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Abstract 

Nonlinear scalespace should be based on a hierarchical statistical model of the image 
intensity function. This model should contain an explicit representation of the multiscale 
structure of edges and corners. Using this model we can have a non-ad-hoc basis for com- 
puting the parameters we need to determine how much smoothing we should do at points 
that appear to be edge points. We also have a basis for computing the apparent error in our 
scalespace calculations. 

Hierarchical statistical modeling is a technique that can be applied to other problems 
in low-level vision, but in this introductory paper we just present the application of our 
scalespace theory to image smoothing. 
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1     Introduction: The Multiresolution Structure of Images 

For a long time vision researchers have been aware of the significance of the multiresolution 
structure of images [4, 7, 12, 13, 18-20, 22] for describing visual data and for solving vision 
problems via multigrid techniques. The vertebrate retina has a pyramidal multiscale struc- 
ture [16]. Multiresolution representations are important because images generally contain 
many features of many different sizes and a coarse-level description of an image can help us 
make better sense of a fine-level description and vice versa. 

The most popular scalespace is the Gaussian linear scalespace. Let / : Rn H-+ R be the 
original signal. Then we define 

f(x,a) = Ga*f(x) (1) 

where * means convolution and thus 

J*L{x) = Jj(x-y)L(y)dy (2) 

and G, is the standard Gaussian kernel of width a: Ga{x) = (27r<72)-™/2e ^ where ||£|| is 
the length of the vector x. 

This scalespace has many nice mathematical properties [1, 6, 9, 11, 17, 25]. There are 
theorems characterizing the Gaussian linear scalespace by the fact that it is the unique 
scalespace such that: 

1. It is defined by convolution with a smoothing kernel and thus there is no preferred 
position as there would be if we did different amounts of smoothing at different points. 
We also assume isotropy so that the same amount of smoothing is done in all directions. 
We assume the smoothing operation is linear to simplify calculation. (In the Gaussian 
case, G is the smoothing kernel.) 

2. The smoothing kernel varies as a function of the two variables a, which we think of as 
the scale variable, and x, which we think of as a position variable. This kernel must 
be continuous with respect to both scale and position. 

3. Our scalespace also should not create new structure at coarse scale that cannot be 
traced back to its origin at fine scale. Structure can mean different things, but it 
generally means edges and thus every coarse scale edge should be capable of being 
traced back to a fine scale edge. 

(Actually the uniqueness here of the Gaussian kernel is modulo reparameterization of 
the scale and position variables of the kernel. If we use Qa{x) = Gai(2x) in place of G, 
nothing essential changes.) However, this Gaussian scalespace leads to excessive blurring of 
discontinuities at coarse scales and consequently to the mislocalization of edges at coarse 
scales [15]. The basic problem is that nearby edges can interfere with each other and the 
solution is to blur less at points that appear to be edge points. [3] suggests that if we use a 
nonlinear multiscale representation rather than a linear one, we need to know the image at 
fewer scales in order to know the essential structure of the image. 



Many nonlinear scalespaces have been defined [5, 14, 15, 23]. They are best described 
using a diffusion equation. By differentiation one can see that the usual scale space satisfies 
the diffusion equation 

l-V.V/. (3) 

Here V represents the gradient and thus V • V is the Laplacian. Usually the Gaussian 
scalespace is presented with a slightly different parameterization of the scale variable but 
we choose the parameterization that will make sense of what we will describe in subsequent 
sections. Lindeberg [8] defines a discrete scalespace for signals defined on a grid by replacing 
the Laplacian on the right-hand side of (3) with a discrete approximation. 

A natural way to obtain a nonlinear scalespace is to change the right-hand side of the 
diffusion equation to V • c(x, a)V/. In the linear case, c(x, a) = a but in general c can be a 
function of V/, the local measure of how much of a barrier there should be to blurring and 
thus the amount of blurring varies from position to position, or we might make c a function 
of a more general measure g(H * V/) of the barrier to blurring. Here H is a blurring kernel. 
Fairly good results seem to be obtained using these nonlinear scalespaces: edges are much 
better localized [15, 23]. A problem remains of how best to choose g or H. Usually g will 
depend on a few parameters and we will need to use some global image statistics to find out 
a likely good set of values for the parameters. Indeed different g's seem good for different 
images [15] and the problem remains how to get a good g. If we could derive the g in a non- 
ad-hoc way from an explicit statistical model of / as a function of scale and position, then 
maybe we could use that statistical model for other purposes such as obtaining estimates of 
the error in our scalespace function and the error measure would tell us which zero crossings 
of the Laplacian or other operator of interest are worth paying attention to. 

Before we discuss our nonlinear scalespace and the statistical model underlying it, we 
will need to present yet another justification of the usual Gaussian scalespace. We use a 
hierarchical statistical model to justify the preference for the Gaussian kernel. Our scalespace 
is obtained via a nonlinear generalization of the linear statistical model. 

2    Linear Scalespace 

We will explain the basic idea of hierarchical statistical modeling and then apply it to linear 
scalespace. The observed signal can contain features of all sizes and thus we should think of 
the observed signal as being generated by somehow combining the features generated at each 
scale. Thus at each scale there is an image that contains only the features of that particular 
scale. But what we usually mean when we refer to the image at a particular scale, a, is not 
just the image of features generated at that particular scale but rather an image from which 
all features of scale smaller than a have been removed. 

We have to say how the image of features generated at a particular scale is in fact 
constructed. To say that a feature is of a particular size, a or particular scale is to say that to 
understand the feature we need only look in a limited region of size u; in the multidimensional 
case if the region of interest is spherical, the size of the region is measured by its radius, but 
in any case there is some connection between the size of the region and a. 



The image of features of a particular scale is not generated globally in one fell swoop. 
Each feature is generated locally. This suggests that we should think of this global image of 
features of a particular scale being generated by combining various locally generated images, 
one image for each feature. If we are lucky, when we can localize each feature in the global 
image and say of any such feature that it is of size a and its generation began at some point 
x, we associate the feature with the point at which its generation began. In our situation, 
the points in question will be centers of the spherical region of interest associated with each 
feature. Thus associated with each point and each scale is a local image containing the 
features of the given scale whose generation began at the point in question. If there are no 
such features, we have a trivial local image at that point and scale. 

The local features are the ingredients out of which the global and more complex image 
is constructed. We want the local features to be simple to ease our computation. In the 
simple linear case, the various local features have to be combined to form the global image by 
weighted addition. Later we will have to employ nonlinear combination of features. In the 
simplest case, the local features should be very simple, simple step functions with at most 
one nonzero step and that step should have a simple region of support such as a sphere. 

Assume we have a model whereby a global image can be constructed from local features. 
Since many different possible local features can be generated at each point and scale, we 
can construct many different global images with this model and in general we will not have 
enough information to recover all the local features given the global image at scale 0. We 
can say certain global images are such that we are more likely to see them than other global 
images. This is because certain features are more likely to arise at certain scales and positions 
than are other features. Thus even if given the global observed image we cannot recover all 
the local features and moreover cannot recover the global image at a given scale a from the 
global image at some scale r < a, we can at least recover some statistical information about 
the global image at coarse scale that we wish to recover. We might recover the expected 
value of the coarse global image. Since there is not enough information in general to recover 
the actual coarse scale, we know our expected value estimate will usually be in error. We 
can compute the mean square error of our estimate. 

Having presented that intuition that has been guiding us, we are now ready to present 
formally our statistical model. We will reinterpret the usual Gaussian scalespace using our 
linear hierarchical model; actually we will derive the diffusion equation. 

Let / be the observed signal. We assume / is generated via a linear combination of the 
signals ha generated at each scale. For simplicity, we would like the linear combination to 
be a sum, 

f = Jhada. (4) 

In principle the integration should run from zero to infinity; in reality information about very 
small and very large scale signals is not obtainable and thus the limits of integration will run 
from e, which is about pixel size, to some upper limit which is of the order of magnitude of 
the size of the image. Thus we will write 

>-/^*"" (5) 



and assume k approximately equal to 1 for the scales of interest.  We use the inverse of k 
in the equation in order to make it easier for us later on to interpret k as a measure of the 
obstacle to smoothing, the bigger the k the bigger the obstacle. 

The signal at scale a is obtained by summing the components generated at any scale not 
less than a: 

r°°    1 
/(f'a) = X   ~kMK{*)da- (6) 

In reality the observed signal / is not f(x, 0) but rather f(x, 1) if the pixel size is 1. To say 
more we have to describe where h comes from. 

Since there is no preferred position, at each scale the h must be generated as sums of 
signals generated at each point: 

K = I K,sdx. (7) 
Each local signal haß is a step function—a piecewise constant function with at most one 
nonzero piece and that piece because of isotropy should be a sphere of radius a centered 
around x. 

We need only specify how big the signal is on this piece. The size w of the signal on 
this piece should be a stochastic random variable. Since we will assume that the various 
local features and hence the IO'S of the different local features are generated independently, 
it does not matter very much what the statistics of the tu's are; we will be integrating a 
number of independent random variables and by the central limit theorem if we sum up 
enough independent random variables, the sum will have a nearly normal distribution. Thus 
we might as well assume the various to's to have normal distributions to begin with. To 
simplify computation and analysis, we assume all these normal distributions of the w's have 
zero mean. All we need to know is the variances of the tu's. 

Write v(a) for the function that describes how the variance of the u>'s changes with 
the scale. There is no position dependence because there is no preferred position. The 
dependence of variance on scale is also easy to compute. The amount of variance generated 
between two scales should depend only on the ratio of the scales. The reason for this is 
that it is the ratio that remains invariant if we change the measure of length. It should not 
matter whether length is measured in inches, centimeters, or versts. The variance of a sum 
of independent signals is the sum of the variances. Hence the amount, Q, of variance in / 
generated between scales u\ and <72 at point x is given by 

Q = £ j v(a)dyda. (8) 

Here the second integral is taken over the sphere of radius a centered on x. Q will only 
depend on the ratio of the scales a1,a2. To insure that requirement, we will need that v 
be inversely proportional to <rn+1. In that case Q is really some constant times the integral 
j -z^-da and depends only on the difference in the logarithms of the two scales and thus 
depends only on the ratio of scales. 

In summary our underlying assumptions are: 

1. The global signal OBSERVED at any given scale a is a combination of the features gen- 
erated at any scale r > a and thus is a combination of the global signals GENERATED 
at scales r > a. 



2. The global signal generated at any given scale is a combination of elementary signals 
generated at that scale and originating at any point. 

3. The different elementary signals are generated by independent stochastic processes. 

4. Because there is no preferred position, at any given scale, the different stochastic 
processes, although they may be independent, have identical distributions. (They are 

generated in exactly the same way.) 

5. All the operations of combining are operations of weighted addition. 

6. For the scales of primary interest to us, the weights are all equal to 1. 

7. The fraction of the variance of the observed signal that can be expected to be generated 
between any two scales <7i,<72 depends only on the ratio of the two scales assuming we 

can apply assumption 6. 

8. The elementary signals are step functions with at most one nonzero piece. Since there 
is no preferred orientation, the region of support of the signal is a sphere whose radius 

is the scale of the elementary signal. 

In the nonlinear case we will have to give up one or all of 5, 6, 7, 8. 

Our task now is: given the observed signal at scale 1 which satisfies the above assump- 
tions, recover some statistical information about the signal at other scales. This task is made 
easier by the fact that we have a kind of Markovian property: if we want to estimate the 
signal at scale a and we only have complete information about the signal at all the scales 
less than or equal to r < a and we are given no information about other scales, then actually 
if all we care about is / at scale <r, it suffices to throw away all the data except / at scale r. 

Indeed by linearity, to know the mean value of the signal at scale a it is enough to know 
the mean value at scale r. In the case where statistics are Gaussian, the mean is especially 
significant because it is also the most likely value as well as the median value. So let us try to 
estimate the mean value of / at all scales given only the signal at scale 1. By the Markovian 
condition, to estimate the signal at scale <r, we need only know the signal at scale a - da. 

Thus we have a diffusion equation 
d-l =7 (9) 
da     " 

A simple calculation will show that the right-hand side is a V2/- We treat in detail the one 

dimensional case. 

Let us discretize space with grid size dx where dx is small. We also assume da small and 
finite. In fact, to make things easy for ourselves let us choose the unit of length and the 
discretization so that dx = da = 1. Thus 1 is no longer necessarily the size of a pixel. To 
estimate the mean of |f, we will estimate the mean of the h^y that are nonzero at x and 
then add. This works because df is formed by addition of those local features. 

The only reasonable way to estimate the means of the /i's using the information at scale 
approximately a is to use the information in the partial derivatives of / with respect to 



space.   Thus |^ evaluated at scale a and point x can be written as an integral (which is 
really a sum because we are discretizing). 

— = I    h,x+dx+a(x) - ha,x-a(x)da. (10) 

This can be verified by seeing which h's contribute to f(a, x + dx) and not to f(cr, x) and 
vice versa. 

When dx is small, we can use the approximation 

h<7,x+dx+a =~ <^a,x+a- \^   / 

If we recall that the h's are independent and that we know their variances, we get an estimate 
of the size of hc,x+c from knowledge of the size of gf. 

From our discussion of how the variance v varies with the scale, we see that the contri- 
bution of scale T to the variance of / ha^x+(7da is proportional to r~2 and 

Ja 
dr = 1/(7 (12) 

while the variance at scale a contributes an amount proportional to 1/a2. Thus we can 
see that 1/a of the variance is contributed at the scale of interest (namely a) if da = 1. 
(Otherwise the fraction of the variance contributed at that scale is ^f.) We have the estimate 

ha,x+a - Kp-o = I/O" * — (13) 

at point x, or to estimate only one of the h's: 

df 
K,x+a = l/2*l/a*-^. (14) 

This last equation follows because half of the variance in the difference of the independent 
h's is contributed by each h. If we also use the information at x + 2 * a we would get the 
estimate 

ha,x+a = 1/2 * 1/a * (£(x) - -£{x + 2 * a)). (15) 

The reason we add the estimate from the data at x + 2 * a to the one from the data at x is 
that if we invert our linear model, which gives us the / values at all different scales as a linear 
function of the h's and thus gives the spatial derivatives at all different scales and positions 
as a linear function of the h's, we obtain a formula of the form h = z1z(x) + z2z(x + 2*a)-\  
where z stands for the spatial derivative at a point and the z1,z2 are coefficients. 

Our formula (15) is translation-invariant so it can be used to estimate any ha and in 
particular to estimate any KtX+T with r less than or equal to a. What we want is 

da 
[a K!X+T(x)dr = 1/2 * 1/a * f      Df(x) - Df(x + 2 * a)dx (16) 

J—a Jx—2*a 



where D represent the spatial differentiation operation. But 

l/2*l/o-* T     Df(x) - Df{x + 2 * a)dx = -1/2 * I/o * ^4 (17) 

where the second difference quotient is taken with grid size 2 * a. 

Next we will use a trick to enable us to compute the signal at scale a + 8a knowing the 
signal at o. By the Markov property, we can divide the step from a to o + 8a into small 
pieces of equal size. Thus let us try to compute f(x,a + mda) by applying an operator Jm,u 
to / at scale a with m large and da very small. The J operator applied to a signal at fine 
scale produces the signal at coarse scale. Of course the value of the signal at point x and 
coarse scale depends not only on the value of the signal at point x and fine scale but also on 
the value of the signal at other points. 

We just saw in (17) that J is linear and in fact a convolution. If we are dealing with 
small enough increments, Ji}<r+rda with r < m is almost the same function for all the dif- 
ferent r and we can write Jm - Jx

m because Jm is obtained by iterative application of the 
different Ji,a+rda- Here we have written Jm,Ji when the scale subscript is understood to 
approximately equal a. 

Let the operator Jm be convolution by the kernel jm. Just as there is a central limit 
theorem that says that the sum of a large number of independent observations has asymp- 
totically Gaussian distribution, there is also a related theorem saying that if we have a kernel 
j that is normalized to integrate to 1 and convolve it with itself a large number of times 
we approach Gaussianness. The theorem is easy to prove if we contemplate the fact that if 
the probability distribution of the results of one independent experiment is given by j, then 
the sum of the results of m independent experiments is given by j convolved with itself m 
times [21]. We note that jm = ji * ji * ji * • • -(m ji's) approximately. The normalization to 
make j a probability distribution is a technical trick; we can always apply the theorem to 
-r^-—. What is important that the exact shape of j does not matter and does not greatly 

affect j * j * j * • • • if the number of convolutions is large. Letting / represent the identity 
operator, we can thus replace Jx = I + da * 1/2 * I/o * A2 where the difference quotient has 
grid size 2 * a by the expression I + da * o * A2 with unit grid size. We are free to perform 
the replacement because the mean and variance of the associated convolving kernel are not 
changed thereby. By the theorem about repeated convolutions approaching Gaussianness, 
only the mean and variance matter. A slight manipulation of this result will give us that 
the change in signal divided by the change in scale is a * A2. This does employ unit scale 
dimension grid size. But the only significance of unit length up to this point is that the scale 
dimension is measured in such a way that it is discretized with unit grid. To compute the 
needed spatial derivatives the size of the spatial grid must be unit or less. But we can always 
change the unit of length in such a way as to make it increasingly smaller and approach the 
infinitesimal. In the limit we get the desired diffusion equation. 

Notice that if we carefully count the variance components we get not only an estimate of 
the mean size of f£ but also a variance estimate that will tell us how much our estimate is 
in error. If da - dx = 1 is small, let p be our estimate of the mean value of the derivative of 
/ with respect to scale and v be the fraction of the variance of \i that is explained by error. 
(Thus the estimate actually should be written (l±i/1/2)*/z.) Since only I/o of the components 



of the spatial derivative a/^ are generated at scale a we will have v = 1 - 1/a and we can 
actually show that more generally the error in estimating the signal at scale a + Aa given / at 
a is approximately (1 - 1/<T)

A
* = ((1 - l/a)a)Aa/a. Here by the error we mean the fraction 

of the variance caused by error and this estimate is computed using discretized scale and 
space dimensions with grid size da = dx = 1. As the size of the grid becomes infinitesimal, 
a/dx approaches infinity and thus using the result that ex = lim^oo (1 + l/n)nx an error 
ratio is obtained of e~^ for the case where dx = da is truly infinitesimal. Thus the real 
Gaussian linear scalespace should have the equation 

/(x, a + Aa)- f{x, a) = (GA<7 * f(x, a) - f(x, a))(l ±e~^). (18) 

If Aa is small, we are essentially computing a derivative. We expect derivatives to be hard 
to compute. Therefore, we are not surprised by the large relative error in this case. If 
ACT is large, we are estimating a difference between signals at very different scales and we 
have a much smaller relative error. It is standard that if we average a large number of 
noisy derivatives, we get a difference that is much easier to estimate because the errors in 
estimation of the derivatives cancel. 

We could also compute the effects of quantization and gridding and the finite size of 
images. All these give us clues as to what thresholds to use when we are looking for important 
information. We do not actually implement all these error measures in this paper because we 
are really interested in the more complicated nonlinear, nonhomogeneous, nonisotropic case, 
but we do want to emphasize they might be of some use in a rigorous theory of scalespace 
error that does not merely study what happens with two or three ideal edges corrupted by 
independent Gaussian noise. 

The hierarchical model described in this section can be considered an extension of the 
multiscale autoregressive model discussed in [2, 10]. But we allow the set of scales to be 
continuous rather than restricted to powers of 2 and allow for a much finer sampling at coarse 
scales of the function being generated. Our model is also much more naturally extendible to 
the nonlinear case. 

3    Nonlinear Scalespace 

In all of the previous section, we were assuming that k = 1 in the region of interest. If k 
were not 1, the diffusion equation would have to be slightly modified. We would have the 
equation 

<*L = z.?J- (i9) 
da k dx2 

in the one-dimensional case. More generally k could vary with position thus reflecting that 
certain parts of the image have more information at a certain scale then other parts of the 
image. We might also want k to vary with orientation because at any given position and 
scale the image is smoother in some directions than in others. Thus we would have the 
diffusion equation 

?L = Y-^- (20) 
da     ^kdxi2' 

8 



Here the subscripts represent the different possible directions. The demonstration of this 
is routine given the previous results: we just have replaced certain sums by weighted sums 
where the weights are l/k. 

We can give a natural interpretation of the case where k is greater than 1. That represents 

the situation where there is an obstacle to smoothing. A perfect obstacle would occur when 
k was infinity while k between 1 and infinity would represent a partial obstacle or a partial 
edge. Values of k less than one are harder to interpret, but we wish to allow k to be very 
small so that in very smooth regions we smooth a lot more than average. Thus k represents 
the interaction of two effects: one effect is that sharp edges will results in big Ar's. The second 
is that k can vary because certain regions of an image or certain scales of an image are more 
prominent than others. If there is a large amount of signal at some scale r and very little 
signal at the scales between r and r + ST, then we need to smooth a lot at scale r. We can 
reflect this in our model by appropriate choice of k. 

We will modify our hierarchical model to allow for edges and k being bigger than 1. 
We note that in our model edges (and later corners) are part of the model, part of the 
representation and not just features that can be computed given the representation. It 
is not a real-world fact whether or not edges are part of the representation or are simply 
features. We do things in the way we find most convenient. To model the statistics of 
the /-field (the field of image intensity values), we need to introduce an edge-field as an 
intermediate variable. To model the edges better we need to introduce corners. 

We need to modify our model of the /-field because the linearity assumptions are unre- 
alistic and so are the Gaussianness assumptions. We, to be sure, could still use the linear 
model if we had some easy way to know what k should be at each scale and position and ori- 
entation. But we do not and thus will have to resort to nonlinearity to construct a diffusion 

equation with the appropriate k values. 

We modify the model of the /-field by changing the definition of the basic functions h. 
They can no longer simply be step functions. In the linear case we can think of the elementary 
function hag starting out by giving the point x some value and then that value diffuses out 
from that central point until it hits the boundary of the sphere of radius a centered on x. In 
the nonlinear case there are obstacles or boundaries or edges that inhibit the diffusion and 
thus as we move out from the center the signal gets attenuated. The fundamental idea here 
is that an elementary signal can not diffuse across a true edge and can only partially diffuse 
across a partial edge or partial boundary. Thus if c represents the central value, we have 

K,s = a<r,x c (21) 

where a^^ is an attenuation function we need to define. 

We know this function equals 1 at the center of the sphere of support. We will define 
the function a^g by showing how it changes with position. Thus we are interested in the 
derivatives of aaj with respect to space. Change in the quantity a should be due to some 
objective feature of a point, namely, the degree to which the point is an edge pixel and thus 
all attenuation functions will be affected in the same way when they hit an edge in their 
attempt to diffuse outward from the center of their zone of support. Now if the effect of a 
true edge is to prevent any smoothing across the edge, the effect of a partial edge is to allow 
some fraction of a signal to diffuse from one side of the edge to the other. This is a kind of 



"linearity" assumption that the partial edge attenuates all signals by some constant fraction 
and this assumption simplifies the mathematics because it allows us to change the units in 
which /, which could be light intensity, is measured and not change anything significant. 
Thus we have seen what should be invariant would be the ratio of the values of the function 
a on the two sides of the edge or the difference between the values of the logarithms on the 

two sides of the edges. Hence we have the equation 

01ogq„g(y)=_y.--*,-    ,   ^ (22) 

% \y%-Xi\ 

The term in ,y''~*'. is necessary because the derivative should be with respect to the distance 
between yi and x\. Here Xi matters because it is the center of the nonzero region of the basic 
signal haß. It is significant that the obstacle field o does not vary with x because 6 as we 
have mentioned earlier is an intrinsic feature that measures how much of an edge a point 

might be. 

The last equation that we wrote is something that ideally we would like to be true of the 
obstacle field o, but there are certain consistency conditions we have to worry about. The 
problem can be seen if there is a partial corner. The elementary signal is trying to diffuse to 
the Northwest. If it diffuses first North for some distance and then West, it might have to 
diffuse across a strong North boundary and then a strong West boundary and wind up very 
much attenuated before it reaches a certain point of interest to the Northwest. But it might 
be able to travel to the same point by another route whereby it only hits weak boundaries 
and thus is not that much attenuated. We thus have to modify the equation for the obstacle 
field or the meaning of the attenuation field. Or we can just assume we do not run into the 
problem of the path dependence of the attenuation field. This is saying that the obstacle 

field is not and cannot be arbitrary. 

What we actually do is smooth one dimension at a time and compute the obstacle field one 
dimension at a time so that again path dependence does not matter. But we are implicitly 
assuming that the obstacle field has a special character. The field would have this special 
character if it were the gradient of a scalar field. If it did not have this special character, 
we would have to use somewhat different equations, but we assume that the algorithm we 

actually use will work anyway. 

Knowing the statistics of the obstacle field, we know all we need to know in order to 
determine the statistics of the signal. Estimation of coarse level signals given fine level 
signals is now much harder. We can no longer rely on Gaussianness and linearity. The mean 
value no longer need be the most likely value. It is still the easiest thing to estimate; thus 
we will try to recover this value anyway. Since we want a local diffusion equation we assume 
it is legitimate to use a diffusion equation that is the same as the standard equation except 

for the weightings of the second derivatives by k{. 

Actually, since we are working with discrete data and edges can be rather thin, it is 
important even in one dimension that there can be a much greater obstacle to smoothing on 
one side rather than another of some pixel. And if k measures the obstacle to smoothing, we 
now need two fc's to measure the obstacle on each side of the pixel. So instead of working 
with f A? to smooth in direction i, we will instead use ffAf - -^A~ where A+ and A" 

represent forward and backward difference quotients respectively in the direction i.   This 
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expression reduces to what we had before if the two &'s are the same. Of course, there 
should be some redundancy here; the k+ at pixel 8 should be the same as the k~ at pixel 9. 

3.1    Some Details of Implementation or How We Determine k in Practice 

The problem is to determine k. One image really does not provide enough information to 
allow us to come up with a reasonable probability distribution for k. Since we can only get 
a certain amount of information about k anyway from an image, we wanted to see in this 
preliminary investigation how far we could go using only a few assumptions. One simple 
assumption is that the difference quotients of / with respect to scale have a Gaussian a priori 
distribution. This assumption is true in the linear case (according to our model) and we 
want to stay as close to that situation as possible. 

More generally we would have to transform the /-field before we could apply the Gaus- 
sianness assumption and the problem would be finding the right transform. Thus perhaps 
there is some operator Z that can be applied to the / so that the derivatives of Z(f) with 
respect to scale are a priori Gaussian. This operator cannot just be a linear operation such 
as convolution but something more complex. 

Another assumption is that fc's depend only on difference quotients with respect to space, 
M. 

The problem is we do not know which difference quotients should be used. The central 
limit theorem trick we used in the linear case will not work here and in fact it is not surprising 
that if we want to obtain information about phenomena of size a it is difficult to get accurate 
answers using strictly local information. Our attempts to find a strictly local computation 

of k failed. Another thing that we tried and that also failed is 

1. at scale 1, estimate k; 

2. find some locally computable Gaussian variable t that is a function of k (i.e. some- 
how we apply some locally computable nonlinear operator to the &-field and obtain a 

variable with Gaussian a priori statistics); 

3. smooth t (which is really t at scale 1) to obtain t at coarse scale; 

4. apply some locally computable inverse transform to coarse scale t to get k at coarse 

scale. 

The problem with this approach is that there is some nonGaussianness that is irreducibly 
nonlocal and our results with this approach were not that much better than linear smooth- 
ing. The approach is justified by our theory that everything should reduce to the linear 
Gaussianness case. This approach says instead of modeling k or rather modeling o, the 
obstacle field, which determines k and which is highly nonGaussian, all we need model is a 
field t that satisfies the linear Gaussian hierarchical statistical model we described in the last 
section and a transformation function T which lets us obtain o given t (not a statistical model 
of the transformation but one single transformation function which can vary with scale in 
some systematic way but should not vary from image to image). Unfortunately we do not 
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know the transformation function; the transformation function w induces a transformation 
function from k to t which is difficult to compute strictly locally. 

To return to describing the procedure we actually did follow: An additional assumption 
we have made to facilitate our calculations is that the fcj's can be determined separately 
in each direction and to determine the k at scale a we need a histogram of A; with grid 
size a. Big gradients should mean little smoothing and small gradients should mean much 
smoothing. 

We describe our procedure more precisely: 
Assume we wish to determine k; we do that indirectly by first determining the desired change 
C = x^- or more exactly the amount of change that should be desired when all we know is 
that the first spatial difference quotient of / in a particular orientation (x or y) and direction 
(forward or backward) has a certain value . Thus we need a formula telling us how much 
smoothing of the /-field we need to do when we see a certain value in a certain spatial 
derivative. 

We write 

k = ^, (23) 

which is just another way of writing the diffusion equation. Here we have omitted to write 
the subscripts and superscripts indicating orientation and whether forward or backward 
differences are used. We need to determine k and not just C. Although all we ultimately 
need to estimate is C, in order to implement corners, we will need to obtain and smooth k. 

We have indicated that C should be locally computable and in fact computable from the 
first spatial differences of /. To compute C, we need a transformation function that goes 
from the histogram of first differences Df to the desired Gaussian histogram of C. We want 
to actually compute histograms because when we do not know the desired function from Df 
to C, rank information is relatively easy to use and can allow us to compute with a fairly 
simple algorithm quite complex functions from Df to C. 

We want the histogram of C to have zero mean in order to simplify calculations. The 
average difference between the coarse and the fine scale signal should be zero. Because 
of symmetry considerations and problems that can arise with division by zero, we need the 
histogram of Df to have zero median (this will make it easy for zero values of Df to transform 
to zero values of C); we, therefore, preprocess the image to insure that this happens. This 
involves subtracting a linear function from /. (We will have to subtract some constant from 
all the Dfs.) This subtraction has the desirable effect of protecting us from the effect of 
global lighting conditions. We assume all our models apply to the preprocessed image rather 
than the original image. 

We next require that the transformation from Df to C be symmetric so if d transforms 
to c then — d goes to -c. Thus we really use a histogram of the absolute value of Df. 

The most typical value of this histogram is the standard deviation sd and the most 
typical points have Df = sd. Points with bigger difference quotient than sd will tend to be 
edge points and they should transform to points in the histogram of C with small values. 
Points with difference quotient smaller than sd should transform to points with small change 
because there is not a large enough gradient to justify a big change. 
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The simplest transformation satisfying these two conditions is piecewise monotonic with 
two pieces (four pieces if we consider both negative and positive difference quotients.). 

To say more we need to define the variance of C, which we know should have zero mean. 

(We need to know exactly which Gaussian histogram we are transforming to when we map 

from the histogram of first differences to the histogram of desired changes.) The variance of 

the C's should be the same as that of <rf£ * da if we are using the diffusion equation with k 
everywhere approximately equal to 1. This follows from the fact that in one dimension the 
difference quotient of / with respect to scale is computed as a difference of two expressions of 
the form fj-A-7'/ where j represents whether forward or backward differences are taken. We 
are computing the change due to one of the expressions and assuming (not for the purpose 
of computing the k or the desired change at each point but just for the purpose of computing 
the variance of C) that k = 1 or is at most points close enough to 1 to allow us to use this 
approximation when computing the desired variance of C. 

Now we can write the simple formula for the desired transformation u. We really are 
interested in the transformation from the positive part of the histogram of Df to the positive 
part of the histogram of C. We work with percentiles of the positive histograms. Thus u 
maps from a percentile to a percentile. Let ip be the percentage of points of the positive 

histogram of Df that are less than sd. Then the transformation is 

|   ll£ if p < -0 
w(/,) = \ioo-(^^i), */>>* (24) 

This is a complex transformation but is the simplest transformation that is monotonicly 
increasing for small values and monotonicly decreasing for large values. We tried working 
with a strictly monotonic transformation, but the result was edges were insufficiently sharp 

even though some of the fc's at edge points were quite large. 

To implement the histogram transformation we need to be able to compute the histogram 
of Df when scale is a fraction and grid size is a fraction. First we need to define / at 
nonintegral values of x which is easily done through linear interpolation. The justification 
for using the linear interpolation is that the linear scalespace could also be obtained by solving 
the variational condition of minimizing f(f(a + da) - f{a)f + <r(Vffdx given the observed 
values of / at scale a and solving this condition requires that we use linear interpolation 
to obtain / at fractional positions. The argument from the hierarchical model is somewhat 

more complex. 

Next we need to know at which values do we actually compute Df. The answer is we 
are only interested in first differences of the form fix + .5 + .5 * a) - f(x + .5 - .5 * a). This 
is the region of length a centered at the boundary between two neighboring pixels. One 
additional problem is points being too close to the border of the image. We cannot compute 
a Df centered around such points. For the purpose of computing the transform from Df to 
C we ignore such points (otherwise we would have problems with double counting the same 
data.). For the purpose of computing k at such a border point x, we first find the nearest 
nonborder point y where we have no trouble computing C(y) and use C(y) and the first 
difference at y to compute k at x. Here we are using C{y) to represent the desired change at 
point y. Thus if the scale is 10, we cannot compute a central difference in the x coordinate 
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with center (3.5, 32).   The nearest central difference we can compute is the one centered 
around (5.5, 32) and that is the one we need to use. 

As usual with histogram transformations we use binning (i.e. we only directly transform 
some of the values from Df to C and the rest of the function is computed through linear 
interpolation). Thus we only directly compute the transform for values of Df that are at 
the middle of bins. We bin in order to lessen computation and increase resistance to noise. 
Provided certain constraints are enforced about allowing a maximum number of pixels in 
each bin, the results are not very sensitive to details of adaptive histogram computation. 
There is one problem: What to do with very large D/; there is a largest bin and depending 
on exactly how we set certain limits the value of k at points where the gradient is large can 
vary greatly. This does not much affect the final image but it does affect the interpretation 
of the &-field and interferes with the smoothing of edges by the corner operator. 

3.2    On Computational Complexity 

We have not done all we could to optimize the speed of our calculations. We have after 
all described a computationally very intensive algorithm particularly if we solve the diffu- 
sion equation by brute force methods. Things are not quite so bad as that. There are 
approximations that work well under the assumption that k varies slowly with scale. If k 
is actually constant we obtain Lindeberg's scalespace [8]. If k varies with position and not 
scale or varies slowly with scale we approximate by first doing linear interpolation at the 
finest scale to make our signal continuous and then apply a change of parameterization to 
the spatial variables in order to make k = 1 everywhere and then we just have ordinary 
Gaussian scalespace which is easy to compute. Of course, to get usable results we eventually 
have to invert the transformation that reparameterized the spatial coordinates. A variant 
of this which will work in the discretized case just uses the smoothing kernel of Lindeberg 
and the reparameterization discussed above. In fact if we integrate the diffusion equation 
by brute force and we take small enough steps, then provided we renormalize the sum of 
coefficients so that they add up to 1 we do not even have to use the full Lindeberg kernel or 
the full Gaussian smoothing kernel but instead only consider the three biggest coefficients 
and renormalize. 

We could have developed a more efficient way of solving the diffusion equation at some 
cost in accuracy, but our goal in this paper is simply to show that the nonlinear smoothing 
produces useful results and to introduce the hierarchical statistical model underlying it. 

4    On Corners and Insuring the Smoothness of Edges 

Just as we used scalespace to nonlinearly smooth the observed intensity field because intensity 
fields tend to be smooth, we might also want to smooth the edge measures kx, ky. We might 
want to smooth the fc's because edge pixels tend to cluster and thus information about the 
proper k value of a given point can be found by looking at nearby points. Thus if nearby 
points to point P have big k's so might P. However, the effect of this smoothing might be 
to make edges too fuzzy and corners too rounded and indistinct. 
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The k variables are emphatically not Gaussian or near Gaussian in the way the /-field 
might be nearly Gaussian. Thus it is harder to know exactly what smoothing should be 
applied to the it-vector field. In our theory we really have a hierarchical almost Gaussian 
model of some other variable t that gets transformed into o, but we do not know the trans- 
formation and thus do not know t. And since we do not have to work with t directly, we 
ignore trying to find the transformation and instead try to find directly how to smooth k. 
We know the smoothing cannot be linear because we do not want to make edges excessively 
fuzzy. 

In fact, we choose to smooth not k but k which is the same as k except for sign. The 
sign of kx

+ is the same as that of ^ and similarly for ky
+. We do not really have to worry 

about the jfc-'s because they are the same as the k+'s except for being translated one pixel. 
We use signed Jfc's in order for it to be possible for a big positive jump in k to kill a big 
negative jump in k. This will increase the tendency for a step function of size a to in fact 
disappear at a scale approximately equal to a. 

We would like to smooth the components of the k vector exactly in the same way that 
we smoothed the intensity field /. But we cannot rightly do so because of the problem with 
very large Jb's (especially when the exact size of a large k depends on an arbitrary limit) and 
because of the related problem of the extreme nonGaussianness of k. One way to reduce the 
sensitivity to the exact size of large fc's is to take logarithms and then smooth. Of course, 
we cannot really take logarithms because we have signed k. Also there is something slightly 
ad hoc in deciding to suddenly take logarithms here; thus, we would like small fc's to be left 
alone. Thus we define a transformation function 7(7;) such that ^ = 1 if |u| < V0 and |^| 
otherwise. Here V0 is a large constant, large enough so the results are not very sensitive to 
exactly how large the constant is. The threshold V0, however, should be large enough that 
a point having k bigger than the threshold in question is likely to be a point where a sharp 
edge is present. Thus below threshold we have the identity function and above the threshold 
the derivative is the same as it would be if we were keeping the sign and taking the logarithm 
of the unsigned fc's. We would like to smooth 7^) in the same way we smooth / butjn 
that case the corner field values would be determined by computing a difference of j(kx) 
values at different points and comparing to a histogram of similar differences. This is too 
sensitive to point to point variation in k. This variation can be huge because the k field will 
have a different structure than the / field. The fc-field even after it has been transformed 
by 7 is still too noisy and varies too much from point to point for us to get optimal results 
for the corner field. As the scale is increased slightly, edge features or more precisely large 
derivatives of / with respect to position can suddenly appear. This is acceptable. We want 
features of size 10 to suddenly almost disappear at scale 10. What we do not want is that 
they suddenly reappear at scale 10.2. This does not quite happen but if we look at the rate 
of change of f (i.e. sr^—), we can see how there can be a very rapid rate of disappearance of 

^ log C"' 1 1   • 1 1 1 1 
features followed by a very rapid reappearance of features. Visually nothing looks abnormal 
when we look at the smoothed images but computation shows there is an unphysical artifact. 

To prevent the excessive influence of point-to-point variation we need to perform another 
operation before computing histograms. This operation should be a kind of smoothing. 
What we actually do is a kind of addition that allows the differences we compute to be 
influenced by more points than just the two where the difference is being computed. Thus if 
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kx somehow measures the barrier between two adjacent pixels, by adding nearby k values we 
might obtain the barrier between two pixels that are not adjacent. Since kx only measures 
the barrier to homogeneity in the x-direction, we should only add in the x-direction. Actually 
we do not add k values but k values as transformed by 7. The summing transformation is 
simply then &/[i][j] = E'=O7(M(IM) 

anc* we tnen use tne resulting kx* as input to the 
operation of computing histograms of differences and mapping from differences to desired 
changes. Thus we are using differences in the fc/'s to determine how much to smooth the 
Meld. 

Here we have described what we do with the kx\ what we do with the ky is the same 
except the summation is taken in the y-direction. Just as in the process of computing the /- 
field we have to compute the edge-fields, kx, ky, in the process of smoothing the z-direction 
edges we calculate the corner fields bxx, bxy and smoothing the y-direction edges gives us 
byx,byy. We have 

Akx + A+kx A-ks + A+kx A~kx 

A similar equation holds in the ^/-direction. 

4.1    How Corners and Edges Together Affect the Smoothing of the Intensity 
Field 

In this section we summarize our basic smoothing algorithm and show how it uses edge and 
corner information. 

The first step is to use the given intensity data to compute the fc's at scale 1. Then we 
can use these &'s to compute the 6's at scale 1. 

At subsequent iterations, we histogram difference quotients of / in order to get an initial 
estimate of k. We then use the histograms of difference quotients of k or more precisely k 
as transformed by 7 in order to get a new b. Next we use this new b to help us smooth our 
initial estimate of k. Finally the revised k is used to smooth /. 

5    Calculating Results 

There are numerous ways results might be computed that will enable us to compare vari- 
ous smoothing filters. One possibility would be to look for the most interesting points in 
scalespace. These should be the points where the change in / as we change scale (or more 
precisely as we change the logarithm of scale [ratios rather than differences of scales are sig- 
nificant]) is the most significant. We could find these extrema by looking for zero-crossings 
of an operator that takes the second derivative of / with respect to the logarithm of scale. 
The results are too noisy and there are too many extrema with small first derivative. This 
suggests we should at each point P of scalespace take the average of / over a rectangular 
solid in scalespace and then take the second derivative. 

But actually the results are most transparently evident if we simply graph the effect of 
using different filters. We display the first derivative of / with respect to the logarithm of 
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scale. Or more precisely we chart the amount of change in / caused by a small change in 
scale (one step in our iterative algorithm, one small increment in scale) where the size of 
the small changes in scale is an exponential function of scale. There are points that are 
boundaries of features of known size and where we want the / not to change much until we 
reach the scale of approximately the size in question. We do see in the examples below that 
the results for the filter using b and k are better than for the one using just k and the one 
using k is better than the linear filter. We can also visually compare the smoothed images 
produced by the linear and nonlinear filters although there are not very large differences 
between the two nonlinear filters and thus we only display the nonlinearly smoothed images 
produced using both b and k. 

Figure 1: Test images with indicated trace points 

6    Images 

We show in Figure 1 three images to which we applied both linear and nonlinear smoothing 
(Figures 2-4). The two kinds of smoothing are labeled "linear" for linear smoothing and 
"corner" for nonlinear smoothing using both edge and corner features. A number labeling 
an image represents the scale of resolution shown. We have three images: one is a picture 
of a road scene with many small houses, the second is a picture of a house and yard and the 
third is a truncated picture of Albert Einstein. 

We see a very distinct difference between the linear and corner smoothers. We notice 
that the corner smoother does in fact make blurry regions even blurrier than the linear 
smoother (Jfc is very small) and thus it does recognize that some regions are smooth, very 
smooth, but distinct features do become more prominent and this is not because they are 
not smoothed—instead they are smoothed less. 
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Figure 2: Many-houses image, linear and corner smoothing 
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Figure 3: One-house image, linear and corner smoothing 
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Figure 4: Einstein image, linear and corner smoothing 
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7    Graphs of Results 

In this section we display some graphs (Figures 5-7). We display how much the image 
intensity value changes at a particular pixel value as we change scale; this is the derivative of 
intensity with respect to the logarithm of scale. The general result we get is that the graph 
for the linear smoother is in fact very smooth; normally we observe big change at small 
scales, the change becomes less as we increase scale, and sometimes we overshoot and the 
change decreases to zero and then changes sign and then starts decreasing again to zero. We 
show results for two different nonlinear smoothers, one just using k, which we call "edge", 
and the other using both b and k, which as before we call "comer". The graphs for the edge 
and the corner smoother are on the other hand much more peaked, especially is this true 
of the corner smoother, although the corner smoother still needs perfecting because there is 
substantial overshoot and irregularities in the corner curves. The overshoot was significantly 
worse before we decided to apply the summation step to the k* field. It is also interesting to 
note that the threshold we need to use for the 7 logarithmic transform is quite high. Most 
fc's are not changed but very large fc's can cause artifacts and slight changes in how we do 
the binning can affect the size of large fc's. Hence we need to prevent the transformed Fs 
from being too big but most fc's must be kept the same (in fact it is mostly sharp edge points 
that are subject to being changed by the logarithmic transformation. 

Trace point  1 Trace point  2 

linear 
edge 
corner 

linear 
edge 

Figure 5: Many-houses image, df/d log (scale) 

Trace point  1 Trace point  2 

linear 
edge 
corner 

0.6 

0.4 

-0.2 

linear 
edge 

Figure 6: One-house image, df/dlog (scale) 

In all these figures it will be noted that the edge and corner smoother graphs will look 
noisy.   This is true for many reasons.   One is that the change recorded at a given pixel 
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Figure 7: Einstein image, df/d log (scale) 

depends primarily on the nearby features of the appropriate scale and we could be at a point 
with many nearby features of approximately the same scale but different average intensity; 
these features will become prominent at slightly different scales. A more basic reason is 
that, as we explained while justifying the diffusion equation, it is not an exact but a noisy 
equation. In the nonlinear case places of big change can arise because an area which has not 
been much smoothed suddenly is subject to a large amount of smoothing (i.e. the edge has 
begun to disappear). The noise is proportional to the size of the change in intensity. We, 
of course, have further problems, because our estimates of k are imperfect or in the case 
of the corner smoother we are using two noisy diffusion equations. All this is besides the 
main point which is that the nonlinear smoothers cause the sizes of the changes to peak in 
the vicinity of the region where we would expect them to as determined by the size of the 
features in the vicinity of the pixel whose graph is being recorded. 

8     Conclusion 

This is a preliminary investigation into the statistical structure of scalespace. We have 
provided a simple, elegant model that underlies the computation of Gaussian scalespace. 
This model naturally extends to a nonlinear model if there are edges or partial edges which 
act as obstacles or partial obstacles to smoothing. We have not fully solved the problem 
of discovering the underlying nonlinear hierarchical statistical model for a given image, but 
we have obtained some interesting results showing how the resulting nonlinear statistical 
smoothers will in a simple and natural way isolate the scales of interest in the vicinity of a 
given pixel. 

But our primary interest extends beyond the results in this paper. The model we used 
could be modified to allow for only binary edges (but then we would have to estimate the 
probability that a given pixel is an edge and again this is a continuous quantity. We could 
allow for a discretized gridded scalespace where the size of the grid is scale-dependent (how 
finely we can localize features is scale-dependent) or we could extend our model to allow for 
explicit representation of occlusions and transparency or take symmetries into account and 
construct a model that prefers symmetric regions over nonsymmetric regions. Indeed we 
recall that the general statistical technique of hierarchical modeling is just that, a general 
technique, and it should be possible to usefully apply it to any problem to which one might 
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think to apply multigrid or continuous wavelet transform techniques.   We are currently 
researching further applications of the hierarchical statistical paradigm. 

Even the application discussed in this paper can be extended much further. We are 
currently investigating mean field theory approaches to parameter estimation. If we only 
want to estimate the expected value of a quantity, we do not need to and in fact should not 
try to obtain the best values for the auxiliary parameters that we need to know in order to 
estimate the quantity of interest. If we have some prior probabilistic information about the 
parameters (information that might be learned from experience with previous images) and 
we only try to estimate a small number of parameters per image, then we should be able to 
compute a mean value for the quantities of interest such as image intensity value at a given 
scale. And the estimate should be fairly robust. Ideally we should at the start declare what 
quantities we are really interested in knowing (and some of these quantities will actually be 
qualitative values such as whether or not a certain feature occurs within a certain distance 
of a certain pixel) and just estimate their mean values; this will prevent us from trying to 
find some exact parameter values we will never know or even from trying to estimate some 
edge and corner features that really do not directly interest us and are not necessary in 
the indirect computation of the needed mean values. There are some hard issues here that 
are still to be solved, but we want to assert the general value and power of the hierarchical 

statistical paradigm. 
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