in Sec. 4.4. 

Design procedure. The procedure to design a perfect reconstruction CQF system is very simple. We 

first design a zero-phase lowpass half-band filter G(z) with G(e'u) > 0 and then extract a spectral factor 

Ga(z), that is find Ga(z) such that G{z) = Ga{z)Ga(z). Once the lowpass filter Ga(z) is found like this, the 

three remaining filters can be found from (4.7). 

4.3. The Polyphase Representation 

Polyphase representations for transfer functions were introduced first by Bellanger et al. [1976]. The 

polyphase representation of a filter bank gives a convenient platform for studying theoretical questions 

and also helps in the design and implementation of PR filter banks. Let H(z) = £)„ h(n)z~n be any trans- 

fer function. We can express it in the form H{z) = E0(z
2) + z~lEi{z2) by splitting the z transform into 

even powers of z and odd powers of z. This is called a polyphase decomposition and Ek{z) are called the 

polyphase components. 
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Fig. 4.2. (a) The polyphase form of the filter bank, (b) further simplification, and 

(c) equivalent structure when R(z) = E-1(.z). 

Similarly we can also write H{z) = RQ{z
2) + zR1(z

2) where Ra(z) = E0{z) and R^z) = z~lEi(z). We will 

express the analysis filters Ga(z) and Ha(z) in the polyphase form 

Ga(z) 
Ha(z) 

Eoo(z )    Eoi(z ) 
£10(z

2)    Eu(z2) 
1 (4.9) 

E(22) 

and the synthesis filters in the polyphase form 

[G,(z)    Hs(z)} = {l    z] 
Roo(z2)    Roi(z2) 
Rl0(z2)    Ru(z2) 

(4.10) 

R(z*) 
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The 2x2 matrices E(z) and R(z) are called, respectively, the polyphase matrices of the analysis and synthesis 

banks. Fig. 4.2(a) shows a redrawing of the complete filter bank using the polyphase representation. It can 

be shown that the decimator and expander can be moved past the even powers of z to obtain the simplified 

representation shown in Fig. 4.2(b). 

If we impose the condition R(z)E(z) = I, that is 

R(z)=E"1(z) (4-11) 

then the system reduces to Fig. 4.2(c) which is a perfect reconstruction (PR) system with x(n) = x(n). Eqn. 

(4.11) will be called the perfect reconstruction condition. Notice that insertion of arbitrary scale factors and 

delays to obtain R(z) = cs^E"1^) leads to x(n) = cx(n - 2K) which is still the PR property. 

4.4. The Paraunitary Perfect Reconstruction System 

It was pointed out in [Vaidyanathan, 1987] that the CQF solution has a mathematical property called the 

paraunitary property and this observation makes it possible to generalize the perfect reconstruction solution 

to M-channel filter banks for arbitrary M. Since then, a class of filter banks called unitary or paraunitary 

filter banks has been developed. The paraunitary property, specialized to the two channel case, naturally 

yields all the CQF equations. 

Definition 4.1. Paraunitary matrices. A transfer matrixt H(z) is said to be paraunitary if H(eJ<") 

is unitary that is, Ht(e^)H(ejw) = I, for all w. In all practical designs the filters are rational transfer 

functions so that the paraunitary condition implies H(z)H(z) = I for all z, where the notation H(z) is 

explained in Sec. 1. ^ 

We sometimes allow a positive constant a > 0, and say that H(z) is paraunitary if H(z)H(z) = 

al. Proper choice of a simplifies notations. Note that H(z) reduces to transpose conjugation H'(fr"") 

on the unit circle. The paraunitary property has played a fundamental role in electrical network theory 

[Brune, 1931], [Belevitch, 1968] and has a rich history (see references in Chap. 6 and 14 of [Vaidyanathan, 

1993]). Essentially, the scattering matrices of lossless (LC) multiports are paraunitary, that is unitary on 

the imaginary axis of the s-plane. 

Properties of Paraunitary Filter Banks 

A filter bank in which E(z) is paraunitary and R(z) = E(z) has the perfect reconstruction property 

x(n) = cx(n),c ^ 0. We will now study the properties of such systems, which are called paraunitary filter 

t   Transfer matrices are essentially transfer functions of multi-input multi-output systems. A review can 

be found in Chap. 13 of [Vaidyanathan, 1993]. 
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banks. All of these properties derive from a fundamental matrix equation which we first derive. By replacing 

z with —z in Eqn. (4.9) and rearranging, we obtain 

Ga{z)    Ga(-z 
Ha(z)   Ha(-z)_ 

: E(,2) 
1     0 
0   z-1 

1     1 
1    -1 

(4.12) 

Ga(z) 

Similarly for the synthesis filters, 

G,(z)       Hs{z) 
Gs{-z)    Hs{-z) 

1     1 
1    -1 

1   0 
0    z 

R( -.2-, (4.13) 

G.{!) 

Let E(z) and R(z) be paraunitary with E(z)E(z) = 0.51 and R(z)R(z) = 0.51. Then the above equations 

imply 

Ga(z)G„(*) = I,        G,(:)6,(:) -1. (4-14) 

That is, the matrices Ga(z) and Gs(z) defined above are paraunitary as well. We will next draw a number 

of conclusions from here. 

A word on language.   We often say {Ga(z),Ha(z)} is paraunitary.   By this we mean that the corre- 

sponding polyphase matrix is paraunitary. 

Half-band Property and Power Symmetry Property. 

The paraunitary property Ga{z)Ga{z) = I is also equivalent to Ga(z)Ga(z) = I which implies, in 

particular, the equation 

Ga(z)Ga(z) + Ga(-z)Ga{-z) = 1. (4.15) 

In other words, Ga{z) is a power symmetric filter (Sec. 4.2). Now, a transfer function G(z) satisfying 

G(2) + G(-z) = 1 is called a half-band filter. The impulse response of such G(z) satisfies g(2n) = 0 for 

all n ^ 0 and g(0) = 0.5. We see that the power symmetry property of Ga(z) says that Ga(z)Ga(z) is a 

half-band filter. In terms of frequency response, the power symmetry property of Ga{z) is equivalent to 

\Ga(en\2 + \Ga(-en\2 = l- (4-16) 

Imagine that Ga(z) is a real-coefficient lowpass filter so that |G„(e*")|2 has symmetry with respect to zero 

frequency. Then |Ga(-e^)|2 is as demonstrated in Fig. 4.3, and the power symmetry property means that 

the two plots in Fig. 4.3 add up to unity. In this figure, up and LüS are the bandedges, and 81 and <52 are the 

peak passband ripples of Ga(e
j") (for definitions of filter specifications see [Oppenheim and Schäfer, 1989] 

or [Vaidyanathan, 1993]). 
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Fig. 4.3. The magnitude response |Ga(e
ju')|2 and \Ga(-eju)\2 for a 

real coefficient power symmetric filter Ga(z). 

Notice in particular that power symmetry of Ga(z) imphes that there is a symmetry relation between 

the passband and stopband specifications of Ga{eju). This relation is given by 

U!s = 7T - Wp,       i\ = 1 - (1 - 26i)   . (4.17) 

Relation between the two analysis filters. It can be shown that the property Ga(z)Ga(z) = I 

implies a relation between the analysis filters Ga(z) and Ha(z), namely Ha(z) = e3ezNGa{-z) where 9 is 

arbitrary and TV is an arbitrary but odd integer. We will take Ar = -1 and 0 = 0 for future simplicity. Then 

the analysis filters are related as 

Ha(z) = z-lGa{-z). (4.18) 

In particular we have \Ha{eju)\ - \Ga{-e^)\. Combining with the power symmetry property (4.16)) we see 

that the two analysis filters are -power complementary, that is, 

|G«(Ö|2 + |ffa(e*-')|2 = l (4.19) 

for all u. With Ga(z) = £n5a(n)z-" and Ha(z) = "£n ha(n)z-" we can rewrite (4.18) in the time domain 

M») = -(-!)"£(-«+!)• (4-2°) 

Relation between analysis and synthesis filters. If we use the condition R(z) = E(z) in the 

definitions of Gs(z) and Ga(z) we obtain Gs(z) = Ga(z) from which we conclude that the synthesis filters 

are given by Gs(z) = Ga{z) and Hs(z) = Ha(z). We can also rewrite these in the time domain; summarizing 

all this we have 

G,(z) = Ga(z), Hs(z) = Ha{z),        g,(n) = g'a(-n), hs(n) = h*a(-n). (4.21) 
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The synthesis filter cofficients are time-reversed and conjugated versions of the analysis filters. Their fre- 

quency response are conjugates of the analysis filter responses. In particular |Gs(e^)| = \Ga(e'u)\ and 

\H,(ei«)\ = \Ha(e^)\. 

In view of the preceding relations, the synthesis filters have all the properties of the analysis filters. For 

example, Gt{e'
u) is power symmetric, and the pair {G8{e>u),H,{&»)} is power complementary. Finally, 

Hs(z) = zGs{-z), instead of (4.18). 

From the preceding discussions we see that in a paraunitary filter bank the filter Ga(z) is power sym- 

metric, and the remaining filters are derived from Ga(z) as in (4.18) and (4.21). This is precisely the CQF 

solution for perfect reconstruction, stated at the beginning of this section. The observation of the parauni- 

tary condition opens up several advantages. For example it allows us to generalize the perfect reconstruction 

condition for M channel filter banks. It also allows us to obtain certain cascaded lattice structures which 

guarantee the perfect reconstruction property in spite of quantization of filter coefficients. These details can 

be found in [Vaidyanathan, 1993]. 

Summary of Filter Relations in a Paraunitary Filter Bank 

If the filter bank of Fig. 4.1(a) is paraunitary, then the polyphase matrices E(z) and R(z) (Fig. 4.2) 

satisfy E(z)E(z) = 0.51 and R(z)R(z) = 0.51. Equivalent^ the filter matrices G„(z) and Gs(z) satisfy 

Ga{z)Ga(z) = I and Gs(z)Gs(z) = I. A number of properties follow from these: 

1. All four filters Ga(z),Ha(z),G,(z) and Hs(z) are power symmetric. This property is defined, for ex- 

ample, by the relation (4.15). This means that the filters are spectral factors of half band filters; for 

example Gs(z)Gs(z) is half-band. 

2. The analysis filters are related as in (4.18), so the magnitude responses are related as \Ha(e^)\ = 

|Ga(_eJ*>)|. The synthesis filters are time reversed conjugates of the analysis filters as shown by (4.21). 

In particular Gs(e^) = G*a{eP") and Ha{e>") = ff*(c>"). 

3. The analysis filters form a power complementary pair, that is (4.19) holds. The same is true for the 

synthesis filters. 

4. Any two channel paraunitary system satisfies the CQF equations (4.6),(4.7) (except for delays, constant 

scale factors, and so forth). Conversely any CQF design is a paraunitary filter bank. 

5. The design procedure for two channel paraunitary (i.e., CQF) filter banks is as follows: design a zero- 

phase lowpass half-band filter G{z) with G{e'u) > 0 and then extract a spectral factor Ga{z), that is find 

Ga(z) such that G(z) = Ga(z)Ga(z). Then choose the remaining three filters as in (4.7), or equivalent^ 

as in (4.8). 
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4.5.  Parametrization of Paraunitary Filter Banks 

There exist factorization theorems for paraunitary matrices which allow us to express the polyphase matrix 

as a cascade of elementary paraunitary blocks. This is very helpful in the design as well as implementation 

of these filter banks. In this section we will demonstrate the idea with a simple factorization theorem. 

Theorem 4.1. Let H(z) = 52„=o h.(n)z~" be a 2 x 2 real causal FIR transfer matrix (so b.(n) are 

2x2 matrices with real elements). This is paraunitary if and only if it can be expressed as H(z) = 

RJVA(Z)R;V_I - ■ • R-1 A(z)RoHo where 

R-m — 

where a and 6m are real. 

cos 6m      sin 8„ 
— sin 8m    cos 6r, 

,A(z) 
1      0 
0      2-1 , Ho = 

a      0 
0    ±a (4.22) 

For a proof see [Vaidyanathan, 1993]. The matrix Rm is unitary. It is called a rotation operator or the 

Givens rotation. If y = Rmx then y is obtained by rotating the vector x clockwise by 6m. The matrix A(z) is 

a degree one paraunitary system. Fig. 4.4 shows the cascaded structure that results from this factorization. 

This is also called a lattice structure. The quantities N and L above are not necessarily equal. For example 

if H(z) = z-1! then L = 1 and JV = 2. 

a cos fl^ COS 0-| COS 8N 

!>^- O^- 

>^~ >-^ 

Fig. 4.4. The cascaded lattice structure for FIR paraunitary systems. 

We can guarantee the paraunitary property by using the cascaded structure. Thus if the polyphase 

matrix is computed using the cascaded structure, then Ga{z) is guaranteed to be power symmetric, and 

the relation Ha(z) = z~1Ga(-z) between the analysis filters automatically holds (except for a delay). 

Moreover as the theorem indicates, the cascaded structure covers every paraunitary system with the specified 

restrictions. That is, all two channel (causal, real) FIR paraunitary filter banks have polyphase matrix of 

the form shown in the figure. In particular, the real coefficient CQF can be realized in this manner. 

4.6. Maximally Flat Solutions 

The half band filter G{z) = Ga(z)Ga{z) can be designed in many ways.  One can get equiripple designs or 

maximally flat designs [Oppenheim and Schäfer, 1989]. An early technique for designing FIR maximally flat 

39 



filters was proposed in [Herrmann, 1971]. This method gives closed form expressions for the filter coefficients 

and can be easily adapted for the special case of half band filters. Moreover, the design automatically 

guarantees the condition G{e^") > 0 (which in particular implies zero phase). 

The family of maximally flat half band filters designed by Herrmann is demonstrated in Fig. 4.5. 

2K zeros 

CO 
0 n/z n 

Fig. 4.5. Maximally flat half-band filter responses with 2K zeros at TT. 

The transfer function has the form 

,- A--I -lN2r 

n=0 v ' 

(4.23) 

The filter has order AK — 2. There are 2K zeros on the unit circle and all of these zeros are concentrated at 

the point z = — 1 (i.e., at UJ = TT). The remaining 2K — 2 zeros are located in the z-plane such that G(z) has 

the half-band property described earlier (i.e., G(z) + G(—z) = 1). 

We will see later (Sec. 13) that if the CQF bank is designed by starting from Herrmann's maximally 

flat half-band filter, then it can be used to design continuous time wavelets with excellent regularity (i.e., 

smoothness) properties. 

4.7. Tree Structured Filter Banks 

The idea of splitting a signal x(n) into two subbands can be extended by splitting a subband signal further, 

as demonstrated in Fig. 4.6(a). In this example the lowpass subband is split over and over again. This is 

called a tree structured filter bank. Each node of the tree is a two-channel analysis filter bank. There are 

several variations of this scheme; for example we can choose to have differnt filter pairs at different levels 

of the tree. We can also choose to split the high pass subband; and we can replace the two channel system 

with a more general (M channel) system at each node of the tree. 
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x(n)      f        
»      '   »Ha(z) f 

li 

(a) 

-ft». 

-f 

(b) 

Fig. 4.6. Tree-structured filter banks (a) analysis bank, and (b) synthesis bank. 

The synthesis bank corresponding to Fig. 4.6(a) is shown in Fig. 4.6(b). We combine the signals in 

pairs, in the same manner that we split them. It can be shown that if {Ga(z), Ha(z),Gs(z), Ha(z)} is a 

perfect reconstruction system [i.e., satisfies x(n) = x(n) when connected in the form Fig. 4.1(a)] then the 

tree structured analysis/synthesis system of Fig. 4.6 has perfect reconstruction x(n) = x(n). 

The tree structured system can be redrawn in the form shown in Fig. 4.7. For example if we have a tree 

structure like Fig. 4.6 with three levels, we have M = 4, ra0 = 2, ni = 4, n2 = 8 and n3 = 8. If we assume 

that the responses of the analysis filters Ga(e
ju) and Ha{e>") are as in Fig. 4.8(a) then the responses of 

the analysis filters Hk{eju) are as shown in Fig.   4.8(b).   Note that this resembles the wavelet transform 
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[Fig. 2.8(b)]. The outputs of different filters are subsampled at different rates exactly as for wavelets. Thus 

the tree structured filter bank has close relation to the wavelet transform. In Sec. 10-13 we will present 

the precise mathematical connection between the two. We will also see that tree structured filter banks are 

closely related to multiresolution analysis (Sec. 10). 

y0(
n) x(n) 

H0(z) tno |nc 

H,(z) \rn-i 
Yi(n) 

-*» All, 

F (z) 
' 

^(z) 

4v M(z) -•.{nM.1 

VM-1 (") 
nn 

M-l-*^ 

 1    t x(n) 

Fig. 4.7. A general nonuniform digital filter bank. 

Jt/2 
CD 

(a) 

H3H2   H1 

■*"•   (Ü 

(b) 

0        JC/4      Jt/2 It 

Fig. 4.8. An example of responses (a) Ga(z) and Ha(z), and 

(b) Tree-structured analysis bank. 

4.8. Filter Banks and Basis Functions 

Consider again Fig. 4.7. Assuming perfect reconstruction we have x(n) = x{n) which means we can express 

x{n) in terms of the decimated subband signals yk(n) and the impulse responses fk(n) of the filters Fk(z). 
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This expression has the form 
Af-l      oo 

x(n)=Yl    Y,   yk(m)fk(n-nkm). (4.24) 
k=0 m=-oo 

This system is analogous to the filter bank systems which represented the continuous time STFT and 

wavelet transforms in Sec. 2 and 3. Thus the collection of subband signals yk(m) can be regarded as a 

time-frequency representation for x(n) which, in this section, is a discrete time signal. As in Sec. 2.7, 

k denotes the "frequency index" and m the "time index" in the transform domain. If we have a perfect 

reconstruction filter bank we can recover x(n) from this time-frequency representation using (4.24). The 

doubly indexed family of discrete time sequences {r]km(n)} where %m(n) = fk(n- nkm) can be regarded as 

"basis functions" for the representation of x(n) in terms of the time-frequency coefficients r)km{n). 

To make things mathematically more accurate let us say that x(n) € I2 (i.e., £n \x(n)\2 is finite). If 

the two channel filter bank {Ga(z),Ha(z),Gs{z),Hs(z)} which makes up the tree structure of Fig. 4.6 is 

paraunitary, it can be shown that r)km(n) is an orthonormal basis for f. Orthonormality means 

oo 

£   i?*1m1(n)^m2(n) = «(*1-fc2)*(mi-m2). (4.25) 
n= —oo 

While (4.24) resembles the STFT and wavelet representations developed in Sec. 2 and 3, there are similarities 

and differences. First, it is in discrete time, and second the basis functions (sequences) are not derived from 

a single function. By contrast a wavelet basis {2k/2ip(2kt - n)} is derived from a single wavelet function 

ip(t). We say that {r}km(n)} is a filter-bank type of basis for the space of/2 sequences. The basis is a doubly 

indexed infinite family of sequences, derived from a finite number of filters {fk (n)} by time-shifts of a specific 

form. The filter-bank type basis is orthonormal if {Gs(z),Hs(z)} is paraunitary [Soman and Vaidyanathan, 

1993]. 

5. DEEPER STUDY OF WAVELETS, FILTERBANKS, AND STFT 

From Sec. 2 and 3, we already know what the wavelet transform is and how it compares with the short 

time Fourier transform, at least qualitatively. We are also familiar with time-frequency representations and 

digital filter banks. It is time now to fill several important details, and generally be more quantitative. For 

example, we would like to mention some major technical limitations of the STFT which are not obvious from 

its definition, and explain that wavelets do not have this limitation. 

For example, we will see that if the STFT is used to obtain an orthonormal basis for L2 signals, then 

the time-frequency rms durations of the window v(t) (defined in Sec. 3.1) will satisfy DtDf = oo. That is, 

either the time or the frequency resolution is very poor (Theorem 9.1). It also turns out that if we have an 

STFT system where the time-frequency sampling product wsTs is small enough to admit redundancy (i.e., 
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the vectors are not linearly independent as they would be in an orthonormal basis) then the above difficulty 

can be eliminated (Sec. 9). 

The Gabor transform described in Section 3.1, while admittedly a tempting candidate because of the 

optimal time-frequency resolution property (DtDf minimized), has a disadvantage. Namely, if we want 

to recover the signal x(t) from the STFT coefficients, the reconstruction is unstable in the so-called criti- 

cally sampled case (Sec. 9). That is, a small error in the STFT coefficients can lead to a large error in 

reconstruction. 

The wavelet transform does not suffer from the above limitations of the STFT. We will show how to 

construct orthonormal wavelet bases with good time and frequency resolutions (Sec. 11-13). We will also 

show that we can start from a paraunitary digital filter bank and construct orthonormal wavelet bases for 

L2{R) in a very systematic way (Theorem 11.5). Moreover this can be done in such a way that many desired 

properties (e.g., compact support, orthonormality, good time frequency resolution, smoothness, and so forth) 

can be incorporated during the construction (Sec. 13). Such a construction is placed in evidence by the 

theory of multiresolution, which gives a unified platform for wavelet construction and filter banks (Theorems 

10.1,10.2). 

At this point in time, the reader may want to preview the above mentioned theorems in the future 

sections, in order to get a flavor of things to come. However, to explain these results in a quantitative way, 

it is very convenient to review a number of mathematical tools. The need for advanced tools arises because 

of the intricacies associated with basis functions for infinite dimensional spaces i.e., spaces where the set 

of basis functions is an infinite set. (For finite dimensional spaces an understanding of elementary matrix 

theory would have been sufficient.) For example a representation of the form x(t) - £ cnfn(t) in an infinite 

dimensional space could be unstable in the sense that a small error in the transform domain {c„} could get 

amplified in an unbounded manner during reconstruction. We will talk about a special type of basis called 

the Riesz basis which does not have this problem (orthonormal bases are special cases of these). We will also 

talk about frames which share many good properties of the Riesz bases but may have redundant vectors (i.e., 

not a linearly independent set of vectors). For example, the concept of frames will arise in the comparison of 

wavelets and the STFT. We will see that general STFT frames have an advantage over STFT bases. Frames 

also come into consideration when we explain the connection between wavelets and paraunitary digital filter 

banks in Sec. 11.4. When explaining the connection between wavelets and non unitary filter banks, one 

again encounters Riesz bases and the idea of biorthogonality. 

Since it is difficult to find all the mathematical background material in one place, we have tried to review 

a carefully selected set of topics in the next few sections. These are very useful for a deeper understanding 
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of wavelets and STFT. The material in Sec. 6 is fairly standard (Lebesgue integrals, IS spaces, Ll and L2 

Fourier transforms). The material in Sec. 7 and 8 (Riesz bases and frames) are less commonly known among 

engineers but play a significant role in wavelet theory. The reader may want to go through these review 

sections 6-8 (admittedly dense), once during first reading and then use them primarily as a reference. After 

this review we will return to our discussions of wavelets, STFT and filter banks. 

6. THE SPACE OF L1 and L2 SIGNALS 

We developed the wavelet representation in Sec. 2.1 based on the framework of a bank of bandpass filters. 

To make everything mathematically meaningful it becomes necessary to carefully specify the types of signals, 

types of Fourier transforms, and so forth. For example, as engineers, the concept of ideal bandpass filtering 

is appealing to us, but there arises a difficulty. An ideal bandpass filter H{w) is not stable, that is / \h{t)\dt 

does not exist [Oppenheim and Schäfer, 1989]. In other words h{t) does not belong to the space L1 (see 

below). 

Why should this bother us if we are only discussing theory? Take an example. The frequency domain 

developments based on Fig. 2.7, which finally give rise to the time domain expression (2.8) implicitly rely on 

the convolution theorem (which says that convolution in time implies multiplication in frequency). However, 

the convolution theorem is typically proved only for L1 signals and bounded L2 signals. It is not valid 

for arbitrary signals. We therefore need to be careful when using these familiar engineering notions in a 

mathematical discussion. 

6.1. Lebesgue integrals 

In most engineering discussions we think of the integrals as Riemann integrals. But in order to handle several 

convergence questions in the development of Fourier series, convolution theorems, wavelet transforms and so 

forth, it is necessary to use Lebesgue integration. There are many beautiful results for Lebesgue integration 

which are not true for the Riemann integral under comparable assumptions about signals. This includes 

theorems that allow us to interchange limits, integrals, and infinite sums freely. 

In this chapter all integrals are Lebesgue integrals. A review of Lebesgue integration is beyond the scope 

of this chapter. There are many excellent references, for example [Kolmogorov and Fomin, 1970], [Haaser 

and Sullivan, 1971], and [Apostol, 1974].  A few elementary comparisons between Riemann and Lebesgue 

integrals are pointed out below. 

1. If x(t) is Riemann integrable on a bounded interval [a,b] then it is also Lebesgue integrable on [a,b\. 

But the converse is not true.   For example if we define x(t) = -1 for all rationals and x(t) - 1 for 
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all irrationals in [0,1] then x(t) is not Riemann integrable in [0,1]. But it is Lebesgue integrable, and 

J*x(t)dt=l. 

2. A similar statement is not true for the unbounded interval (-00,00). For the unbounded interval 

(-00,00) the Riemann integral is defined only as a limit called the improper integral* Consider the 

sine function defined as: s(t) = sin*/t for t # 0, and s(0) = 1. This has improper Riemann integral = TT 

but is not Lebesgue integrable. 

3. If x(t) is Lebesgue integrable then so is |x(*)|- The same is not true for Riemann integrals, as demon- 

strated by the sine function s(t) of the preceding paragraph. 

4. If \x(t)\ is Lebesgue integrable then so is x(t) as long as it is measurable.* This however, is not true for 

Riemann integrals. For example if we define x(t) = -1 for all rationals and 1 for all irrationals in [0,1] 

then it is not Riemann integrable in [0,1] though \x(t)\ is. 

5. If x(t) is (measurable and) bounded by a nonnegative Lebesgue integrable function g(t) [i.e., |a:(*)| < g(t)} 

then x(t) is Lebesgue integrable. 

Sets of Measure Zero 

A subset S of real numbers is said to have measure zero if, given e > 0 we can find a countable union 

Dili of open intervals h [intervals of the form (ffl;,&,), i-e-, a{ < x < &,-] such that (i) S C U,-/; and (ii) the 

total length of the intervals < e. For example the set of all integers (in fact any countable set of real numbers, 

e.g., rationals) has measure zero. There exist uncountable sets of real numbers which have measure zero, a 

famous example being the Cantor set [Apostol, 1974]. 

When we say that something is true "almost everwhere" (abbreviated a.e.), or "for almost all i" it means 

that the statement holds everywhere except possibly on a set of measure zero. For example if x(t) = y{t) 

everywhere except for integer values of t, then x(t) = y(t) a.e. An important fact in Lebesgue integration 

theory is that if two Lebesgue integrable functions are equal a.e., then their integrals are equal. In particular 

if x(t) = 0 a.e., then the Lebesgue integral J x(t)dt exists and is equal to zero. 

t Essentially we consider f_a x(t)dt and let a and b go to 00 separately. This limit, the improper Riemann 

integral, should not be confused with the Cauchy principal value which is the limit of f°a x(t)dt as a -► 00. 

The function x{t) = t has Cauchy principal value = 0, but the improper Riemann integral does not exist. 
i The notion of a measurable function is very subtle.  Any continuous function is measurable, and any 

Lebesgue integrable function is measurable. In fact, examples of non measureable functions are so rare and 

so hard to construct, that there is practically no danger we will run into one.  We take measurability for 

granted and never mention it. 
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Convergence Theorems 

What makes the Lebesgue integral so convenient is the existence of some powerful theorems, which 

allow us to interchange limits with integrals and summations, under very mild conditions. These theorems 

have been at the center of many beautiful results in Fourier and wavelet transform theory. 

Let {gk(t)}A < fc < oo be a sequence of Lebesgue integrable functions. In general this sequence may 

not have a limit, and even if it did, the limit may not be integrable. Under some further mild postulates, 

we can talk about limits and their integrals. In what follows we often say ag(t) is a pointwise limit a.e. of 

the sequence {<?*(*)}", or ugk(t) converges to g(t) a.e." This means that for any chosen value of t (except 

possibly in a set of measure zero), we have gk(t) —»• g(t) as k -* oo. 

Monotone convergence theorem. Suppose (a) {gk(t)} is non decreasing a.e. (i.e., for almost all 

values of t, gk(t) is non decreasing in k) and (b) /gk(t)dt is a bounded sequence. Then {gk{t)} converges 

a.e. to a Lebesgue integrable function g(t) and limk J gk(t)dt = / limfc gk{t)dt, i.e., \imk Jgk(t)dt = /g{t)dt. 

That is, we can interchange the limit with the integral. 

Dominated convergence theorem. Suppose (a) {gk{t)} is dominated by a nonnegative Lebesgue 

integrable function f(t) i.e., \gk(t)\ < f(t) a.e., and (b) {gk(t)} converges to a limit g(t) a.e. Then the limit 

g(t) is Lebesgue integrable and limfc / gk(t)dt = J lim* gk(t)dt, i.e., lim* / gk(t)dt = J g(t)dt. That is, we can 

interchange the limit with the integral. 

Levi's theorem. Suppose /££=! \9k(t)\dt is a bounded sequence in m. Then J J2T=i 9k(t)dt = 

EfcLi f9k{t)dt. In particular this means that £~ x gk{t) converges a.e. to a Lebesgue integrable function. 

This theorem permits us to interchange infinite sums with the integrals. 

Fatou's Lemma. Let (a) gk(t) > 0 a.e., (b) gk{t) - g(t) a.e., and (c) Jgk(t)dt < A for some 

0 < A < oo. Then the limit g(t) is Lebesgue integrable and J g(t) < A. (There exist stronger versions of 

this result [Rudin, 1966], but we shall not require them here.) 

6.2. Lp signals 

Let p be an integer such that 1 < p < oo. A signal x(t) is said to be an V signal if (it is measurable, and) 

/ \x(t)\Pdt exists. We define the LP norm of x(t) as ||a;(t)||p = [J \x(t)\Pdt]l/P. For fixed p the set of L" signals 

forms a vector space. It is a normed linear vector space, with norm defined as above. The term "linear" 

means that if x{t) and y{t) are in V, then ax{t) + ßy(t) is also in IS for any complex a and ß. 

Since any two signals x(t) and y(t) that are equal a.e. cannot be distinguished (i.e., ||a;(t) - y(t)\\ = 0), 

each element in LP is in reality "a set of functions that are equal a.e". Each such set becomes an "equivalence 

class" in mathematical language. 

47 



For p = 2 the quantity \\x(t)\\2p is equal to the energy of x(t), as denned in signal processing texts. Thus 

an L2 signal is a finite-energy (or square-integrable) signal. For p = oo the above definitions do not make 

sense, and we simply define L°° to be the space of essentially bounded signals. A signal x(t) is said to be 

essentially bounded if there is a number B < oo such that \x(t)\ < B a.e. We often omit the term "essential" 

for simplicity; it arises because of the "a.e." in the inequality. The norm ||ar(*)l|oo is taken as essential 

supremum of \x(t)\ over all t. That is, ||ar(t)!|oo is the smallest number such that \x(t)\ < \\x(t)\\x a.e. 

For us Ll,L2 and L°° functions are particularly interesting. Note that neither L1 nor L2 contains the 

other. However bounded X1 functions are in L2, and L2 functions on bounded intervals are in L1. That is, 

L'HL^CL2,        and       L2[a,b] C Ll[a,b}. (6.1) 

Thus L2 is already bigger than bounded L1 functions. Moreover, 

x(t) e L1 n L°°        =>•        x(t) 6 Lp for all p > 1. 

This follows because \x(t)\" < \x(t)\ \\x(t)\\^\ Thus, \x(t)\? is (measurable and) bounded by a Lebesgue 

integrable function (since \x(t)\ is integrable), and is therefore integrable. 

Orthonormal signals in L2 

The inner product (x(t), y(t)} = J x{t)y*(t)dt always exists for any x(t) and y{t) in L2. Thus the product 

of two L2 functions is an Ll function. If (x{t),y(t)) = 0 we say that x(t) and y(t) are orthogonal. Clearly 

\\x(t)\\22 = (x(t),x(t)). Consider a sequence {g„(t)} of signals such that any pair of these are orthogonal, 

and \\gn(t)h = 1 for all n. This is said to be an orthonormal sequence. The following two results are 

fundamental. 

Theorem 6.1. Let {g„(t)}, 1 < n < oo be an orthonormal sequence in L2. Define c„ = {x(t),g„{t)) for 

some x(t) 6 L2. Then the sum ^n lc"l2 converges, and £n |c„|2 < ||x(*)||2. 0 

Theorem 6.2. (Riesz-Fischer theorem). Let {#„(*)}, 1 < n < oo be an orthonormal sequence in L2 

and let {c„} be a sequence of complex numbers such that £n \cn\2 converges. Then there exists x(t) e L2 

such that cn = (x(t),gn(t)), and x{t) = En cn5n(i) (with equality interpreted in the L2 sense, see below). 0 

The space L2 is more convenient to work with, than L1. For example the inner product and the concept 

of orthonormality are undefined in L1. Moreover, as we shall see Sec. 6.3, the Fourier transform in L2 has 

more time-frequency symmetry than in L1. In Sec. 7.3 we will define unconditional bases, which have the 

property that any rearrangement continues to be a basis. It turns out that any orthonormal basis in L2 is 

unconditional, whereas the I1 space does not even have an unconditional basis! 
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Equality and Convergence in Lp Sense 

Let x(t) and y(t) be Lp functions (p < oo). Then ||a:(t) - y(t)\\p = 0 if and only if x(t) = y(t) a.e. Thus 

if x{t) and y(t) differ only for every rational t we still have ||ar(t) - y(t)\\p = 0. Whenever ||a;(t) - y(t)||p = 0, 

we say that x(t) = y(t) in V sense. Now consider a statement of the form 

oo 

x(t) = YJCn9n(t) (6-2) 
n=l 

for p < oo, where #„(*) and x(*) are in Lp. This means that the sum converges to x(t) in the Lp sense, that 

is \\x(t) - ELI 
cnffn(*)llp Soes t0 zero as iV -> oo. If we modify the limit x{t) by adding some number to 

x{t) for all rational t, the result is still a limit of £*=1 cnff„(«) in the Lp sense! 27 limits are unique only in 

the a.e. sense. We omit the phrase "in the V sense" whenever it is clear from the context. 

The tp Spaces 

Let p be an integer with 1 < p < oo. The collection of all sequences x(n) such that £„ \x(n)\p 

converges to a finite value is denoted £p. This is a linear space with norm \\x{n)\\ defined such that 

||x(ra)|| = (En \x(n)\P)1/P- Unlike Lp spaces, the ip spaces satisfy the following inclusion rule: 

e1 c£2ce3 c... e°° (6-3) 

The spaces f and £2 are especially interesting in circuits and signal processing. If h(n) € £l then Y,n \H
n)\ < 

oo. This is precisely the condition for the BIBO (bounded-input bounded-output) stability of a linear time 

invariant system with impulse response h(n) [Oppenheim, et al., 1983]. 

Continuity of Inner Products 

If {x„(t)} is a sequence in L2 and has an L2 limit x(t), then for any y(t) G L2, 

nIjm (*»(«).y(t)) = (jirn^xn(t),y(t)) = (x(t),y(t)) (6.4) 

with the second limit interpreted in the L2 sense. Thus, limits can be interchanged with inner prod- 

uct signs. Similarly infinite summation signs can be interchanged with the inner product sign, that is, 

EZ=i(anXn(t),y{t)) = (E"=i <*nXn(t), »(*)). Provided the second summation is regarded as an L2 limit. 

These follow from the fundamental property that inner products are continuous [Rudin, 1966]. 

Next suppose {xn(t)} is a sequence of functions in V for some integer p > 1 and suppose x„(t) -> x(t) 

in the V sense. Then ||I„(*)IIP -» II^OIIP ** welL We can rePhrase this M 

lim ||i„(t)||P = II um x„(t)\\p = \\x(t)\\P (6-5) 
n—*oo n—>oc 

49 



Thus the limit sign can be interchanged with the norm sign, where the limit in the second expression is in 

the V sense. This follows because | |M*)||P - ||x(t)||P | < IM«) - *(*)IIP -+ 0 as n - oo. 

6.3. Fourier transforms 

The Fourier transform (FT) is defined for L1 signals and L2 signals in different ways, t The properties of 

these two types of FT are significantly different. In the signal processing literature, where we ultimately seek 

engineering solutions (such as filter approximation with rational transfer functions), this distinction often is 

not necessary. But when we try to establish that a certain set of signals is a basis for a certain class, we have 

to be careful, especially if we use tools such as the FT, convolution theorem, and so forth (as we implicitly 

did in Sec. 2). Detailed references for this section include Rudin [1966], Apostol [1974], and Chui [1992a]. 

The L1 Fourier Transform. 

Given a signal x(t) e L1, its Fourier transform A'(w) (the L1 FT) is defined in the way familiar to 

engineers: 
/oo 

x(t)e-jutdt (6.6) 

The existence of this integral is assured by the fact that x(t) is in L1} In fact the above integral exists if 

and only if x(t) £ L1. The Ll Fourier transform has the following properties: 

1. X(ui) is a continuous function of w. 

2. X(oj) -* 0 as |w| —> oo. This is called the Riemann-Lebesgue Lemma. 

3. X(u) is bounded, and \X(u)\ < \\x(t)\\i. 

In engineering applications we often draw the ideal lowpass filter response (F(u) in Fig. 2.3) and consider 

it as the Fourier transform of the impulse response /(*). But this frequency response is discontinuous and 

already violates Property 1. This is because /(£) is not in Ll and F(u) is not the I^FT of /(*). That f(t) 

is not in L1 is consistent with the fact that the ideal filter is not BIBO stable (i.e., a bounded input may 

not produce bounded output, since / \f(t)\dt is not finite). 

The inverse Fourier transform. In general the FT X(u) of an I1 signal is not in Ll. Example: if 

x(t) is the rectangular pulse, then A'(w) is the sine function which is not absolutely integrable. Thus the 

familiar inverse transform formula 
1 roc 

x(t) = -!- /      X(u)e>utdu (6-7) 
2T J-oo 

t For more general signals the FT can sometimes be defined in the "distribution sense"; see Appendix A. 

t Since x(t) is Lebesgue integrable (hence measurable) the product a;(t)e_^( is measurable, and it is 

bounded by the integrable function \x(t)\. So x(t)e JUJt is integrable. 
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does not make sense in general. However since X(OJ) is continuous and bounded, it is integrable on any 

bounded interval, so f^cX(ij)ejutdu/2ir exists for any finite c. This quantity may even have a limit as 

c -> oo, even if the Lebesgue integral or improper Rieman integral, does not exist. Such a limit (the Cauchy 

principal value) does represent the original function x(t) under some conditions. 

Case 1. Thus, suppose x(t) € L1 and suppose that it is of bounded variation in an interval [a,b], that 

is, it can be expressed as the difference of two nondecreasing functions [Apostol, 1974]. Then we can show 

that the above Cauchy principal value exists, and 

*(**> + *(*-> = lim ± f XMe^d» 
2 c^oo 2TT J_C    

V
   

; (6.8) 

for every t G (o,6). The notations x(t~) and x(t+) are the left hand limit and right hand limit, respectively, 

of x(-) at t; for functions of bounded variation, these limits can be shown to exist. If x(-) is continuous at t, 

then x(t~) = x(t+) = x(t) and the above reduces to the familiar inversion formula. 

Case 2. Suppose now that x(t) G L1 and X(w) G Ll as well. Then the integral y(t)= J™ X(w)eJU"dw/27r 

exists as a Lebesgue integral, and y(t) = x(t) almost everywhere [Rudin, 1966]. In particular, if x(-) is 

continuous at t then x(t) = f™ X(u)eju}tdui/2n. 

It turns out that if x(t) and A(w) are both in Ll then they are both in L2 as well. This is shown as 

follows: since x(t) G Ll implies that X(u>) is bounded, we see that X(OJ) G Ll n X°°. So X(u>) G Xp for all 

integer p (Sec. 6.2). In particular X(u) G I2, so x(t) G L2 as well (by Parseval's relation, see below). 

The L2 Fourier Transform 

The L1 Fourier transform lacks the convenient property of time-frequency symmtery. For example, 

even though x(t) is in L1, X{u) may not be in L1. Also even though x(t) may not be contiuous, X(u) is 

necessarily continuous. The space L2 is much easier to work with. Not only can we talk about inner products 

and orthonormal bases, there is also perfect symmetry between time and frequency domains, as we shall see. 

We need to define the L2-FT differently because the ususal definition (6.6) is meaningful only for Ll signals. 

Suppose x(t) G L2 and we truncate it to the interval [-n, n]. This truncated version is in L1 because of (6.1), 

and its L1 Fourier transform exists: 

Xn(u) =  I" x{t)e-iutdt (6.9) 
J — n 

It can be shown that A"„(w) is in L2 and that the sequence {Xn(u)} has a limit in L2. That is, there exists 

an L2 function A"(w) such that 

lim \\Xn{u)-X(u)\\2=0 (6-10) 

This limit X(u) is defined to be the L2 Fourier transform of x(t). Some of the properties are listed next. 

51 



1. X(üJ) is in L2 and we can compute x(t) from A"(w) in an entirely analogous manner, namely the L2 

limit of J2nX{u)e^utdu;/2ir. 

2. If x(t) is in L1 and L2, then the above computation gives the same answer as the L1 FT (6.6) a.e. For 

example consider the rectangular pulse x(t) = 1 in [-1,1] and zero otherwise. This is in L1 and L2 and 

the Fourier transform using either definition is is X(UJ) = 2 sin u/u. This answer is in L2 but not in L . 

The inverse Z2-FT of X(u>) is the original x(t). 

3. If x(t) € L2 and X(u) € L1 then the Lebesgue integral J^ X{w)e^ld^/2-K exists, and equals x(t) a.e. 

4. Parseval's relation holds, i.e., v/2JF|K0ll2 = ||X(w)||2. Thus the FT is a linear transformation from 

L2 to L2 which preserves norms except the scale factor y/2Ü. (Note that this would not make sense if 

x(t) were only in L1.) In particular it is a bounded transformation because the norm ||X(w)||2 in the 

transform domain is bounded by the norm ||a;(t)||2 in the original domain. 

5. Unlike the L1 FT, the L2 FT X(u) need not be continuous. For example, the impulse response of an 

ideal lowpass filter (sine function) is in L2 and its Fourier transform is not continuous. 

6. Let {/„(*)} be a sequence in L2 and let x(t) = £„cn/n(*) be a convergent summation (in the L2 

sense). With upper case letters denoting the i2-FTs, we then have X{u) = £n cnFn(uj). This result is 

obvious for finite summations because of linearity of the FT. For infinite summations this follows from 

the property that the I2-FT is a continuous mapping from L2 to L2. (This in turn follows from the 

result that it is a bounded linear transformation [Naylor and Sell, 1982]). The continuity allows us to 

move the FT operation inside the infinite summation. 

Thus there is complete symmetry between the time and frequency domains. The L2-FT is a one-to-one 

mapping from L2 onto L2. Moreover since ^\\x(t)\\2 = ll-^MIb, it is a norm preserving mapping - one 

says that the L2-FT is an isometry from L2 to L2. 

The lx Fourier Transform. 

If a sequence x{n) 6 ll then its discrete-time FT X(e>") = E„iWe-ju" exists, and is the f FT of 

x(n). It can be shown that X(ej") is a continuous function of u> and that |A"(eJW)| is bounded. 

6.4. Convolutions 

Suppose h(t) e V- and x(t) € V for some p in 1 < p < oo. Then the familar convolution integral defined 

by (x * h)(t) = Jx(r)h(t - T)AT exists for almost all t [Rudin, 1966]. If we define a function y(t) to be 

x*h where it exists and to be zero elsewhere, the result is in fact an Lp function. We simply say that the 

convolution of an L1 function with an Lp function gives an V function. By recalling that an LTI system is 

stable (i.e., BIBO stable, Sec. 1), if and only its impulse response is in I1, we therefore have the following 
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examples: 

1. If an L1 signal is input to a stable LTI system, the output is in L1. Since the convolution of two L1 

signals is in L1, the cascade of two stable LTI systems is stable, a readily accepted fact in engineering. 

2. If an L2 signal (finite energy input) is input to a stable LTI system, the output is in L2. 

3. If an L°° signal is input to a stable LTI system, the output is in L°° (i.e., bounded inputs produce 

bounded outputs). 

Ux(t) and h(t) are both in I1, their convolution y(t) is in L\ and all three signals have I1 Fourier transform. 

The convolution theorem [Rudin, 1966] says that these three are related as Y(u) - H(u)X(u). When signals 

are not necessarily in L1 we cannot in general write this, even if convolution might itself be well defined! 

Convolution Theorems for L2 Signals 

For all our discussions in the preceding sections, the signals have been restricted to be in L2 but not 

necessarily in L1. In fact, even the filters are often only in L2. For example, ideal bandpass filters (Fig 2.8) 

are unstable, and therefore only in L2. For arbitary L2 signals x(t) and h(t), the convolution theorem does 

not hold. We therefore need to understand L2 convolution more carefully. 

Assume that x(t) and h(t) are both in L2. Their convolution y(t) = J x(r)h(t - r)dr exists for all 

t, since the integral is just an inner product in L2. Using Schwartz inequality [Rudin, 1966], we also have 

\y(t)\ < \\x{t)\\2\\h(t)\\2, that is y(t) € £°°- Suppose the filter h(t) has the further property that the frequency 

response H(u) is bounded, that is, \H(w)\ < B a.e., for some B < oo. Then we can show that y(t) € L2, 

and that the convolution theorem holds, that is Y(u) = H(u)X(u). To prove this, note that 

y(t) fx(T)h(t - T)dr = i- [ X(u)H(u)eiüjtduj (6.11) 

from Parseval's relation which holds for L2 signals [Rudin, 1966]. If \H(v)\ < B, then \X(W)H(UJ)\
2
 < 

B2\X(u})\2. So \X(UJ)H(LJ)\
2
 is bounded by the integrable function |A'(w)|2, and is therefore integrable (Sec. 

6.1). Thus X(u)H(u) £ L2, and the preceding equation establishes that y(t) € L2. The equation also shows 

that y(t) and H{u)X{u) form an L2 FT pair, so Y{u) = H(u>)X{w) indeed. 

Bounded L2 filters. Filters for which h(t) € L2 and H(ui) bounded will be called bounded L2 filters. 

The preceding discussion shows that bounded L2 filters admit the convolution theorem though arbitrary L2 

filters do not. Another advantage of bounded L2 filters is that a cascade of two bounded L2 filters hi (t) and 

h2(t) is a bounded L2 filter, just as a cascade of two stable filters would be stable. To see this note that 

the cascaded impulse response is the convolution h(t) = (hi * h2)(t). By the preceding discussion, h(t) € L2, 

and moreover H(ui) = HI(LJ)H2(CJ). Clearly H(u) is still bounded.  Bounded L2 filters are therefore very 
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convenient to work with. Fortunately, all filters in the discussion of wavelets and filter banks are bounded L2 

filters, even though they may not be BIBO stable (like the ideal bandpass filters in Fig. 2.8). We summarize 

the preceding discussions as follows: 

Theorem 6.3. Convolution of L2 functions. We say that h(t) is a bounded L2 filter if h(t) £ L2 

and \H(LJ)\ < B < oo a.e. 

1. Let x{t) e L2, and let h(t) be a bounded L2 filter. Then y(t) = (x * h)(t) exists for all t and y(t) € L2. 

Moreover Y(UJ) = H(UJ)X(U). 

2. If hi(t) and h2(t) are bounded L2 filters, then their cascade h(t) = (hi * h2)(t) is a bounded L2 filter, 

and H(UJ) = HX(U>)H2{UJ). 0 

7. RIESZ BASIS. BIORTHOGONALITY, AND OTHER FINE POINTS 

In a finite dimensional space such as the space of all iV-component Euclidean vectors, the ideas of basis and 

orthonormal basis are easy to appreciate. When we extend these ideas to infinite dimensional spaces (i.e., 

where the basis {gn(t)} has infinite number of functions), a number of complications and subtleties arise. 

Our aim is to point these out here. References for this section include [Riesz and Nagy, 1955], and [Haaser 

and Sullivan, 1971], [Young, 1980], [Chui, 1992a], and [Daubechies, 1992]. 

Readers familiar with Hubert spaces will note that the L2 space is a Hilbert space; all our developments 

here are valid for any Hilbert space H. Elements in H (vectors) are typically denoted x,y and so forth. 

When we deal with the Hilbert space L2, the vectors are functions and are denoted as x(t), y(t) and so forth 

for clarity. Similarly for the special case of Euclidean vectors we use bold face, e.g., x, y and so forth. The 

reader not familiar with Hilbert spaces can assume that all discussions are in L2 and that x is merely a 

simplification of the notation x(t). 

7.1. Finite dimensional vector spaces 

We will first look at the finite dimensional case and then proceed to the infinite dimensional case. Consider 

an N x N matrix F = [fi h ■■• fN ] ■ We assume that this is nonsingular, that is, the columns f„ 

are linearly independent. These column vectors form a basis for the iV-dimensional Euclidean space CN of 

complex iV-component vectors. This space is an example of a finite dimensional Hilbert space, with inner 

product defined as (x,y) = ytx = £^=1 xny*n. The norm ||x|| induced by this inner product is defined as 

||X|| = v/(xTx). Thus ||X||2 = xtx = EnLl KP- 

Any vector x £ CN can be expressed as x = J2n=i c"*" ^or some uniquely determined set of scalars c„. 

We can abbreviate this as x = Fc where c = [ c-y    c2    ...    cN ]T . The matrix F can be regarded as a linear 
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transformation from CN to CN. The nonsingulaxity of F means that for every xeCwe can find a unique 

c such that x = Fc. 

Boundedness of F and its Inverse. 

In practice we have a further requirement, namely that if the norm ||c|| is "small" then ||x|| should 

also be "small", and vice versa. This requirement implies, for example, that if there is a small error in the 

transmission or estimate of the vector c then the corresponding error in x is also small. From the relation 

x = Fc we obtain 

||x||2 = xtx = ctFtFc (7.1) 

Letting AM and Xm denote the maximum and minimum eigenvalues of FTF it then follows that ||x||2 > 

Am||c||2 and that ||x||2 < AM||c||2. That is, 

<||X||
2
<AM||C| (7.2) 

with 0 < Am < AM < oo, where 0 < Am follows from nonsingularity of F. Thus the transformation F which 

converts c into x has an amplification factor bounded by \M in the sense that ||x||2 < AM||C||
2
. Similarly 

the inverse transformation G = F_1 which converts x into c has amplification bounded by 1/Am. Since 

AM is finite, we say that F is a bounded linear transformation. And since Am # 0 we see that the inverse 

transformation is also bounded. 

Using x = £„ c„f„ and ||c||2 = £n |cn|
2 we can rewrite the preceding inequality as 

A£>n|2<   £>fn  |2<5^|cn| (7.3) 

where A = Am > 0 and B = XM < oo, and all summations are for 1 < n < N. Readers familiar with the idea 

of a Riesz basis in infinite dimensional Hilbert spaces will notice that the above is in the form that agrees 

with that definition. We will return to this later. 

Biorthogonality 

With F_1 denoted as G, let gl denote the rows of G, that is 

G = 

EN 

,    F = [fi    f2 fjv] (7.4) 

The property GF = I implies gjf„ = 6(k - n), that is 
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for l<k,n<N. Equivalently, (g*,f„) = 6(k - n). 

Two sets of vectors {f„} and {gfc} satisfying (7.5) are said to be biorthogonal. Since c = F_1x = Gx 

we can write the elements of c as cn = g„x = (x,g„). Then x = £„c„f„ = En(x>g»)fn- Since G' 1S a 

nonsingular matrix, we can use its columns g„ (instead of the columns of F) to obtain a similar development, 

and express the arbitrary vector x € CN as x = £n(x, fn)gn. Thus 

x = £>, g„>f„ = £>, f„)gn, (7-6) 
n n 

where the summations are for 1 < n < N. By using the expressions cn = (x,g„) and x = £„ cnin we can 

rearrange the inequality (7.3) into B~l\\xf < £n l(x,g,)|2 < ^_1 W2- With the columns gn of Gt (rather 

than the columns of F) used as the basis for CN we obtain similarly 

^INI2 < 53|(x,f^>|2 < J3||x||2 (7-7) 
n 

where 1 < n < N, and A = Am, B = \M again. Readers familiar with the idea of a frame in an infinite 

dimensional Hilbert space will recognize that the above inequality defines a frame {f„}. We will return to 

this in Sec. 8. 

Ort honormality. 

The basis f„ is said to be orthonormal if (ffc,fn) = 6(k-n) i.e., f]ffc = 6{k-n). Equivalently F is unitary, 

that is FtF = I. In this case the rows of the inverse matrix G are the quantities fj. Since FIF = I we have 

Am = AM = 1, that is, A = B = 1. With this, (7.2) becomes ||c|| = ||x||, that is, £n |cn|
2 = || En c"f« II2- 

Thus (7.3) is a generalization of the orthonormal situation. Similarly biorthogonality (7.5) is a generalization 

of orthonormality. 

7.2. Basis in infinite dimensional spaces 

When the simple idea of a basis in a finite dimensional space (e.g., the Euclidean space CN) is extended 

to infinite dimensions, several new issues arise which make the problem nontrivial. Thus consider the 

sequence of functions {/„},1 < n < oo in a Hilbert space H. Because of the infinite range of n we now 

have to consider linear combinations of the form £n°=i c„/„. The problem that immediately arises is one of 

convergence. For arbitrary sequences cn this sum does not converge, so we have to replace the statement 

"all linear combinations" with something elseJ 

t In our review we will use 1 < n < oo to be consistent with standard math texts, but all the crucial 

results hold for doubly infinite sequences and summations, i.e., for the case -oo < n < oo. This is what we 

need in the case of Fourier and wavelet bases, see for example Eq. (2.3) and (2.4). 
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Closure of span. Let us first define the set of all finite linear combinations of the form Yln=\ cnfm 

where N varies over all integers > 1. This is called the span of {/„}. Now suppose x € H is a vector not 

necessarily in the span of {/„} but can be approximated as closely as we wish, by vectors in the span. In 

other words given an e > 0 we can find N and the sequence of constants cn;v such that 

N 

liar 
n=l 

- Y,cnNfn\\ <e, (7.8) 

where ||i|| is the norm defined as ||x|| = y/(x,x). If we append all such vectors x to the span of {/„} we get 

the closure of the span of {/„}.* Note that cnN in general depends on e since N depends on e. 

Completeness. We say that a sequence of vectors {/„} is complete in H if the closure of the linear span 

of {/„} equals H. Thus anyxeW can be approximated, as closely as we wish, by finite linear combinations 

of /„ in the sense (7.8). This is also expressed by saying that the linear span of {/„} is dense in H. It 

turns out that completeness of {/„} in a Hilbert space is equivalent to the statement that the only vector 

orthogonal to all /„ is the zero vector. 

Infinite summations. When we write x = X)~=1 c„f„ we mean that the infinite summation converges 

to x in the norm of H. In other words, given € > 0 there exists n0 such that 

N 

\\x-J2cnfn\\<(       for all iV > n„. (7-9) 
n=l 

This statement is stronger than saying that x is in the closure of the linear span of {/„}. The latter statement 

only requires (7.8), where N, and hence cnN, depends on e. In the former statement (7.9), {cn} is a fixed 

sequence. 

Linear independence. 

Let {/„}, n = 1,2, ... be a sequence of vectors in an infinite dimensional Hilbert space H. Unlike in a 

finite dimensional space, one has to distinguish between several types of linear independence. 

Type 1: {/„} has finite linear independence if Y,„=\ cnfn - 0 for any finite N implies c» = 0,1 < n < N. 

Type 2: {/„} is u-independent if £* j cnfn = 0 implies cn = 0 for all n (where the infinite sum is 

interpreted as explained above). 

Type 3. {/„} is minimal if none of the fm is in the closure of the span of the remaining set of /„. 

Type 3 independence implies Type 2, which in turn implies Type 1. Thus, Type 3 is the strongest kind of 

linear independence. The reason why it is stronger than Type 2 is this: Type 2 implies that we cannot have 

i The term "closure" has its origin from the theory of metric spaces, more generally topological vector 

spaces. We will not require the deeper, more general meaning here. 
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fm = "En*™. c"/"- However, for a Type 2 independent sequence {/„}, it is possible that we can make 

||/m-f>jv/„||<e (7-10) 
n = l 

for any given e > 0 by choosing iV and cnN properly. § Type 3 linear independence prohibits even this. 

Example 7.2 will make this distinction clearer. 

Basis or Shcauder basis. A sequence of vectors {/„} in H is a Schauder basis for H if (i) any x S H 

can be expressed as x = £~ x cn/„, and (b) the sequence of scalars {c„} is unique for a given x. The second 

condition can be replaced with the statement that {/„} is w-independent. A subtle result for Hilbert spaces 

[Young, 1980] is that a Schauder basis automatically satisfies minimality (i.e., Type 3 independence). 

A Schauder basis is w-independent and complete in the sense defined above. Conversely, w-independence 

and completeness do not imply that {/„} is a Schauder basis; completeness only means that we can ap- 

proximate any vector as closely as we wish in the sense of (7.8) where ckN depend on N. In this chapter 

"independence" (or linear independence) stands for w-independence. Similarly "basis" stands for Schauder 

basis unless qualified otherwise. 

7.3. Riesz Basis 

Any basis {f„} in a finite dimensional space satisfies (7.3), which in turn ensures that the transformation 

from x to {cn} and that from {cn} to x are stable. For a basis in an infinite dimensional space, Eq. (7.3) is 

not automatically guaranteed, as shown by the following example. 

Example 7.1. Let {en}, 1 < n < oc be an orthonormal basis in a Hilbert space H and define the 

sequence {/„} by /„ = en/n. Then we can show that /„ is still a basis, i.e., it satisfies the definition of a 

Schauder basis. Suppose we pick x = eek for some k. Then x = £„ c„/„ with ck = ek, and cn = 0 for all 

other n. Thus En lc"l2 = f2fc2 and Srows as k increases> though ||z|| = e for all k. That is, a "small" error in 

x can get amplified in an unbounded manner. Recall that this could never happen in the finite dimensional 

case (Sec. 7.1 ) because A > 0 in Eq. (7.3). For our basis {/„}, we can indeed show that there is no A > 0 

satisfying (7.3)! To see this let c„ = 0 for all n except that ck = 1. Then £„ cn/„ = fk = ek/k and has 

norm 1/k. So (7.3) reads A < 1/k2 < B for all k > 1. This is not possible with A > 0. 0 

If {en}, 1 < n < oo is an orthonormal basis in an infinite dimensional Hilbert space H, then any vector 

§ As we make e smaller and smaller, we may need to change N and all coefficients ckN. Therefore, this 

does not imply fm = En^m c"f» for fixed iCn^ 
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X e H can be expressed uniquely asi = Y^=\ c™e" wnere 

oo 

WxY2 

This property automatically ensures the stability of the transformations from x to {cn} and vice versa. The 

Riesz basis is defined such that this property is made more general. T 

Definition of a Riesz basis. A sequence {/„}, 1 < n < oo in a Hubert space H is a Riesz basis if it 

is complete (Sec. 7.2.) and there exist constants A and B such that 0 < A < B < oo and 

OO OO 2 °° 

^Elc«M|£c^|   ^BEM2 <7.H) 
n=l n=l n=l 

for all choice of c„ satisfying £n |c„|2 < oo. v 

In a finite dimensional Hilbert space, A and B come from the extreme eigenvalues of a nonsingular 

matrix FtF, so A > 0 and B < oo automatically (Sec. 7.1). That is, any basis in a finite dimensional space 

is a Riesz basis. As Example 7.1 shows, this may not be the case in infinite dimensions. 

Unconditional basis. It can be shown that a Riesz basis is an unconditional basis, that is, any 

reordering of {/„} is also a basis (and the new c„ are the correspondingly reordered versions). This is a 

nontrivial statement; an arbitrary (Schauder) basis is not necessarily unconditional; in fact the space of L1 

functions (which is a Banach space, not a Hilbert space) does not have an unconditional basis. 

Role of the Constants A and B 

1. Strongest linear-independence. The condition A > 0 means, in particular, that £n cn/„ ^ 0 unless cn 

is zero for all n. This is just w-independence. Actually the condition A > 0 means that the vectors {/„} 

are independent in the strongest sense (Type 3), that is, {/„} is minimal. To see this assume this is 

not the case. That is, suppose some vector fm is in the closure of the span of the others. Then, given 

arbitrary e > 0 we can find N and cnN satisfying (7.8) with x = fm. Defining c„ = -cnN for n^m and 

cm = 1, we see that (7.11) implies -4(l + £n9,m |cniv|2) < e2- Since e is arbitrary, this is not possible for 

A>0. 

2. Distance between vectors. The condition A > 0 also implies that no two vectors in {/„} can get 

"arbitrarily close". To see this, choose ck = -cm = 1 for some k,m and cn = 0 for all other n. Then 

t For readers familiar with bounded linear transformations in Hilbert spaces, we state that a basis is a 

Riesz basis if and only if it is related to an orthonormal basis via a bounded linear transformation with 

bounded inverse. 
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(7.11) gives 2A < \\fk - fm\\2 < IB. That is, the distance between any two vectors is at least V2Ä, at 

most \[1B. 

3. Bounded basis. A Riesz basis is a bounded basis in the sense that ||/n|| cannot get arbitrarily large. In 

fact, by choosing c„ = 0 for all but one value of n, we can see that 0 < A < ||/„||2 < B < oo. That 

is, the norms of the vectors in the basis cannot get arbitrarily small or large. Note that the basis in 

Example 7.1 violates this, since ||/„|| = 1/n. Therefore, Example 7.1 is only a Schauder basis and not 

a Riesz basis. 

4. Stability of Basts. The condition A > 0 yields £„ |cn|
2 < A^xW2 where x = £R c"/n- This means 

that the transformation from the vector x to the sequence {cn}, is bounded; so a small error in x is not 

amplified in an unbounded manner. Similarly the inequality ||a;||2 < B £n \cn\2 shows that the role of B 

is to ensure that the inverse transformation from cn to x is bounded. Summarizing, the transformation 

from x to {c„} is numerically stable (i.e., small errors not severly amplified) because A > 0 and the 

reconstruction of x from {c„} is numerically stable because B < oo. 

5. Orthonormality.    For a Riesz basis with A = B = 1 the condition (7.11) reduces to £Jc„|2 = 

||E„c"/nll2- lt can be shown that such a Riesz basis is Just an orthonormal basis- The ProPerties 

listed above show that the Riesz basis is as good as an orthonormal basis in most applications. It can 

be shown that any Riesz basis can be obtained from an orthonormal basis by means of a bounded linear 

transformation with bounded linear inverse. 

Example 7.2. Mishaps with system which is not a Riesz basis. Let us modify Example 7.1 to 

/„ = (en/n) + ei , n > 1, where {e„} is an orthonormal basis. It turns out that as n -> oo the vectors /„ get 

arbitrarily closer together (though ||/„|| approaches unity from above). Formally fn-fm = (e„/n) - (em/m), 

so ||/n _ /m||2 = (1/n2) + (1/m2), which goes to zero as n, m -» oo. Thus there is no A > 0 satisfying (7.11) 

(because of comment 2 above). This, then, is not a Riesz basis (in fact this is not even a Schauder basis, see 

below). This example also has B = oo. To see this let cn = 1/n, then £n |c„|2 converges but || £n=1 cn/n||
2 

does not converge as N -> oo (as we can verify), so (7.11) is not satisfied for finite B. Such mishaps cannot 

occur with a Riesz basis. 

In this example {/„} is not minimal (which is Type 3 indenendence). To see this note that ||/i - /„|| 

gets arbitrarily small as n increases to infinity. So h is in the closure of the span of {/„},« # 1. However 

{/„} is ^-independent; there is no sequence {cn} such that || £li c„/„|| - 0 as N -* oo. In any case, 

the fact that {/„} is not minimal (i.e., not independent in the strongest sense) shows that it is not even a 

Schauder basis (see Sec. 7.2). 
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7.4. Biorthogonal Systems. Riesz Bases and Inner Products 

When discussing finite dimensional Hubert spaces (Sec. 7.1) we found that given a basis f„ (columns of a 

nonsingular matrix) we can express any vector x as a linear combination x = £„{x,g„)f„ where gn is such 

that the biorthogonality property (fm,g„) = 6(m - n) holds. A similar result is true for infinite dimensional 

Hubert spaces. 

Theorem 7.1. Biorthogonality and Riesz basis. Let {/„} be a basis in a Hilbert space H. Then 

there is a unique sequence {g„} biorthogonal to {/„}, that is, 

(fm,9n) = &(m ~n)        (biorthogonality). (7.12) 

Moreover the unique expansion of any x G H in terms of the basis {/„} is given by 

oo 

* = £>,</»>/„■ (7-13) 
n=l 

It is also true that the biorthogonal sequence {gn} is a basis and that x = £~=i(x' fn)gn- Moreover if {/„} 

is a Riesz basis, then £„ \(x,gn}\2 and £n l(z,/n}|2 are finite, and we have 

OO 

4|*||2<2>,/„)|2<*N|2 (7-14) 
n=l 

where A and B are the same constants as in the definition (7.11) of a Riesz basis. 0 

This beautiful result resembles the finite dimensional version (Sec. 7.1) where /„ corresponds to the 

column of a matrix and gn corresponds to the rows (conjugated) of the inverse matrix. In this sense we can 

regard the biorthogonal pair of sequences {/„}, {<?„} as inverses of each other. Both of these are bases for 

U. A proof of the above result can be obtained by combining the ideas on p. 28-32 of [Young, 1980]. The 

theorem implies, in particular, that if {/„} is a Riesz basis, then any vector in the space can be written in 

the form £~=1 c„/„, where c„ € f. 

Summary on Riesz basis. The Riesz basis {/„} in a Hilbert space H was defined in Sec. 7.3. The set 

{/„} is a complete set of vectors, linearly independent in the strongest sense (i.e., Type 3 or minimal.) It is a 

bounded basis with bounded inverse. Any two vectors are separated by at least y/2A, that is ||/„-/m|| > 2A. 

The norm of each basis vector is bounded as ||/„|| < y/B. In the expression x = £n cnfn the computation 

of x from cn as well as the computation of c„ from x are numerically stable, because B < oo and A > 0 

respectively. A Riesz basis with A = B = 1 is an orthonormal basis. In fact, any Riesz basis can be obtained 

from an orthonormal basis, via a bounded linear transformation with a bounded inverse. Given any basis 

{/„} in a Hilbert space, there exists a unique biorthogonal sequence {gn} such that we can express any x € H 
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as X =  £^=1(z,tf„)/n  ^ WeI1 ^ X = HZ:l(x>fn)9nl  if this basis is ^S0 a RieSZ baslS then Sn \(xJn)\2 

and £n K^^n)l2 are finite-   If {/"} is a Riesz basis' then any vect0r x € H Can be written in the form 

^ = m7=ic"/"'wbere cne ^2- 

8. FRAMES !N HUBERT SPACES 

A frame in a Hilbert space U is a sequence of vectors {/„} with certain special properties. While a frame is 

not necessarily a basis, it shares some properties of a basis. For example we can express any vector x € H as 

a linear combination of the frame elements, i.e., x = £n c„/„. But frames in general have redundancy, that 

is the frame vectors are not necessarily linearly independent, even in the weakest sense defined in Sec. 7.2. 

We will see that the Riesz basis (hence any orthonormal basis) is a special case of frames. The concept of a 

frame is useful when discussing the relation between wavelets, short time Fourier transforms and filter banks. 

The idea of frames was introduced by Duffin and Schaeffer [1952], and used in the context of wavelets and 

STFT by Daubechies [1992]. Excellent tutorials can be found in Young [1980] and Heil and Walnut [1989]. 

Definition of a frame. A sequence of vectors {/„} in a (possibly infinite dimensional) Hilbert space 

H is a frame if there exist constants A and B with 0 < A < B < oo such that for any x € H we have 

oo 9 

4M2 <£|<*,/»> -5N|2- (8-1) 
n=l 

The constants A and B are called frame bounds. ^ 

In Sec. 7.4 we saw that a Riesz basis which by definition satisfies (7.11), also satisfies (7.14) which is 

precisely the frame definition! A Riesz basis is, therefore, also a frame. But it is a special case of a frame 

where the set of vectors is minimal (see below). 

Any frame is complete. That is, if a vector x € H is orthogonal to all elements in {/„} then x = 0 

(otherwise A > 0 is violated). Thus, any x € H is in the closure of the span of the frame. In fact, we 

will see that more is true, namely we can express x = £ cnfn, though {cn} may not be unique. The frame 

elements are not necessarily linearly independent, as demonstrated by examples below. A frame, then, is 

not necessarily a basis. Compare (8.1) with the Riesz basis definition (7.11), where the left inequality forced 

the vectors /„ to be linearly independent (in fact minimal). The left inequality for a frame only ensures 

completeness, not linear independence. 

8.1. Representing Arbitrary Vectors in Terms of Frame Elements 

We will see later that, given a frame {/„} we can associate with it another sequence {gn} called the dual 

frame, such that any element x € H can be represented as x = Y^=i{x'9n)fn- It turns out that we can also 
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write x = Y,7=i(x'fn)9n- This representation in terms of {/„} and {gn} resembles the biorthogonal system 

discussed in Sec. 7.4, but we will point out some differences later. 

Stability of computations. To obtain the representation x = Y,Z=i (x' fn)9n we compute (at least 

conceptually) the coefficients (x, /„) for all n. This computation is a linear transformation from H to the space 

of sequences. The inverse transform computes x from this sequence by using the formula x = E^Li ix, fn)gn- 

The condition B < oo in the frame definition ensures that the transformation from x to (x,/„) is bounded. 

Similarly the condition A > 0 ensures that the inverse transformation from (x, /„) to x is bounded. Thus 

the conditions A > 0 and B < oo ensure stability; small errors in one domain are not arbitrarily amplified in 

the other domain. A similar advantage was pointed out in Sec. 7.3 for the Riesz basis - for arbitrary bases 

in infinite dimensional spaces such an advantage cannot be claimed (Example 8.11). 

Instead of x = J2^=i(xJn)9n if we wish to use the dual representation x = £~=1(x,s„>/„ then we 

would have to compute (x,gn) and so forth; then the roles of A and B are taken up by 1/B and 1/A 

respectively, and similar discussions hold. This is summarized in Fig. 8.1. 

c„=<x,gn> c Linear 
transform 

c„ 

S table because A> 0 

n Linear 
transform 

X 

Stable because B< co 

Fig. 8.1. Representation of x using frame elements {/„}. 

The transformation from x to {cn} and vice versa are stable. 

8.2. Exact Frames, Tight Frames, Riesz Bases, and Orthonormal Bases 

The resemblance between a Riesz basis and a frame is striking. Compare (7.11) with (8.1). One might 

wonder what the precise relation is. So far we know that a Riesz basis is a frame. To go deeper, we need 

a definition: a frame {/„} which ceases to be a frame if any element fk is deleted is said to be an exact 

frame. Such a frame has no redundancy. A frame with A = B is said to be a tight frame. The defining 

property reduces to ||x||2 = A'1 £B |(a.-,/„)|2 resembling Parseval's theorem for an orthonormal basis. A 

frame is normalized if ||/„|| = 1 for all n. The following facts concerning exact frames and tight frames are 

fundamental. 

1. A tight frame with A = B = 1 and ||/„|| = 1 for all n (i.e., a normalized tight frame with frame bound 

= 1) is an orthonormal basis [Daubechies, 1992]. 
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2. {/„} is an exact frame if and only if it is a Riesz basis [Young, 1980]. Moreover, if a frame is not exact 

then it cannot be a basis [Heil and Walnut, 1989]. Thus if a frame is a basis it is certainly a Riesz basis. 

3. Since an orthonormal basis is a Riesz basis, a normalized tight frame with frame bound = 1 is automat- 

ically an exact frame. 

Examples. 

We now provide some examples which serve to clarify the preceding concepts and definitions. In these 

examples the sequence {en}, n > 1 is an orthonormal basis for H. Thus, {en} is a tight frame with A = B = 1, 

and ||e„|| = 1. 

Example 8.1. Let /„ = en/n as in Example 7.1. Then {/„} is still a (Schauder) basis for H but it is 

not a frame. In fact this satisfies (8.1) only with A = 0. That is, the inverse transformation (reconstruction) 

from {x, fn) to x is not bounded. To see why A = 0, note that if we let x = ek for some k > 0 then ||x|| = 1 

whereas *£n \(xJn}\2 = l/^2- The first inequality in the frame definition becomes A < 1/fc2 which cannot 

be satisfied for all k unless A = 0. In this example a finite B works because |(a:,/„)| = \(x,en)\/n for each 

n.So£|<:r,/n)|
2<£|<x,en)|2 = |N2- 0 

Example 8.2. Suppose we modify the above example as follows: define /„ = ^ + ej. We know that 

this is no longer a basis (Example 7.2). We now have B = oo in the frame definition, so this is not a frame. 

To verify this, let x = tx so ||z|| = 1. Then {x, /„> = 1 for all n > 1, so £n |(ar, /„)|2 does not converge to a 

finite value. 

Example 8.3. Consider the sequence of vectors {e1,ei,e2,c2,...} This is a tight frame with frame 

bounds A = B = 2. Note that even though the vectors are normalized and the frame is tight this is not a 

orthonormal basis: This has a redundancy of two in the sense that each vector is repeated twice. This frame 

is not even a basis, therefore not a Riesz basis. v 

Example 8.4. Consider the sequence of vectors {ex, %, ^, ^, %, ^,. • •} Again there is redundancy 

so it is not a basis. It is a tight frame with A = B = 1, but not an exact frame, and clearly not a basis. It 

has redundancy (repeated vectors). ^ 

Frame bounds and redundancy. For a tight frame with unit norm vectors /„, the frame bound 

measures the redundancy. In Example 8.3 the redundancy is two (every vector repeated twice) and indeed 

A _ ß _ 2. In Example 8.4 where we still have redundancy, the frame bound A = B = 1 does not indicate 

it. The frame bound of a tight frame measures redundancy only if the vectors /„ have unit norm as in 

Example 8.3. 
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8.3. The Frame Operator, Dual Frame, and Biorthogonality 

The frame operator T associated with a frame {/„} in a Hubert space Ti is a linear operator defined as 

follows: 
oo 

^ = 5>,/„)/„ (8-2) 
n=l 

The summation can be shown to be convergent using the definition of the frame. The frame operator T 

takes a vector IEH and produces another vector in H. It can be shown that the norm of Tx is bounded 

as follows: 

A||z|| < H^ll < B||a;||. (8.3) 

The frame operator is a bounded linear operator (since B < oo), hence a continuous operator [Naylor and 

Sell, 1982]. Its inverse is also a bounded linear operator (since A > 0). 

From Eq. (8.2) we have (Tx,x) - £„ |(a;,/n)|
2 by interchanging the inner product with the infinite 

summation. [This is permitted by the continuity of the operator T and the continuity of inner products 

(Sec. 6.2).] Since {/„} is complete, the right hand side is positive for x =£ 0. Thus {Fx,x} > 0 unless x = 0, 

that is, T is a positive definite operator. The realness of (Tx, x) also means that T is self-adjoint, that is, 

(Tx,y) = (x,Ty) for any x,y eH [Naylor and Sell, 1982]. 

The importance of the frame operator arises from the fact that if we define gn = T~l /„ then any i£M 

can be expressed as 
oo oo 

* = ][>,0„>/„ = $>,/„><&,. (8-4) 

The sequence {g„} is itself a frame in H called the dual frame. It has frame bounds B~x and A-1. Among 

all representations of the form x = £n c„/„, the representation x = £n(z,Sn)/n has the special property 

that the energy of the coefficients is minimized, that is, £„1(^5«) | < £„ |c«|2 with equality if and only 

if c„ = {x,gn) for all n [Heil and Walnut, 1989]. As argued earlier the computation of (x,fn) from x and 

the inverse computation of x from {x,f„} are numerically stable operations because B < oo and A > 0 

respectively. 

For the special case of a tight frame (A = B), the frame operator is particularly simple, that is Tx = Ax. 

In this case gn = T~l /„ = fn/A. Any vector x eH can be expressed as 

1   °° x = 7 Ufa» fn^fn (tight frames)- (8-5) An=r 

Notice also that (8.1) gives 

£|(*./«>|   =A\\x\\2 (tight frames). (8.6) 
n=l 

65 



For a tight frame with A = 1, the above equations resemble the representation of x using an orthonormal 

basis even though such a tight frame is not necessarily a basis, because of possible redundancy (Example 

8.4). 

Exact frames and biorthogonality. For the special case of an exact frame (i.e., a Riesz basis) the 

sequence {/„} is minimal, and it is biorthogonal to the dual frame sequence {gn}. This is consistent with 

our observation at the end of Sec. 7.4. 

Summary on Frames. A sequence of vectors {/„} in a Hubert space H is a frame if there are constants 

A > 0 and B < oo such that (8.1) holds for every vector x € H. Frames are complete (since A > 0) but not 

necessarily linearly independent. The constants A and B are called the frame bounds. A frame is tight if 

A = B. A tight frame with A = B = 1 and with normalized vectors (||/„|| = 1) is an orthonormal basis. For 

a tight frame with ||/„|| = 1, the frame bound A measures redundancy. Any vector x € H can be expressed 

in either of the two ways shown in (8.4). Here g„ = T~Yfn where T is the frame operator denned in (8.2). 

The frame operator is a bounded linear operator, and is self-adjoint (in fact positive). The sequence {g„} 

is the dual frame and has frame bounds JB"
1
 and A~l. For a tight frame the frame representation reduces 

to (8.5). A frame is exact if deletion of any vector fm destroys the frame property. A sequence {/„} is an 

exact frame if and only if it is a Riesz basis. An exact frame {/„} is biorthogonal to the dual frame {gn}. 

Fig. 8.2 is a Venn diagram which shows the classification of frames and bases, and the relationship 

between these. There are five classes, each shown by a rectangle. 

Frames 

Tight frames (A=B) 

Exact frames (Riesz bases) 

Orthonormal bases (normalized 
tight frames with A=B=1) 

Bases 

Fig. 8.2. A Venn diagram showing the relation between frames and bases in a 

Hilbert space. Each rectangle shows a class, as indicated. 
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9. THE STFT: INVERTIBILITY, ORTHONORMALITY AND LOCALIZATION 

In Sec. 8 we saw that a vector x in an infinite dimensional Hilbert space (e.g., a function x(t) in L2) can be 

expanded in terms of a sequence of vectors {/„} called a frame, that is x = Y^=\ (xi 9n)fn- One of the most 

important features of frames is that the construction of the expansion coefficients (x,g„) from x as well as 

the reconstruction of x from these coefficients are numerically stable operations because A > 0 and B < oo, 

as explained in Sec. 8. Riesz basis and orthonormal basis, which are special cases of a frame (Fig. 8.2), also 

share this numerical stability. 

In Sec. 3 we tried to represent an L2 function in terms of the STFT. The STFT coefficients are 

constructed using the integral (3.3). Denote for simplicity 

gkn{t) = ^{t-nTs)e^t (9.1) 

Then the computation of the STFT coefficients can be written as 

Xstft(kujs,nTs) = (x(t),gkn(t)) (9.2) 

This is a linear transformation which converts x(t) into a two dimensional sequence because k and n are 

integers. Our hope is to be able to reconstruct x(t) using an inverse linear transformation (inverse STFT) 

of the form 
oo oo 

x(t)=   Y,    E   Xstft(ku,s,nTs)fkn(t). (9.3) 
fc=-oo n= —oo 

We know that this can indeed be done in a numerically stable manner if {gkn(t)} is a frame in L2 and {/fc„(*)} 

the dual frame. The fundamental questions then are: under what conditions does {gicn(t)} constitute a frame? 

Under what further conditions does this become a Riesz basis, better still, an orthonormal basis? With such 

conditions, what are the time-frequency localization properties of the resulting STFT? The answers depend 

on the window v(t), and the sample spacings ws and Ts. 

We will first construct a very simple example which shows the existence of orthonormal STFT bases, 

and indicate a fundamental disadvantage in the example. We will then state the answers to the above 

general questions without proof. Details can be found in a number of references, e.g., [Heil and Walnut, 

1989], [Daubechies, 1992], and [Benedetto and Frazier, 1994]. 

.. v(t-l) 

\ \        ^~—^ x(t) 

t 

Fig. 9.1. The rectangular window in STFT. 
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Example 9.1. Orthonormal STFT Basis. 

Suppose v(t) is the rectangular window shown in Fig. 9.1, applied to an L2 function x(t). The product 

x(t)v(i) therefore has finite duration. If we sample its Fourier transform at the rate us = 2TT we can recover 

x(t)v(t) from these samples (this is like a Fourier series of the finite duration waveform x(t)v(t)). Shifting 

the window by successive integers, we can in this way recover successive pieces of x(t) from the STFT, with 

sample spacing us = 2ir in the frequency domain. We see that the choice Ts = 1 and UJS = 2ir (so u3Ts = 2n) 

leads to an STFT Xstft(kus,nTs), from which we can reconstruct x(t) for all t. The quantity gkn(t) becomes 

9kn(t) = v(t - ny"«-* = v{t - n)e*2*kt (9.4) 

Since the succcessive shifts of the window do not overlap, the functions $>*„(*) are orthonormal for different 

values of n. The functions are also orthonormal for different values of k. Summarizing, the rectangular window 

of Fig. 9.1, with the time-frequency sampling durations Ts = 1 and LJS = 2x produces an orthonormal STFT 

basis for L2 functions. v 

This example is reminiscent of the Nyquist sampling theorem in the sense that we can reconstruct x(t) 

from (time-frequency) samples. But the difference is that x(t) is an L2 signal, not necessarily bandlimited. 

Note that Ts and ws cannot be arbitrarily interchanged (even if u>sTs = 2TT preserved). Thus if we had chosen 

Ta = 2 and ws = 7r (preserving the product usTs) we would not have obtained a basis because two successive 

positions of the window would be spaced too far apart and we would miss fifty percent of the signal x(t). 

9.1. Time-Frequency Sampling Density for Frames and Orthonormal Bases 

Let us assume that v(t) is normalized to have unit energy, that is / \v(t)\2dt = 1 so that ||5fcn(*)ll = l for a^ 

k, n. If we impose the condition that gkn(t) be a frame, then it can be shown that the frame bounds satisfy 

the condition 

A < -^r < B. (9.5) 
WsJs 

regardless of how v(t) is chosen. Since an orthonormal basis is a tight frame with A = B = 1, an STFT 

orthonormal basis must have wsTs = 2n. 

It can further be shown that if LUSTS > 2TT, then {gkn(t)} cannot be a frame. For u;sTs < 2n we 

can find frames by appropriate choice of window v(t). The critical time-frequency sampling density is 

(uJsTs)"1 = (27I-)"1. If the density is smaller we cannot have frames and if it is larger we cannot have 

orthonormal basis, but only frames. 

Orthonormal STFT bases have poor time-frequency localization. Thus if we wish to have 

an orthonormal STFT basis, the time-frequency density is constrained to be such that wsTs = 2TT. Under 
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this condition suppose we choose v(t) appropriately to design such a basis. The time frequency localization 

properties of this system can be judged by computing the mean square durations D2 and D2 defined in 

(3.6). It has been shown by Balian and Low [Daubechies, 1992], [Benedetto and Frazier, 1994] that one of 

these is necessarily infinite no matter how we design v(t). Thus an orihonormal STFT basis always satisfies 

DtDf = oo. That is, either the time localization or the frequency resolution is very poor. This is summarized 

in the following theorem. 

Theorem 9.1. Let the window v(t) be such that {gkn(t)} in (9.1) is an orthonormal basis for I? (which 

means, in particular that u3Ts = 2ir). Define the rms durations Dt and Df for the window v(t) as usual 

[Eq. (3.6)]. Then either Dt = oo or Df = oo. ♦ 

Return now to Example 9.1 where we constructed an orthonormal STFT basis using the rectangular 

window of Fig. 9.1. Here Ts = 1 and ws = 2ir (so that wsTs = 2ir). The window v(t) has finite mean square 

duation D2. Its Fourier transform V(u) has magnitude \V(u))\ = |sin(w/2)/(w/2)| so that J u2\V(io)\2du> 

is not finite. This demonstrates the result of Theorem 9.1. One can try to replace the window v(t) with 

something for which DtDf is finite but this cannot be done without violating orthonormality. 

Instability of the Gabor transform. Gabor constructed the STFT using the Gaussian window 

v(t) = ce~t2/2. In this case the sequence of functions {gkn(t)} can be shown to be complete in L2 (in the 

sense defined in Sec. 7.2) as long as usTs < 2n. However, if wsTs = 2n then the system is not a frame because 

it can be shown that A = 0 in (8.1)! Thus the reconstruction of x(t) from Xstft(kuis,nTs) is unstable if 

usTs = 2n (see Sec. 8) even though {gkn(t)} is complete. So even though the Gabor transform has the 

ideal time frequency localization (minimum DtDj), it cannot provide a stable basis, hence certainly not an 

orthonormal basis, whenever uisTs = 2n. 

Since orthonormal STFT basis is not possible if usTs ^ 2TT, this shows that we can never have an 

orthonormal basis with the Gabor transform (Gaussian windowed STFT), no matter how we choose us and 

Ts. The Gabor example also demonstrates the fact that even if we successfully construct a complete set of 

functions (not necessarily a basis) to represent x(t), it may not be useful because of instabilty of recon- 

struction. If we construct Riesz bases (e.g., orthonormal bases) or more generally frames, this disadvantage 

goes away. For example with the Gabor transform if we let u>sTs < 2-K then all is well: we get a frame 

(so A > 0 and B < oo in (8.1)); we have stable reconstruction and good time frequency localization, but 

not orthonormality. Fig. 9.2 summarizes these results pertaining to the time-frequency product UJSTS in the 

STFT. 

A major advantage of the wavelet transform over the STFT is that it is free from the above difficulties. 

For example we can obtain an orthonormal basis for L2 with excellent time-frequency localization (finite, 
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controllable DtDf). We will also see how to constrain such a wavelet ip(t) to have the additional property of 

regularity or smoothness. Regularity is a property which is measured by the continuity and differentiability 

of ip(t). More precisely it is quantified by the Holder index (to be defined in Sec. 13.1). In the next few 

sections where we construct wavelets based on paraunitary filter banks , we will see how to achieve all this 

systematically. 

COSTS>2TT; 

no frames possible 

COSTS=2TC 

necessary condition for 
orthonormality. Orthonormality 

imlies D D = <*> 

(DsTs<27t; good 
tight frames possible 

Fig. 9.2. Behavior of STFT representations for various regions of time-frequency 

sampling product UJSTS. The curve uisTs = 27r is critical; see text. 

10. WAVELETS AND MUITIRESOLUTION 

In Sec. 11-13 we will show how to construct compactly supported wavelets systematically to obtain orthonor- 

mal bases for L2. The construction is such that excellent time-frequency localization is possible. Moreover 

the smoothness or regularity of the wavelets can be controlled. The construction is based on the two channel 

paraunitary filter bank described in Sec. 4. In that section the synthesis filters are denoted as Gs{z) and 

Hs(z) with impulse responses gs(n) and hs(n) respectively. 

All constructions are based on obtaining the wavelet tp(t) and an auxilliary function <j>(t) called the 

scaling function, from the impulse response sequences gs(n) and hs{n). We will do this by using time domain 

recursions of the form 

oo oo 

<j>{t) = 2  Yu  9s{n)(ß(2t - n),    t/;(t) = 2   £   hs{n)4>(2t - n), 
n= —oo n= — oo 

called dilation equations. Equivalently in the frequency domain 

*(w) = Gs(e
j^2)$(uj/2),    *(w) = Fs(e^/2)$(w/2) 

(10.1) 

(10.2) 

It turns out that if {Gs(z),Hs(z)} is a paraunitary pair with further mild conditions (e.g., that the lowpass 

filter Gs(e
ju) has a zero at n and no zeros in [0, TT/3]) the recursions can be solved to obtain ip(t) which gives 
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rise to an orthonormal wavelet basis {2k/2ip(2kt - n)} for L2. By constraining Gs(e
ju) to have a sufficient 

number of zeros at 7r we can further control the Holder index (or regularity) of ip(t) as we see in Sec. 13. 

Our immediate aim is to give an explanation for the occurence of the function <j>(t), and the curious 

recursions (10.1) called the dilation equations or two-scale equations. These have origin in the beautiful 

theory of multiresolution for L2 spaces [Meyer, 1986], [Mallat, 1989]. Since multiresolution theory lays the 

foundation for the construction of the most practical wavelets to date, we give a brief description of it here. 

10.1. The Idea of Multiresolution 

Return to Fig. 2.13(a) where we interpreted the wavelet transformation as a bank of continuous time 

analysis filters followed by samplers, and the inverse transformation as a bank of synthesis filters. Assume 

for simplicity the filters are ideal bandpass. Fig. 2.13(b) is a sketch of the frequency responses. The bandpass 

filters Fk(u)) — 2~k/2<f>(u>/2k) get narrower and narrower as k decreases (i.e., as k becomes more and more 

negative). Instead of letting k be negative, suppose we keep only k > 0 and include a lowpass filter $(u>) to 

cover the low frequency region. Then we get the picture of Fig. 10.1. This is analogous to Fig. 2.12 where 

we used the pulse function <j>(t) instead of using negative k in ij;(2kt - n). 

■k/2       k 

T\.(G>)=2 \]/(2 co) 
, \j/((ö)=F (co) 

\ ^ i v~/        r2\uj) 

/ 
• •    • 

8 7 x                      -4 n       -2 n   - n 3 x    2 n         4 n                       8 Tt CO 

$(G>) 

-71 71 

Fig. 10.1. The lowpass function $(w), bandpass function \t(u/), and 

the streched bandpass filters Fk(w). 

CO 

Imagine for a moment that $(w) is an ideal lowpass filter with cutoff ±ir. Then we can represent any 

L2 function F(u) with support restricted to ±TT in the form F(u) = £~=-oo a„^(io)e-^n. This is simply 

the Fourier series expansion of F(u) in [—7r,7r], and it follows that £n |a„|2 < oo (Theorem 6.1).  In the 
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time domain this means 

/(*)=   5Z   on0(t-n). (10.3) 

Let us denote by V0 the closure of the span of {<j>(t - n)}. Thus, V0 is the class of L2 signals that are 

bandlimited to [-IT, it]. Since <f>(t) is the sine function, the shifted functions {<j>(t - n)} form an orthonormal 

basis for VQ. 

Consider now the subspace W0 C L2 of bandpass functions bandlimited to it < \ui\ < 2it. The bandpass 

sampling theorem (Sec. 2.1) allows us to reconstruct such a bandpass signal g(t) from its samples g(n) by 

using the ideal filter *(w). Denoting the impulse response of *(w) by x[)(t) we see that {ip(t-n)} spans W0. 

It can be verified that {4>(t - n)} is an orthonormal basis for W0. Moreover, since \F(u/) and $(w) do not 

overlap, it follows from Parseval's theorem that W0 is orthogonal to V0. 

Next consider the space of all signals of the form f(t) + g(t) where /(*) S V0 and g(t) £ W0. This space 

is called the direct sum (or orthogonal sum) of V0 and W0, and is denoted as Vi = Vo © W0. It is the space 

of all L2 signals bandlimited to [-2it,2it]. We can continue in this manner and define the spaces Vk and 

Wit for all k. Then Vk is the space of all L2 signals bandlimited to [-2kit,2kit]. And Wk is the space of L2 

functions bandlimited to 2kir < \w\ < 2k+1it. The general recursive relation is Vk+1 = Vk © Wk. Fig. 10.2 

demonstrates this for the case where the filters are ideal bandpass. Only the positive half of the frequency 

axis is shown for simplicity. 

W, W, w, 
7i   2n        47C 8TC 

Fig. 10.2. Towards multiresolution analysis... The spaces {Vk} 

and {Wk} spanned by various filter responses. 

It is clear that we could imagine V0 itself to be composed of subspaces V_i and W_i. Thus V0 = 

V_! © W_i, V_i = V_2 © W_2, and so forth. In this way we have defined a sequences of spaces {Vk} and 

{Wk} for all integers k such that the following conditions are true: 

Vk+1 = Vk® Wfc, and        Wk ±Wm, k^m. (10.4) 

where _L means "orthogonal". That is, the functions in Wk are orthogonal to those in Wm. It is clear that 
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VkCVk+1. 

We will see later that even if the ideal filters $(w) and $(w) are replaced with non ideal approximations, 

we can sometimes define sequences of subspaces Vk and Wk satisfying the above conditions. The importance 

of this observation is this: whenever *(w) and $(w) are such that we can construct such a subspace structure, 

the impulse response tp{t) of the filter #(u>) can be used to generate an orthonormal wavelet basis! While 

this might seem too complicated and roundabout, we will see that the construction of the function <j>(t) is 

quite simple and elegant, and simplifies the constrution of orthonormal wavelet bases. A realization of these 

ideas based on paraunitary filter banks will be presented in Sec. 11. It is now time to be more precise with 

definitions as well as statements of the results. 

Definition 10.1.   Multiresolution analysis.  Consider a sequence of closed subspaces {Vk} in L , 

satisfying the following six properties. 

1. Ladder property.      ... V_2 C V_i C Vo C V\ C V2 .. • 

2. n ^={0} 
k= — 00 

00 

3. Closure of   (J   Vk is equal to L2. 
k= — cc 

4. Scaling property. x(t) £ Vk if and only if x(2t) £ Vk+\. Since this implies "x(t) £ V0 if and only if 

x(2kt) € 14", all the spaces Vk are scaled versions of the space V0. For k > 0, Vk is a finer space than 

V0. 

5. Translation invariance. If x(t) £ V0 then x(t - n) € Vo, that is, the space V0 is invariant to translations 

by integers. By the previous property this means that Vk is invariant to translations by 2~kn. 

6. Special orthonormal basis. There exists a function <f>(t) £ V0 such that the integer shifted versions 

{4>{t - n)} form an orthonormal basis for V0. By property 4 this means that {2k/2<f>{2kt - n)} is an 

orthonormal basis for Vk. The function <j>(t) is called the scaling function of multiresolution analysis. 0 

Comments on the definition. Notice that the scaling function <j>(t) determines V0, hence all Vk. We 

say that <f>(t) generates the entire multiresolution analysis {Vk}. The sequence {Vk} is said to be a ladder 

of subspaces because of the inclusion property Vk C Vk+X. The technical terms closed and closure which 

originate from metric space theory, have simple meaning in our context (because L2 is a Hubert space). The 

subspace Vk is "closed" if the following is true: whenever a sequence of functions {fn(t)} £ Vk converges to a 

limit f(t) £ L2 (i.e, ||/(t) - /„(*)ll -► 0 as n -> 00), the limit f(t) is in Vk itself. In general an infinite union 

of closed sets is not closed, that is why we need to take "closure" in the third property above. The third 

property simply means that any element x(t) £ L2 can be approximated arbitrary closely (in the I2-norm 

sense) by an element in UfcL-00 ^fc- 
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General meaning of Wk. In the general setting of the above definition, the subspace Wk is defined as 

the orthogonal complement of Vk with respect to Vk+1. Thus the relation Vk+l = Vk ® Wk, which was valid 

in the ideal bandpass case (Fig. 10.2), continues to hold. 

The Haar Multiresolution. A simple example of multiresolution where $(w) is not ideal lowpass 

is the Haar multiresolution, generated by the function <j>(t) in Fig. 10.3(a). Here V0 is the space of all 

functions that are piecewise constants on intervals of the form [n,n + 1]. We will see later that the function 

1>(t) associated with this example is as in Fig. 10.3(b); the space W0 is spanned by {ip(t - n)}. The space 

Vk contains functions which are constants in [2~fcn,2-fc(n + 1)]. Fig. 10.3(c) and (d) show examples of 

functions belonging to V0 and Vi. For this example, the six properties in the definition of multiresolution 

are particularly clear (except perhaps property 3, which can be proved too). 

The multiresolution analysis generated by the ideal bandpass filters (Figs. 10.1, 10.2) is another simple 

example, where <j>{t) is the sine function. We see that the two elementary orthonormal wavelet examples 

(Haar wavelet and the ideal bandpass wavelet) also generate a corresponding multiresolution analysis. The 

connection between wavelets and multiresolution is deeper than this, and is elaborated in Sec. 10.2. 

.    <)>(t) the scaling function 
1 

(a) 

(b) 

1 

¥(t) 

1 

(c) 

A function in V0 

i=- 

A function in Vj 

1 ^-^ t 

Fig. 10.3. The Haar multiresolution example, (a) The scaling function <j>(t) that 

generates multiresolution, (b) the function ij;(t) which generates W0, 

(c) example of a memeber of V0 and (d) example of a memeber of V1. 
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Derivation of the Dilation Equation 

Since {\/24>(2t - n)} is an orthonormal basis for Vx (see property 6) and since <j>(t) e V0 C Vy we see 

that <j>(t) can be expressed as a linear combination of the functions {\/2<j>(2t - n)}. Let us write 

(j>(t) = 2   ^~]   gs{n)<j>{2t - n)        (dilation equation) (10.5) 

Thus the dilation equation arises naturally out of the multiresolution condition.   For example, the Haar 

scaling function <f>(t) satisfies the dilation equation 

<j>{t) = 4>(2t) + <j>{2t - 1). (10.6) 

The notation g3(n) and the factor 2 in the dilation equation might appear arbitrary now, but are convenient 

for future use. Orthonormality of {<j>{t-n)} implies that \\<f>{t)\\ = 1, and that {y/24>{2t-n)} are orthonormal. 

So E„ \9s(n)\2 = 0-5 from (10.5). 

Example 10.1. Non orthonormal multiresolution. 

4>(t) 

& (a) 

*(2t) 

^/p         *f"1} 

-1       -0.5    0 0.5        1          t 

(b) 

Fig.  10.4. Example of a scaling function <j>{t) generating nonorthogonal 

multiresolution. (a) The scaling function, and (b) demonstrating the dilation equation. 

Consider the triangular function shown in Fig.  10.4(a). This has \\<j>{t)\\ = 1 and satisfies the dilation 

equation 

<j>(t) = 4>{2t) + 0.5^(2* - 1) + O.50(2i + 1) (10.7) 

as demonstrated in Fig. 10.4(b). With Vk denoting the closure of the span of {2k/2<f>(2kt - n)} it can be 

shown that the spaces {Vk} satisfy all the conditions in the multiresolution definition, except one. Namely, 

{4>{t - n)} does not form an orthonormal basis [for example compare <j>{t) and 4>{t - 1)]. We will see later 
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(Example 10.2) that it does form a Riesz basis and that it can be converted into an orthonormal basis by 

orthonormalization. This example is a special case of family of scaling functions called spline functions. 0 

We will see below that starting from an orthonormal multiresolution system (in particular from the 

function <j>{t)) one can generate an orthonormal wavelet basis for L2. The wavelet bases generated from 

splines <j>(t) (after orthonormalization) are called spline wavelets [Chui, 1992a,b]. These are also called the 

Battle-Lemarie family of wavelets. The link between multiresolution analysis and wavelets will be explained 

quantitatively in Sec. 10.2. 

Multiresolution Approximation of L2 Functions. 

Given a multiresolution analysis, we know that flitL-oo Vk = 1°) and that the closure of U£L-oo Vk = 

L2. From this it can be shown that the Wks make up the entire L2 space, that is 
oo 

L2=   0  Wk. (10.8a) 
fc= — oo 

We can approximate an arbitrary L2 function x(t) to a certain degree of accuracy by projecting it onto Vk 

for appropriate k. Thus let xk(t) be this orthogonal projection (Sec. 2.2). Suppose we increase k to k + 1. 

Since Vk+i = Vk® Wk and Wk is orthogonal to Vk, we see that the new approximation xk+i(t) (projection 

onto the finer space Vk+1) is given by xk+l(t) = xk{t) + yk(t) where yk(t) is in Wk. 

Thus, when we go from scale k to scale k + 1 we go to a bigger space Vk+1 3 Vk which permits a finer 

approximation. This is nicely demonstrated in the two extreme examples mentioned above. For the example 

with ideal filters (Figs. 10.1, 10.2), the process of passing from scale k to k + 1 is like admitting higher 

frequency components, which are orthogonal to the existing lowpass components. For the Haar example 

Fig. 10.3 where tp(t) and <j>(t) are square pulses, when we pass from k to k + 1 we permit finer pulses 

(i.e., highly localized finer variations in time domain). For this example, Figs. 10.3(c) and (d) demonstrate 

the projections xk{t) and xk+i(t) at two successive resolutions. The projections are piecewise-constant 

approximations of an L2 signal x(t). 

By repeated application of Vk+i = Vk © Wk we can express V0 as 

V0 =   0  Wk, (10-86) 
k=~ oo 

which, together with (10.8a) yields 

L2 = V0®W0®W1®W2®... (10.8c) 

This has a nice interpretation based on Fig. 10.2. The L2 signal x(t) has been decomposed into orthogonal 

components belonging to V0 (lowpass component), W0 (bandpass component), Wx (bandpass with higher 

bandwidth and center frequency), and so forth. 
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We can find an infinite number of multiresolution examples by choosing 4>(t) appropriately. It is more 

important now to obtain systematic techniques for constructing such examples. The quality of the example 

is governed by the quality of ip(t) and <j>{t), that is, the time localization and frequency resolution they can 

provide, the smoothness (regularity) of these functions, and the ease with which we can implement these 

approximations. 

10.2. Relation between Multiresolution and Wavelets 

Suppose <j>(t) G L2 generates an orthonormal multiresolution {Vk} as defined in Sec. 10.1. We know 

4>{t) G V0 and that {<f>(t - n)} is an orthonormal basis for V0. Moreover <j>(t) satisfies the dilation equation 

(10.5), and the sequence {gs{n)} G I2 defines the filter Gs{ej"). 

Now consider the finer space Vi = V0 ® W0, where W0 is orthonormal to V0. If /(*) G Wo then f(t) G Vi 

so it is a linear combination of \f2cj>{2t - n) (property 6). Using this and the fact that Wo is orthogonal to 

Vo we can show that F(UJ) (the X2-FT of /(<)) has a special form. This is given by 

F(u) = eju/2G*(-eju/2)$(u/2)H(ej"), 

where H(ejüJ) is 27r-periodic. The special case of this with H(eju) = 1 will be denoted *(w), that is, 

*(w) = eJ'u'/2G:(-e^2)$(a;/2). (10.9) 

The above definition of *(w) is equivalent to 

oo 

ip(t) = 2   Y, {-l)n+1g*s(-n - 1)0(2*- n)        (dilation equation for ip(t)). (10.10) 
n=—oo 

The function tp(t) satisfying this equation has some useful properties. First, it is in L2. This follows from 

Theorem 6.2, since J2n \9s(n)\2 ^s nnite- I* can De shown that ip(t - n) G W0 and that {ip(t - n)} is an 

orthonormal basis for Wo. This implies that {2k/2i>{2kt - n)} is an orthonormal basis for Wk (because 

/(*) G W0 if and only if f(2kt) G Wk, which is a property induced by the scaling property (property 4 in 

the definition of multiresolution). In view of (10.8a) we conclude that the sequence {2k/2tp(2kt - n)} with k 

and n varying over all integers, forms a basis for L2. Summarizing we have the following result: 

Theorem 10.1. Let <j>{t) G L2 generate an orthonormal multiresolution, i.e., a ladder of spaces {Vk} 

satisfying the six properties in Definition 10.1. That is, in particular, {4>{t - n)} is an orthonormal basis for 

V0. Then <j>{t) satisfies the dilation equation (10.5) for some gs(n) with Y,n \9s(n)\2 = 0-5. Define the function 

ip(t) according to the dilation equation (10.10). Then xp(t) G W0 C L2, and {ip(t - n)} is an orthonormal 

basis for W0.   Therefore {2k/2i>(2kt - n)} is an orthonormal basis for Wk, just as {2k/2<p(2kt - n)} is an 
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orthonormal basis for Vk (for fixed k). Moreover with k and n varying over all integers, the doubly indexed 

sequence {2k/2ifi(2kt — n)} is an orthonormal wavelet basis for L2. 0 

Thus, to construct a wavelet basis for L2 we only have to construct an orthonormal basis {<f>(t - n)} for 

VQ. Everything else follows from that. All proofs can be found in a number of references, e.g., [Mallat, 1989], 

[Chui, 1992a], and [Daubechies, 1992]. 

10.3. Relation Between Multiresolution Analysis and Paraunitary Filter Banks 

Denoting 

hs(n) = (-l)n+1g;(-l~n),    i.e.,    Ht(e*u) = e^G;(-e^), 

we see that <j>{t) and ip(t) satisfy the two dilation equations in (10.1). By construction ip(t) e W0 and 

<t>(t) € Vo. The fact that W0 and V0 are mutually orthogonal subspaces can be used to show that Ha(e^u) 

and Ga{ejw) satisfy 

G*a{e>u)Ha(e
iu) + G*a(-e>u)Ha(-e>u) = 0. (10.11) 

Moreover it can be shown that orthonormality of {<j>(t - n)} leads to the power complementary property 

|Ga(Ö|2 + |Gs(-e^)|2 = l. (10.12) 

In other words, Gs(e
juJ) is a power symmetric filter! That is, the filter \Gs{ejüJ)\2 is a half band filter. Using 

Hs(e
ju) = e^G*(-eJ'w), we also have 

\Ha{en\2 + \Ha{-en\2 = l. (10.13) 

A compact way to express the above three equations is by defining the matrix 

Ga(en G8{-Ju)    Ha(-ei")\ 

The three properties (10.11)-(10.13) are equivalent to Gt(eju)Gs(eju) = I, that is the matrix Gs(ej") is 

unitary for all u. This matrix was defined in Sec. 4.4 in the context of paraunitary digital filter banks. Thus, 

the filters Ga(e
ju) and Hs{e^u) constructed from a multiresolution setup as above constitute a paraunitary 

(CQF) synthesis bank. 

Thus, Orthonormal multiresolution automatically gives rise to paraunitary filter banks! Starting from 

a multiresolution analysis we obtained two functions <f>(t) and tp(t). These functions generate orthonormal 

bases {<j>(t - n)} and {ip(t - n)} for the orthogonal subspaces Vo and W0. The functions <j>(t) and ip{t) 

generated in this way satisfy the dilation equation (10.1). Defining the filters Gs(z) and Hs(z) from the 

coefficients gs(n) and hs(n) in an obvious way, we find that these filters form a paraunitary pair! 
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This raises the following fundamental question. If we start from a paraunitary pair {Gs(z),Hs(z)} 

and define the functions <j>(t) and xp(t) by (successfully) solving the dilation equations, do we obtain an 

orthonormal basis {<f>{t - n)} for multiresolution, and a wavelet basis {2k/2i>(2kt - n)} for the space of L2 

functions? The answer, fortunately, is in the affirmative, subject to some minor requirements which can be 

trivially satisfied in practice. We return to this in Sec. 11. 

Generating Wavelet and Multiresolution Coefficients From Paraunitary Filter Banks 

Recall that the subspaces V0 and W0 have the orthonormal bases {<j>{t -n)} and {tp(t -n)} respectively. 

By the scaling property, the subspace Vk has the orthonormal basis {<pkn(t)}, and similarly the subspace Wk 

has the orthonormal basis {Vfcn(*)}, where, as usual, <j>kn{t) = 2k'2cj>{2kt - n) and $hn{t) = 2kl2ijj{2kt - n). 

The orthogonal projections of a signal x(t) £ L2 onto Vk and Wk are given, respectively, by 

Pk[x(t)]=    X!    (x(tUkn(t))<l>kn(t), and Qk[x(t)} =    X    {x(t)^kn(t))^kn(t) (10-14) 
n=-oo n=-oo 

(see Sec. 2.2). Denote the scale-fc projection coefficients as dk(n) = (x(t),<t>kn(t)) and ck{n) = (x(t),ipkn(t)) 

for simplicity. (The notation ckn was used in earlier sections, but ck(n) is convenient for the present discus- 

sion). We say that dk(n) are the multiresolution coefficients at scale k and ck(n) are the wavelet coefficients 

at scale k. 

Assume that the projection coefficients dk(n) are known for some scale, say k = 0. We will then show 

that dk(n) and ck{n) for the coarser scales, i.e., k = -1,-2,... can be generated by using a paraunitary 

analysis filter bank {Ga(e^),Ha(e
j")} corresponding to the synthesis bank {Gs(e

ju),Hs(e^)} (Sec. 4.4). 

We know <j>(t) and tp(t) satisfy the dilation equations (10.1). By substituting the dilation equations into the 

righthand sides of 4>kn(t) = 2k'2(j>{2kt - n) and ipkn{t) = 2k/2i>{2kt - n), we obtain 

<pkn(t) = V2   J2   9s(m-2n)4>k+l,m(t),        and        i/>kn(t) = \/2   £   h,{m - 2n)</>k+1,m(t).     (10.15) 
m=-oo m=-oo 

A computation of the inner products dk(n) = (x(t),4>kn(t)) and ck(n) = (x(t),xpkn(t)) then yields 

OO 

dk(n)   =     X   ^9a(2n - m)dk+i(m), 
m=-°° (10.16) 

OO 

ck(n)   =      X   ^ha(2n - m)dk+i(m). 
m= —oo 

where ga(n) = gl(-n) and ha(n) - h*s(-n) are the analysis filters in the paraunitary filter bank. 

The beauty of these equations is that they look like discrete time convolutions! Thus, if dk+i(n) is 

convolved with the impulse response y/2ga{n) and the output decimated by two, the result is the sequence 

rffc(n). A similar statement follows for ck(n). The above computation can therefore be interpreted in filter 
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bank form as in Fig. 10.5. Because of the perfect reconstruction property of the two channel system (Fig. 

4.1), it follows that we can reconstruct the projection coefficients dk+1{n) from the projection coefficients 

dk(n) and Cfc(n). 

4+1 (n) 

Multiresolution 
coefficients at 

level k+1 

V5"g (n)  3, 12 _ >. 

 a*. V2ha(n)  3» 12  3«. 

Multiresolution 
d,(n)     coefficients at 

level k 

ck(n) 
Wavelet coefficients 

at level k 

Fig. 10.5. Generating the wavelet and multiresolution coefficients at level k from level k + 1. 

d0(n) * v2ga(n) 
V 

V2\(n) 

djCn) 

12 
■   ? 

V2ga(n) 
\ ' 

\/2~hfl(n) 

d2(n) 

V2 hfl(n) 

Multiresolution 
coefficients 
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*2 

c ,(11) 

\2 

T 
c ~(n) 

12 
T 

c3 (n) 
. Wavelet 
coefficients 

scale-1 : scale-2 ! scale-3 

Fig. 10.6. Tree structured analysis bank generating wavelet coefficients 

ck(n) and multiresolution coefficients dk(n) recursively. 

The Fast Wavelet Transform (FWT) 

Repeated application of this idea results in Fig. 10.6 which is a tree structured paraunitary filter 

bank (Sec. 4.7) with analysis filters y/2ga(n) and y/2ha(n) at each stage. Thus, given the projection 

coefficients d0{n) for V0, we can compute the projection coefficients dk(n) and ck(n) for the coarser spaces 

F_1,W
r_i,y_2,W/_2,--- This scheme is sometimes refered to as the Fast Wavelet Transform (FWT). Fig. 

10.7 shows a schematic of the computation. In this figure, each node (heavy dot) represents a decimated 

paraunitary analysis bank {y/2ga{n), y/2ha(n)}. The subspaces Wm and Vm are indicated in the nodes rather 

than the projection coefficients. 

Computation of the initial projection coefficient. Everything depends on the computation of 

d0(n). Note that d0{n) = {x{t),<f>(t - n)), which can be written as the integral d0{n) = f x(t)P{t - n)dt. 

An elaborate computation of this integral is avoided in practice. If the scale k = 0 is fine enough, that is, 
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if x(t) does not change much within the duration where <j>{t) is significant, we can approximate this integral 

with the sample value x(n). That is, d0(n) « x(n). Improved approximations of d0(n) have been suggested 

by other authors, see references in [Djokovic and Vaidyanathan, 1994]. 

'o- -«—• 

w. w. -1 ™-2 W-3 

Fig. 10.7. A schematic of the tree structured filter-bank which generates 

the coefficients of the projections onto Vk and Wk. 

Continuous-time Filter Banks and Multiresolution 

The preceding discussions show the deep connection between orthonormal multiresolution ananlysis and 

discrete time paraunitary filter banks. As shown by Eq. (10.8c), any L2 signal x(t) can be written as a sum 

of its projections onto the mutually orthogonal spaces V0, W0, W\ and so forth. That is, 

oo 

x(t) = Y, do(n)Ht - ") + E E Ck(«)2fc/2^(2fc* - n). 
n k=0    n 

This decomposition itself can be given a simple filter bank interpretation, with continuous-time filters and 

samplers. For this, first note that the V0 component £„ d0(n)cj>{t - n) can be regarded as the output of a 

filter with impulse response <j>(t), with the input chosen as the impulse train £„ d0(n)6a{t-n). Similarly, the 

Wk component £n ck{n)2k'2xp{2kt - n) is the output of a filter with impulse response fk(t) = 2k/2ip(2kt), 

in response to the input £ncfc(n)6a(* " 2_i")- This interpretation is shown by the synthesis bank of Fig. 

10.8(a). 

The projection coefficients d0(n) and ck{n) can also be interpreted in a nice way. For example, we have 

d0(n) = (x(t),4>(t - n)) by orthonormality. This inner product can be explicitly written out as 

d0(n) =      x (t)4>*(t-n)dt. 

The integral can be interpreted as a convolution of x(t) with <p*(-t). Thus consider the output of the filter 

with impulse response 4>*(-t), with the input chosen as x{t). This output, sampled at time n, gives d0(n). 

Similarly, ck{n) can be interpreted as the output of the filter hk{t) = 2fc/2^*(-2fcf), sampled at the time 

2~kn. The analysis bank of Fig. 10.8(a) shows this interpretation. Thus, the projection coefficients d0{n) 

and ck(n) are the sampled versions of the outputs of an analysis filter bank. 

Notice that all the filters in the filter bank are determined by the scaling function <£(t) and the wavelet 

function ip{t). Every synthesis filter fk(t) is the time reversed conjugate of the corresponding analysis filter 
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hk{t), that is, fk(t) = h*k(-t) (a consequence of orthonormality). In terms of frequency responses this means 

Ffc(w) = Jfffc(w). For completeness of the picture, Fig. 10.8(b) shows typical frequency response magnitudes 

of these filters. 

x(t) 
4>*(-t) 

— vt-0 

\^Vt-2t) 

-^ T   It, 
sampler | » 

C0(n) 

signal in V o 

(j)(t) 

^Lzi: 
sampler 

C,(n) 

signal in W 

V(t) 

ig^tttit 
sampler 

signal in Wj 

\ßv(2ty 

x(t) 

(a) 

Analysis bank 
(Multiresolution analysis) 

Synthesis bank 

Frequency 
response 

magnitude 

for <)> (t) and <j) *(-t) 

fbrV(t) and V*(-t) 

for^2V(2t)   and   V2V*(-2t) 

M=v0©w0 
i 1 

w, 
CD 

Fig. 10.8. (a) The multiresolution analysis and resynthesis in 

filter-bank form, and (b) typical frequency responses. 

(b) 

10.4. Further Manifestations of Orthonormality 

The orthonormality of the basis functions {<j>(t - n)} and {ip{t - n)} have further consequences which we 

summarize now. A knowledge of these will be useful when we generate the scaling function <j>{t) and the 

wavelet function ip(t) systematically in Sec. 11 from paraunitary filter banks. 

The Nyquist Property and Orthonormality 

With 4>(t) € L2, the autocorrelation function R(T) = J <f>(t)4>*(t-r)dt exists for all r because this is just 

an inner product of two elements in L2. Clearly i?(0) = \\<l>(t)\\2 = L Moreover the orthonormality property 
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(4>(t), 4>(t -n)) = 6(n) can be rewritten as R(n) = 6(n). Thus, in particular, R(T) has periodic zero crossings, 

at nonzero integer values of r (Fig. 10.9). This is precisely the Nyquist property familiar to communication 

engineers. The autocorrelation of the scaling function <j>(t) is a Nyquist function. The same holds for the 

wavelet function tp(t). 

1    Rft) 

!\_^2      3^     T 

Fig. 10.9. Example of an autocorrelation of the scaling function <f>(t). 

Next, using Parseval's identity for X,2-FTs, we obtain {<f>(t), 4>(t - n)> = f $(u)$*(uj)ejundu/2ir = 6(n). 

If we decompose the integral into a sum of integrals over intervals of length 2x and use the 27r-periodicity of 

eJU" we obtain, after some simplification: 

oo 

y^   \$(LU + 2irk)\2 = 1        almost everywhere. (10.17) 
fc= —oo 

This is the preceding Nyquist condition, now expressed in the frequency domain. The term almost everywhere 

(Sec. 6.1 ) arises from the fact that we have drawn a conclusion about an integrand from the value of the 

integral. Thus {<j>{t - n)} is orthonormal if and only if the preceding equation holds. A similar result follows 

for ty(u>), that is orthonormality of {ip(t - n)} is equivalent to 

oo 

y   \ty(oj + 2xk)\2 = 1,        almost everywhere. (10.18) 
fc= —oo 

Case When Equalities Hold Pointwise 

If we assume that all Fourier transforms are continuous, then equalities in the Fourier domain actually 

hold pointwise. This is the most common situation; in all examples to be seen here, the following are true: (i) 

the filters Gs(e
ju) and Hs(e

Ju}) are rational (FIR or IIR) so the frequency responses are continuous functions 

of w, and (ii) <j>{t) and ip(t) are not only in L2 but also in Ll i.e., </>(t),ip(t) € I1 Hi2. Thus, $(w) and #(w) 

are continuous functions (Sec. 6.3). 

With the dilation equation $(w) = Gs(e
J'w/2)$(u;/2) holding pointwise, we have $(0) = Gs(e-'o)$(0). 

In all our applications $(0) ^ 0 (it is a lowpass filter), so Gs{ej0) = 1. The power symmetry property 

\Gs(en\2 + \Gs(-en\2 = l 
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then implies Ga{e>*) = 0. Since the highpass synthesis filter is H.(e>u) = e*"G;(-e'w) we conclude Hs(e>°) = 

0 and H,{e>*) = -1. Thus 

G,(e>'°) = 1, G,{e*) = 0,    Hs(e^°) = 0, F.(e^) = -1. (10-19) 

In particular, the lowpass impulse response gs(n) therefore satisfies E„S» = 1- Since we alread>' have 

E„ \9s(n)\2 = 0.5 (Theorem 10.1), we have both of the following: 

J2   9s(n) = l,        and £   |</,(n)|2 = 0.5. (10-20) 
n=-oo n=-oo 

From the dilation equation *(w) = Gs(e^/2)*(u;/2) we obtain $(27rfc) = Gs(e^k)^k). By using the fact 

that Gs(e
j*) = 0, and after elementary manipulations we can show that 

$(27Tifc) = 0, k £ 0. (10-21) 

That is, $(w) is itself a Nyquist function of w. If (10.17) is assumed to hold pointwise, then the above implies 

that |*(0)| = 1. Without loss of generality we will let $(0) = 1 i.e., J <j>(t)dt = 1. The dilation equation for 

the wavelet function *(«/) in (10.2) shows that *(0) = 0 [since ff8(e>°) = 0 by (10.19)]. That is, / i>(t)dt = 0. 

Summarizing, the scaling and wavelet functions satisfy 

r j>(t)dt=i, r mdt=o,  and   r \Ht)\2dt = r m^a=i,     (10.22) 
/_oo -'-oo J-00 J-°° 

where the third property follows from orthonormality. These integrals make sense because of the assumption 

<j>(t) € I1 n L2. Another result that follows from $(27r&) = 6(k) is that 

00 

JT   4>(t-n) = l        a.e. (10-23) 
n= — oo 

Thus the basis functions of the subspace V0 themselves add up to unity. Return to the Haar basis, and notice 

how beautifully everything fits together! 

10.5. Generating wavelet and multiresolution basis by design of <f>(t) 

Most of the well-known wavelet basis families in recent times have been generated by first finding a scaling 

function <f>(t) such that it is a valid generator of multiresolution, and then generating 1>{t) from 4>{t). The 

first step therefore is to identify the conditions under which a function 4>(t) will be a valid scaling function 

(i.e., it will generate a multiresolution). Once this is done, and we successfully identify the coefficients gs(n) 

in the dilation equation for 0(<), then we can identify the wavelet function iP(t) using the second dilation 

equation in (10.1). From Theorem 10.1 we know that if ip(t) is computed in this way, then {2k/2ip(2kt - n)} 
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is an orthonormal wavelet basis for L2. The following results can be deduced from the many detailed results 

presented in [Daubechies, 1992]. 

Theorem 10.2. Let <f>(t) satisfy the following three conditions: (a) <j>(t) e L1 D L2, (b) / <j>{t)dt # 0 

(i.e., $(0) # 0 ), (c) 4>{t) = 2£n gs{n)<j>(2t - n) for some {<?»}, and (d) {0(t - n)} is an orthonormal 

sequence. Then the following are true. 

1. <f>(t) generates a multiresolution. That is, if we define the space Vk to be the closure of the span of 

{2k/24>(2kt - n)}, then the set of spaces {Vk} satisfies the six conditions in Definition 10.1. 

2. Define ip(t) = 2 £„(-l)"+10s (~n - l)4>(2t - n). Then ip(t) generates an orthonormal wavelet basis for 

L2. That is, {2k/2ip(2kt- n)}, with k and n varying over all integers, is an orthonormal basis for L2. In 

fact, for fixed k, the functions {2fc/2^(2fci - n)} form an orthonormal basis for the subspace Wk defined 

in Sec. 10.1. 0 

Comments. In many examples <j>(t) € L2, and it is compactly supported. Then it is naturally in L1 as 

well (Eq. (6.1)), so the assumption <j>{t) € L2 f~l L1 is not too restrictive. Since L1 n L2 is dense in I2, the 

above construction still gives a wavelet basis for L2. Notice also that the orthonormality of {<j>(t - n)} implies 

orthonormality of {y/2ij>(2t - n)}. So the recursion 4>{t) = 2^ gs{n)<j>{2t - n) is a Fourier series for 4>(t) in 

L2. Thus the condition £n \gs{n)\2 = 0.5 is automatically implied. This, therefore, is not explicitly stated 

as part of the conditions in the theorem. 

Orthnormalization 

From Sec. 10.4 we know that orthonormality of {4>{t - n)} is equivalent to 

fc= 
Y,   \$(u + 27rk)\2 = l. (10-24) 

fc= —oo 

Suppose now that this is not satisfied but the weaker condition 

CO 

a<   Y,   l$(w+27rifc)|2<& (10.25) 
fc=—CO 

holds for some a > 0 and b < oo. Then it can be shown that we can at least obtain a Riesz basis (Sec. 7.3) 

of the form {<j>(t - n)} for V0. We can also normalize it to obtain an orthonormal sequence {4>(t - n)} from 

which an orthonormal wavelet basis can be generated in the usual way. The following theorem summarizes 

the main results. 

Theorem 10.3. Let (a) 4>(t) € PnL2, (b) $ <j>{t)dt ± 0 (i.e., $(0) # 0), and (c) 0(«) = 2£n5s(n)<f>(2i- 

n) with Y,„ \9s{n)\2 < °°- Instead of the orthonormality condition (10.24), let (10.25) hold for some a > 0 

and 6 < oo. Then the following are true. 
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1. {(j)(t - n)} is a Riesz basis for the closure V0 of its span. 

2. <j>{t) generates a multiresolution.  That is, if we define the space Vk to be the closure of the span of 

{2k/26(2kt - n)}, then the set of spaces {Vk} satisfies the six conditions in Definition 10.1. 0 

Orthonormalization. If we define a new function <j>(t) in terms of its Fourier transform as follows: 

S(")=7 *H ,0, (10-26) 
(EJ^ + 2^)I2) 

then $(t) generates an orthonormal multiresolution. It satisfies a dilation equation similar to (10.1). From 

this we can define a corresponding wavelet function ip(t) in the usual way. That is, if <j>(t) = 2 £n gs(n)(p(2t- 

n), then choose ${t) = 2£„M»M2* - n), where hs(n) = (-l)n+1g*s(-n - 1). This wavelet ${t) then 

generates an orthonormal wavelet basis for L2. Note that the basis is not necessarily compactly supported 

if we start with compactly supported <j>(t). An example will be seen in Fig. 13.2(b) later. 

Example 10.2. Battle-Lemarie orthonormal wavelets from splines. In Example 10.1 we 

considered a triangular 4>(t) (Fig. 10.4) which generates a nonorthonormal multiresolution. In this example 

we have 

*<»>=/!(w)2 (10-27) 

and it can be shown that 

f;   M«, + 2xk)\2 = Z±^L (10.28) 

fc=—CO 

The inequality (10.25) is satisfied with a = 1/2 and 6 = 3/2. Thus we have a Riesz basis {4>(t - n)} for 

V0. From this scaling function we can obtain the normalized function $(w) as above and then generate the 

wavelet function $(t) as explained above. This gives an orthonormal wavelet basis for I2. But 4>{t) does not 

have compact support (unlike <j)(t)). That is the wavelet function £(t) generating the orthonormal wavelet 

basis is not compactly supported either. v 

11. ORTHONORMAL WAVELET BASIS FROM PARAUNITARY FILTER BANKS 

The wisdom gained from the multiresolution viewpoint (Sec. 10) tells us there is a close connection between 

wavelet bases and two channel digital filter banks. In fact we obtained the equations of a paraunitary filter 

bank just by imposing the orthonormality condition on the multiresolution basis functions {<f>(t - n)}. In 

this section we will present the complete story: suppose we start from a two channel digital filter bank with 

the paraunitary property. Can we derive an orthonormal wavelet basis from this? To be more specific, 

return to the dilation equations (10.1) or equivalently (10.2). Here gs{n) and hs(n) are the impulse response 
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coefficients of the two synthesis filters Gs(e^) and Hs{e^) in the digital filter bank. Given these two filters, 

can we "solve" for <j>(t) and ^(*)? If so> does tnis ^(*) generate an orthonormal basis for L2 space? In this 

section we will answer some of these questions. Unlike in any other section, we will also indicate a sketch of 

the proof for each major result, in view of the importance of these in modern signal processing theory. 

Recall first that under some mild conditions (Sec. 10.4) we can prove that the filters have to satisfy 

(10.19),(10.20), if we need to generate wavelet and multiresolution bases successfully. We will impose these 

at the outset. By repeated application of the dilation equation we get $(w) = Gs(e'u/2)Gs(e'u/4)^{tj/4:). 

Further indefinite repetition yields an infinite product. Using the condition $(0) = 1 which we justified at 

the end of Sec. 10.4, we obtain the infinite products 

oo oo 

$H = 1] Gs(e^2k) = Gs(e^2) J[ G^2'), (11.1a) 
Jfc=l k=2 

oo 

*(w) = Ht(e*u'2) n G,(e*"/2*). (n.lb) 
fc=2 

The first issue to be addressed is the convergence of the infinite products above. For this we need to review 

some preliminaries on infinite products [Apostol, 1974], [Rudin, 1966]. 

The ideal bandpass wavelet re-derived from the digital filter bank. Before we address the 

mathematical details, let us consider a simple example. Suppose the pair of filters Gs(e
j") and Hs(e

:)U') are 

ideal brickwall lowpass and highpass filters as in Fig. 4.8(a). Then we can verify, by making simple sketches 

of a few terms in (11.1), that the above infinite products yield the functions $(w) and *(w) shown in Fig. 

10.1. That is, the ideal bandpass wavelet is indeed related to the ideal paraunitary filter bank by means of 

the above infinite product! 

11.1. Convergence of Infinite Products 

To define convergence of a product of the form J]fcLi ak, consider the sequence {p„} of partial products 

pn — rj£=1 ak. If this converges to a (complex) number A with 0 < \A\ < oo we say that the infinite product 

converges to A. Convergence to zero should be defined more carefully to avoid degenerate situations (e.g., if 

oi = 0, then pn = 0 for all n regardless of the remaining terms ak, k > 1). We use the definition in [Apostol, 

1974]. The infinite product is said to converge to zero if and only if ak — 0 for a finite nonzero number of 

values of fc, and if the product with these ajt's deleted converges to a nonzero value. 

Useful Facts About Infinite Products 

1. Whenever IlfcLi ak converges, it can be shown that ak -> 1 as k -+ oo. For this reason it is convenient 

to write ak = 1 + 6fc- 



2. We say that FT^i (1 + **) converges absolutely if ü2Li (X + M) converges.  Absolute convergence of 

IlfcLi (l + M implies its convergence. 

3. It can be shown that the product n^Li il + N) converges if and only if the sum £~ x \bk\ converges. 

That is, IlfcLi (! + M converges absolutely if and only if Y,kLi bk converges absolutely. 

Examples. The product ü^iC1 + k~2) converges because Y,T=i V*2 converges. Similarly ü^it1 ~ fc~2) 

converges because it converges absolutely, by the preceding example. The product FlfcLiC1 + fc_1) does not 

converge because £~ a 1/* diverges. Products such as TiZii1/^) do not converge because the terms do 

not approach unity as k —> oo. v 

Uniform Convergence 

A sequence {pn(z)} of functions of the complex variable z converges uniformly to a function p{z) on a 

set 5 in the complex plane if the convergence rate is the same everywhere in S. More precisely, if we are 

given e > 0, we can find N such that \pn{z) -p(z)\ < e for every z £ S, as long as n > N. The crucial thing 

is that JV depends only on e and not on z, as long aszeS.A similar definition applies for functions of real 

variables. 

We say that an infinite product of functions ]JT=i ak{z) converges at a point z if the sequence of partial 

products pn{z) = Ilfc=i °fc(2) converges as described previously. If this convergence of pn(z) is uniform in a 

set S we say that the infinite product converges uniformly on 5. Uniform convergence has similar advantages 

as in the case of infinite summations. For example, if each of the functions afc(w) is continuous on the real 

interval [wi,w2], then uniform convergence of the infinite product A(w) = YlT=iak(UJ) on [^1.^2] implies 

that the limit A(u) is continuous on [wi,w2]- We saw above that convergence of infinite products can be 

related to that of infinite summations. The following theorem [Rudin, 1966] makes the connection between 

uniform convergence of summations and uniform convergence of products. 

Theorem 11.1. Let bk(z),k > 1 be a sequence of bounded functions of the complex variable z, such 

that Y,T=i \h{z)\ converges uniformly on a compact sett S in the complex z plane. Then the infinite 

product n£Li (1 + h(z)) converges uniformly on S. Moreover, this product is zero for some z0 if and only 

if 1 4- bk(z0) = 0 for some k. v 

Uniform convergence and analyticity. We know that if a sequence of continuous functions converges 

uniformly to a function, then the limit is also continuous. A similar result is true for analytic functions. That 

is, if a sequence {/„(«)} of analytic functions converges uniformly to a function f(s) then f(s) is analytic as 

t For us, a compact set means any closed bounded set in the complex plane or on the real line. Examples 

(i) all points on and inside a circle in the complex plane, and (ii) the closed interval [a, b] on the real line. 



well. For a more precise statement of this result see Theorem 10.28 in Rudin [1966]. 

11.2. Infinite Product Defining the Scaling Function 

Return now to the infinite product (11.1a). As justified in Sec. 10.4, we assume Gs{eJU) to be continuous, 

Ga(e
j0) = 1, and $(0) # 0. Note that Gs{ei0) = 1 is necessary for the infinite product to converge (because 

convergence of nfc «fc implies that ak -+ 1; apply this for w = 0). The following convergence result is 

fundamental. 

Theorem 11.2. Convergence of the infinite product. Let Gs(e
ju) = T^-oo 9s(n)e-lun. Assume 

that Gs{ej0) = 1, and £„ \ngs(n)\ < oo. Then 

1. The infinite product (11.1a) converges pointwise for all u>. In fact it converges absolutely for all u, and 

uniformly on compact sets (i.e., closed bounded sets, e.g., sets of the form [wi, W2]). 

2. The quantity Gs(e
jw), as well as the limit $(w) of the infinite product (11.1a) are continuous functions 

of u). 

3. G,[eßu) is in L2. 0 

Since the condition £„ \ng„{n)\ < 00 implies £n M«)l < °°> the filter G»(ei°) is restricted to be 

stable. But the above result holds whether gs(n) is FIR or IIR. 

Sketch of proof. Theorem 11.1 allows us to reduce the convergence of the product to the convergence 

of an infinite sum. For this we have to write Gs{ej") in the form 1 - F(eju) and then consider the sum- 

mation Er=i \F{e^'2k)\. Since Gs(e'°) = 1 = £„<?», we can write G,(e>'") = 1 - (l - G.(e>u)) = 

l-En9s(n)(l-e-i"n). But |£n$,(n)(l - e~>un)\ < 2£nMn)sin(«;n/2)| < MD„|n^(n)| (use 

|ana:/ar| < 1). Since £„ |n5s(n)| is assumed to converge, we have |£B$,(n)(l - e~^n)\ < c\ui\. Using 

this, and the fact that EtLi 2~fc converges, we can complete the proof of part 1 (apply Theorem 11.1). 

Since £„ \nga(n)\ < 00 implies in particular that gs(n) S t1, its ^-FT Gs{eju) is continuous (Sec. 6.3). The 

continuity of Gs{eiu)) together with uniform convergence of the infinite product implies that the pointwise 

limit $(w) is also continuous. Finally, since t1 C t2 (Sec. 6.2), we have gs(n) € £2, that is, Gs(e-"") € L2[0, 2TT] 

as well. V V V 

11.3. Orthonormal Wavelet Basis From Paraunitary Filter Bank 

We now consider the behavior of the infinite product UkLi Gs(e
ju^k) when Gs(e

ju) comes from a parau- 

nitary filter bank. The paraunitary property implies that Gs(e
ju) is power symmetric. If we impose some 

further mild conditions on Gs(e
iu) then the scaling function 4>{t) generates an orthonormal multiresolution 

basis {</>(*- «-)}• We can then obtain an orthonormal wavelet basis {ipkn(t)} (Theorems 10.1, 10.2).  The 
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main results will be given in theorems 11.3-11.6 and 12.1. 

First let us define the truncated partial products P„(W). Since Gs(e^) has period 2TT, the term Gs(e^) 

has period 2**1*. For this reason the partial product ELi Gs(e^2') has period 2-+1*, and we can regard 

the region [-2"TT, 2"TT] to be the fundamental period. Let us truncate the partial product to this region, and 

define , , k 
,   ,      /IHUG.K"8),    for -2»* < u < 2"* 

\ 0 otherwise. 

This quantity will be useful later. We will see that this is in L2(R), and we can talk about pn(t), its inverse 

Z2-FT. 

Theorem 11.3. Let G,(e*") be as in Theorem 11.2. In addition let it be power symmetric, that is 

|Gs(e^)|2 + \Gs(-ejul)\2 = 1. (Notice in particular that this implies Ga{e>*) = 0, since Gs(e'°) = 1). Then 

the following are true. 

1. Jo2* \Gs(en\2du/2ir = 0.5. 

2. The truncated partial product Pn(w) is in L2, and £„ |P„MI2«W2* = 1 for all „. Morover the inverse 

L2-FT, denoted as pn(t), gives rise to an orthonormal sequence {pn{t-k)}, that is {pn(t-k),pn(t-i)) = 

6(k - i) for any n > 1. 

3. The limit *(w) of the infinite product (11.1a) is in L2, hence it has an inverse L2-FT, <f>(t) G L2. 

Moreover ||<£(*)||2 < 1- 

Sketch of proof. Part 1 follows by integrating both sides of |G,(e*")|2 + |Gs(-e^)|2 = 1. Theinte- 

gral in part 2 is jf ^llLi \G.(**>/* )\2 du/2x which we can split into two terms like /0
2 * + .£.„ \ 

Using the 27T-periodicity and the power symmetric property of G,(e>u), we obtain / \Pn\
2du; = / |P„-i \2du>. 

Repeated application of this, used together with part 1, yields /^ |P„H|2^/27r = 1. The proof of 

orthonormality of {pn(t - k)} follows essentially in a similar way by working with the modified integral 

f°°  \Pn(^)\2eMk~i]dui/2Tr, and using the half-band property of |Gs(e^)|2. 

The third part is the most subtle one, and uses Fatou's Lemma for Lebesgue integrals (Sec. 6.1). For 

this, define gn{u>) = |P„H|2. Then {gn(u)} is a sequence of nonnegative integrable functions such that 

5n(w) _ |$(W)|2 pointwise for each u, Moreover, since f gn(u>)du = 2* (from part 2), Fatou's lemma assures 

us that |$(w)|2 is integrable with integral < 2TT. This proves part 3. V VV 

It is most interesting that the truncated partial products Pn(u) give rise to orthonormal sequences 

{p„(t-k)}. This orthonormality is induced by the paraunitary property, more precisely the power symmetry 

property of G,(e>). This is consistent with the fact that the filter-bank type of basis introduced in Sec. 

4.8 for the discrete time functions x(n) G I2 is an orthonormal basis for I2 whenever the filter bank is 
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paraunitary. 

Since the scaling function *(w) is the pointwise limit of {P„(w)} as n -* oo, this leads to the hope that 

{4>{t - *)} is also an orthonormal sequence (so that we can generate a multiresolution and then a wavelet 

basis as in Theorems 10.1,10.2). This however is not always true! 

The crux of the reason is that *(w) is only the pointwise limit of {P„(w)}, and not necessarily the L2 

limit! The distinction is subtle (see below). The pointwise limit property means that, for any fixed u, the 

function P„(w) approaches $(w). The L2 limit property means that /|P„(«) - $(w)|2dw -> 0. Neither of 

these limit properties implies the other, that is neither is stronger than the other. It can be shown that it is 

the L2 limit which propagates the orthonormality property, and this is what we want. 

Theorem 11.4. Let {pn(t - k)} be an orthonormal sequence for each n, that is, (pn{t - k),p„(t -1)} = 

6(k - i). Suppose pn(t) -* <j>{t) in the L2 sense. Then {<j>(t - k)} is an orthonormal sequence. 0 

Proof. If we take limits asn->oo, we can write 

lim (Pn(t - k),pn{t - *')> = ( lim Pn(t - k), lim p„(t - i)> (U-3) 
n—►oo n—>-oo n   >-oo 

This movement of the "limit" sign past the inner product sign is allowed (by continuity of inner products, 

Sec. 6.2) provided the limits in the second expression are L2 limits. By the conditions of the theorem, the 

left side of the above equation is S(k - i) whereas the right side is (<j>(t - k), <j>{t - i)). So the result follows. 

VVV 

L2 Convergence Versus Pointwise Convergence. 

The fact that L2 limits are not necessarily pointwise limits is obvious from the fact that differences at 

a countable set of points do not affect integrals. The fact that pointwise limits are not necessarily L2 limits 

is demonstrated by the sequence of L2 functions {/„(*)}> with /«(*) ^ in FiS- 11-1- 

fn(t) 

0 n      n+1 t 

Fig. 11.1. A sequence {/«(*)} whose pointwise limit is not a limit in the L2-sense. 

Note that f„(t) -* 0 pointwise for each t, that is, the pointwise limit is f(t) = 0. So ||/„(0 - /(*)|| = 

||/„(t)|| = 1 for all n, hence ||/„(t) - /(*)|| does not go to zero as n - oo. Thus f{t) is not the L2 limit 

of /„(*). Notice in this example that 1 = lim™ / \fn(t)\
2dt # /limn^oo |/B(*)I2* = 0. This is consistent 
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with the fact that Lebesgue dominated convergence theorem cannot be applied here - there is no integrable 

function that dominates \fn(t)\
2 for all n. In this example, the sequence {/„(*)} does not converge in the L2 

sense (in fact ||/„(*) - /m(*)l|2 = 2 for n # m. So {/„} is not a Cauchy sequence in L2). 

Some facts pertaining to pointwise and L2 convergences: It can be shown that if /„(*) -* f(t) in L 

sense and /„(*) - g(t) £ L2 pointwise as well, then f(t) = g(t) a.e. In particular ||/(t) - g(t)\\ = 0 and 

||/(t)|| = \\g(t)\\. It can also be shown that if fn(t) -> f(t) in L2 sense, then ||/„(t)|| ~* ll/(*)ll- Finally if 

/n(t) _> f(t) e L2 pointwise a.e., and ||/„(*)|| - 11/(011 then /„(*) - /(*) in L2 sense as well [Rudin, 1966]. 

Theorem 11.5. Orthonormal wavelet basis. Let the filter Gs{e}U) = I^L_0o5,s(n)e~JU'" satisfy 

the following properties. 

1. G,(e>'°) = 1, 

2- EJn9s(n)\ < cc, 

3. |Gs(e^)|2 + \Gs(-eju)\2 = 1 (power-symmetry), and 

4. Ga{e'u) ^ 0 for w € [-0.57r,0.57r]. 

Then the infinite product (11.1a) converges to a limit *(w) € L2, and its inverse FT <f>{t) is such that 

{<f>(t - n)} is an orthonormal sequence. Defining the wavelet function ip{t) as usual, i.e., as in (10.10), the 

sequence {2k/2ip{2kt - n)} (with k and n varying over all integers) forms an orthonormal wavelet basis for 

L2. 0 

Sketch of proof. We will show that the sequence {P„(w)} of partial products converges to $(w) in the L2 

sense, that is / \Pn(u) - $(u)\2du; - 0, so that Pn(t) - 0(t) in L2 sense. The desired result then follows in 

view of Theorems 11.3 and 11.4. The key tool in the proof is the dominated convergence theorem for Lebesgue 

integrals (Sec. 6.1). First, the condition G{e>u) # 0 in [-0.5TT,0-H implies that *(w) # 0 in [-JT,4 

Since |$(w)|2 is continuous (Theorem 11.2) it has a minimum value c2 > 0 in [-v,ir\. Now the truncated 

partial product P„(w) can always be written as Pn(u) = *(u/)/*(o//2n) in its region of support. Since 

|$(w/2n)|2 > c2 in [-2n7T,2"7r], we have |P„(w)|2 < |$H|2/c2 for all u. Define Q„(w) = |P„(w) - $(w)|2. 

Then using |P„(u>)|2 < |$(w)|2/c2 we can show that Q„(w) < a|*(w)|2 for some constant a. Since the 

right hand side is integrable, and since Q„(w) -» 0 pointwise (Theorem 11.2) we can use the dominated 

convergence theorem (Sec. 6.1) to conclude that lim„/Q„(w) du = J"limnQ„H du = 0. This completes 

the proof. V V V 

Computing the Scaling and Wavelet Functions 

Given the coefficients gs(n) of the filter Ga{e>u), how do we compute the scaling function <j>{t) and the 

wavelet function ^{t)l Since we can compute ^{t) using ^(t) = 2 £~_^(-ir+1 <?:(-«-l)0(2*-n), the key 
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issue is the computation of <j>(t). In the preceding theorems, <j>(t) was defined only as an inverse L2 FT of the 

infinite product $(w) given in (11.1a). Since an L2 function is determined only in the a.e. sense, this way of 

defining <j>{t) itself does not fully determine <j>{t). Recall however, that the infinite product for $(w) was only a 

consequence of the more fundamental equation, namely the dilation equation <j>{t) = 2 £^=-00 g3(n)<l>{2t—n). 

In practice, <j>(t) is computed using this equation (which is often a finite sum, see Sec. 12). The procedure 

is recursive, that is we assume an initial solution for the function (j>(t), substitute it into the right hand 

side of the dilation equation, thereby recompute <j)(t), and then repeat the process. Details of this, and 

discussions on convergence of this procedure can be found in [Daubechies, 1992], [Chui, 1992a], [Daubechies 

and Lagarias, 1991], and [Rioul, 1991]. 

Eigenfunction Condition for Orthonormality [Lawton, 1990] 

Recall that Eq. (10.17) is equivalent to the orthonormality of {<j>{t - n)}. Let S(e'u) denote the left 

hand side of (10.17), which evidently has period 2TT in u>. Using the frequency domain version of the dilation 

equation (10.2), it can be shown that the scaling function <j>(t) generated from Gs(e
lu) is such that 

|Gs(e^)|2S(e^)     = 0.5S(eJ'w) (11.4) 
{I 

where the notation | 2 indicates decimation (Sec. 4.1). Thus the function S(e^) can be regarded as an 

eigenfunction (with eigenvalue = 0.5) of the operator T which performs filtering by |Gs(e
Ju;)|2 followed by 

decimation. 

Now consider the case where the digital filter bank is paraunitary, so that Gs{eJU) is power symmetric, 

that is satisfies (10.12). The power symmetric condition can be rewritten in the form |Gs(e-"")|2 = 0.5. 

Thus in the power symmetric case, the identity function is an eigenfunction of the operator T. If the only 

eigenfunction of the operator T is the identity function, it then follows that 5(eJ") = 1, that is (10.17) holds 

and {<f>(t - n)} is orthonorormal. 

The FIR case. In Sec. 12 we will see that restricting Ga(z) to be FIR ensures that <j>(t) has finite 

duration. For the FIR case, Lawton and Cohen independently showed that the above eigenfunction condition 

also works in the other direction. That is, if {<j>{t - n)} has to be orthonorormal, then the trignometric poly- 

nomial S(eju) satisfying (11.4) has to be unique up to a scale factor.^ Details can be found in [Daubechies, 

1992]. 

t A finite sum of the form Y,n=Nx P^iun is said to be a trignometric polynomial. If Gs(e>") is FIR, it can 

be show that the left hand side of (10.17) is not only periodic in w, but is in fact a trignometric polynomial. 
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Examples and Counter Examples 

We already indicated after the introduction of Eq. (11.1), that the example of the ideal bandpass wavelet 

can be generated formally by starting from the ideal brickwall paraunitary filter bank. We now discuss some 

other examples. 

Example 11.1. Haar basis from filter banks. A filter bank of the form Fig. 4.1(a) with filters 

Ga(z) 
l + z-1 

Ha(z) = 
■1 

G,{z) = 
1 + 2" 

-, Hs(z) = 
\-z -1 

is paraunitary. The magnitude responses of the synthesis filters, |G.(e>w)| = |cos(w/2)| and |.ff,(0| = 

|sin(w/2)| are shown in Fig. 11.2(a). Gs(z) satisfies all the conditions of Theorem 11.5. In this case we can 

evaluate the infinite products for $(w) and *(w) explicitly by using the identity n~=i cos(2~mü;) = sin w/w. 

The resulting </>(t) and VW are as shown in Fig.  11.2 (b) and (c). These are precisely the functions that 

generate the Haar orthonormal basis. 

(a) 

IHs(eJ  )l 
Gs (z)=(l+zf )/2 

H JzMl-z"1)^ 

CO 

♦ 

(b) 

0 

<K0 

Scaling function 

(c) 

0 

TO 
Haar wavelet 

Fig. 11.2. Haar basis generated from paraunitary filter bank. 

(a) The synthesis filters in the paraunitary filter bank, 

(b) the scaling function and (c) the wavelet function generated using dilation equation. 
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Example. 11.2. Paraunitary filter bank which does not give orthonormal wavelets. Consider 

the filter bank with analysis filters Ga(z) = (1 + z~3)/2, Ha(z) = -(1 - z~3)/2, and synthesis filters 

Gs(z) - (1 + z~3)/2, Hs{z) = (1 - 2~3)/2. Since this is obtained from the preceding example by the 

substitution z -» z3, it remains paraunitary and satisfies the perfect reconstruction property. Gs{z) satisfies 

all the properties of Theorem 11.5, except the fourth condition. With <p(t) and ip{t) obtained from Gs{e}U) 

using the usual dilation equations, the functions {<j)(t - n)} are not orthonormal. Moreover the wavelet 

functions {2k/2xp(2kt - n)} do not form an orthonormal basis either. These statements can be verified from 

the sketches of the functions <j>{t) and ip(t) shown in Fig. 11.3. Clearly <j>(t) and <j>(t - 1) are not orthogonal, 

and ip{t) and t/;(t - 2) are not orthogonal. In this example, ||P„(w)|| = 1 for all n whereas ||$(w)|| = 1/VÜ. 

Since the limit of ||P„(w)|| does not agree with ||$H||, we conclude that $(w) is not the L2 limit of Pn(w). 

The L2 limit of P„(w) does not exist in this example. 0 

(a) 

(b) 

(c) 

1/3 
V(t) 

Wavelet function 

(d) 

1/3 
¥(t-2) 

Fig. 11.3. Example 11.2. A paraunitary filter bank generating nonorthonormal {4>(t - n)} 

(a) The synthesis filter response, (b) the scaling function, (c) the wavelet function, and (d) a shifted version. 
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Thus, a paraunitary filter bank may not generate an orthonormal wavelet basis if the fourth condition 

in Theorem 11.5 is violated. However this is hardly of concern in practice, since any reasonable lowpass filter 

designed for a two channel filter bank will be free from zeros in the region [-0.57r,0.57r]! In fact a stronger 

result has been proved by Cohen who derived necessary and sufficient conditions for an FIR paraunitary 

filter bank to generate an orthonormal wavelet basis. One outcome of Cohen's analysis is that the fourth 

condition in Theorem 11.4 can be replaced by the even milder condition that Gs{eiu) be not zero in [-f, f ]. 

In this sense the condition for obtaining an orthonormal wavelet basis is trivially satisfied in practice. The 

case where the fourth condition fails is primarily of theoretical interest; a very cute result in this context is 

Lawton's tight frame theorem presented next. 

11.4. Wavelet Tight Frames 

Even though the wavelet functions {2k/2ip{2kt -n)} generated from a paraunitary filter bank may not form 

an orthonormal basis (when the fourth condition of Theorem 11.5 is violated), they always form a tight 

frame for L2. Thus any L2 function can still be expressed as an infinite linear combination of the functions 

{2k/2tp(2kt - n)}. More precisely we have the following result [Lawton, 1990]. 

Theorem 11.6. Tight frames from paraunitary filter banks. Let Gs(e
}U) = En=oS*(n)e~JU" 

be a filter satisfying the following properties. 

1. Ga(e>°) = 1, and 

2. \Gs(ej")\2 + \Gs(-e^)\2 = 1 (power-symmetry). 

Then <j>{t) £ L2. Defining the wavelet function ip(t) as usual, i.e., as in (10.10), the sequence {2k'2i}{2kt-n)} 

(with k and n varying over all integers) forms a tight frame for L2, with frame bound unity (i.e., A = B = 1, 

see Sec. 8). ^ 

Thus, the functions ipkn{t) in Example 11.2 constitute a tight frame for L2. From Sec. 8.3 we know that 

this tight frame property means that any x(t) € L2 can be expressed as 

oo oo 

*(*) = E E (»o-feWl^w. (1L5) 
fc=-oon=-oo 

where ipkn{t) = 2kl2ip(2kt - n). This expression is pretty much like an expansion into an orthonormal basis. 

We can find the wavelet coefficients cfc„ = (x{t),ipkn(t)} exactly as in the orthonormal case. We also know 

that frames offer stability of reconstruction (Sec. 8.1). Thus, in every respect this resembles an orthonormal 

basis, with the only difference that the functions are not linearly independent. That is, there is redundancy 

in the wavelet tight frame {ipkn{t)}- 
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12. COMPACTLY SUPPORTED ORTHONORMAL WAVELETS 

In Sec. 11 we showed how to construct an orthonormal wavelet basis for L2 space by starting from a 

paraunitary filter bank. Essentially we defined two infinite products *(w) and *(w) starting from the 

digital lowpass filter G,(e*"). Under some mild conditions on Ga(e>u), the products converge (Theorem 

11.2). Under the further condition that G,(e>u) be power symmetric and nonzero in [-0.5TT, 0.5TT] we saw 

that {6{t - k)} forms an orthonormal set, and the corresponding {2k'2^{2kt - n)} forms an orthonormal 

wavelet basis for L2 (Theorem 11.5). We will now see that if we further constrain Gs{e>») to be FIR, that 

is Gs(2) _ j-"=0 gs(n)z-n, then the scaling function <£(*) and the wavelet function ip(t) have finite duration 

[Daubechies, 1988, 1992]. 

Theorem 12.1. Let G.(z) = EJLo «.(»)*'"- with G^ = 2 and H'^ = ^(-^ Define 

the infinite products as in (ll.la),(ll.lb), and assume that the limits *(w) and *(w) are L2 functions (for 

example, by imposing power symmetry condition on G3(z) as in Theorem 11.3). Then <j>{t) and ip{t) (the 

inverse L2 FTs) are compactly supported, with support in [0, N]. 0 

The time-decay of the wavelet tjj{t) is therefore excellent. In particular, all the basis functions 2k/2ip{2kt- 

n) are compactly supported. By further restricting the lowpass filter G„{z) to have sufficient number of zeros 

at u = 7T, we will also ensure (Sec. 13) that the Fourier transform *(w) has excellent decay (equivalent^ 

ip{t) is regular or smooth in the sense to be quantified in Sec. 13). 

The rest of this section is devoted to the technical details of the above result. The reader not interested 

in these details can skip to Sec. 13 without loss of continuity. The Theorem might seem "obvious" at 

first sight, and indeed a simple engineering argument based on Dirac delta functions can be given (p. 521 

[Vaidyanathan, 1993]). However the correct mathematical justification relies on a number of deep results in 

function theory. One of these is the celebrated Paley-Wiener theorem for bandlimited functions. 

The Paley-Wiener Theorem 

A beautiful result in the theory of signals is that if an L2 function f(t) is bandlimited, that is F(u) = 

0, |w| > a, then f(t) is the "real-axis restriction of an entire function." Let us first explain the meaning of 

this phrase. We say that a function f(s) of the complex variable s is entire if it is analytic for all s. Examples 

are polynomials in s, exponentials such as es, and simple combinations of these. The function f(t) obtained 

from f(s) for real values of s {s = t) is the real-axis restriction of f(s). 

Thus if f(t) is a bandlimited signal then there exists an entire function /(«) such that its real axis 

restriction is /(*). In particular, therefore a bandlimited function f(t) is continuous and infinitely differen- 

tiable with respect to the time variable t. The entire function f(s) associated with the bandlimited function 
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has the further property |/(*)| < ce'W for some c> 0. We express this by saying that /(s) is exponentially 

bounded or of the exponential type. What is even more interesting is that the converse of this result is true, 

that is, if f(s) is an entire function of the exponential type, and the real axis restriction f(t) is in L\ then 

f(t) is bandlimited. By interchanging the time and frequency variables we can obtain similar conclusions for 

time-limited signals; this is what we need in the discussion of time limited (compactly supported) wavelets. 

Theorem 12.2 (Paley-Wiener). Let W(s) be an entire function such that (a) for all s, we have 

\W(s)\ < cexV(A\s\) for some c, A > 0, and (b) the real axis restriction W(u) is in L2. Then there exists a 

function w{t) in L2 such that W{s) = f*A w{t)e^tsdt. 0 

A proof can be found in [Rudin, 1966]. Thus w(t) can be regarded as a compactly supported function 

with support in [-A,A]. Recall [Eq. (6.1)] that L2[-A,A] C L'[-A,A], so w(t) is in I}[-A,A] and 

L2[-A,A]. So W(w) is the I1-FT of w(t), and agrees with the I2-FT a.e. 

Our aim is to show that the infinite product for $(w) satisfies the conditions of the Paley-Wiener 

theorem, and therefore that </>(t) is compactly supported. A modified version of the above result is more 

convenient for this. The modification allows the support to be more general, namely [-Ai,A2], and permits 

us to work with the imaginary part of s rather than the absolute value. 

Theorem 12.3 (Paley-Wiener, modified). Let W(s) be an entire function such that 

'ciexp(^i|lm*|),   lms>0 
\w(s)\<{     ; (12J) 

c2exp(A2|Im s\),   Im s < 0 

for some a, c2, Au A2 > 0, and such that the real axis restriction W{w) is in L2. Then there exists a function 

w(t) in L2 such that W(s) = f^ w(t)e^tsdt. We can regard W{u) as the Fourier transform of the function 

w(t) supported in [-A2,^i]- 

This result can be made more general; the condition (12.1) can be replaced with one where the right 

hand sides have the form Pi(s) exp(A,|Im *|) where Pi(s) are polynomials. We are now ready to sketch the 

proof that <f>{t) and ip{t) have the compact support [0,N]. k 

1. Using the fact that G,(z) is FIR and that G8{eP) = 1, show that the product HZi G*(eJS/2 ) converges 

uniformly on any compact set of the complex s-plane. (For real 5, namely s = w this holds even for the 

IIR case as long as £n \ngs(n)\ converges. This was shown in Theorem 11.2.) 

2. Uniformity of convergence of the product guarantees that its limit *(*) is an entire function of the 

complex variable s (Theorem 10.28, [Rudin, 1966]). 

3. The FIR nature of Gs{z) allows us to establish the exponential bound (12.1) for $(s) with A2 = 0 and 

Ai = N. This shows that <f>(t) is compactly supported in [0,iV]. Since ^(t) is obtained from the dilation 

equation (10.10), the same result follows for ^(t) as well. 
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13. WAVELET REGULARITY 

From the preceding section we know that if we construct the power-symmetric FIR filter Gs(z) properly, then 

we can get an orthonormal multiresolution basis {<f>(t-n)}, and an orthonormal wavelet basis {2k/2i)(2kt-n)} 

for the L2. Both of these bases are compactly supported. These are solutions to the two-scale dilation 

equations 

N 

<t>(t) = 2"52gs(n)cß(2t-n), (13.1) 

1>(t) = 2Y,ha(n)4>(2t-n), (13.2) 
n=0 

where hs(n) = (-l)n+1ffs(-«-1)- In the frequency domain we have the explicit infinite product expressions 

(11.1) connecting the filters Gs(z) and Hs{z) to the L2 Fourier transforms $(w) and #(w). 

Fig. 13.1(a) shows two cases of a 9th order FIR filter Gs(e
ju) used to generate the compactly supported 

wavelet. The resulting wavelets are shown in Figs. 13.1(b) and (c). In both cases, all conditions of Theorem 

11.5 are satisfied so we obtain orthonormal wavelet bases for L2. The filter Gs{eJU) has more zeros at TT for 

Case 2 than for Case 1. The corresponding wavelet looks much smoother or "regular" — this is an example 

of a Daubechies wavelet (Sec. 13.4). It turns out that, by designing Gs(z) to have a sufficient number of 

zeros at w we can make the wavelet "as regular as we please." A quantitative discussion of the connection 

between the number of zeros at TT and the smoothness of ij){t) will be given in the following sections. 

Qualitatively, the idea is this. If Gs(e
ju) has a large number of zeros at IT, then the function $(w) 

given by the infinite product (11.1a) decays "fast" asw-»oo. This fast asymptotic decay in the frequency 

domain implies that the time function (j>(t) is "smooth". And since ip(t) is derived from <f>{t) using a finite 

sum (13.2), the smoothness of <f>(t) is transmitted to i>(t). In the next few sections we will make the ideas 

more quantitative. References for this section include [Daubechies and Lagarias, 1991], [Daubechies, 1992] 

and [Rioul, 1992]. 

Why regularity? 

The point made above was that if we design an FIR paraunitary filter bank with the additional constraint 

that the lowpass filter Gs(e
jul) have a sufficient number of zeros at n, the wavelet basis functions ipkn(t) are 

sufficiently smooth. The smoothness requirement is perhaps the main new component brought into the filter 

bank theory from the wavelet theory. Its importance can be understood in a number of ways. 
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l.O 

IGs(e
JO>)l 

0.5 

O.O 

(a) 

O.O        O.l 0.2        0.3        0.4        0.5 
Normalized Frequency 

<£>(i) 

<J>(t) 

1.5 

0.5 

-0.5 

-1.5 

1.5 

0.5 

-0.5 

-1.5 

(b) 

(c) 

Fig. 13.1. Demonstrating the importance of zeros at IT. (a) The response 

of the FIR filter Gs(z) for two cases, and (b), (c) the corresponding wavelet functions. 
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Consider the expansion x(t) — J2k,n ck,r,^kn(t). Suppose we truncate this to a finite number of terms 

as is often done in practice. If the basis functions are not smooth, then the error can produce perceptually 

annoying effects in applications such as audio and image coding, even though the L2 norm of the error might 

be small. 

Consider next a tree structured filter bank. An example is shown in Fig. 4.6. In the synthesis bank, 

the first path can be regarded as an effective interpolation filter, that is, an expander (e.g., T 8 in Fig. 

4.6) followed by a filter of the form Gs(e
j")Gs{e2i")Gs{eiju)... Gs{e2L^). This same finite product can be 

obtained by truncating to L + 1 terms the infinite product defining $(w) [Eq. (11.1)], and making a change 

of variables. Similarly the remaining paths can be related to interpolation filters which are various truncated 

versions of the infinite product defining *(w) in Eq. (11.1). Imagine now that we use the tree structured 

system in subband coding. The quantization error in each subband is filtered through an interpolation filter. 

If the impulse response of the interpolation filter is not smooth enough (e.g., if it resembles Fig. 13.1(b)), 

then the filtered noise tends to show severe perceptual effects, for example in image reconstruction. This 

explains, qualitatively, the importance of having "smooth impulse responses" for the synthesis filters. 

13.1. Smoothness and Holder Regularity Index 

We are familiar with the notion of continuous functions. We say that f(t) is continuous at t0 if, for any 

e > 0 we can find a 6 > 0 such that \f(t) - f(t0)\ < e for all t satisfying \t - t0\ < 6. A stronger type 

of continuity, called Holder continuity, is defined as follows: f(t) is Holder continuous in a region S if 

|/(j0) _ /(tl)| < c\t0 - tif for some c,ß > 0, for all i0,*i € S. This implies, in particular, continuity in 

the ordinary sense. If ß > 1 the above would imply that /(*) is constant on S. For this reason, we have 

the restriction 0 < ß < 1. As ß increases from 0 to 1, the function becomes "smoother and smoother". The 

constant ß is called the Lipschitz constant of the function /(£). 

Suppose the function f(t) is n times differentiable in some region S and the nth derivative /(n) (t) is 

Holder continuous with Lipschitz constant ß. Define a = n + ß. We say that f(t) belongs to the class Ca. 

The coefficient a is called the Holder regularity index of f(t). For example, C3A is the class of functions 

that are three times differentiable and the third derivatives are Holder continuous with Lipschitz constant 

equal to 0.4. 

The Holder regularity index a is taken as a quantitative measure of regularity or smoothness of the 

function tp(t). We sometimes say ip(t) has regularity a. Qualitatively speaking, a function with a large 

Holder index is regarded as more "smooth" or "well-behaved". Since the dilation equations in the FIR case 

are finite summations, the Holder indices of <j>(t) and ip(t) are identical. 
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There exist functions which are differentiable infinite number of times. That is, they belong to C°°. 

Examples are e(, sin*, and polynomials. There even exist C°° functions that are compactly supported (i.e., 

have finite duration); however we will not have occassion to encounter these. 

13.2. Frequency-Domain Decay and Time-Domain Smoothness 

We can obtain time-domain smoothness of a certain degree by imposing certain conditions on the Fourier 

transform *(w). This is made possible by the fact that the rate of decay of tf(w) as u -> oo (i.e., the 

asymptotic decay) governs the Holder regularity index a of ij/(t). Suppose #(w) decays faster than (1 + 

|w|)-(1+a). That is, 

l*MI * -(i + H)!*«*«     for a11 w' (13-3) 

for some c > 0,e > 0. Then *(w)(l + |w|)a is bounded by the integrable function c/(l + M)1+e, and is 

therefore (Lebesgue) integrable. It can be shown using standard Fourier theory that this implies ip(t) € Ca. 

In the wavelet construction of Sec. 11 which begins with a digital filter bank, the above decay of tf (w) can 

be accomplished by designing the digital filter Gs(e^) such that it has a sufficient number of zeros at w = w 

(Sec. 13.4). 

Thus, the decay in the frequency domain translates into regularity in the time domain. Similarly one 

can regard time-domain decay as an indication of smoothness in frequency. When comparing two kinds of 

wavelets, we can usually compare them in terms of time domain regularity (frequency domain decay) and 

time domain decay (frequency domain smoothness). An extreme example is where ip(t) is bandlimited. This 

means that tf(w) is zero outside the passband, and so the "decay" is the best possible. Correspondingly 

the smoothness of i/>(t) is excellent; in fact V(«) € C°°. However, the decay of ip(t) may not be excellent 

(certainly it cannot be time limited if it is band limited). 

Return to the two familiar wavelet examples, namely the Haar wavelet (Fig. 2.12) and the bandpass 

wavelet (Figs. 2.9, 2.11). We see that the Haar wavelet has poor decay in the frequency domain since 

tf(w) decays only as w_1. Correspondingly the time domain signal ip(t) is not even continuous, hence not 

differentiable.t The bandpass wavelet on the other hand is band limited (so the decay in frequency is 

excellent). Thus ip(t) € C°°, but it decays slowly, behaving like i"1 for large t. These two examples represent 

two extremes of orthonormal wavelet bases for L2. 

The game, therefore, is to construct wavelets that have good decay in time as well as good regularity in 

time.  An extreme hope is where ip(t) £ C°° and has compact support as well. It can be shown that such 

t It is true that ip(t) is differentiable almost everywhere. But the discontinuities at the points t = 0,0.5,1.0 

will be very noticable if we take linear combinations like Y,k,n ckn^kn(t)- 
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i/;(t) can never give rise to an orthonormal basis (see Sec.  13.3 for more precise statement) so we have to 

strike a compromise between regularity in time and decay in time. 

Regularity and Decay in Early Wavelet Constructions 

In 1982 Stromberg showed how to construct wavelets such that ip(t) has exponential decay, and at the 

same time has arbitrary regularity (i.e., ip(t) e Ck for any chosen integer k). In 1985 Meyer constructed 

wavelets with bandlimited ip(t) (so rj;(t) € C~ as for the bandpass wavelet), but he also showed how to 

design this ip(t) to decay faster than any chosen inverse polynomial, as t -> oo. Figure 13.2(a) shows an 

example of a Meyer wavelet; a detailed description of this wavelet can be found in [Daubechies, 1992]. In 

both of the above constructions, the wavelets gave rise to orthonromal bases for L2. 

¥(0 

V(0 

J (b)- 

Fig. 13.2. (a) An example of the Meyer wavelet, and 

(b) an example of the Battle-Lemarie wavelet. 

In 1987 and 1988, Battle and Lemarie constructed, independently, wavelets with similar properties as 

Stromberg's wavelets, namely ip{t) e Ck for arbitrary k, and ip(t) decays exponentially. Their construction is 

based on spline functions and an orthonormalization step, as described in Sec. 10.5. The resulting wavelets, 

while not compactly supported, decay exponentially and generate orthonormal bases. Fig. 13.2(b) shows an 

example of the Battle-Lemarie  wavelet. 

Table 13.1 gives a summary of the main features of these early wavelet constructions (first three entries). 

When these examples were constructed, the relation between wavelets and digital filter banks was not known. 

The constructions were not systematic, or unified by a central theory. Moreover it was not clear whether 
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one could get a compactly supported (i.e., finite-duration) wavelet V« which at the same time has arbitrary 

regularity (i.e., ip(t) € Ck for any chosen k), and generates an orthonormal wavelet basis. This was made 

possible for the first time when the relation between wavelets and digital filter banks was observed by 

Daubechies [1988]. Simultaneously and independently MaJlat invented the multiresolution framework and 

observed the relation between his framework, wavelets, and paraunitary digital filter banks (the CQF bank, 

Sec. 4). These discoveries have made the wavelet construction easy and sytematic, as described earlier in 

Sec. 11-12. The way to obtain arbitrary wavelet regularity with this scheme is described next. 

Type of 
wavelet 

Decay of 
\J/ (t) in time 

Regularity of 
\}f (t) in time 

Type of 
wavelet basis 

Stromberg, 
1982 

Exponential 

k 
Y(t)inC , 

k can be chosen 
arbitrarily large 

Orthonormal 

Meyer, 
1985 

Faster than 
any chosen inverse 

polynomial 

\|/(t) in C 
(bandlimited) 

Orthonormal 

Battle-Lemarie, 
1987, 88 

(SPLINES) 

Exponential 

k 
\}f(t)inC , 

k can be chosen 
arbitrarily large 

Orthonormal 

Daubechies, 
1988 

Compactly 
supported 

a 
\|/(t)inC , 

a can be chosen 
as large as we please 

Orthonormal 

Table 13.1. Summary of several types of wavelet bases for L2{TZ). 

13.3. Time-Domain Decay and Time-Domain Regularity 

We will now state a fundamental limitation which arises when trying to impose regularity and decay simul- 

taneously [Daubechies, 1992]. 

Theorem 13.1. Vanishing Moments. Let {2k/^(2kt-n)},-oo < k,n < oo be an orthonormal set 

in L2. Suppose the wavelet ip(t) satisfies the following properties. 

1.  \ip(t)\ < c(l + |i|)_(m+1+£) for some integer m and some e > 0. That is, the wavelet decays faster than 

(1 + 1*1) 
-(m+l) 
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2. 4>(t) 6 Cm (i.e., ip{t) differentiable m times), and the TO derivatives are bounded. 

Then the first TO moments of ip(t) are zero, that is, / tlil>{t)dt = 0 for 0 < i < m. 0 

Impossibility of Compact Support, Infinite Differentiability, and Orthonormality. Suppose 

we have an orthonormal wavelet basis such that rp(t) is compactly supported, and infinitely differentiable 

(i.e., ip(t) e C°°). Then all the conditions of Theorem 13.1 are satisfied. So the moments of ip(t) are 

zero, and therefore tp(t) = 0 for all t violating the unit-norm property of i>(t). We cannot, therefore, design 

compactly supported orthonormal wavelets which are infinitely differentiable; only a finite Holder index can 

be accomplished. A similar observation can be made even when ip(t) is not compactly supported as long as 

it decays faster than any inverse polynomial (e.g., exponential decay). 

The vanishing moment condtion jf^dt = 0,0 < i < m implies that the L2 Fourier transform *(w) 

has m + 1 zeros at u = 0. This follows by using standard theorems on the J^-FT [Rudin, 1966].t Thus, the 

first TO derivatives of *(w) vanish at w = 0. This implies a certain degree of flatness at u = 0. Summarizing, 

we have: 

Theorem 13.2. Flatness in Frequency and Regularity in Time. Suppose we have a compactly 

supported tp(t) generating an orthonormal wavelet basis {2k/2i/j(2kt - n)}, and let -ip(t) € Cm, with m 

derivatives bounded. Then \t(w) has m + 1 zeros at w = 0. v 

Return now to the wavelet construction technique described in Sec. 11. We started from a paraunitary 

FIR filter bank (Fig. 4.1(a)) and obtained the scaling function <j>(t) and wavelet function ip{t) as in (13.1) 

and (13.2). The FIR nature implies that ^(t) has compact support (Sec. 12). With the mild conditions of 

Theorem 11.5 satisfied, we have an orthonormal wavelet basis for I2. We see that if the wavelet tp(t) has 

Holder index a, then it satisfies all the conditions of Theorem 13.2 where m is the integer part of a. Thus 

*(w) has TO + 1 zeros at u - 0. But since $(0) ^ 0 (Section 10.4), we conclude from the dilation equation 

*(w) = Hs(e^2)^(uj/2) that the highpass FIR filter Hs(z) has TO + 1 zeros at w = 0 (i.e., at z = 1). Using 

the relation Hs{e
ju) = ejuG*s{-ej") we conclude that Gs{eju) has m +1 zeros at w = n. That is, the lowpass 

FIR filter Gs(z) has the form G,(z) = (1 + z^^F^) where F(z) is FIR. Summarizing, we have: 

Theorem 13.3. Zeros at 7r and regularity. Suppose we wish to design a compactly supported 

orthonormal wavelet basis for L2 by designing an FIR filter Gs(z) satisfying the conditions of Theorem 

11.5. If rp(t) has to have the Holder regularity index a then it is necessary that Gs{z) have the form 

Gs(z) = (1 + z~1)m+1F(z) where F(z) is FIR, and m is the integer part of a. 0 

One zero at n is essential.   From Theorem 11.2 we know that we need to have Gs(e>°) = 1 for the 

t  Since ip(t) G L2 and has compact support, ip(t) 6 I1 as well. 
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infinite product (11.1a) to converge. Theorem 11.5 imposes further conditions which enables us to obtain 

an orthonormal wavelet basis for L2. One of these conditions is the power symmetric property |Gs(e
J")|2 + 

\Gs(-eju)\2 = 1. Together with Gs(e
j0) = 1 this implies Gs(e^) - 0. Thus, it is necessary to have at 

least one zero of Gs(e
j") at TT. The filter which generates the Haar basis (Example 11.1) has exactly one 

zero at TT. But the Haar wavelet ip(t) is not even continuous. If we desire increased regularity (continuity, 

differentiability ...), we need to put additional zeros at TT, as the above theorem shows. 

Design techniques for paraunitary filter banks do not automatically yield filters which have zeor(s) at 

IT. This condition has to be incorporated separately. The maximally flat filter bank solution (Sec. 4.6) does 

satisfy this property, and in fact even allows us to specify the number of zeros at it. 

13.4. Wavelets With Specified Regularity 

The fundamental connection between digital filter banks and continuous time wavelets, elaborated in the 

preceding sections, allows us to construct the scaling function <f>{t) and the wavelet function rjj{t) with 

specified regularity index a. If Gs(z) has a certain number of zeros at IT, this translates into the Holder 

regularity index a. We will see that what really matters is not only the number of zeros at TT, but also the 

order of the FIR filter Gs(z). 

For a given order TV of the filter Gs{z), suppose we wish to put as many of its zeros as possible at n. 

Let this number be K. What is the largest possible K1 We can't have all TV zeros at TT because we have 

imposed the power symmetric condition on Gs(z). The best we can do is to put all the unit-circle zeros at 

TT. The power symmetric condition says that G(z)=Gs(z)Gs(z) is a half-band filter. This filter has order 

27V, with 2K zeros at TT. Since we wish to maximize K for fixed TV, the solution for G(z) is the maximally 

flat FIR filter (Fig. 4.5), given in (4.23). As the filter in (4.23) has 2K zeros at TT and order 27V = 4Ä' - 2 

we conclude that K = (TV + l)/2. For example if Gs(z) is a fifth order power symmetric filter it can have at 

most three zeros at TT. 

The 20% Regularity Rule 

Suppose Gs(z) has been designed to be FIR power symmetric of order TV, with the number K of zeros at 

TT adjusted to be maximum (i.e., K = (TV + l)/2). Then it can be shown that the corresponding scaling and 

wavelet functions have a Holder regularity index a « 0.2A'. This approximate estimate is poor for small K 

but improves as K grows. Thus every additional zero at TT contributes to « 20% improvement in regularity. 

For K = 4 (i.e., 7th order Gs(z)) we have a = 1.275 which means that the wavelet ^(t) is once 

differentiable and the derivative is Holder continuous with Lipschitz constant 0.275. For K = 10 (19th order 

Gs(z)) we have a = 2.9, so the wavelet ip(t) is twice differentiable and the second derivative has Holder 
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regularity index 0.9. 

Design procedure. The design procedure is therefore very simple. For a specified regularity index 

a, we can estimate K and hence N = 2K - 1. For this K, we compute the coefficients of the FIR half 

band maximally flat filter G(z) using (4.23). From this we compute a spectral factor Gs(z) of the filter 

G{z). Tables of the filter coefficients gs{n) for various values of N can be found in [Daubechies, 1992]. From 

the coefficients gs(n) of the FIR filter Gs(z), the compactly supported scaling and wavelet functions are 

fully determined via the dilation equations. These wavelets are called Daubechies wavelets and were first 

generated in [Daubechies, 1988]. Fig. 13.1(c) is an example, generated with a 9th order FIR filter Gs(z), 

whose response is shown as Case 2 in Fig. 13.1(a). 

The above regularity estimates, based on frequency domain behavior, give a single number a that 

represents the regularity of xp(t) for all t. It is also possible to define pointwise or local regularity of the 

function ^(t) so that its smoothness can be estimated as a function of time t. These estimation methods, 

based on time domain iterations, are more sophisticated but give a detailed view of the behavior of ip(t). 

Detailed discussions on obtaining various kinds of estimates for regularity can be found in [Daubechies and 

Lagarias, 1991], [Daubechies, 1992] and [Rioul, 1992]. 

14. CONCLUDING REMARKS 

We introduced the wavelet transform, and studied its connection to filter banks and short time Fourier 

transforms. A number of mathematical concepts such as frames and Riesz bases were reviewed and used 

later for a more careful study of wavelets. We introduced the idea of multiresolution analysis, and explained 

the connections both to filter banks and wavelets. This connection was then used to generate orthonormal 

wavelet bases from paraunitary filter banks. Such wavelets have compact support when the filter bank is 

FIR. The regularity or smoothness of the wavelet was quantified in terms of the Holder exponent. We 

showed that we can achieve any specified Holder exponent for compactly supported wavelets by restricting 

the lowpass filter of the FIR paraunitary filter bank to be a maximally fiat power-symmetric filter, with a 

sufficient number of zeros at TT. 

Why Wavelets? 

Discussions comparing wavelets with other types of time frequency transforms appear at several places 

in this chapter. Here is a list of these discussions: 

1. Sec. 2.5 discusses basic properties of wavelets, and Sec. 2.7 gives an elementary comparison of wavelet 

basis with the Fourier basis. 
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2. Sec. 3.2 compares the wavelet transform with the short time Fourier transform, and shows the time 

frequency tilings for both cases. 

3. Sec. 9 gives a deeper comparison with the STFT in terms of stability properties of the inverse, existence 

of frames, and so forth. 

4. Sec. 13 shows a comparison to the traditional filter bank design approach. In traditional designs, the 

appearance of zero(s) at TT is not considered important. At the beginning of Sec. 13 (under "Why 

regularity"), we discuss the importance of these zeros in wavelets as well as in tree structured filter 

banks 

Further reading 

The literature on wavelet theory and applications is enormous. This chapter is only a brief introduction, 

concentrating on one dimensional orthonormal wavelets. There exist many results on the topics of multidi- 

mensional wavelets, biorthogonal wavelets, and wavelets based on IIR filter banks. Two special issues of the 

IEEE Transactions have appeared on the topic so far [IEEE, 1992] and [IEEE, 1993], covering some of these 

topics. Multidimensional wavelets are treated by several authors in the edited volume [Chui 1992b], and the 

filter bank perspective can be found in [Kovacevic and Vetterli, 1992]. Advanced results on multidimensional 

wavelets can be found in [Cohen and Daubechies, 1993], and the theory of biorthogonal wavelets is treated 

in [Cohen, et al., 1992]. Sampling theorems for wavelet and multiresolution subspaces have been introduced 

by Walter [1992], and extended by other authors. See Djokovic and Vaidyanathan [1994], and references 

therein. Advanced results on wavelets constructed from M-channel filter banks can be found in the chapter 

by Gopinath and Burrus (see [Chui, 1992b]), and in [Steffen, et al, 1993]. The reader can also refer to the 

collections of chapters in Chui [1992b] and [Benedetto and Frazier, 1994], and many references therein. 
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APPENDIX A. DISTRIBUTIONS AND THEIR FOURIER TRANSFORMS 

There are many commonly used examples such as x(t) = 1, which are not in U> for any finite p. For these we 

cannot define the Fourier transform in the sense of Sec. 6.3. However, in electrical sciences (even in physics) 

we often make statements like 

x(t) = 1    implies     X(u) = 2TT6(üJ) 

and x(t) = 6{t)    implies     X(w) = 1 for all UJ. 

The Dirac delta 6(t) is actually a fictitious function, assumed to be zero everywhere except at t = 0 (where 

it is undefined), and satisfying / 6{t)dt = 1. It is often regarded as the limit of a sequence of functions fn(t) 

with / fn(t)dt = 1 and such that /„(«) - 0 pointwise for all t # 0. If the Dirac delta were a function in the 

usual sense, its Lebesgue integral would be zero rather than one, since the "function" is zero a.e. There are 

many such mathematical difficulties in dealing with Dirac delta. 

In mathematics, the delta function is regarded as a linear mapping that takes a function s(t) as an 

"input", and produces the number s(0) as an output (compare with the statement / s{t)6(t)dt = s(0), which 

can be found in engineering texts, e.g., [Oppenheim, et al, 1983]). Of course, we have to define the class of 

allowed inputs s(t) carefully. For example, if s{t) is not continuous at t = 0 then the Dirac delta cannot be 

properly defined. With appropriate restrictions on the class of allowed "inputs," such mappings are called 

distributions (all precise definitions will be given below). 

The space V from which the inputs s(t) are drawn is usually restricted to be the set of all functions which 

have two properties: (a) compact support (finite duration), and (b) infinite differentiability everywhere. In 

particular they are continuous everywhere. We will see below that this allows us to define "derivatives of 

distributions," and so forth. It has been found that a slightly larger class of functions S D V is more useful. 

The class S is defined similar to V with the exception that the "compact support" requirement is replaced 

with the milder condition that the functions decay faster than any inverse polynomial (i.e., faster than \t\~n 

for any integer n), as \t\ -» oo. It can be shown that, while V C S, the set S is itself smaller than L\ That 

is, 

VCSCL1. (A.2) 

Recall that the FT of an Ll function may not be in L1 (Sec. 6.3). Similarly the FT of a nonzero function 

in V is not in V, because s(t) and its FT cannot both be of finite duration. However, the set S sandwiched 

between V and L1 has this beautiful property: the I1-FT of any function in S still belongs to <S [Rudin, 

1973]. This will be useful in defining Fourier transforms of tempered distributions (see below). 
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Definitions 

1. A functional A[.], defined on a set K of functions, takes an element s(t) € TZ as input and produces 

a complex number X[s(t)] as the output. A linear functional is a functional that satisfies the usual 

meaning of linearity, that is, A[oiSi(t) + a2s2(t)} = ai\[si(t)] + a2X[s2(t)}. 

2. Linear functionals on V are called distributions, whereas linear functionals on S are called tempered 

distributions. 

For example, if A is the Dirac delta distribution, X[s{t)} = *(0). Fig. A.l shows a schematic of distributions 

in general, and the Dirac delta in particular. 

s(t) 

s(t) 

—-*,[•]- 

—> 6(-)  - 

k [s(t)]  , a real or 
complex number 

s(0) 

Fig. A.l. (a) Schematic of a distribution A[-] and 

(b) the example of delta function as a distribution. 

Regular and irregular distributions. Let x(t) be a locally integrable function (i.e., the Lebesgue 

f* x(t)dt exists for every finite a, 6), not growing faster than polynomials as \t\ -> oo. We can use it to define 

a linear functional A on S (or V) as follows: for any s(t) € S define 

A[s(t)]=   fx(t)s{t)dt. (A3) 

We then say that the distribution A is induced by the function x(t). One can view the Dirac delta distribution 

as being described by 

A[*(t)]=  IS(t)s(t)dt = 8(0) (A4) 

but it is not an induced distribution because 6(t) is only a fictitious function. Distributions that are induced 

by locally integrable functions as in (A.3) are said to be regular. Dirac delta is not a regular distribution. 

Fourier transforms of tempered distributions.   We define the Fourier transform of a tempered 

distribution A as another tempered distribution A such that 

A[s(t)] = \[S{w)]. (A.5) 

Thus the FT of the distribution A is the same distribution operating on S(w) rather than s(t), as shown 

schematically in Fig. A.2. This definition makes sense because the domain of tempered distributions is the 

class S and, as already stated, if s(t) € S then S{u>) € <S. 
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tfO- AH   -    =     s(t) —- FT 
S(CD) 

U-l - 

FT of \[-] 

Fig. A.2. The Fourier transform (FT) of a 

tempered distribution, shown schematically. 

For example let A be the Dirac delta distribution. Then 

A\s(t)} = X[S(u)] = 5(0) =  fs(v)dv. (A.6) 

The extreme right hand side represents a regular distribution induced by the locally integrable function 

X(w) = 1. (Note that v in (A.6) is just a dummy variable of integration; you can replace it with u). So 

we say that the FT of the Dirac delta distribution is the constant function (X{u) = 1 everywhere). What 

we really mean is that the FT of the Dirac delta distribution A is the distribution A induced by the constant 

function. Fig. A.3 gives a schematic summary of this. 

(a) s(t) —H 6(0 |— S(0) 

Dirac delta distribution 

s(t) A(.) — 

FT of Dirac 
delta distribution 

S(co) 

s(t) -4JTp4^(0V S(0)=/s(t)dt (b) 

=      s(t)— j dt —■ /s(t)dt 

Fig. A.3. (a) The Dirac delta distribution, and 

(b) its Fourier transform, shown schematically. 

By a dual argument we can show that the FT of the constant function is the delta function. Again the 

real meaning of this statement is: the FT of the regular distribution induced by the constant function is the 

Dirac delta distribution. We can give similar meaning to the FT of a polynomial, and conversely interpret 
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a polynomial as the FT of a distribution.   Example:  the FT of the polynomial t is the distribution that 

extracts derivatives at the origin (why?). 

Many other operations on distributions can be denned similarly. For example the derivative of a distri- 

bution is the distribution of the derivative (except for a sign): \'[s(t)] = -X[s'(t)}, as schematically shown in 

Fig. A.4. This definition opens up a whole theory of calculus for distributions, but we will not require them 

here. An introduction to distributions can be found in [Kolmogorov and Fomin, 1970]. Advanced results 

can be found in [Rudin, 1973]. 

s(t) U-] 
Derivative of 

the distribution X[m] 

=       s(t) — 
_d 

It 
-1 

X[- 

Fig. A.4. The derivative of a distribution A[-]. 

112 



15. BIBLIOGRAPHY 

Akansu, A.N., and Haddad, R.A., Multiresolution signal decomposition:   transforms, subbands, and wavelets, 

Academic Press, Inc., 1992. 

Anderson, B. D. O., and Moore, J. B. Optimal filtering, Prentice Hall, Inc., Englewood Cliffs, NJ, 1979. 

Apostol, T.M. Mathematical analysis, Addison-Wesley, 1974. 

Allen, J. B., and Rabiner, L. R. "A unified theory of short-time spectrum analysis and synthesis," Proc. IEEE, 

vol. 65, pp. 1558-1564, Nov. 1977. 

Belevitch, V. Classical network theory, Holden Day, Inc., San Francisco, 1968. 

Bellanger, M., Bonnerot, G., and Coudreuse, M. "Digital filtering by polyphase network: application to sample 

rate alteration and filter banks," IEEE Trans,   on Acoust.   Speech and Signal Proc, vol.   ASSP-24, pp. 

109-114, April 1976. 

Benedetto, J. J., and Frazier, M. W. Wavelets: mathematics and applications, CRC Press, Inc., 1994. 

Brune, O. "Synthesis of a finite two terminal network whose driving point imped- ance is a prescribed function 

of frequency," J. Math., and Phys., vol. 10, pp. 191-235, 1931. 

Chui, C. K. An introduction to wavelets, Academic Press, 1992a. 

Chui, C. K. (edited), Wavelets: a tutorial in theory and applications, Academic Press, 1992b. 

Cohen, A., Daubechies, I., and Feauveau, J. C. "Biorthogonal bases of compactly supported wavelets," Comm. 

on Pure and Appl. Math., vol. 45, pp. 485-560, 1992. 

Cohen, A and Daubechies, I. "Non-separable Bidimensional Wavelet Bases", Rev. Mat. Eberu. Americana, v. 

9, pp. 51-137, 1993. 

Crochiere, R. E., and Rabiner, L. R. Multirate digital signal processing, Englewood Cliffs, NJ: Prentice Hall, 

1983. 

Croisier, A., Esteban, D., and Galand, C. "Perfect channel splitting by use of interpolation/decimation/tree 

decomposition techniques," Int. Symp. on Info., Circuits and Systems, Patras, Greece, 1976. 

Daubechies, I. "Orthonormal bases of compactly supported wavelets," Comm.  on Pure and Appl. Math., vol. 

41, pp. 909-996, Nov. 1988. 

Daubechies, I. Ten lectures on wavelets, SIAM, CBMS series, April 1992. 

Daubechies, I., and Lagarias, J. "Two-scale difference equations: existence and global regularity of solutions," 

SIAM J. Math. Anal., vol. 22, pp. 1388-1410, 1991. 

Djokovic, I., and Vaidyanathan, P.P. "Generalized sampling theorems in multiresolution subspaces," Tech. Rep., 

113 



Caltech, August 1994. 

Duffin, R. J., and Schaeffer, A. C. "A class of nonharmonic Fourier series," Trans. Amer. Math. Soc, vol. 72, 

pp. 341-366, 1952. 

Flanagan, J. L., and Golden, R. M. "Phase vocoder", Bell Syst. Tech, J., vol. 45, pp. 1493-1509, 1966. 

Gabor, D. "Theory of communications," J. Inst. Elec. Eng., (London), vol. 93, pp. 429-457, 1946. 

Grossman, A., and Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant 

shape, SIAM J. Math. Anal, vol. 15, pp. 723-736, 1984. 

Gopinath, R. A., and Burrus, C. S., "A tutorial overview of filter banks, wavelets, and interrelations," Proc. 

IEEE Int. Symp. on Circuits and Systems, pp. 104-107, May 1993. 

Haar, A. "Zur theorie der orthogonalen funktionen Systeme, Math. Ann., vol. 69, pp. 331-371, 1910. 

Haaser, N. B., and Sullivan, J. A. Real analysis, Dover Publ. Inc., 1971. 

Heil, C. E., and Walnut, D. F. "Continuous and discrete wavelet transforms," SIAM review, vol. 31, pp 628-666, 

Dec. 1989. 

Herrmann, 0. "On the approximation problem in nonrecursive digital filter design," IEEE Trans. Circuit theory, 

vol. CT-18, pp. 411-413, May 1971. 

IEEE, 1992, Special issue on wavelet transforms and multiresolution signal analysis, IEEE Trans. Info.  Th., 

vol. 38, March 1992. 

IEEE, 1993, Special issue on wavelets and signal processing, IEEE Trans. Signal Proc, vol. 41, Dec. 1993. 

Kolmogorov, A. N., and Fomin, S. V., Introductory real analysis, Dover Publ. Inc., 1970. 

Kovacevic, J., and Vetterli, M. "Nonseparable multidimensional perfect reconstruction filter banks and wavelet 

bases for i?n," IEEE Trans, on Info. Theory, vol. IT-38, Feb. 1992. 

Lawton, W. M., "Tight frames of compactly supported affine wavelets," J. Math. Phys., vol. 31, pp. 1898-1901, 

Aug. 1990. 

Mallat, S. "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans,   on 

Pattern Anal, and Machine Intell., vol. 11, pp. 674-693, July 1989a. 

Mallat, S. "Multiresolution approximations and wavelet orthonormal bases of L2{R)? Trans,  of Amer. Math. 

Soc, vol. 315, pp. 69-87, Sept. 1989b. 

Malvar, H. S. Signal processing with lapped transforms, Artech House, Norwood, MA, 1992. 

Meyer, Y. Ondelettes et functions splines Seminaire EDP, Ecole Polytechnique, Paris, 1986. 

Mintzer, F. "Filters for distortion-free two-band multirate filter banks," IEEE Trans, on Acoustics, Speech and 

Signal Proc, vol. ASSP-33, pp. 626-630, June 1985. 

114 



Naylor, A. W., and Sell, G. R. Linear operator theory in engineering sciences, Springer-Verlag, 1982. 

Oppenheim, A. V., and Schäfer, R. W. Discrete-time signal processing, Prentice Hall, Inc., Englewood Cliffs, 

NJ, 1989. 

Oppenheim, A. V., Willsky, A. S., and Young, I. T. Signals and systems, Prentice Hall, Inc., 1983. 

Papoulis, A. The Fourier integral and its applications, McGraw Hill Book Co., 1962. 

Portnoff, M. R.  "Time-frequency representation of digital signals and systems based on short-time Fourier 

Analysis," IEEE Trans, on Acoust. Speech and Signal Proc, vol. ASSP-28, pp. 55-69, Feb. 1980. 

Riesz and Nagy, Functional analysis, Dover Publ. Inc., 1955. 

Rioul, 0. "Simple regularity criteria for subdivision schemes," Siam J. Math. Anal., vol.  23, pp.  1544-1576, 

Nov. 1992. 

Rioul, O., and Vetterli, M. "Wavelets and signal processing," IEEE Signal Processing magazine, pp. 14-38, Oct. 

1991. 

Rudin, W. Real and complex analysis, McGraw-Hill, Inc., 1966. 

Rudin, W. Functional analysis, McGraw-Hill, Inc., 1973. 

Schäfer, R. W., and Rabiner L. R., "Design and simulation of a speech analysis-synthesis system based on 

short-time Fourier analysis, IEEE Trans. Audio and Electroacoust. vol. 21, pp. 165-174, June 1973. 

Smith, M. J. T., and Barnwell III, T. P. "A procedure for designing exact reconstruction filter banks for tree 

structured subband coders," Proc. IEEE Int.  Conf. Acoust. Speech, and Signal Proc, pp. 27.1.1-27.1.4, 

San Diego, CA, March 1984. 

Soman, A. K., and Vaidyanathan, P. P. "On orthonormal wavelets and paraunitary filter banks," IEEE Trans. 

on Signal Processing, vol. SP-41, March 1993. 

Steffen, P., Heller, P. N., Gopinath, R. A., and Burrus, C. S., "Theory of regular M-band wavelet bases," IEEE 

Trans. Signal Processing, vol. 41, pp. 3497-3511, Dec. 1993. 

Strang, G. "Wavelet transforms versus Fourier transforms," Bull.  Amer. Math.  Soc, vol.   28, pp.  288-305, 

April 1993. 

Vaidyanathan, P. P. "Theory and design of M-channel maximally decimated quad-rature mirror filters with arbi- 

trary M, having perfect reconstruction property," IEEE Trans, on Acoustics, Speech and Signal Processing, 

vol. ASSP-35, pp. 476-492, April 1987. 

Vaidyanathan, P. P. Multirate systems and filter banks, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993. 

Van Valkenburg, M. E. Introduction to Modern Network Synthesis, John Wiley & Sons, Inc., 1960. 

Veldhuis, R. N. J., Breeuwer, M., and Van der wall, R. G. "Subband coding of digital audio signals" Philips J. 

115 



Res., vol. 44, pp. 329-343, 1989. 

Vetterli, M. "A theory of multirate filter banks," IEEE Trans, on Acoustics, Speech and Signal Processing, vol. 

ASSP-35, pp. 356-372, March 1987. 

Vetterli, M., and Herley, C. "Wavelets and filter banks," IEEE Trans, on Signal Processing, vol. SP-40, 1992. 

Walter, G. G. "A sampling theorem for wavelet subspaces," IEEE Trans, on Info. Th., vol. 38, pp. 881-884, 

March 1992. 

Woods, J. W. Subband image coding, Kluwer Academic Publishers, Inc., 1991. 

Young, R. M. An introduction to nonharmonic Fourier series, Academic Press, Inc., 1980. 

116 


