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Synthetic 3-D Atmospheric Temperature Structure: A Model
for Known Geophysical Power Spectra Using a Hybrid
Autoregression and Fourier Technique

1. INTRODUCTION

Atmospheric fluctuations in wind speed, temperature, and density are characterized by
continuous power spectral density functions. For example, one-dimensional horizontal wind
speed PSDs are found to have horizontal wavenumber log-log slopes of about -5/3 and vertical
wavenumber log-log slopes of -3. Such spectra, parameterized by spectral slope, correlation
lengths, and moments of probability density functions, are often used in simulating an
environment or predicting atmospheric structure. Multidimensional fast Fourier transform
synthesis provides a means for filtering white noise with spatial filters to simulate a
stationary time or spatial data set. Autoregression synthesis provides a fast means for
simulating a one-dimensional non-stationary spatial structure sequence.

The Phillips Laboratory Strategic High Altitude Atmospheric Radiance Code (SHARC)! uses
first principles to calculate point to space and limb viewing atmospheric background infrared
(IR) radiance and transmittance under both local-thermal-equilibrium (LTE) and non-local-

(Received for publication 14 June 1994)

1 Sharma, R.D., Duff, J.W., Sundberg, R.L., Gruninger, J.H., Bernstein, L.S., Robertson, D.C.,
and Healey, R.J. (1991) Description of SHARC-2, The Strategic High Altitude Atmospheric
Radiance Code, Phillips Laboratory Tech. Rpt., PL-TR-91-2071. ADA239008




thermal-equilibrium (NLTE) conditions above 50 km. Release 3 of the SHARC code? predicts IR
radiation and transmittance in the 1-40 pm spectral region and includes important bands
from the major isotopes of NO, CO, H,0, O3, OH, CO,, CH,, and NO*, Specific local atmospheric
environments can be specified through region definitions, and diurnal characteristics can be
specified through user or program generated multiple vertical concentration profiles. A
subroutine module breaks a given line-of-sight (LOS) specification into small segments and
determines the composition and properties of each segment. Each segment is determined by
the intersection of the LOS with an altitude layer boundary, defined in input atmospheric
profiles. Appropriate profiles of temperature, pressure, and molecular state densities are
determined for each segment.

A future release of SHARC will have the ability to provide realizations of atmospheric
infrared volume-emission perturbations that occur from fluctuations in temperature and
density of the contributing molecular species. Version 4 of the SHARC code envisions a
capability to evaluate radiance structure from estimated variances in the standard
temperature and density profiles. The algorithms will simulate IR fluctuations that must
depend on relatively small fluctuations in atmospheric species number densities, vibrational
state populations, and the kinetic temperatures along a given line-of-sight.3:4 Where NLTE
effects dominate, (generally above 50 km) a small fluctuation in kinetic temperature can
produce correlated changes, anti-correlated changes, or no change in the vibrational state
temperature. Such changes ultimately depend on the relative contributions from total number
density, temperature-dependent kinetic rates, and radiative relaxation. A proper description of
the temperature/density field is thus needed to enable SHARC to correctly compute the
radiance structure field.

To provide a realistic but practical two-dimensional structure scene capability requires
creative, efficient, and tested algorithms. This report presents a method of producing
stochastic three dimensional non-stationary synthetic spatial structure from a hybrid one-
dimensional (vertical) autoregressive component and a two-dimensional (horizontal) Fourier

2 Gruninger, J., Sundberg, R.L., Duff, J.W., Bernstein, L.S., Matthew, M.W., Adler-Golden, S.,
Robertson, D., Sharma, R., Brown, J.H., Healey, R., and Vail J. (1994) SHARC - 3, A model for
infrared radiance at high altitudes, Proc. SPIE - The International Society of Optical
Engineering, V:2223, Orlando, Florida.

3 Sundberg, R.L.. Gruninger, J., De, P., Brown, J.H. (1994) Infrared radiance fluctuations in
the upper atmosphere, Proc. SPIE - The International Society of Optical Engineering, V:2223,
Orlando, Florida.

4 Sears, R.D., Strugala, L.A., Newt, J., Robertson, D., Brown, J.H., and Sharma, R. (1994)
Simulation of the infrared structured earthlimb background using the SHARC radiance code,
32nd Aerospace Sciences Meeting and Exhibit, Reno, NV.




transform component. In this report we extend the results expressed in two previous reports
that dealt with one-dimensional autoregression® and two-dimensional autoregression/moving
average® structure simulation.

2. GEOMETRY

SHARC is capable of predicting earthlimb radiance along a sensor line-of-sight (LOS) as a
function of LOS and tangent altitude. In this report, temperature and density perturbations are
incorporated on the mean atmosphere to enable SHARC calculations of stochastic radiance
structure. An appropriately configured three-dimensional database of stochastic temperature
structure is needed. To fill this need, the non-stationary database has been developed in a
three-dimensional matrix that is described geometrically by a segment of a sphere. The
spherical segment consists of a volume 70 km in radial height by approximately 3000 km long
by approximately 51.2 km wide. The horizontal matrix elements lie in a spherical surface at
radial distance “r". Since we wish the database (that is, the synthetic atmosphere) to be
applicable for observation by a modeled sensor, we orient the longer horizontal dimension
along the sensor LOS direction and the shorter horizontal dimension along the direction
transverse to the line-of-sight. The spatial resolution of a matrix element has an incremental
altitude of 0.1 km by an incremental transverse distance of approximately 0.1 km by an
incremental LOS distanee of approximately: 15.7 km. Thus, the database matrix consists of
701 vertical elements aligned along radial lines, 512 transverse horizontal elements, and 192
line-of-sight horizontal elements. The actual data spacing in the horizontal dimension must
increase slightly with altitude so that points in the vertical dimension stay on radial lines.
The altitude range accounts for dominant structure effects (50-120 km). Also its vertical and
transverse dimensions are sufficient to fill the field of a limb-viewing two-dimensional sensor
array. The vertical and transverse spatial resolution are governed by the vertical and
horizontal correlation lengths of the temperature variations but also are chosen to provide
high field-of-view spatial resolution. The geometrical LOS dimensions are chosen to provide
sufficient length to describe the integrated path radiance. Figure 1 illustrates the spherical
geometry and Table 1 summarizes the database specifications.

5 Brown, J.H. (1993) Atmospheric Structure Simulation: An Autoregressive Model for Smooth
Geophysical Power Spectra with Known Autocorrelation Function, Phillips Laboratory Tech.
Rpt., PL-TR-93-2185, ERP No. 1128, ADA 276691.

6  Brown, J.H. (1993) Atmospheric Structure Simulation: An ARMA Model for Smooth Isotropic
Two-Dimensional Geophysical Power Spectra, Phillips Laboratory Tech. Rpt., PL-TR-93-2224,
ERP No. 1132, ADA 280476.
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Figure 1. Database Geometry. Figure la illustrates the volume of the spherical
segment defined by the database. The radial altitude range starts at 50 km and

ends at 120 km. At 50 km altitude the curved length in the LOS direction measures
3014 km while the curved length in the transverse direction measures 51.2 km.
These distances increase slightly with altitude due to the curved geometry. Figure 1b
illustrates the resolution volume at 50 km. The radial altitude resolution is 0.1 km
while the resolution of the curved lengths in the LOS and transverse directions is
15.7 km and 0.1 km respectively. Again the horizontal resolution lengths increase
slightly with altitude.

Table 1. Database Specifications

Direction N pts Ax NAx freq. res. Nyquist freq.
{km) (km) | 1/N Ax (cy/km) | 1/2 A x (cy/km)

Vertical 700 0.1 70 --- ---
(50-120 km)
Transverse 512 0.1 51.2 0.0195 (HIGH) 5
LOS 192 15.7 3014. 0.00033 0.0318(LOW)




3. AUTO-REGRESSION THEORY

This section briefly reviews autoregressive digital spectral estimation as presented by S.
Lawrence Marple? and Steven M. Kay.8

An autoregressive moving average (ARMA) model for a discrete spatial series v(n), that
approximates deterministic and stochastic processes can be represented by the filter linear

difference equation:

in which v(n) is the output sequence and &(r) a white noise input driving sequence. The afj)
and b(j) coefficients form the autoregressive and moving average portions of the ARMA model
respectively. A z-transform analysis of the difference equation shows that the ARMA power

spectral density (Pagrpa(k)) is:

2
B
Parma(k) = Ave?, ——(-k—)| for—o < k< oo

A(k)

where k is the spatial frequency and where,

Alk) =1+ § a(j) exp (-2nikjAv)
j=1
and,
B(k) = 1 + % b(j) exp (-2rikjAv), with b(0) = 1.

Jj=1

7 Marple, S.L. (1987) Digital Spectral Analysis with Applications, Chapter 6, Prentice-Hall,
Englewood, New Jersey.

8 Kay, Steven M. (1988) Modern Spectral Estimation, Theory & Application, Prentice-Hall,
Englewood, New Jersey.




Here Av is the sampling interval, oﬁ, is the variance of the white noise process, and i=+/-1. If

all the moving average coefficients are zero, except b(0) = 1, then,
p
v(n) = - X a(j)v(n - J) + &(n)
J=

and the process is strictly autoregressive of order p. The autoregressive PSD becomes:

2
2Ave nt . .
Pur(k) = lA(k)]LZU = 2Avj_z T (J)exp(-2mikjAv), for 0 < k < o

where r,, is the real and even autocorrelation sequence at j, and oi is the variance of &(n). The

relationship between the autocorrelation sequence and the pure autoregressive model is:

(P
—Za(j)rw(m - J) form > 0
Jj=1
p
rw(m) = -3 a(i)rw(-J) + of, form =0
J=1
Foy(-m) form < 0O

This expression may be evaluated for the p + 1 lag indices O < m < p by:

rw(©0) rn(-1) ... rn(-p) 1 o2
rw(l)  rw(0) . ry(a®)| |al) _|o
rw(p) Tw(p—l) TW(O) a(p) 0




This expression forms the autoregressive Yule-Walker equations. Given the autocorrelation
sequence for lags O to p, the autoregressive coefficients may be found from the above. Since
rv(-k) = 1, (k), the autocorrelation matrix is both Toeplitz and Hermitian. A standard

“Levinson” algorithm that takes advantage of the Hermitian-Toeplitz matrix equation was
employed to solve for the AR parameters. The same Yule-Walker equations also occur if we

attempt to solve the problem: find the “best”, in a least square sense, set of equations that

~ ~ p
determine the coefficients that predict V from v(n) = - ¥ a(j)v(n - j), where
Jj=1
(\“i(n)—v(n))2 = oﬁ,. In summary, the Levinson recursion computes sets of coefficients

{03} {az.ar@003} - {a, .0y (@) a, (P 0}

where the final set at order p is the desired solution of the Yule-Walker expressions. For the

AR(p) process, a (j) = alj) forj=1,2,3,.., pand o2 is the minimum prediction error, that is,
% P

cf, = cﬁ, = oﬁu-n = &[v*[n] (v[n])—f/[n]]. The algorithm is initialized by:

of =(1-la 1) )ruy[0]

with the recursion for j = 2,3,.., p given by:

i1+ S @l i-u]

. p=1
a =
j[J] p)
cj—l
aj[n]zaj_l[n]+aj[j]aj-_l[j—n] n=L2,...,j-1

G§=(1-—|aj [j]|2)o§_1.




The a; [J] coefficients are known as reflection coefficients.

4. PSD MODEL DISCUSSION

Atmospheric power spectral density functions often are modeled by isotropic one-
dimensional double-sided power law functions of the form:9:19

pp(ge—C . for-mzkge

(a2 + kz)w;

The constant C is found from the definition that the total variance of the associated time
series, 02, is equal to the area under the PSD:11

52:2_[: PSD(k)dk:ZC_[: ___dk_1=2cﬂ£”)_1_
- 2
(a2+k2)v+2 2a ”F(u+—£)

so that the three-parameter one-dimensional PSD model is:

9  Tatarski, V.I. (1961) Wave Propagation in a Turbulent Medium, McGraw-Hill.

10 Futterman, W.1., Schweitzer, E.L., and Newt, J.E. (1991) Estimation of scene correlation
lengths, characterization, propagation, and simulation of sources and backgrounds, Proc.
SPIE - The International Society of Optical Engineering, V:1486, pp127-140, Orlando, Florida.

11 For the integral, see for example, Gradshteyn, 1.S. and Ryzhik, I.M. (1965) Table of
Integrals Series and Products, eq 3.241.4, Academic Press.




The relationship between the frequency domain PSD and the time or spatial domain
autocorrelation function is specified by their Fourier transform pairs. Thus the
autocorrelation function, (ACF), for the real even PSD function is:

1
=T (v+—2—) a?® cos(2nxi) dk

ACF(x)= IFFT (PSD)=2 -
0 R T (v) (a2 + kz)v+§

The integral is solved in terms of the Bessel function of the second kind of fractional order, K,

as:12

2 5(1-v) v
ACF(x) = c“2 (21;(1()3 K, (2rax) ‘

The parameter “a” can be expressed in terms of the integral scale or equivalent width, L, of
the autocorrelation function. An equivalent width is defined as the area of a function divided

by its central ordinate,!3 or,

o7 Goax
L ==
£(0)

Thus the large scale correlation length L. is defined by integrating ACF () over all positive

values of x.

j:ACF(x)dx

c 3 )
(¢

L

12 Gradshteyn, 1.S. and Ryzhik, .M. (1965) Table of Integrals Series and Products, eq 8.432.5,
Academic Press.

13 Bracewell, R.N. (1978) The Fourier Transform and Its Applications, McGraw-Hill, New York.




where 62 is the autocorrelation at zero separation. Since

00 1 00
Jo ACF (x)dx = Py j ACF (x)dx é = PSD(0) and ACF (0) = 62, the equivalent width or cor-

relation length as a function of the PSD may also be written as:

PSD(0)/2 _ PSD(0)
oo - 2
PSD(k)dk 20

—o0

L. .=

so that,

1
czr(u+—2—J a?’ F(v+é—)
L. = = or
¢ 26%Var()a®* 2+rT(v)a

al= 2\/.1;1“(1)) L

1 ¢
I“(u+—)
2
5. SIMULATION OF CORRELATED VERTICAL COMPONENTS

In practice, a given one-dimensional single-sided PSD was constructed from the PSD and
ACF power law models:

1
202 a2”I‘[v+—)

2
26, A
PSD (k)= 2 T = O oV 5 . forO0< k<
2 2 v+— N .
«/;c-l“(v)(a +k ) 2 1+zajez21tkAv
j=1
2 5(1-v) v 9
ACF(V)=G 2 (2rav)” K, (2rav)

r'(v)

10




where,

0;9‘ = residual error

v = vertical distance
Av = vertical spacing

a ; = model parameters
i=q-1

k = frequency (km-1)

Conceptually, radial line segments having an origin at the center of the earth define a
segment of a sphere. Along the geometrical set of these radial or vertical line segments, a
spatial data sequence was simulated using a normally distributed set of pseudorandom
numbers G(J). In this case, there were 512x192 independent sets of random numbers
corresponding to vertical elements along the radial lines. The sequence, G(J), was initialized
by an arbitrary seed and thus the set of random numbers differed for each line. G(J) consisted
of a mean equal to zero and variance equal to 1. The simulation of 701 sequence values along

each vertical (radial) line was generated from six autoregression coefficients by the expression:
6
Y(J)=G(J)~ Zaj Y (J- j) where the a; values were determined from the previously described

J=1
Levinson algorithm. Note that the first level of non-stationarity is built-into the database by

allowing the a; values to dynamically change with altitude as a function of the vertical

correlation length. The first 51 values of Y(J) for each radial line were discarded to allow for
filter relaxation. In practice, for altitudes above 50 km, the calculational scheme stepped
along at each altitude layer. First the vertically correlated component for a particular layer
(the top layer in the array) was computed with c2=1. The layer was then copied to a second
array where the appropriate horizontal correlation and o2 were applied for that layer. Since 62
and horizontal correlation length change with altitude, these parameters were applied to the
horizontal layer in the copied array to account for the second level of non-stationarity. Thus
each layer in the copied array contained both the vertical and horizontal correlations before
the computations proceeded to the next higher layer. The scheme is represented in Figure 2.

11




The altitude dependence of the relative temperature variance, horizontal correlation
length, and vertical correlation length are adopted from Strugala, et.al.14.15 Their values and
our fitted models of them are shown in Figures 3-5. Logistic dose response equations were used
in fitting the data. The outside curves in each graph represent the 95 percent confidence limits.
The fitted curves were used to evaluate the parameters as a function of altitude.
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Figure 2. Computational Scheme. First, correlations along the vertical lines are
calculated (one layer at a time) and then the horizontal correlation calculation
is applied to each layer.

14 Strugala, L.A. (1991) Development of high resolution statistically non-stationary infrared
earthlimb radiance scenes, characterization, propagation, and simulation of sources and
backgrounds, Proc. SPIE - The International Society for Optical Engineering, V:1486, pp. 176-187,

Orlando, Florida.

15 Strugala, L.A. (1993) Production of statistically nonstationary stochastic structure
realizations for infrared background scene simulations, Optical Engineering, V32(No. 5):,

Pp. 993-1001.
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Figure 3. Horizontal Correlation Lengths Plotted as a Function of Altitude.
A logistic dose response equation is fitted to the data. The outside curves
represent the 95 percent confidence limits.
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b 8.347862811 0.536310568 15.56535207 7.220048927 9.475676694
c 161.5200848 3.853308016 41.91725244 153.4169175 169.6232522
d

-7.90249825

Figure 4. Vertical Correlation Lengths Plotted as a Function of Altitude. A
logistic dose response equation is fitted to the data. The outside curves represent

the 95 percent confidence limits.
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(8T/T)rms Values
[LgstcDoseRsp] y=a+b/(1+(x/c)d)
r2=0.99459057 DF Adj r2=0.99026303 FitStdErr=0.0097220158 Fstat=367.72483
a=0.0087695291 b=0.3103953
¢=118.04806 d=-3.1509968

0.35°

0 //l“" T T T
0 100 200 300
Altitude (km)

Rank 931 Eqn 8013 [LgstcDoseRsp] y=a+b/(1+(x/c)d)

r2 Coef Det DF Adj r2 Fit Std Err F-value
0.9945905715 0.9902630287 0.0097220158 367.72482563

Parm Value Std Error t-value 95% Confidence Limits

0.008769529 0.009675816 0.906334825 -0.01500493 0.032543990
0.310395297 0.024196036 12.82835344 0.250943187 0.369847408
118.0480550 5.745293881 20.54691326 103.9312859 132.1648241
-3.15099683 0.473460616 -6.65524591 -4.31433753 -1.98765613

00 TD®

Date Time File Source
Jun 1, 1994 10:59:59 AM d:\tewin2\rms1.prn

Figure 5. Root Mean Square Values of the Relative Temperature Fluctuations
Plotted as a Function of Altitude. A logistic dose response equation is fitted to
the data. The outside curves represent the 95 percent confidence limits.
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After simulating the vertical spatial sequences of a given PSD, the PSD of the simulated
vertical series was checked using a forward and backward estimation method.16 A set of 6 b;

coefficients were found to estimate the simulated PSD from the formula,

2
20, Av
PSD, (k)= < =

6
i2nkAv
1+ ij e
=1

where of is described below and where Av is the same spacing used to generate the synthetic
series (0.1 km).

For a given altitude, the forward and backward method solves the following least squares
problem. Given 13 discrete vertical series values Y(J), for J = 1, 2, ..., 13, and where J=7 is the
layer in question, we find b; values that minimize ERR, where,

2 2
13 6 7 6
ERR=| Y| Y(J)-Y b, Y(J-J)| [+| D|Y()-D b; Y(J+))
J= J=1 J=1 Jj=1

ERR
Then of is equal to . In practice, ERR was minimized by combining the Y(J) values for all
14

vertical lines.

6. SIMULATION OF CORRELATED HORIZONTAL COMPONENTS

As discussed above, the correlations in the horizontal LOS direction, ¢, and transverse
direction, t, were applied to the previous vertically correlated simulated data by using two-
dimensional Fourier transform synthesis. The model autocorrelation function used in this
report leads to an isotropic two-dimensional power spectral density function given by:

16 Haykin, Simon, ed. (1991) Advances in Spectrum Analysis and Array Processing, V1,
Prentice Hall, Englewood Cliffs, New Jersey, pp.155-156.
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o2 va?’

n(a2 + kt2 + k[z)

P(ku)= , for —eo < kK p <o

v+l

This representation replaces the one-dimensional -(2v+1) power dependence with a two-
dimensional -(2v+2) power dependence. P(kt, e) was used to filter the vertically correlated

Gaussian random values at a given altitude. First, the procedure found the two-dimensional
Fast Fourier Transform of the two-dimensional Gaussian correlated values at a given altitude.

These spatial frequency values then were multiplied by the filter function \/P(kt,ké)/ AtAZ. A

two-dimensional inverse Fourier Transform of the result gave the final correlated simulated
data at the given altitude. The process stepped up in altitude to yield the three-dimensional
database. Summarizing, the simulated data, S(t, ¢), for a layer is described by:

S(t,¢)= FFT™ [ P (kuke)

FFT(G(e,.€,)). where G(g;, the vertically correlated
NIV ]x ((st eg))were (e¢.€,) are the vertically correlate

simulated data for the layer. As explained in the appendix, sampling theory results caused us to
modify the expression for S(t,{).

7. RESULTS -~ VALIDATION OF SIMULATED DATABASE

A practical and efficient three-dimensional non-stationary stochastic model of
atmospheric structure consistent with having pre-assigned vertical and horizontal power
spectral densities and autocorrelation functions is desired. In this section, we examine and
compare the prescribed structure to that obtained from the stochastic hybrid method described
earlier. This examination serves to validate the database. Correlation lengths and o2
variances were taken from the data of Strugala, et.al.14 As discussed above, fitted forms of
these data were used as inputs to the autoregressive and Fourier transform filters.

First, we examine the power spectral densities of the vertical structure as depicted in the
left panel of Figure 6. The light gray solid curve depicts a one-dimensional “theoretical”
vertical PSD plotted against wavenumber for an altitude of 50.6 km. This figure is typical of
the graphs in this section that show log-log plots of PSDs measured in

2
& temperat t t
( mperature/ tempera ure) and wavenumber measured in km-1, At 50.6 km the input
wavenumber
parameters have a vertical correlation length L= 1.72 km and a vertical spectral slope

(S) = -5/3. The constant vertical data spacing was 0.1 km. This curve may be compared with
the PSD of the AR model that was used to generate the vertically simulated data and with the
PSD of the simulated data itself. The dashed curve in this plot shows the one-dimensional
vertical PSD of the autoregressive model that was used at the 50.6 km altitude. In applying the
autoregressive model, the variance, 62, was normalized to a value of 1. The actual variance
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was introduced into the synthesis during the horizontal computations. A 6-coefficient model
was used to calculate or “predict” the next vertically correlated data point for the next higher
layer. Points in the layer were computed by applying the autoregressive model to each vertical
line in the array. Shown on the same plot is the PSD computed from the vertically constructed
data around 50.6 km altitude. This PSD results from computing a 6-coefficient forward and
backward autoregressive model of the vertically simulated data from layers extending from
50.0 km to 50.6 km in the forward direction and layers extending from 51.2 km to 50.6 km in
the backward direction. Comparison of the curves show excellent agreement between the
prescribed PSD and the PSD computed from the synthetic vertical data.

We now examine the horizontal transverse structure as depicted in the center panel of
Figure 6. A light gray solid curve depicts a one-dimensional “theoretical” transverse
horizontal PSD plotted against wavenumber for an altitude of 50.6 km. The transverse
direction is perpendicular to the line-of-sight direction and the transverse data spacing is
approximately 0.100 km. At 50.6 km the input parameters have a horizontal correlation
length L.,= 32.9 km, and the variance of the relative temperature fluctuations o2 = 8.34x10"4,
The figure represents the 1-D component of the 2-D horizontal PSD having a high frequency
horizontal spectral slope (S) = -8/3. This curve may be compared with a periodogram of the
simulated data aligned in the layer along the transverse direction. It may also be compared
with a PSD computed from an AR model of that same data. The solid curve in this panel shows
a one-dimensional periodogram of the transverse simulated data in the layer at 50.6 km. The
periodogram has a Nyquist frequency of approximately 1/(2x0.1) = 5 km-!. The periodogram
was computed by averaging the individual periodograms of the simulated data along each of
the 192 transverse lines in the layer. Comparison of the gray and solid curves shows excellent
agreement between the prescribed PSD and the periodogram computed from the synthetic
transverse data. The dotted curve in this panel shows another one-dimensional transverse
PSD plotted against wavenumber for 50.6 km altitude. The curve results from computing a 10-
coefficient autoregressive model of the transverse simulated data in the layer at 50.6 km.
Comparison of the gray and dotted curves again shows excellent agreement between the
prescribed PSD and the PSD computed from the synthetic transverse data.

Next, we examine the horizontal line-of-sight structure as depicted in the right panel of
Figure 6. A light gray solid curve depicts a one-dimensional theoretically aliased line-of-sight
(LOS) horizontal PSD plotted against wavenumber for an altitude of 50.6 km. For a detailed
discussion of the aliasing issue the reader is referred to the appendix. The LOS data spacing is
approximately 15.7 km. The curve represents the 1-D component of the 2-D horizontal PSD
having a horizontal spectral slope (S) = -8/3. This figure may be used for comparison with a
periodogram of the simulated data aligned in the layer along the line-of-sight direction. It
may also be used for comparison with a PSD computed from an AR model of that same data.
The solid curve in this panel shows a one-dimensional periodogram of the line-of-sight
simulated data in the layer at 50.6 km. The periodogram has a Nyquist frequency of approxi-
mately 1/(2x15.7) = 0.032 k"1, The periodogram was computed by averaging the individual
periodograms of the simulated data along each of the 512 LOS lines in the layer. Comparison
of the gray and solid curves shows excellent agreement between the prescribed PSD and the
mean of the periodogram computed from the synthetic transverse data. The reason for the
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“noisy” PSD is the high degree of correlation between neighboring and nearby data points.
This is illustrated in Figure 7, which shows the PSDs of simulated data in the layer along the
first four lines along the LOS. The small differences between the PSDs are due to the high
degree of correlation between data in adjacent lines. The dotted curve in the right panel of
Figure 6 shows another one-dimensional line-of-sight PSD plotted against wavenumber for
50.6 km altitude. This curve results from computing a 10-coefficient autoregressive model of
the line-of-sight simulated data in the layer at 50.6 km. Comparison of gray and dotted curves
again shows excellent agreement between the prescribed PSD and the PSD computed from the
synthetic line-of-sight data.

Power spectral density computations for 119.3 km altitude are shown in Figure 8. The
graph repeats Figure 6 except that the input parameters are altitude = 1 19.3 km, o2 = 0.0277,
L, = 2.42 km, and L, = 49.1 km. The transverse spacing is 0.101 km and LOS spacing is 15.9
km. Comparison with Figure 6 indicates that the hybrid method described herein may be
employed for a wide range of altitudes. Additionally, -3 spectral slope models have been run
with results very similar to the -5/3 spectral slope. That is, the power law dependence and PSD
amplitudes specified by the models are preserved in the simulated data.
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Figure 7. One-dimensional Periodograms of the First Four Samples of the Line-
of-sight Simulated Data in the Layer at 50.6 km.
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Estimates of the correlation lengths and variances for the individual specifications and
realizations presented in this report are shown in Table 2. Also, Table 3 provides the
estimated error from the specified parameter values. The vertical database correlation length
estimates are derived from the 6-coefficient forward and backward estimates of the vertical
PSD while the horizontal database correlation length estimates are derived from the 10-
coefficient estimates of the horizontal PSD along the line-of-sight direction. The estimated
database variances are the actual variances computed from the database values themselves for
the specified layer. Examination of Tables 2 and 3 tends to indicate that the error of an
individual realization of correlation length falls within about 30 percent. Since the database
represents a single sample from an ensemble of potential synthetic atmospheres (different
random number seeds would yield additional samples), the estimated error seems reasonable.
As the number of realizations expand it is expected that the estimate of the mean would

converge to the specified values.

Table 2. Correlation Lengths: Specified vs Database Estimates

Database vs Specified Model Parameters

-5/3 slope -3 slope
o2 Lev Lch o2 Lev Lch
50 km spec. 0.00083 1.72 32.9 0.00083 1.72 32.9
dbase 0.00084 1.53 46.0 0.00082 2.17 30.1
89 km spec. 0.0100 1.80 36.2 0.0100 1.80 36.2
dbase 0.0092 1.76 33.1 0.0096 2.15 29.0
120 km spec. 0.0277 2.42 49.1 0.0277 2.42 49.1
dbase 0.0289 1.62 38.9 0.0289 221 35.2
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Table 3. Estimated Errors, Specified Parameters vs Database Values

Percent Error, Database vs Specified Model Parameters

-5/3 slope -3 slope
o2 Lev Lch o2 Lev Lch
50 km 1 11 39 -1 26 9
89 km -8 -2 -9 -4 19 -20
120 km 4 -33 -21 4 -9 -28

Figure 9 depicts the probability distribution histogram of the simulated data in the
horizontal layer at 50.6 km, while Figure 10 depicts the cumulative distribution function.
Visual comparison of the histogram with the theoretical (solid) curves indicate that the
simulated data retains the Gaussian shape and that the standard deviation of the data falls
within 8 percent of the theoretical value.

8. DATABASE

A random access data file consisting of 68,911,104 data points (701 vertical by 512
horizontal transverse by 192 LOS) was constructed. Each point was saved as an 8 bit byte,
encoded between a minimum value of -128 and a maximum value of +127. A small separate
corollary ASCII file was also saved that provided specification information about the random
access file. The ASCII file also contained sets of linear transformation constants for each
altitude. These constants allowed efficient computation of the relative temperature

dT
fluctuations from the byte data as — =c¢; + ¢y x ByteValue. A sample of the ASCII file is
T

shown in Figure 11.
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Figure 10. Cumulative Distribution Function of the Simulated Data at 50.6 km
Compared to the Theoretical Curve.
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12345 =RANDOM NUMBER SEED
7-FEB-94 OUTPUT FROM PROGRAM SCHMODS5
5.0000E+01 THIS IS Z1 LOWEST ALTITUDE SIMULATED
6.3700E+03 THIS IS RE THE RADIUS OF THE EARTH
TO CALCULATE THE TRANSVERSE DISTANCE DT AT ALTITUDE 2
FOR POINT NUMBER NPT,WITH SPACING AT Z1l OF DX
(DIFFERENT ALONG THE LINE OF SIGHT AND PERPENDICULAR

TO THE LINE OF SIGHT),

USE THE FORMULA DT=(RE+Z)*DX* (NPT-1)/(RE+Z1)

2.6667E+00
1.6667E+00
1.0000E-01
1.0000E-01
512 NUMBER
701 NUMBER
192 NUMBER
51 NUMBER
1.5707+01
157 NUMBER
1 NUMBER
—-5.7000E-01

CREATE A FILE CONSISTING OF BYTES
EACH OF WHICH REPRESENTS A NUMBER BETWEEN —128 AND +127.

THIS IS DIVIDED INTO RECORDS AS THE FOLLOWING LOGIC INDICATES
NUM=0
DO I=1,NUMBER OF ALTITUDES
DO J=1,NUMBER OF POINTS ALONG TO THE LINE OF SIGHT
NUM=NUM+1
WRITE (8,REC=NUM) (VALUE(I,X,J),K=1,NUMBER OF POINTS PERPENDICULAR L.O.S.)

END
END
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

DO
DO

1,ALTITUDE=
2,ALTITUDE=
3,ALTITUDE=
4, ALTITUDE=
5,ALTITUDE=
6, ALTITUDE=
7, ALTITUDE=
8, ALTITUDE=
9, ALTITUDE=
10, ALTITUDE=
11,ALTITUDE=
12,ALTITUDE=
13,ALTITUDE=
14, ALTITUDE=
15,ALTITUDE=
16, ALTITUDE=
17,ALTITUDE=
18, ALTITUDE=
19,ALTITUDE=
20, ALTITUDE=
21,ALTITUDE=
22,ALTITUDE=
23, ALTITUDE=
24, ALTITUDE=
25, ALTITUDE=
26, ALTITUDE=
27,ALTITUDE=
28, ALTITUDE=
29, ALTITUDE=

5.0000E+01KM,
5.0100E+01KM,
5.0200E+01KM,
5.0300E+01KM,
5.0400E+01KM,
5.0500E+01KM,
5.0600E+01KM,
5.0700E+01KM,
5.0800E+01KM,
5.0900E+01KM,
5.1000E+01KM,
5.1100E+01KM,
5.1200E+01KM,
5.1300E+01KM,
5.1400E+01KM,
5.1500E+01KM,
5.1600E+01KM,
5.1700E+01KM,
5.1800E+01KM,
5.1900E+01KM,
5.2000E+01KM,
5.2100E+01KM,
5.2200E+01KM,
5.2300E+01KM,
5.2400E+01KM,
5.2500E+01KM,
5.2600E+01KM,
5.2700E+01KM,
5.2800E+01KM,

SLOPE OF PSD HORIZONTAL (2-D)
SLOPE OF PSD VERTICAL (1-D)
SPACING (KM) HORIZONTAL RESULT PERPENDICULAR L.0.S. LOWEST ALTITUDE
SPACING (KM) VERTICAL RESULT

OF VALUES PERPENDICULAR LINE OF SIGHT
OF VERTICAL VALUES
OF VALUES ALONG LINE OF SIGHT

OF SHEETS FOR INITIALIZATION

SPACING (KM) ALONG LINE OF SIGHT

OF CYCLES FOR ALIASING L.0.S

OF CYCLES FOR ALIASING PERPENDICULAR L.O.S
=pSD BIAS

(DT/T)= -2.8273E-03+
(DT/T)= —9.5905E-03+
(DT/T)= -1.1463E-02+
(DT/T)= —1.2085E-02+
(DT/T)= —9.6289E-03+
(DT/T)= ~1.5482E-02+
(DT/T)= —1.1941E-02+
(DT/T)= —1.5864E-02+
(DT/T)= -1.2681E-02+
(DT/T)= -8.8909E-03+
(DT/T)= ~6.6515E-03+
(DT/T)= 3.0155E-03+
(DT/T)= 1.3740E-04+
(DT/T)= -1.4131E-03+
(DT/T)= ~9.1715E-03+
(DT/T)= —8.3961E-03+
(DT/T)= —1.4722E-03+
(DT/T)= —4.9128E-03+
(DT/T)= -4.3047E-03+
(DT/T)= —6.3201E-03+
(DT/T)= 2.5905E-03+
(DT/T)= —4.8177E-03+
(DT/T)= —2.3910E-03+
(DT/T)= ~1.0030E-02+
(DT/T)= —1.4973E-02+
(DT/T)= 5.9302E-04+
(DT/T)= —4.3746E-03+
(DT/T)= -1.9294E-03+
(DT/T)= —4.9838E~-03+

7.8602E-04 *VALUE
7.8048E-04*VALUE
7.8550E-04 *VALUE
7.1519E-04*VALUE
7.2735E-04*VALUE
8.2105E-04 *VALUE
8.7036E-04*VALUE
8.8468E-04*VALUE
9.0684E-04*VALUE
9.6629E-04*VALUE
8.9558E-04*VALUE
9.3763E-04*VALUE
8.5331E-04*VALUE
7.9499E-04 *VALUE
8.3941E-04*VALUE
9.5934E-04 *VALUE
8.8723E-04*VALUE
8.2328E-04*VALUE
8.3197E-04*VALUE
7.6369E-04*VALUE
7.7723E-04*VALUE
8.6719E-04*VALUE
9.4519E-04 *VALUE
8.6416E-04*VALUE
9.4909E-04*VALUE
8.4785E-04 *VALUE
8.0043E-04*VALUE
8.1456E-04*VALUE
8.1147E-04*VALUE

Figure 11. Sample Page From the Database Explanation File.
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9. SYNTHETIC 2-D SCENE FOR AN IMAGINARY TEMPERATURE SENSOR

The availability of a three-dimensional temperature structure database allows us to
perform computer simulations of particular sensors viewing such an atmospheric
environment. This ability enables us to perform economical tests and experimentation of
more fundamental processes. To demonstrate the utility of the database, we will examine the
effects of viewing the simulated atmosphere from an imaginary temperature sensor platform
located at an altitude of 85 km. We will use a database generated with a -5/3 power spectral
density power law. For these purposes, we imagine that our chosen sensor has the ability to
integrate temperature fluctuations along its line-of-sight. Our computerized arbitrary sensor is
an array of 512 horizontal pixels by 350 vertical pixels. The sensor viewing geometry is a
rectangular cone having a full horizontal included angle of 2.19° and a full vertical included
angle of 1.48°, Thus each pixel “looks” along its own line-of-sight and “sees” 0.0042° in both
the horizontal and vertical direction. The sensor plane is tilted downward with the center
pixel having a zenith angle of 95.23°. This geometry prescribes that the center pixel in the
bottom row “looks” along a ray that has a tangent altitude of 50 km. Since we wish to “view”
as much of the simulated atmosphere as possible, the forward distance at 85.2 km altitude
(away from the sensor) is specified to have an arc length of 1,343 km. At this distance, the
vertically viewed plane perpendicular to the line-of-sight has a horizontal and vertical spatial
resolution of 0.1 km. The geometry is shown in Figure 12.

The integrated temperature structure along selected pixel rows in zenith look angles from
the minimum of 94.6° to the maximum of 96° is depicted in Figure 13. The figure shows

computations of J{At(z)}dz as plotted against the full range of horizontal look angles across

the sensor. Here At(z) are the temperature fluctuations along a particular line-of-sight z.
Figure 14 shows similar plots but this time the temperature structure along selected pixel
columns comprising horizontal look angles from -1.07° to +1.07° is plotted against the full
range of zenith look angles. Taken together, the plots provide a two-dimensional spatial
visualization of the integrated horizontal and vertical structure as “detected” by our
imaginary temperature sensor. These spatial series may be analyzed by Fourier Transform
analysis and, separately, by autoregressive analysis to provide estimates of the power spectral
densities of the integrated structure as detected by the sensor. Figure 15 depicts 10 Fourier
periodograms of the horizontally scanned simulated atmosphere for the same 10 zenith angles
as Figure 13. Figure 16 uses 6-coefficient autoregressive analysis to provide the PSD estimates.
Examination of these plots indicate that the power spectral density slope was transformed
from the -5/3 database slope to an image plane slope of -2. This is a surprising and not well
understood result, which may be important in analyzing atmospheric radiance measurements
or when simulating radiance structure from correlation overlay maps. Additional two-
dimensional temperature structure scenes were computed using the -3 database spectral slope.
Results showed that the larger slope was not transformed; instead, the image plane slope
retained the -3 value. Investigations are continuing to identify the processes leading to these

results.
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Figure 12. Viewing Geometry of an Imaginary Temperature Sensor Platform Located at an altitude

of 85 km.
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The full two-dimensional integrated temperature structure “scene” is depicted in Figure 17.
Clearly, the figure shows that the three-dimensional hybrid method provides matrix
realizations having significant utility for computer sensor simulations. The technique
preserves relatively large horizontal correlations and relatively small vertical correlations.
As Figure 17 also shows, use of the matrix realizations leads to a better understanding of
underlying processes and provides some unexpected results in the two-dimensional scene.

10. CONCLUSION

Geophysical phenomena within a specified domain often are characterized by smooth
continuous power spectral densities having a negative power law slope. -A stochastic one-
dimensional autoregressive approach was employed to generate vertically correlated synthetic
data, and two-dimensional fast Fourier transform synthesis was used to generate horizontally
correlated data from the vertically structured arrays. The joint goals of reducing the
computational burden and of generating three-dimensional non-stationary synthetic structure
databases that are faithful to the theoretical descriptions were achieved. A complete random
access database file consisting of 68,911,104 points was generated on the Phillips Laboratory
model 210 Convex computer with an average execution time of 2.5 hrs. The process preserved
the power spectral density law, correlation scale, variance, and probability density function. A
6-coefficient autoregression model accurately simulated the 701 point vertical structure and a
512 x 192 point 2-D FFT accurately provided the horizontal structure. The three-dimensional
hybrid method provides matrix realizations having significant utility for computer sensor
simulations. We have demonstrated the utility of the three-dimensional database and we
examined the effects of viewing the simulated atmosphere from an imaginary temperature
sensor platform located at an altitude of 85 km. Use of the matrix realizations leads to a
better understanding of underlying processes and provides some unexpected results in the two-
dimensional scene. We have shown that the integrated temperature structure preserves the
relatively large horizontal correlations and relatively small vertical correlations but that the
-5/3 power spectral density slope is transformed by the line-of-sight integration through
several layers. This is a surprising and not well understood result which may be important in
analyzing atmospheric radiance measurements or when simulating radiance structure from
correlation overlay maps. In contrast, the -3 power spectral density slope was unaltered by the
integration process. Studies are continuing with the hope of identifying the processes leading
to these different results.
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Appendix

Computational Details

Al. LINE-OF-SIGHT PSD TRUNCATION CORRECTION

Since the constructed database has a finite and relatively large line-of-sight data spacing,
a natural truncation of the line-of-sight power spectral density function must occur that would
cause significant aliasing of the line-of-sight PSDs for any particular realization. The

database has a horizontal transverse Nyquist frequency (kNyt) of about 5 km-!, and a line-of-
sight Nyquist frequency (kNyg) of about 0.032 km~1. Our treatment assumes the PSD = 0

beyond kyy . Since significant energy exists between (k and kpy ., aliasing must occur in
NY, gy NY, NY, g

the LOS direction. Consequently, computational “aliasing” of the line-of-sight PSDs was added
to the “theoretical” PSDs by the following formulation. For an isotropic two-dimensional
power density spectrum having frequencies k, and k,, with Nyquist frequencies kNYt and

(kNYg)' the estimated power spectral density (PSD,) is:
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PSD, (ky.k;) = PSD (k. k,)+ PSD (K 2Ky, =g )+ PSD (k. 2Ky, + ke,

+PSD (k;, 4kyy, - ;) + PSD (Iep, 4y, + I, +

until the second argument becomes greater than kNYt' Each term in the series on the right
forms an aliasing branch as depicted in Figure Al. Two special cases apply.

At k, =0, PSD, (k;,0)=PSD (k,,0)+ PSD (k;, 2Ky, |+ PSD (k. 4y, )+

Also, at k, =kyy,, PSD, (I, ky, )= PsD (ree.2eny, )+ PSD (ree. 3wy, )+ PSD (e, Sy, )+

Hence, the computation of PSD, (kt,ké) was the “theoretical” horizontal PSD that was used in

construction of the simulated database. The above applies since the two-dimensional discrete
Fourier Transform, F(k;k,), of a function f(t,£) is:

N N,
—itky itk
F(k; k)= E (tj,fl)e te” ™t forO<k;,k,<m,
= 1=0

and since,

*

o H2nke) _ itk =(e-ukg )* and 42Tk _ gritie _ (e-wkg) .

This implies that the PSD(k,,2n-k,) contributes to the PSD of f (t.¢) at frequency k;,k, and
the PSD(k,,2n+k,) also contributes to the PSD of f(t.4).
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A2, RECTANGULAR WINDOW CORRECTION - TRUNCATION OF AUTOCORRELATION
FUNCTION

The horizontal two-dimensional discrete Fourier Transform used in the syntheses of the
database results in a well-known rectangular window sampling effect. Assuming negligible
truncation of the autocorrelation function in the line-of-sight direction, truncation in the
transverse direction leads to sidelobe leakage of the frequency response function of the
digitized rectangular window. In the transverse direction, the effects of leakage can be
computed as the convolution of the “theoretical” PSD(kt,ke) with the square of the magnitude

of the frequency response of a digital sinc function. The magnitude of the digital sinc function
resulting from sampling N values equally spaced by At in the transverse direction is:

sin(rk,NAt)

At
sin (nktAt)

| (ke,)| =

This means the PSD, after accounting for leakage in the transverse direction, is the digital
adjusted function, PSDg (k,k,) where,

in2[(k, ~ k) mNAt
PSD@(kt,ké)=; kt+kNYt PSD(k,ke)(At)z Sin [( t )Tt ]dk

NAt k¢ —kny, sinz[(kt ~k) nAt] ’

and where we assume PSDg (Ikt|>kNYt ,ke):O. Normalizing so there is no change in the total

energy, that is to say o2, we arrive at the “corrected” power spectral density function,

PSD’ (kt,kg). The normalization is necessary because the variance of the “continuous” power
spectral density differs from the variance of the “discretized” power spectral density. The
normalization depends on the continuous case variance cstzl , defined by

k
cstz_é = J' kNYt PSD(k,kZ)dk, and also on the discrete case variance oé,g defined by
~kny,

1

2 1 Rt Nt 1
Og g =— PSDg (k;,k,) (with step size —).
&7 NAt 2, PSDe (ki) NAt
kt-"-‘—kNYt
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The “corrected” PSD then becomes:

2
* G
PSD (kt,ke)=;2t—'e—xPSD®(kt,ke).
®,¢

Accounting for the discretized windowing effect, the two-dimensional white noise spectrum
should be multiplied by some value A (kt,ke). Assuming negligible contribution from the

truncation of the autocorrelation function in the line-of-sight direction, A" (kt,kg) is

determined by:

. PSD’ (k,,k
A (kt’ke)= — AiA_lf é)'

where At is the transverse spacing and A/ is the LOS spacing. Using the expression for
A (kt,ké). a computational “correction” to each LOS frequency may be made to account for

the windowing effect but such computation is prohibitively intensive. Instead, the following
approximate scheme was devised.
1 ¢k 2
Since by construction, — Mt IH (k)| dk =1, the convolution theorem requires
NAt ~kny,
+2 *
z ZA (kt,k4)=02. Observation of A (kt,kg) indicates that the major sampling effect
ke ke
occurs for the PSD(kt,kL;) at the extrema k, = 0. This observation is illustrated in Figure A2
which shows a “theoretical” transverse PSD with k, =0 versus a 512 point PSD “corrected”, as

described above, for truncation of the autocorrelation function. The plot has the same input
parameters previously given for 50.6 km altitude. The one-dimensional high frequency
spectral slope is (S) = -5/3, 62 = 8.34 x 1074, L, = 32.9 km, and the transverse spacing = 0.1
km. The plot indicates that the “corrected” PSD closely follows the “theoretical” PSD for all
the discrete frequencies except the zero frequency. To avoid the time-consuming convolution
integral, an approximation was developed that modified the PSD(k;.k;) at k; =0. The

approximation was devised from the following reasoning. We wish the variance of our
simulation to equal a given value o2 but the actual value of the “uncorrected” simulated
PSD, (k;. ;)

variance is equal to Z ZAz(kt,kg), where AZ = o

ke kg
two-dimensional theoretical model with aliasing in the k, direction:

. and where PSD, (k;.k,) is the
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PSD, (k;.k;) = PSD (k. key) + PSD (I, 2keyy, ~ K, |+ PSD ke 2y, +1c,)
+ PSD(kt,4kNYZ —ke) + PSD(kt,4kNY[ ~ké) +

Thus, we wish to find a modified approximate value, A, such that the theoretical variance, otz,

is: o2 =Z ZAz(kt,ke). As noted, with the extrema at k, =0, we set A(0,k,) by the linear
ke Ky
interpolation relation: A(0,k,)=gA(0,k,)+(1-g) A(k,=;.k, ). where k., is the first non-zero

LOS frequency value and we set all other A(k,,k,)= A(k,.k,). Then it follows:
k¢ 20

t2=2(gA (O.Fc, )+ (1-g) A (k= 1»kz) Z ZA (Fep Feg).
)

kiso Ky

Expanding, we find a quadratic expression for g, which is:

0= 922( (0cg) + A% (Iepayler) - 24(0kc,) A ey )

+g Z(QA(Oyke) Alkey k) -24° (kt=1’ké))

L
Figure A3 illustrates the computation of g on a log-log plot of g versus —<t. The plot shows a
At

near power law relationship between g and —<t,
At
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Figure A2. "Theoretical" Transverse PSD Versus a 512 Point PSD "Corrected"” for
Truncation of the Autocorrelation Function. The plot has the same input para-
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spectral slope is (S) = -5/3, 62 = 8.34 x 1074, L, = 32.9 km and, transverse

spacing = 0.1 km.
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