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Synthetic 3-D Atmospheric Temperature Structure: A Model 
for Known Geophysical Power Spectra Using a Hybrid 

Autoregression and Fourier Technique 

1.   INTRODUCTION 

Atmospheric fluctuations in wind speed, temperature, and density are characterized by 
continuous power spectral density functions. For example, one-dimensional horizontal wind 
speed PSDs are found to have horizontal wavenumber log-log slopes of about -5/3 and vertical 

wavenumber log-log slopes of -3. Such spectra, parameterized by spectral slope, correlation 
lengths, and moments of probability density functions, are often used in simulating an 
environment or predicting atmospheric structure. Multidimensional fast Fourier transform 
synthesis provides a means for filtering white noise with spatial filters to simulate a 

stationary time or spatial data set. Autoregression synthesis provides a fast means for 
simulating a one-dimensional non-stationary spatial structure sequence. 

The Phillips Laboratory Strategic High Altitude Atmospheric Radiance Code (SHARC)1 uses 
first principles to calculate point to space and limb viewing atmospheric background infrared 
(IR) radiance and transmittance under both local-thermal-equilibrium (LTE) and non-local- 

(Received for publication 14 June 1994) 
1     Sharma, R.D., Duff, J.W., Sundberg, R.L., Gruninger, J.H., Bernstein, L.S., Robertson, D.C., 
and Healey, R.J. (1991) Description ofSHARC-2, The Strategic High Altitude Atmospheric 
Radiance Code, Phillips Laboratory Tech. Rpt, PL-TR-91-2071. ADA239008 



thermal-equilibrium (NLTE) conditions above 50 km. Release 3 of the SHARC code2 predicts IR 

radiation and transmittance in the 1-40 pm spectral region and includes important bands 
from the major isotopes of NO, CO, H20, 03, OH, C02, CH4, and NO+. Specific local atmospheric 

environments can be specified through region definitions, and diurnal characteristics can be 

specified through user or program generated multiple vertical concentration profiles. A 

subroutine module breaks a given line-of-sight (LOS) specification into small segments and 
determines the composition and properties of each segment. Each segment is determined by 
the intersection of the LOS with an altitude layer boundary, defined in input atmospheric 
profiles. Appropriate profiles of temperature, pressure, and molecular state densities are 

determined for each segment. 
A future release of SHARC will have the ability to provide realizations of atmospheric 

infrared volume-emission perturbations that occur from fluctuations in temperature and 

density of the contributing molecular species. Version 4 of the SHARC code envisions a 

capability to evaluate radiance structure from estimated variances in the standard 
temperature and density profiles. The algorithms will simulate IR fluctuations that must 
depend on relatively small fluctuations in atmospheric species number densities, vibrational 
state populations, and the kinetic temperatures along a given line-of-sight.34 Where NLTE 
effects dominate, (generally above 50 km) a small fluctuation in kinetic temperature can 
produce correlated changes, anti-correlated changes, or no change in the vibrational state 
temperature. Such changes ultimately depend on the relative contributions from total number 
density, temperature-dependent kinetic rates, and radiative relaxation. A proper description of 

the temperature/density field is thus needed to enable SHARC to correctly compute the 

radiance structure field. 
To provide a realistic but practical two-dimensional structure scene capability requires 

creative, efficient, and tested algorithms. This report presents a method of producing 
stochastic three dimensional non-stationary synthetic spatial structure from a hybrid one- 
dimensional (vertical) autoregressive component and a two-dimensional (horizontal) Fourier 

2 Gruninger, J., Sundberg, R.L., Duff, J.W., Bernstein, L.S., Matthew, M.W., Adler-Golden, S., 
Robertson, D., Sharma, R, Brown, J.H., Healey, R, and Vail J. (1994) SHARC - 3, A model for 
infrared radiance at high altitudes,  Proc. SPIE - The International Society of Optical 
Engineering, V:2223, Orlando, Florida. 
3 Sundberg, R.L.. Gruninger, J., De, P., Brown, J.H. (1994) Infrared radiance fluctuations in 
the upper atmosphere, Proc. SPIE - The International Society of Optical Engineering, V:2223, 
Orlando, Florida. 
4 Sears, R.D., Strugala, L.A., Newt, J., Robertson, D., Brown, J.H., and Sharma, R. (1994) 
Simulation of the infrared structured earthlimb background using the SHARC radiance code, 
32nd Aerospace Sciences Meeting and Exhibit, Reno, NV. 



transform component. In this report we extend the results expressed in two previous reports 
that dealt with one-dimensional autoregression5 and two-dimensional autoregression/moving 
average6 structure simulation. 

2.  GEOMETRY 

SHARC is capable of predicting earthlimb radiance along a sensor line-of-sight (LOS) as a 
function of LOS and tangent altitude. In this report, temperature and density perturbations are 
incorporated on the mean atmosphere to enable SHARC calculations of stochastic radiance 
structure. An appropriately configured three-dimensional database of stochastic temperature 
structure is needed. To fill this need, the non-stationary database has been developed in a 
three-dimensional matrix that is described geometrically by a segment of a sphere. The 
spherical segment consists of a volume 70 km in radial height by approximately 3000 km long 
by approximately 51.2 km wide. The horizontal matrix elements lie in a spherical surface at 
radial distance "r".   Since we wish the database (that is, the synthetic atmosphere) to be 

applicable for observation by a modeled sensor, we orient the longer horizontal dimension 
along the sensor LOS direction and the shorter horizontal dimension along the direction 

transverse to the line-of-sight. The spatial resolution of a matrix element has an incremental 
altitude of 0.1 km by an incremental transverse distance of approximately 0.1 km by an 
incremental LOS distance of approximately 15.7 km. Thus, the database matrix consists of 
701 vertical elements aligned along radial lines, 512 transverse horizontal elements, and 192 
line-of-sight horizontal elements. The actual data spacing in the horizontal dimension must 
increase slightly with altitude so that points in the vertical dimension stay on radial lines. 
The altitude range accounts for dominant structure effects (50-120 km). Also its vertical and 
transverse dimensions are sufficient to fill the field of a limb-viewing two-dimensional sensor 

array. The vertical and transverse spatial resolution are governed by the vertical and 
horizontal correlation lengths of the temperature variations but also are chosen to provide 
high field-of-view spatial resolution. The geometrical LOS dimensions are chosen to provide 
sufficient length to describe the integrated path radiance. Figure 1 illustrates the spherical 

geometry and Table 1 summarizes the database specifications. 

5 Brown, J.H. (1993) Atmospheric Structure Simulation: An Autoregressive Model for Smooth 
Geophysical Power Spectra with Known Autocorrelation Function, Phillips Laboratory Tech. 
Rpt, PL-TR-93-2185, ERP No. 1128, ADA 276691. 
6 Brown, J.H.   (1993) Atmospheric Structure Simulation: An ARMA Model for Smooth Isotropie 
Two-Dimensional Geophysical Power Spectra, Phillips Laboratory Tech. Rpt., PL-TR-93-2224, 
ERP No. 1132, ADA 280476. 
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Figure 1.  Database Geometry.  Figure la illustrates the volume of the spherical 
segment defined by the database.  The radial altitude range starts at 50 km and 
ends at 120 km.  At 50 km altitude the curved length in the LOS direction measures 
3014 km while the curved length in the transverse direction measures 51.2 km. 
These distances increase slightly with altitude due to the curved geometry.   Figure lb 
illustrates the resolution volume at 50 km.  The radial altitude resolution is 0.1 km 
while the resolution of the curved lengths in the LOS and transverse directions is 
15.7 km and 0.1 km respectively.   Again the horizontal resolution lengths increase 
slightly with altitude. 

Table 1.   Database Specifications 

Direction Npts Ax 
(km) 

N Ax 
(km) 

freq. res. 
1/NAx (cy/km) 

Nyquist freq. 
1/2 Ax (cy/km) 

Vertical 
(50-120 km) 

700 0.1 70 

Transverse 512 0.1 51.2 0.0195 (HIGH) 5 

LOS 192 15.7 3014. 0.00033 0.0318 (LOW) 



3.   AUTO-REGRESSION THEORY 

This section briefly reviews autoregressive digital spectral estimation as presented by S. 

Lawrence Marple7 and Steven M. Kay.8 

An autoregressive moving average (ARMA) model for a discrete spatial series v(n), that 

approximates deterministic and stochastic processes can be represented by the filter linear 

difference equation: 

v(n) = -la{j)v(n-j)+ 2b(j)e(n-j) 

in which v(n) is the output sequence and e(nj a white noise input driving sequence. The a(j) 
and b(j) coefficients form the autoregressive and moving average portions of the ARMA model 
respectively. A z-transform analysis of the difference equation shows that the ARMA power 

spectral density (PARMAM) is: 

PARMAW = Ay°w 
B(k)2 

for -°° < k < °° 
A(k) 

where k is the spatial frequency and where, 

p 
A(k) =  1 + I a(j) exp (-2TU/C/AV) 

and, 

B(k) = 1 + £ b(j) exp (-2nikjAv), with b(0) = 1. 

7 Marple, S.L. (1987) Digital Spectral Analysis with Applications, Chapter 6, Prentice-Hall, 
Englewood, New Jersey. 
8 Kay, Steven M. (1988) Modern Spectral Estimation, Theory & Application, Prentice-Hall, 
Englewood, New Jersey. 



Here Av is the sampling interval, a2
w  is the variance of the white noise process, and i = V^T. If 

all the moving average coefficients are zero, except b(0) = 1, then, 

v(n) = - I a{j)v(n - j) + e(n) 

and the process is strictly autoregressive of order p. The autoregressive PSD becomes: 

2Ava pAR(k) = ; f = 2Av  X rw(j)exp(-27:yc;Av), forO</c<~ 
\A(k)\ >_« 

where rw is the real and even autocorrelation sequence at j, and ow is the variance of e{n). The 

relationship between the autocorrelation sequence and the pure autoregressive model is: 

rw(m) 

XuWi'wlm -  J) for m  > 0 

P 

Xat/)rw(-J)   +   °1 /or m  = 0 

J=l 
• /or m < 0 

This expression may be evaluated for the p + 1 lag indices 0 < m < p by: 

^w(O)      rw(-l) 

rw(l)       rw(0) 

r„(-p)) 

rw{a(l)) 

JW(P)   
rw(p-l)   ■•      rw(0) 

r i ^ fa
2A 

0 a(l) 

a(p)J Oj 



This expression forms the autoregressive Yule-Walker equations. Given the autocorrelation 
sequence for lags 0 to p, the autoregressive coefficients may be found from the above. Since 

rvv(_/c) = r'w(k), the autocorrelation matrix is both Toeplitz and Hermitian. A standard 

"Levlnson" algorithm that takes advantage of the Hermitian-Toeplitz matrix equation was 
employed to solve for the AR parameters. The same Yule-Walker equations also occur if we 
attempt to solve the problem: find the "best", in a least square sense, set of equations that 

p 
determine the coefficients that predict v from v(n) = - I a(j)v(n - j), where 

(v(n) - v(n))     = Oy,. In summary, the Levinson recursion computes sets of coefficients 

{a1(l),of},{a2(l),a2(2),o^},-,{ap(l),ap(2)>-,ap(p),oJ} 

where the final set at order p is the desired solution of the Yule-Walker expressions. For the 
AR(p) process, c^i j) = a{j) for j = 1,2,3,.., p and o2

p is the minimum prediction error, that is, 

c2
p = a2

w = c^n = \ v*[n](v[n])-v[n] . The algorithm is initialized by: 

ai[l] = 
rw[0] 

af^l-la^lfjr^O] 

with the recursion for j = 2,3,.., p given by: 

»"w[J]+ £ aJ_1[n]rvv[./-n] 

«AJ]= ^  

aj W = aj-i W + aj Maj-i [J-1!] Ti = 1,2,..., J-l 

oj-H-jUil')^.- 



The CLj[j] coefficients are known as reflection coefficients. 

4. PSD MODEL DISCUSSION 

Atmospheric power spectral density functions often are modeled by isotropic one- 

dimensional double-sided power law functions of the form:910 

PSD(k)-. 
9 9\v+— 

—,   for - °° < k < °°. 

(a2 + k 

The constant C is found from the definition that the total variance of the associated time 

series, a^, is equal to the area under the PSD: *1 

a   =2\0 PSD(k)dk = 2CJQ  - = 1C y ' 

(a2 + k2) 
v+~ 2a2vT v + — 

V       1j 

so that the three-parameter one-dimensional PSD model is: 

2    2u„ a  a   r 
PSD(Jc): 

f      O 
v+— 

\     1j 
l • 

V^r(u)(a2+/c2)u 2 

9 Tatarski, V.l. (1961) Wave Propagation in a Turbulent Medium, McGraw-Hill. 
10 Futterman, W.I., Schweitzer, E.L., and Newt, J.E. (1991) Estimation of scene correlation 
lengths, characterization, propagation, and simulation of sources and backgrounds, Proc. 
SPIE - The International Society of Optical Engineering, V: 1486, pp 127-140, Orlando, Florida. 
11 For the integral, see for example, Gradshteyn, I.S. and Ryzhik, I.M. (1965) Table of 
Integrals Series and Products, eq 3.241.4, Academic Press. 



The relationship between the frequency domain PSD and the time or spatial domain 
autocorrelation function is specified by their Fourier transform pairs. Thus the 
autocorrelation function, (ACF), for the real even PSD function is: 

>a2r v+— 
2 

a2v cos(2nxk)dk 

ACF(x) = IFFT(PSD) = 2 I     ^ ^ r 

Jo        V^r(u)(a2 + /c2)U+2 

The integral is solved in terms of the Bessel function of the second kind of fractional order, Kv 

as:12 

a22^(2naxrKv(2nax) 

I» 

The parameter "a" can be expressed in terms of the integral scale or equivalent width, L, of 
the autocorrelation function. An equivalent width is defined as the area of a function divided 

by its central ordinate,13 or, 

lj(x)dx 

1(0) 

Thus the large scale correlation length Lc is defined by integrating ACF (x) over all positive 

values of x. 

[°ACF(x)dx 

^c ~ 2 
o 

12 Gradshteyn, I.S. and Ryzhik, I.M. (1965) Table of Integrals Series and Products, eq 8.432.5, 
Academic Press. 
13 Bracewell, R.N. (1978) The Fourier Transform and Its Applications, McGraw-Hill, New York. 



where a2 is the autocorrelation at zero separation. Since 

f ACF (x)dx = —    f    ACF (x)dx- = PSD(O) and ACF (0) = a2, the equivalent width or cor- 
J0 9    J-» 9. 2   J-°° 2 
relation length as a function of the PSD may also be written as 

PSD(0)/2       PSD(O) 

so that, 

P PSD(/c)ctfc      2a' 

o2r Ü + — 
2v a 

2a  jür{v)a 
2u+l 

1 
u+ — 

: 2) 
2Vnr(u)a 

or 

_i_2V^r(u) r 
a    -    7     p"   " 

5.   SIMULATION OF CORRELATED VERTICAL COMPONENTS 

In practice, a given one-dimensional single-sided PSD was constructed from the PSD and 
ACF power law models: 

PSD(fc)=- 

2o2
ra

2vT 
f     O 
v+— 

. 2) 
l 

L>+— 

V^r(u)(a2 + /c2)   2 

 c  , for 0 < k < °° 
AT 

i+ZaJe 

>1 

i2nkAv 

ACF(y)-- 
o22(1~")(27tav)';Ku(27tav) 

10 



where, 

ar = residual error 
v = vertical distance 
Av = vertical spacing 
CLJ = model parameters 

i = V-f 
k s frequency (km~l) 

Conceptually, radial line segments having an origin at the center of the earth define a 
segment of a sphere. Along the geometrical set of these radial or vertical line segments, a 
spatial data sequence was simulated using a normally distributed set of pseudorandom 
numbers C[J). In this case, there were 512x192 independent sets of random numbers 
corresponding to vertical elements along the radial lines. The sequence, G[J), was initialized 
by an arbitrary seed and thus the set of random numbers differed for each line. G[J) consisted 

of a mean equal to zero and variance equal to 1. The simulation of 701 sequence values along 
each vertical (radial) line was generated from six autoregression coefficients by the expression: 

6 

Y(J) = G(J)-2\ajY(J-j) where the at values were determined from the previously described 

Levinson algorithm. Note that the first level of non-stationarity is built into the database by 
allowing the a, values to dynamically change with altitude as a function of the vertical 

correlation length. The first 51 values of Y(J) for each radial line were discarded to allow for 

filter relaxation. In practice, for altitudes above 50 km, the calculational scheme stepped 
along at each altitude layer. First the vertically correlated component for a particular layer 

9 
(the top layer in the array) was computed with c  =1. The layer was then copied to a second 

array where the appropriate horizontal correlation and o2 were applied for that layer. Since a2 

and horizontal correlation length change with altitude, these parameters were applied to the 
horizontal layer in the copied array to account for the second level of non-stationarity. Thus 
each layer in the copied array contained both the vertical and horizontal correlations before 
the computations proceeded to the next higher layer. The scheme is represented in Figure 2. 

11 



The altitude dependence of the relative temperature variance, horizontal correlation 

length, and vertical correlation length are adopted from Strugala, et.al.1415 Their values and 
our fitted models of them are shown in Figures 3-5. Logistic dose response equations were used 

in fitting the data. The outside curves in each graph represent the 95 percent confidence limits. 

The fitted curves were used to evaluate the parameters as a function of altitude. 

ttttttttttttttttttt   tttttttttttttmm 

Figure 2.   Computational Scheme.   First, correlations along the vertical lines are 
calculated (one layer at a time) and then the horizontal correlation calculation 
is applied to each layer. 

14 Strugala, L.A. (1991) Development of high resolution statistically non-stationary infrared 
earthlimb radiance scenes, characterization, propagation, and simulation of sources and 
backgrounds, Proc. SPIE - The International Society for Optical Engineering, V:1486, pp. 176-187, 
Orlando, Florida. 
15 Strugala, L.A. (1993) Production of statistically nonstationary stochastic structure 
realizations for infrared background scene simulations, Optical Engineering, V32(No. 5):, 
pp. 993-1001. 

12 



Horizontal Correlation Length (km) 
Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp] 

r2=0.991459845 DFAdj r2=0.989182471  FitStdErr=2.07219665 Fstat=619.167443 
a=32.764354 b=52.968001 
0=135.07913 d=-6.4666086 

50 100 150 200 
Altitude (km) 

250 300 

Rank 18 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp] 

r2 Coef Det 
0.9914598452 

DF Adj r2 

0.9891824705 
Fit Std Err 
2.0721966466 

F-value 
619.16744310 

Parm 
a 
b 
c 
d 

Value Std Error t-value 95% Confidence Limits 
32.76435426 1.295628218 25.28839199 30.01210311    35.51660541 
52.96800100 2.144297606 24.70179552 48.41295545   57.52304655 
135.0791315 2.234742679 60.44504933 130.3319571    139.8263059 
-6.46660858 0.680074818 -9.50867230 -7.91126428    -5.02195287 

Figure 3.   Horizontal Correlation Lengths Plotted as a Function of Altitude. 
A logistic dose response equation is fitted to the data. The outside curves 
represent the 95 percent confidence limits. 
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Rank 4 Eqn8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp] 
r2=0.977486661   DF Adj r2=0.972189405 FitStdErr=0.546523677 Fstat=260.508669 

a=1.7292654 b=8.3478628 
c=161.52008 d=-7.9024983 

100 200 
Altitude (km) 

300 

Rank 4 Eqn8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp] 

r2 Coef Det DF Adj r2 Fit Std Err F-value 
0.9774866610     0.9721894048     0.5465236769     260.50866885 

Parm   Value 
a 1.729265412 
b 8.347862811 
c 161.5200848 
d -7.90249825 

Std Error t-value 95% Confidence Limits 
0.210585414 8.211705540 1.286422835   2.172107988 
0.536310568 15.56535207 7.220048927   9.475676694 
3.853308016 41.91725244 153.4169175    169.6232522 
1.339177504 -5.90100881 -10.7186706    -5.08632592 

Figure 4.   Vertical Correlation Lengths Plotted as a Function of Altitude.  A 
logistic dose response equation is fitted to the data.  The outside curves represent 
the 95 percent confidence limits. 
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(6T/T)RMS Values 
[LgstcDoseRsp] y=a+b/(1+(x/c)d) 

r2=0.99459057 DF Adj r2=0.99026303 FitStdErr=0.0097220158 Fstat=367.72483 
a=0.0087695291 b=0.3103953 

c=118.04806 d=-3.1509968 
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Rank 931  Eqn8013 [LgstcDoseRsp] y=a+b/(1+(x/c)d) 

r2 Coef Det 
0.9945905715 

DF Adj r2 

0.9902630287 
Fit Std Err 
0.0097220158 

F-value 
367.72482563 

Parm   Value 
a        0.008769529 
b        0.310395297 
c 118.0480550 
d -3.15099683 

Std Error t-value 95% Confidence Limits 
0.009675816 0.906334825 -0.01500493    0.032543990 
0.024196036 12.82835344 0.250943187   0.369847408 
5.745293881 20.54691326 103.9312859    132.1648241 
0.473460616 -6.65524591 -4.31433753    -1.98765613 

Date 
Jun1, 1994 

Time 
10:59:59 AM 

File Source 
d:\tcwin2\rms1.prn 

Figure 5.   Root Mean Square Values of the Relative Temperature Fluctuations 
Plotted as a Function of Altitude.   A logistic dose response equation is fitted to 
the data. The outside curves represent the 95 percent confidence limits. 
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After simulating the vertical spatial sequences of a given PSD, the PSD of the simulated 
vertical series was checked using a forward and backward estimation method.16 A set of 6 bj 

coefficients were found to estimate the simulated PSD from the formula, 

PSDest(k) = 
2o^Av 

1 + Xbje 

>1 

i2nkAv 

2 ' 

where ac is described below and where Av is the same spacing used to generate the synthetic 
series (0.1 km). 

For a given altitude, the forward and backward method solves the following least squares 
problem. Given 13 discrete vertical series values Y(J), for J = 1, 2, ..., 13, and where J=7 is the 
layer in question, we find b, values that minimize ERR, where, 

ERR- 
13 

X 
J=7\ 

Y{J)-^bjY{J-j) 
J=\ 

s2\ 

Y(J)-^bjY{J+j) 

ERR 
Then az is equal to  . In practice, ERR was minimized by combining the Y(J) values for all 

14 
vertical lines. 

6.   SIMULATION OF CORRELATED HORIZONTAL COMPONENTS 

As discussed above, the correlations in the horizontal LOS direction, I, and transverse 
direction, t, were applied to the previous vertically correlated simulated data by using two- 

dimensional Fourier transform synthesis. The model autocorrelation function used in this 
report leads to an isotropic two-dimensional power spectral density function given by: 

16   Haykin, Simon, ed. (1991) Advances in Spectrum Analysis and Array Processing, VI, 
Prentice Hall, Englewood Cliffs, New Jersey, pp. 155-156. 

16 



2       2v c   ua 
P(ktt) = — ^XT' for-«-</ct,k^<oo. 

^   tA>        /   2     , 2     , 2\u+i 

rcla   +fct +/c^ I 

This representation replaces the one-dimensional -(2w-l) power dependence with a two- 

dimensional -(2u+2) power dependence. P(kte) was used to filter the vertically correlated 

Gaussian random values at a given altitude. First, the procedure found the two-dimensional 
Fast Fourier Transform of the two-dimensional Gaussian correlated values at a given altitude. 

These spatial frequency values then were multiplied by the filter function ^P(kt,ke)/AtAt. A 

two-dimensional inverse Fourier Transform of the result gave the final correlated simulated 
data at the given altitude. The process stepped up in altitude to yield the three-dimensional 

database. Summarizing, the simulated data, S(t, I), for a layer is described by: 

S(t l) = FFT"1    \Ptheor(kt'k(>   xFFT(ÖUt,ee)). where G(tt,ee) are the vertically correlated 
V       AtA£ K ' 

simulated data for the layer. As explained in the appendix, sampling theory results caused us to 

modify the expression/or S{t,£). 

7.   RESULTS - VALIDATION OF SIMULATED DATABASE 

A practical and efficient three-dimensional non-stationary stochastic model of 
atmospheric structure consistent with having pre-assigned vertical and horizontal power 
spectral densities and autocorrelation functions is desired. In this section, we examine and 
compare the prescribed structure to that obtained from the stochastic hybrid method described 

earlier. This examination serves to validate the database. Correlation lengths and a2 

variances were taken from the data of Strugala, et.al.14 As discussed above, fitted forms of 

these data were used as inputs to the autoregressive and Fourier transform filters. 
First, we examine the power spectral densities of the vertical structure as depicted in the 

left panel of Figure 6. The light gray solid curve depicts a one-dimensional "theoretical" 
vertical PSD plotted against wavenumber for an altitude of 50.6 km. This figure is typical of 

the graphs in this section that show log-log plots of PSDs measured in 

(8 temperature /temperature)2 ^ wavenumber measured in km"*. At 50.6 km the input 
wavenumber 

parameters have a vertical correlation length Lcv= 1.72 km and a vertical spectral slope 

(S) = -5/3. The constant vertical data spacing was 0.1 km. This curve may be compared with 
the PSD of the AR model that was used to generate the vertically simulated data and with the 
PSD of the simulated data itself. The dashed curve in this plot shows the one-dimensional 
vertical PSD of the autoregressive model that was used at the 50.6 km altitude. In applying the 

autoregressive model, the variance, o2,  was normalized to a value of 1. The actual variance 
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was introduced into the synthesis during the horizontal computations. A 6-coefficient model 
was used to calculate or "predict" the next vertically correlated data point for the next higher 
layer. Points in the layer were computed by applying the autoregressive model to each vertical 
line in the array. Shown on the same plot is the PSD computed from the vertically constructed 

data around 50.6 km altitude. This PSD results from computing a 6-coefficient forward and 

backward autoregressive model of the vertically simulated data from layers extending from 
50.0 km to 50.6 km in the forward direction and layers extending from 51.2 km to 50.6 km in 
the backward direction. Comparison of the curves show excellent agreement between the 
prescribed PSD and the PSD computed from the synthetic vertical data. 

We now examine the horizontal transverse structure as depicted in the center panel of 
Figure 6. A light gray solid curve depicts a one-dimensional "theoretical" transverse 

horizontal PSD plotted against wavenumber for an altitude of 50.6 km. The transverse 
direction is perpendicular to the line-of-sight direction and the transverse data spacing is 
approximately 0.100 km. At 50.6 km the input parameters have a horizontal correlation 
length Lch= 32.9 km, and the variance of the relative temperature fluctuations a2 = 8.34xl0"4. 

The figure represents the 1-D component of the 2-D horizontal PSD having a high frequency 
horizontal spectral slope (S) = -8/3. This curve may be compared with a periodogram of the 
simulated data aligned in the layer along the transverse direction. It may also be compared 
with a PSD computed from an AR model of that same data. The solid curve in this panel shows 
a one-dimensional periodogram of the transverse simulated data in the layer at 50.6 km. The 
periodogram has a Nyquist frequency of approximately 1/(2x0.1) = 5 km-1. The periodogram 

was computed by averaging the individual periodograms of the simulated data along each of 
the 192 transverse lines in the layer. Comparison of the gray and solid curves shows excellent 

agreement between the prescribed PSD and the periodogram computed from the synthetic 
transverse data. The dotted curve in this panel shows another one-dimensional transverse 
PSD plotted against wavenumber for 50.6 km altitude. The curve results from computing a 10- 
coefficient autoregressive model of the transverse simulated data in the layer at 50.6 km. 
Comparison of the gray and dotted curves again shows excellent agreement between the 
prescribed PSD and the PSD computed from the synthetic transverse data. 

Next, we examine the horizontal line-of-sight structure as depicted in the right panel of 
Figure 6. A light gray solid curve depicts a one-dimensional theoretically aliased line-of-sight 
(LOS) horizontal PSD plotted against wavenumber for an altitude of 50.6 km. For a detailed 
discussion of the aliasing issue the reader is referred to the appendix. The LOS data spacing is 

approximately 15.7 km. The curve represents the 1-D component of the 2-D horizontal PSD 
having a horizontal spectral slope (S) = -8/3. This figure may be used for comparison with a 

periodogram of the simulated data aligned in the layer along the line-of-sight direction. It 
may also be used for comparison with a PSD computed from an AR model of that same data. 

The solid curve in this panel shows a one-dimensional periodogram of the line-of-sight 
simulated data in the layer at 50.6 km. The periodogram has a Nyquist frequency of approxi- 
mately 1/(2x15.7) = 0.032 km"1. The periodogram was computed by averaging the individual 
periodograms of the simulated data along each of the 512 LOS lines in the layer. Comparison 

of the gray and solid curves shows excellent agreement between the prescribed PSD and the 
mean of the periodogram computed from the synthetic transverse data. The reason for the 
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"noisy" PSD is the high degree of correlation between neighboring and nearby data points. 
This is illustrated in Figure 7, which shows the PSDs of simulated data in the layer along the 
first four lines along the LOS. The small differences between the PSDs are due to the high 
degree of correlation between data in adjacent lines. The dotted curve in the right panel of 
Figure 6 shows another one-dimensional line-of-sight PSD plotted against wavenumber for 

50.6 km altitude. This curve results from computing a 10-coefficient autoregressive model of 

the line-of-sight simulated data in the layer at 50.6 km. Comparison of gray and dotted curves 

again shows excellent agreement between the prescribed PSD and the PSD computed from the 

synthetic line-of-sight data. 
Power spectral density computations for 119.3 km altitude are shown in Figure 8. The 

graph repeats Figure 6 except that the input parameters are altitude = 119.3 km, a2 = 0.0277, 
Lw = 2.42 km, and Lch = 49.1 km. The transverse spacing is 0.101 km and LOS spacing is 15.9 

km. Comparison with Figure 6 indicates that the hybrid method described herein may be 
employed for a wide range of altitudes. Additionally, -3 spectral slope models have been run 
with results very similar to the -5/3 spectral slope. That is, the power law dependence and PSD 

amplitudes specified by the models are preserved in the simulated data. 
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Figure 7.   One-dimensional Periodograms of the First Four Samples of the Line- 
of-sight Simulated Data in the Layer at 50.6 km. 
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Estimates of the correlation lengths and variances for the individual specifications and 

realizations presented in this report are shown in Table 2. Also, Table 3 provides the 
estimated error from the specified parameter values. The vertical database correlation length 

estimates are derived from the 6-coefficient forward and backward estimates of the vertical 

PSD while the horizontal database correlation length estimates are derived from the 10- 
coefficient estimates of the horizontal PSD along the line-of-sight direction. The estimated 
database variances are the actual variances computed from the database values themselves for 

the specified layer. Examination of Tables 2 and 3 tends to indicate that the error of an 
individual realization of correlation length falls within about 30 percent. Since the database 
represents a single sample from an ensemble of potential synthetic atmospheres (different 
random number seeds would yield additional samples), the estimated error seems reasonable. 

As the number of realizations expand it is expected that the estimate of the mean would 

converge to the specified values. 

Table 2.   Correlation Lengths:   Specified vs Database Estimates 

Database vs Specified Model Parameters 

-5/3 slope -3 slope 

2 
o Lev Lch 2 

o Lev Lch 

50 km spec. 0.00083 1.72 32.9 0.00083 1.72 32.9 

dbase 0.00084 1.53 46.0 0.00082 2.17 30.1 

89 km spec. 0.0100 1.80 36.2 0.0100 1.80 36.2 

dbase 0.0092 1.76 33.1 0.0096 2.15 29.0 

120 km spec. 0.0277 2.42 49.1 0.0277 2.42 49.1 

dbase 0.0289 1.62 38.9 0.0289 2.21 35.2 
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Table 3.   Estimated Errors, Specified Parameters vs Database Values 

Percent Error, Database vs Specified Model Parameters 

-5/3 slope -3 slope 

2 
o Lev Lch 2 

o Lev Lch 

50 km 1 -11 39 -1 26 -9 

89 km -8 -2 -9 -4 19 -20 

120 km 4 -33 -21 4 -9 -28 

Figure 9 depicts the probability distribution histogram of the simulated data in the 
horizontal layer at 50.6 km, while Figure 10 depicts the cumulative distribution function. 
Visual comparison of the histogram with the theoretical (solid) curves indicate that the 
simulated data retains the Gaussian shape and that the standard deviation of the data falls 
within 8 percent of the theoretical value. 

8.   DATABASE 

A random access data file consisting of 68,911,104 data points (701 vertical by 512 
horizontal transverse by 192 LOS) was constructed. Each point was saved as an 8 bit byte, 
encoded between a minimum value of -128 and a maximum value of +127. A small separate 
corollary ASCII file was also saved that provided specification information about the random 

access file. The ASCII file also contained sets of linear transformation constants for each 
altitude. These constants allowed efficient computation of the relative temperature 

fluctuations from the byte data as — = q + c2 x ByteValue. A sample of the ASCII file is 
T 

shown in Figure 11. 
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1234 5 =RANDOM NUMBER SEED 
7-FEB-94 OUTPUT FROM PROGRAM SCHMOD5 
5.0000E+01 THIS IS Zl LOWEST ALTITUDE SIMULATED 
6.3700E+03 THIS IS RE THE RADIUS OF THE EARTH 

TO CALCULATE THE TRANSVERSE DISTANCE DT AT ALTITUDE Z 
FOR POINT NUMBER NPT,WITH SPACING AT Zl OF DX 
(DIFFERENT ALONG THE LINE OF SIGHT AND PERPENDICULAR 
TO THE LINE OF SIGHT), 
USE THE FORMULA DT=(RE+Z)*DX*(NPT-1)/(RE+Z1) 
2.6667E+00 SLOPE OF PSD HORIZONTAL (2-D) 
1.6667E+00 SLOPE OF PSD VERTICAL (1"D) 
1.0000E-01 SPACING (KM) HORIZONTAL RESULT PERPENDICULAR L.O.S. LOWEST ALTITUDE 
1.0000E-01 SPACING (KM) VERTICAL RESULT 
512 NUMBER OF VALUES PERPENDICULAR LINE OF SIGHT 
701 NUMBER OF VERTICAL VALUES 
192 NUMBER OF VALUES ALONG LINE OF SIGHT 
51 NUMBER OF SHEETS FOR INITIALIZATION 

1.5707E+01 SPACING (KM) ALONG LINE OF SIGHT 
157 NUMBER OF CYCLES FOR ALIASING L.O.S 

1 NUMBER OF CYCLES FOR ALIASING PERPENDICULAR L.O.S 
-5.7000E-01 =PSD BIAS 
CREATE A FILE CONSISTING OF BYTES 

EACH OF WHICH REPRESENTS A NUMBER BETWEEN -128 AND +127. 
THIS IS DIVIDED INTO RECORDS AS THE FOLLOWING LOGIC INDICATES 
NUM=0 
DO 1=1,NUMBER OF ALTITUDES 
DO J=l,NUMBER OF POINTS ALONG TO THE LINE OF SIGHT 
NUM=NUM+1 
WRITE (8,REC=NUM) (VALUE(I,K,J),K=1,NUMBER OF POINTS PERPENDICULAR L.O.S.) 
END DO 
END DO 
FOR 1= 1,ALTITUDE= 5 . 0000E+01KM, (DT/T)= -2 . 8273E- -03+ 7 . 8602E- -04*VALUE 
FOR 1= 2,ALTITUDE= 5 .0100E+01KM, (DT/T)= -9 . 5905E- -03+ 7 . 804 8E- -04*VALUE 
FOR 1= 3,ALTITUDE= 5 .0200E+01KM, (DT/T)= -1 .1463E- -02+ 7 . 8550E- -04*VALUE 
FOR 1= 4,ALTITUDE= 5 .0300E+01KM, (DT/T)= -1 .2085E- -02+ 7 . 1519E- -04*VALUE 
FOR 1= 5,ALTITUDE= 5 0400E+01KM, (DT/T)= -9 . 6289E- -03+ 7 . 2735E- -04*VALUE 
FOR 1= 6,ALTITUDE= 5 0500E+01KM, (DT/T)= -1 . 5482E- -02+ 8 . 2105E- -04*VALUE 
FOR 1= 7,ALTITUDE= 5 0600E+01KM, (DT/T)= -1 .1941E- -02+ 8 .7036E- -04 *VALUE 
FOR 1= 8,ALTITUDE= 5 0700E+01KM, (DT/T)= -1 5864E- -02+ 8 . 8468E- -04 *VALUE 
FOR 1= 9,ALTITUDE= 5 0800E+01KM, (DT/T)= -1 2681E- -02+ 9 .0684E- -04*VALUE 
FOR 1= 10,ALTITUDE= 5 0900E+01KM, (DT/T)= -8 8909E- -03+ 9 6629E- -04*VALUE 
FOR 1= 11,ALTITUDE= 5 1000E+01KM, (DT/T)= -6 6515E- -03+ 8 9558E- -04 *VALUE 
FOR 1= 12,ALTITUDE= 5 1100E+01KM, (DT/T)= 3 0155E- -03+ 9 3763E- -04*VALUE 
FOR 1= 13,ALTITUDE= 5 1200E+01KM, [DT/T)= 1 3740E- -04 + 8 5331E- -04 *VALUE 
FOR 1= 14,ALTITUDE= 5 1300E+01KM, ;DT/T)= -1 4131E- -03+ 7 9499E- -04 *VALUE 
FOR 1= 15,ALTITUDE= 5 1400E+01KM, ;DT/T)= -9 1715E- -03+ 8 3941E- -04*VALUE 
FOR 1= 16,ALTITUDE= 5 1500E+01KM, DT/T)= -8 3961E- -03+ 9 5934E- -04*VALUE 
FOR 1= 17,ALTITUDE= 5 1600E+01KM, DT/T)= -1 4722E- -03+ 8 8723E- -04*VALUE 
FOR 1= 18,ALTITUDE= 5 1700E+01KM, DT/T)= -4 9128E- -03+ 8 2328E- -04*VALUE 
FOR 1= 19,ALTITUDE= 5 1800E+01KM, DT/T)= -4 3047E- -03+ 8 3197E- -04*VALUE 
FOR 1= 20,ALTITUDE= 5. 1900E+01KM, DT/T)= -6 3201E- -03+ 7 6369E- -04*VALUE 
FOR 1= 21,ALTITUDE= 5. 2000E+01KM, DT/T)= 2 5905E- -03+ 7 7723E- -04 *VALUE 
FOR 1= 22,ALTITUDE= 5. 2100E+01KM, DT/T)= -4 8177E- -03+ 8 6719E- -04*VALUE 
FOR 1= 23,ALTITUDE= 5. 2200E+01KM, DT/T)= -2. 3910E- -03+ 9 4519E- -04*VALUE 
FOR 1= 24,ALTITUDE= 5. 2300E+01KM, ( DT/T)= -1 0030E- -02+ 8. 6416E- -04 *VALUE 
FOR 1= 25,ALTITUDE= 5. 2400E+01KM, ( DT/T)= -1. 4973E- 02+ 9. 4909E- -04*VALUE 
FOR 1= 26,ALTITUDE= 5. 2500E+01KM, ( DT/T)= 5. 9302E- -04+ 8. 4785E- -04 *VALUE 
FOR 1= 27,ALTITUDE= 5. 2600E+01KM, ( DT/T)= -4. 3746E- -03+ 8. 0043E- 04*VALUE 
FOR 1= 28,ALTITUDE= 5. 2700E+01KM, ( DT/T)= -1. 9294E- 03+ 8. 1456E- 04*VALUE 
FOR 1= 29,ALTITUDE= 5. 2800E+01KM, ( DT/T)= -4. 9838E- 03+ 8. 1147E- 04 *VALUE 

Figure 11.   Sample Page From the Database Explanation File. 
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9. SYNTHETIC 2-D SCENE FOR AN IMAGINARY TEMPERATURE SENSOR 

The availability of a three-dimensional temperature structure database allows us to 
perform computer simulations of particular sensors viewing such an atmospheric 

environment. This ability enables us to perform economical tests and experimentation of 

more fundamental processes. To demonstrate the utility of the database, we will examine the 

effects of viewing the simulated atmosphere from an imaginary temperature sensor platform 
located at an altitude of 85 km. We will use a database generated with a -5/3 power spectral 

density power law. For these purposes, we imagine that our chosen sensor has the ability to 
integrate temperature fluctuations along its line-of-sight. Our computerized arbitrary sensor is 
an array of 512 horizontal pixels by 350 vertical pixels. The sensor viewing geometry is a 
rectangular cone having a full horizontal included angle of 2.19° and a full vertical included 
angle of 1.48°. Thus each pixel "looks" along its own line-of-sight and "sees" 0.0042° in both 
the horizontal and vertical direction. The sensor plane is tilted downward with the center 
pixel having a zenith angle of 95.23°. This geometry prescribes that the center pixel in the 
bottom row "looks" along a ray that has a tangent altitude of 50 km. Since we wish to "view" 
as much of the simulated atmosphere as possible, the forward distance at 85.2 km altitude 
(away from the sensor) is specified to have an arc length of 1,343 km. At this distance, the 
vertically viewed plane perpendicular to the line-of-sight has a horizontal and vertical spatial 

resolution of 0.1 km. The geometry is shown in Figure 12. 
The integrated temperature structure along selected pixel rows in zenith look angles from 

the minimum of 94.6° to the maximum of 96° is depicted in Figure 13. The figure shows 

computations of f {At(z)}dz as plotted against the full range of horizontal look angles across 

the sensor. Here At(z) are the temperature fluctuations along a particular line-of-sight z. 

Figure 14 shows similar plots but this time the temperature structure along selected pixel 
columns comprising horizontal look angles from -1.07° to +1.07° is plotted against the full 
range of zenith look angles. Taken together, the plots provide a two-dimensional spatial 
visualization of the integrated horizontal and vertical structure as "detected" by our 
imaginary temperature sensor. These spatial series may be analyzed by Fourier Transform 
analysis and, separately, by autoregressive analysis to provide estimates of the power spectral 
densities of the integrated structure as detected by the sensor. Figure 15 depicts 10 Fourier 
periodograms of the horizontally scanned simulated atmosphere for the same 10 zenith angles 
as Figure 13. Figure 16 uses 6-coefficient autoregressive analysis to provide the PSD estimates. 
Examination of these plots indicate that the power spectral density slope was transformed 

from the -5/3 database slope to an image plane slope of -2. This is a surprising and not well 
understood result, which may be important in analyzing atmospheric radiance measurements 

or when simulating radiance structure from correlation overlay maps. Additional two- 
dimensional temperature structure scenes were computed using the -3 database spectral slope. 

Results showed that the larger slope was not transformed; instead, the image plane slope 
retained the -3 value. Investigations are continuing to identify the processes leading to these 

results. 
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The full two-dimensional integrated temperature structure "scene" is depicted in Figure 17. 
Clearly, the figure shows that the three-dimensional hybrid method provides matrix 
realizations having significant utility for computer sensor simulations. The technique 

preserves relatively large horizontal correlations and relatively small vertical correlations. 

As Figure 17 also shows, use of the matrix realizations leads to a better understanding of 

underlying processes and provides some unexpected results in the two-dimensional scene. 

10.       CONCLUSION 

Geophysical phenomena within a specified domain often are characterized by smooth 
continuous power spectral densities having a negative power law slope. A stochastic one- 

dimensional autoregressive approach was employed to generate vertically correlated synthetic 
data, and two-dimensional fast Fourier transform synthesis was used to generate horizontally 

correlated data from the vertically structured arrays. The joint goals of reducing the 
computational burden and of generating three-dimensional non-stationary synthetic structure 
databases that are faithful to the theoretical descriptions were achieved. A complete random 
access database file consisting of 68,911,104 points was generated on the Phillips Laboratory 
model 210 Convex computer with an average execution time of 2.5 hrs. The process preserved 
the power spectral density law, correlation scale, variance, and probability density function. A 
6-coefficient autoregression model accurately simulated the 701 point vertical structure and a 
512 x 192 point 2-D FFT accurately provided the horizontal structure. The three-dimensional 
hybrid method provides matrix realizations having significant utility for computer sensor 
simulations. We have demonstrated the utility of the three-dimensional database and we 
examined the effects of viewing the simulated atmosphere from an imaginary temperature 
sensor platform located at an altitude of 85 km. Use of the matrix realizations leads to a 
better understanding of underlying processes and provides some unexpected results in the two- 
dimensional scene. We have shown that the integrated temperature structure preserves the 

relatively large horizontal correlations and relatively small vertical correlations but that the 
-5/3 power spectral density slope is transformed by the line-of-sight integration through 
several layers. This is a surprising and not well understood result which may be important in 
analyzing atmospheric radiance measurements or when simulating radiance structure from 

correlation overlay maps. In contrast, the -3 power spectral density slope was unaltered by the 
integration process. Studies are continuing with the hope of identifying the processes leading 
to these different results. 
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Appendix 

Computational   Details 

Al.       LINE-OF-SIGHT PSD TRUNCATION CORRECTION 

Since the constructed database has a finite and relatively large line-of-sight data spacing, 
a natural truncation of the line-of-sight power spectral density function must occur that would 
cause significant aliasing of the line-of-sight PSDs for any particular realization. The 

database has a horizontal transverse Nyquist frequency l/c^y ) of about 5 km"1, and a line-of- 

sight Nyquist frequency (fc^y ) of about 0.032 km"1. Our treatment assumes the PSD = 0 

beyond Jc^y . Since significant energy exists between (k^r ) and Jc^y , aliasing must occur in 

the LOS direction. Consequently, computational "aliasing" of the line-of-sight PSDs was added 
to the "theoretical" PSDs by the following formulation. For an isotropic two-dimensional 
power density spectrum having frequencies kt and ke, with Nyquist frequencies kNYt and 

(kjvy ) • the estimated power spectral density (PSDe) is: 
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PSDe(kt,ki) = PSD (kt,kt) + PSD (kt,2kNYi -kt) + PSD (kt,2kNY( +kt) 

+ PSD (kt,4kNYe -kt) + PSD (kt,4kNYl+ki) + - 

until the second argument becomes greater than Jc^ . Each term in the series on the right 

forms an aliasing branch as depicted in Figure Al. Two special cases apply. 

At kt =0, PSDe(kt,0) = PSD (kt,0) + PSD {kt,2kmJ + PSD ()ct,4)CjVyr<)+- . 

Also, at ke = kNY(,PSDe(kt,km() = PSD {kt,2kNY() + PSD (kt,3kNY() + PSD (kt,5kNYl) + ■ ■ •. 

Hence, the computation of PSDe(kt,ke) was the "theoretical" horizontal PSD that was used in 

construction of the simulated database. The above applies since the two-dimensional discrete 

Fourier Transform,  F(kt,k(), of a function f(t,l) is: 

JVt    JV^ 

F{kt,ke)=^ ^/(tjj^e-^e-^    torO<kt,k(<n, 
J=0 1=0 

and since, 

fu(2n-ke)=e-uke re-ukt>r and e-u(^*k{) = e-uke = re-akt 

This implies that the PSD(kt,2n-kt) contributes to the PSD of f(tj) at frequency kt,ke and 

the PSD(kt,2n+ke) also contributes to the PSD of f{t,t). 
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A2.       RECTANGULAR WINDOW CORRECTION - TRUNCATION OF AUTOCORRELATION 
FUNCTION 

The horizontal two-dimensional discrete Fourier Transform used in the syntheses of the 

database results in a well-known rectangular window sampling effect. Assuming negligible 

truncation of the autocorrelation function in the line-of-sight direction, truncation in the 
transverse direction leads to sidelobe leakage of the frequency response function of the 
digitized rectangular window. In the transverse direction, the effects of leakage can be 
computed as the convolution of the "theoretical" PSD[kt,k^) with the square of the magnitude 

of the frequency response of a digital sine function. The magnitude of the digital sine function 

resulting from sampling N values equally spaced by At in the transverse direction is: 

l*M= 
sm(itkfNAt) 

At—*—- '- 
sin (nktAt) 

This means the PSD, after accounting for leakage in the transverse direction, is the digital 

adjusted function, PSD,S){kt,k() where, 

sm2[(kt-k)nNAt] 1     fkt+kNY. / \        9 sin   \(kt-K)MNAt 
PSD® Jct,^  =—     '    "*'     PSD(k,kt (At)2 fir 1 T 

®V  '    i}    NAtK-kNYt 
V        ' sin2[(/ct-/c)7cAt] 

dk. 

and where we assume PSD^n/c^/c^y ,/cJ = 0. Normalizing so there is no change in the total 

energy, that is to say a2, we arrive at the "corrected" power spectral density function, 

PSD (kt,ke). The normalization is necessary because the variance of the "continuous" power 

spectral density differs from the variance of the "discretized" power spectral density. The 

normalization depends on the continuous case variance atii defined by 

ate = I      * PSD(k,ke)dl<:, and also on the discrete case variance G&J defined by 

kNYt NAt 1 1 
ci/> =       y   PSD«(kt,k,) (with step size  ). 

'      NAt ,    V u     ; NAt 

42 



The "corrected" PSD then becomes: 

PSD* (kt,kt) = ^-xPSD9(kt,kt). 

Accounting for the discretized windowing effect, the two-dimensional white noise spectrum 

should be multiplied by some value A*(kt,ki). Assuming negligible contribution from the 

truncation of the autocorrelation function in the line-of-sight direction, A (kt,ke) is 

determined by: 

V '    V        AtAt 

where At is the transverse spacing and At is the LOS spacing. Using the expression for 

A*(kt,ke), a computational "correction" to each LOS frequency may be made to account for 

the windowing effect but such computation is prohibitively intensive. Instead, the following 

approximate scheme was devised. 

Since by construction,  f NYt \H(k)\ dk = l, the convolution theorem requires 
NAt J~kNYt 

Y Y A* (kt,ke) = a2. Observation of A*(/ct,fc^) indicates that the major sampling effect 

kt   ke 

occurs for the PSD(/ct,^) at the extrema kt = 0. This observation is illustrated in Figure A2 

which shows a "theoretical" transverse PSD with kt = 0 versus a 512 point PSD "corrected", as 

described above, for truncation of the autocorrelation function. The plot has the same input 
parameters previously given for 50.6 km altitude. The one-dimensional high frequency 
spectral slope is (S) = -5/3, a2 = 8.34 x 10'4, Lch = 32.9 km, and the transverse spacing = 0.1 

km. The plot indicates that the "corrected" PSD closely follows the "theoretical" PSD for all 
the discrete frequencies except the zero frequency. To avoid the time-consuming convolution 
integral, an approximation was developed that modified the PSD(kt,ke) at kt -0. The 

approximation was devised from the following reasoning. We wish the variance of our 
simulation to equal a given value a2 but the actual value of the "uncorrected" simulated 

variance is equal to £ ^A2(kt,ke), where A2 = P    e'  v^>, and where PSDe(kt,k() is the 

kt    k( 

two-dimensional theoretical model with aliasing in the ke direction: 
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PSDe(kt,ke) = PSD(kt,kt) + PSD(kt,2kmt-kt) + PSD[kt,2kmt+kt) 

+ PSD(kt,4kme-ke) + PSD(kt,4km(-ki) + . 

2 Thus, we wish to find a modified approximate value, A, such that the theoretical variance, at, 

is: ot =2_, y^-A (/ct,^). As noted, with the extrema at kt =0, we set A(0,/C^) by the linear *2 

kt   ke 

interpolation relation:  A(0,kl) = gA(0,ki) + (l-g)A(kt=l,ki). where kt=l is the first non-zero 

LOS frequency value and we set all other A(kt,ke) = A(kt,k(). Then it follows: 
kt±0 

of = Jj(9A(0,k,) + (l-g)A{kt=1,k,)f+ X ^A2{kt,ke). 
ke Jct#0  k( 

Expanding, we find a quadratic expression for g, which is: 

0 = g2^(A2{0,ki) + A2(ktsVke)-2A(0,kt)A(kt=1,kt)) 

+ g^(2A(0,ke)A(kt=l,ke)-2A2(kt=l,ki)) 

+ JjA
2{kt=1,ki) + X X A2{kt,ki)-a2 

kf kt=tn k t#0  Kt 

Figure A3 illustrates the computation of g on a log-log plot of g versus ——. The plot shows a 
At 

near power law relationship between g and —£L. 
At 
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Figure A2.   "Theoretical" Transverse PSD Versus a 512 Point PSD "Corrected" for 
Truncation of the Autocorrelation Function.  The plot has the same input para- 
meters previously given for 50.6 km altitude.  The one-dimensional high frequency 
spectral slope is (S) = -5/3, a2 = 8.34 x lCr4, Lch = 32.9 km and, transverse 
spacing = 0.1 km. 
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