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biorthogonal systems are generated. We also provide a novel mapping of the proposed one dimensional (1D)
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1. INTRODUCTION

Fig. 1.1(a) shows a two-channel maximally decimated filter bank, and Fig. 1.1(b) shows the well-known

polyphase form for this system. The applications of such multirate systems are well-known [1]-[7]. If for

all input x(n), the output of the system 2(n) = cx(n - no) for some nonzero constant c and integer no, the

system is called a perfect reconstruction (PR) system. In the maximally decimated case, PR is equivalent

to biorthogonality [5]. A number of PR or nearly PR systems have been reported before. In this paper we

develop several new results for two-channel biorthogonal filter banks based on a useful class of polyphase

matrices.

1.1. Previous work

In FIR filter banks, all the four filters H0, H-1, F0, and F 1 , are FIR filters while in the case of IIR filter

banks, some or all of these filters are IIR filters. The earliest good designs for the IIR case were such that

the analysis bank was paraunitary and the polyphase components of Ho(z) and Hi(z) were allpass (see [7]

or pp. 201 of [2]). Even though all the IIR filters are causal stable, the reconstructed signal suffers from

phase distortion. IIR PR filter banks typically have noncausal stable filters or causal unstable filters [8], [9],

[10]. Recently the authors in [11] proposed a IIR PR technique providing causal stable solutions, but no

satisfactory design method was given.

In earlier design of two dimensional (2D) filter banks, separable filters have been considered because

of their advantage of low complexity. However nonseparable filters offer more freedom in the design and

hence in general will give better performance. Recently, some results on the nonseparable filter banks have

emerged [12]-[14]. However, few design techniques are available for nonseparable PR filter banks. In [12],

a design method based on space domain approach is given. In [13], a subclass of 2D paraunitary systems

(which can be represented as a cascade of 1D paraunitary systems of degree one) is considered. However in

both of the polyphase approaches above, the optimization in the designs involves a large number of nonlinear

constraints. Thus other approaches, such as 1D to 2D mapping, have been considered [14]-[19]. In [14],

even though PR property is preserved by the mapping, the frequency responses of the filters will change.

In [15] and [16], a mapping of ID filter banks to 2D filter banks is given. The authors apply the technique

on a 1D two-channel orthogonal IIR system to achieve a 2D IIR filter bank. The resulting systems have

either phase distortion or stability problem. In [17], the authors employ McClellan's transformation on the

1D maximally flat FIR halfband filters to obtain a 2D biorthogonal filter bank. However because of the lack

of factorization theorems in the 2D case, one of the lowpass filters is constrained to have all its zeros at

the aliasing frequency. And there is no simple way to ensure the frequency selectivity of all the filters. In

[18], the authors introduce a mapping which can be viewed as the generalization McClellan's transformation.

2D two-channel PR systems with good frequency selectivity can be obtained by judiciously designing the
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mapping. However, the mapping works for the FIR case only and the resulting filters usually have a large

number of coefficients.

Some of the results in this paper were reported in the earlier conference papers [20], [21] and [22]. For

the 1D case [20], both of the linear phase FIR and causal stable IIR solutions for PR filter banks similar

to those proposed in this paper were given. For the 2D quincunx case [21], the authors constructed a 1D

to 2D mapping (which is the same as the mapping given in Section 5 in this paper) which preserved many

of the desired properties. However many of the properties of the 1D and 2D biorthogonal systems were not

addressed in [20] and [21], for example the problem of imposition of zeros at the aliasing frequency which is

important for the purpose of generating smooth wavelet basis functions.

1.2. The new idea and its merits

In this paper, we constrain the polyphase matrix E(z) such that [det E(z)] is a delay. Furthermore we

consider E(z) and R(z) to be either (i) both causal stable IIR or (ii) both FIR. In each case, the following

properties can be simultaneously satisfied.

1. Perfect reconstruction is preserved structurally and the structural complexity is very low.

2. All analysis and synthesis filters are designed by controlling a single transfer function )3(z) [allpass in

the IIR case, and Type 2 (i.e., odd order symmetric linear phase FIR) in the FIR case]. So the design

procedure is very simple. It is very easy to design /3(z) so that all filters have good responses (lowpass

or highpass as the case may be).

3. In the IIR case, all the analysis and synthesis filters are causal and stable.

4. In some applications such as image coding, the linear phase property of the analysis and synthesis filters

is desired. In the FIR case, the filters are exact linear-phase. In the IIR case, we can force the phase

response of the filters to be nearly linear in the passband, as we shall explain and demonstrate.

5. The lowpass analysis filter Ho(z) can be forced to have arbitrary number of zeros at w = r. Furthermore

the lowpass synthesis filter Fo(z) is guaranteed to have the same number of zeros at 7r as Ho(z). In

both of the IIR and FIR cases, we give closed form expression for the filter coefficients that provide

maximum number of zeros at -7.

A new class of biorthogonal wavelet basis functions can be generated from the above filter bank. The

regularity property can be directly controlled by imposing multiple zeros at 7r as desired. In the IIR case,

since all filters are causal (in addition to being stable), the basis functions are all causal. In the FIR case, the

linear phase property ensures symmetry of the wavelets, while at the same time providing a simple control LI

on regularity (because the number of zeros at 7r is trivially controlled).

A 1D to 2D mapping

Furthermore, we also provide a novel mapping of the proposed 1D filter banks into the 2D quincunx
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case, preserving all the desirable properties. In particular:

1. The perfect reconstruction property is preserved.

2. In the IIR case all the analysis and synthesis filters remain causal and stable. In the FIR case the linear

phase property is preserved.

3. Even though the filter bank is nonseparable, the complexity is that of a separable filter bank, growing

linearly with the filter order.

4. The frequency response supports for the filters are the diamond and diamond-complement as desired

for the quincunx case [15], [2]. Moreover the filter frequency responses are ensured to be good simply

by designing the 1D filter having a good frequency response. Any desired specifications can be met by

designing a 1D transfer function )3(z) appropriately as we shall demonstrate.

5. If the 1D lowpass filter Ho(z) has k zeros at ir, then the resulting 2D lowpass filter will have its ith

order total derivative equal to zero at (7r, 7r), for i = 0, 1, ... , k - 1. See Sec. 5 for details.

We also provide a design example to show that the mapping can be easily applied to any dilation matrix

(i.e, decimation matrix) with determinant 2.

Relation to other results in the literature

All the designs proposed in this paper are based on a single class of polyphase matrices, to be described

in Sec. 2. However some of the filter banks reported by other researchers are related to our work. In

[23], the authors derive a class of biorthogonal linear phase FIR filter bank which turns out to be a special

case of our two-channel framework. In the IIR maximally flat halfband case, our solution is different from

the traditional IIR Butterworth design and has approximately linear-phase in the passband. In the FIR

maximally flat halfband case, the solution agrees with the classical FIR maximally flat design [24]. But

our construction is different from those in [25] and [6] since the analysis filters are factors of maximally flat

halfband filters in [25] and [6] while our analysis filters are themselves maximally flat halfband. The 2D

mapping proposed earlier in [15] and [16] is different from ours because it is known that the earlier mapping

will not preserve the PR property in general.

1.3. Outline of the paper and notations

Our presentation will go as follows: In the next section, we will derive a framework for the two-channel

biorthogonal filter banks. Some properties of such class will be described in detail. In Sec. 3, we will discuss

both the IIR and FIR filter banks which are covered in the proposed framework. In Sec. 4, wavelet basis

functions generated from the proposed filter banks will be presented and imposition of zeros at aliasing

frequency will be considered. Two new classes of hIlt maximally flat solution are given in closed form. In

Sec. 5, we will first introduce a novel 2D mapping for the quincunx case. Some properties of the mapping

are discussed. Then both the hIlt and FIR cases are considered. Furthermore numerical examples will be
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provided throughout the discussion to demonstrate the idea.

Notations and definitions: Capital boldfaced letters are used to denote matrices. I represents the

identity matrix. The determinant of the matrix A is denoted by [det A]. Superscript 2D is used to represent

the 2D function obtained by applying the mapping, for example, E 2D(zo, z 1 ) is obtained by applying the

2D mapping to E(z). The z-transform of h(n) is represented by H(z). The relation between the filters

{Hk(z), Fk(z)} and the polyphase matrices E(z) and R(z) can be described as follows:

Hk(z) = Ek,o(z 2 ) + z-lEk,l(Z 2 ), and Fk(z) = z-1 Ro,k(Z 2 ) + R1,k(z 2 ),

where E~j(z) and R•,j(z) are respectively the ij-th elements of the matrices E(z) and R(z). A filter Hk(z)

is halfband if either one of its polyphase components Ek,o (z), Ek,l (z) is a delay.

2. A FRAMEWORK FOR 1D BIORTHOGONAL FILTER BANKS

Consider Fig. 1.1, where a two-channel system is shown. In general, R(z) = E-'(z) for perfect

reconstruction. It is not easy to constrain [detE(z)] to be minimum phase for stability of R(z), so let us

make it a delay. An example is

E(z) =( 0 z--3 )* (2.1)

With this we obtain

Ho(z) = z-21V + z-'3(z2 ), (2.2)

but Hi(z) = z-(2N'+i) which is a delay. Thus even though Ho(z) can be designed to be a good lowpass filter

(as we will show), Hi(z) is allpass and this is not useful for subband coding applications. We can modify

Hi(z) without affecting Ho(z) by taking the polyphase matrix to be

(0.5 0) (zN 3(z)\ " =0(5a0z)3 0.5(z)3(z
E(z) --0.5a(z) 1 0 z-N _ .5Z-Na(Z) -0.5a(z)3(z) + Z-N') (2.3)

Then we get the following expressions for the analysis filters:

0()=(z-2N + z- 113(z2))
HOW = 2 , Hi(z) = -a(z 2 )Ho(z) + z-2N'-l. (2.4)

Obtaining ideal responses with (2.4)

First notice that the filter Ho(z) can be made an ideal lowpass filter if 3(z) has the following magnitude

and phase responses:

I/1(e,2w)I -1 V w (2.5a)
LZf(ej 2w\ = f (-2N + 1)w, for w E [0,7r/21; (2.5b)

(-2V N+ 1)w ±- r, for w E (ir/2,7r].

From (2.4), we see that in the high frequency region, Hl(ejw) has unity gain since IH0(ejw)I = 0. The

function a(z) does not affect Ho(z) and can be freely chosen to shape the response of Hi(z). It should
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be chosen such that in the low frequency region, a(z 2 )Ho(z) cancels with Z-2N'-1. For exact magnitude

cancellation, la(ejw)l must be unity. Since Ho(z) is linear phase, it is necessary that a(z) has linear phase

in the low frequency region. Comparing these two requirements and the conditions in (2.5), we realize that

P3(z) is a suitable candidate for a(z). Indeed, if N' = 2N - 1, Hi(z) is an ideal highpass filter. In this case,

we have an ideal filter bank, and the polyphase matrix E(z) in Fig. 1.1(b) is

0.5 0) (ZN (+L) 0.5ZN 0.53(z) . (2.6)( -0.50(z) 0 Z-2N+1 - .5z--•(z) _0.5,32 (z) + Z-2N+1 •

With this we get the following expressions for the analysis filters, which we will repeatedly use in this paper.

Ho(z) = (Z2N + z 1 3(Z2 )), Hi(z) = -'8(z 2 )Ho(z) + z-4N+1. (2.7)
2

The perfect reconstruction can be achieved by choosing R(z) in Fig. 1.1(b) to be:

R 1 0(z2 +1 I)

R~) -2+1 - ( 0.hz 05 I o) =(z-2N+l -0.5)32(Z) -0.503(z)) (2.8)0)ý0.53(z) 0.5 = 0.5z-N/(Z) 0.5z-N

The corresponding synthesis filters can be verified to have the following form:

Fo(z) = -H1(-z), Fi(z) = Ho(-z). (2.9)

This choice of synthesis filters in (2.9) ensures that {Fo(z), Fi(z)} is a lowpass/highpass pair if {Ho(z), Hi(z)}

is a lowpass/highpass pair. From (2.6) and (2.8), we have the implementation of the filter bank shown in

Fig. 2.1. The structure is similar to a ladder network structure [26].

Remarks: Of course, the a(z) in (2.3) can be taken as functions different from 13(z), as in the case of

[20], [21], [23]. This will provide more freedom in the design. However, by taking them to be the same, the

biorthogonal systems can have some additional useful properties. Therefore, we will only consider the case

when a(z) = ,3(z).

Two useful approximations of (2.5)

The ideal choice of 13(z) as in (2.5) requires infinite complexity. Therefore, we have to design 13(z) to

approximate the conditions in (2.5). However the approximation will not change the perfect reconstruction

property because E(z) in (2.6) and R(z) in (2.8) satisfy R(z)E(z) = 0.5z-3N+'I, regardless of the choice

of 13(z). Fig. 2.1 shows that the frequency responses of all the analysis and synthesis filters depend on one

single function 13(z) only. The frequency selectivity of all four filters depends on how well 13(z) approximates

conditions (2.5). This makes the design procedure simple. In the next section, we will provide two simple

but useful approximations which correspond to the following two cases:

1. Stable hIR case: Here 13(z) is chosen to be a causal stable allpass function so that (2.5a) is met exactly.

We design the phase response of the allpass filter so that (2.5b) is approximately satisfied. This leads

to a biorthogonal system with causal stable IIR analysis and synthesis filters.
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2. Linear phase FIR case: To satisfy the condition (2.5b), /3(z) can be chosen as a Type 2 linear phase

function [21 (filter with a symmetric impulse response of even length). The magnitude response of 83(z)

is optimized to be as close to unity as possible so that (2.5a) is well-approximated. This leads to a linear

phase biorthogonal system.

Additional properties of the filter banks designed as above

In Sec. 1, we have outlined some properties. Properties 1 - 4 mentioned at the begining of Sec 1.2 are

clear from the above discussion and Property 5 will be discussed in the Sec. 4. In addition to these five

properties, we have

1. Double halfband property: In all the previous constructions of two-channel PR filter banks, Ho(z)Fo(z)

is a halfband filter, where Ho(z) is not necessary halfband but a factor of a halfband filter. However in

our construction above, one can verify that not only the product Ho(z)Fo(z) but also the filter IHo(z)

is halfband.

2. Poles of filters: In the IIR case, notice from Fig. 2.1 that there is no feedback loop in both the analysis

and synthesis ends in the ladder network. Therefore the filters have the same poles as those of /3(z 2 )

and stability depends solely on the allpass function /3(z). Moveover in the IIR case if the allpass filter

/3(z) is implemented by using the robust lattice structure [2], the filter bank is stable even when it is

realized with finite wordlength.

3. Robustness to round off noise: The ladder structure shown in Fig. 2.1 is similar to the structure

considered in [26]. By using the same reasoning in [261, it can be verified that the round off noise in

the analysis end is compensated by that in the synthesis end. Combining this with the structurally PR

property, we conclude that the implementation in Fig. 2.1 preserves PR even when all the coefficients

are quantized to a finite percision and all the intermediate results are rounded off. However, if the

subband signals are quantized (which is usually the case), this property is lost.

4. Zeros of the filters: We can verify that Fo(z) and Hi(z) in (2.9) and (2.7) can respectively be rewritten

as:

Fo(z) = (2z- 2N+1 -_ (z 2))Ho(z), Hi(z) = (2z- 2 N+l + )3(z2 ))Fi(z). (2.10)

These factorizations give the filter bank an interesting structure shown in Fig. 2.2. From (2.10), it is

clear that if /3(z) is FIR, the zeros of Ho(z) are also zeros of Fo(z). Even when /3(z) is an irreducible IIR

transfer function, this is true since Ho(z) is in the form of (2.7) and the zeros of denominator of /3(z 2 )

cannot cancel the zeros of Ho(z). Moreover if 1/3(ejw)I < 2, both Fo(ejw) and Ho(ejw) have the same set

of zeros on the unit circle. The same is true for the pair of HI,(z) and Fi(z). In particular, if Ho(z) has

r zeros at z = -1, this implies that Fo(z) has no fewer than r zeros at the same point. This property

is important in the generation of wavelets since for biorthogonal wavelets, we need both of the analysis
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and the synthesis wavelets to be regular. By increasing the number of zeros of Ho(z) at z = -1, our

construction ensures that Fo(z) has at least the same number of zeros at z = -1. This is the property

which does not appear in the previously existing constructions of biorthogonal filter banks.

5. Ripple sizes of the filters: Since Ho(z) is a halfband filter and Ho(z) + F1 (z) = z-2N, we have the

following relationship between the passband ripple 8p and the stopband ripple 6,:

6p(11o) = &s(11o) = 8p (Fl) = & (Fl). (2.11)

Moreover by using (2.10) and the fact that(3(z2 ) z -z- 2N+l in the high frequency region, we get

6,(Fo) P 385s(Ho), 68 (H1 ) • 38 ,(FI), (2.12)

(20 log 3 • 9.5 dB). This property ensures that by designing Ho(z) to have sufficiently high stopband

attenuation, we can ensure that all the other three filters will also have good frequency selectivity.

6. Complexity: From Fig. 2.1, it is very clear that the analysis and synthesis banks have the same

complexity. Assume that O(z) has order N. For the IIR case, by using the one multiplier lattice

structure for allpass function [2], we need approximately 2N multiplications, 6N additions, and 5N

delays. For the FIR case, by exploiting the symmetry, we need approximately N multiplications, 2N

additions and 3.5N delays. All the operations are at a lower rate. So the analysis (or synthesis) bank

requires N and 0.5N multiplications per input sample for the IIR and FIR case respectively.

7. Near linear phase in the IIR cases: From (2.7), since in the passband the magnitude response of Ho(z)

is approximately one, the transfer function (3(z 2 ) p z- 2N+l. Therefore Ho(z) has approximately linear

phase in the passband. Similar arguement is true for H11(z).

3. DESIGN PROCEDURES FOR THE TWO CLASSES OF BIORTHOGONAL FILTER BANKS

In this section, we will discuss the two cases of the approximations of (2.5) given in the last section.

Simple design procedures will be given for both cases.

3.1. Causal Stable iR Biorthogonal Filter Banks

In this section, 3(z) in (2.6)-(2.9) is taken to be the causal stable real allpass function

EN1 -
AN,(z)=- Zk=OaNNl-kzk 31

_--!k=0 aN 1 ,kz(1

where aN,,O = 1 and aNk are real. In this case, Ho(z) is a sum of a delay and an allpass function. See Eq.

(2.7). It is an IIR halfband filter and has been studied by some researchers [27], [28]. Ho(z) can be made

lowpass with large stopband attenuation and small passband ripples by designing the phase response of the

allpass function to approximate (2.5b) [29].
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Choice of NI: From the monotone decreasing phase property [2] of a causal stable allpass function, we

know that the phase of AN, (z 2 ) spans a range of 4N1 7r when w spans a range of 27r. But from (2.5b), p(z
2 )

spans a range of 4Nir or 4(N - 1)7r. To make the range spanned by both of the functions equal, we set

N1 = N or N - 1 and this results in two classes of causal stable IIR filter banks. Since the derivation and

properties of both of the classes are very similar, in the rest of the paper, we consider only the case N 1 = N

(we will point out at those places where the second class has a different property). With this choice, the

analysis filters can be written as

(z2N + ZAN(Z2 )) Hi(z) = -AN(Z 2 )H-o(Z) + z-4N+1. (3.2)

The relationship between the synthesis and analysis filters is the same as (2.9).

Additional properties of the above IIR filter banks:

1. Preservation of zero at aliasing frequency: Substituting z = -1 into the expression of Ho(z) in (3.2),

we find that Ho(z) always have a zero at z = -1, independent of the coefficients aN,k. In particular,

the zero is preserved even when all aN,k are quantized coarsely. This means that one zero at z = -1

is structurally imposed. This is important in the generation of wavelet bases since one zero at z = -1

is a necessary condition for the existence of the wavelet functions [6]. Note also that H1 (z) will always

have a structurally imposed zero at z = 1.

2. Low sensitivity: Since there exists low sensitivity lattice structure for allpass function [2], the filters

have low passband sensitivity. Since the halfband property of Ho(z) is structurally imposed, it has low

stopband sensitivity as well.

3. Bump in the transition band: Substituting w = 7r/2 into the expression for Hl(ejw) and F0 (ejw) and

using the fact that AN(-1) (--1)N, we find that IHl(ejw)I = IFo(ejw)I = 5 at w = ir/2, indepen-

dent of the allpass function AN(z). This means that IHj(ej4w)I and IFo(eji)j always have a bump of

approximately 4 dB at w = 7r/2, no matter how we design AN(Z). The width but not amplitude of the

bump can be reduced by increasing the complexity of AN(z).

Example 3.1 1D causal stable HR filter banks: In this example, N = 3. So AN(z) is a third order

allpass function. The filter bank has very low complexity: To implement the analysis (or synthesis) bank,

we need only 3 multiplications per input sample! By using the eigenfilter approach for allpass functions

[29] we optimize the coefficients ak such that maximum attenuation in the stopband of Ho(z) is achieved.

The coefficients are obtained as a3,1 = 0.473, a3,2 = -0.094, and a3 ,3 = 0.025. For the filter Ho(z), the

passband edge wp = 0.4-7r and the stopband egde w, = 0.67r. The stopband attenuation 6, (HO) = 41.9 dB.

The magnitude responses of the all four filters are shown in Fig. 3.1(a). From the plots, relations of ripple

sizes in (2.11) and (2.12) can be verified and it is clear that Ho(z) and Fo(z) have the same set of zeros on

the unit circle. The bump of approximately 4 dB around 7r/2 is clearly seen. The group delay for Ho(z) and
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HI1 (z) is shown in Fig. 3.1(b). The filters are approximately linear phase in the passband and the stopband.

3.2. Linear Phase FIR Biorthogonal Filter Banks

In the linear phase FIR case, since Ho(z) is a linear phase halfband filter, it can be designed by employing

the trick developed in [30], viz, by taking 13(z) in (2.5)-(2.8) to be a Type 2 filter [2] which has a symmetric

impulse response of length 2N 1 . In this case, the number of multiplications required to implement 13(z) is

N 1 , the same as the Njth order allpass function AN1 (z) in (3.1). More precisely, let 13(z) have the following

form: N 1

V(z) = Vk X (z-Nl+k + z-N-k+1), (3.3)
k=1

where the coefficients vk satisfy:
N1

ZVk = 0.5, (3.4)
k=1

so that V(ejo) = 1 and Ho(ej°) = 1. It is well-known that a Type 2 linear phase filter always has a zero at

z = -1. In order to satisfy the condition (2.5b) exactly, it can be verified that N1 should be equal to N. By

employing the trick in [30], the coefficients vk can be optimized such that the amplitude response of V(ejw)

is as close to unity as possible. In this case, the analysis filters are:

(z 2 z V(Z)), Hi(z) = -V(z 2 )Ho(z) + z-4N+1. (3.5)

Example 3.2. ID linear phase FIR filter banks: N = 6. To implement the analysis bank, we need 6

multiplications per input sample, double the number in Example 3.1. The Type 2 linear phase function V(z)

is designed by using McClellan-Park algorithm. The coefficients are obtained as v, = 0.630, v2 = -0.193,

V3 = 0.0972, v 4 = -0.0526, v5 = 0.0272 and v6 = -0.0144. For the filter Ho(z), the passband edge wp = 0.47r

and the stopband edge w, = 0.61r, same condition as Example 3.1. The stopband attenuation 6,(Ho) = 39.2

dB and 6,(Hi) = 30 dB. The magnitude responses of all four filters are shown in Fig. 3.2. The relations of

ripple sizes in (2.11) and (2.12) can be verified.

For comparison, we will consider Johnston's design with nearly the same specifications. The Johnston's

filter 24C in Appendix 7.1 of [31] has 6, = 30 dB and w, = 0.5867r. For Johnston's filter 32D, 6, = 38 dB and

w, = 0.5867r. To implement the analysis bank, we need respectively 12 multiplications and 16 multiplications

per input sample for the above two cases. Thus as compared to 6 multiplications in our filter bank, the

Johnston's design has more complexity than our design. Moreover, there is reconstruction error (0.1 dB for

24C and 0.025 dB for 32D) in Johnston's filter bank.

4. IMPOSITION OF MULTIPLE ZEROS AT iT

The relation between continuous-time wavelet and discrete-time perfect reconstruction filter bank is well

known. A way to construct the scaling and wavelet functions from the filter coefficients was first given by
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Daubechies in [6]. Starting from the impulse response coefficients ho (n) and hi (n), a pair of continuous-time

functions OH0 (x) and OH1 (x) are constructed such that they satisfy:

PH, (x) = E ho(n)¢OH. (2x - n), (4.1a)

00

€Hi (X) = E hl(n)OHo (2x - n). (4.1b)
n=0

Here OHo (x) and PH1 (x) are respectively called the analysis scaling and wavelet functions. For the synthesis

end, we can write similar expressions for the synthesis scaling and wavelet functions, COp (x) and OF (x). The

conditions for the existence of such limit functions were given in [6]. It is always desirable to have smooth or

"44regular" limit functions. It was shown that in order to achieve limit functions of high regularity, we need

to have a sufficient number of zeros at the aliasing frequency 7r. Therefore in the rest of this section, we will

show how to impose zeros at 7r for the proposed filter banks.

4.1. Causal Stable iR Wavelet Bases

For the purpose of achieving regularity, we impose multiple zeros of Ho(z) at ir. Since the denominator

does not provide any zeros, we consider only the numerator of Ho(z). Except for a delay, the numerator of

Ho(z) can be written in terms of aN,,k as follows:

N

PR(w) = aN,k cos(2k - 1/2)w. (4.2)
k=O

To obtain r zeros at z = -1, we set
P(-)= 0, for i= 1, 2, ... , r- 1. (4.3)

Note that when i is even, P())(7r) is always equal to zero. This proves that PR(w) always has an odd

number of zeros at w = 7r. Therefore, we can write r = 2ro + 1. In this case, we obtain a set of r0 linear

constraints as follows:
N

E aN,k(1 - 4k) 2i-1= 0, for i = 1, 2, ... , ro. (4.4)

The set of linear constraints in (4.4) can be satisfied exactly in the optimization of the phase response of the

allpass function AN(z) by using the efficient eigenfilter approach [29], [32].

Maximally flat 11R wavelets

To obtain a maximally fiat solution, i.e., maximum possible number of zeros at ir consistent with the

constraint that Ho(z) = 0.5(z- 2N+z-lAN(z 2)), we set ro in (4.4) as large as possible. However if ro _ N+1,

then we can list the first (N + 1) linear constraints given by (4.4) as follows:

1 1..- 1\ I aN:o /0
20  21  2~ 1 ) 0

*. Xi XN 1:1N
(4.5)

2N x .. 2N 2..NN

Vandermonde
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where Xk = 1 - 4k. Since all the Xk are nonzero and distinct, the two matrices on the left hand side are

nonsingular and hence invertible. We get [aN,o aN,1 ... aN,NIT = 0 which violates the requirement that

aN,O = 1. This proves under the constraint that Ho(z) = 0.5 [z-2N + z-1 AN(z 2 )], the filter Ho(z) can have

at most 2N + 1 zeros at 7r. Indeed we can show that the maximally flat 11R filter has exactly 2N + 1 zeros

at 7r. To see this, we set r0  N and rewrite the set of N linear equations given by (4.4) as follows:

X2N-2 x2N-2 ( 2N-4.6
1 2  N Ia,

where Xk = 1 - 4k and the fact that aNO 1 has been imposed. These equations fully determine AN (z)

(hence all the filters) and there is no further parameter to be optimized numerically. As the matrices are

invertible, the solution for aN,k always exists and it is unique. Furthermore, it is shown in Appendix A that

aN,k has the following closed form solution:

aN,k k = (1)k1(N) H (2i-1) 0<k<N, (4.7)
2k-1 (k i= (k+2 )wh Ne(D N!

where (N) = N!. The frequency responses of Ho(z) corresponding to N = 1, 3, ... , 10 are shown in

Fig. 4.1. Note that although these filters have a numerator of degree 4N - 1 (excluding the trivial delay

factor), they have only 2N + 1 zeros at z = -1. This implies that some of the zeros are not at z = -1

for N > 1 and therefore these IIR maximally flat filters are different from the Butterworth halfband filters.

Moreover they have nearly linear phase in the passband, as justified at the end of Sec. 2 and demonstrated

in Fig. 3.1(b). For the case of N = 1, one can verify that the solution is a third order Butterworth filter.

Remarks:

1. If the function 3(z) is taken as (N - 1)th order allpass filter (i.e. N 1 - N - 1), then we will get a

second class of causal stable IIR wavelet. In this case, under the constraint that Ho(z) = 0.5[z-2N +

z-'AN-1(Z 2 )), the process of imposition of zeros at 7r is very similar to the derivation above. The

maximally flat IIR filter Ho(z) of this second class will have 2N - 1 zeros at 7r. The closed form solution

for aNl-,k is given as:

aN- (,k= Nk-l N 1 1 (2i i+1) 1 <k<I-1, (4.8)

a~l 2k 1 ( k (2k1 +i 2i__ _ + 1)

and aNrl,0 = 1.

2. Notice that for a perfect reconstruction system, if we interchange the analysis and synthesis filters, the

perfect reconstruction property is retained. In many applications such as coding, compression, storage

and approximation, the regularity of the synthesis functions is more important [17]. Thus we can choose

the wavelet with higher regularity among HO (x) and F,,0 (x) as the synthesis wavelet.
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Example 4..1. We generate the limit functions, 0 'H1 , 4 f 0, and OFp, corresponding to the filter bank

in Fig. 1.1 (a). To generate the analysis/synthesis scaling and wavelet functions, we use the cascade algorithm

in [6] for eight iterations. We consider the following two cases

(i) No linear constraint is set, HO(z) has only one zero at it. The analysis and synthesis filters are the

same as those in Example 3.1. For the analysis bank, the scaling and wavelet functions, OH. and OH1,

are respectively shown in Fig. 4.2(a) and (b). The scaling and wavelet functions corresponding to the

synthesis bank, OF, and OF,, are shown in Fig. 4.2(c) and (d).

(ii) As a comparison, we also generate the scaling and wavelet functions corresponding to the IIR maximally

flat filters (qn and "ra•) for N = 3. In this case, the filter Ho(z) has seven zeros at 7r. The limit

functions are shown in Fig. 4.3. For a better comparison on smoothness, in Fig. 4.4 we show a zoom-in

for Fig. 4.2(a) and Fig. 4.3(a). We see that the limit functions in Fig. 4.3 are more regular than the

functions shown in Fig. 4.2.

4.2. Linear phase FIR wavelet bases

To impose multiple zeros at 7r for the linear phase FIR case, the procedure is very similar to that given

above. Another set of linear constraints can be obtained and incorporated in the procedure of optimization.

It can be verified that for this case, Ho(z) always has an even number of zeros at 7r.

Maximally flat linear phase FIR wavelets

The FIR maximally flat filters have been studied by a number of researchers [24], [33], [6], [25]. In

[6] and [25], a maximally flat halfband FIR filter is used to construct compactly supported maximally flat

wavelets. In our linear phase FIR filter bank, if all the freedom is used to impose zeros at it, we will arrive

at the same solution as that in [6] and [25]. The closed form solution for FIR maximally flat halfband filters

was in [33], [25] as:
(--)N+k-1 1-2N (N + 1/2 - i)

Vk - 2(N - k)!(N - 1 + k)!(2k - 1)' (4.9)

Differences between our construction and those in [25], [6]: In [25], Io(z) is taken to be a factor

of a maximally flat halfband filter. In [6], power spectral factorization is considered. However, in our linear

phase structure, Ho(z) is taken to be this halfband filter itself, and not a factor. Since the Ho(z) constructed

in [6] is a power spectral factor of the IHo(z) in our structure, our linear phase scaling function OLP(X) is

related to that constructed by Daubechies in [6], OD (x) as:

OLP(X) = CD(X) * ¢*(-x), (4.10)

where * denotes convolution and 0* denotes the complex conjugate of OD. From (4.10), it is clear that the

regularity of bLp(X) is twice that of CD(x). However the order (and the number of zeros at 7r) of Ho(z) in

our construction is twice that of Ho(z) in the construction in [6]. Comparing the complexity, both of the
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constructions have approximately the same number of multiplications (because in our construction, linear

phase property can be exploited).

Example 4.2. In this example, we construct the limit functions corresponding to the filter bank in Fig.

1.1(a) for the linear phase FIR case. The cascade algorithm is used for eight iterations. We consider two

cases

(i) First, Ho(z) is designed such that no linear constraint other than (3.4) is satisfied, therefore it has two

zeros at -r. The analysis and synthesis filters are the same as those in Example 3.2. The limit functions

(OH 0 , OH 1 , OF0 and PF,) are respectively shown in Fig. 4.5(a), (b), (c) and (d).

(ii) For a comparison, we show the limit functions of the maximum flat case (€,a and ¢,baa) for N = 6.

In this case, Ho (z) has twelve zeros at 7r. The plots are shown in Fig. 4.6. It can be verified that the

limit functions in Fig. 4.6 are smoother than those in Fig. 4.5.

5. MAPPING INTO 2D QUINCUNX PERFECT RECONSTRUCTION FILTER BANKS

In this section, we will generalize the 1D framework discussed in Sec. 2 to the 2D case. We will

focus on the quincunx subsampling case which has the subsampling lattice shown in Fig. 5.1. Notice that

the dilation matrix has determinant 2. The corresponding maximally decimated filter bank has only two

channels. Furthermore it represents the simplest nonseparable subsampling lattice.

In the 2D case, we know that the desired passband supports of the filters depend not only on the lattice

but also on the choice of dilation matrix M [12]. In the rest of this section, we will consider

M 1( - (5.1)

The coset vectors are respectively:

ko() ki( ) (5.2)

With this M, the ideal supports for alias free decimation, SPD(rM- T ) [Chapter 12, 2] is shown in Fig.

5.2, where the diamond and diamond-complement, Q0 and Q1, correspond to the low frequency and high

frequency regions respectively. One can verify that M defined in (5.1) has its eigenvalues \j equal to ±vr2
and M 2 = 21. It has a dilation in both the directions. Therefore, M satisfies the conditions for a well-behaved

matrix defined in [19]. Given the dilation matrix M as in (5.1) and the coset vectors in (5.2), the simple

delay chain system and the noble identities are shown in Fig. 5.3(a) and (b) respectively.

Although the discussion in this paper is mainly on the quincunx subsampling case with the dilation

matrix M and the coset vectors ki defined above, we will provide a design example in the last section to

show that the method discussed in this section can be easily generalized to any 2D system with decimation

matrix M having [det M] = 2.
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5.1. A 1D to 2D Mapping

In this subsection, we will first give a 2D mapping and then apply the mapping to the framework

developed in Sec. 2. Given any 1D biorthogonal systems with the polyphase matrices of the form in (2.6)

and (2.8), we will use the following transformation on the polyphase components:

(i) First replace the 1D transfer function /3(z) with the separable 2D transfer function fl(zo)P3(zi).

(ii) Replace all the remaining 1D delay z- 1 with the 2D delay zo'lzT.

This results in nonseparable analysis and synthesis filters as we will see. Under this transformation, the

polyphase matrices E 2 D(zO, Z1) and R2D (zO, Zl) of the 2D system can be written respectively as:

0.5 0) (ZO) 3(zi)

-05~z) )z 0 (ZOzi)-2N+ )
E2 Dzzo1 )= ( (o0.53(zo)(z) )(5.3)

\-o.5(zozi)-Ng(ZO))3(z1) -0.5p2(zo),32(z1) + (ZoZI)-2+

WD (ZO, z I= ( (zOz ,)-20 +1 - p(ZO)/3(Z )) ( . 1 0. )
(ZOZ)-, 0.5,3(zo)P(z) 0.5

((zozl)-
2 N+l - 0.5/32 (ZO)/3 2 (Z1) - 0 .5/3(zO),3(zj) (5.4)( 0.5(zoz)-N/3(Zo)fl(z1) 0.5(zoz 1)-N )

From the above two equations, we have the implementation of the 2D perfect reconstruction filter bank as

Fig. 5.4. By using the noble identities in Fig. 5.3, we can write the analysis and synthesis filters as:

HO(zO, zi) = z°20  + Z°1,3(zoz- 1)(°zozi)
2

Hj(zo, zi) = -)3(zoz 1) f)3(zozi)Ho(zo,zi) + zo 4 N+1, (5.5a)

Fo(zo, zi) = -Hi(-zo, -zi), Fi(zo, zi) = Ho(-zo, -zi). (5.5b)

Comparison of the above transformation with those in [15] - [17]: McClellan's transformation is

used in [17] to obtain a FIR maximally flat halfband filter. The transformation proposed in this paper differs

from McClellan's transformation in the sense that the former operates on the polyphase components while

the latter operates directly on the filter. In [15] and [16], the authors obtain a 2D filter bank from 1D by

employing the following transformation:

E?,' (zo, z1 ) = Ejj(zo)Ei~j(zi), (5.6)

where Ejj is the (i,j)th element of E. It is clear that in our transformation E2D(ZO, z&) Eii(zo)Eii(zi).

Therefore our mapping is different from that in (5.6).
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Properties of the proposed 2D mapping

Properties 1-5 in Sec. 2 continue to hold after minor modifications to suit the 2D context. In addition,

the 2D filter bank satisfies the following properties

1. Double halfband property: It is easy to see that Ho(zo, zl) satisfies Ho(zo, zi) + Ho(-zo, -z1) = ZO2N

and Ho(zo, zl)Fo(zo, zi) satisfies a similar property. This is the extention of the 1D double halfband

property in the 2D quincunx case.

2. Stability of the 2D analysis and synthesis filters: If the 1D transfer function /3(z) is causal then so

are the functions 3(zo)j8(zl) in Fig. 5.4. That is O(zo)/3(zl) is a first-quadrant filter (the impulse

response is zero unless no Ž! 0 and ni _> 0). If /3(z) is BIBO stable, then so is /3(zo)p(zl) so that the

polyphase matrix in Fig. 5.4 is also BIBO stable. Since the analysis filters are obtained from this stable

structure, these filters are guaranteed to be BIBO stable. However we see that the term /(zozl-') has

entered the expressions for the analysis filters because of the noble identities, see Fig. 5.3(b). It can be

shown that this violates the condition for the so-called first-quadrant stability (p. 166 of [35]). This is

explained by the fact that the analysis filters are not first-quadrant filters, even though BIBO stable.

This is consistent with the observation that the quincunx decimator M in (5.1) has the negative entry

-1. Indeed, the expression y(n) = x(Mn) means y(no,nl) = x(no +ni,no - nh) so that there is a

time-reversal operation buried in the decimation process. The same remarks apply for the synthesis

filters, that is the 2D synthesis filters Fo(zo, zi) and F1 (zo, z 1) are BIBO stable even though they are

not first-quadrant filters.

3. Perfect reconstruction is preserved.

4. If the 1D lowpass filter Ho(z) has k zeros at 7r, then the frequency response of Ho(ejio, eiwl) can be

written as

Ho~eJ•,ekp'1 (W1 _W•• • ") 1+ _j ý ,-. + .
Ho= ( +e O )k e(0,) - ( + e2 ý 2  )kP 2(W0 , W), (5.7)

where IPI(7r, 7r)I and JP 2 (7r, 7r)I are finite quantities. The proof of (5.7) is given in Appendix B. Notice

that both of the factors [1 + e-0°5j(wO+w1)] and [1 + e-0.5j(wo0-w +2,)] are zero at (7r, 7r). Furthermore

one can verify that all the mixed partial derivatives satisfy

,e ) =0, for i+l<k. (5.8)

From (5.8), we conclude that the total derivatives [36]

d~Igo(r,r)= n ()dwod(n . -0 -nHo0(7r, 7r) = 0, for n < k. (5.9)

According to [34], (5.9) is a necessary condition for the regularity of 2D wavelet. The necessary and

sufficient condition is still unknown.
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5. In the FIR case the linear phase property of the analysis and synthesis filters is preserved.

6. In the IIR case, the 2D analysis and synthesis filters have a line of zeros in the frequency plane at wo = 0

or at wo = 7r.

Proof: Substituting zo = -1 into the expression for HO(zo, zi) in (5.5a) and using the fact that /3(zozi)

is allpass, one immediately finds that Ho(-1, zj) = 0, V z1 . Since FO(zo, zl) contains Ho(zo, zj) as a

factor, Fo(-1, zi) = 0. Similarly, we can prove that Fi(1, zi) = Hi(1, z1 ) = 0, V z1 .

7. The lowpass/highpass characteristics of the frequency responses of the filters are preserved.

Proof: Assume that P(z) satisfies the ideal conditions in (2.5). Then we have

-21 f for Wp-WW E [0,Ir/2];

S(zoz1) { (zoz. 20a)_

-zi) ,for 2 E (ir/2,ir].(5la

2 zzi = - i •(5.10b)
,.~Oi -(zozT1) 2  , for u-~e(r27]

By using the above equations, we find that f(zozi)/(zozf 1 ) is equal to zo-2N+l when (wo, wi) E 02o and

equal to -Zo2N+l when (wo, wl) E Q i. This proves that Ho(zo, zl) has the ideal diamond support Qo.

Similarly it can be shown that H, (zo, zj) will have the support of ideal diamond-complement. Thus

when the conditions in (2.5) are well-approximated by the 1D transfer function 3(z), the response of

the 2D filters will be good.

Comments on the complexity: Though the 2D analysis and synthesis filters are nonseparable, it is clear

from the expressions for the polyphase matrices that the complexity is comparable to that of a separable

filter bank. More precisely, it is equal to twice the complexity of the 1D transfer function P(z).

5.2. 2D Nonseparable Filter Banks

In this section, we will give two numerical examples to demonstrate the mapping proposed above. We

separately apply the 2D mapping to the filter banks in Example 3.1 (IIR) and Example 3.2 (FIR) respectively.

Example 5.1. 2D IIR filter banks: In this example, we transform the 1D filter bank in Example 3.1 into

the 2D case by using above mapping. Since N = 3, the allpass function A3 (z) needs only 3 multiplications.

Since the complexity of the 2D analysis (or synthesis) bank is equal to twice that of A3 (z), we need only 6

multiplications per input pixel to implement the analysis (synthesis) bank. The responses of Ho(zo, zj) and

Hj(zo, zi) are shown in Fig. 5.5(a) and (b) respectively. The supports of the two filters are diamond and

diamond-complement respectively as desired. The stopband attenuation 58(HO) ; 42 dB and 5s (H1 ) ;- 32

dB. Again, we see that H, is about 10 dB worse than Ho in the stopband. The line of zero of H, at wo = 0

is clearly seen in Fig. 5.5(b).

Example 5.2. 2D FIR filter banks: In this example, the 1D filter bank in Example 3.2 is transformed

into the 2D case. To implement the 2D analysis (or synthesis) bank, we need 12 multiplications per input
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pixel. The magnitude responses of Ho(zo, zj) and H,(zo, zj) are shown in Fig. 5.6(a) and (b) respectively.

The stopband attenuation 6 (Ho) z 40 dB and 6S (H1 ) zý 30 dB.

6. CONCLUDING REMARKS

In this paper, we have derived a framework for a new class of two-channel biorthogonal filter banks.

The filter banks under the framework allow a structurally perfect reconstruction implementation as in Fig.

2.1. It is interesting that we can arrive at precisely the same ladder in Fig. 2.1 by using the novel approach

in [26] developed for a totally different application, namely cancellation of roundoff error. The proposed

systems have very low complexity. Filter banks of high frequency selectivity can be achieved by controlling

a single transfer function /(z) in Fig. 2.1. Two different choices of /3(z) lead to causal stable IIR and linear

phase FIR filter banks respectively. The properties of the proposed filter banks were discussed in detail. We

showed that zeros at aliasing frequency can be imposed. Two new types of IIR maximally flat filters were

derived and the solutions were given in closed form. In addition to perfect reconstruction property, these IIR

filters have nearly linear phase in the passband. Furthermore, we also mapped the 1D filter banks derived in

this paper into 2D cases. The design of a 2D biorthogonal (stable IIR or linear phase FIR) filter bank reduces

to the design of a single 1D transfer function. The new transformation preserves many of the properties of

the ID systems. Before we conclude the paper, we would like to provide an example to demonstrate that

the mapping in Sec. 5 can be easily generalized to arbitrary dilation matrix M with determinant equal to 2.

Example 6.1. 2D HR filter banks: The 1D prototype filter bank is taken to be that in Example 3.1. The

dilation matrix and the coset vectors are respectively:

M= (' ), ko= (0) ki=(2) (6.1)

With the above matrix and coset vectors, the ideal passband support for the Ho(zo, zj) is SPD(7TrM- T ),

which is shown in Fig. 6.1 (shaded area). By using the tranformation introduced in Sec. 5, we find that

the polyphase matrices in this example are the same as those in Example 5.1. Thus it also has very low

complexity. The only differences are the dilation matrix and the coset vectors. With the M and ki chosen

as (6.1), the responses of Ho(zo, zj) and H,(zo, zj) are shown in Fig. 6.1(a) and (b). We see that H0 and

H1 have approximately the desired support.
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Appendix A. Proof of Eq. (4.7)

It is shown in [33] that there exists closed form solution for aNk satisfying system of linear equations:

N

1+ aNk 0, for r=1, 2, ... , N. (A.1)
k=1

With some modification, the solution to (4.6) can be written as:

k1 • -2_ N x-

aNk - 7 2-1 - -2 3l • 2 (A.2)
a " i=1 k - Xki j=k+1 Xi k

where Xk = 1 - 4k. Substituting the value for Xk into the equation, we find that

-11 -- X_ k-i (2i -- 1)

- 2i -1)' (A.3a)
i~ k - k--i i=1

1N X- k= • N (22j -1)

j=k+l j k j= +1

Combining (A.3a) and (A.3b), we get (4.7).

Appendix B. Proof of Property 4 in Section 5.1

Supposing that the 1D filter Ho(z) has k zeros at ir, then we have

ejiH0(ejw) = e(- 2N+l)jw + p(e 2jw) - (1 + ejw)kp(ej_), (B.1)

where Ip(-1)1 is a finite nonzero constant. From (5.6a), we have

ej•°oH0(eiwo, jwl) = e(-2N+l)jwo + p(ej(wo+w1))3(,j(°- W)). (B.2)

From (B.2), ejwo Ho(eilo, ei") can be rewritten as

eawO I-T (eiwO, ejwl) =)p(ei(Wo-wi)) (e(-2N+i)i ý-O-'ý + 13(ej(wo+w1)))

-e(-2N+1)j'o+i1 (p3( ewo-w1)) _ eC(2N+I)jýO1 (B.3)

By using (B.1) and the fact that p3(ejw) is of period 21r, we get (5.7).
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