
i

Automatic Test Data
Generation Tool for Large-

Scale Software Systems1

Final Report

A.Kolawa2, B.Strickland, A.Hicken

ParaSoft Corporation
2031 S. Myrtle Ave.
Monrovia, CA 91016

This document has been aDoioved
for public release and sale; us
distribution is unlimited,

Phone:(818)305-0041
FAX: (818) 305-9048

Contract: DASG60-94-C-0051
May 26,1994

1. Research sponsored by BMDO and managed by U.S.Army, Strategic Defense Command, Huntsville, Al-
abama, under the SBIR program. Technical Officer CSSD-AT-P Claire McCullough

2. Principal Investigator

/?<W 13-11 D70

ParaSoft Corporation
2031 S. Myrtle Ave., Monrovia, CA 91016 Phone (818) 305-0041 FAX (818) 305-9048

Defense Technical Information Center
P.O. Box 1500
Cameron Station
Alexandria, VA 22304-6145

December 15,1994

RE: Contract DASG60-94-C-0051

Sir,

Please find enclosed our final report for SBIR contract* DASG60-94-C-0051, May 26, 1994
Automatic Test Data Generation Tool for Large-Scale Software Systems . If you would like
additional copies, versions on electronic media, etc. we would be happy to supply them.

Please contact me if you have any questions or comments. I would be happy to hear from you.

Sincerely,

Arthur Hicken
ParaSoft Corporation.

19941219 070
1. Research sponsored by BMDO and managed by u.o.rtnny, strategic Defense Command, Huntsville, Al-

abama, under the SBIR program. Technical Officer CSSD-AT-P Claire McCullough

Table of Contents

Table of Contents

1. Phase I Effort Summary 1

2. Overview of the TGS System 5

3. Technical Description of the Prototype 12
3.1 Basic Input Generation System, 12

3.1.1 Analysis and Code Instrumentation, 12
3.1.2 Searching for the Test Cases., 14
3.1.3 Basic Modules of the Prototype, 16

3.2 Input Generation Techniques, 17
3.2.1 Random Input Generation, 17
3.2.2 Heuristics, 18
3.2.3 Function Minimization Methods, 18
3.2.4 Dynamic Data Flow, 19
3.2.5 Symbolic Execution, 20

3.3 Application of Input Generation Techniques., 21
3.3.1 The Combined Algorithm, 22

4. Evaluation of the Created Prototype 24
4.1 The long.c Program, 25
4.2 Test Results for Zip, 27
4.3 Test Results for Flex, 30
4.4 Test Results for Tput, 31

ParaSoft Corporation

Accesion For

NTIS CRA&I 1
DTIC TAB D
Unannounced D
JlJjtifiC at ion

By
Distribution /

AVolisb !■' • r"21 _
Dir,i

Ava-, -■■■jov j
r.iai i

fl-l 1
!

Table of Contents

5. Lessons Learned from Phase I Effort 32
5.1 Guided Function Minimization Method, 32
5.2 Dynamic Data Flow, 33
5.3 Symbolic Execution, 34

6. Potential Future Developments 35

7. References 38

Appendix A: TGS Manual Page 41

Appendix B: Code of long.c program 47

ParaSoft Corporation

I
Phase I Effort Summary

1. Phase I Effort Summary
In our Phase I effort we undertook a project which many people would consider impossible
to execute. We proposed to build an automatic test-case generation tool and deliver a
working prototype of it. Automatic test case generation is considered one of the most
difficult and unsolvable problems in computer science. The task is high-risk, hard to do,
and nobody in industry is even trying to solve the problem. In addition to that we set out to
build a prototype of the tool on a Phase I budget. This was only possible because of the high
reusability of the software and technology which we already have in-house. If we weren't
able to re-use the software, the results which we present in this report would require 2-3
years effort.

The automatic test case generation problem is so hard and such high-risk that we would not
attempt to solve it without the possibility of SBIR funding.

We believe that we achieved our Phase I goals. The testing tool prototype was built and it
works on problems of significant size. Our innovation was in several areas. One was in
applying and extending existing test-case generation algorithms. We enhanced and refined
algorithms that were already available. Another was the development of new techniques
used to combine and apply the aforementioned algorithms to the problem. The unique
combination of algorithms and how they are applied to the problem was the key to our
success.

The results of testing the prototype are encouraging and suggest that the research, if
continued, can lead to real breakthroughs in the way people test their software. This in turn
would lead to high payoffs. However we realize that there is still a lot of work before the
prototype we have developed can be used successfully with large software systems.

Before reporting our results we would like to describe in more detail the software testing
process, and the role and significance of an automatic test-case generation tool.

Software testing is very labor-intensive and expensive; it accounts for approximately 50%
of the development costs of a software system. At the same time, software testing is critical
in achieving quality software. Software developers know that there is no possibility of
building reliable and successful software products without sound, efficient, and thorough
testing. Because software testing is so important, and accounts for such a large part of the
software development cost, any advances in software testing technology yield large
benefits.

Recent studies [Man94] indicate that software testing presently done in the industry is not
adequate. On average, a typical company tests only 30% of the code it develops. The
remaining 70% is never tested before it is shipped. The reason for this is that most testing
procedures test main parts of the code, but do a poor job of testing extreme conditions. This

ParaSoft Corporation

Phase I Effort Summary

silent majority of the code comes into play when it is least expected and causes program
crashes.

Software testing in its very simplified form can be reduced to the following three tasks:

• Generation of test-suites

• Validation of test-suite execution

• Regression testing

During the test-suite generation phase, programmers work on creating inputs to the
program which force it to execute different parts of the code. The generated inputs are
called test-suites. Good test-suites cover most of the code branches and fully exercise the
program's functionality.

To validate the test-suite programmers run the program against the test-suite and check the
output of the program to verify its correctness. If during this process errors are detected,
they are fixed and the process proceeds until all tests execute correctly. At this stage the
test-suite is ready for the third phase, which is regression testing.

In regression testing any new version of the program is run against the test-suite and its
output is compared to the correct output. This phase makes sure that changes in the program
do not introduce defects.

There have been continuous attempts to automate this process. Most success in testing
automation has been in the automation of test case execution and result comparison, which
is our phase three (Regression testing). There has been however, very little progress in
automating the process of input data generation and test-suite validation. Any progress
towards automation in these two areas is bound to bring huge payoffs:

• Test-suite automation will drastically reduce the cost of software
development. Independent estimates [McConnell] suggest that cost
savings could go up to 40%. This alone comes from the reduction of
man-hours spent on test-suite generation.

• Automatic test-suite generation will significantly improve quality of the
produced software. Complete testing of all parts of the software is not
presently done, because test cases are hard to find or do not exist.

• Automation of test-suite generation will encourage programmers to test
more code at early phases of the code development cycle, and in this
way bring additional benefits through cost savings and improvements in
quality.

One would expect that if the automation of test-suite generation can bring such a huge
payoff there should be a lot of efforts and research in the industry to develop products
which would fulfill this need. This is not the case. All previous attempts to generate such a

ParaSoft Corporation

Phase I Effort Summary

tool have been successful on small programs (up to few hundred lines of code) but all have
failed on real life applications. Generally the problem is considered as very complicated
and high risk. The complexity of the problem comes from its nature. To understand how
difficult the problem is consider a typical 10,000 line program. When generating the
test-suite, the programmer is trying to force the program to execute most of its statements.
Statements in the program are executed as pieces of the execution path which the program
is taking through its source code. In order to force the program through most of its
statements, a significant number of paths need to be executed. In a 10,000 line program the
number of paths can grow geometrically to 100,000,000. This number of paths is
staggering, and is the reason the problem is so difficult to solve. Most people even consider
it impossible to solve.

An attempt to build an Automatic Test Case generation is a high risk project. On the other
hand, if the project is successful it is a breakthrough and the potential payback is huge.

The overall project goal is to develop a Test Generation System (TGS) which takes as input
the source code of a program and automatically generates input for the program that
satisfies a given coverage criteria (i.e. builds a test-suite for the program).

The main Phase I goals were to:

• Build a prototype of a TGS System which works with programs written
in C. The prototype should have skeletons of the major algorithms
which the tool will be using.

• Assess if the approach which we proposed has a chance to become a real
TGS tool, by running the prototype on chosen C programs.

The goals of the Phase I were achieved. We produced a working prototype of the TGS tool.
We implemented the major algorithms:

• Symbolic execution

• Dynamic Data-Flow Analysis

• Function Minimization Methods

• Heuristics

• Random Input Generation

We have tested the tool on three general purpose programs, zip, flex, and tput. All
three applications are of medium size. Zip is about 9,000 lines of code, flex is about
8,000 lines, and tput is approximately 3,000 lines of code. The chosen applications are
much larger than any applications for which automatic test case generation has been
attempted. The biggest programs previously used as test cases were below 1,000 lines of C
code.[Godzzila]. We consider it a significant achievement.

ParaSoft Corporation

Phase I Effort Summary

The results of our testing are encouraging. We were able to achieve, without human
intervention, code coverage of 43% for zip 32% for flex and 32% for tput. These
results are very good and suggest that the approach we chose has a good chance to lead to
a tool which will be able to work on different types of real applications.

In the course of the research we have tested our algorithms. We discovered deficiencies in
them and we believe that we have good idea how this deficiencies can be removed. We also
found a lot of facts which we did not expect. All of the technical implications of our
research are reported in section 5 "Lessons Learned".

In the course of our work we obtained answers to the questions which we posed in our
proposal. Answers to them are distributed across of this report. Here we would like to give
answer to the most important question which we asked "Is it possible to build an automatic
input data generation system which can be successfully applied to real world
applications?". We are confident that the answer to that question is YES. Yes it is possible
to build the system which can work on large applications and we think that this report
proofs it.

As we mentioned before were able to achieve these results only because we re-used a lot of
code from our other programs. All code for parsing, flow analysis, and code reconstruction
were re-used. We took them from commercial products that we've already developed. Only
because of that were we able to build this prototype in such a sort time and concentrate on
algorithm development instead of supporting software development. We do not believe that
any other company is in such an opportune position to do the same.

ParaSoft Corporation

Overview of the TGS System

2. Overview of the TGS System
The TGS system attempts to automatically generate test case data for a given program with
the following criteria in mind:

• Full testing of all flow paths in the executable program.

• Identify inputs that cause the program to perform incorrectly.

The technique involves analyzing the program's code to identify points where input data is
needed. The input instructions are then replaced with special functions which are able to
simulate input using various techniques, ranging from random number generation to
heuristic flow analysis techniques, to generate a set of input cases that satisfy the criterion
above. The resulting program is then linked to a "test harness" which repeatedly runs the
program, with varying input, adding unique test cases to a database of test case data. The
algorithm converges when the criterion above are met, or no new test cases can be
generated, in a reasonable amount of time.

Figure 1 shows the block diagram of an example program. Here it is seen that the program

Example Program

-►(Output)

-*/ Output j

Figure 1: A Typical Program with Input and Output

takes its input from various input sources, such as a computer keyboard, or a file on disk,
and generates certain outputs. In order to automatically generate inputs for this program the
TGS System has to analyze the program's source code, find which instructions of the
program correspond to the input, and replace them with code which can simulate input.
This is done using the technique of source code instrumentation. We will describe the
details of this technique in the following example:

void foo()
{

char b, c, *ptr;

ParaSoft Corporation

Overview of the TGS System

c = getchar();
if (c < x0' || c > '9') {

*ptr = 0;
}
b = c - "0';

}

In this code, input is done through the function get char. The programmer expects the
input to be an integer ranging from 0-9. If the inputted value is not in that range, the
program is designed to take the default operation, which in this case would not function
properly. This is called an exception condition. Typically, however, exception conditions
happen rarely, and the code that handles the exception is often times never tested, since in
practice, exception conditions rarely occur. In this case the exception condition would
cause the program to fail, since "pt r" is not yet initialized before it is de-referenced.

An internal representation of the program is shown in Figure 2. The boxes in the picture
represent different nodes in the programs's "parse tree". Statements in the program are
represented by one or several nodes in the parse tree. Each node has the field "next". This
field points to the next node in the parse tree, or if the node is a leaf this field is 0. Consider
the statement:

c = getchar();

This statement is represented by the "Assignment" node. The "next" element of that node
points to an if statement. The "operands" element points to two operands of the
assignment: "c" - left side and "getchar" - right side.

The parse tree is generated from the source code of the program through a process called
parsing. The parser is a tool which is specifically designed to read the source code of a
program written in a specific language and convert it into a parse tree. In our work we were
able to use the standard ParaSoft C parser, and so we didn't have to develop a new parser.

The representation of a program in terms of a parse tree is unique and has a one to one
correspondence to the original source code. In fact it is possible, and we used that
technique, to generate source code out of the parse tree. The tool which does this is called
a code reconstructor, and it works inversely to the parser.

It needs to be mentioned that the representation of a program in terms of a parse tree has
several advantages. The most important one is that a parse tree is easy for computers to
operate on. The second advantage is that a parse tree representation of the program is
language independent, and any operations or tools which operate on it do not have language
dependencies. This means that most of the work which we have done during this research
is useful for other languages as well as C. In fact internal tools do not need to be changed
when the prototype is modified to work with other languages.

ParaSoft Corporation

Overview of the TGS System

Once the program is translated to a parse tree the TGS tool applies the code analyzer to
locate points where the program is getting input. This allows the Tool Driver to choose
inputs, at run-time, that will force the program to execute paths that may have previously
never been tested. For the simple example in this case, if the input function "getchar () "
returns any character whose ascii value does not fall within the numeric range (ascii 48 -
57), the program would fail. The test case generator, would then replace the input call to
getchar () with a character generator, which could take random values. This would
quickly lead to execution of all paths, after sufficient sample inputs have been tried.

. Tv l r uucuuu uvci
name: foo
scope body

Assignment
next operands

1 1

}

Variables declared:
char a, b, *ptr; Variable: 'c'

next

1
c<48orc>57 If statement

cond
body next

Call Expression
operands

1

i r Function Decl
name: getchar

Assignment
operands next

r }

♦

i

Pointer Reference: 'ptr'
next

* r

)

1 meg er: U
f Rest of Code...

Figure 2: Intermediate Code for Untested Exception Handling Code

ParaSoft Corporation

Overview of the TGS System

The code analyzer not only analyzes the code, but also instruments it to replace input
functions with input generation functions.

Figure 3. shows the instrumented version of the code. As is denoted by the numbers, some
• r* function ueci

name: foo
scope body

Declare: 'ptr' m
1 I Assignment

next operands Variables declared:
char a, b, *ptr;

Variable: 'c'
next

v
• 1

c < 48 or c> 57
If statement
cond
body next

Input Generator
type: character
method: random

V

Assignment
operands next

t 1
C Rest of Code...

r
Pointer Reference: 'ptr' D

♦
Integer: 0

Figure 3: Instrumented Code with Test Case Generation Calls

code has been added to the code, and in one case, some code has been replaced. In order to
have control over inputs that are received by the program, the call to getchar () is
replaced by the Input Generator, which in this case generates random inputs between 0 and
255.

ParaSoft Corporation

Overview of the TGS System

During the instrumentation phase, in addition to the instrumentation needed for input
generation, two additional instrumentations are performed:

• Instrumentation for coverage analysis.

• Instrumentation for runtime error detection.

• Instrumentation for block flow.

• Instrumentation for branch condition analysis.

Instrumentation for coverage analysis is necessary. The information provided by it is used
as a criterion for accepting or dismissing a test case.

The instrumentation for runtime errors is not needed. However it provides very helpful
information. During of execution of the TGS system, the system can detect if the program
hit an error and the user can be alerted to that situation. This is a very useful functionality.
We did not need to do any extra work to achieve this, our instrumentation system did it
anyway. Again in this case we received the benefit of re-using our existing code. On the
other hand if the error detection functionality is not needed it can be turned of with a
configuration switch.

The instrumentation for block flow monitors the flow of the program, stores it, checks if
the desired flow is taken, and makes the decisions regarding continuing execution of the
program or not.

In the instrumentation for branch condition analysis the branch conditions are replaced by
an equivalent real valued function plus a call to the run-time that monitors its value.

The parse tree modified in this way represents an "instrumented parse tree". This tree is the
passed to the code reconstructor to build the instrumented source code for the routine. The
instrumented code is consequently passed to the language compiler The compiled version
is then linked with the TGS input generation library into a final program ready for test
generation.

During code instrumentation information about program flow, input statements, and branch
condition form is stored in the database files. This information is used during the test
generation process. It helps to decide which paths needs to be analyzed and how to generate
input to force a program to take a specific path.

Once the program is generated the TGS tool driver will then run the program repetitively,
using different inputs, until all possible paths in the program are executed.

During that process every set of inputs which is generated is analyzed by the "output
analyzer". This tool checks to see if the input set increases the overall coverage of the
program. If this is the case then the set is included in the test-suite. If it does not then the
input set is discarded. In the current version of the tool when making decisions about the

ParaSoft Corporation

Overview of the TGS System

input set we use block coverage criteria. This can be later changed and we can use other
criteria, such as instance path coverage.

After the test case generator has run to completion, the test-suite now contains a set of test
data. Each piece of data either results in the program taking a unique set of paths through
the program, or results in a failed run of the program. Test data for which the program fails
can then be analyzed, and the code corrected, so that future runs of the code are more
robust.

Figure 4 shows the block diagram of the TGS System, the instrumented code for the above
program., and the run-time support blocks that the instrumented code interacts with.

Test Case -** Run-time
uaiauasc

1

i

r
i

u

v

Test Case
Generator

*~ Example
Program

*" Output
Analyzer Tool Driver

Figure 4: Test Case Generator Block Diagram

Additionally, the input sources have been replaced by the input generator which uses
information from the output analyzer. As can be seen, the output analyzer uses output from
the error checker as input, to decide if a run-time error was detected. The input generator
uses different techniques to generate new test cases. The output analyzer evaluates the
outputs of the original program, and that of the error-checker to evaluate the result from the
current set of inputs. If an error is detected, or if at least one new flow path has been
executed in the example program, this test case is added to the database. If the set of inputs

ParaSoft Corporation 10

Overview of the TGS System

does not generate an error, or there are no new paths executed, it is discarded, and the
system moves on to another test case.

ParaSoft Corporation 11

Technical Description of the Prototype

3. Technical Description of the Prototype
A prototype for the Test Generation System (TGS) has been built. The prototype takes a C
program as input and automatically generates input for the program that satisfies a given
coverage criteria (i.e. builds a test-suite for the program). The prototype has been built with
the following goals in mind:

• The system has to be as automatic and general as possible.

• The system has to be modular and expandable.

This is needed so that the system can be easily experimented with, with both different
applications and input generation techniques. The prototype is built in such a way that it is
a skeleton of the possible real system.

When developing the system we tried to minimize the dependency of the specific language,
which is C. The language dependency is located in the code parser and code reconstructor.
If these two modules are replaced, the system can work with any other language. The parse
tree which we used is the standard ParaSoft tree format and it is used to support C, C++,
Fortran77, and Fortran90. We also investigated the suitability of that tree to support Ada
and we are confident that the tree structure is capable enough to support this language as
well.

Modularity of the prototype is quite extensive. Modules interact with each other through
well defined interfaces which are module independent. Replacement of modules and
extensions to modules is easy and does not require modifications of other parts of the
system.

First we will describe the basic functionality of the prototype and afterwards the different
techniques we implemented to improve the generation of input.

3.1 Basic Input Generation System
The prototype generates test-suites using the two basic steps:

• Analysis and instrumentation of the original program.

• Execution of the instrumented program.

3.1.1 Analysis and Code Instrumentation
During the instrumentation phase the program is parsed and analyzed, the results of the
analysis are stored in a database for the program, and an instrumented equivalent version

ParaSoft Corporation 12

Technical Description of the Prototype

of the original program is generated. The instrumented C program is compiled and linked
with a run-time library. The instrumented program has extra calls in it, the purpose of those
calls is to:

• Automatically generate input for the program. The original input
statements are replaced by calls to a run-time library that will generate
the input.

• Record information about the program that is not available at
compile-time. For example the flow taken by the program. This
information is also stored in the database for the program.

This phase has been implemented by extending the functionality of Insight, which is our
run-time error detection tool. The TGS tool is implemented as a new switch "-Ztgs" to
insight.
We will describe the operation of the analysis and instrumentation of the program on a
simple example.Consider that we have a program which has its source code stored in files
fool.c foo2.c foo3.c. In order to build an executable from it the user normally performs
following steps:

cc -c fool.c
cc -c foo2.c
cc -c foo3.c
cc -c foo4.c
cc -o foo fool.o foo2.o foo3.o foo4.o

Analysis and instrumentation is performed in a very similar fashion. The cc has to be
replaced with insight and extra switch "-Ztgs" has to be added. Thus in order to prepare
a program to work with the TGS system the user needs to change the previous commands
to:

insight -Ztgs -c fool.c
insight -Ztgs -c foo2.c
insight -Ztgs -c foo3.c
insight -Ztgs -c foo4.c
insight -Ztgs -o foo fool.o foo2.o foo3.o foo4.o

Notice that the changes are minimal. The syntax of the changes was chosen to be of that
form in order to minimize changes required in users makefiles. It should be noted that these
type of changes can be done by changing the one line in the makefile which defines the
compiler from cc to insight. For example:

CC=cc becomes CC=insight

ParaSoft Corporation 13

Technical Description of the Prototype

In the above example the first 4 lines perform analysis and instrumentation on independent
source files. During that phase files with . c extensions are converted to . o instrumented
object files. Notice that at that stage the following actions were performed:

• Analysis of the program.

• Instrumentation of the parse trees

• Reconstruction of the instrumented source code.

• Compilation with the compiler.

At the same time the tool generates information database files with . db extensions. These
files contain specific program information needed by TGS and flow analysis.

At the last step the programs object files are linked together along with the library which
contains the input generation routines and run-time support routines for TGS. The resulting
object code is ready to be used by the second part of the TGS system.

We would like to stress here that we designed the system in such a way that it will be very
easy to use. The design is based on our past experience with over development tools. The
system is designed to be used frequently. This requires a very simple user interface and easy
modifications from standard compilation to compilation for the TGS system. This should
encourage users to use it. It does not matter how useful a system is, if it's complicated and
has an awkward user interface it is not going to be used.

3.1.2 Searching for the Test Cases.
In the second step the program is executed repeatedly. This step is completely automatic
and done by a tool driver. The tool driver continues executing the program using the
different input techniques and analyzing the results of the execution. It stops execution
when it finds complete (100%) coverage or is told to stop by the user. The tool driver
organizes the results obtained and produces the following output:

A report showing the progress of the input generation. Among other
things it has information about: the number of inputs generated, the
program coverage they achieved, a summary of the actions taken, time
spent, input generation techniques used, etc.

• A test-suite for the program consisting of the successful inputs
generated, a set of inputs for which the program show bugs. i.e. inputs
for which the program crashed.

We will continue description of the functionality of the prototype using the foo example
which was begun in the previous subsection (3.1.1). The executable of the program ready
to be executed by the tool is stored in the file foo. In order to start test-suite generation the
user executes:

ParaSoft Corporation 14

Technical Description of the Prototype

tgs foo

In this command tgs is the name of the tool driver. The tool takes several arguments and
various flags. All possible options which can be passed to the tool are described in
Appendix A which contains the tgs manual page.

Once the tgs command is executed the user is presented with the screen shown in Figure 5.

When TGS starts it reports information on where program was run and in which way it was
invoked. Then it proceeds to generate test inputs. For every new input generated TGS
reports:

• Number of runs - attempts to generate input. This number is split into
three numbers: total number of runs, number of test cases saved in the
test-suite, number of test cases which reported run-time errors and are
saved in the "Bugs Test-Suite".

• Code coverage information.This is reported as three percentage figures:
Code coverage of this specific test, total coverage of the program which
is stored in the test-suite, total coverage including the test-suite and the
Bugs test-suite.

• Action which was taken regarding the input, if the input expanded
coverage of the program it is added to the test-suite. If the input forced
program to encounter an error it is saved in the Bugs test-suite.

Test Generation System:

Directory: /home/lion2/quality/test
Command : tgs -heu foo
Date : Mon Nov 28 12:07:51 1994
Testbed : sun4c SunOS 2 4.1.3JJ1
Host : lion

RUNS
Tot in TS bugs

Coverage
run TS Total Action Elapsed Time

Run Total

1 10
220

3% 3% [3%]
6% 7% [7%]

added to test-suite
added to test-suite

0:25 [0:30]
0:18 [0:52]

Figure 5. Sam iple TGS Output

ParaSoft Corporation 15

Technical Description of the Prototype

Otherwise it is discarded.

• Elapsed time of TGS execution in seconds. This is again reported as two
numbers. The first reports the time spent executing the specific test case,
the second number is the total elapsed time from the beginning of TGS
execution.

During execution TGS generates several directories and files where the output from the
tool is stored. In the current directory where the program was executed, TGS generates a
tgsdir directory which contains the results of the runs. In this directory the tool creates
a subdirectory "t s " which contains the generated test-suites. Inside the t s directory each
test case is stored in a separate subdirectory named t # where # is the consecutive number
of the test-case. Each t # directory contains a subdirectory in and out. The in directory
contains input files which the program will use to run the test case. These files can be
passed both to instrumented and non-instrumented versions of the program, to run the
specific test-case. The out directory contains the output from running the specific case.
The files are stored so that the user can check if the execution of the program was correct.
They are not used in further parts of the system.

In addition to input files the TGS system generates an rtest. scr file in the tgs
directory. This file is the script file which is used by the automatic test-replay tool "rtest"
to automatically run the test-suites, "rtest" is our internal regression testing tool which
we use to run our test-suites. Generation of the rtest.scr file is an extra benefit of using
TGS. It automates the testing procedure to the highest possible extent.

3.13 Basic Modules of the Prototype
The prototype consists of four basic software units that are used by all of the input
generation techniques. These units are:

• Compile-time unit: this is the unit that takes the original program, makes
a static analysis of it, generates the instrumented program, and compiles
it to produce the instrumented executable. The unit is based on Insight
and it uses a lot of Insighfs technology. The other three parts are
completely new modules and were developed specifically for this
project.

• Run-time unit: this is the run-time for all instrumenting calls added by
the compile-time unit:

• Tool-driver unit: automatic driver for the test-generation system, keeps
executing the program while analyzing the input and resulting output
and interacts with the run-time and the database for the program to apply

ParaSoft Corporation 16

Technical Description of the Prototype

the different input generation techniques.

• Database unit: database of the program first created by the compile-time
unit and accessed by all units.

The most effort during our research was put in the Run-time unit and Tool-driver part
which interacts with input and chooses different algorithms for test-generation. These parts
are also constructed modularly so we can add new test generation techniques and
experiment with new algorithms. In this research we tested the feasibility of 5 techniques
described in the following section.

3.2 Input Generation Techniques
This section describes the different input generation techniques we implemented. They
correspond to increasing levels of sophistication and should allow us to see if automatic
input generation is feasible. Each technique has only implemented the basic algorithm.
Each of them is quite large and implementation of them in full detail is beyond the scope
of this research. The main goal was to see if all or some of them in combination can be a
basis for the creation of a real test generation system.

3.2.1 Random Input Generation
This is the most basic input generation used. It generates random input whenever the
program requests any input. The values are random, but of the appropriate type. Input here
and for all the other techniques is generated for anything except graphical input. For
example the program may read from s t din, then open some files and read them, etc. The
prototype in this case will create stdin and the other files and fill them with suitable
values.

The prototype generates input while the program executes and at the same time creates the
input files that would generate that input when running on the normal program. The
run-time also generates an input description file which contains a detailed description of all
the input generated for the program. The input description file is used by other input
generation modules.

The run-time detects the data type of the input requested and generates a random value
distributed uniformly over the range of valid inputs for that data type. It also decides
randomly when to generate an end of file and when to generate inputs shorter than the
requested ones (i.e. for fgets or f read system calls). The information needed by the
run-time to generate the input is passed as parameter arguments to the run-time calls and
through a database for the program that is created while processing the source.

ParaSoft Corporation 17

Technical Description of the Prototype

3.2.2 Heuristics
The heuristics module controls which heuristics rules are activated while processing the
program or running it. Any heuristics rule can be turned on or off independently. The
current heuristics rules implemented work on the generation of input. Its purpose is to
generate inputs that have a better chance to cover more parts of the program than the
randomly distributed values generated by the random input generation module.

The rules for every kind of input (numeric or character/string based) have a relative weight.
The system first decides randomly and according to the relative weight whether to generate
input according to one of the active rules or randomly. Once the rule is decided, the system
generates input according to that rule.

Examples of rules implemented for numeric values are:

• Exponential deviate: generates values distributed with an exponential
deviate around 0.

• Uniform log values: generates values distributed uniformly in each
order or magnitude. For example in that rule it has the same probability
of generating 10,100,1000

• Extreme values: generates one of a list of extreme values (0,1,2, -1, -2,

Example of rules implemented for character/string values are:

• Extreme values: generates extreme values. For example if asking for a
string generates the same character for each element of the string, or
strings of zero length.

• Special values: generates one of a list of special values. Examples of
special values currently included are C and basic keywords, minimal C,
Fortran and Lex programs.

3.2.3 Function Minimization Methods
Here we have implemented the function minimization methods proposed by Korel [Kor90].
These techniques associate a real valued function to all the branches of the program. The
problem of generating input so the program takes a given path is transformed with this
technique to the problem of minimizing the associated real valued function. The real
valued function allows us to use guiding techniques to find local minimums for the
function. This technique is used by the tool driver to guide the generation of input.

Each input generated by the tool corresponds to a path in the program. Each successfully
generated input is stored in a test-suite for the program. The run-time tracks the execution

ParaSoft Corporation 18

Technical Description of the Prototype

flow of the program and checks at any point whether or not the current flow leads to
uncovered parts of the program.

Given a path for the program for which we know the input, we generate input for a path that
differs by taking an alternate branch in that path using function minimization methods. This
allows us to generate more inputs for the program, given that we already have some input
for it.

The function minimization technique we used works as follows:

The tool driver goes over an already existing path in the test-suite and traverses the path.
At each selection statement in the path it checks if the branches other than the one taken by
the existing path are already covered. If some are not covered, it tries to generate input so
that the generated path is taken up to the selection statement and at that point the alternate
branch is taken.

To do that it takes as a starting point the input for the already existing path. The idea is to
modify this input so that the path up to the chosen selection statement is taken, but then the
alternate branch is taken. This is accomplished by associating a real valued function to that
branch. The real valued function is defined in such a way that the branch will be taken if
the function becomes zero or negative. Thus the problem is transformed into a function
minimization problem.

The tool driver then proceeds to execute the program repeatedly, monitoring the path taken
by the program and the resulting value for the real valued function associated to the branch.
While doing that it loops over all input variables and using guided function minimization
methods to modify the input so that the function becomes zero or negative.

If the search succeeds the input that forces that branch is added to the test-suite of inputs
for the program. If the search fails, the branch is marked as unfeasible. Afterwards the tool
driver proceeds to find another uncovered branch in the existing paths in the test-suite. The
algorithm can fail to find the input either because it takes too long or because the path
condition gets broken (i.e. changing the input value makes the program take a path that
doesn't lead to the selection statement we are concerned with.)

3.2.4 Dynamic Data Flow
Another technique proposed by Korel [Kor90] is to use dynamic data-flow along with
function minimization. The purpose of this technique is to allow us to find out what specific
input influence a given branch. The guided function minimization methods are thus
optimized because the amount of input to try is reduced. Here we have implemented a
variant of the method proposed by Korel. The tool driver monitors the actual flow for a
given input of the program and calculates the data-dependence for that flow. This

ParaSoft Corporation 19

Technical Description of the Prototype

information along with the actual values generated at every point in the program (also
available to the tool driver) allows us to calculate dynamic data-flow information.

Dynamic data-flow techniques are used to reduce the space of input variables one needs to
search when finding input for a given branch. The dynamic data-flow module is invoked
when using the function minimization methods. After the tool driver decides to try to search
input to force a given branch, it calls the dynamic data flow module to determine which
inputs influence that branch. That information is given with reference to the input
description file. The guided search method is then optimized because it only needs to
change input values associated with the branch.

To calculate the dynamic data-flow information we used a variant of the algorithm
proposed by Korel. In our tool we also wanted to include symbolic execution, so we used
a generalized algorithm for symbolic execution that also allows the calculation of dynamic
data-flow information. The symbolic execution algorithm allows us to calculate the
data-dependence along any flow in the program. To calculate the dynamic data flow
dependence it calculates the data-dependence along the flow actually taken by the program,
and that leads to the branch condition we want to force. All this information is calculated
every time the program is executed and is available to the tool driver because it is stored in
the test-suite along with the input generated and the input description file. The tool driver
combines the information of the data dependence for the actual path with the actual values
found in the input description file to obtain the dynamic data dependence.

3.2.5 Symbolic Execution
Symbolic execution is a technique studied in the literature [Off91] to generate input for a
given program. In this technique the program is executed symbolically and the condition
for a given branch to be taken is transformed into some set of symbolic expressions
satisfying specific conditions. This technique doesn't require the actual execution of the
program. We chose to base our system on actual execution because we believe that actual
execution is the only practical way of executing real programs. Symbolic execution has
difficulties with standard constructs appearing in any appreciable real program (arrays,
pointers, external functions, loops). Nevertheless whenever symbolic execution is possible
it is a very efficient technique. For this reason we added symbolic execution to our
prototype so we could use a mixture of both techniques and get the best of each of them.
The compilation-time unit was extended to perform symbolic execution of simple
constructs and to add the results to the program database. Using this technique, when trying
to satisfy a given branch condition the tool driver first looks to see if symbolic execution
was possible for that branch, if so, it uses symbolic execution techniques [Off91] to
determine what input is needed to ensure that the branch is taken.

A symbolic execution is performed for the entire program while processing the source. To
perform the symbolic execution the tool goes over all the source of the program and

ParaSoft Corporation 20

Technical Description of the Prototype

calculates for all possible paths the path conditions and symbolic expressions for the
variables. While going over non-selection statements the expressions in the program are
used to obtain symbolic expressions for the relevant variables. Whenever a selection
statement is found the path flows independently on every branch with a different path
condition for each. When the paths flow again together at the end of the selection statement
we have multiple paths flowing at the same time each with its own symbolic expressions
and path conditions.

In real programs there are many constructs that prevent symbolic execution or make it
inefficient. Some of these constructs are arrays, pointers, external function, loops, etc. In
some of these cases the symbolic expressions and path conditions are not calculated and as
a result we have unknowns for those expressions. The results of the symbolic execution are
stored in the database for the program. We are particularly interested in the symbolic
expressions for branch conditions along with the associated path conditions.

At the same time that the tool calculates the symbolic expressions it also calculates the
data-dependence information. The data-dependence information is just like a symbolic
expression but with missing information regarding the form of the dependence. The plain
data-dependence information is simpler to calculate than the explicit symbolic expression
and for some branch conditions the tool is able to get data-dependence information, but not
the symbolic expression.

When using the function minimization techniques to force a given branch the tool driver
looks in the database to see if a symbolic expression is available for the branch condition
for that branch. If the symbolic expression information is available it uses it to directly
deduce an input that will force the taking of that branch. If a symbolic expression is not
available for that branch it uses the normal function minimization techniques described
above.

3.3 Application of Input Generation Techniques.
During the course of our research we also tried to see if a combination of specific
techniques leads to better coverage results. The particular technique which we used is
described in the next subsection.

In the Phase I proposal we described only one algorithm which we wanted to apply to the
test-generation problem. During the course of our research however, we realized that this
is not possible, and that we need to implement each step of the algorithm as an independent
module and then put them together as one of the possible options. The design which we
have now is better than the one we originally proposed. The system is more expandable and
ready to be tested with different algorithms.

ParaSoft Corporation 21

Technical Description of the Prototype

3.3.1 The Combined Algorithm
The tool we have developed uses a combination of all the algorithms explained above to
generate input for any given program.

The algorithms are used in the following way:

• The tool used random input generation plus heuristics rules to generate
as many different inputs as possible for the program. The generated
inputs are added to the test-suite along with all the information about the
path taken and the input description file. Note that for any program the
random input generation plus heuristics will always be able to generate
at least one input.

• Once no more input is found by random input generation and heuristics,
the tool switches to guided function minimization methods to derive
new paths starting from the ones already in the test-suite. The tools loops
over the existing paths and looks for alternate branches that are not
covered. Once it finds one, it first looks to see if it has symbolic
expression information for it, if so it used it to deduce the input needed
so that the branch is taken. If no symbolic expression information is
available for the branch condition it uses the function minimization
methods along with dynamic data flow information to try to generate
input to force that branch.

• Next the TGS driver starts the process of generating input variables.
This process is carried out in a loop using information generated in the
previous stages. The starting input set for the generation of input data is
the one which was used for execution of the program. The tool goes to
the end of the execution path and backups to the last branch. The
information from the dynamic data flow analysis tells which input
variables have influence on the branch condition in question. The tool
then generates random inputs for only those input variables, and uses
constraints from the symbolic execution of the program to see if the
branch will be taken. If the satisfying set is found in the predefined time,
the generated input set is added to the set of test inputs. If the solution is
not found, the path is marked as not feasible.

• TGS next considers the path opposite the branch taken. If this branch
does not have any more leaves, the tool backups to the branch above it.
If the branch has leaves, the tool executes the program again with
dynamic flow analysis to determine variable dependencies. If the
branches below do not have loops or array accesses which influence
branches, the run with dynamic flow analysis is not necessary, and is not

ParaSoft Corporation 22

Technical Description of the Prototype

executed. The tool in this case attempts to generate new inputs
randomly. The described process is repeated until inputs for all paths
through the program are found.

The described algorithm is one of the possible combinations of the implemented modules.
We only had the chance to test this one combination on real examples. The algorithm seems
to work quite well.

During the course of our research we have learned that in some cases different variations
of the algorithms may be needed. That is why we implemented the tool in a way that is easy
to experiment with it and combine algorithms in different sequences.

ParaSoft Corporation 23

Evaluation of the Created Prototype

4. Evaluation of the Created Prototype
We have run the TGS tool on different programs. Most of them were small test cases
which we used to debug the code we developed. In addition, we also used the tool on three
larger applications:

• zip- a popular program to compress files for more efficient storage
on disks.

• flex- a common tool for generating programs which recognize
lexical patterns in text.

• tput - simple program which uses curses library to put characters on
the screen.

The choice of the programs was motivated by our desire to test different types of the
applications.
z ip is a typical numeric application which reads files. It is quite large, close to 10,000 lines
of code. This code is much larger then we originally anticipated testing. In our proposal we
expected that the prototype would be tested on codes between 1000-3000 lines. We
performed some testing during development of the code and the results were encouraging
enough for us to undertake much larger programs. The zip program takes only numeric
input and this was in agreement with our work plan.

Flex is a common tool used by programmers. It reads an input file, parses it lexically, and
based on that generates a file with C source code in it. We chose it because rather than using
numeric input it uses lexical input, and we wanted to see how well our algorithms apply to
generating lexical data.

In order to get some experience with graphical input and see how this type of input can
affect our future research we also tested the Tput program. Tput is a much smaller
program, only 3,000 lines of code. It is however in the upper limit of the programs we
expected to test. The program uses the curses library to get input from terminals.
Curses is a small graphics library and we chose it because it allowed us to get experience
with graphical input without significant programming effort.

We also attempted to run the prototype on our own C parser which is a large program of
about 200,000 lines of code. The result of the attempt was not successful. The prototype is
not yet ready to handle such big programs and we stopped the attempt very early.

Before we describe the test results of running the prototype on the three bigger example
programs we would like to describe the results of running the tool on a particular program
- long. c. This program was specifically created by us to test different techniques as they
were developed. It is a good starting point to show the benefits of different modes of the
tool.

ParaSoft Corporation 24

Evaluation of the Created Prototype

The long.c program demonstrates also another important thing. Its size is typical of
programs which have previously been attempted with automatic test generation. In some
sense the program demonstrates the current state of affairs when we started our research.
Obviously tools which cannot work on bigger programs than long. c have no practical
value in the real world. Our two other test cases z ip and tput are real applications which
are several orders of magnitude larger.

4.1 The long.c Program
The listing of the long. c program is included in Appendix B.

The program is very simple. It takes character input and either classifies it as bad input or
prints it out. The program does not have a significant number of branches, but as can be
seen from the test results, in order to achieve 100% coverage the TGS tool had to use all
of its algorithmic arsenal.

We compiled the long. c program with insight and the -Z tgs switch and next we ran
it under the tgs tool. As we described in a previous section the TGS system automatically
uses different input generation techniques to build the test cases. First the tool tries the
random and heuristic methods and afterward it uses the remaining techniques.

The output of the tool is shown in the following table. If we look carefully in the table we
can see how the program worked. Up to step 5 the tool is using the random and heuristic
algorithms. At that point it had generated 1 useful test case and 4 others which did not
increase coverage. The tool then decides to switch algorithms. It starts using the guided
algorithms and coverage begins to increase. The total coverage of the program increases to
94% which means that the entire program was covered.

In the Action column in table 1 new output starts to appear. First we see RVF = 40. This
appears in guided mode when the tool is trying to find input to force a given branch. RVF
= 40 means that the real valued function associated to that branch has value 40 for that run.
TGS keeps rerunning the program with different input, looking at that value and based on

ParaSoft Corporation 25

Evaluation of the Created Prototype

the changes in that value it tries to deduce input that will minimize that value and thus force
the branch. "RVF = 40" is a shorthand for "Real Valued Function = 40".

RUNS Coverage Action
Elapsed Time

Tot inTS bugs run TS Total
rivUvu Run Total

110 29% 29% [29%] added to test-suite 0:01 [0:03]
210 29% 29% [29%] discarded 0:01 [0:05]
310 29% 29% [29%] discarded 0:01 [0:07]
410 29% 29% [29%] discarded 0:02 [0:09]
510 29% 29% [29%] discarded 0:02 [0:12]
610 11% 29% [29%] RVF = 40 0:02 [0:15]
710 11% 29% [29%] RVF = 41 0:01 [0:17]
820 35% 41% [41%] added to test-suite 0:02 [0:19]
920 23% 41% [41%] RVF = 107 0:01 [0:22]
10 2 0 23% 41% [41%] RVF = 108 0:01 [0:24]
113 0 29% 47% [47%] added to test-suite 0:01 [0:26]
12 3 0 17% 47% [47%] RVF =19 0:02 [0:29]
13 3 0 17% 47% [47%] PC broken (exit) 0:01 [0:31]
14 3 0 17% 47% [47%] PC broken (exit) 0:02 [0:33]
15 3 0 17% 47% [47%] RVF =18 0:01 [0:36]
1640 47% 64% [64%] added to test-suite 0:02 [0:38]
17 4 0 29% 64% [64%] RVF = 58 0:01 [0:41]
18 4 0 29% 64% [64%] PC broken (exit) 0:01 [0:43]
19 4 0 29% 64% [64%] PC broken (exit) 0:02 [0:47]
204 0 23% 64% [64%] PC broken (exit) 0:01 [0:49]
214 0 23% 64% [64%] PC broken (exit) 0:02 [0:52]
22 4 0 29% 64% [64%] RVF = 58 0:01 [0:55]
23 4 0 52% 76% [76%] added to test-suite 0:06 [1:01]
24 5 0 35% 76% [76%] RVF = 33 0:02 [1:04]
25 5 0 58% 88% [88%] added to test-suite 0:01 [1:05]
26 5 0 41% 88% [88%] RVF = 87 0:01 [1:06]
27 5 0 29% 88% [88%] PC Broken (exit) 0:02 [1:08]
28 5 0 41% 94% [94%] added to test-suite 0:02 [1:10]

Table 1: TGS output for long.c

The next interesting entry in the table is PC broken (exit). This also appears only in
guided mode. While TGS repeatedly runs the program changing the input, it can happen
that for the new input the program just takes another path and doesn't get to the desired
branch. When the run-time detects that the program deviates (before getting to the branch

ParaSoft Corporation 26

Evaluation of the Created Prototype

in question) from the reference path it halts execution of the program. "PC broken (exit)"
is a shorthand for "Path Condition broken (program exits)".

The table shows that the runs did not take very long. The total finding process took about
1 minute. This is not typical and our experience shows that for larger programs the
searching process may take much longer. This can be seen in the next two test cases.

4.2 Test Results for Zip
The next program which we ran the tool on was zip. Zip is a popular program used to
compress files. It reads as input a file and as output produces compressed file of smaller
size. As we mentioned before this program is about 10,000 lines of code. Being able to run
the prototype on a program of that size is a real success. To the best of our knowledge
nobody has been able to automatically generate test cases for programs of that size. This
was considered impossible! Being able to do that is a potential break-through. It proves that
the algorithms we designed have a significant potential to work on real applications.
However we have to be very cautious here.

The program was tested in the same way as before. We compiled the zip program using
insight with the -Ztgs flag. The program consisted of several files which were first
compiled, instrumented and linked together. After the program was linked we ran it with
the TGS tool.

During compilation and early runs of the program we encountered many problems. We
discovered a lot of bugs and inefficiencies which prevented us from running the tool. Our
first results of running the tool gave us only 5% coverage. This was very low and we
worked hard to improve it. At the end we were able to achieve coverage of about 43%
which we think is quite significant for that type of program.

The coverage of 43% on z ip does not mean that if the tool is used on a similar program of
that size the same results can be achieved, probably not. The tool is a prototype and requires
a lot of work to reach that stage.

ParaSoft Corporation 27

Evaluation of the Created Prototype

The results of running TGS with zip are reported in table 2. The table stops after 16 tries.

RUNS Coverage Action Elapsed Time
Tot inTS bugs run TS Total Run Total

110 3% 3% [3%] added to test-suite 0:17 [0:36]

220 6% 7% [7%] added to test-suite 0:09 [0:50]

330 25% 29% [29%] added to test-suite 0:17 [1:11]

440 32% 36% [36%] added to test-suite 1:03 [2:18]

550 6% 36% [36%] discarded 0:08 [2:31]

641 1% 36% [36%] added to bugs 0:11 [2:47]

741 14% 36% [37%] discarded 0:10 [3:02]

841 31% 36% [37%] discarded 2:51 [6:00]

941 31% 36% [37%] discarded 2:30 [8:30]

105 1 32% 37% [38%] added to test-suite 2:40 [9:04]

116 1 8% 38% [39%] added to test-suite 0:20 [9:28]

12 7 1 2% 39% [40%] added to test-suite 0:02 [9:31]

13 7 1 6% 39% [40%] discarded 0:08 [9:40]

14 8 1 33% 41% [42%] added to test-suite 3:15 [12:48]

15 8 2 6% 41% [42%] discarded 0:09 [13:00]

16 8 2 1% 41% [43%] added to bugs 0:02 [13:02]

Table 2: TGS output for zip

After that we continued to run the tool for many hours but did not see any improvement.
We analyzed why the improvement does not happen and our findings are summarized in
the Lessons Learned section.

The table illustrates several things which we saw in many cases.

• At the beginning of test generation the tool finds new test cases
relatively quickly. As execution progresses it becomes more
complicated

• Switching algorithms leads to new inputs being discovered

• Some of the new runs differ only by one branch and even though the
total coverage is increased it does not improve the global coverage of the
program

The z ip program confirmed one of our major thesis. We started this project with the hope
that it will be possible to achieve incremental improvements by forcing the tool to switch
branches and in this manner to cover new paths through the program. We analyzed this in
the case of the zip program and we see that this is really what is happening. For example
the tool obtained input for run 9 based on the input from run 8. We can see that the coverage

ParaSoft Corporation 28

Evaluation of the Created Prototype

of these cases is very similar. In fact we checked it using a special tool developed for that
purpose. We built a path visualization tool db, which can display paths taken through the
program. The paths of case 8 and 9 differed by only one branch, the branch which was
switched. Unfortunately that branch was already covered by the other paths and coverage
for the run did not increase.

As we mentioned before, after 16 cases TGS was unable to detect any new input cases
which would increase coverage of the program. We think this happened because none of
our algorithms could start generating solutions in new areas. This was a big disappointment
for us. It means that we have a lot of real work ahead of us in order to improve that behavior.

The result of not finding input can be explained with the following example. Our method
of finding input can be described as a mathematical method of finding minima in a
complicated function. Lets assume that the function looks like the following figure. The

Our solution sits here

whole TGS system can find solutions which do not differ a lot from each other, (the arrow
points to that area). The tool however does not have a mechanism to jump over the bump
on the left side and find a different solution. This is one of the things for which we do not
have an algorithm and we do not know if the algorithm can be found at all. Nowhere in the
literature we reviewed was that problem discussed. In future research we will have to find
a solution to that problem if we want the tool to be successful.

ParaSoft Corporation 29

Evaluation of the Created Prototype

4.3 Test Results for Flex
Another program we tested was the flex program. We chose the flex program as a test
because it is typical of programs commonly in use in the industry. The flex program is a
variation of the industry standard lex program. Flex is a lexical analyzer. By choosing
flex we were trying to see how our techniques can work on programs which require
cohesive input.

Again we compiled the program and ran it with the TGS tool (see table 3). The total
coverage achieved here is about 32%. This coverage shows a significant benefit to the user.
Actually we were surprised that the coverage is so high. We expected that for such a
programs it is important that the input is generated according to the language rules. We
thought that generation of the input based only on the source code of the program would
not be enough. The results of testing flex were a pleasantly surprising.

The results of the TGS run for flex are shown in the table below:

RUNS Coverage Elapsed Time
Tot inTS bugs run TS Total Run Total

110 11% 11% [11%] added to test-suite 0:32 [0:32]
220 10% 14% [14%] added to test-suite 0:17 [0:49]
330 28% 32% [32%] added to test-suite 0:53 [1:42]
430 11% 32% [32%] discarded 0:41 [2:23]

Table 3: TGS output for flex

We can see that similar to the zip program the test cases are found most successfully at
the beginning of a TGS run. Continuing the run is wasted effort.

In order to improve coverage for this program our analysis indicates that it will be
necessarily to build input generators which have some knowledge of the syntax with which
input should be generated. We discuss this issue in more detail in section 5.

ParaSoft Corporation 30

Evaluation of the Created Prototype

4.4 Test Results for Tput
As a final test we tested the Tput program. As we mentioned we chose the tput program
as our test, because it had some simple graphics routines. We wanted to see if it is possible
to build a tool which can generate input for programs which use graphical input. We also
wanted to see how we can work with external functions, and the graphical input functions
were a good candidate.

Again we compiled the program and ran it with the TGS tool (see table 4). The total
coverage which we achieved here is about 32%. This coverage is not as high as we would
like, but it is encouraging.

The results of the run of TGS are shown in the table below:

RUNS
Tot inTS bugs

Coverage
run TS Total Action Elapsed Time

Run Total

1 10
220
330

13% 13% [13%]
8% 21% [21%]
25% 30% [32%]

added to test-suite
added to test-suite
added to test-suite

0:40 [0:56]
0:09 [1:05]
0:17 [1:23]

Table 4: TGS output for tput

Again in this case the test cases are found at the beginning of the run and the rest of the run
is wasted. This test shows similar results to the previous ones. Again we are caught in the
global minimum and cannot get out of it. The results also show a different effect. External
functions complicate the picture and it is easier for the tool to be caught in the minimum.

We believe that this result gives us two messages:

• It is possible to generate input to programs which have external
functions.

• Our algorithms are not yet good enough to get significant coverage
when program uses external functions.

We will have to put significant research effort into solving that problem. As we mentioned
before most real applications use graphical input and it is imperative for the tool to work
with such applications.

ParaSoft Corporation 31

Lessons Learned from Phase I Effort

5. Lessons Learned from Phase I Effort
While executing this research we worked according to our work plan. Now looking back
we think that we did not have enough time to analyze our prototype in full. We have done
only preliminary investigations, but even they have taught us some very valuable lessons.

We think that the random + heuristics part of the tool seems to scale well. This means that
it works well on large programs. This method however does not yield high coverage.

To get more coverage we proposed a more advanced algorithm which is a combination and
extension of the known algorithms. This algorithm seems to be very promising but it
requires a lot of work to get good coverage and to be able to scale to large applications.

However in our research we were able to achieve with our algorithm things which other
people considered impossible. In the field it has been considered impossible to find input
for programs larger than 1000 lines of code. We achieved that goal easily.

What follows now is a list of algorithmic problems/deficiencies we found and which we
need to solve.

5.1 Guided Function Minimization Method
We implemented the guided function minimization methods as proposed by Korel [1].
They proposed for branch predicates being simple relational expressions. They need to be
extended to cover any possible construct found in a C program. In particular they need to
be extended to:

• Any branch predicate expression: one needs to be able to convert any
branch predicate into a real valued function. They have been proposed
only for branch predicates being simple relational expressions. We will
need to extend it to any branch predicate expression. In particular it
needs to be extended to branch predicate expressions being
combinations of logical AND and OR expressions. For this case the only
solution would need to be to define instead of just one function, a set of
real valued functions and minimize them individually until the AND and
OR expressions between the real valued functions are satisfied.

• Apply function minimization methods to SWITCH constructs.

• Extend the function minimization methods to loop constructs. Here we
want to extend the guided function minimization technique so it can be

ParaSoft Corporation 32

Lessons Learned from Phase I Effort

used to force the execution of loops a given number of times.

Find faster algorithms for searching for the function minimum. The
algorithm proposed in the literature was the alternating variable method
[12]. We found experimentally that this algorithm requires too many
iterations to find the minimum of the function in most cases. As each
iteration required the execution of the program it is very important to
find algorithms that progress towards the minimum in very few
iterations. To solve this problem we propose to make assumptions about
the form of the branch construct and use those assumptions to design
search methods that progress towards the minimum very quickly. This
require us to make a study of the branch constructs that appear in real
programs and identify the constructs that appear most often.

5.2 Dynamic Data Flow
The main problem found with dynamic data flow is that it is expensive to calculate the
dynamic data flow information as it takes a real execution of the program every time. Here
we propose as a solution to do an exhaustive static data dependence of the program and use
that information to deduce invariants that may allow us in most cases to calculate the
dynamic data dependence without re-executing the program.

Another problem found with dynamic data flow is that even though it appreciably restricts
the input space one has to search, it is still sometimes difficult to find input. The problem
is that in most cases the path condition gets broken. To solve this problem we propose two
solutions:

• Relax the condition in the path-condition, i.e. allow the program to
execute even if the path condition is broken as long as it is in a path that
can lead to the block we are trying to cover.

• Reorganize the searching on the set of input that influences the branch.
For example search first over the input that influences fewer branches in
the path.

ParaSoft Corporation 33

Lessons Learned from Phase I Effort

5.3 Symbolic Execution
The symbolic execution techniques did show quite a few problems when applied to large
programs. Whenever symbolic execution is possible it is very helpful. The problem is that
there are many constructs that inhibit symbolic execution (array elements, pointers, loops,
external functions ...). As the program size grows the probability of finding those constructs
in any path grows as well, resulting in an inability to find correct symbolic expression forms
for most branch conditions in a big program. To solve this problem we propose a novel
technique that we call dynamic symbolic execution. This technique will consist in doing a
standard symbolic execution for the actual path taken by the program. This will remove
most problems involved with symbolic execution, like array indices used or number of
times a given loop has been executed. This technique will be computationally intensive but
should be very powerful. It will be used to solve the final hard branches in a program that
cannot be solved with other techniques. With this technique one will get a symbolic
expression, with very specific information about its dependence on input, for example if an
array element appears on the symbolic expression it will give information about what its
actual indices are and, if for example the array element is read in a loop, in which loop
iteration that array element was read.

ParaSoft Corporation 34

Potential Future Developments

6. Potential Future Developments
In this section we would like mention only some of the things which need to be done to the
prototype to make it really useful. We would like to stress that the prototype is a very simple
program and its abilities are restricted. However it is a good foundation to continue future
development. It also enables us to study the chosen algorithms and learn about their
deficiencies. We now we have a much better picture of what needs to be done to build a
tool which will work on real applications.

Our research teaches us that there are still a lot of unknowns, and that the road to a real tool
may still be very risky. The algorithms which we used worked on the test cases, but they
failed on our real product. There is a lot of algorithmic research which we will have to
conduct to get the tool working on programs of 200,000 lines.

Actually we have learned that it is much more difficult to make progress from 10,000 line
programs to 200,000 line programs than it is from 100 line programs to 1,000 line
programs.

In the previous section we described the algorithmic modifications and research which
absolutely needs to be done to make the tool more usable. Here we list some other
extensions which we think would be very useful.

• Extend the tool to support other languages (C++, Fortran, Ada,...). Most
of the algorithms used are language independent. Nevertheless a few
modules are language specific and will need to be written.

• The tool should be extended so it addresses the generation of input that
covers only specific portions of the program. For example, parts that the
user has modified or modules that have been added to an existing
program.

• Accessing of the parse-tree structure by the run-time. It would be very
helpful if the executing program was able to access its own parse-tree
structure. In the future we would like to modify our parser and run-time
to allow this possibility. Currently all the needed parse-tree information
is mostly passed through arguments in calls to the run-time. But this
method is not feasible in general, for example to pass the information
about the elements that comprise an arbitrarily complex abstract data
type, and is currently preventing the application of some of the input
generation techniques to some constructs.

• Try different branch and path selection criteria. Given a path in the
test-suite the tool attempts to generate input for derived paths obtained
by forcing un-taken branches in the original path. The paths generated

ParaSoft Corporation 35

Potential Future Developments

this way cover all of the program in most cases. Nevertheless sometimes
some portions of the program cannot be covered in this way. For this
cases we will need to develop a technique that generates specific paths
that cover those parts of the program remaining.

• Add a lex/yacc grammar generator to the tool. An appreciable
number of programs use lex and/or yacc to process their input. It is
very difficult to create input that conforms to specific lex and yacc
rules. Adding a module that generates input according to lex and yacc
rules will be a very big improvement for those kinds of programs.

• Convert the prototype into a production level tool. The prototype
developed combines many algorithms and uses complicated techniques
that were first experimented with on real programs using the prototype
developed. There is a lot of work needed to apply the prototype to many
different applications and optimizing/tuning/modifying the algorithms
for the different issues that appear in real programs.

• The developed tool uses branch coverage criteria. The tool should be
extended so it can address other testing criteria.

We think it would be very important to extend the tool so it is able to do module testing. In
module testing one tests every module of the program (i.e. every procedure individually).
To do this correctly and in a way convenient to the user will require a lot of work.
Nevertheless we think it could be a very powerful technique complementary to that of
testing the program as a whole. The main reason is that the work required to test a program
using module testing will increase linearly with the size of the program. This will allow a
very exhaustive test of all modules even for very big programs. Some of the ways in which
the tool will need to be extended to do module testing are:

• Make the tool able to identify the units into which the program can be
decomposed and extract them (i.e. each procedure plus all the related
externals it needs).

• Write a module that is able to exercise those modules repeatedly until a
given coverage criteria is achieved.

• Extend the input generation routines so they can produce the input
required by the modules. For example a routine may accept a pointer to
a structure which the routine treats as being the beginning of a linked
list. The tool will be able to detect that and generate as input to the
routine arbitrary linked lists.

• Whenever the tool detects a module with a problem, present to the user
the source of the problem in a manner in which he can identify where

ParaSoft Corporation 3 6

Potential Future Developments

the problem comes from. I.E. It should be able to tell the user the form
of the input that produced the problem, and allow the user to step
through that routine with the debugger and with the input that originated
the problem.

• Create a database with all the routines and the input that produce the
required coverage criteria. This database will be used to re-execute the
tests whenever the user wants.

We have mentioned here some possible future developments. The work which needs to be
done is much more extensive and complicated. There is a lot of work which needs to be
done and there are a lot of unknowns. The research is also very risky and many people have
already attempted to pursue it and failed. We believe that with our ideas we have a chance
to conquer these problems.

ParaSoft Corporation 37

References

7. References
[I] [Bic79] J. Bicevskis, J. Borzovs, U. Straujumus, A. Zarins, E. Miller, "SMOTL - A

system to construct samples for data processing program debugging, "IEEE Trans,
on Software Eng., vol. SE-5, No. 1, Jan. 1979, pp. 60-66.

[2] [Bir83] D. Bird, C. Munoz, "Automatic generation of random self-checking test
cases," IBM Systems Journal, vol. 22, No. 3,1983, pp. 229-245.

[3] [Boy75] R. Boyer, B. Elspas, K. Levitt, "SELECT - A formal system for testing and
debugging programs by symbolic execution," SIGPLAN Notices, vol. 10, No.6, June
1975, pp234-245.

[4] [Cla76] L. Clarke, "A system to generate test data and symbolically execute
programs," IEEE Trans, on Software Eng., vol. SE-2, No. 3, Sept. 1976, pp. 215-222.

[5] [Cla78] L. Clarke, "Automatic Test Data Selection Techniques," Infotech State Of
the Art Report on Software Testing, September 1978.

[6] [DeM87] R. DeMillo, W. McCracken, R. Martin, J. Pasafiume, Software Testing and
Evaluation, The Benjamin/Cummings Publishing Company, 1987.

[7] [Gil 74] P. Gill, W. Murray, Ed., Numerical Methods for Constrained Optimization,
New York: Academic, 1974.

[8] [Gla65] H.Glass, J. Cooper, "Sequential search: a method for solving constrained
optimization problems," Journal of ACM, vol. 12, No. 1, Jan. 1965, pp. 71-82.

[9] [Har88] M. Harrold, M. Soffa, "An incremental approach to unit testing during
maintenance," Proceedings of the Conference on Software Maintenance, Phoenix,
AZ, October 1988, pp. 362-267.How77] W. Howden, "Symbolic testing and the
DISSECT symbolic evaluation system," IEEE Trans, on Software Eng., vol. SE-4,
No. 4,1977, pp. 266-278.

[10] [Inc87] D. Ince, "The automatic generation of test data," The Computer Journal, vol.
30, No. 1,1987, pp.63-69.

[II] [Kor85] B. Korel, J. Laski, "A tool for data flow oriented program testing," SoftFair
II, Proc. of 2-d Conf. on Software Development, Tools, Techniques, and
Alternatives, San Francisco, Dec. 4-5,1985, pp. 34-38.

[12] [Kor88a] B. Korel, J. Laski, "Dynamic program slicing," Information Processing
Letters, vol. 29, No. 3, October 1988, pp. 155-163.

ParaSoft Corporation 3 8

References

[13] [Kor88b] B. Korel, "PELAS - Program Error Locating Assistant System," IEEE
Trans, on Software Eng., vol. SE-14, No. 9, Sept. 1988, pp. 1253-1260.

[14] [Kor89] B. Korel, "TESTGEN - A Structural Test Data Generation System," Sixth
International Conference on Testing Computer Software, Washington D.C., May
22-25,1989.

[15] [Kor90] B. Korel, "Automated Software Test Data generation," IEEE Trans, on
Software Eng., vol. SE-16, No. 8, August 1990, pp. 870-879.

[16] [LaKo83] J. Laski, B. Korel, "A data flow oriented program testing strategy," IEEE
Trans, on Software Eng., vol. SE-9, No. 3, May 1983, pp. 347-354.

[17] [Leu89] H. Leung, L. White, "Insights into regression testing," Proceedings of the
Conference on Software Maintenance, October 1989, pp. 60-69.

[18] [Muc81] S. Muchnick, N. Jones, Ed., Program flow analysis: Theory and
Applications, Prentice-Hall International, 1981.

[19] [Ram76] C. Ramamoorthy, S. Ho, W. Chen, "On the automated generation of
program test data," IEEE Trans, on Software Eng., vol. SE-2, No. 4, Dec. 1976, pp.
293-300.

[20] [Wey85] E. Weyuker, S. Rapps, "Selecting software test data using data flow
information," IEEE Trans, on Software Eng., vol. SE-11, No. 4, April 1985. pp.
367-375.

[21] [Woo79] J. Woods, "Path Selection for Symbolic Execution Systems," Ph. D.
Thesis, University of Massachusetts, August 1979.

[22] [Off91] A. Jefferson Offutt, "An Integrated Automatic Test Data Generation
System", Journal of Systems Integration, 1, pp. 391-409,1991.

[23] [McConnell] Code Complete - Microsoft Press

[24] [Man94] Steve Mansour, "Vista vs. Hindsight", Advanced Systems, November 1994
pp. 43-47

ParaSoft Corporation 39

References

ParaSoft Corporation 40

TGS Manual Page

Appendix A: TGS Manual Page
TGS(l)

NAME

tgs - Test Generation System

SYNOPSIS

tgs [options] command

DESCRIPTION

tgs is the driver for the Test Generation System (TGS). The TGS system
is able to automatically generate input for the execution of any C program.

'tgs' keeps executing a program repeatedly and generating different
input for every execution. The results of the execution of the program with
the generated input are analyzed.

If some error is found during execution (i.e. program core-dumps or the
insight runtime finds some problem), the input that caused the problem is
stored in a subdirectory in "tgsdir/bugs". There is a subdirectory for
every input that caused a different problem.

If no errors are found and the generated is added to the test-suite in
"tgsdir/t s". There is also a subdirectory here for every input.

OPTIONS

-check Only checks for self-consistency of the generated input. Generates one
input for the program, re-executes the program with that input, and
checks that the output files are identical.

- dd f Use dynamic data flow methods.

ParaSoft Corporation 41

TGS Manual Page

-guided [num]
Enter guided function minimization methods after 'num' consecutive
runs are discarded in random plus heuristics mode.

-heu Use heuristics to generate input for the program.

-n runs Generate at most'runs'inputs for the program. If this flag is not set
'tgs' keeps running until it achieves 100% coverage with the
combined inputs in "tgs dir /bugs" and "tgsdir/ts".

-pw Use path-wise methods. Stops execution of the program as soon as it
enters a flow that can lead only to covered parts of the program.

- rt e s t Do not write to ' s t dout' any output that can change between
identical invocations of the same 'tgs' command (i.e. timing
information).

- s e Use symbolic execution methods.

-show_flow
While the program executes, dumps a file
("tgsdir/ts/t#/f low") that shows the flow taken by the
program.

-stdin Writes to the output the input that was generated for the program.

-stdout Writes to the output the output produced by the program.

- s t de r r Writes to the output the error produced by the program.

-T Timeout for the whole execution.

-t Timeout for each trial run.

-_stop #
Internal, for debugging. Stops 'tgs' just before executing run number
#. Then the run can be executed under a debugger.

ParaSoft Corporation 42

TGS Manual Page

command The command that needs to be used to execute the program. Special
shell characters ('>', '<',...) need to be protected.

USAGE

To use the TGS system the program should first be compiled with
'insight' using the "-Ztgs" flag. The resulting executable is then
executed under the TGS system using the 'tgs' command. All of the
information generated by 'tgs' is put under a subdirectory called
"tgsdir" of the directory where the program was run. (See the section
FILES for a descriptions of the contents of that subdirectory.)

FILES

$TGS/.insight:
The commands in this file should be in the ". insight" file in
the directory where 'tgs' is invoked.

$ TGS /demo: This directory contains a very simple demo that shows how to use
the system. To see it just type 'make' in that directory.

tgsdi r: This file is created in the directory where 'tgs' is invoked. All
files and reports created by 'tgs' are put under this directory.

tgsdir/REPORT:
This is the report of the things done by 'tgs'. It has information
regarding the number of inputs generated, and the number of
inputs included in the "t s /" (test-suite) and "bugs /" directories.
This file is an exact copy of the information that goes to 'stdout'
while running 'tgs'.

tgsdir/ts : Directory containing the test-suite generated by 'tgs'.

tgsdir/ts/t#:
Here '#' goes from 1 to the number of inputs included in the
test-suite. For each generated input included in the test-suite a
directory is created to store it and other relevant information.

ParaSoft Corporation 43

TGS Manual Page

tgsdir/ts/bflow:
Recording of the actual flow taken by the program. Can be
visualized using "db -showjoflow bflow".

tgsdir/ts/t#/in:
Directory containing the files that constitute the input for test case
#. If input was needed from' s t d i n', the input generated is stored
in a file called "_stdin_".

tgsdir/ts/t#/out:
Directory containing the files that constituted the output for test
case#. 'stdout' and 'stderr' are stored in files "_stdout_"
and"_stderr_".

tgsdir/ts/t#/record.idf
Input description file for the run. Can be visualized using
"db -show_idf record, idf".

tgsdir/ts/t#/report:
Short report with some information about the I/O operations done
by the program while executing (i.e. files opened and where).

tgsdir/ts/t#/tca.log:
Coverage logfile corresponding to the run in that directory.

tgsdir/ts/t#/tca.out:
Coverage summary for the run in that directory.

tgsdir/ts/t#/inst.tgs:
Instructions from 'tgs' to the 'tgs-runtime'.

tgsdir/bugs:
Directory containing the input generated by 'tgs' that caused
bugs in the program. I.E. the program core-dumped or insight
found a problem with it. The directory structure is the same as for
"tgsdir/ts".

ParaSoft Corporation 44

TGS Manual Page

tgsdir/rtest.src:
Script for 'rtest' to run the tests in the test-suite in
"tgsdir/ts". It should be executed as
"rtest -s tgsdir/rtest. src".

tgsdir/tca.out:
Coverage summary for all the inputs generated.

tgsdir/dead_path:
When running t g s with -p w it writes the file and line where a run
was stopped because it entered a flow that leads only to covered
parts of the program ("disc (dead-path)").

tgsdir/ts/t#/flow:
Flow that the program took while executing. This file is generated
if 'tgs' is invoked with the flag 'show_f low'. Note that this file
can be very big, so use this with caution.

For each tea block entered the following info is printed:
{tca_block_#}-file:line [clc2c3] [c4].

cl, c2 and c3 are either a character '' or '*', a '*' means in
positions:

cl: this block was already covered in a previous run.
c2: all the externals referenced in the block were fully

covered in previous runs.
c3: all the blocks reachable from this block in the current

function were already covered in previous runs.
c4 is <A' if the current run increases the coverage, otherwise

is".

* . db: for each source file in the application there is a corresponding . db
file which has needed information from the file. The file is stored
in the same directory where the.source file is. If that is not possible
the file is stored in the directory where 'insight' was invoked
from.

db. ind: list of files that constitute the application. There is one entry for
each file included in the application (including included files).

ParaSoft Corporation 45

TGS Manual Page

t c a. db: file with tea information for all of the runs generated by ' t g s'.
This file is written by a modified version of 'tea' invoked with
the flags ' - c -_db'. The information in this file is used to update
the information in the . db files.

$TGSDIR/report.tgs:
For each invokation of 'tgs' a line is added to this file with a
summary of the application name, coverage obtained, runs tried,
time spent executing, and optimizations used. This file is only
written if TGSDIR is set.

ParaSoft Corporation 46

Code of long.c program.

Appendix B: Code of long.c program.

/* Program that shows the LONG-INPUT problem. Coverage is only done if the
input string is "B ... E\n". */

♦include <stdio.h>
♦include <strings.h>

static char input_string [1000], *c = input_string;

static void bad_input ()
{

if (*(c-l) == EOF) {
printf ("Premature EOF\n");

} else {
*c = '\0';
printf ("bad_input = [%s]\n", input_string);

}
exit (1);

}

main ()
{

if ((*c++ = getchar ()) != "B') bad_input ();
if ((*c++ = getchar ()) != ' y) bad_input ();

while (isalpha (*c++ = getchar ())) ;

*(c-l) = '\0';
printf ("input_string = [%s]\n", input_string);
*(c-l) = ' ';

if ((*c++ = getchar ())
if ((*c++ = getchar ())
if ((*c++ = getchar ())

'E') bad_input ();
'\n') bad_input ();
EOF) bad_input ();

*(c-2) = '\0';
printf ("Correct program = [%s]\n", input_string);

exit (0);
}

ParaSoft Corporation 47

