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1.  INTRODUCTION 

Parallel computing offers an attractive means for high-performance computing to alleviate the current 

bottleneck in speedup potential of large application codes for practical problem solving. The challenge 

of actual implementation, however, can be significant and can depend on the nature of application. 

Computational Fluid Dynamics (CFD) is one area which can effectively use the inherent speedup potential 

for solving complex fluid dynamic problems of practical interest. The effort of porting and parallelizing 

such codes, however, depends on the specific application and the extent of scalable aspects of the code. 

The general rules of scalable programs that are known today were nonexistent a few years ago. This 

implies that older codes may require more significant modifications than new ones (that are written in 

array-style FORTRAN). The real issue of such porting is to first determine the level of modification 

within the constraints of the application schedules. In most cases, significant effort may be required to 

realize the full potential of a chosen platform. A priori, such modifications are not obvious, and one is 

typically stuck with "learn as you proceed" syndrome. On most platforms, translation softwares are 

available, but extreme caution needs to be exercised since these softwares can handle only straightforward 

array-based programming styles. 

A reasonable strategy for application engineers is to emulate their code by concocting a model test 

code that can be exercised on various platforms. This approach serves two purposes: 

(1) A user can exercise this code in an interactive environment to quickly learn various options for 

a given platform. 

(2) By making minor modifications in the array structure of the code, the user can develop an 

understanding of the influence of data structure on the code performance. This allows one to chose the 

desirable data structure for the specific platform. 

The philosophy of testing model codes (as opposed to large application codes) not only offers insight 

into planning the required modifications for large application codes but also allows the user to quickly 

establish the relationships between various architectures and code data structures. This paper describes 

this approach in relation to a large 3-D/2-D CFD application code for a variety of supercomputing 

platforms such as the Cray C-90, Y-MP, KSR1, CM-5, and Intel PARAGON. Based on these studies, 

specific conclusions and recommendations that are useful for the parallel computing community are made. 



2. CFD CODE DESCRIPTION 

It is relevant to highlight the CFD code that will be used during this technical effort. Explicit TVD 

symmetric differencing schemes with the Baldwin-Lomax turbulence model are used to solve the Reynolds 

averaged Navier-Stokes (NS) equations for steady and unsteady flows. Further details of numerical 

formulation, boundary approaches, and applications for this code can be found in Srivastava and Bozzola 

(1984, 1987); Srivastava (1987); Srivastava, Maia, and Moran (1988); and Srivastava et al. (1992). For 

this effort, the 2-D/3-D versions of the code for turbomachinery applications have been used. A version 

of the cascade code was used to first run a practical case of interest. The test case involved NASA Energy 

Efficient Engine (EEE) rotor cascades that have been extensively tested in cascade tunnels (Kopper et 

al. 1981). Some typical results, comparisons with experiments, and grids used for this computation are 

shown in Figures 1-4 for demonstration purposes. The purpose here is to highlight the specific application 

for the CFD code and its relationship to the turbomachinery design environment. Speedup of such CFD 

codes is of significant interest in order to reduce the overall cost of design iterations. Parallel computing 

offers an attractive alternative to achieve this goal. 

3. CFD CODE EMULATION MODEL 

The highlights of the time-asymptotic NS code for turbomachinery applications, the 2-D/3-D version, 

can be emulated by observing the following guidelines: 

(1) Grid setup and the attendant storage - compute and write step. 

(2) Flux setup using previous time step - compute and write step. 

(3) State vector inversion step for new time step - recall and compute step. 

The current NS code is a unique combination of 2-D/3-D array styles and linear arrays that were designed 

to: 

(1) run on traditional shared memory vector computers which had storage limitations for large 

problems. Minimization of memory as well as enhancement of vector capability were the major 

objectives. 



U 
S/3 « u 
W 
ID 
W 

E 
o u w 

« 
s 

E 

in 
ö 

p 
o 



in 

E o 
w 

u 
u 
u 
O 

e 

to; 

SI 
in  « 
cv •c 

B 
3 

E 

o 
d 



CO 

CD 

-£    c\i   to   T- s  °. ^ ^   .   . 
"5     o   o   o   o   o 

inoTtcnocacMr^i-coom 

'ÖÖÖOOÖÖOOO 

10 

u 
S3 
U 

<D > 
(D LJDüiii<o)ioN(cm*nNT- 

> 

CO 

a o 
c o u 

J5 
E 
3 
C 

JS o es 

CO 

K 



00 

-  h- 

CD 

NiBT-ino^oinoNSi-ioom 

o   ö   o   o   o   o   ö   d   o   o   o   o   ö   ö   o 

m u 

> 
CD II.   UJ   D   O   m   <   en   co   h-   co   in   -*   o   c\j 

c 

CO 

CM 

3 

c o o 

£ 
3 
C 
.e u 
ca 

X! 
CO 

3 
M 



c u 
E •c 
8 
X 

c o 

D 

3 

w 
o 
en 
CO u 

C o 
•c 
D 
E o 
U 

3 

E 

PJOMO |B|XV/A 



(2) yield optimal performance on a few platforms such as MASSCOMP, ALLIANT, STARDENT, 

IBM, and Cray-1. 

(3) extensively uses local variables to avoid repeat calculations or repeat memory reference. 

(5) exploit parallelism that was limited to shared-memory-type machines. 

4.  TESTING PROCEDURES 

There are certain ground rules that must be established to do testing of the emulated code on various 

platforms: 

(1) The code is being tested on each platform with a view to establish a probable efficient data 

structure layout that gives optimum performance on a given platform. 

(2) The code will be run in a shared environment with no special request for this testing. 

(3) No timing comparisons of various platforms will be made since full potential of each machine can 

not be realized in a short study like this. 

(4) The basic code will be ported to each machine and run in a serial and parallel manner. The 

experiences and results will be documented. 

(5) For parallel computing, the serial code will be modified to provide correct results on multiple 

nodes. Extensive modifications at advanced level is not considered at this point. 

5.  CRAY Y-MP AND C-90 STUDIES 

Full potential of the 2-D and 3-D codes can be demonstrated through a moderate effort on Cray 

systems. The greatest advantage of Cray systems is the user support software for vector and parallel 

computing. The emulated model test code was not exercised on these systems, but rather the full code 

was optimized. The following steps outline the macro, micro, and auto-tasking procedures to optimize 

the code: 

8 



(1) Compiler optimizations with -Zp switch were totally insufficient to get any speedup of either 2-D 

or 3-D codes. The reasons were the linear arrays which prevented compiler analysis of data dependencies. 

The speedup was only 20% of the original code. 

(2) Each individual routine was then analyzed using FPP analyzer. This pointed out the need for 

specific CFPP$ commands that were required to obtain vectorizing and parallelizing of each loop in the 

subroutine. For 3-D loops, parallel outer loops operated on the largest index. 

(3) Small inner loops were inlined via CFPP$ INLINE commands to allow longer vector dimensions. 

The inner loop, however, is not the longest in the codes, and a switch in index is not straightforward due 

to linear arrays. This can be done later for larger potential gains. 

(4) Subroutine calls from a parent were parallelized via CFPP$ CNCALL directives that ensured 

ignoring of compiler data dependency checks. 

(5) Several smaller turbulence model routines had to be inlined manually to alleviate FPP analyzer 

errors and its refusal to vectorize/parallelize some loops. 

(6) The process was complete when each loop in each routine was either vectorizable and 

parallelizable as shown in FPP generated files. 

(7) Figures 5 and 6 show the results of such optimizations yielding a factor of nearly 3 to 4 over the 

original code. The entire effort was completed in two weeks for both codes, and the potential for even 

higher factors still exists. 

5.1 2-D/3-D Code Structure Studies. The array storage styles in computer codes can affect computing 

performance. The platform architecture plays a crucial role in this regard. Data parallel styles are now 

much more prevalent than linear arrays. Many compilers are now specifically designed to recognize the 

data parallel styles. The current code was written a few years ago in mostly linear array style through 

optimizations. The complexity in linear array styles is numerous due to nonapparent data utilization. For 

this effort, it was found necessary to address this issue up front to make a judicious choice of continuing 

this style further. For this reason, an up-front effort was undertaken to change the entire code from one 

style to another. The rationale for this study is discussed next. 
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Traditional wisdom of avoiding repeat arithmetic operations are typically handled through data storage. 

For most computing platforms, however, there is a tradeoff between memory and CPU requirements. 

Marginal increase in CPU for substantial savings in memory could be a desirable goal for high- 

performance computing. This becomes more so for parallel computing where the compute-to-communicate 

ratio needs to maximized. For an explicit CFD code, there are numerous ways to achieve an optimized 

code structure which offers a reasonable balance between the memory and CPU requirements. This 

section describes a study that provides a basis for code structure selection for an explicit algorithm. 

Vector and parallel constructs in a 3-D explicit code are achieved through: 

(1) flux computation using previous time data. This construct is completely parallel. Computed fluxes 

can be stored as HFLX(I, J, K) for the next step. 

(2) inversion using fluxes. Storing fluxes followed by inversion is serial in nature. For a 3- to 5-point 

explicit algorithm, flux computation and inversion can proceed in parallel for every chunk of 3-5 points. 

Overlapping points can be repeat computations to avoid data fetch or wait process. Naturally, there are 

tradeoffs. These tradeoffs are described later. 

Other code structure issues relate to linear vs. 3-D/2-D arrays. This code structure study correlates 

very well with the model code structure studies that have been discussed later for various other computing 

platforms such as KSR1, PARAGON, and CM-5. 

For code structure studies, a Cray Y-MP was used for rapid assessments. Figure 7 shows the run time 

results for various code structures using vectorization as well as multitasking. Figure 8 shows the run time 

results with vectorization only (without invoking the multitasking options). Note from this figure that 

there is an increase in run time for Case II when only vectorization is used for the code. This is caused 

by the repeat overlapping computations in Case II (as described later) that are not compensated due to lack 

of multitasking. The various versions of the code are described as follows: 

12 



o 
CO 
DC 
tu 
> 
Hi o o 
Ü 

3 
Q. 
O 

8 

I 
es 

•c 
u u > 
ef 
'K 
3 

8 c 

c o 
t 
% 
S 
vs 

•g 

8 

E 

13 



Q. 
ü 

14 



(1) CASE I 

Contains all serial data structures. Fluxes are stored as HFLX(imax*jmax, kmax). These are 

computed first for all grid nodes followed by inversion. The two steps are serial in nature for the 

entire domain. For 101 x 51 x 51 grid points, the memory required is 12 Mwords. 

(2) CASE n 

For 3-point formulation, fluxes are computed for three z-planes and stored as HFLX(imax*jmax, 3). 

Parallel flux computation and inversion is achieved for every three points. Repeat flux computations 

are performed to avoid synchronization of inversion process for overlapping points. Memory 

requirements for this version is six Mwords. 

(3) CASE HI 

For this version, flux computation and inversion is similar to Case I, but state vectors were all 

transformed from linear arrays to 3-D arrays as in V(I, J, K); there are 10 of these. For Cases I 

and II, they were stored as V(10, I*J, K). Memory requirements for this version is six Mwords. 

(4) CASE IV 

For this version, all linear arrays were transformed to 3-D arrays. No linear arrays were present here. 

Fluxes are computed as HFLX(I, J, K), and inversion follows serially. Memory requirements for this 

version is six Mwords. 

5.2 Conclusions. The studies conducted here suggest that: 

(1) Vectorization and parallel effort gave a substantial gain in computing performance, on the order 

of four. 

(2) Changes in code structure then realized another factor of 2 enhancement in computing 

performance. This implies that the data parallel structures V(I, J, K) are preferable for these types of 

computing platforms. 

15 



The objective of this effort was to demonstrate the potential of speedup for this code. It also 

demonstrates the influence of data structures on computing performance for parallel processing. The next 

natural question relates to exportability of such conclusions for other types of platforms, specifically 

massively parallel systems. This provides a natural entry point for the next step. 

6.  PRELUDE TO MASSIVELY PARALLEL EFFORT 

The rapid success on Cray systems was a motivating factor to first go to the KSR1 system because 

of its similar architecture for parallel computing using the 2-D/3-D codes. The experience, however, was 

not pleasant since KAP, an equivalent to possibly FPP, failed miserably on the code. In fact, KAP 

generated codes that were wrong in some instances and, in most instances, it created codes with ORDER 

command in tiling, instructing the compiler to essentially execute in serial. Ultimately, the KAP effort 

was abandoned in favor of manual tiling. Manual tiling yielded results for 2-D code that were beginning 

to show some favorable results. Figure 9 shows the result for 2-D code. Note that the scaling begins to 

saturate with about eight processors. To test whether compute-to-communicate ratio is low for this code, 

a new code with large dummy work load was created and tested. This result is shown in Figure 10. Note 

that the trend remains the same. Nonetheless, 3-D code effort was initiated to understand KSR1 behavior 

in comparison with Cray. Figure 11 shows the run time results obtained on one processor of KSR1 using 

various versions of the code as described before. This figure shows a trend opposite to what was observed 

for Cray (see Figure 7). Apart from this, on multiprocessors, no significant speedup has been observed 

for KSR1. Obviously, a lot more questions need to be answered to unravel the observed behavior on 

KSR1. The questions are: 

(1) What are the most desirable code structures common to all parallel platforms? 

(2) Is there any such commonality among the various platforms? 

(3) How can the current code be restructured to run effectively (if not optimally) on all these 

platforms? 

This can only be answered quickly by using a model test code that emulates the CFD code. This is 

done next. 

16 
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7.  KSR1 PERFORMANCE STUDY 

For KSR, both tiling strategy and parallel region approach were tested. No specific advantage of one 

over the other was observed. For all test cases: 

jmax=5000, kmax=500 

time normalized with 1 processor (proc) 

7.1  Case I. 

Array Structure 
Code: 

do j 
dok 
y(l,k*j)= 
y(2,k*j)= 
y(3,k*j)= 

y(3, kmax*jmax) 

end do 
end do 

Results:      1 Proc Time = 3.6 Minutes 
Memory Needed 62 Mb 

Procs Time Comment 

1 
2 
5 
10 

1.00 
0.71 
0.65 
0.94 

Pbss memory 
three times 
larger. 

20 



7.2  Case II. 

Array Structure 
Code: 

do j 
dok 
yiG.k)= 
y2(j>k)= 
y3G*)= 

yl(j,k), y2(j,k), y3(j,k), Mismatched loop index 

end do 
end do 

Results:      1 Proc Time = 15.6 Minutes 
Memory Needed 22 Mb 

Procs Time Comment 

1 
2 
5 
10 

1.00 
0.87 
0.54 
0.34 

1 Proc time 
very high. 

7.3  Case HI. 

Array Structure 
Code: 

do j 
dok 
yl(k,j)= 
y2(k,j)= 
y3(kj)= 

yl(k,j), y2(kj), y3(k,j), Matched loop index 

end do 
end do 

Results:      1 Proc Time = 4.3 Minutes 
Memory Needed 22 Mb 

Procs Time Comment 

1 
2 
5 
10 

1.00 
0.53 
0.30 
0.20 

Inner loop 
aligned with 
lead index k. 

21 



7.4 Case IV. 

Array Structure 
Code: 

doj 
dok 
yl(k*j)= 
y2(k*j)= 
y3(k*j)= 

- yl(k*j), y2(k*j), y3(k*j), Matched loop index 

end do 
end do 

Results:      1 Proc Time = 2.4 Minutes 
Memory Needed 22 Mb 

Procs Time Comment 

1 
2 
5 
10 

1.00 
0.51 
0.24 
0.15 

Best result 
with linear 
arrays. 

7.5 Case V. 

Array Structure 
Code: 

dok 
doj 
yl(k*j)= 
y2(k*j> 
y3(k*j)= 

- yl(k*j), y2(k*j), y3(k*j), Mismatched loop index 

end do 
end do 

Results:      1 Proc Time = 9.3 Minutes 
Memory Needed 22 Mb 

Procs Time Comment 

1 
2 
5 
10 

1.00 
0.17 
0.08 
0.05 

1 Proc time 
very large. 

22 



7.6  Case VI. 

Array Structure 
Code: 

do j 
dok 
y(l*k*j)= 
y(2*k*j)= 
y(3*k*j)= 

y(3* kmax*jmax) 

end do 
end do 

Results:      1 Proc Time = 3.3 Minutes 
Memory Needed 62 Mb 

Procs Time Comment 

1 
2 
5 
10 

1.00 
0.68 
0.39 
0.36 

Pbss memory three 
times large, 10 procs 
results wrong. 

7.7 Conclusions. The overall results from above are shown pictorially in Figure 12. For KSR1 

applications, the best performance is obtained with linear arrays with the lead index aligned with inner 

loop index. This relates to subpaging of the data in the loop which are used effectively once they are 

brought in to subpage. The reason why linear array is better than 2-D array is not clear. Also, when all 

variables are rolled into one array, the performance results are not only bad but are also wrong for a large 

number of processors. Since in a large code, the linear array size can be very long, a safe 

recommendation would be to go for 2-D/3-D arrays. 

8.  PARAGON PERFORMANCE STUDY 

The Intel PARAGON at Wright-Patterson Air Force Base was used for this performance study. It is 

relevant to point out the following: 

(1) Domain decomposition is an important aspect of parallel computing for distributed memory 

environment; and hence, memory available on each processor is an important consideration before 

embarking on programming. On PARAGON, each processor can accommodate 32 Mb, but with system 

requirements no more than 30 Mb should be used. 

23 
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(2) For cases with larger memory than 30 Mb, the system was hung up due to data-swapping 

problems. For several cases listed later, a single processor run could not be performed due to this 

problem. The problem was more severe for double-precision computations. For this reason, a single- 

precision version of the model code was used after testing one case in double precision. 

(3) For cases that had ample memory on one processor for the full problem, it was relevant to study 

the influence of decomposed memory vs. full memory in order to understand the degree of slowdown in 

performance. The data presented next would show that this depends on the array structure in the code. 

(4) The model test problem does not account for communications between processors, since the model 

problem was fully decomposed and could be run independently on each processor. This is something that 

needs to be dealt with for the full CFD code later. 

(5) The procedure was to run the code on 1-10 processors by decomposing the problem and its 

memory for all code structures that were studied for KSR1. The code tested was identical to that tested 

on KSR1. 

8.1  Case I. 

Array structure       - y(3,kmax*jmax) 
Results:  1 Proc time = 3:30 (m:s) 
Memory - 30 Mb for 1 Proc 

Procs Time Comment 

1 
2 
5 
10 

3:30 
1:26 
0:42 
0:21 

For 10 procs using same 
storage as of 5 procs time 
is 0:39. 

25 



8.2 Case II. 

Array structure      - yl(j.k), y2(j,k), y3(j,k), Mismatched loop index 
Result:  1 Proc Time = 3:16 

Procs Time Comment 

1 
2 
5 
10 

3:16 
1:08, 2:05 
0:36, 0:55 
0:22, 0:47 

Second set refers 
to memory kept at 
1 proc level. 

8.3 Case HI. 

Array structure - yl(kj), y2(k,j), y3(k,j), Matched loop index 
Result:  1 Proc Time = 2:03 

Procs Time Comment 

1 
2 
5 
10 

2:48 
1:09, 1:09 
0:39, 0:37 
0:21, 0:22 

Second set refers 
to memory kept at 
1 proc level. 

8.4  Case IV. 

Array Structure - yl(k*j), y2(k*j), y3(k*j), Matched loop index 
Results:  1 Proc Time = 2:32 

Procs Time Comment 

1 2:32   

2 0:59 
5 0:30 
10 0:19 
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8.5  Case V. 

Array structure - yl(k*j), y2(k*j), y3(k*j), Mismatched loop index 
Results:  1 Proc Time = Hung up 

Procs Time Comment 

1 
2 
5 
10 

1:02 
0:33 
0:21 

1 Proc was 
terminated at 
12 minutes. 

8.6 Case VI. 

Array Structure - y(3*kmax*jmax) 
Results:   1 Proc Time = 2:34 

Procs Time Comment 

1 
2 
5 
10 

2:34, — 
1:0, 2:47 
0:31, 0:48 
0:20, 0:31 

Second set is for double 
precision computations, 
1 proc hungup. 

8.7 Conclusions. The overall results shown above are pictorially depicted in Figure 13. For 

PARAGON, it appears that there is no clear advantage of one structure over the other. All arrays, whether 

linear or misaligned indices, seem to give very similar results as long as one ensures that the work 

assigned to a processor is within its local memory bound. This would imply that for the 2-D/3-D code, 

one may not have to lay out the data structure in any specific manner. Mismatched loop index makes a 

difference only when the work is at the limit of the memory bound for a given processor. Previous results 

show that, in this limit, the mismatched index style could be hung up while matched loop index style 

would complete its task. 
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9.   CM-5 PERFORMANCE STUDY 

The CM-5 at the Army High Performance Computing Center (AHPCC), managed by the University 

of Minnesota, does not allow individual processors to be used by the user. Processors in chunks of 32, 

64, etc., however, can be requested. This implies that the model test problem size needs to be increased 

in order to get a valid comparison with other machines. However, since absolute comparisons are not 

intended here, it suffices to increase the problem size enough to get valid scaling. For all test cases 

reported here, the problem size was increased to jmax=40192, kmax=500. 

Programming styles on CM-5 can consist of data parallel, message passing, and a combination of both. 

All programming styles were exercised on the model test and are described next. 

9.1 Message Passing. The approach is similar to the PARAGON studies involving domain 

decomposition. 

9.1.1  Case I. 

Array structure y(3,kmax*jmax) 

Procs Time 
(sec) 

Comment 

32 
64 
256 

22.3, 33.7 
10.6, 16.68 
3.81, 5.44 

Second set refers to 
double precision time. 

9.1.2 Case II. 

Array structure -yl (j,k), y2(j,k), y3(j,k), Mismatched loop index 

Procs Time 
(sec) 

Comment 

32 
64 

256 

22.8, 21.1 
10.1, 10.1 
3.60, 3.9 

Second set refers to 
memory kept at 32 proc. 
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9.1.3 Caselll. 

Array structure - yl(kj), y2(kj), y3(kj), Matched loop index 

Procs Time 
(sec) 

Comment 

32 
64 

256 

25.8 
11.5 
3.82 

— 

9.1.4 Case IV. 

Array Structure - yl(k*j), y2(k*j), y3(k*j), Matched loop index 

Procs Time 
(sec) 

Comment 

32 
64 

256 

18.6 
8.7 
3.4 

Best timing of 
all cases. 

9.1.5  CaseV. 

Array structure - yl(k*j), y2(k*j), y3(k*j), Mismatched loop index 

Procs Time 
(sec) 

Comment 

32 
64 

256 

22.1 
10.2 
3.7 

Mismatch makes a 
difference. 

30 



9.1.6 Case VI. 

Array Structure - y(3*kmax*jmax) 

Procs Time 
(sec) 

Comment 

32 
64 

256 

23.6 
11.2 
3.9 

— 

9.1.7 Conclusions. A critical look at the previous data and the pictorial representation in Figure 14 

shows that CM-5 message passing programming does not show a great deal of differences for various 

array structures. The linear array structure with matched loop index seems to be doing somewhat better 

than other forms. Mismatching the loop index clearly shows a degradation in performance for both linear 

as well as 2-D arrays. 

9.2 Data Parallel. The basic code, noted previously, was used via CM FORTRAN translator, CMAX, 

and the results are described next. 

For all cases other than transparent 2-D arrays, CMAX failed to correctly translate the code into a data 

parallel style. The resulting .fern file had to be manually modified for all other cases. These 

modifications yielded correct results, but long run times. In the process, a compiler error was discovered 

and reported. The results obtained after these modifications were unsatisfactory from a performance 

standpoint for cases that used linear-type arrays. The table in section 9.2.1 describes the result for 

Cases II and III. 

9.2.1  Case II 

Array Structure - yl(j, k), y2(j, k), y3(j, k) 
CMAX translator worked well with this array structure. 

Procs Time 
(sec) 

Comment 

32 
64 

256 

0.60 
0.30 
0.09 

Run times are 
excellent. 
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9.2.2  Caselll. 

Array Structure - yl(k, j), y2(k, j), y3(k, j) 
Same results as Case II. 

9.2.3 Conclusions. The previous results show that CMAX can handle the 2-D arrays properly and 

the run times are excellent. For codes based on linear arrays, CMAX failed to translate the code correctly, 

yielding erroneous results. With manual intervention, a correct data parallel file was created for these 

cases but the run times were very high (of the order of several minutes). This implies that the codes based 

on linear arrays must be appropriately translated to 2-D/3-D arrays to take advantage of the existing CM-5 

architecture. 

9.3 Message Passing With Data Parallel. At a node level, data parallel programming can be used to 

combine the message passing programming to achieve greater performance. This, however, can not be 

done for all code structures since linear type data structure is not suitable for data parallel programming. 

A reasonable strategy is to use node level data parallel with inter-node massage passing. This will use 

the vector units at node levels which are never used in message passing programming. Only Cases II/III 

are relevant, and the results obtained are shown in section 9.3. 

9.3.1  Case II/III. 

Array structure- yl(k,j),y2(k,j),y3(k,j), Matched loop index 

Procs Time 
(sec) 

Comment 

32 
64 

256 

1.8 
1.68 
4.87 

Time for 256 procs 
is higher. 

9.3.2 Conclusions. Data parallel message passing reduces the run time significantly as compared to 

the message passing. However, previous results also show that data parallel run times are the best of all 

programming styles. It would, then, suffice to conclude that 2-D/3-D type code structures should exploit 

the data parallel style to achieve optimum performance. Linear array type codes are likely to be easier 

to port if message passing style is used. Overall recommendation, however, is to first translate the code 

to 2-D/3-D array formats before attempting porting. 
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10.  SUMMARY 

This technical effort was initiated to evaluate various parallel computing platforms for large application 

codes. Specifically, the objectives were to develop an understanding of the enhancement in computing 

performance in relation to the code data structures. To this end, an emulated model code that has nearly 

all the features of the large code was tested on several massively parallel platforms such as KSR1, CM-5, 

and Intel PARAGON. This testing has provided several interesting conclusions that are enumerated next. 

(1) The Intel PARAGON and the CM-5 model tests yielded the most consistent performance behavior 

on all code structures. For message passing, good run times (with correct results) were obtained for 

linear as well as 2-D arrays. For CM-5 data parallel programming, the array structures had to be 

limited to 2-D/3-D arrays. For these cases, all the performance data could be displayed on a graph 

with a narrow band width for various code structures implying robustness of the machine relative to 

the code structure. 

(2) KSR1, although giving correct results on almost all code structures, suffered from performance 

inconsistencies which yielded widely varying run times for various code structures. Its performance 

curves could not be plotted on the same graph without normalizing the run times with one processor 

run time. This implies the sensitivity of the machine performance relative to the code structure. Use 

of the translation software, KAP, is strongly discouraged due to its inherent bugs. 

(3) CM-5 performance based on data parallel programming seems to strongly favor the transparent 

3-D/2-D arrays for data structures. Linear arrays of several variables yielded correct results with 

moderate run times; however, linear arrays where all variables are rolled into one seem to be lost in 

the system with very high run times. Use of CMAX translator should be limited to transparent data 

parallel programming styles. 

(4) Of all systems, CM-5 seems to offer the wider selectivity of programming styles. Based on these 

studies, message passing with node level data parallel using transparent 2-D/3-D arrays appears to be 

the best choice for CFD applications. 
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(5) For Cray systems, C-90 and Y-MP, full 2-D/3-D CFD application codes were exercised with 

various code structures. With vectorization and multitasking, an estimated factor of 10 enhancement 

in code run time from the original code was obtained. Further code structure studies also show that 

2-D/3-D array style of coding appears to give better performance on Cray systems. 

(6) Overall conclusions based on these studies suggest that 2-D/3-D arrays are the most desirable 

choices for these classes of machines. To ensure portability to various machines, as well as rapid turn 

around on various platforms, use of linear arrays must be avoided. 

(7) This modest effort is only a first step toward computing on massively parallel systems. Based on 

the lessons learned and conclusions derived here, further effort is underway to modify the current 3-D 

CFD code to evaluate its performance on KSR1, CMS, and Intel PARAGON. 
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