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I 
Phase I Effort Summary 

1. Phase I Effort Summary 
In our Phase I effort we undertook a project which many people would consider impossible 
to execute. We proposed to build an automatic test-case generation tool and deliver a 
working prototype of it. Automatic test case generation is considered one of the most 
difficult and unsolvable problems in computer science. The task is high-risk, hard to do, 
and nobody in industry is even trying to solve the problem. In addition to that we set out to 
build a prototype of the tool on a Phase I budget. This was only possible because of the high 
reusability of the software and technology which we already have in-house. If we weren't 
able to re-use the software, the results which we present in this report would require 2-3 
years effort. 

The automatic test case generation problem is so hard and such high-risk that we would not 
attempt to solve it without the possibility of SBIR funding. 

We believe that we achieved our Phase I goals. The testing tool prototype was built and it 
works on problems of significant size. Our innovation was in several areas. One was in 
applying and extending existing test-case generation algorithms. We enhanced and refined 
algorithms that were already available. Another was the development of new techniques 
used to combine and apply the aforementioned algorithms to the problem. The unique 
combination of algorithms and how they are applied to the problem was the key to our 
success. 

The results of testing the prototype are encouraging and suggest that the research, if 
continued, can lead to real breakthroughs in the way people test their software. This in turn 
would lead to high payoffs. However we realize that there is still a lot of work before the 
prototype we have developed can be used successfully with large software systems. 

Before reporting our results we would like to describe in more detail the software testing 
process, and the role and significance of an automatic test-case generation tool. 

Software testing is very labor-intensive and expensive; it accounts for approximately 50% 
of the development costs of a software system. At the same time, software testing is critical 
in achieving quality software. Software developers know that there is no possibility of 
building reliable and successful software products without sound, efficient, and thorough 
testing. Because software testing is so important, and accounts for such a large part of the 
software development cost, any advances in software testing technology yield large 
benefits. 

Recent studies [Man94] indicate that software testing presently done in the industry is not 
adequate. On average, a typical company tests only 30% of the code it develops. The 
remaining 70% is never tested before it is shipped. The reason for this is that most testing 
procedures test main parts of the code, but do a poor job of testing extreme conditions. This 
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silent majority of the code comes into play when it is least expected and causes program 
crashes. 

Software testing in its very simplified form can be reduced to the following three tasks: 

• Generation of test-suites 

• Validation of test-suite execution 

• Regression testing 

During the test-suite generation phase, programmers work on creating inputs to the 
program which force it to execute different parts of the code. The generated inputs are 
called test-suites. Good test-suites cover most of the code branches and fully exercise the 
program's functionality. 

To validate the test-suite programmers run the program against the test-suite and check the 
output of the program to verify its correctness. If during this process errors are detected, 
they are fixed and the process proceeds until all tests execute correctly. At this stage the 
test-suite is ready for the third phase, which is regression testing. 

In regression testing any new version of the program is run against the test-suite and its 
output is compared to the correct output. This phase makes sure that changes in the program 
do not introduce defects. 

There have been continuous attempts to automate this process. Most success in testing 
automation has been in the automation of test case execution and result comparison, which 
is our phase three (Regression testing). There has been however, very little progress in 
automating the process of input data generation and test-suite validation. Any progress 
towards automation in these two areas is bound to bring huge payoffs: 

• Test-suite automation will drastically reduce the cost of software 
development. Independent estimates [McConnell] suggest that cost 
savings could go up to 40%. This alone comes from the reduction of 
man-hours spent on test-suite generation. 

• Automatic test-suite generation will significantly improve quality of the 
produced software. Complete testing of all parts of the software is not 
presently done, because test cases are hard to find or do not exist. 

• Automation of test-suite generation will encourage programmers to test 
more code at early phases of the code development cycle, and in this 
way bring additional benefits through cost savings and improvements in 
quality. 

One would expect that if the automation of test-suite generation can bring such a huge 
payoff there should be a lot of efforts and research in the industry to develop products 
which would fulfill this need. This is not the case. All previous attempts to generate such a 
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tool have been successful on small programs (up to few hundred lines of code) but all have 
failed on real life applications. Generally the problem is considered as very complicated 
and high risk. The complexity of the problem comes from its nature. To understand how 
difficult the problem is consider a typical 10,000 line program. When generating the 
test-suite, the programmer is trying to force the program to execute most of its statements. 
Statements in the program are executed as pieces of the execution path which the program 
is taking through its source code. In order to force the program through most of its 
statements, a significant number of paths need to be executed. In a 10,000 line program the 
number of paths can grow geometrically to 100,000,000. This number of paths is 
staggering, and is the reason the problem is so difficult to solve. Most people even consider 
it impossible to solve. 

An attempt to build an Automatic Test Case generation is a high risk project. On the other 
hand, if the project is successful it is a breakthrough and the potential payback is huge. 

The overall project goal is to develop a Test Generation System (TGS) which takes as input 
the source code of a program and automatically generates input for the program that 
satisfies a given coverage criteria (i.e. builds a test-suite for the program). 

The main Phase I goals were to: 

• Build a prototype of a TGS System which works with programs written 
in C. The prototype should have skeletons of the major algorithms 
which the tool will be using. 

• Assess if the approach which we proposed has a chance to become a real 
TGS tool, by running the prototype on chosen C programs. 

The goals of the Phase I were achieved. We produced a working prototype of the TGS tool. 
We implemented the major algorithms: 

• Symbolic execution 

• Dynamic Data-Flow Analysis 

• Function Minimization Methods 

• Heuristics 

• Random Input Generation 

We have tested the tool on three general purpose programs, zip, flex, and tput. All 
three applications are of medium size. Zip is about 9,000 lines of code, flex is about 
8,000 lines, and tput is approximately 3,000 lines of code. The chosen applications are 
much larger than any applications for which automatic test case generation has been 
attempted. The biggest programs previously used as test cases were below 1,000 lines of C 
code.[Godzzila]. We consider it a significant achievement. 
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The results of our testing are encouraging. We were able to achieve, without human 
intervention, code coverage of 43% for zip 32% for flex and 32% for tput. These 
results are very good and suggest that the approach we chose has a good chance to lead to 
a tool which will be able to work on different types of real applications. 

In the course of the research we have tested our algorithms. We discovered deficiencies in 
them and we believe that we have good idea how this deficiencies can be removed. We also 
found a lot of facts which we did not expect. All of the technical implications of our 
research are reported in section 5 "Lessons Learned". 

In the course of our work we obtained answers to the questions which we posed in our 
proposal. Answers to them are distributed across of this report. Here we would like to give 
answer to the most important question which we asked "Is it possible to build an automatic 
input data generation system which can be successfully applied to real world 
applications?". We are confident that the answer to that question is YES. Yes it is possible 
to build the system which can work on large applications and we think that this report 
proofs it. 

As we mentioned before were able to achieve these results only because we re-used a lot of 
code from our other programs. All code for parsing, flow analysis, and code reconstruction 
were re-used. We took them from commercial products that we've already developed. Only 
because of that were we able to build this prototype in such a sort time and concentrate on 
algorithm development instead of supporting software development. We do not believe that 
any other company is in such an opportune position to do the same. 
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Overview of the TGS System 

2. Overview of the TGS System 
The TGS system attempts to automatically generate test case data for a given program with 
the following criteria in mind: 

• Full testing of all flow paths in the executable program. 

• Identify inputs that cause the program to perform incorrectly. 

The technique involves analyzing the program's code to identify points where input data is 
needed. The input instructions are then replaced with special functions which are able to 
simulate input using various techniques, ranging from random number generation to 
heuristic flow analysis techniques, to generate a set of input cases that satisfy the criterion 
above. The resulting program is then linked to a "test harness" which repeatedly runs the 
program, with varying input, adding unique test cases to a database of test case data. The 
algorithm converges when the criterion above are met, or no new test cases can be 
generated, in a reasonable amount of time. 

Figure 1 shows the block diagram of an example program. Here it is seen that the program 

Example Program 

-►(Output    ) 

-*/ Output    j 

Figure 1: A Typical Program with Input and Output 

takes its input from various input sources, such as a computer keyboard, or a file on disk, 
and generates certain outputs. In order to automatically generate inputs for this program the 
TGS System has to analyze the program's source code, find which instructions of the 
program correspond to the input, and replace them with code which can simulate input. 
This is done using the technique of source code instrumentation. We will describe the 
details of this technique in the following example: 

void foo() 
{ 

char b,   c,   *ptr; 
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c = getchar(); 
if   (c <   x0'   ||   c >   '9')   { 

*ptr = 0; 
} 
b = c -   "0'; 

} 

In this code, input is done through the function get char. The programmer expects the 
input to be an integer ranging from 0-9. If the inputted value is not in that range, the 
program is designed to take the default operation, which in this case would not function 
properly. This is called an exception condition. Typically, however, exception conditions 
happen rarely, and the code that handles the exception is often times never tested, since in 
practice, exception conditions rarely occur. In this case the exception condition would 
cause the program to fail, since "pt r" is not yet initialized before it is de-referenced. 

An internal representation of the program is shown in Figure 2. The boxes in the picture 
represent different nodes in the programs's "parse tree". Statements in the program are 
represented by one or several nodes in the parse tree. Each node has the field "next". This 
field points to the next node in the parse tree, or if the node is a leaf this field is 0. Consider 
the statement: 

c = getchar(); 

This statement is represented by the "Assignment" node. The "next" element of that node 
points to an if statement. The "operands" element points to two operands of the 
assignment: "c" - left side and "getchar" - right side. 

The parse tree is generated from the source code of the program through a process called 
parsing. The parser is a tool which is specifically designed to read the source code of a 
program written in a specific language and convert it into a parse tree. In our work we were 
able to use the standard ParaSoft C parser, and so we didn't have to develop a new parser. 

The representation of a program in terms of a parse tree is unique and has a one to one 
correspondence to the original source code. In fact it is possible, and we used that 
technique, to generate source code out of the parse tree. The tool which does this is called 
a code reconstructor, and it works inversely to the parser. 

It needs to be mentioned that the representation of a program in terms of a parse tree has 
several advantages. The most important one is that a parse tree is easy for computers to 
operate on. The second advantage is that a parse tree representation of the program is 
language independent, and any operations or tools which operate on it do not have language 
dependencies. This means that most of the work which we have done during this research 
is useful for other languages as well as C. In fact internal tools do not need to be changed 
when the prototype is modified to work with other languages. 
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Once the program is translated to a parse tree the TGS tool applies the code analyzer to 
locate points where the program is getting input. This allows the Tool Driver to choose 
inputs, at run-time, that will force the program to execute paths that may have previously 
never been tested. For the simple example in this case, if the input function "getchar () " 
returns any character whose ascii value does not fall within the numeric range (ascii 48 - 
57), the program would fail. The test case generator, would then replace the input call to 
getchar () with a character generator, which could take random values. This would 
quickly lead to execution of all paths, after sufficient sample inputs have been tried. 

.             Tv        l r uucuuu uvci 
name: foo 
scope              body 

Assignment 
next             operands 

1 1 

} 

Variables declared: 
char a, b, *ptr; Variable: 'c' 

next 

1 
c<48orc>57 If statement 

cond 
body                   next 

Call Expression 
operands 

1 

i r Function Decl 
name: getchar 

Assignment 
operands next 

r                       } 

♦ 

i 

Pointer Reference: 'ptr' 
next 

* r 

) 

1 meg er: U 
f      Rest of Code... 

Figure 2: Intermediate Code for Untested Exception Handling Code 
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The code analyzer not only analyzes the code, but also instruments it to replace input 
functions with input generation functions. 

Figure 3. shows the instrumented version of the code. As is denoted by the numbers, some 
•         r* function ueci 

name: foo 
scope              body 

Declare: 'ptr' m 
1 I Assignment 

next             operands Variables declared: 
char a, b, *ptr; 

Variable: 'c' 
next 

v 
• 1 

c < 48 or c> 57 
If statement 
cond 
body                 next 

Input Generator 
type: character 
method: random 

V 

Assignment 
operands              next 

t 1 
C Rest of Code... 

r 
Pointer Reference: 'ptr' D 

♦ 
Integer: 0 

Figure 3: Instrumented Code with Test Case Generation Calls 

code has been added to the code, and in one case, some code has been replaced. In order to 
have control over inputs that are received by the program, the call to getchar () is 
replaced by the Input Generator, which in this case generates random inputs between 0 and 
255. 
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During the instrumentation phase, in addition to the instrumentation needed for input 
generation, two additional instrumentations are performed: 

• Instrumentation for coverage analysis. 

• Instrumentation for runtime error detection. 

• Instrumentation for block flow. 

• Instrumentation for branch condition analysis. 

Instrumentation for coverage analysis is necessary. The information provided by it is used 
as a criterion for accepting or dismissing a test case. 

The instrumentation for runtime errors is not needed. However it provides very helpful 
information. During of execution of the TGS system, the system can detect if the program 
hit an error and the user can be alerted to that situation. This is a very useful functionality. 
We did not need to do any extra work to achieve this, our instrumentation system did it 
anyway. Again in this case we received the benefit of re-using our existing code. On the 
other hand if the error detection functionality is not needed it can be turned of with a 
configuration switch. 

The instrumentation for block flow monitors the flow of the program, stores it, checks if 
the desired flow is taken, and makes the decisions regarding continuing execution of the 
program or not. 

In the instrumentation for branch condition analysis the branch conditions are replaced by 
an equivalent real valued function plus a call to the run-time that monitors its value. 

The parse tree modified in this way represents an "instrumented parse tree". This tree is the 
passed to the code reconstructor to build the instrumented source code for the routine. The 
instrumented code is consequently passed to the language compiler The compiled version 
is then linked with the TGS input generation library into a final program ready for test 
generation. 

During code instrumentation information about program flow, input statements, and branch 
condition form is stored in the database files. This information is used during the test 
generation process. It helps to decide which paths needs to be analyzed and how to generate 
input to force a program to take a specific path. 

Once the program is generated the TGS tool driver will then run the program repetitively, 
using different inputs, until all possible paths in the program are executed. 

During that process every set of inputs which is generated is analyzed by the "output 
analyzer". This tool checks to see if the input set increases the overall coverage of the 
program. If this is the case then the set is included in the test-suite. If it does not then the 
input set is discarded. In the current version of the tool when making decisions about the 
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input set we use block coverage criteria. This can be later changed and we can use other 
criteria, such as instance path coverage. 

After the test case generator has run to completion, the test-suite now contains a set of test 
data. Each piece of data either results in the program taking a unique set of paths through 
the program, or results in a failed run of the program. Test data for which the program fails 
can then be analyzed, and the code corrected, so that future runs of the code are more 
robust. 

Figure 4 shows the block diagram of the TGS System, the instrumented code for the above 
program., and the run-time support blocks that the instrumented code interacts with. 

Test Case -** Run-time 
uaiauasc 

1 

i 

r 
i 

u 

v 

Test Case 
Generator 

*~ Example 
Program 

*" Output 
Analyzer Tool Driver 

Figure 4: Test Case Generator Block Diagram 

Additionally, the input sources have been replaced by the input generator which uses 
information from the output analyzer. As can be seen, the output analyzer uses output from 
the error checker as input, to decide if a run-time error was detected. The input generator 
uses different techniques to generate new test cases. The output analyzer evaluates the 
outputs of the original program, and that of the error-checker to evaluate the result from the 
current set of inputs. If an error is detected, or if at least one new flow path has been 
executed in the example program, this test case is added to the database. If the set of inputs 
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does not generate an error, or there are no new paths executed, it is discarded, and the 
system moves on to another test case. 
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3. Technical Description of the Prototype 
A prototype for the Test Generation System (TGS) has been built. The prototype takes a C 
program as input and automatically generates input for the program that satisfies a given 
coverage criteria (i.e. builds a test-suite for the program). The prototype has been built with 
the following goals in mind: 

• The system has to be as automatic and general as possible. 

• The system has to be modular and expandable. 

This is needed so that the system can be easily experimented with, with both different 
applications and input generation techniques. The prototype is built in such a way that it is 
a skeleton of the possible real system. 

When developing the system we tried to minimize the dependency of the specific language, 
which is C. The language dependency is located in the code parser and code reconstructor. 
If these two modules are replaced, the system can work with any other language. The parse 
tree which we used is the standard ParaSoft tree format and it is used to support C, C++, 
Fortran77, and Fortran90. We also investigated the suitability of that tree to support Ada 
and we are confident that the tree structure is capable enough to support this language as 
well. 

Modularity of the prototype is quite extensive. Modules interact with each other through 
well defined interfaces which are module independent. Replacement of modules and 
extensions to modules is easy and does not require modifications of other parts of the 
system. 

First we will describe the basic functionality of the prototype and afterwards the different 
techniques we implemented to improve the generation of input. 

3.1 Basic Input Generation System 
The prototype generates test-suites using the two basic steps: 

• Analysis and instrumentation of the original program. 

• Execution of the instrumented program. 

3.1.1 Analysis and Code Instrumentation 
During the instrumentation phase the program is parsed and analyzed, the results of the 
analysis are stored in a database for the program, and an instrumented equivalent version 
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of the original program is generated. The instrumented C program is compiled and linked 
with a run-time library. The instrumented program has extra calls in it, the purpose of those 
calls is to: 

• Automatically generate input for the program. The original input 
statements are replaced by calls to a run-time library that will generate 
the input. 

• Record information about the program that is not available at 
compile-time. For example the flow taken by the program. This 
information is also stored in the database for the program. 

This phase has been implemented by extending the functionality of Insight, which is our 
run-time error detection tool. The TGS tool is implemented as a new switch "-Ztgs" to 
insight. 
We will describe the operation of the analysis and instrumentation of the program on a 
simple example.Consider that we have a program which has its source code stored in files 
fool.c foo2.c foo3.c. In order to build an executable from it the user normally performs 
following steps: 

cc -c fool.c 
cc -c foo2.c 
cc -c foo3.c 
cc -c foo4.c 
cc -o foo  fool.o  foo2.o  foo3.o  foo4.o 

Analysis and instrumentation is performed in a very similar fashion. The cc has to be 
replaced with insight and extra switch "-Ztgs" has to be added. Thus in order to prepare 
a program to work with the TGS system the user needs to change the previous commands 
to: 

insight -Ztgs  -c  fool.c 
insight -Ztgs  -c  foo2.c 
insight -Ztgs -c foo3.c 
insight -Ztgs -c foo4.c 
insight -Ztgs  -o  foo  fool.o  foo2.o  foo3.o  foo4.o 

Notice that the changes are minimal. The syntax of the changes was chosen to be of that 
form in order to minimize changes required in users makefiles. It should be noted that these 
type of changes can be done by changing the one line in the makefile which defines the 
compiler from cc to insight. For example: 

CC=cc becomes CC=insight 

ParaSoft Corporation 13 



Technical Description of the Prototype 

In the above example the first 4 lines perform analysis and instrumentation on independent 
source files. During that phase files with . c extensions are converted to . o instrumented 
object files. Notice that at that stage the following actions were performed: 

• Analysis of the program. 

• Instrumentation of the parse trees 

• Reconstruction of the instrumented source code. 

• Compilation with the compiler. 

At the same time the tool generates information database files with . db extensions. These 
files contain specific program information needed by TGS and flow analysis. 

At the last step the programs object files are linked together along with the library which 
contains the input generation routines and run-time support routines for TGS. The resulting 
object code is ready to be used by the second part of the TGS system. 

We would like to stress here that we designed the system in such a way that it will be very 
easy to use. The design is based on our past experience with over development tools. The 
system is designed to be used frequently. This requires a very simple user interface and easy 
modifications from standard compilation to compilation for the TGS system. This should 
encourage users to use it. It does not matter how useful a system is, if it's complicated and 
has an awkward user interface it is not going to be used. 

3.1.2 Searching for the Test Cases. 
In the second step the program is executed repeatedly. This step is completely automatic 
and done by a tool driver. The tool driver continues executing the program using the 
different input techniques and analyzing the results of the execution. It stops execution 
when it finds complete (100%) coverage or is told to stop by the user. The tool driver 
organizes the results obtained and produces the following output: 

A report showing the progress of the input generation. Among other 
things it has information about: the number of inputs generated, the 
program coverage they achieved, a summary of the actions taken, time 
spent, input generation techniques used, etc. 

• A test-suite for the program consisting of the successful inputs 
generated, a set of inputs for which the program show bugs. i.e. inputs 
for which the program crashed. 

We will continue description of the functionality of the prototype using the foo example 
which was begun in the previous subsection (3.1.1). The executable of the program ready 
to be executed by the tool is stored in the file foo. In order to start test-suite generation the 
user executes: 
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tgs foo 

In this command tgs is the name of the tool driver. The tool takes several arguments and 
various flags. All possible options which can be passed to the tool are described in 
Appendix A which contains the tgs manual page. 

Once the tgs command is executed the user is presented with the screen shown in Figure 5. 

When TGS starts it reports information on where program was run and in which way it was 
invoked. Then it proceeds to generate test inputs. For every new input generated TGS 
reports: 

• Number of runs - attempts to generate input. This number is split into 
three numbers: total number of runs, number of test cases saved in the 
test-suite, number of test cases which reported run-time errors and are 
saved in the "Bugs Test-Suite". 

• Code coverage information.This is reported as three percentage figures: 
Code coverage of this specific test, total coverage of the program which 
is stored in the test-suite, total coverage including the test-suite and the 
Bugs test-suite. 

• Action which was taken regarding the input, if the input expanded 
coverage of the program it is added to the test-suite. If the input forced 
program to encounter an error it is saved in the Bugs test-suite. 

Test Generation System: 

Directory:   /home/lion2/quality/test 
Command  :   tgs -heu foo 
Date   :  Mon Nov 28  12:07:51   1994 
Testbed  :   sun4c SunOS  2  4.1.3JJ1 
Host   :   lion 

RUNS 
Tot in TS bugs 

Coverage 
run TS Total Action Elapsed Time 

Run Total 

1 10 
220 

3% 3% [3%] 
6% 7% [7%] 

added to test-suite 
added to test-suite 

0:25 [0:30] 
0:18 [0:52] 

Figure 5. Sam iple TGS Output 
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Otherwise it is discarded. 

• Elapsed time of TGS execution in seconds. This is again reported as two 
numbers. The first reports the time spent executing the specific test case, 
the second number is the total elapsed time from the beginning of TGS 
execution. 

During execution TGS generates several directories and files where the output from the 
tool is stored. In the current directory where the program was executed, TGS generates a 
tgsdir directory which contains the results of the runs. In this directory the tool creates 
a subdirectory "t s " which contains the generated test-suites. Inside the t s directory each 
test case is stored in a separate subdirectory named t # where # is the consecutive number 
of the test-case. Each t # directory contains a subdirectory in and out. The in directory 
contains input files which the program will use to run the test case. These files can be 
passed both to instrumented and non-instrumented versions of the program, to run the 
specific test-case. The out directory contains the output from running the specific case. 
The files are stored so that the user can check if the execution of the program was correct. 
They are not used in further parts of the system. 

In addition to input files the TGS system generates an rtest. scr file in the tgs 
directory. This file is the script file which is used by the automatic test-replay tool "rtest" 
to automatically run the test-suites, "rtest" is our internal regression testing tool which 
we use to run our test-suites. Generation of the rtest.scr file is an extra benefit of using 
TGS. It automates the testing procedure to the highest possible extent. 

3.13 Basic Modules of the Prototype 
The prototype consists of four basic software units that are used by all of the input 
generation techniques. These units are: 

• Compile-time unit: this is the unit that takes the original program, makes 
a static analysis of it, generates the instrumented program, and compiles 
it to produce the instrumented executable. The unit is based on Insight 
and it uses a lot of Insighfs technology. The other three parts are 
completely new modules and were developed specifically for this 
project. 

• Run-time unit: this is the run-time for all instrumenting calls added by 
the compile-time unit: 

• Tool-driver unit: automatic driver for the test-generation system, keeps 
executing the program while analyzing the input and resulting output 
and interacts with the run-time and the database for the program to apply 
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the different input generation techniques. 

•    Database unit: database of the program first created by the compile-time 
unit and accessed by all units. 

The most effort during our research was put in the Run-time unit and Tool-driver part 
which interacts with input and chooses different algorithms for test-generation. These parts 
are also constructed modularly so we can add new test generation techniques and 
experiment with new algorithms. In this research we tested the feasibility of 5 techniques 
described in the following section. 

3.2 Input Generation Techniques 
This section describes the different input generation techniques we implemented. They 
correspond to increasing levels of sophistication and should allow us to see if automatic 
input generation is feasible. Each technique has only implemented the basic algorithm. 
Each of them is quite large and implementation of them in full detail is beyond the scope 
of this research. The main goal was to see if all or some of them in combination can be a 
basis for the creation of a real test generation system. 

3.2.1 Random Input Generation 
This is the most basic input generation used. It generates random input whenever the 
program requests any input. The values are random, but of the appropriate type. Input here 
and for all the other techniques is generated for anything except graphical input. For 
example the program may read from s t din, then open some files and read them, etc. The 
prototype in this case will create stdin and the other files and fill them with suitable 
values. 

The prototype generates input while the program executes and at the same time creates the 
input files that would generate that input when running on the normal program. The 
run-time also generates an input description file which contains a detailed description of all 
the input generated for the program. The input description file is used by other input 
generation modules. 

The run-time detects the data type of the input requested and generates a random value 
distributed uniformly over the range of valid inputs for that data type. It also decides 
randomly when to generate an end of file and when to generate inputs shorter than the 
requested ones (i.e. for fgets or f read system calls). The information needed by the 
run-time to generate the input is passed as parameter arguments to the run-time calls and 
through a database for the program that is created while processing the source. 
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3.2.2 Heuristics 
The heuristics module controls which heuristics rules are activated while processing the 
program or running it. Any heuristics rule can be turned on or off independently. The 
current heuristics rules implemented work on the generation of input. Its purpose is to 
generate inputs that have a better chance to cover more parts of the program than the 
randomly distributed values generated by the random input generation module. 

The rules for every kind of input (numeric or character/string based) have a relative weight. 
The system first decides randomly and according to the relative weight whether to generate 
input according to one of the active rules or randomly. Once the rule is decided, the system 
generates input according to that rule. 

Examples of rules implemented for numeric values are: 

• Exponential deviate: generates values distributed with an exponential 
deviate around 0. 

• Uniform log values: generates values distributed uniformly in each 
order or magnitude. For example in that rule it has the same probability 
of generating 10,100,1000  

• Extreme values: generates one of a list of extreme values (0,1,2, -1, -2, 

Example of rules implemented for character/string values are: 

• Extreme values: generates extreme values. For example if asking for a 
string generates the same character for each element of the string, or 
strings of zero length. 

• Special values: generates one of a list of special values. Examples of 
special values currently included are C and basic keywords, minimal C, 
Fortran and Lex programs. 

3.2.3 Function Minimization Methods 
Here we have implemented the function minimization methods proposed by Korel [Kor90]. 
These techniques associate a real valued function to all the branches of the program. The 
problem of generating input so the program takes a given path is transformed with this 
technique to the problem of minimizing the associated real valued function. The real 
valued function allows us to use guiding techniques to find local minimums for the 
function. This technique is used by the tool driver to guide the generation of input. 

Each input generated by the tool corresponds to a path in the program. Each successfully 
generated input is stored in a test-suite for the program. The run-time tracks the execution 
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flow of the program and checks at any point whether or not the current flow leads to 
uncovered parts of the program. 

Given a path for the program for which we know the input, we generate input for a path that 
differs by taking an alternate branch in that path using function minimization methods. This 
allows us to generate more inputs for the program, given that we already have some input 
for it. 

The function minimization technique we used works as follows: 

The tool driver goes over an already existing path in the test-suite and traverses the path. 
At each selection statement in the path it checks if the branches other than the one taken by 
the existing path are already covered. If some are not covered, it tries to generate input so 
that the generated path is taken up to the selection statement and at that point the alternate 
branch is taken. 

To do that it takes as a starting point the input for the already existing path. The idea is to 
modify this input so that the path up to the chosen selection statement is taken, but then the 
alternate branch is taken. This is accomplished by associating a real valued function to that 
branch. The real valued function is defined in such a way that the branch will be taken if 
the function becomes zero or negative. Thus the problem is transformed into a function 
minimization problem. 

The tool driver then proceeds to execute the program repeatedly, monitoring the path taken 
by the program and the resulting value for the real valued function associated to the branch. 
While doing that it loops over all input variables and using guided function minimization 
methods to modify the input so that the function becomes zero or negative. 

If the search succeeds the input that forces that branch is added to the test-suite of inputs 
for the program. If the search fails, the branch is marked as unfeasible. Afterwards the tool 
driver proceeds to find another uncovered branch in the existing paths in the test-suite. The 
algorithm can fail to find the input either because it takes too long or because the path 
condition gets broken (i.e. changing the input value makes the program take a path that 
doesn't lead to the selection statement we are concerned with.) 

3.2.4 Dynamic Data Flow 
Another technique proposed by Korel [Kor90] is to use dynamic data-flow along with 
function minimization. The purpose of this technique is to allow us to find out what specific 
input influence a given branch. The guided function minimization methods are thus 
optimized because the amount of input to try is reduced. Here we have implemented a 
variant of the method proposed by Korel. The tool driver monitors the actual flow for a 
given input of the program and calculates the data-dependence for that flow. This 
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information along with the actual values generated at every point in the program (also 
available to the tool driver) allows us to calculate dynamic data-flow information. 

Dynamic data-flow techniques are used to reduce the space of input variables one needs to 
search when finding input for a given branch. The dynamic data-flow module is invoked 
when using the function minimization methods. After the tool driver decides to try to search 
input to force a given branch, it calls the dynamic data flow module to determine which 
inputs influence that branch. That information is given with reference to the input 
description file. The guided search method is then optimized because it only needs to 
change input values associated with the branch. 

To calculate the dynamic data-flow information we used a variant of the algorithm 
proposed by Korel. In our tool we also wanted to include symbolic execution, so we used 
a generalized algorithm for symbolic execution that also allows the calculation of dynamic 
data-flow information. The symbolic execution algorithm allows us to calculate the 
data-dependence along any flow in the program. To calculate the dynamic data flow 
dependence it calculates the data-dependence along the flow actually taken by the program, 
and that leads to the branch condition we want to force. All this information is calculated 
every time the program is executed and is available to the tool driver because it is stored in 
the test-suite along with the input generated and the input description file. The tool driver 
combines the information of the data dependence for the actual path with the actual values 
found in the input description file to obtain the dynamic data dependence. 

3.2.5 Symbolic Execution 
Symbolic execution is a technique studied in the literature [Off91] to generate input for a 
given program. In this technique the program is executed symbolically and the condition 
for a given branch to be taken is transformed into some set of symbolic expressions 
satisfying specific conditions. This technique doesn't require the actual execution of the 
program. We chose to base our system on actual execution because we believe that actual 
execution is the only practical way of executing real programs. Symbolic execution has 
difficulties with standard constructs appearing in any appreciable real program (arrays, 
pointers, external functions, loops). Nevertheless whenever symbolic execution is possible 
it is a very efficient technique. For this reason we added symbolic execution to our 
prototype so we could use a mixture of both techniques and get the best of each of them. 
The compilation-time unit was extended to perform symbolic execution of simple 
constructs and to add the results to the program database. Using this technique, when trying 
to satisfy a given branch condition the tool driver first looks to see if symbolic execution 
was possible for that branch, if so, it uses symbolic execution techniques [Off91] to 
determine what input is needed to ensure that the branch is taken. 

A symbolic execution is performed for the entire program while processing the source. To 
perform the symbolic execution the tool goes over all the source of the program and 
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calculates for all possible paths the path conditions and symbolic expressions for the 
variables. While going over non-selection statements the expressions in the program are 
used to obtain symbolic expressions for the relevant variables. Whenever a selection 
statement is found the path flows independently on every branch with a different path 
condition for each. When the paths flow again together at the end of the selection statement 
we have multiple paths flowing at the same time each with its own symbolic expressions 
and path conditions. 

In real programs there are many constructs that prevent symbolic execution or make it 
inefficient. Some of these constructs are arrays, pointers, external function, loops, etc. In 
some of these cases the symbolic expressions and path conditions are not calculated and as 
a result we have unknowns for those expressions. The results of the symbolic execution are 
stored in the database for the program. We are particularly interested in the symbolic 
expressions for branch conditions along with the associated path conditions. 

At the same time that the tool calculates the symbolic expressions it also calculates the 
data-dependence information. The data-dependence information is just like a symbolic 
expression but with missing information regarding the form of the dependence. The plain 
data-dependence information is simpler to calculate than the explicit symbolic expression 
and for some branch conditions the tool is able to get data-dependence information, but not 
the symbolic expression. 

When using the function minimization techniques to force a given branch the tool driver 
looks in the database to see if a symbolic expression is available for the branch condition 
for that branch. If the symbolic expression information is available it uses it to directly 
deduce an input that will force the taking of that branch. If a symbolic expression is not 
available for that branch it uses the normal function minimization techniques described 
above. 

3.3 Application of Input Generation Techniques. 
During the course of our research we also tried to see if a combination of specific 
techniques leads to better coverage results. The particular technique which we used is 
described in the next subsection. 

In the Phase I proposal we described only one algorithm which we wanted to apply to the 
test-generation problem. During the course of our research however, we realized that this 
is not possible, and that we need to implement each step of the algorithm as an independent 
module and then put them together as one of the possible options. The design which we 
have now is better than the one we originally proposed. The system is more expandable and 
ready to be tested with different algorithms. 
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3.3.1 The Combined Algorithm 
The tool we have developed uses a combination of all the algorithms explained above to 
generate input for any given program. 

The algorithms are used in the following way: 

• The tool used random input generation plus heuristics rules to generate 
as many different inputs as possible for the program. The generated 
inputs are added to the test-suite along with all the information about the 
path taken and the input description file. Note that for any program the 
random input generation plus heuristics will always be able to generate 
at least one input. 

• Once no more input is found by random input generation and heuristics, 
the tool switches to guided function minimization methods to derive 
new paths starting from the ones already in the test-suite. The tools loops 
over the existing paths and looks for alternate branches that are not 
covered. Once it finds one, it first looks to see if it has symbolic 
expression information for it, if so it used it to deduce the input needed 
so that the branch is taken. If no symbolic expression information is 
available for the branch condition it uses the function minimization 
methods along with dynamic data flow information to try to generate 
input to force that branch. 

• Next the TGS driver starts the process of generating input variables. 
This process is carried out in a loop using information generated in the 
previous stages. The starting input set for the generation of input data is 
the one which was used for execution of the program. The tool goes to 
the end of the execution path and backups to the last branch. The 
information from the dynamic data flow analysis tells which input 
variables have influence on the branch condition in question. The tool 
then generates random inputs for only those input variables, and uses 
constraints from the symbolic execution of the program to see if the 
branch will be taken. If the satisfying set is found in the predefined time, 
the generated input set is added to the set of test inputs. If the solution is 
not found, the path is marked as not feasible. 

• TGS next considers the path opposite the branch taken. If this branch 
does not have any more leaves, the tool backups to the branch above it. 
If the branch has leaves, the tool executes the program again with 
dynamic flow analysis to determine variable dependencies. If the 
branches below do not have loops or array accesses which influence 
branches, the run with dynamic flow analysis is not necessary, and is not 
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executed. The tool in this case attempts to generate new inputs 
randomly. The described process is repeated until inputs for all paths 
through the program are found. 

The described algorithm is one of the possible combinations of the implemented modules. 
We only had the chance to test this one combination on real examples. The algorithm seems 
to work quite well. 

During the course of our research we have learned that in some cases different variations 
of the algorithms may be needed. That is why we implemented the tool in a way that is easy 
to experiment with it and combine algorithms in different sequences. 
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4. Evaluation of the Created Prototype 
We have run the TGS tool on different programs. Most of them were small test cases 
which we used to debug the code we developed. In addition, we also used the tool on three 
larger applications: 

• zip-     a popular program to compress files for more efficient storage 
on disks. 

• flex-   a common tool for generating programs which recognize 
lexical patterns in text. 

• tput -   simple program which uses curses library to put characters on 
the screen. 

The choice of the programs was motivated by our desire to test different types of the 
applications. 
z ip is a typical numeric application which reads files. It is quite large, close to 10,000 lines 
of code. This code is much larger then we originally anticipated testing. In our proposal we 
expected that the prototype would be tested on codes between 1000-3000 lines. We 
performed some testing during development of the code and the results were encouraging 
enough for us to undertake much larger programs. The zip program takes only numeric 
input and this was in agreement with our work plan. 

Flex is a common tool used by programmers. It reads an input file, parses it lexically, and 
based on that generates a file with C source code in it. We chose it because rather than using 
numeric input it uses lexical input, and we wanted to see how well our algorithms apply to 
generating lexical data. 

In order to get some experience with graphical input and see how this type of input can 
affect our future research we also tested the Tput program. Tput is a much smaller 
program, only 3,000 lines of code. It is however in the upper limit of the programs we 
expected to test. The program uses the curses library to get input from terminals. 
Curses is a small graphics library and we chose it because it allowed us to get experience 
with graphical input without significant programming effort. 

We also attempted to run the prototype on our own C parser which is a large program of 
about 200,000 lines of code. The result of the attempt was not successful. The prototype is 
not yet ready to handle such big programs and we stopped the attempt very early. 

Before we describe the test results of running the prototype on the three bigger example 
programs we would like to describe the results of running the tool on a particular program 
- long. c. This program was specifically created by us to test different techniques as they 
were developed. It is a good starting point to show the benefits of different modes of the 
tool. 
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The long.c program demonstrates also another important thing. Its size is typical of 
programs which have previously been attempted with automatic test generation. In some 
sense the program demonstrates the current state of affairs when we started our research. 
Obviously tools which cannot work on bigger programs than long. c have no practical 
value in the real world. Our two other test cases z ip and tput are real applications which 
are several orders of magnitude larger. 

4.1 The long.c Program 
The listing of the long. c program is included in Appendix B. 

The program is very simple. It takes character input and either classifies it as bad input or 
prints it out. The program does not have a significant number of branches, but as can be 
seen from the test results, in order to achieve 100% coverage the TGS tool had to use all 
of its algorithmic arsenal. 

We compiled the long. c program with insight and the -Z tgs switch and next we ran 
it under the tgs tool. As we described in a previous section the TGS system automatically 
uses different input generation techniques to build the test cases. First the tool tries the 
random and heuristic methods and afterward it uses the remaining techniques. 

The output of the tool is shown in the following table. If we look carefully in the table we 
can see how the program worked. Up to step 5 the tool is using the random and heuristic 
algorithms. At that point it had generated 1 useful test case and 4 others which did not 
increase coverage. The tool then decides to switch algorithms. It starts using the guided 
algorithms and coverage begins to increase. The total coverage of the program increases to 
94% which means that the entire program was covered. 

In the Action column in table 1 new output starts to appear. First we see RVF = 40. This 
appears in guided mode when the tool is trying to find input to force a given branch. RVF 
= 40 means that the real valued function associated to that branch has value 40 for that run. 
TGS keeps rerunning the program with different input, looking at that value and based on 
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the changes in that value it tries to deduce input that will minimize that value and thus force 
the branch. "RVF = 40" is a shorthand for "Real Valued Function = 40". 

RUNS Coverage Action 
Elapsed Time 

Tot inTS bugs run TS Total 
rivUvu Run Total 

110 29% 29% [29%] added to test-suite 0:01 [ 0:03] 
210 29% 29% [29%] discarded 0:01 [ 0:05] 
310 29% 29% [29%] discarded 0:01 [ 0:07] 
410 29% 29% [29%] discarded 0:02 [ 0:09] 
510 29% 29% [29%] discarded 0:02 [0:12] 
610 11% 29% [29%] RVF = 40 0:02 [0:15] 
710 11% 29% [29%] RVF = 41 0:01 [0:17] 
820 35% 41% [41%] added to test-suite 0:02 [0:19] 
920 23% 41% [41%] RVF = 107 0:01 [ 0:22] 
10 2 0 23% 41% [41%] RVF = 108 0:01 [ 0:24] 
113 0 29% 47% [47%] added to test-suite 0:01 [ 0:26] 
12 3 0 17% 47% [47%] RVF =19 0:02 [ 0:29] 
13 3 0 17% 47% [47%] PC broken (exit) 0:01 [0:31] 
14 3 0 17% 47% [47%] PC broken (exit) 0:02 [ 0:33] 
15 3 0 17% 47% [47%] RVF =18 0:01 [ 0:36] 
1640 47% 64% [64%] added to test-suite 0:02 [ 0:38] 
17 4 0 29% 64% [64%] RVF = 58 0:01 [ 0:41] 
18 4 0 29% 64% [64%] PC broken (exit) 0:01 [ 0:43] 
19 4 0 29% 64% [64%] PC broken (exit) 0:02 [ 0:47] 
204 0 23% 64% [64%] PC broken (exit) 0:01 [ 0:49] 
214 0 23% 64% [64%] PC broken (exit) 0:02 [ 0:52] 
22 4 0 29% 64% [64%] RVF = 58 0:01 [ 0:55] 
23 4 0 52% 76% [76%] added to test-suite 0:06 [ 1:01] 
24 5 0 35% 76% [76%] RVF = 33 0:02 [ 1:04] 
25 5 0 58% 88% [88%] added to test-suite 0:01 [ 1:05] 
26 5 0 41% 88% [88%] RVF = 87 0:01 [ 1:06] 
27 5 0 29% 88% [88%] PC Broken (exit) 0:02 [ 1:08] 
28 5 0 41% 94% [94%] added to test-suite 0:02 [1:10] 

Table 1: TGS output for long.c 

The next interesting entry in the table is PC broken (exit). This also appears only in 
guided mode. While TGS repeatedly runs the program changing the input, it can happen 
that for the new input the program just takes another path and doesn't get to the desired 
branch. When the run-time detects that the program deviates (before getting to the branch 

ParaSoft Corporation 26 



Evaluation of the Created Prototype 

in question) from the reference path it halts execution of the program. "PC broken (exit)" 
is a shorthand for "Path Condition broken (program exits)". 

The table shows that the runs did not take very long. The total finding process took about 
1 minute. This is not typical and our experience shows that for larger programs the 
searching process may take much longer. This can be seen in the next two test cases. 

4.2 Test Results for Zip 
The next program which we ran the tool on was zip. Zip is a popular program used to 
compress files. It reads as input a file and as output produces compressed file of smaller 
size. As we mentioned before this program is about 10,000 lines of code. Being able to run 
the prototype on a program of that size is a real success. To the best of our knowledge 
nobody has been able to automatically generate test cases for programs of that size. This 
was considered impossible! Being able to do that is a potential break-through. It proves that 
the algorithms we designed have a significant potential to work on real applications. 
However we have to be very cautious here. 

The program was tested in the same way as before. We compiled the zip program using 
insight with the -Ztgs flag. The program consisted of several files which were first 
compiled, instrumented and linked together. After the program was linked we ran it with 
the TGS tool. 

During compilation and early runs of the program we encountered many problems. We 
discovered a lot of bugs and inefficiencies which prevented us from running the tool. Our 
first results of running the tool gave us only 5% coverage. This was very low and we 
worked hard to improve it. At the end we were able to achieve coverage of about 43% 
which we think is quite significant for that type of program. 

The coverage of 43% on z ip does not mean that if the tool is used on a similar program of 
that size the same results can be achieved, probably not. The tool is a prototype and requires 
a lot of work to reach that stage. 
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The results of running TGS with zip are reported in table 2. The table stops after 16 tries. 

RUNS Coverage Action Elapsed Time 
Tot inTS bugs run TS Total Run Total 

110 3% 3% [3%] added to test-suite 0:17 [0:36] 

220 6% 7% [7%] added to test-suite 0:09 [ 0:50] 

330 25% 29% [29%] added to test-suite 0:17 [1:11] 

440 32% 36% [36%] added to test-suite 1:03 [2:18] 

550 6% 36% [36%] discarded 0:08 [2:31] 

641 1% 36% [36%] added to bugs 0:11 [2:47] 

741 14% 36% [37%] discarded 0:10 [3:02] 

841 31% 36% [37%] discarded 2:51 [6:00] 

941 31% 36% [37%] discarded 2:30 [ 8:30] 

105 1 32% 37% [38%] added to test-suite 2:40 [ 9:04] 

116 1 8% 38% [39%] added to test-suite 0:20 [9:28] 

12 7 1 2% 39% [40%] added to test-suite 0:02 [ 9:31] 

13 7 1 6% 39% [40%] discarded 0:08 [ 9:40] 

14 8 1 33% 41% [42%] added to test-suite 3:15 [12:48] 

15 8 2 6% 41% [42%] discarded 0:09 [13:00] 

16 8 2 1% 41% [43%] added to bugs 0:02 [13:02] 

Table 2: TGS output for zip 

After that we continued to run the tool for many hours but did not see any improvement. 
We analyzed why the improvement does not happen and our findings are summarized in 
the Lessons Learned section. 

The table illustrates several things which we saw in many cases. 

• At the beginning of test generation the tool finds new test cases 
relatively quickly. As execution progresses it becomes more 
complicated 

• Switching algorithms leads to new inputs being discovered 

• Some of the new runs differ only by one branch and even though the 
total coverage is increased it does not improve the global coverage of the 
program 

The z ip program confirmed one of our major thesis. We started this project with the hope 
that it will be possible to achieve incremental improvements by forcing the tool to switch 
branches and in this manner to cover new paths through the program. We analyzed this in 
the case of the zip program and we see that this is really what is happening. For example 
the tool obtained input for run 9 based on the input from run 8. We can see that the coverage 
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of these cases is very similar. In fact we checked it using a special tool developed for that 
purpose. We built a path visualization tool db, which can display paths taken through the 
program. The paths of case 8 and 9 differed by only one branch, the branch which was 
switched. Unfortunately that branch was already covered by the other paths and coverage 
for the run did not increase. 

As we mentioned before, after 16 cases TGS was unable to detect any new input cases 
which would increase coverage of the program. We think this happened because none of 
our algorithms could start generating solutions in new areas. This was a big disappointment 
for us. It means that we have a lot of real work ahead of us in order to improve that behavior. 

The result of not finding input can be explained with the following example. Our method 
of finding input can be described as a mathematical method of finding minima in a 
complicated function. Lets assume that the function looks like the following figure. The 

Our solution sits here 

whole TGS system can find solutions which do not differ a lot from each other, (the arrow 
points to that area). The tool however does not have a mechanism to jump over the bump 
on the left side and find a different solution. This is one of the things for which we do not 
have an algorithm and we do not know if the algorithm can be found at all. Nowhere in the 
literature we reviewed was that problem discussed. In future research we will have to find 
a solution to that problem if we want the tool to be successful. 
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4.3 Test Results for Flex 
Another program we tested was the flex program. We chose the flex program as a test 
because it is typical of programs commonly in use in the industry. The flex program is a 
variation of the industry standard lex program. Flex is a lexical analyzer. By choosing 
flex we were trying to see how our techniques can work on programs which require 
cohesive input. 

Again we compiled the program and ran it with the TGS tool (see table 3). The total 
coverage achieved here is about 32%. This coverage shows a significant benefit to the user. 
Actually we were surprised that the coverage is so high. We expected that for such a 
programs it is important that the input is generated according to the language rules. We 
thought that generation of the input based only on the source code of the program would 
not be enough. The results of testing flex were a pleasantly surprising. 

The results of the TGS run for flex are shown in the table below: 

RUNS Coverage Elapsed Time 
Tot inTS bugs run TS Total Run Total 

110 11% 11% [11%] added to test-suite 0:32 [ 0:32] 
220 10% 14% [14%] added to test-suite 0:17 [0:49] 
330 28% 32% [32%] added to test-suite 0:53 [ 1:42] 
430 11% 32% [32%] discarded 0:41 [ 2:23] 

Table 3: TGS output for flex 

We can see that similar to the zip program the test cases are found most successfully at 
the beginning of a TGS run. Continuing the run is wasted effort. 

In order to improve coverage for this program our analysis indicates that it will be 
necessarily to build input generators which have some knowledge of the syntax with which 
input should be generated. We discuss this issue in more detail in section 5. 
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4.4 Test Results for Tput 
As a final test we tested the Tput program. As we mentioned we chose the tput program 
as our test, because it had some simple graphics routines. We wanted to see if it is possible 
to build a tool which can generate input for programs which use graphical input. We also 
wanted to see how we can work with external functions, and the graphical input functions 
were a good candidate. 

Again we compiled the program and ran it with the TGS tool (see table 4). The total 
coverage which we achieved here is about 32%. This coverage is not as high as we would 
like, but it is encouraging. 

The results of the run of TGS are shown in the table below: 

RUNS 
Tot inTS bugs 

Coverage 
run TS Total Action Elapsed Time 

Run Total 

1 10 
220 
330 

13% 13% [13%] 
8% 21% [21%] 
25% 30% [32%] 

added to test-suite 
added to test-suite 
added to test-suite 

0:40 [ 0:56] 
0:09 [ 1:05] 
0:17 [1:23] 

Table 4: TGS output for tput 

Again in this case the test cases are found at the beginning of the run and the rest of the run 
is wasted. This test shows similar results to the previous ones. Again we are caught in the 
global minimum and cannot get out of it. The results also show a different effect. External 
functions complicate the picture and it is easier for the tool to be caught in the minimum. 

We believe that this result gives us two messages: 

• It is possible to generate input to programs which have external 
functions. 

• Our algorithms are not yet good enough to get significant coverage 
when program uses external functions. 

We will have to put significant research effort into solving that problem. As we mentioned 
before most real applications use graphical input and it is imperative for the tool to work 
with such applications. 
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5. Lessons Learned from Phase I Effort 
While executing this research we worked according to our work plan. Now looking back 
we think that we did not have enough time to analyze our prototype in full. We have done 
only preliminary investigations, but even they have taught us some very valuable lessons. 

We think that the random + heuristics part of the tool seems to scale well. This means that 
it works well on large programs. This method however does not yield high coverage. 

To get more coverage we proposed a more advanced algorithm which is a combination and 
extension of the known algorithms. This algorithm seems to be very promising but it 
requires a lot of work to get good coverage and to be able to scale to large applications. 

However in our research we were able to achieve with our algorithm things which other 
people considered impossible. In the field it has been considered impossible to find input 
for programs larger than 1000 lines of code. We achieved that goal easily. 

What follows now is a list of algorithmic problems/deficiencies we found and which we 
need to solve. 

5.1 Guided Function Minimization Method 
We implemented the guided function minimization methods as proposed by Korel [1]. 
They proposed for branch predicates being simple relational expressions. They need to be 
extended to cover any possible construct found in a C program. In particular they need to 
be extended to: 

• Any branch predicate expression: one needs to be able to convert any 
branch predicate into a real valued function. They have been proposed 
only for branch predicates being simple relational expressions. We will 
need to extend it to any branch predicate expression. In particular it 
needs to be extended to branch predicate expressions being 
combinations of logical AND and OR expressions. For this case the only 
solution would need to be to define instead of just one function, a set of 
real valued functions and minimize them individually until the AND and 
OR expressions between the real valued functions are satisfied. 

• Apply function minimization methods to SWITCH constructs. 

• Extend the function minimization methods to loop constructs. Here we 
want to extend the guided function minimization technique so it can be 
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used to force the execution of loops a given number of times. 

Find faster algorithms for searching for the function minimum. The 
algorithm proposed in the literature was the alternating variable method 
[12]. We found experimentally that this algorithm requires too many 
iterations to find the minimum of the function in most cases. As each 
iteration required the execution of the program it is very important to 
find algorithms that progress towards the minimum in very few 
iterations. To solve this problem we propose to make assumptions about 
the form of the branch construct and use those assumptions to design 
search methods that progress towards the minimum very quickly. This 
require us to make a study of the branch constructs that appear in real 
programs and identify the constructs that appear most often. 

5.2 Dynamic Data Flow 
The main problem found with dynamic data flow is that it is expensive to calculate the 
dynamic data flow information as it takes a real execution of the program every time. Here 
we propose as a solution to do an exhaustive static data dependence of the program and use 
that information to deduce invariants that may allow us in most cases to calculate the 
dynamic data dependence without re-executing the program. 

Another problem found with dynamic data flow is that even though it appreciably restricts 
the input space one has to search, it is still sometimes difficult to find input. The problem 
is that in most cases the path condition gets broken. To solve this problem we propose two 
solutions: 

• Relax the condition in the path-condition, i.e. allow the program to 
execute even if the path condition is broken as long as it is in a path that 
can lead to the block we are trying to cover. 

• Reorganize the searching on the set of input that influences the branch. 
For example search first over the input that influences fewer branches in 
the path. 
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5.3 Symbolic Execution 
The symbolic execution techniques did show quite a few problems when applied to large 
programs. Whenever symbolic execution is possible it is very helpful. The problem is that 
there are many constructs that inhibit symbolic execution (array elements, pointers, loops, 
external functions ...). As the program size grows the probability of finding those constructs 
in any path grows as well, resulting in an inability to find correct symbolic expression forms 
for most branch conditions in a big program. To solve this problem we propose a novel 
technique that we call dynamic symbolic execution. This technique will consist in doing a 
standard symbolic execution for the actual path taken by the program. This will remove 
most problems involved with symbolic execution, like array indices used or number of 
times a given loop has been executed. This technique will be computationally intensive but 
should be very powerful. It will be used to solve the final hard branches in a program that 
cannot be solved with other techniques. With this technique one will get a symbolic 
expression, with very specific information about its dependence on input, for example if an 
array element appears on the symbolic expression it will give information about what its 
actual indices are and, if for example the array element is read in a loop, in which loop 
iteration that array element was read. 
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6. Potential Future Developments 
In this section we would like mention only some of the things which need to be done to the 
prototype to make it really useful. We would like to stress that the prototype is a very simple 
program and its abilities are restricted. However it is a good foundation to continue future 
development. It also enables us to study the chosen algorithms and learn about their 
deficiencies. We now we have a much better picture of what needs to be done to build a 
tool which will work on real applications. 

Our research teaches us that there are still a lot of unknowns, and that the road to a real tool 
may still be very risky. The algorithms which we used worked on the test cases, but they 
failed on our real product. There is a lot of algorithmic research which we will have to 
conduct to get the tool working on programs of 200,000 lines. 

Actually we have learned that it is much more difficult to make progress from 10,000 line 
programs to 200,000 line programs than it is from 100 line programs to 1,000 line 
programs. 

In the previous section we described the algorithmic modifications and research which 
absolutely needs to be done to make the tool more usable. Here we list some other 
extensions which we think would be very useful. 

• Extend the tool to support other languages (C++, Fortran, Ada,...). Most 
of the algorithms used are language independent. Nevertheless a few 
modules are language specific and will need to be written. 

• The tool should be extended so it addresses the generation of input that 
covers only specific portions of the program. For example, parts that the 
user has modified or modules that have been added to an existing 
program. 

• Accessing of the parse-tree structure by the run-time. It would be very 
helpful if the executing program was able to access its own parse-tree 
structure. In the future we would like to modify our parser and run-time 
to allow this possibility. Currently all the needed parse-tree information 
is mostly passed through arguments in calls to the run-time. But this 
method is not feasible in general, for example to pass the information 
about the elements that comprise an arbitrarily complex abstract data 
type, and is currently preventing the application of some of the input 
generation techniques to some constructs. 

• Try different branch and path selection criteria. Given a path in the 
test-suite the tool attempts to generate input for derived paths obtained 
by forcing un-taken branches in the original path. The paths generated 
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this way cover all of the program in most cases. Nevertheless sometimes 
some portions of the program cannot be covered in this way. For this 
cases we will need to develop a technique that generates specific paths 
that cover those parts of the program remaining. 

• Add a lex/yacc grammar generator to the tool. An appreciable 
number of programs use lex and/or yacc to process their input. It is 
very difficult to create input that conforms to specific lex and yacc 
rules. Adding a module that generates input according to lex and yacc 
rules will be a very big improvement for those kinds of programs. 

• Convert the prototype into a production level tool. The prototype 
developed combines many algorithms and uses complicated techniques 
that were first experimented with on real programs using the prototype 
developed. There is a lot of work needed to apply the prototype to many 
different applications and optimizing/tuning/modifying the algorithms 
for the different issues that appear in real programs. 

• The developed tool uses branch coverage criteria. The tool should be 
extended so it can address other testing criteria. 

We think it would be very important to extend the tool so it is able to do module testing. In 
module testing one tests every module of the program (i.e. every procedure individually). 
To do this correctly and in a way convenient to the user will require a lot of work. 
Nevertheless we think it could be a very powerful technique complementary to that of 
testing the program as a whole. The main reason is that the work required to test a program 
using module testing will increase linearly with the size of the program. This will allow a 
very exhaustive test of all modules even for very big programs. Some of the ways in which 
the tool will need to be extended to do module testing are: 

• Make the tool able to identify the units into which the program can be 
decomposed and extract them (i.e. each procedure plus all the related 
externals it needs). 

• Write a module that is able to exercise those modules repeatedly until a 
given coverage criteria is achieved. 

• Extend the input generation routines so they can produce the input 
required by the modules. For example a routine may accept a pointer to 
a structure which the routine treats as being the beginning of a linked 
list. The tool will be able to detect that and generate as input to the 
routine arbitrary linked lists. 

• Whenever the tool detects a module with a problem, present to the user 
the source of the problem in a manner in which he can identify where 
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the problem comes from. I.E. It should be able to tell the user the form 
of the input that produced the problem, and allow the user to step 
through that routine with the debugger and with the input that originated 
the problem. 

•    Create a database with all the routines and the input that produce the 
required coverage criteria. This database will be used to re-execute the 
tests whenever the user wants. 

We have mentioned here some possible future developments. The work which needs to be 
done is much more extensive and complicated. There is a lot of work which needs to be 
done and there are a lot of unknowns. The research is also very risky and many people have 
already attempted to pursue it and failed. We believe that with our ideas we have a chance 
to conquer these problems. 
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Appendix A: TGS Manual Page 
TGS(l) 

NAME 

tgs - Test Generation System 

SYNOPSIS 

tgs [options] command 

DESCRIPTION 

tgs is the driver for the Test Generation System (TGS). The TGS system 
is able to automatically generate input for the execution of any C program. 

'tgs' keeps executing a program repeatedly and generating different 
input for every execution. The results of the execution of the program with 
the generated input are analyzed. 

If some error is found during execution (i.e. program core-dumps or the 
insight runtime finds some problem), the input that caused the problem is 
stored in a subdirectory in "tgsdir/bugs". There is a subdirectory for 
every input that caused a different problem. 

If no errors are found and the generated is added to the test-suite in 
"tgsdir/t s". There is also a subdirectory here for every input. 

OPTIONS 

-check      Only checks for self-consistency of the generated input. Generates one 
input for the program, re-executes the program with that input, and 
checks that the output files are identical. 

- dd f Use dynamic data flow methods. 
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-guided   [num] 
Enter guided function minimization methods after 'num' consecutive 
runs are discarded in random plus heuristics mode. 

-heu Use heuristics to generate input for the program. 

-n runs    Generate at most'runs'inputs for the program. If this flag is not set 
'tgs' keeps running until it achieves 100% coverage with the 
combined inputs in "tgs dir /bugs" and "tgsdir/ts". 

-pw Use path-wise methods. Stops execution of the program as soon as it 
enters a flow that can lead only to covered parts of the program. 

- rt e s t      Do not write to ' s t dout' any output that can change between 
identical invocations of the same 'tgs' command (i.e. timing 
information). 

- s e Use symbolic execution methods. 

-show_flow 
While the program executes, dumps a file 
("tgsdir/ts/t#/f low") that shows the flow taken by the 
program. 

-stdin Writes to the output the input that was generated for the program. 

-stdout Writes to the output the output produced by the program. 

- s t de r r Writes to the output the error produced by the program. 

-T Timeout for the whole execution. 

-t Timeout for each trial run. 

-_stop  # 
Internal, for debugging. Stops 'tgs' just before executing run number 
#. Then the run can be executed under a debugger. 
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command   The command that needs to be used to execute the program. Special 
shell characters ('>', '<',...) need to be protected. 

USAGE 

To use the TGS system the program should first be compiled with 
'insight' using the "-Ztgs" flag. The resulting executable is then 
executed under the TGS system using the 'tgs' command. All of the 
information generated by 'tgs' is put under a subdirectory called 
"tgsdir" of the directory where the program was run. (See the section 
FILES for a descriptions of the contents of that subdirectory.) 

FILES 

$TGS/.insight: 
The commands in this file should be in the ". insight" file in 
the directory where 'tgs' is invoked. 

$ TGS /demo:   This directory contains a very simple demo that shows how to use 
the system. To see it just type 'make' in that directory. 

tgsdi r: This file is created in the directory where 'tgs' is invoked. All 
files and reports created by 'tgs' are put under this directory. 

tgsdir/REPORT: 
This is the report of the things done by 'tgs'. It has information 
regarding the number of inputs generated, and the number of 
inputs included in the "t s /" (test-suite) and "bugs /" directories. 
This file is an exact copy of the information that goes to 'stdout' 
while running 'tgs'. 

tgsdir/ts :   Directory containing the test-suite generated by 'tgs'. 

tgsdir/ts/t#: 
Here '#' goes from 1 to the number of inputs included in the 
test-suite. For each generated input included in the test-suite a 
directory is created to store it and other relevant information. 
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tgsdir/ts/bflow: 
Recording of the actual flow taken by the program. Can be 
visualized using "db -showjoflow bflow". 

tgsdir/ts/t#/in: 
Directory containing the files that constitute the input for test case 
#. If input was needed from' s t d i n', the input generated is stored 
in a file called "_stdin_". 

tgsdir/ts/t#/out: 
Directory containing the files that constituted the output for test 
case#. 'stdout' and 'stderr' are stored in files "_stdout_" 
and"_stderr_". 

tgsdir/ts/t#/record.idf 
Input description file for the run. Can be visualized using 
"db -show_idf record, idf". 

tgsdir/ts/t#/report: 
Short report with some information about the I/O operations done 
by the program while executing (i.e. files opened and where). 

tgsdir/ts/t#/tca.log: 
Coverage logfile corresponding to the run in that directory. 

tgsdir/ts/t#/tca.out: 
Coverage summary for the run in that directory. 

tgsdir/ts/t#/inst.tgs: 
Instructions from 'tgs' to the 'tgs-runtime'. 

tgsdir/bugs: 
Directory containing the input generated by 'tgs' that caused 
bugs in the program. I.E. the program core-dumped or insight 
found a problem with it. The directory structure is the same as for 
"tgsdir/ts". 
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tgsdir/rtest.src: 
Script for 'rtest' to run the tests in the test-suite in 
"tgsdir/ts". It should be executed as 
"rtest -s tgsdir/rtest. src". 

tgsdir/tca.out: 
Coverage summary for all the inputs generated. 

tgsdir/dead_path: 
When running t g s with -p w it writes the file and line where a run 
was stopped because it entered a flow that leads only to covered 
parts of the program ("disc (dead-path)"). 

tgsdir/ts/t#/flow: 
Flow that the program took while executing. This file is generated 
if 'tgs' is invoked with the flag 'show_f low'. Note that this file 
can be very big, so use this with caution. 

For each tea block entered the following info is printed: 
{tca_block_#}-file:line [clc2c3] [c4]. 

cl, c2 and c3 are either a character '' or '*', a '*' means in 
positions: 

cl: this block was already covered in a previous run. 
c2: all the externals referenced in the block were fully 

covered in previous runs. 
c3: all the blocks reachable from this block in the current 

function were already covered in previous runs. 
c4 is <A' if the current run increases the coverage, otherwise 

is". 

* . db: for each source file in the application there is a corresponding . db 
file which has needed information from the file. The file is stored 
in the same directory where the.source file is. If that is not possible 
the file is stored in the directory where 'insight' was invoked 
from. 

db. ind: list of files that constitute the application. There is one entry for 
each file included in the application (including included files). 
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t c a. db: file with tea information for all of the runs generated by ' t g s'. 
This file is written by a modified version of 'tea' invoked with 
the flags ' - c -_db'. The information in this file is used to update 
the information in the . db files. 

$TGSDIR/report.tgs: 
For each invokation of 'tgs' a line is added to this file with a 
summary of the application name, coverage obtained, runs tried, 
time spent executing, and optimizations used. This file is only 
written if TGSDIR is set. 
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Appendix B: Code of long.c program. 

/* Program that shows the LONG-INPUT problem. Coverage is only done if the 
input string is "B ... E\n". */ 

♦include <stdio.h> 
♦include <strings.h> 

static char input_string [1000], *c = input_string; 

static void bad_input () 
{ 

if (*(c-l) == EOF) { 
printf ("Premature EOF\n"); 

} else { 
*c = '\0'; 
printf ("bad_input = [%s]\n", input_string); 

} 
exit (1); 

} 

main () 
{ 

if ((*c++ = getchar ()) != "B') bad_input (); 
if ((*c++ = getchar ()) != ' y)  bad_input (); 

while (isalpha (*c++ = getchar ())) ; 

*(c-l) = '\0'; 
printf ("input_string = [%s]\n", input_string); 
*(c-l) = ' '; 

if ((*c++ = getchar ()) 
if ((*c++ = getchar ()) 
if ((*c++ = getchar ()) 

'E') bad_input (); 
'\n') bad_input (); 
EOF) bad_input (); 

*(c-2) = '\0'; 
printf ("Correct program = [%s]\n", input_string); 

exit (0); 
} 
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