
ARMY RESEARCH LABORATORY

4W*A V W. <f A X V /■ wW<«<<«Ä<W<,>»I«<<C<'X^XS<<<Ä\W"SK%<<vMwft>K<*!

JF1

Parallel Computing on
Various Platforms -

A Case Study

B. N. Srivastava

ARL-TR-633

»liLECTEiTT
& DEC 2 3 1994 h' r

L,

November 1994

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19941219 005 ■O x

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
endorsement of any commercial product.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

B^tt^^W^^^™>"«^ l^V°MZTqlZT,ZTU
U4^\%^ id?<t°.on Pr,,«t (0704-0,88). Was.,ng,on, EC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
November 1994

37 REPORT TYPE AND DATES COVERED

Interim, Feb-Oct 94

4. TITLE AND SUBTITLE

Parallel Computing on Various Platforms - A Case Study

6. AUTH0R{S)

B. N. Srivastava

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-CA
Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-OP-AP-L
Aberdeen Proving Ground, MD 21005-5066

5. FUNDING NUMBERS

DAAA15-91-C-0082

8. PERFORMING ORGANIZATION
REPORT NUMBER

11. SUPPLEMENTARY NOTES

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR-633

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13 ABSTRACT (Maximum 200 words)

Parallel computing offers an attractive means for high-performance computing to alleviate the current bottleneck in
speedup potential of large application codes for practical problem solving. The challenge of actual implementation
however, can be significant. The objective of this report is to address the issue of porting and Paralleling ^"P"1™
Fluid Dynamics (CFD) application code on several supercomputing platforms such as Cray C-90, Cray Y-MP, K5>Ki, uwo
and Intel PARAGON. This overall objective is achieved through first emulating the application code by concocting a model
test code, in an effort to understand the influence of data structure on the code performance. The conclusions derived from
this are then utilized to restructure the 2-D/3-D CFD code such that the final version is transportable to a wider class of

platforms.

14. SUBJECT TERMS .
high-performance computing, parallel computing, computational fluid dynamics,
turbomachinery, computers, problem solving

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
42

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

Page

LIST OF FIGURES v

1. INTRODUCTION 1

2. CFD CODE DESCRIPTION 2

3. CFD CODE EMULATION MODEL 2

4. TESTING PROCEDURES 8

5. CRAY Y-MP AND C-90 STUDIES 8

5.1 2-D/3-D Code Structure Studies 9
5.2 Conclusions 15

6. PRELUDE TO MASSIVELY PARALLEL EFFORT 16

7. KSR1 PERFORMANCE STUDY 20

7.1 Case I 20
7.2 Case II 21
7.3 Case III 21
7.4 Case IV 22
7.5 Case V 22
7.6 Case VI 23
7.7 Conclusions 23

8. PARAGON PERFORMANCE STUDY 23

8.1 Case I 25
8.2 Case II 26
8.3 Case III 26
8.4 Case IV 26
8.5 Case V 27
8.6 Case VI 27
8.7 Conclusions 27

9. CM-5 PERFORMANCE STUDY 29

9.1 Message Passing 29
9.1.1 Case I 29
9.1.2 Case II 29
9.1.3 Case III 30
9.1.4 Case IV 30

in

Page

9.1.5 Case V 30
9.1.6 Case VI 31
9.1.7 Conclusions 31
9.2 Data Parallel 31
9.2.1 Case II 31
9.2.2 Case III 33
9.2.3 Conclusions 33
9.3 Message Passing With Data Parallel 33
9.3.1 Case II/III 33
9.3.2 Conclusions 33

10. SUMMARY 34

11. REFERENCES 37

DISTRIBUTION LIST 39

IV

LIST OF FIGURES

Figure

1.

2.

3a.

3b.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Blade geometry for EEE cascade

H-grid topology for rotor cascade geometry

Mach number contour levels for rotor cascade

Mach number contour lines for rotor cascade

Comparison of cascade pressure predictions with experiments

2-D cascade code vector and parallel study for Cray C-90 . . .

3-D cascade code vector and parallel study for Cray C-90 . . .

Effect of code structure on performance using vectorization and multitasking for
Cray Y-MP

Effect of 3-D code structure on performance using vectorization for Cray Y-MP

Parallel studies for 2-D cascade code using KSR1

Parallel studies for 2-D cascade code with dummy work loads using KSR1 . . .

Effect of 3-D code structure on performance for 1-node KSR1

KSR1 test results using tiling strategy

PARAGON test results for message passing

CM-5 test results for message passing

Page

3

4

5

6

7

10

11

13

14

17

18

19

24

28

32

Accesion For \

NTiS CRA4!
DI;C TAS

"' A
LJ

Un;.:-,:-,e';.--c.vJ LI

 "~i

A-

INTENTIONALLY LEFT BLANK.

VI

1. INTRODUCTION

Parallel computing offers an attractive means for high-performance computing to alleviate the current

bottleneck in speedup potential of large application codes for practical problem solving. The challenge

of actual implementation, however, can be significant and can depend on the nature of application.

Computational Fluid Dynamics (CFD) is one area which can effectively use the inherent speedup potential

for solving complex fluid dynamic problems of practical interest. The effort of porting and parallelizing

such codes, however, depends on the specific application and the extent of scalable aspects of the code.

The general rules of scalable programs that are known today were nonexistent a few years ago. This

implies that older codes may require more significant modifications than new ones (that are written in

array-style FORTRAN). The real issue of such porting is to first determine the level of modification

within the constraints of the application schedules. In most cases, significant effort may be required to

realize the full potential of a chosen platform. A priori, such modifications are not obvious, and one is

typically stuck with "learn as you proceed" syndrome. On most platforms, translation softwares are

available, but extreme caution needs to be exercised since these softwares can handle only straightforward

array-based programming styles.

A reasonable strategy for application engineers is to emulate their code by concocting a model test

code that can be exercised on various platforms. This approach serves two purposes:

(1) A user can exercise this code in an interactive environment to quickly learn various options for

a given platform.

(2) By making minor modifications in the array structure of the code, the user can develop an

understanding of the influence of data structure on the code performance. This allows one to chose the

desirable data structure for the specific platform.

The philosophy of testing model codes (as opposed to large application codes) not only offers insight

into planning the required modifications for large application codes but also allows the user to quickly

establish the relationships between various architectures and code data structures. This paper describes

this approach in relation to a large 3-D/2-D CFD application code for a variety of supercomputing

platforms such as the Cray C-90, Y-MP, KSR1, CM-5, and Intel PARAGON. Based on these studies,

specific conclusions and recommendations that are useful for the parallel computing community are made.

2. CFD CODE DESCRIPTION

It is relevant to highlight the CFD code that will be used during this technical effort. Explicit TVD

symmetric differencing schemes with the Baldwin-Lomax turbulence model are used to solve the Reynolds

averaged Navier-Stokes (NS) equations for steady and unsteady flows. Further details of numerical

formulation, boundary approaches, and applications for this code can be found in Srivastava and Bozzola

(1984, 1987); Srivastava (1987); Srivastava, Maia, and Moran (1988); and Srivastava et al. (1992). For

this effort, the 2-D/3-D versions of the code for turbomachinery applications have been used. A version

of the cascade code was used to first run a practical case of interest. The test case involved NASA Energy

Efficient Engine (EEE) rotor cascades that have been extensively tested in cascade tunnels (Kopper et

al. 1981). Some typical results, comparisons with experiments, and grids used for this computation are

shown in Figures 1-4 for demonstration purposes. The purpose here is to highlight the specific application

for the CFD code and its relationship to the turbomachinery design environment. Speedup of such CFD

codes is of significant interest in order to reduce the overall cost of design iterations. Parallel computing

offers an attractive alternative to achieve this goal.

3. CFD CODE EMULATION MODEL

The highlights of the time-asymptotic NS code for turbomachinery applications, the 2-D/3-D version,

can be emulated by observing the following guidelines:

(1) Grid setup and the attendant storage - compute and write step.

(2) Flux setup using previous time step - compute and write step.

(3) State vector inversion step for new time step - recall and compute step.

The current NS code is a unique combination of 2-D/3-D array styles and linear arrays that were designed

to:

(1) run on traditional shared memory vector computers which had storage limitations for large

problems. Minimization of memory as well as enhancement of vector capability were the major

objectives.

U
S/3 « u
W
ID
W

E
o u w

«
s

E

in
ö

p
o

in

E o
w

u
u
u
O

e

to;

SI
in «
cv •c

B
3

E

o
d

CO

CD

-£ c\i to T- s °. ^ ^ . .
"5 o o o o o

inoTtcnocacMr^i-coom

'ÖÖÖOOÖÖOOO

10

u
S3
U

<D >
(D LJDüiii<o)ioN(cm*nNT-

>

CO

a o
c o u

J5
E
3
C

JS o es

CO

K

00

- h-

CD

NiBT-ino^oinoNSi-ioom

o ö o o o o ö d o o o o ö ö o

m u

>
CD II. UJ D O m < en co h- co in -* o c\j

c

CO

CM

3

c o o

£
3
C
.e u
ca

X!
CO

3
M

c u
E •c
8
X

c o

D

3

w
o
en
CO u

C o
•c
D
E o
U

3

E

PJOMO |B|XV/A

(2) yield optimal performance on a few platforms such as MASSCOMP, ALLIANT, STARDENT,

IBM, and Cray-1.

(3) extensively uses local variables to avoid repeat calculations or repeat memory reference.

(5) exploit parallelism that was limited to shared-memory-type machines.

4. TESTING PROCEDURES

There are certain ground rules that must be established to do testing of the emulated code on various

platforms:

(1) The code is being tested on each platform with a view to establish a probable efficient data

structure layout that gives optimum performance on a given platform.

(2) The code will be run in a shared environment with no special request for this testing.

(3) No timing comparisons of various platforms will be made since full potential of each machine can

not be realized in a short study like this.

(4) The basic code will be ported to each machine and run in a serial and parallel manner. The

experiences and results will be documented.

(5) For parallel computing, the serial code will be modified to provide correct results on multiple

nodes. Extensive modifications at advanced level is not considered at this point.

5. CRAY Y-MP AND C-90 STUDIES

Full potential of the 2-D and 3-D codes can be demonstrated through a moderate effort on Cray

systems. The greatest advantage of Cray systems is the user support software for vector and parallel

computing. The emulated model test code was not exercised on these systems, but rather the full code

was optimized. The following steps outline the macro, micro, and auto-tasking procedures to optimize

the code:

8

(1) Compiler optimizations with -Zp switch were totally insufficient to get any speedup of either 2-D

or 3-D codes. The reasons were the linear arrays which prevented compiler analysis of data dependencies.

The speedup was only 20% of the original code.

(2) Each individual routine was then analyzed using FPP analyzer. This pointed out the need for

specific CFPP$ commands that were required to obtain vectorizing and parallelizing of each loop in the

subroutine. For 3-D loops, parallel outer loops operated on the largest index.

(3) Small inner loops were inlined via CFPP$ INLINE commands to allow longer vector dimensions.

The inner loop, however, is not the longest in the codes, and a switch in index is not straightforward due

to linear arrays. This can be done later for larger potential gains.

(4) Subroutine calls from a parent were parallelized via CFPP$ CNCALL directives that ensured

ignoring of compiler data dependency checks.

(5) Several smaller turbulence model routines had to be inlined manually to alleviate FPP analyzer

errors and its refusal to vectorize/parallelize some loops.

(6) The process was complete when each loop in each routine was either vectorizable and

parallelizable as shown in FPP generated files.

(7) Figures 5 and 6 show the results of such optimizations yielding a factor of nearly 3 to 4 over the

original code. The entire effort was completed in two weeks for both codes, and the potential for even

higher factors still exists.

5.1 2-D/3-D Code Structure Studies. The array storage styles in computer codes can affect computing

performance. The platform architecture plays a crucial role in this regard. Data parallel styles are now

much more prevalent than linear arrays. Many compilers are now specifically designed to recognize the

data parallel styles. The current code was written a few years ago in mostly linear array style through

optimizations. The complexity in linear array styles is numerous due to nonapparent data utilization. For

this effort, it was found necessary to address this issue up front to make a judicious choice of continuing

this style further. For this reason, an up-front effort was undertaken to change the entire code from one

style to another. The rationale for this study is discussed next.

c
'o
Q.

"D

o
I

U

u
.2
>
3

ca
D
•a c

o
4) >

T3
O
O

T3
P3
O
en «

e s

E

10

o
Q.

o
OS

I

U
> w
U

>
3

sa
2
D

T3
C

u
>

•o o u

« u
en
M
u

en

e
3
(SO

E

11

Traditional wisdom of avoiding repeat arithmetic operations are typically handled through data storage.

For most computing platforms, however, there is a tradeoff between memory and CPU requirements.

Marginal increase in CPU for substantial savings in memory could be a desirable goal for high-

performance computing. This becomes more so for parallel computing where the compute-to-communicate

ratio needs to maximized. For an explicit CFD code, there are numerous ways to achieve an optimized

code structure which offers a reasonable balance between the memory and CPU requirements. This

section describes a study that provides a basis for code structure selection for an explicit algorithm.

Vector and parallel constructs in a 3-D explicit code are achieved through:

(1) flux computation using previous time data. This construct is completely parallel. Computed fluxes

can be stored as HFLX(I, J, K) for the next step.

(2) inversion using fluxes. Storing fluxes followed by inversion is serial in nature. For a 3- to 5-point

explicit algorithm, flux computation and inversion can proceed in parallel for every chunk of 3-5 points.

Overlapping points can be repeat computations to avoid data fetch or wait process. Naturally, there are

tradeoffs. These tradeoffs are described later.

Other code structure issues relate to linear vs. 3-D/2-D arrays. This code structure study correlates

very well with the model code structure studies that have been discussed later for various other computing

platforms such as KSR1, PARAGON, and CM-5.

For code structure studies, a Cray Y-MP was used for rapid assessments. Figure 7 shows the run time

results for various code structures using vectorization as well as multitasking. Figure 8 shows the run time

results with vectorization only (without invoking the multitasking options). Note from this figure that

there is an increase in run time for Case II when only vectorization is used for the code. This is caused

by the repeat overlapping computations in Case II (as described later) that are not compensated due to lack

of multitasking. The various versions of the code are described as follows:

12

o
CO
DC
tu
>
Hi o o
Ü

3
Q.
O

8

I
es

•c
u u >
ef
'K
3

8 c

c o
t
%
S
vs

•g

8

E

13

Q.
ü

14

(1) CASE I

Contains all serial data structures. Fluxes are stored as HFLX(imax*jmax, kmax). These are

computed first for all grid nodes followed by inversion. The two steps are serial in nature for the

entire domain. For 101 x 51 x 51 grid points, the memory required is 12 Mwords.

(2) CASE n

For 3-point formulation, fluxes are computed for three z-planes and stored as HFLX(imax*jmax, 3).

Parallel flux computation and inversion is achieved for every three points. Repeat flux computations

are performed to avoid synchronization of inversion process for overlapping points. Memory

requirements for this version is six Mwords.

(3) CASE HI

For this version, flux computation and inversion is similar to Case I, but state vectors were all

transformed from linear arrays to 3-D arrays as in V(I, J, K); there are 10 of these. For Cases I

and II, they were stored as V(10, I*J, K). Memory requirements for this version is six Mwords.

(4) CASE IV

For this version, all linear arrays were transformed to 3-D arrays. No linear arrays were present here.

Fluxes are computed as HFLX(I, J, K), and inversion follows serially. Memory requirements for this

version is six Mwords.

5.2 Conclusions. The studies conducted here suggest that:

(1) Vectorization and parallel effort gave a substantial gain in computing performance, on the order

of four.

(2) Changes in code structure then realized another factor of 2 enhancement in computing

performance. This implies that the data parallel structures V(I, J, K) are preferable for these types of

computing platforms.

15

The objective of this effort was to demonstrate the potential of speedup for this code. It also

demonstrates the influence of data structures on computing performance for parallel processing. The next

natural question relates to exportability of such conclusions for other types of platforms, specifically

massively parallel systems. This provides a natural entry point for the next step.

6. PRELUDE TO MASSIVELY PARALLEL EFFORT

The rapid success on Cray systems was a motivating factor to first go to the KSR1 system because

of its similar architecture for parallel computing using the 2-D/3-D codes. The experience, however, was

not pleasant since KAP, an equivalent to possibly FPP, failed miserably on the code. In fact, KAP

generated codes that were wrong in some instances and, in most instances, it created codes with ORDER

command in tiling, instructing the compiler to essentially execute in serial. Ultimately, the KAP effort

was abandoned in favor of manual tiling. Manual tiling yielded results for 2-D code that were beginning

to show some favorable results. Figure 9 shows the result for 2-D code. Note that the scaling begins to

saturate with about eight processors. To test whether compute-to-communicate ratio is low for this code,

a new code with large dummy work load was created and tested. This result is shown in Figure 10. Note

that the trend remains the same. Nonetheless, 3-D code effort was initiated to understand KSR1 behavior

in comparison with Cray. Figure 11 shows the run time results obtained on one processor of KSR1 using

various versions of the code as described before. This figure shows a trend opposite to what was observed

for Cray (see Figure 7). Apart from this, on multiprocessors, no significant speedup has been observed

for KSR1. Obviously, a lot more questions need to be answered to unravel the observed behavior on

KSR1. The questions are:

(1) What are the most desirable code structures common to all parallel platforms?

(2) Is there any such commonality among the various platforms?

(3) How can the current code be restructured to run effectively (if not optimally) on all these

platforms?

This can only be answered quickly by using a model test code that emulates the CFD code. This is

done next.

16

(03S)ndo

O)

CD
5» o / /

E /
F /
o /
in/

/ CO
/CD
/ Ü

/ ü

/ E
i-
o o

n 1 i i i i 1 I I I I 1

CO

o
CO
CO
CD
Ü o
I— a.

- CO

C\J

o o o o
00 Is-

o o
CO

o o m
o o o o

CO

OS

bl
c

4>

o u

T3
ca o

u

(S

a

«
a»

3

E

(03S)nd0

17

(dnoH)ndo

en
o
CO
CO
CD
Ü
O

öl
C

'33
3
C/5

•O
w o

O

>
E
E
3

T3

•o
O u
<u

T3
CO o «
«a
o

(N

«5
O

'■3
S

■a

a.

3

E

(unoH)ndo

18

>m

o.
ü

19

7. KSR1 PERFORMANCE STUDY

For KSR, both tiling strategy and parallel region approach were tested. No specific advantage of one

over the other was observed. For all test cases:

jmax=5000, kmax=500

time normalized with 1 processor (proc)

7.1 Case I.

Array Structure
Code:

do j
dok
y(l,k*j)=
y(2,k*j)=
y(3,k*j)=

y(3, kmax*jmax)

end do
end do

Results: 1 Proc Time = 3.6 Minutes
Memory Needed 62 Mb

Procs Time Comment

1
2
5
10

1.00
0.71
0.65
0.94

Pbss memory
three times
larger.

20

7.2 Case II.

Array Structure
Code:

do j
dok
yiG.k)=
y2(j>k)=
y3G*)=

yl(j,k), y2(j,k), y3(j,k), Mismatched loop index

end do
end do

Results: 1 Proc Time = 15.6 Minutes
Memory Needed 22 Mb

Procs Time Comment

1
2
5
10

1.00
0.87
0.54
0.34

1 Proc time
very high.

7.3 Case HI.

Array Structure
Code:

do j
dok
yl(k,j)=
y2(k,j)=
y3(kj)=

yl(k,j), y2(kj), y3(k,j), Matched loop index

end do
end do

Results: 1 Proc Time = 4.3 Minutes
Memory Needed 22 Mb

Procs Time Comment

1
2
5
10

1.00
0.53
0.30
0.20

Inner loop
aligned with
lead index k.

21

7.4 Case IV.

Array Structure
Code:

doj
dok
yl(k*j)=
y2(k*j)=
y3(k*j)=

- yl(k*j), y2(k*j), y3(k*j), Matched loop index

end do
end do

Results: 1 Proc Time = 2.4 Minutes
Memory Needed 22 Mb

Procs Time Comment

1
2
5
10

1.00
0.51
0.24
0.15

Best result
with linear
arrays.

7.5 Case V.

Array Structure
Code:

dok
doj
yl(k*j)=
y2(k*j>
y3(k*j)=

- yl(k*j), y2(k*j), y3(k*j), Mismatched loop index

end do
end do

Results: 1 Proc Time = 9.3 Minutes
Memory Needed 22 Mb

Procs Time Comment

1
2
5
10

1.00
0.17
0.08
0.05

1 Proc time
very large.

22

7.6 Case VI.

Array Structure
Code:

do j
dok
y(l*k*j)=
y(2*k*j)=
y(3*k*j)=

y(3* kmax*jmax)

end do
end do

Results: 1 Proc Time = 3.3 Minutes
Memory Needed 62 Mb

Procs Time Comment

1
2
5
10

1.00
0.68
0.39
0.36

Pbss memory three
times large, 10 procs
results wrong.

7.7 Conclusions. The overall results from above are shown pictorially in Figure 12. For KSR1

applications, the best performance is obtained with linear arrays with the lead index aligned with inner

loop index. This relates to subpaging of the data in the loop which are used effectively once they are

brought in to subpage. The reason why linear array is better than 2-D array is not clear. Also, when all

variables are rolled into one array, the performance results are not only bad but are also wrong for a large

number of processors. Since in a large code, the linear array size can be very long, a safe

recommendation would be to go for 2-D/3-D arrays.

8. PARAGON PERFORMANCE STUDY

The Intel PARAGON at Wright-Patterson Air Force Base was used for this performance study. It is

relevant to point out the following:

(1) Domain decomposition is an important aspect of parallel computing for distributed memory

environment; and hence, memory available on each processor is an important consideration before

embarking on programming. On PARAGON, each processor can accommodate 32 Mb, but with system

requirements no more than 30 Mb should be used.

23

w
er

er
3

OS

r-i

a
3

E

24

(2) For cases with larger memory than 30 Mb, the system was hung up due to data-swapping

problems. For several cases listed later, a single processor run could not be performed due to this

problem. The problem was more severe for double-precision computations. For this reason, a single-

precision version of the model code was used after testing one case in double precision.

(3) For cases that had ample memory on one processor for the full problem, it was relevant to study

the influence of decomposed memory vs. full memory in order to understand the degree of slowdown in

performance. The data presented next would show that this depends on the array structure in the code.

(4) The model test problem does not account for communications between processors, since the model

problem was fully decomposed and could be run independently on each processor. This is something that

needs to be dealt with for the full CFD code later.

(5) The procedure was to run the code on 1-10 processors by decomposing the problem and its

memory for all code structures that were studied for KSR1. The code tested was identical to that tested

on KSR1.

8.1 Case I.

Array structure - y(3,kmax*jmax)
Results: 1 Proc time = 3:30 (m:s)
Memory - 30 Mb for 1 Proc

Procs Time Comment

1
2
5
10

3:30
1:26
0:42
0:21

For 10 procs using same
storage as of 5 procs time
is 0:39.

25

8.2 Case II.

Array structure - yl(j.k), y2(j,k), y3(j,k), Mismatched loop index
Result: 1 Proc Time = 3:16

Procs Time Comment

1
2
5
10

3:16
1:08, 2:05
0:36, 0:55
0:22, 0:47

Second set refers
to memory kept at
1 proc level.

8.3 Case HI.

Array structure - yl(kj), y2(k,j), y3(k,j), Matched loop index
Result: 1 Proc Time = 2:03

Procs Time Comment

1
2
5
10

2:48
1:09, 1:09
0:39, 0:37
0:21, 0:22

Second set refers
to memory kept at
1 proc level.

8.4 Case IV.

Array Structure - yl(k*j), y2(k*j), y3(k*j), Matched loop index
Results: 1 Proc Time = 2:32

Procs Time Comment

1 2:32

2 0:59
5 0:30
10 0:19

26

8.5 Case V.

Array structure - yl(k*j), y2(k*j), y3(k*j), Mismatched loop index
Results: 1 Proc Time = Hung up

Procs Time Comment

1
2
5
10

1:02
0:33
0:21

1 Proc was
terminated at
12 minutes.

8.6 Case VI.

Array Structure - y(3*kmax*jmax)
Results: 1 Proc Time = 2:34

Procs Time Comment

1
2
5
10

2:34, —
1:0, 2:47
0:31, 0:48
0:20, 0:31

Second set is for double
precision computations,
1 proc hungup.

8.7 Conclusions. The overall results shown above are pictorially depicted in Figure 13. For

PARAGON, it appears that there is no clear advantage of one structure over the other. All arrays, whether

linear or misaligned indices, seem to give very similar results as long as one ensures that the work

assigned to a processor is within its local memory bound. This would imply that for the 2-D/3-D code,

one may not have to lay out the data structure in any specific manner. Mismatched loop index makes a

difference only when the work is at the limit of the memory bound for a given processor. Previous results

show that, in this limit, the mismatched index style could be hung up while matched loop index style

would complete its task.

27

W to W <g W
(0 CO CO CO <J0 " o o o o

Ml

CO w
D
U
w

3
B
CV2
C->

4—»

z o
o
<
<
OH

B

E

Q_
Ü

28

9. CM-5 PERFORMANCE STUDY

The CM-5 at the Army High Performance Computing Center (AHPCC), managed by the University

of Minnesota, does not allow individual processors to be used by the user. Processors in chunks of 32,

64, etc., however, can be requested. This implies that the model test problem size needs to be increased

in order to get a valid comparison with other machines. However, since absolute comparisons are not

intended here, it suffices to increase the problem size enough to get valid scaling. For all test cases

reported here, the problem size was increased to jmax=40192, kmax=500.

Programming styles on CM-5 can consist of data parallel, message passing, and a combination of both.

All programming styles were exercised on the model test and are described next.

9.1 Message Passing. The approach is similar to the PARAGON studies involving domain

decomposition.

9.1.1 Case I.

Array structure y(3,kmax*jmax)

Procs Time
(sec)

Comment

32
64
256

22.3, 33.7
10.6, 16.68
3.81, 5.44

Second set refers to
double precision time.

9.1.2 Case II.

Array structure -yl (j,k), y2(j,k), y3(j,k), Mismatched loop index

Procs Time
(sec)

Comment

32
64

256

22.8, 21.1
10.1, 10.1
3.60, 3.9

Second set refers to
memory kept at 32 proc.

29

9.1.3 Caselll.

Array structure - yl(kj), y2(kj), y3(kj), Matched loop index

Procs Time
(sec)

Comment

32
64

256

25.8
11.5
3.82

—

9.1.4 Case IV.

Array Structure - yl(k*j), y2(k*j), y3(k*j), Matched loop index

Procs Time
(sec)

Comment

32
64

256

18.6
8.7
3.4

Best timing of
all cases.

9.1.5 CaseV.

Array structure - yl(k*j), y2(k*j), y3(k*j), Mismatched loop index

Procs Time
(sec)

Comment

32
64

256

22.1
10.2
3.7

Mismatch makes a
difference.

30

9.1.6 Case VI.

Array Structure - y(3*kmax*jmax)

Procs Time
(sec)

Comment

32
64

256

23.6
11.2
3.9

—

9.1.7 Conclusions. A critical look at the previous data and the pictorial representation in Figure 14

shows that CM-5 message passing programming does not show a great deal of differences for various

array structures. The linear array structure with matched loop index seems to be doing somewhat better

than other forms. Mismatching the loop index clearly shows a degradation in performance for both linear

as well as 2-D arrays.

9.2 Data Parallel. The basic code, noted previously, was used via CM FORTRAN translator, CMAX,

and the results are described next.

For all cases other than transparent 2-D arrays, CMAX failed to correctly translate the code into a data

parallel style. The resulting .fern file had to be manually modified for all other cases. These

modifications yielded correct results, but long run times. In the process, a compiler error was discovered

and reported. The results obtained after these modifications were unsatisfactory from a performance

standpoint for cases that used linear-type arrays. The table in section 9.2.1 describes the result for

Cases II and III.

9.2.1 Case II

Array Structure - yl(j, k), y2(j, k), y3(j, k)
CMAX translator worked well with this array structure.

Procs Time
(sec)

Comment

32
64

256

0.60
0.30
0.09

Run times are
excellent.

31

CD 0 0 0 0 0
co w co co «2 w
CO CO CO CO CD CD

oooooo

o
ID
CM

o o
CM

O <ß

c

D
<D
W

in O
CO
CO >?,
0
o 4—•

o 3
l_ fc!

Q_ 4—»

* *-*

o o

e
3
too
£

o

in
CM

o
CM

ID O

(oas)ndo

32

9.2.2 Caselll.

Array Structure - yl(k, j), y2(k, j), y3(k, j)
Same results as Case II.

9.2.3 Conclusions. The previous results show that CMAX can handle the 2-D arrays properly and

the run times are excellent. For codes based on linear arrays, CMAX failed to translate the code correctly,

yielding erroneous results. With manual intervention, a correct data parallel file was created for these

cases but the run times were very high (of the order of several minutes). This implies that the codes based

on linear arrays must be appropriately translated to 2-D/3-D arrays to take advantage of the existing CM-5

architecture.

9.3 Message Passing With Data Parallel. At a node level, data parallel programming can be used to

combine the message passing programming to achieve greater performance. This, however, can not be

done for all code structures since linear type data structure is not suitable for data parallel programming.

A reasonable strategy is to use node level data parallel with inter-node massage passing. This will use

the vector units at node levels which are never used in message passing programming. Only Cases II/III

are relevant, and the results obtained are shown in section 9.3.

9.3.1 Case II/III.

Array structure- yl(k,j),y2(k,j),y3(k,j), Matched loop index

Procs Time
(sec)

Comment

32
64

256

1.8
1.68
4.87

Time for 256 procs
is higher.

9.3.2 Conclusions. Data parallel message passing reduces the run time significantly as compared to

the message passing. However, previous results also show that data parallel run times are the best of all

programming styles. It would, then, suffice to conclude that 2-D/3-D type code structures should exploit

the data parallel style to achieve optimum performance. Linear array type codes are likely to be easier

to port if message passing style is used. Overall recommendation, however, is to first translate the code

to 2-D/3-D array formats before attempting porting.

33

10. SUMMARY

This technical effort was initiated to evaluate various parallel computing platforms for large application

codes. Specifically, the objectives were to develop an understanding of the enhancement in computing

performance in relation to the code data structures. To this end, an emulated model code that has nearly

all the features of the large code was tested on several massively parallel platforms such as KSR1, CM-5,

and Intel PARAGON. This testing has provided several interesting conclusions that are enumerated next.

(1) The Intel PARAGON and the CM-5 model tests yielded the most consistent performance behavior

on all code structures. For message passing, good run times (with correct results) were obtained for

linear as well as 2-D arrays. For CM-5 data parallel programming, the array structures had to be

limited to 2-D/3-D arrays. For these cases, all the performance data could be displayed on a graph

with a narrow band width for various code structures implying robustness of the machine relative to

the code structure.

(2) KSR1, although giving correct results on almost all code structures, suffered from performance

inconsistencies which yielded widely varying run times for various code structures. Its performance

curves could not be plotted on the same graph without normalizing the run times with one processor

run time. This implies the sensitivity of the machine performance relative to the code structure. Use

of the translation software, KAP, is strongly discouraged due to its inherent bugs.

(3) CM-5 performance based on data parallel programming seems to strongly favor the transparent

3-D/2-D arrays for data structures. Linear arrays of several variables yielded correct results with

moderate run times; however, linear arrays where all variables are rolled into one seem to be lost in

the system with very high run times. Use of CMAX translator should be limited to transparent data

parallel programming styles.

(4) Of all systems, CM-5 seems to offer the wider selectivity of programming styles. Based on these

studies, message passing with node level data parallel using transparent 2-D/3-D arrays appears to be

the best choice for CFD applications.

34

(5) For Cray systems, C-90 and Y-MP, full 2-D/3-D CFD application codes were exercised with

various code structures. With vectorization and multitasking, an estimated factor of 10 enhancement

in code run time from the original code was obtained. Further code structure studies also show that

2-D/3-D array style of coding appears to give better performance on Cray systems.

(6) Overall conclusions based on these studies suggest that 2-D/3-D arrays are the most desirable

choices for these classes of machines. To ensure portability to various machines, as well as rapid turn

around on various platforms, use of linear arrays must be avoided.

(7) This modest effort is only a first step toward computing on massively parallel systems. Based on

the lessons learned and conclusions derived here, further effort is underway to modify the current 3-D

CFD code to evaluate its performance on KSR1, CMS, and Intel PARAGON.

35

INTENTIONALLY LEFT BLANK.

36

11. REFERENCES

Kopper, F. C, R. Milano, R. L. Davis, R. P. Dring, and R. C. Stoeffler. "Energy Efficient Engine
Component Development and Integration Program." NASA CR-165571, November 1981.

Srivastava, B. N. "Navier-Stokes Solutions for Highly Loaded Turbine Cascades." AIAA Paper
No. 87-2151, AIAA/ASME 23rd Joint Propulsion Conference. San Diego, CA, June 1987.

Srivastava, B. N., and R. Bozzola. "Efficient and Accurate Numerical Solution of Euler and Navier-Stokes
Equations forTurbomachinery Applications." AIAA 20th Joint Propulsion Conference, Cincinnati, OH,
11-13 June 1984.

Srivastava, B. N, and R. Bozzola. "Euler Solutions for Highly Loaded Turbine Cascades." Journal of
Propulsion and Power, vol. 3, no. 1, p. 39, January-February 1987.

Srivastava, B. N., F. Maia, and J. P. Moran. "Computation of Viscous/Inviscid Flow-field in Pulsed
Lasers." AIAA Journal, vol. 26, no. 10, pp. 1254-1262, October 1988.

Srivastava, B. N., F. Maia, J. Her, and J. P. Moran. "High Resolution Computation of Unsteady Flows."
AIAA Journal, vol. 30, no. 3, pp. 756-764, March 1992.

37

INTENTIONALLY LEFT BLANK.

38

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-DDA
CAMERON STATION
ALEXANDRIA VA 22304-6145

COMMANDER
US ARMY MATERIEL COMMAND
ATTN: AMCAM
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN: AMSRL-OP-SD-TA/

RECORDS MANAGEMENT
2800 POWDER MILL RD
ADELPHIMD 20783-1145

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN: A

TECHNICAL LIBRARY
2800 POWDER MILL RD
ADELPHIMD 20783-1145

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN: AMSRL-OP-SD-TP/

TECH PUBLISHING BRANCH
2800 POWDER MILL RD
ADELPHIMD 20783-1145

COMMANDER
US ARMY MISSILE COMMAND
ATTN: AMSMI-RD-CS-R (DOC)
REDSTONE ARSENAL AL 35898-5010

COMMANDER
US ARMY TANK-AUTOMOTIVE COMMAND
ATTN: AMSTA-JSK (ARMOR ENG BR)
WARREN Mt 48397-5000

DIRECTOR
US ARMY TRADOC ANALYSIS COMMAND
ATTN: ATRC-WSR
WSMRNM 88002-5502

COMMANDANT
US ARMY INFANTRY SCHOOL
ATTN: ATSH-WCB-0
FORT BENNING GA 31905-5000

ABERDEEN PROVING GROUND

DIR, USAMSAA
ATTN: AMXSY-D

AMXSY-MP/H COHEN

CDR, USATECOM
ATTN: AMSTE-TC

DIR, USAERDEC
ATTN: SCBRD-RT

COMMANDER
US ARMY ARDEC
ATTN: SMCAR-TDC
PICATINNY ARSENAL NJ 07806-5000

DIRECTOR
BENET LABORATORIES
ATTN: SMCAR-CCB-TL
WATERVLIETNY 12189-4050

CDR, USACBDCOM
ATTN: AMSCB-CII

DIR, USARL
ATTN: AMSRL-SL-I

DIR, USARL
ATTN: AMSRL-OP-AP-L

DIRECTOR
US ARMY ADVANCED SYSTEMS

RESEARCH AND ANALYSIS OFFICE
ATTN: AMSAT-R-NR/MS 219-1
AMES RESEARCH CENTER
MOFFETT FIELD CA 94035-1000

39

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

10 DIR USARL
ATTN AMSRL CI

WILLIAM H MERMAGEN SR
AMSRL CI C WALTER B STUREK
AMSRL CI CA

BARBARA D BROOME
B N SRIVASTAVA (5 CP)
DANIEL PRESSEL

AMSRL-WT DIXIE HISLEY

40

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number ARL-TR-633 Date of Report November 1994

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for

which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of

ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or RO. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

Postage will be paid by addressee

Director
U.S. Army Research Laboratory
ATTN: AMSRL-OP-AP-L
Aberdeen Proving Ground, MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

