
November 1994 UILU-ENG-94-2241
CRHC 94-24

Center for Reliable and High Performance Computing

Compiler-Assisted Debugging and
Multiple Instruction Retry

Shyh-Kweh Chen

■^

ra

n FC'iir1
J^Äj iby 4**3 ^f/1 M A.^2j .

DEC 2 3 1994
ü *.■?

19941219 014
Coordinated Science Laboratory
College of Engineering

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-94-2241 (CRHC 94-24)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

6c ADDRESS (Cty, State, and ZIP Code)

1308 W. Main ST.
urbana, IL 61801

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION joint Services

Electronics Program

8b. OFFICE SYMBOL
(If applicable)

8c ADDRESS (City, State, and ZIP Code)

800 N. Quincy St.
Arlington, VA 22217

7b;

1b. RESTRICTIVE MARKINGS
None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research and NASA

7b. ADDRESS (City. State, and ZIP Code) Ams RESEARCH CTR.

800 N. Quincy St. MOFFETT FIELD, CA
Arlington, VA 22217

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014- go-J-1270 NASA NAG 1-613

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

COMPILER-ASSISTED DEBUGGING AND MULTIPLE INSTRUCTION RETRY

12. PERSONAL AUTHOR(S)
Chen, Shyh-Kweh

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM TO.

14. DATE OF REPORT (year, Month, Day) 15. PAGE COUNT

November 1994 83

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
instruction retry, reversible debugging, instruction level
parallelism, instruction level fault-tolerance, compiler

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Backward execution requires the saving of historic information concurrently with the normal execution
in order for a program to roll back. There are several applications for which backward execution is useful. In
an environment where reliability is a concern, it may be necessary to roll back the program to a previously
executed state in case of system faults. Multiple instruction retry is an alternative to checkpointing for
recovery from a transient processor failure, especially when the error detection latency is only a few cycles.
Speculative execution can achieve significant speedup for superscalar architectures by utilizing instruction
retry to roll back the computation above mispredicted branches. Debugging is another field that can benefit
from backward execution. Allowing the user to undo several instructions at specific positions may facilitate

program debugging.
This thesis describes schemes that have been implemented for multiple instruction retry for both RlbC-

type scalar processors, and very long instruction word (VLIW) architectures. The thesis also presents
approaches that incorporate backward execution into a debugger, at both the compiler and the debugger

levels.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
E UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION

Unc lass ified
22b. TELEPHONE Qnclude Area Code) 22c. OFFICE SYMBOL

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
CCURITY CLASSIFICATION OF THIS PA«

UNCLASSIFIED

SFC'jniTY CLASSIFICATION OF THIS PAGE

COMPILER-ASSISTED DEBUGGING AND MULTIPLE INSTRUCTION RETRY

BY

SHYH-KWEI CHEN

B.S., National Taiwan University, 1983
M.S., University of Minnesota, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

Acceslon For

NTiS CRA&i
DTiC TAR □

W\

©Copyright by

Shyh-Kwei Chen

1994

COMPILER-ASSISTED DEBUGGING AND MULTIPLE INSTRUCTION RETRY

Shyh-Kwei Chen, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1994
W. Kent Fuchs, Advisor

Backward execution requires the saving of historic information concurrently with the normal

execution in order for a program to roll back. There are several applications for which backward

execution is useful. In an environment where reliability is a concern, it may be necessary

to roll back the program to a previously executed state in case of system faults. Multiple

instruction retry is an alternative to checkpointing for recovery from a transient processor

failure, especially when the error detection latency is only a few cycles. Speculative execution

can achieve significant speedup for superscalar architectures by utilizing instruction retry to

roll back the computation above mispredicted branches. Debugging is another field that can

benefit from backward execution. Allowing the user to undo several instructions at specific

positions may facilitate program debugging.

This thesis describes schemes that have been implemented for multiple instruction retry for

both RISC-type scalar processors, and very long instruction word (VLIW) architectures. The

thesis also presents approaches that incorporate backward execution into a debugger, at both

the compiler and the debugger levels.

in

Acknowledgements

I am greatly in debt to my thesis advisor, Professor W. Kent Fuchs, for his guidance,

support and encouragement throughout the thesis research. Also, I wish to thank Professor

Wen-Mei Hwu for his contribution to this thesis work. I would like to express my appreciation

to Professor Geneva Belford, Professor Andrew Chien, and Professor David Padua for serving

in my committee.

During the work on multiple instruction retry, I enjoyed discussion with Dr. Chung-Chi

Jim Li and Dr. Neal Alewine. I would also like to thank all my friends in the Center for

Reliable and High-Performance Computing at the Coordinated Science Laboratory, including

Dr. Weiping Shi, Dr. Yi-Min Wang, Dr. Antoine Mourad, Dr. Junsheng Long, Dr. Paul Chen,

Bob Janssens, Srikanth Venkataraman, Sujoy Basu, Ismed Hartanto, Kuo-Feng Ssu, Gaurav

Suri, Ching-Han Tsai, and Vicki McDaniel, to name a few, who made my stay here a pleasant

experience.

Finally I would like to thank my parents and brothers for their love, understanding, sacrifices

and patience throughout my Ph.D. study.

IV

Table of Contents

Chapter PaSe

1 Introduction 1
1.1 Motivation 1
1.2 Thesis Contributions 1
1.3 Thesis Organization 3

2 Compiler-Based Multiple Instruction Retry 4
2.1 Introduction 4
2.2 Error Model and Hazard Types 5
2.3 Overview of Schemes Implemented 6
2.4 Review of the Pseudo Register Phase in Scheme L 7
2.5 Performance Enhancement Techniques - Pseudo Register Phase 9

2.5.1 Loop protection 10
2.5.2 Node splitting 10
2.5.3 Loop and node processing order 12
2.5.4 Loop expansion 13
2.5.5 Self-anti-dependency 14

2.6 Incremental Updating 14
2.6.1 For on-path hazards - Scheme 0 14
2.6.2 Incorporating branch hazards - Schemes 2 and 3 16

2.7 Post-Pass Code Rescheduling and Spill Register Reassignment 17
2.7.1 On-path hazards - Scheme 0 17
2.7.2 Both types of hazards - Schemes 1, 2, and 3 20

2.8 Performance Evaluation 21
2.8.1 Resolving on-path hazards - Scheme 0 vs. Scheme L 21
2.8.2 Resolving on-path and branch hazards - Schemes 1, 2, and 3 24

2.9 Summary 25

3 Application of Multiple Instruction Retry to VLIW Architectures 27
3.1 Introduction 27
3.2 Machine Model 28
3.3 Approach 28

3.3.1 Compiler-based scheme for VLIW architectures 28
3.3.2 Hardware-software combined scheme for VLIW architectures 31

3.4 Analytical Bookkeeping Code Scheduling 31
3.4.1 Bookkeeping in trace scheduling 32
3.4.2 Analytical bookkeeping 34
3.4.3 Speedup, code run-time, and code growth 36

3.5 Simulation Results 38

3.6 Summary 44

Compiler-Supported Reversible Debugging 46
4.1 Introduction 46
4.2 GNU Debugger - GDB 47
4.3 Recording Mode and Undo Command 50
4.4 Buffering Schemes 50

4.4.1 Read buffers and history write buffers 50
4.4.2 Buffer size 51
4.4.3 Twin-buffers 52
4.4.4 Queueing models 53

4.5 Implementation 58
4.5.1 De-assembly and context switching 59
4.5.2 Compiler-assisted 59

4.6 Experimental Results 64
4.7 Summary 65

Conclusions 67
5.1 Summary 67
5.2 Limitations 68
5.3 Future Research 68

References 70

Vita 74

VI

List of Tables

Table Page

2.1 Implementation summary 7
2.2 Code run time overhead for Schemes L and 0 23
2.3 Code size overhead for Schemes L and 0 23
2.4 Run time overhead for Scheme 1 25

3.1 Code growth, the analytical bookkeeping 36
3.2 Speedup and scheduling time overhead 37

4.1 The stored values vs. instruction types 51
4.2 The .buffer usages for a large n 58

vn

List of Figures

Figure Page

2.1 On-path and branch hazards 6
2.2 Node splitting, loop expansion, and renaming 8
2.3 Conditions for loop protection 9
2.4 Loop protection and cut hazard register 10
2.5 Node splitting enhancement 11
2.6 Loop processing order 12
2.7 Cases for loop expansion 14
2.8 Incremental updating for resolving on-path hazards 15
2.9 The confinement of search nodes outside the loop 16
2.10 The loop expansion for branch hazards, N = 3 17
2.11 Post-pass code rescheduling for an epilogue segment, N = 10 19
2.12 Register live range across procedure boundaries 20
2.13 Compile time speedup 22
2.14 Percentage of the hazard nodes that are branch hazard nodes 26

3.1 Hazard removal, scheduling and simulation for VLIW architectures 29
3.2 Enhanced list scheduling algorithm 30
3.3 16 cases for local swapping of the adjacent pairs 33
3.4 Group hierarchical implementation 35
3.5 The bubble sort implementation 35
3.6 Performance overhead for CMP 38
3.7 Performance overhead for COMPRESS 38
3.8 Performance overhead for PUZZLE 39
3.9 Performance overhead for QSORT 39
3.10 Performance overhead for QUEEN 39
3.11 Performance overhead for WC 40
3.12 Performance overhead for QSORT under the prioritized list scheduling algorithm . . 41
3.13 Code growth ratio for CMP 42
3.14 Code growth ratio for COMPRESS 42
3.15 Code growth ratio for PUZZLE 42
3.16 Code growth ratio for QSORT 43
3.17 Code growth ratio for QUEEN 43
3.18 Code growth ratio for WC 43
3.19 Performance overhead with a read buffer 44
3.20 Code growth ratio with a read buffer 45

4.1 Basic data structures for GDB . 48
4.2 The GDB frame work 49

Vlll

4.3 Recovery using a read buffer 52
4.4 The twin-buffer approach 53
4.5 The buffer usages for two without undo wraparound implementations 54
4.6 Queueing models for three implementations 56
4.7 Standard buffering instructions 60
4.8 The three BFS traversals for buffering instruction insertion 62
4.9 Buffer index and buffer limit recovery 63

IX

Chapter 1

Introduction

1.1 Motivation

Backward execution includes several useful applications. The capability of retrying a few

instructions is desirable in situations requiring rapid recovery from transient processor failures.

Checkpointing provides a means to rollback the computation for critical and long-running jobs

in a multiprocessor environment. Speculative execution can achieve significant speedup for

superscalar architectures if the recovery from mispredicted branches can be efficiently carried

out. Exception repair finds the previous consistent system state using precise interrupt. Undo

allows the user to perform a close examination around the error portion of the program.

In order for a program to roll back, the backward execution requires the saving of historic

information. Both hardware and software implementations for some of these applications have

been proposed. Hardware solutions for multiple instruction retry involve complex circuitry

modifications, while software solutions suffer from large code growth and long compilation

time. The thesis studies the efficient software-based approaches for multiple instruction retry

and reversal debugging.

1.2 Thesis Contributions

The thesis studies the following backward execution applications: 1) compiler-based multiple

instruction retry for scalar processors, 2) the application of multiple instruction retry for VLIW

architectures, and 3) reversal debugging. The hardware redundancy for register file is eliminated

by compile-time data dependency manipulation. Both the compilation time and the number of

instructions that can be processed have been significantly improved. Multiple instruction retry

for VLIW architectures has been developed, under a new code scheduling model. Compiler

dataflow analysis has drastically reduced the data recording time associated with the reversal

debugging.

Previous work on compiler-assisted multiple instruction retry has utilized a series of com-

piler transformations, loop protection, node splitting, and loop expansion, to eliminate anti-

dependencies of length < N in the pseudo register, machine register, and the post-pass resolver

phases of compilation [1,2]. The results have provided a means of rapidly recovering from

transient processor failures by rolling back N instructions. This thesis presents techniques

for improving compilation and run-time performance in compiler-assisted multiple instruction

retry. The compilation time has been reduced from more than two hours to within three min-

utes for source code of 1,000 instructions. The number of instructions that can be compiled

increases from 800 to more than 15,000. Incremental updating enhances compilation time when

new instructions are added to the program. Post-pass code rescheduling and spill register re-

assignment algorithms improve the run-time performance and decrease the code growth across

the application programs studied. Branch hazards are also shown to be resolvable by simple

modifications to the incremental updating schemes during the pseudo register phase and to the

spill register reassignment algorithm during the post-pass phase.

Two compiler assisted multiple instruction word retry schemes for VLIW architectures have

been developed. In the first scheme, compiler generated hazard-free code with different degrees

of rollback capability for scalar processors [1] is compacted by a modified VLIW trace schedul-

ing algorithm. Nops are then inserted in the scheduled code words to resolve data hazards

for VLIW architectures. Performance is compared under three parameters : N, the rollback

distance for scalar processors; P, the number of functional units; and n, the rollback distance

for VLIW architectures. The second scheme employs a hardware read buffer [2] to resolve

frequently occurring data hazards, and utilizes the compiler to resolve the remaining hazards.

Performance penalty and code growth have been reduced to negligible amounts, with the hard-

ware cost of a read buffer of 2nP entries. An analytical bookkeeping code scheduling algorithm

is proposed, which performs local swappings to schedule code for VLIW architectures. Such

a code scheduling algorithm alleviates the coding complexity of the previous trace scheduling

algorithm, and reduces the code duplication of the superblock scheduling.

Two implementations for undo have been incorporated in a symbolic debugger, so that the

reversible execution can be selectively enabled and disabled without waiting for a long time.

The first implementation is easy to develop with no code growth ratio, but with a high normal

execution time slow down, while the second employs compilers to insert buffering instructions

into the user programs. The compiler-assisted implementation significantly reduces the run-

time overhead with a moderate code growth. To increase the effective buffer usage for undo

instructions, a twin-buffer scheme is proposed, where one buffer serves as the working buffer

and the other buffer as the backup buffer.

1.3 Thesis Organization

Chapter 2 describes schemes that have been implemented for multiple instruction retry for

RISC-type scalar processors. Incremental updating and post-pass code reordering are employed

to improve the code run-time and reduce the compilation time.

Chapter 3 applies multiple instruction retry to VLIW architectures, using both compiler-

based, and hardware/compiler combined approaches. To schedule code for VLIW architectures,

an analytical bookkeeping code scheduling algorithm is proposed.

Chapter 4 incorporates the undo capability into debuggers. The merits of using a read

buffer and a history write buffer are discussed. Two schemes were implemented based on a

modified version of the GNU debugger, GDB. The first scheme traps every instruction and

stores suitable values based on de-assembling the current instruction, while the second utilizes

the compiler to insert suitable instructions to store values at the run-time.

Chapter 2

Compiler-Based Multiple

Instruction Retry

2.1 Introduction

To achieve uninterrupted operation, fault-tolerant computer systems usually possess the

ability of detecting errors and either correcting the errors immediately or recovering the systems

to previous consistent states prior to the occurrences of the errors. There is evidence that

hardware transient faults, due mainly to temporary changes of electric, electromagnetic and

radioactive conditions, occur more often than permanent faults [3,4]. In an environment with

a high transient fault rate, it is desirable for a system to recover rapidly without resorting to a

global restart whenever a fault occurs.

Software based checkpointing provides for rollback recovery when transient system faults

occur. In such schemes, a checkpoint of the system state is captured and recorded at regular

intervals [5-7], or predetermined positions in the application program [8]. In the event of a

fault, the system can be rolled back to one of the previously recorded checkpoints, returning the

system to a consistent state [9]. Software checkpointing can accommodate long error detection

latencies at the cost of potentially long recovery time.

In contrast to full software checkpointing, multiple instruction retry schemes aid in rollback

of just a few instructions. Instruction retry schemes have traditionally been implemented in

hardware, both in full checkpointing [10-14], and in incremental checkpointing (sliding win-

dow) [15-19] formats.

The micro-rollback scheme [17] employs a delayed write buffer to sustain rollback capability,

maintaining the old data for N cycles, which is the maximum error detection latency (or

exception latency). A write to the register file is written to the buffer instead. The delayed

write buffer has N entries, where each entry corresponds to an instruction of the last N cycles

and consists of two fields, the name of the destination register and the new value. The new

value and the information regarding its destination register are held in the buffer for N cycles

before updating the real register. A prioritized by-pass circuitry is needed to retrieve the most

recent copy of the register. During recovery, the buffer contents are invalidated and the program

counter(PC) and the program status word(PSW) are reloaded with the rollback values.

A compiler-based multiple instruction retry scheme has been developed, in which compiler-

driven data flow manipulation is used to resolve data hazards associated with rollback recov-

ery [1] by removing anti-dependencies of length < N instructions. If an error is detected, the

execution is recovered by loading the correct values of the PC and the PSW. The delayed

write buffer for the register file is removed in this approach. However, the original implementa-

tion suffered from long compilation times. An alternative to the compiler-based technique is the

combined compiler-hardware scheme [2], which can remove one type of hazard using a hardware

read buffer, while allowing the compiler transformations to resolve the remaining hazards.

This chapter addresses the compile-time limitations of the original compiler-based hazard

removal approach to multiple instruction retry [1]. The techniques described include incremental

updating, post-pass code rescheduling, spill register reassignment and branch hazard resolution.

2.2 Error Model and Hazard Types

Targeted processor errors are described as follows [2]. Error detection latency is < N

instructions. Units external to the CPU, such as memory and I/O, have their own rollback

capability (e.g., delayed write buffers of depth N and appropriate bypass logic). The PC and

the PSW contents at each instruction are preserved by an external recording device or by

shadow registers [17]. A restartable CPU state can be restored by loading the correct contents

of the PC and the PSW.

Given the above assumptions, a permissible error is one which does not result in a path

inconsistent with the control flow graph (CFG) of the target application program provided that

the register file contents do not spontaneously change and data is not written to an incorrect

register location. Errors targeted for recovery via multiple instruction retry are summarized

i

! \
within

N <

r 1
! %

-*K

within
> N

j \n i 1*
-y|

err

I y^ |

'

i y
*— ^

\
nr s

rollback

detected y

Figure 2.1 On-path and branch hazards

as follows: 1) CPU errors such as those caused by a faulty ALU; 2) incorrect values read

from memory, the register file, or external functional units such as the floating point unit; 3)

correct/incorrect operands read from incorrect locations within the I/O, memory, or register

file; and 4) incorrect branch decisions resulting from errors 1 through 3.

The code can be represented as a CFG, G(V,E), where V is the set of nodes denoting

instructions and E the set of edges denoting flow information. If there is a direct control flow

from instructions I{ to Ij, where /,- € V and Ij G V, then there is an edge (Ii,Ij) € E.

Within the general error model above, data hazards resulting from instruction retry are of

two types [2]. On-path hazards are those encountered when the instruction path after rollback

is the same as the initial instruction path and branch hazards are those encountered when the

instruction path after rollback is different from the initial instruction path. On-path hazards

can be described as anti-dependencies of length < N in G(V,E) [20]. As shown in Figure 2.1,

register x of node Ij represents an on-path hazard and register y of node Ik represents a branch

hazard.

I
I

2.3 Overview of Schemes Implemented

The implementation is based on the intermediate code generated by the original version of

the IMPACT C compiler [21] after optimization but before register allocation. Data hazards are

resolved in three different phases, the pseudo register phase, the machine register phase, and

Table 2.1 Implementation summary

Pseudo register machine register Nop insertion

Scheme L on-path on-path on-path

Scheme A on-path + branch[*] on-path + branch on-path + branch

Scheme 0 on-path[i] on-path on-path[cr]

Scheme 1 on-path[i] on-path on-path + branch[cr]

Scheme 2 on-path + branchfi] on-path on-path + branch[cr]

Scheme 3 on-path + branch[i] on-path -(- branch on-path + branch[cr]

the nop insertion phase. In order to compare compile time and run time efficiency, alternative

schemes for each of the phases were implemented, as shown in Table 2.1.

Scheme L [1] resolves on-path hazards only. Scheme A [2] resolves both on-path and branch

hazards at the latter two phases, but does not resolve all pseudo register branch hazards at the

first phase, as marked "[*]". The dominant fraction of compile time in the previous Schemes L

and A is devoted to resolving pseudo register hazards. Both schemes implement a simple pseudo

register phase, and the data structure updating is not incrementally maintained. Therefore,

four alternative schemes that exploit incremental compilation techniques were implemented

and compared. Scheme 0 uses incremental updating in the pseudo register phase for resolving

on-path hazards. Compilation time has been enhanced with respect to Scheme L. Scheme 0

also employs post-pass code rescheduling and spill register reassignment algorithms to enhance

the run-time performance and decrease the code growth across the application programs stud-

ied. The marker "[i]" denotes incremental updating, while "[cr]" denotes code rescheduling.

Modifications to the post-pass algorithms can resolve both types of hazards during the nop

insertion phase (Schemes 1, 2, and 3). We also show that a slightly modified incremental up-

dating scheme can resolve branch hazards as well in the pseudo register phase (Schemes 2 and

3), though experimental results favor Scheme 1 in code run-time, code growth and compilation

speed.

2.4 Review of the Pseudo Register Phase in Scheme L

The following notation is for on-path hazards, while those for branch hazards can be similarly

defined. A node Id is a hazard node if Id defines a register x, another node Iu uses x, and there

is a directed path of length less than or equal to N from /„ to Id- Register x is called a hazard

X «-

<-y

x<-x+l

L-
V

T

L
y<-x+l

(a) Node splitting, N = 5. (b) Loop expansion, N = 5.

Figure 2.2 Node splitting, loop expansion, and renaming

register or a hazard that causes data inconsistency. A loop header is the beginning of the

loop, and a loop tail is the node that is within the loop and has a directed connection to the

loop header. LiveJn(I) and live.out(I) are the sets of registers whose values have later uses

immediately before and after node / respectively [22].

Scheme L resolves pseudo register hazards in three sequential stages, loop protection, node

splitting, and loop expansion. All three stages may insert new nodes, which change the CFG,

loop structure, and data flow information. Renaming is the primary technique for hazard

resolution. Figure 2.2 illustrates how node splitting and loop expansion resolve hazards. A

hazard node is denoted by a circle with a "*". In Scheme L, node Ij will be split due to hazard

register x if x € UveJn(Ij) and there is more than one definition of x that can reach Ij. Nodes

are scanned sequentially in the node splitting process. Scheme L also derives the number of

times a loop should be expanded to resolve hazards. To prevent some loop headers from being

split, and to allow the targeted hazards to be renamed freely after loop expansion, save and

restore nodes are inserted around loop headers, tails, and exit nodes. A loop can be protected

either from outside or from inside. The following conditions are used to determine if a loop L

should be protected for register x: Cl. x is a hazard register which is live after the extended

loop L for register x; C2. i's header will be split due to its hazard register x; and C3. X's

header will be split due to out of loop hazard register x.

The extended loop L for register x consists of all nodes in L and all nodes I\ satisfying the

following rules: 1) x £ liveJn(Ii), 2) I\ has only one successor, 3) I\ has only one predecessor

/o, and 4) IQ is in L. C2 may occur since some tail has more than one reaching definition and

at least one is a hazard node defining x. If Cl or C2 is true, L is protected from inside. If

4 4

X<-X + l <=p

V
O-

x<-x + l© P

<-x

V

<-x

y<-x

(a) Condition Cl. (b) Condition C2.

<-xo <-xo

(c) Condition C3.

Figure 2.3 Conditions for loop protection

C3 is true, L is protected from outside. Cl is for L instead of L since L may not have to be

protected if all nodes in which x is live after L are in L - L. Checking C3 prevents i's header

from being split, while observing Cl and C2 can confine x's live range to within each iteration

of L, so that after loop expansion, x can be renamed correctly within each new loop copy.

Example Figure 2.3 illustrates the three conditions for loop protection. In Figure 2.3(c),

to limit the code growth, the loop on the splitting path needs to be protected from outside for

x. Dotted lines denote that there may be some nodes in between as long as they do not redefine

register x.

2.5 Performance Enhancement Techniques - Pseudo Register

Phase

Let d(Ii,Ij) denote the minimum number of edges on any path from /; to /,-, and di(Ii,Ij)

is similar to d(Ii,If) except that all the nodes in the minimum length path must be within

loop L. Let DL denote the minimum number of edges from I's loop header to any of i's tail.

{/„, Id} is a hazard pair within loop L on register x if Iu uses x, Id defines x, and di(Iu, Id) < N.

Register x is a cut hazard register in loop L if 1) there is a hazard node in L, denning x; and

2) any header to tail path within loop L has at least one node defining x.

header(f

U(x) 0.

x«-

U(x)

tail
w

y-«-x

U(y) j

4
U(x) ^

(a) A loop segment.

U(zl)

x<-zl

y<-x

zi<-6 ö

U(x)&

(b) Scheme L.

Figure 2.4 Loop protection and cut hazard register

2.5.1 Loop protection

In Scheme L, if x is a hazard register inside loop L, and condition Cl or C2 is true, then

L should be protected from inside for x. However, if x is also a cut hazard register, L can be

renamed correctly after being protected from outside for x and expanded a sufficient number

of times.

Example As shown in Figure 2.4(a), register x is such a cut hazard register. According to

Scheme L, L is protected from inside since both conditions Cl and C2 are true. U(x) represents

using register x. Figure 2.4(b) illustrates the program segment after applying node splitting,

loop expansion twice, and renaming. The shaded circles denote save and restore nodes for

register x. Observing that every iteration of the loop redefines x, we can protect L from outside

and still get the correct renaming after expanding the loop twice, as shown in Figure 2.4(c).

The number of nodes is reduced, and the run time is improved since every iteration of loop L

dose not execute save and restore nodes. Similarly register x within the loop in Figure 2.3(a)

is also a cut hazard register.

2.5.2 Node splitting

A hazard node can be split if it is on the splitting path of some other hazards. Such new

hazard nodes may cause redundant splittings in Scheme L. We have implemented a scheme

10

GQX<-

Qy<-

,6
.>y«-U(y)

■•E(Jx<-U(x)

AV
B.n

)y<-U(y)

\ F(§>x<-U(x)

■iS
!(last use)
;u(x)

U(y)

Qx<-

$y<-

$y^U(y)

$xl^U(x)

i$

y<-U(y)(J> Q)y^U(y)

x3«- U(x) 0FFlO x2 «- U(xl)

 "6""""6" 5'

"y<-U(y)rS""$jy<-U(y)
x2«- U(x) f O " "O "l x2 <- U(xl)

^ '

U(xl)

U(y)

U(xl)

&U(y)
(c) The new node splitting strategy. (a) A program segment, (b) Split and rename based on x.

Figure 2.5 Node splitting enhancement

in which the number of copies for node I after splitting equals the number of original hazard

reaching definitions (plus 1 if there is at least one non-hazard reaching definition). This can

be done by using a stamp heap data structure [23], so that if a hazard node I is split into /,

Ji, I2, ■ ■ •, Is-i, then the stamp field of I;, i = 1,2,..., S - 1, points to i\ The hazard nodes

in the same heap will be assigned to the same new destination register if renaming is required.

During the sequential scanning process, node / should be split due to hazard register a; if 1) x

is in liveJn(I), and 2) all reaching definitions of x that can reach / do not belong to the same

stamp heap, assuming that all non-hazard nodes defining x belong to the same stamp heap.

Example Consider the program segment shown in Figure 2.5(a). We process hazard

register x first. The nodes from A to B are split into two copies in Scheme L. However, the

hazard node F, defining x, is also split since x is still live, resulting in two hazard nodes, F

and Fi. Therefore, the nodes from C to D are split into four copies due to the hazard reaching

definitions E, F, F\, and the reaching definition G. By applying the stamp heap strategy, we

can view F and F\ as the same reaching definition. Only three copies are required from nodes

C to D, as shown in Figure 2.5(c).

11

L2;

(save nodes)

y«-x

 i
re

X «-

Lly
x<-U(x)

x«-y
(new hazard x)
(restore nodes)

<A*/v 9 (save x)

U(x) (rename x)

new LI

yl*-U(y)5

LI

(a) The inner loop first rule.

re
L2i

re .
[<yw^W (restore x)

(b) Process L2 first.

Figure 2=6 Loop processing order

(c) Process LI first.

2.5.3 Loop and node processing order

Node splitting transforms all the hazards within the current loop across its backedges, while

loop expansion resolves all such hazards. In this manner, when we process a given loop, there

is no data hazard across the backedges of its inner loops. Therefore it is natural to process the

loops from inside out so that the levels of data hazards can be successively reduced until all

of them occur at the root level. The hazards at the root level then can be resolved by node

splitting and renaming.

In addition to the inner loop first rule, we have to enforce the sequential order rule (top-down)

to smoothly check condition C3 for parent hazard registers and to further eliminate extra

save/restore nodes. Figure 2.6(a) illustrates the inner loop first rule that new hazards due

to loop protection are propagated to the outer loop. The program segment in Figure 2.6(b)

illustrates the sequential order rule. Suppose X2 is processed first. Without enforcing the se-

quential order rule, Li may need to be protected from outside for register x. However, such

protection is redundant if we process L\ first and remove hazards that might affect Li, as shown

in Figure 2.6(c).

Breadth first search (BFS) is used to determine the processing order of nodes within loops

or nodes of the entire program. The starting nodes may be the headers of loops or the root

of the program. For some procedures, we have to modify the BFS algorithm by enforcing the

12

following rules : 1) a node can be processed if and only if all of its parents have been processed,

MBFS; and 2) reverse the direction of searching, RBFS.

2.5.4 Loop expansion

Our formula for the number of copies of L needed to resolve all on-path hazards within L is

the same as the formula in Scheme L [1], with a slight modification. To simplify the analysis,

we assume that loop L has a header h, and a single tail Jt. It can be easily extended to loops

with multiple tails. Let DL = d(Ih,It). Assume that {/„,/*} is a hazard pair within loop L for

register x. The new formula includes the following cases: Case 1. The backedge (It,h) is not

counted in dL(Iu,Id); Case 2. The backedge (Iuh) is counted in dL(Iu,Id), and within L there

exists a directed path that does not include (Iuh) from Id to /„; and Case 3. The backedge

(Iuh) is counted in dL(Iu,Id), and within L not considering (Iuh), there is no directed path

from Id to Iu.

Suppose it takes K\, K2 and K3 copies to resolve the hazard pair {Iu,Id} for each case

respectively, where a value 1 denotes no replication. For case 1, since the use of x in Iu and the

definition of x in Id are renamed to different registers in the same loop iteration after expanding

the loop Kx times, the potential hazard distance would be from Iu through (Kx - 2) copies of

L to the Kith, copy of Id, which is d(Iu,It) + (Ki ~ %)DL + d(Ih,h) + Ki - 1, as shown in

Figure 2.7(a). On the other hand, for case 2, both x's can be renamed to the same register, and

the potential distance is from Iu through (K2 - 1) copies of L to the first copy of Id, which is

d(Iu,It) + (K2 ~ 1)DL + d(h,Id) + #2, as shown in Figure 2.7(b). These terms must be greater

than N. Solving both inequalities, we have

N-d(Iu,It)-d(h,Id)-l
DL + 1 K2 =

and

#1 = <

+ 2

N-d(Iu,I,)-d(Ih,Id)-l
DL+1

itd(Iu,It) + d(Ih,Id) + l>N

+ 3 otherwise

For case 3, due to our observation concerning cut hazard registers, A"3 may be either Ii\ or

K2, depending on if both x's in Iu and Id can be renamed to different registers, as shown in

Figure 2.7(c) and (d) respectively. For fixed d(Iu, It) and d(Ih, Id), we have A'i = K2 + 1. Since

case 3 rarely occurs, we choose ii'3 = Ki in our implementation. The number of copies of L

needed to resolve all hazards within L is the maximum of all such A''s.

13

kn
"MAL,

different
renaming

'Id

\<r-

same
renaming

U(:

kr
fid

gii

(a) Case 1, Kl. (b) Case 2, K2.

same
renaming

(c) Case 3, K3 = K2.

different
renaming

(d) Case 3, K3 = K1.

Figure 2.7 Cases for loop expansion

2.5.5 Self-anti-dependency

A node / is self-anti-dependent if / defines what it uses. For example, x *— x + a is a

self-anti-dependent node that uses and defines pseudo register x. This type of anti-dependency

can be resolved by splitting / into two nodes : (I\ : y <— x + a, I<i : x <— y), and then inserting

N nops between them [1,2]. However, using renaming with the aid of node splitting and loop

protection, we can rename the definition of a; to a new pseudo register without introducing a

new node.

2.6 Incremental Updating

2.6.1 For on-path hazards - Scheme 0

Figure 2.8 shows the flowchart of the incremental scheme for resolving on-path hazards dur-

ing the pseudo register phase. Three subroutines loop-protection, node-splitting, and replicate-

loop, marked by "*", may insert new nodes to loops. Information associated with each node,

including register live range, stamp heap and loop structure, is updated locally whenever a

node is inserted.

Assume that L^s immediate parent loop is Lj, which may be the entire program, and

{Iu,Id} is a hazard pair for register x. The two cases in which we consider protecting Li from

outside for x are shown in Figure 2.9(a) and (b). In Figure 2.9(a), since the x in Id will be

renamed, we only need to check if there is any other definition of x, 1^, that can reach 1^, and

is not in the same stamp heap as Id- The search for Id is restricted to the shaded area, denoting

14

Optimizing

Compiler Pseudo - anti

{ Renaming j

{ Live analysis j

Record loop

structure

[Sort loop J

i = 0

(Compute hazard (i) J

[* Loop protection (i) j

Get number of

replications (i)

(* Node splitting (i) J

i = i+1

i = 0

[* Replicate loop (i) j

i = i+1 4
(Renaming J

Main loop

(Machine - anti j

(Code gen J
(Post -

r
pass

Figure 2.8 Incremental updating for resolving on-path hazards

the definitions within Lj that can reach Ih without going through backedges, but Iw can be

nodes in the upper levels that can reach Ih- The hazard in Figure 2.9(b) can also be resolved

by expanding Li a sufficient number of times and renaming registers within Li. For simplicity,

we protect Li from outside for register x instead, so that the hazard is automatically resolved.

Subroutines renaming, live-analysis, record-loop-structure, and sort-loop are executed only

once. The incremental scheme does not perform global DU-chain and global reaching definition

analysis as Scheme L does, but rather performs a global live range analysis [22]. Loop structure

and dataflow information HveJn and livejout are maintained and updated locally throughout

the computation.

Subroutine compute-hazard computes all hazard registers and hazard nodes within the cur-

rent loop, bypassing inner loop hazards. It traverses nodes within Li from the loop header in

a BFS order. If node / defines x, it performs an RBFS traversal from node / up to distance

N, but the search never leaves £,-. If there is a use of x within distance N, it records x a

hazard register, and / a hazard node. Subroutine loop-protection protects loop Li according to

conditions Cl, C2, and C3. Subroutine get-number-of-replications performs a BFS traversal

to compute d(Ih,Iß) and an RBFS traversal to compute d(Ia,It) for all nodes Ia, Iß in i,-. It

15

x<-\ & id

ov
LJ

Li

0 Iu
I
I
t

V

1

U(r)

Li © Id

Li

'

(a) Hazard splitting the loop header. (b) Across loop on-path hazard. (c) Across loop branch hazard.

Figure 2.9 The confinement of search nodes outside the loop

then computes K using the new formula, for every hazard pair {Iu,Id} in £;. The maximum

of all such values is the number of replications needed for Z2 to resolve its hazards.

Subroutine node-splitting executes the criterion mentioned in the previous section, and scans

the loop nodes in an MBFS order, bypassing the inner loops. Subroutine replicate-loop first

marks the extended loop Li for all hazard registers, and then applies a BFS traversal to replicate

Li. The number of copies is obtained from get-number-of-replications subroutine.

As shown in Figure 2.8, each program loop is examined once. The actual code growth occurs

after all loops have been inspected.

2.6.2 Incorporating branch hazards - Schemes 2 and 3

Branch hazards occur at branch boundaries when an error results in a wrong branch decision.

The following criterion can be used to locate all branch hazards : Register a; is a branch hazard

if there exists a branch node IBR, such that the distance from IBR to a definition of x along one

branch path of IBR is within N, and x is live at the other branch paths of IBR- By viewing x

as if it is used at IBR, renaming can resolve branch hazards as well as on-path hazards. Similar

to the case shown in Figure 2.9(b), we modify the loop protection conditions. As shown in

Figure 2.9(c), /„ is a branch node that does not use x, and x is live along one branch path of

/„. Loop Li is protected from outside for register a;, as if branch node Iu uses register x.

Example Consider the partial segment shown in Figure 2.10(a), and N = 3. Register x at

node / is a branch hazard due to branch nodes IBR and It, denoted by double circles. After

loop protection as in Figure 2.9(c), and renaming x to y, the the register y at node / is a branch

16

(a) A program segment. (b) After loop protection on x. (c) After expanding twice and renaming.

Figure 2.10 The loop expansion for branch hazards, N = 3

hazard due to branch node It, as shown in Figure 2.10(b). Note that the save instruction y <- x

before the loop header Ih is removed since x is not live at Ih. In Figure 2.10(c), by expanding

the loop twice and renaming, the branch hazard is resolved. The formula for the number of

loop replications can also be modified by viewing the branch node as using the register x.

2.7 Post-Pass Code Rescheduling and Spill Register Reassign-

ment

2.7.1 On-path hazards - Scheme 0

Although the pseudo register phase aims at removing on-path hazards within a function,

new hazards may emerge after the machine register phase. First, the stack pointer adjustment

instructions within the prologue segment and the epilogue segment create immediate self-anti-

dependencies. Second, before calling a procedure, the registers used as parameters need to be

saved before the new values can be loaded. Register spilling may also create on-path hazards.

When a register is to be spilled, most likely it will be loaded with new values, thus creating a use-

before-definition scenario. A straightforward post-pass nop insertion algorithm was employed in

Scheme L to resolve these new hazards. Sufficient nops are inserted before the hazard definitions

to force all anti-dependency distances exceeding N.

17

Code rescheduling is applied within the prologue and the epilogue segments, and a register

reassignment algorithm for rearranging spill registers, so that the total number of nops inserted

is greatly reduced. The post-pass algorithm includes the following steps : 1) reassign spill

registers; 2) reschedule code and insert nops in the prologue segment; 3) reschedule code and

insert nops in the epilogue segment; and 4) insert remaining nops.

The original version of the IMPACT C compiler [21] reserves three registers, $3, $24, and

$25, as spill registers. The spill registers perform two functions to access memory, load and

store. The compiler generates instructions of the following groups for load and store functions

respectively, where $r\ and $r2 are different spill registers, and are dead after the second (or

the third) instruction :

load $ri, memory; load $ri, memoryi; operation denning $7^;
use $ri; load $r2, memory2; store $ri, memory;

use $ri, $7-2;

Spill registers serve as temporaries and have very short live ranges, i.e., 2 or 3. On-path hazards

occur when two groups of spill code use the same spill register and their distance, from the use

of the first group to the definition of the second group, is less than or equal to N. The goal is

to minimize the number of nops needed to resolve all hazards. Our approach is to utilize dead

registers as substitutes within groups so that the sum of all the anti-dependency distances for

spill registers and substitutes is maximized, considering the anti-dependency distance between

groups of different spill registers and substitutes N + 1. In general, this problem is NP-hard,

which includes as a special case the following NP-complete problem after determining that only

spill registers are dead registers, and N = 1 :

Given K colors, an undirected graph G and an integer n, is there a node coloring

such that the number of edges with the same colors at both ends is at most n ?

This can be proven by restricting n to 0, and it becomes the K- color ability problem [24].

However, we propose a simple heuristic algorithm to reassign spill registers within groups in a

BFS traversal of the entire program. We always choose as a substitute the register which is

dead before and after the group, and whose sum of the distance backward to the first use and

the distance forward to the first definition is maximum.

The prologue segment includes code to adjust the stack pointer and to save the values of

local registers to memory. The epilogue segment includes code to retrieve the original register

18

merge_soit:

$_merge_sort_3 :
epilogue_begin

<f
10 nops .

lw $16, 92($sp)
lw $17, 96($sp)
lw $18, 100($sp)
lw $19, 104($sp)
lw $20, 108($sp)
lw $21, 112($sp)
lw $22, 116($sp)
lw $23, 120($sp)
lw $31, 124($sp)
addu $30, $sp, 128

4
10 nops ,

move $sp, $30
epilogue_end: ,

merge_sort:

$_merge_sort_3 :
epilogue_begin :

addu $30, $sp,
move $0, $0
move $0, $0
move $0, $0
move $0, $0
lw $21, -16($30)
lw $31, -4($30)
lw $22, -12($30)
lw $19, -24($30)
lw $18, -28($30)
lw $23, -8($30)
lw $20, -20($30)
lw $17, -32($30)
lw $16, -36($30)
move $sp, $30

epilogue_end:

128

beq $16, $20, $_merge_sort_3 beq $16, $20, $_merge_sort_3

beq $17, $23, $_merge_sort_3 beq $17, $23, $_merge_sort_3

(a) Scheme L. (b) The new scheme.

Figure 2.11 Post-pass code rescheduling for an epilogue segment, N = 10

values from memory and to adjust the stack pointer. The last step simply performs a BFS

traversal, and inserts nops to resolve all remaining on-path hazards.

Example Figure 2.11(a) shows the epilogue segment processed by Scheme L in post pass,

for N = 10. Figure 2.11(b) illustrates how the register assignment and code rescheduling are

used to eliminate 16 nops in the epilogue segment. Instruction 'addu $30, $sp, 128' has been

moved backward up to before all instructions of loading local registers, with the base register

being replaced by $30. The instructions to load local registers are rescheduled according to their

distances from the first uses of corresponding registers. The four instructions loading registers

$16, $17, $20, and $23 are thus moved to the end of the load instructions. Four more nops are

needed to resolve the hazard register $23.

19

Prolog!
X:

try:

Prologue:

HI:

J :

P :

M

i

i

! save $18
i

le : I Callee saves i
1 registers including $r [

bne

addu

b

jal

li

<i

$9, 0, P

$18, $11,

I: 1 > 0? |

within N /' F
T\

HI

J: $r <-
'A

K: Call Y try
V

\ i $8, 1

M: J

lw

/* No definition of $18 in between. */

/* recursive call, node K */

$18, 2 /* $18 is dead after node K. */

(a) (b)

Figure 2.12 Register live range across procedure boundaries

2.7.2 Both types of hazards - Schemes 1, 2, and 3

Post-pass nop insertion can also resolve extra branch hazards generated by the machine

register allocator. The branch hazard check can be incorporated in the original on-path hazard

check. The heuristic to reassign spill registers has to be modified as follows. The register we

choose to replace the reserved spill register at a specific group G of spill instructions must be

not only dead before and after G, but also requires as few nops as possible to resolve the new

branch hazard induced by the substitute register.

The above schemes for incorporating branch hazard resolution do not create extra hazards

across procedural boundaries. However, depending on implementations, the callee-saved regis-

ters may have a performance impact due to separate compilations. As shown in Figure 2.12(a),

suppose at branch node i", a wrong decision is made. After rollback and a correct decision at

/, register $r has a wrong value. If $r is in F's callee-saved register set, then $r is live along

Ps target (T) branch. Several nops should be inserted between I and J to resolve such branch

hazard. However, since Y's callee-saved register set are unknown at current procedure X, a

conservative scheme may assume that the registers are all in the set, e.g., $16, $17, • • •, $23 in

20

the original version of the IMPACT C compiler. By viewing K as a node that uses such set,

we can incorporate it in the initial global live range analysis.

For library routines, a built-in table holding corresponding saved register sets can be at-

tached to the compiler to relieve the situation described above. The following checking can

determine $r's live range before the procedure call, regardless of whether %r belongs to the

callee-saved register set. $r e Hve.in(M) iff $r is live at node K, where M is the next instruc-

tion following the subroutine call node K. Such live range checking starting from M should

skip any subroutine call encountered.

Example Figure 2.12(b) is an assembly code segment for the recursive function try .

Without checking the additional condition, N nops are inserted between node I and node J to

eliminate the hazard $18. None is required by observing $18 is dead after node K. Code run

time performance is improved since such N nops are within a loop.

2.8 Performance Evaluation

Implementation and performance benefits of the schemes are evaluated on a set of twelve

programs cross-compiled on a SPARC server 490 by the IMPACT C compiler with the haz-

ard removal schemes, and executed on a DEC station 3100. The benchmarks and descriptions

are as follows: QUEEN(148), 8-queen program; QSORT(261), recursive quick sort algorithm;

PUZZLE(877), a game; WC(181), CMP(251), GREP(926), COMPRESS(1828), UNIX utili-

ties; EQN(6251), mathematics typesetting program; LEX(6873), lexical analyzer; YACC(8099),

parser generator; CCCP(8775), preprocessor for gnu C compiler; and TBL(9191), table format-

ter. The number within the parentheses is the number of instructions generated by the original

version of the IMPACT C compiler without removing hazards. The chosen benchmarks consist

of a variety of typical program constructs including sequential single loops, highly nested loops,

and recursive functions.

2.8.1 Resolving on-path hazards - Scheme 0 vs. Scheme L

The incremental updating scheme and the post-pass code rescheduler improve application

compile time, run-time performance, and reduce code growth for most applications studied. In

this section we compare the performance impact of Scheme 0 and Scheme L with respect to the

21

Compile time
speedup
45

40

35

30

25

20

15

10

5

0

—1 1— 1 1

- COMPRESS -»—

i 1 1 1 l l

QSORT -+--
WC -B-

PUZZLE ■*
CMP -^--

QUEEN -*-•-
^-^C!^—+

-

. +~+---"^
^+''

-
^_- V V

- .0 -

. ""* ~^----vv™^;r:::;g'
a-.---.-.a-.-.-.--s-.-.-.-_-ai.-.i.-. _-.;-■&.--.--.-. .-.a A -A A A

i i i i 1 ■ i i i i

Figure 2.13 Compile time speedup

10 N

compile time, code run time and code size. We investigate the same set of benchmarks used in

[1]: CMP, COMPRESS, PUZZLE, QSORT, QUEEN, and WC.

For N = 10, Scheme L requires more than 8 minutes, 15 seconds, 1.5 minutes, 3.5 minutes,

and 9.5 minutes compiling QSORT, QUEEN, CMP, WC, and PUZZLE respectively, while

Scheme 0 takes compile time less than 16 seconds, 8 seconds, 15 seconds, 15 seconds and 50

seconds respectively. COMPRESS has the best compile time improvement. Scheme L spends

more than an hour for N = 7, 8, and 9, and almost two hours for N = 10 on compilation, while

Scheme 0 compiles in less than 3 minutes. Figure 2.13 shows the compile time speedup which

is the compile time ratio between Scheme L and Scheme 0.

Table 2.2 lists code run time overhead for both Schemes L and 0 respectively. The base of

comparison is the original code run time. Some benchmarks, e.g., CMP and PUZZLE, have

improved performance, as shown by negative numbers. The register allocator, nop inserter, and

spill register reassignment involve heuristic algorithms that in some cases provide improved per-

formance under loop expansion. The MIPS post-pass code reorganizer also sometimes changes

the execution order for different JV. Two benchmarks, QSORT, and QUEEN, include recur-

sive functions and have among the largest run-time enhancements, for N > 5. Post-pass code

rescheduling is a significant contributor to these two benchmarks.

22

Table 2.2 Code run time overhead for Schemes L and 0

N 1 2 3 4 5 6 7 8 9 10

QSORT L 6.2% 8.3% 8.3% 10.4% 11.5% 13.5% 14.6% 26.0% 22.9% 30.2%

0 5.2% 6.2% 6.2% 8.3% 8.3% 10.4% 10.4% 13.5% 15.6% 16.7%

QUEEN L 3.0% 5.3% 7.2% 7.2% 9.0% 9.8% 11.5% 15.8% 16.3% 20.9%

0 2.9% 3.5% 3.9% 4.9% 5.1% 5.5% 6.0% 8.0% 10.2% 16.3%

CMP L -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8%

0 -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4%

WC L 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 4.4%

0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 1.3%

PUZZLE L -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7%

0 -0.7% -0.7% -0.7% -0.7% -0.7%^ -0.7% -0.7% -0.7% 0.0% 0.0%

COMPRESS L -0.6% 0.0% 0.0% 0.0% 1.2% 2.5% 5.6% 6.2% 11.2% 18.8%

0 -0.6% -0.6% -0.6% -0.6% 1.2% 1.2% 5.0% 5.6% 10.6% 16.9%

Table 2.3 Code size overhead for Schemes L and 0

N 1 2 3 4 5 6 7 8 9 10

QSORT L 63% 70% 105% 115% 123% 136% 154% 199% 219% 274%

0 101% 104% 105% 110% 118% 130% 138% 146% 169% 191%

QUEEN L 57% 69% 124% 134% 152% 164% 176% 208% 219% 310%

0 48% 53% 58% 68% 78% 127% 132% 147% 151% 179%

CMP L 75% 80% 92% 107% 120% 141% 158% 179% 200% 228%

0 60% 63% 67% 76% 82% 84% 88% 90% 94% 122%

WC L 133% 138% 160% 167% 179% 216% 245% 249% 257% 290%

0 153% 155% 160% 163% 164% 165% 187% 205% 209% 244%

PUZZLE L 80% 80% 87% 89% 91% 94% 96% 101% 106% 126%

0 79% 79% 81% 84% 85% 87% 96% 99% 101% 111%

COMPRESS L 28% 32% 38% 52% 60% 69% 80% 94% 107% 129%

0 70% 73% 74% 78% 82% 87% 108% 122% 152% 156%

23

Table 2.3 lists the code size overhead for Schemes L and 0. The base of comparison is the

number of instructions in the original code. COMPRESS has larger code growth in Scheme 0

due to the removal of the 800 instruction threshold [1] and the change in the number of functions

compiled in simplified mode which bypasses the rest of pseudo register hazard resolution except

the breaking of self-anti-dependent instructions, after exceeding the threshold. In Scheme 0,

QSORT and WC have larger code growth when N = 1 and 2. Loop expansion is the major

stage that results in most of the code growth. In Scheme L proper renaming after protecting

the loop from inside and node splitting for small N may prevent the loop from being expanded.

Also, if the loop is protected for several registers from inside, the hazards can be removed after

arranging the order of the save/restore nodes, and renaming without actually expanding the

loop. However, using the cut hazard register technique, as in Scheme 0, to move save/restore

nodes out of the loop L requires L to be expanded at least once.

2.8,2 Resolving on-path and branch hazards - Schemes 1, 2, and 3

Schemes 1, 2, and 3 deal with removing both types of hazards during three separate phases.

Scheme 1 has the fastest compilation speed since it postpones the branch hazard resolution to

the last phase.

All three schemes perform relatively the same for the twelve benchmarks studied. Reasons

for this behavior include 1) the occurrences of branch hazards are infrequent; 2) both machine

register and nop insertion phases employ heuristics, and the spill register reassignment heuristic

may be efficient enough to resolve branch hazards in the post-pass; and 3) resolving branch

hazards at the pseudo register phase or the machine register phase is likely to have larger code

growth, due to the extra node splitting and loop expansion. In most benchmarks, Scheme 1

even outperforms the other two schemes in both code run-time and code growth.

The performance overhead of Scheme 1 is tabulated in Table 2.4. Due to the heuristic al-

gorithm employed in the post-pass phase, the performance overhead observed is not monoton-

ically increasing according to iV. However, the code generated to allow N instruction rollback

is correct for N — 1 instruction rollback as well. Therefore, the overhead can be recorded as

non-decreasing. Several functions generate more than 15,000 nodes, which increases the com-

putation time for the machine register assignment phase, when N > 6. YACC has two such

functions, and CCCP has one. For these three functions, we resolve the rollback hazards of

24

Table 2.4 Run time overhead for Scheme 1

N 1 2 3 4 5 6 7 8 9 10

QSORT 6.2% 6.2% 7.3% 9.4% 9.4% 12.5% 12.5% 16.7% 18.7% 18.7%

QUEEN 2.8% 3.1% 4.1% 5.7% 6.3% 6.7% 7.4% 11.1% 11.2% 18.0%

CMP -3.0% -3.0% -3.0% -3.0% -3.0% -3.0% -2.4% -1.8% -1.2% -1.2%

WC 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3%

PUZZLE 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.7% 0.7%

COMPRESS 1.3% 2.0% 2.6% 4.0% 7.3% 9.3% 9.9% 11.3% 13.9% 17.9%

GREP 11.1% 11.1% 11.1% 11.1% 11.1% 13.0% 13.0% 13.0% 14.8% 24.1%

LEX 10.5% 11.6% 11.6% 11.6% 11.6% 11.6% 12.8% 14.0% 14.0% 18.6%

EQN 7.8% 11.3% 12.2% 12.2% 12.2% 12.2% 13.9% 13.9% 13.9% 13.9%

YACC 0.0% 0.0% 2.4% 2.4% 2.4% *7.1% *11.9% *16.7% *23.8% *28.6%

CCCP 8.5% 9.3% 10.1% 11.6% 11.6% *17.1% *17.1% *19.4% *20.9% *26.4%

TBL 5.3% 7.9% 7.9% 7.9% 7.9% 7.9% 14.5% 14.5% 14.5% 15.8%

distance 5 in the pseudo register phase, and then resolve the rollback hazards of distance N > 5

in the post-pass phase, as marked by "*" in Table 2.4.

Figure 2.14 depicts the percentage of hazard nodes that are branch hazard nodes but are

not on-path hazard nodes, for various rollback distances. Benchmarks QUEEN and QSORT

have 0 percentage for N within 10 because either they have no branch hazards, or all of their

branch hazards are also on-path hazards. PUZZLE has the highest percentage of branch hazard

nodes, 42.42% when N = 3. There is a significant rise from N = 2 to N = 3 due to the relative

distances between branch nodes and hazard nodes. This can explain why in Scheme A, PUZZLE

has the highest run-time overhead 10% when N = 10 [2]. The post-pass algorithms apparently

reduce the overhead to 0.7%, as shown in Table 2.4. All the other benchmarks have less than

a quarter of the hazard nodes that are branch hazard nodes but not on-path hazard nodes.

2.9 Summary

The previous compiler-based multiple instruction retry resolves data hazards associated with

rollback recovery [1]. The proposed approach eliminates the delayed write buffer for the register

file, but suffers from long compilation times. Incremental updating has been incorporated in

the compiler-based approach, resulting in significantly reduced compile times. The code in the

prologue and the epilogue segments was rescheduled, and the spill registers were reassigned to

reduce the total number of nops inserted. The threshold for the number of nodes increased

from 800 to 15,000. Branch hazards were shown to be resolvable by simple modifications to

25

branch
hazard nodes(%)

50

40

30

20

10

PUZZLE -»■
COMPRESS -+■

WC -s
TBL
EQN -*

GREP -*
YACC ■■»■

LEX -•+•
CCCP -s
CMP -*■

N
Figure 2.14 Percentage of the hazard nodes that are branch hazard nodes

the proposed approaches. Three schemes were implemented and compared. Postponing the

resolution of branch hazards to the last phase was shown to provide the fastest compilation.

This approach also typically generated code as good as the alternatives in both code run time

and code growth.

The hardware/compiler combined approach [2] is another alternative, resolving on-path

hazards with a read buffer, and branch hazards with a compiler. The combined approach

requires less hardware than the micro rollback scheme [17], and results in less performance

penalty than using the compiler alone.

26

Chapter 3

Application of Multiple Instruction

Retry to VLIW Architectures

3.1 Introduction

VLIW machines can simultaneously execute multiple instructions which are grouped as an

instruction word [25-27]. General VLIW architectures consist of multiple functional units.

Instruction words include several operation fields, each of which controls one specific functional

unit. The functional units typically operate in a single instruction stream with lock-step timing

control. Significant speedup can be achieved if the machine can execute more than one operation

within each machine cycle. However, due to data dependencies and resource constraints, the

parallelism may not be fully exploited. Scheduling techniques such as trace scheduling [28,29],

superblock scheduling [30], and software pipelining [31] can effectively increase performance,

especially for scientific applications where conditional branches are highly predictable.

The application of concurrent error detection, signature monitoring, and TMR to VLIW

has recently been described by several researchers [32-34]. We describe two compiler assisted

multiple instruction word retry schemes for VLIW architectures. The first scheme is a compiler-

based approach which schedules the compiler-generated hazard-free code with various rollback

distances for scalar processors, using a modified trace scheduling algorithm [28]. Nops are then

inserted in the compacted code to resolve the remaining data hazards. The performance impact

is measured by JV, the rollback distance for a scalar processor; P, the number of functional units;

and n, the rollback distance for a VLIW architecture. The second scheme uses a read buffer

(not a write buffer) of n deep and 2 X P wide to hold all reads within the last n instruction

27

words executed. Such a mechanism can resolve frequent data hazards, while the remaining class

of data hazards is resolved by the compiler [2].

3.2 Machine Model

The machine model consists of several functional units, each of which has two read ports,

and one write port connecting to a general register file. Memory is accessed by loading and

storing from the register file. The functional units operate simultaneously accessing the register

file, but do not support pipelining.

Transient errors may occur in any of the functional units due to an incorrect read from

the register file, incorrect arithmetic operations performed by the functional units, or incorrect

branch decisions. An error detection mechanism triggers a rollback within n instruction words

(cycles) from the inception of the error. Register file contents do not spontaneously change, and

data writes can not be written into incorrect registers. Up to n instruction word write buffers

are associated with the memory and I/O device [17], so that they can have their own rollback

capability. To facilitate instruction word retry, a history file of size n serves as a shadow file for

the program counter [27].

Data hazards are those that cause inconsistencies during several retries of the same instruc-

tion word sequence. Similar to scalar processors, two types of hazards are classified for the

machine model. On-path hazards [1] appear in the form of anti-dependencies [20] where the

retry of the same read-write path is inconsistent with the previous run due to the possible

incorrect write destroying the value needed by the read during retry. Branch hazards [2] occur

at branch instructions where an incorrect decision causes a register to be defined at a wrong

branch path while it is live [22] at the other branch path.

3.3 Approach

3.3.1 Compiler-based scheme for VLIW architectures

The instruction retry scheme for scalar processors can be naturally extended to VLIW

architectures. A modified trace scheduling algorithm has been implemented for trace-based

simulation. Profiling is implemented to guide the trace selection [28,29]. The most frequently

28

The original
optimized files'

"Almost"
N-instruction Compacted

Hazard removal
Trace

Scheduling

Nop

insertion

hazard-free code L, code L->
 » —> Simulation

i—*

Weiehts
Profiling

Number of words

executed

Figure 3.1 Hazard removal, scheduling and simulation for VLIW architectures

executed path is scheduled first. List scheduling operates on the selected trace by building

a data dependence graph and successively scheduling the instructions whose predecessors in

the dependence graph have all been scheduled. To maintain the correct program semantics,

redundant code will have to be inserted in the unscheduled program segments. In our current

implementation, we do not implement multiple jump instructions within a word.

Given a rollback distance N for scalar processors, we can apply our previous approach to

generate N-instruction hazard-free code. One direct extension would schedule such hazard-free

code by bounding groups of nops together so that they still serve as delimiters for hazards in the

compacted code. Although an easy modification to the data dependence graph building process

in the list scheduling can achieve this, such groups of nops will tend to block the code motion

around them, and as a result reduce the available parallelism. We thus choose an alternative

approach. The code generated after the code reordering but before the final nop insertion is

scheduled. Nop instruction words are then inserted to resolve both types of hazards in the

compacted code. Figure 3.1 outlines the entire process for hazard removals, scheduling and

simulation.

Further enhancement can be made by introducing priorities for selecting feasible instructions

during list scheduling. For example, consider the instruction word segment of QSORT generated

by trace scheduling, as shown in Figure 3.2(a). Arrows denote anti-dependencies which should

be separated by n instruction words (in this example n = 5). A total of 15 nops are required to

resolve all on-path hazards, where 5 nops for each gap between words W-A and W-B, between

W-B and WJC, and between WJD and W-E respectively. By employing the prioritized list

scheduling, the number of nops can be reduced. When there are more than one instruction whose

predecessors in the dependency graph have all been scheduled, we schedule those instructions

with the longest dependence chain first. In computation of such a chain, flow dependency

29

merge_sort:

W_A: j sw $31, 124($3P) ; move $sp, $30 ; move $16, $4 i move $17, $6

W_B: j sw $5, 52($sp):'addu $30, $sp, ~\2&)

W_C: j lw $8, 4($4) iimove $sp, $30)

W_D: | sw $8, 4($5) i sw $J6, 0($5) Jjw__317, 8($5) ; I

W_E:ilw $21, -16($3p^^iiw~"$17,~~32("$30~)'i : lw $18, -28($30) ; lw $19, -24($30):

W-F: !lw *^,_-3^(_$30J:.J $3? [;

(a) The compacted code segment for QSORT

merge_sort: I !

W-A:; sw $31, 124($30) ; move $sp, $30 ; move $16, $4 j move $17, $6

W_B: ! sw $5, 52($sp) i

W_C:i,w $8, 4($4) j

3 nops

W_D:;sw $8, 4($5) i sw $16, 0($5) j sw $17, 8($5) |i addu _$30, _$s_p,_l_28'

W_E: i lw $21, -M $30)

w p. i lw $16, -36($30) ; j $31

lw $18, -28($30) ! lw $19,/ -24($30)!

jilw $17, -32($30)i ; [move $sp, ^o"

(b) The enhanced word schedule

Figure 3.2 Enhanced list scheduling algorithm

30

and output dependency are counted one, and anti-dependency contributes n + 1. Also every

instruction has an assumed schedule time. An instruction can be scheduled at the current word

if its assumed schedule time is not greater than the current time. The schedule time is updated

when any of its predecessors is scheduled. Nops are inserted on the fly if there is no available

instruction that can be scheduled at the current time. As illustrated in Figure 3.2(b), the

longest chain has length 12, and the schedule for instructions 'addu $30, $sp, 128' and 'move

$sp, $30' can be postponed to words WS) and W.F respectively. The number of nops needed

is now 7.

3.3.2 Hardware-software combined scheme for VLIW architectures

The second scheme employs a read buffer [2] to backup all register values read within the

last n instruction words executed. The depth of the read buffer is n, while the width is 2 x P,

since each instruction can read at most two registers, and there are at most P instructions

in a word. Such a hardware scheme can capture all on-path hazards. By inserting dummy

instructions of the form 'move $r, $r', after the branch node along the path that defines register

$r within distance n, such branch hazards can be resolved, since the old value of register $r is

now in the read buffer due to the read in the dummy instructions.

The same strategy can be applied in the compacted code word so that all branch hazards

can be treated as on-path hazards, and subsequently resolved by the read buffer, \fi\ dummy

words can be inserted after the instruction word containing a branch instruction IBR, where B

is the number of hazard registers for IBR along one branch. Actually, by utilizing dead registers

at IBR-, and some 2-operand instructions, e.g., add, only [^] dummy words are required.

3.4 Analytical Bookkeeping Code Scheduling

Superscalar and Very Long Instruction Word (VLIW) architectures exploit fine-grain paral-

lelism to achieve better performance. Static scheduling techniques, such as trace scheduling [28]

and superblock scheduling [30], can effectively produce compact code for these architectures. In

this section, we present an analytical approach for bookkeeping in code scheduling that allevi-

ates the coding complexity and instruction duplication limitations of the previous approaches.

Performance is compared with respect to the speed-up, the code size and the scheduling time.

31

Although our main concern is to develop a scheduling algorithm for VLIW machines, the algo-

rithm can be well applied to superscalar architectures. We thus present it for both architectures.

3.4.1 Bookkeeping in trace scheduling

Superscalar [35] and VLIW [25-27] machines can execute multiple instructions simultane-

ously, exploiting instruction level parallelism. General superscalar and VLIW architectures

consist of multiple functional units. In a VLIW machine, instruction words include several op-

eration fields, each of which controls one specific functional unit, while in a superscalar architec-

ture, functional units are fed with several instructions forwarded by the instruction issuing logic.

Due to data dependencies and resource constraints, the parallelism may not be fully exploited.

Profiling-based scheduling algorithm, such as trace scheduling [28,29], and superblock schedul-

ing [30], can effectively increase performance, if the predictions of the conditional branches are

quite accurate. It is especially true for scientific applications where conditional branches are

highly predictable.

Trace scheduling utilizes profiling information to select the most frequently executed trace.

List scheduling then operates on the selected trace by building a data dependence graph and

successively scheduling the instructions whose predecessors in the dependence graph have all

been scheduled. Scheduling is beyond basic blocks because instructions can be moved up

above or down below branch instructions. If the instruction defines a register whose value

is never used along the branch out-of-trace path, i.e., dead, it can be scheduled before the

branch instruction. To maintain the correct program semantics, redundant code has to be

inserted in the unscheduled program segments. Bookkeeping procedures can be complicated

to implement [28]. Superblock scheduling [30] is an alternative that employs tail duplication

to eliminate all the join edges by copying the instructions from the join to the end of trace

into a new superblock, and making the jump direct to the new superblock. Scheduling is then

performed on the trimmed trace, thus reducing the bookkeeping complexity. The disadvantage

is the code growth due to redundant duplication.

An analytical bookkeeping algorithm is presented, which is precise and without excessive

duplication. Out-of-order instructions are sorted via successively local swappings sweeping over

the trace. The transformed program is equivalent to the original program, and is the union of

many in-order traces, each of which includes adjacent instructions either in the same schedule

32

sA>sB sA>sB

® ® ® ®

SA>SB SA=SB

Case 1 Case 2

X

® (B) :(A

(A)/' :(B

(Ö (c

Case 3 Case 4

SA>SB

® ®

d.B.d.

Case 5

SA>SB SA>SB SA-SB sA>sB

Case 6 Case 7 Case 9

SA>SB SA=SB SA>SB
SA~SB

A ■

Case 10 Case 11

sA>sB sA>sB sA>sB

® ®.

Case 13 Case 15

-5»- : on-trace edge

-£>■ : off-trace edge

,x : multiple incoming edges

A ■

Case 16

in the same schedule

d.b.d. : definition register of B is dead

Figure 3.3 16 cases for local swapping of the adjacent pairs

33

or in the neighboring schedules. Branch instructions are then inserted to connect individual

traces. The limitations of our approach are the increased scheduling and compilation time, and

the necessity of structured programs.

3.4.2 Analytical bookkeeping

The technique aims at alleviating the coding complexity of the bookkeeping procedure. The

design should be able to fit well into the improved trace scheduling, superblock scheduling, and

the scheduling algorithms that support speculative executions [35]. For purposes of clarity,

pipelining in functional units, and multiple branch instructions within the same clock cycle are

not considered.

In the implementation, loops are scheduled in top-down and inner-loop-first order, because

loops tend to iterate many times and the loop constructs can be maintained throughout schedul-

ing. In order to maintain the correct program semantics, several sweeps of swapping adjacent

pairs over the trace will be performed until the code is in order. The program is represented

by directed graphs, with nodes and directed edges denoting instructions and control transfers

respectively. Since a node can be either a join or not a join, and either a branch or not a

branch, any pair of adjacent nodes can have 16 combinations, as shown in Figure 3.3. The

leftmost column in each case represents the original instruction sequence in the trace. The

labels SA > SB and SA = SB denote the conditions that A is scheduled after B, and A is in

the same schedule as 5, respectively. The sequence will be transformed to its equivalent form

if the condition specified on top of the figure is satisfied. The sequence remains the same for

conditions that are missing.

Figure 3.4 illustrates that a total of five groups are formed. The second row denotes that the

join node is changed if a swapping is needed, i.e., SA > SB, and cases 2, 8, 4, 12, 9, 14, 11, and

16 are involved. The third row outlines the actions that are required for each group of four or

two cases, under conditions SA > SB and SA = SB- Group (1, 5; 2, 8) is the simplest, involving

only swapping A and B, if SA > SB- Group (7, 11) and group (15, 16) can be combined, should

multiple jumps be allowed in the same word. Both groups can be implemented as the additions

of two other groups, (3, 10; 4, 12) and (6, 13; 9, 14).

The bookkeeping algorithm, listed in Figure 3.5, resembles dataflow analysis [22], acts sim-

ilar to the bubble sort algorithm [36], and is highly suitable for parallel implementation. Loop

34

1, 5;; 2, 8 3, 10 ;U, 12 6, 13 ;!9, 14 7, 11 15, 16

Change join ;sA>sB ;SA>SB ;SA>SB sA>sB SA>SB

A-5» B

SA>SB: SA>SB: SA>SB: SA>SB: SA>SB:

Swap Swap A, B Swap A, B
Copy B

Swap A, B
Copy B

Swap A, B
Copy A

Swap A, B
Copy A

and Copy B Copy B

Copy SA = SB: SA = SB :

Copy B Copy B

(a) Action table.

1, 5; 2, 8

/ \
3, 10; 4, 12 6, 13 ; 9, 14

■^^pr
7, 15 11, 16

(b) Group implementation.

Figure 3.4 Group hierarchical implementation

change = 1;
while (change) {

change = 0;
for (i = 0; i < length of trace —1; i + +) {

determine case number for the node pair (i, i+ 1);
according to the case number, handle (i, i + 1)
. swap, duplicate, change join
change = 1 if any of the above occurs;
incremental loop maintenance for new nodes; } }

Figure 3.5 The bubble sort implementation

35

Table 3.1 Code growth, the analytical bookkeeping

single issue
P = \

VLIW Superscalar
2 4 2 4

QUEEN 148 36% 145% 3% 16%

WC 181 51% 195% 9% 27%

CMP 251 94% 269% 28% 30%

QSORT 261 23% 101% 3% 19%

PUZZLE 877 46% 166% 12% 12%
COMPRESS 1828 45% 169% 9% 14%

information is incrementally updated whenever a new node is inserted. The algorithm is guar-

anteed to halt, since the condition SA > SB is non-reversible and the joins are either unchanged

or shifting towards the end of the trace. In the worst case, n-1 sweeps over the trace are needed,

where n is the number of instructions in the trace. Although a merge-sort-like algorithm can be

designed to reduce the number of sweeps to log n, we still favor the current implementation due

to its clarity, and since the number of instructions within a trace is usually small. By changing

the actions taken for all cases, e.g., pushing join down to node C, and making extra copies of

A and/or B, we can realize superblock scheduling naturally, without explicit tail duplication.

3.4.3 Speedup, code run-time, and code growth

The simulation is conducted on a DEC station 3100, a MIPS processor with a reduced

instruction set. Assuming that each instruction takes unit time to execute. The speedup is

measured as the ratio between the number of instructions executed for single issue machines

and the number of code words executed for VLIW machines (or the number of instruction

cycles for superscalar architectures). The code size for a superscalar architecture is the total

number of MIPS instructions in the schedule, while the code size for a VLIW machine is the

number of code words times the number of functional units.

The original optimized code generated by the IMPACT C compiler [21] for single issue

machines serves as the base, which is first profiled and scheduled under various numbers of

functional units (P) 2 and 4. The scheduling and compilation time, the number of instruction

words (or cycles) executed, and the code size are then collected. We obtain the performance

data for the analytical approach on the following benchmarks : QUEEN, QSORT, WC, CMP,

COMPRESS, and PUZZLE. Both QUEEN and QSORT include recursive subroutines. CMP,

36

Table 3.2 Speedup and scheduling time overhead

Speedup
Scheduling

time overhead
p 2 4 2 4

QUEEN 1.51 1.66 10% 30%
WC 1.30 1.30 30% 30%

CMP 1.24 1.24 42% 42%
QSORT 1.80 2.62 20% 20%
PUZZLE 1.35 1.40 39% 44%

COMPRESS 1.49 1.53 53% 57%

COMPRESS and WC are UNIX utilities which compare two files, compress files, and count

the number of words in a file, respectively. PUZZLE is a game program which includes several

consecutive single loops.

Table 3.1 and Table 3.2 tabulate the code growth, the speedup and the additional schedul-

ing overhead for the analytical approach. As indicated in Table 3.1, VLIW machines have a

larger code growth, mainly because no-op instructions due to unscheduled slots in the code

word also take up space. Superscalar architectures have code growth all within 30% for all

benchmarks under P = 2 and 4. P = 1 denotes issuing single instruction per cycle, and its

corresponding column represents the number of MIPS instructions in each benchmark program.

Because we do not consider functional unit pipelining within different schedules, and no multi-

ple branch instructions can be in the same schedule, the speedup is flat for most benchmarks.

The speedup can be even higher if we employ the more advanced software pipelining [31] and

loop unrolling [37] for the inner loops. A postpass percolation scheduling can be applied to

fine-tune the performance, since a loop invariant instruction can not be moved out of the loop

under our current hierarchical loop scheduling order. QSORT includes a recursive merge sort

algorithm and has the best speedup for all P's. Having a larger code growth does not imply

a larger speedup, as witnessed by CMP, a UNIX file comparison utility. The scheduling time

overhead is obtained by comparing the additional scheduling time plus the compilation time

for the scheduled code to the base compiler time for the optimized code. As illustrated in

Table 3.2, the scheduling time overhead increases as the code size increases. The scheduling

and compilation time is less than double the original compilation time for the benchmarks.

37

 1

N = 2 -e—

I 1 — I

N = 4 -■*--
N = 6 -a-
N = 8 •-*—

-
N=10 -i.-.

j

S* "JT——K'

**" ^-*

>— —-m

i

—H*:.

1

 x-

i

overhead(%)

120

100

80

60

40

20

0

-20

overhead(%)

250

200

150

100

50

0

-50

P = 2 overhead(%)

120

P = 4

"■ 1

N = 2 -e—

—1 1 !

N = 4 -+---
N = 6 -a-
N = 8 -x s*

N = 10 -*-

/

> 1 1 1

100

80

60

40

20

0

-20
2 3 4 5 0 12

n

Figure 3.6 Performance overhead for CMP

P = 2 overhead(%) P = 4

250

200

150

100

50

0

-50
2 3 4 5 0 12 3

n

Figure 3.7 Performance overhead for COMPRESS

—T

N = 2 -•—

—i 1— i

N = 4 -+—
N = 6 -a-
N = 8 -x ^^ -

N = 10 -*•- ^^^ ,--•

nt

'
*~

j,.'-''''-&""'L,,, *—"""""

—x

> > i *

1

N = 2

— I I i

N = 4 —i— ^a^
N = 6 -a— ^^ ,--''

- N = 8 •x
jr ..-*' ...-J N=10 -A..-.

- "^ ,+"" ..--°" -
-'";'..B---^ ;:^--;

- s^ -+' -■ " ..^••-ä'':"'

■i^r^r
^3^is*W'

-r'-.-r«—*

i i ■ i

3.5 Simulation Results

The run-time performance and the code growth are measured for both compiler-based ap-

proach and compiler/read buffer combined approach, using the proposed scheduling algorithm.

For simplicity, we assume each instruction word takes a unit time to complete. Performance is

measured by counting the number of instruction words executed. This is done by allocating a

counter and inserting increment instructions in every instruction word. As the compacted code

is executed on a scalar processor DEC station 3100 (MIPS processor), the counter contains

the number of instruction words executed at the end of execution. We investigate the relative

performance impact for various rollback capability for scalar processors (N) and the desired

rollback distance for VLIW architectures (n) with a varying number of functional units P.

38

140

120

100

80

60

40

20

0

-20

;ad(%) P = 2

-

 i"

N = 2

1

N = 4
N = 6

-H

-G—

- N = 8 -x ./ ,--■'

N=10 -A..-. y^ ,-■'
- .*'' .-«

-
■^

,,-'_ I-*-"

^' .-
 :'.'--''-i

 ■$:-— ...-- -

.-* .■■<■-■- .--'

v--i:'':" ,-EJ''

.-B"'~

__? ̂ sl>?;...v..a..,

1 1. 1 I

140

120

100

80

60

40

20

0

-20

;ad(%) p = = 4

-

i

N = 2 -*—
N = 4 -i—
N = 6 -a- >/

" N = 8 ■•* ,-'''

-

N = 10 -*•-■

,-K'

-;*-■

.'-''
---''

 .j .--' .»
..~x"" ..--„'.'—-
.-_«•'-"■'"'

f5" i i 1

Figure 3.8 Performance overhead for PUZZLE

overhead(%)
400

P = 2
400

ead(%) P = 4
i

N = 2 -9—

i

N = 4 --I—
N = 6 -Q- Jlr
N = 8 -x

N = 10 -*-
jS' ,-'''Z<i

^

E>'~ , i • >

Figure 3.9 Performance overhead for QSORT

overhead(%)

120

100

80

60

40

20

0

-20
0

P = 2 P = 4 overhead(%)

120

100

80

60

40

20

0

-20
2 3 4 5 0 12

n

Figure 3.10 Performance overhead for QUEEN

-
— I

N = 2 -»—

—1 1 1

N = 4 -+---
N = 6 -a—

- N = 8 -x s' -'''"
N = 10 -*•- S** ,-''

"
s^^-*'' -

 £-^£?-'-.-

^S^~ * ...--'
-"+ x " . g.',- "

> ■ i i

 1— 1 —i i

N = 2 0' ' ' sis

N = 4 -H gS
N = 6 -Q— ,yS 1
N = 8 •X

N=10 _4.._. *cS .■■■'
» ,-/S .or' ..s

s'

- J%yS ..X" .a- ' , *jS*

SS1
...jf'iT.

'S ■ä^--
 '"zSfZ'3"

i i i <

39

180

160

140

120

100

80

60

40

20

0

-20

ead(%) P. = 2
1

N = 2 -e—
N = 4 -H -
N = 6 -a—
N = 8 ...x-—

N = 10 -A..-. -

^,--''
-

,**''
,-*''

.j

* ^,-' ,,+-'
■*--M~'~~

-

J°
**"

.-*■"
'■■■''3

^,-''' &-- ■' .JJ- x .^^^
 .. *.&•'■

;;-''■ .::x-:' ■■"*""'"'
..._

..........„...-..........££....
1 i i

180

160

140

120

100

80

60

40

20

0

-20

iead(%) P = 4

-
N = 2 -*—

1 1 J

- N = 4 -+•-- Jf
N = 6 -a- jS i •

" N = 8 ■•■*• yf ,'"'

_

N=10 -*-

-
.*'''

*'''' ..*B'"*

...-■«*'"' * ^:

.•^;i. *— x
ZZ x-

f~ i 1 i i

0

Figure 3.11 Performance overhead for WC

The optimized code generated by the original version of the IMPACT C compiler serves

as the base, which is first profiled and scheduled under different P. Simulations are then

performed to collect the number of instruction words executed. Figures 3.6-3.11 illustrate the

performance overhead on the benchmarks for P = 2,4, N = 2,4,6,8,10, and n = 0,1,2,3,4,5.

n = 0 means that only hazard removal is performed without inserting any nops. This case is

used to demonstrate the performance improvement attainable as a result of loop expansion.

As the program results indicate, in most cases, for fixed P and n, the larger N tends to

generate compacted code with better performance. This is because a larger N may require

expanding loops more times to resolve data hazards within loops, consequently making register

live ranges shorter, which is beneficial to the scheduling algorithm. For example, under P = 4

and n = 5, all benchmarks have minimal overheads when N = 8 or 10.

Without inserting any nops, i.e., n = 0, all benchmarks except QSORT have improved

code schedulings for N = 2 and 4. However, for both cases all benchmarks have the worst

performance under the same P and n = 5. That is because when fewer loops are expanded,

fewer registers are used. Also, the scheduled code is so compact that more nops are needed to

resolve hazards between code words. For smaller n's, e.g., n = 1 and 2, PUZZLE and WC have

better compacted schedulings over those of the original optimized programs. Both programs

have very simple loop structures, and the loops are executed frequently. The instruction retry

scheme functions well in scientific applications, where branch predictions are highly accurate,

and the loops are iterated many times. QSORT has the worst performance overhead because

40

overhead(%)
400

P = 2 overhead(%)
400

P = 4

Figure 3.12 Performance overhead for QSORT under the prioritized list scheduling algorithm

it has a frequently called recursive subroutine, mergesort. The prioritized list scheduling

algorithm helps to improve its performance, as shown in Figure 3.12.

In the original programs, the performance of the compacted code for a larger P is no worse

than the performance of the code for a smaller P. However, the situation is usually reversed for

instruction retry schemes. For fixed N and n, since larger P tends to generate more compacted

code, the distances between hazard words are closer, resulting in more nops.

Figures 3.13-3.18 show the code growth ratio for the six benchmarks, which may have an

impact on the instruction cache miss ratio. The ratio is relative to the code growth of the

original compacted scheme, for P = 2 and 4, without inserting nops. The results indicate that

for n = 5, most benchmarks have a minimum code growth ratio when N = 6, and a maximum

code growth ratio when N = 2. The code growth ratios are within 450%, and 700% for P = 2

and P = 4 respectively. If only loop expansion and node splitting are performed without nop

insertion, as in the case n = 0, smaller N tends to have a smaller code growth ratio.

Figure 3.19 illustrates the performance overhead when employing a read buffer. For P = 2

and P = 4, both figures almost have the same shape, e.g., CMP and WC. Their identical

speedups for P = 2 and 4 can explain this situation. Also some benchmarks have very flat

overheads. This case is mainly due to the stepwise branch hazard distance distribution. PUZ-

ZLE has a near 0 performance impact, since all branch hazards can be resolved by the read

buffer. CMP has the highest overhead, 4.52% for P = 2, n = 5, and 4.53% for P = 4, n = 5.

Most of the branch hazards in CMP have distance 2, resulting in the sudden rise from n = 1

to 2, and fiat for n > 2. In average, when n = 5, the performance overhead for P = 2 is 2.7%

41

ratio(%) P = 2 ratio(%) P = 4

L'VJ

200

i

N = 2 -9—
N = 4 -■>--
N = 6 -Q-

—i 1 —"i

160
N = 8 ■•*

N = 10 -*-

120

^ '" ^>^ ..^r«"""

80'
 &— .

SS^"'
 -~d£?^T--';-''

t h^^"
i i i i

200

T "

N = 2 -»—
N = 4 -I—

111 ! i ■ r — ■

N = 6 -a- £f .j

160 N = 8 ■•*
N=10 -*•-

120
^.„ -<;:■■.#-"-"

.-■"" - -.*-'."-"
80, ■ "* /^** ■s&a'' -

■^Hft**

" r I r i

Figure 3.13 Code growth ratio for CMP

ratio(%)
420

ratio(%)
480

420

360

300

240

180

120

60

P = 2 ratio(%)
420

P = 4

1

N = 2

1 i — 1

N = 4
N = 6

-H

-a— ^
N = 8

N=10
-X-
-A.—

y\,^'s
^ .---*'

;>

■fi?^
■ ''"""""/ ■^k'.'''

._£-'•• >'
 ...X"' *^' ''

„*''
r .-^<-*'' ~

1 i i i

Figure 3.14 Code growth ratio for COMPRESS

P = 2
 ■- r~- 1 1

N = 2 -e—
N = 4 -H

N = 6 -Q... s^~

N = 8 -x
N = 10 _A—. /"

—•- "ft* i ,:.R':-rr:"
—A-

-EJ " -
... -X'"

 A

ratio(%)
480

P = 4

4 5
n

Figure 3.15 Code growth ratio for PUZZLE

42

atio(c

700
6) P = 2

i i i i

600 N = 2 -9—
N = 4 -■*---

500
N = 6 -a-
N = 8 ■-*—

N = 10 -*-

400 ^^~

200 •' ^'Z^^^^---^'''

100 :
i i i i

ratio(%)
700

P = 4

Figure 3.16 Code growth ratio for QSORT

360

320

280

240

200

160

120

80

40

%) P = = 2

-

1

N = 2

1

-

- N = 4
N = 6

-H

-Q--
-

- N = 8
N=10

■x-
-A-— ..-1

 be—
 ----- ̂

„.,.—*'f ..-•

1 _«•"•
._-- ,-+"" -'"' -

 V'

i 1 • i

360

320

280

240

200

160

120

80

40

%) P = :4
i I ,J

"
N = 2 _e_ .□''

■ N = 4
N = 6

-H

-a—
^ -

_ N = 8 -x
-B"'.' _

N = 10 -A-— ;.-&■' ..

-
.*■*''

***■*"** •-■■v -'^ -
 -.-' ..x"" ,*',

 i--

"£^
f -'" .-:.:.£•'•■- ,-j

r .--'■*"" ■y^

' 1 ' •

Figure 3.17 Code growth ratio for QUEEN

ratio(%)

600

480

P = 2 ratio(%) P = 4

360

240 -

120

N = 2

—r- i i" ■

N = 4 -H *
N = 6 -Q--

N = 8 •x
N=10 -A-— ^^ .;

^^'::>'.
 -jf-.- -~-~J> z& ^#'' ..-s""

----'.'. .---■Q"'

_—'-""■

i 1

DUU 1 -i ■ i- ■ i ■ i

N = 2 -*— X '■
480 N=4 -+-- / ':

N = 6 -Q- / •" -■'■';.
N = 8 -x / ...x\.-•-•',--''

N=10.i... >^ .-•-*'',--''

360 /^ ;>•-• ^,+--' _...J

240 - -Jfc^' --f'' ..-"**'
::- ::-

:- -ß^ ,-'''.'.--3''
^-

1 1 1 1

Figure 3.18 Code growth ratio for WC

43

overhead(%) P = 2 overhead(%)
5

P = 3

CMP -»—
COMPRESS --•—

PUZZLE a-
QSORT x
QUEEN -"■-

wc -it-

Figure 3.19 Performance overhead with a read buffer

and for P = 4 is 2.81%. Figure 3.20 illustrates the code growth ratio of the read buffer scheme.

When n = 5, the average code growth ratio is 9.37% for P = 2 and 10.97% for P = 4.

3.6 Summary

Two approaches to multiple instruction word retry for VLIW architectures were described

and evaluated. The software-based approach employs compiler technology to resolve all hazards.

The performance costs range from 20% to 70% for two functional units, and from 5% to 170%

for four functional units. The hardware read buffer with compiler-assisted approach retains

reads within the last n instruction words. The mechanism resolves the frequently occurring

on-path hazards, while the compiler resolves the branch hazards. The hardware cost is a read

buffer of 2n X P entries for register backup. Over the six benchmarks, the experimental results

show less than 5% performance degradation for a rollback distance of n = 5 and the number of

functional units P = 2 and 4.

44

ratio(%)

20

16

12

P = 2

-

 ,, 1 1

-

- :

!-"

t''

i—

---"'
.,'' K "

 A

 *'"
.^Z".

.-E>
.--a--- . .._„.*' ;.i

.-*r.-.---.-.:::::r

.„*

—A

 f—-

— --•"
—■'

i—■
1 1 1

CMP -e—
COMPRESS -+---

PUZZLE -e-
QSORT -x
QUEEN -*-■-

WC -*-

Figure 3.20 Code growth ratio with a read buffer

45

Chapter 4

Compiler-Supported Reversible

Debugging

4.1 Introduction

Symbolic debuggers are useful tools during the program development stage. Debugging an

optimized code is a classic problem that has received much attention [38-40]. Optimization

may cause breakpoint mismatch between the source code and the executable code. The actual

breakpoint location may not be the same as the user expected. Also some variable values

may be misleading after optimization because they do not equal the values observed by a close

checking of the source code, i.e., non-current [38,41].

Traditional debuggers usually turn off the program optimization mode so that every variable

is current, and the user can clearly identify instruction boundaries due to breakpoint setting [42-

44]. Their primitive features include breakpoint setting, single stepping, data displaying, value

updating, and control flow altering etc.. Backward execution is one feature that is helpful but is

not fully exploited. Most debuggers have the ability to log run-time information in the history

tapes [42], and already possess high potential to undo several instructions. The history tape

approach suffers from a long execution time because of the additional I/O operations.

The applications of undo include programming languages, editing and formatting, and the

development of programming environments [45]. Numerous schemes modifies the programming

languages to include backward execution commands, such as undo, redo, skip and retrace [46-

48]. The program development system COPE [49] implemented reversible execution by allowing

the user to explicitly generate files for procedures, input data, and results. Each file includes

a sequence of fixed-size blocks, and the modifications to a block result in a complete new

46

copy of the block with the changes. Storage requirement for maintaining the list of updated

blocks is a main concern in this approach. IGOR project [50] implemented a debugger that

can perform backward execution, using a checkpointing scheme. Checkpointing periodically

saves the system state during program execution. When stopped at certain breakpoint, the

debugger can backtrack a few statements or instructions by starting forward emulation (using

an interpreter) from the last checkpoint until reaching the desired statement or instruction.

The checkpointing scheme relies heavily on locating the nearest checkpoint. Also the forward

emulation from the nearest checkpoint towards the desired instruction slows down the execution

for more than 150 times.

This chapter describes the implementation requirements for backward execution. To reduce

the potential large execution overhead associated with the backward execution, the user can

select critical regions to inspect, and the function can be easily enabled and disabled [51]. A

twin-buffer is proposed to store the old data to increase the expected number of instructions that

can be undone. Two approaches to incorporating the undo capability directly into a debugger

are presented. The first approach modifies the debugger without changing the compiler. Storage

overhead is zero for the user executable code, but with a slow program debugging time due to

trapping every instruction and context switching. The second approach employs the compiler to

insert buffering instructions to the executable code, so that useful data can be stored to buffers

at the run-time. The normal execution time in recording mode is significantly improved, with

a moderate code growth. The implementation is based on the GNU debugger, GDB [52].

4.2 GNU Debugger - GDB

Before incorporating the backward execution into the GDB , we describe its basic method-

ology upon which our implementation will be based in this section. GDB is a product of Free

Software Foundation, suitable for machines running the UNIX system [53]. The main routine

of GDB can accept user commands from the terminal. The frequently used commands include

breakpoint setting, source code listing, data displaying, value updating, single stepping, pro-

gram restarting, and execution continuation etc.. Additional features like command history,

data history and remote debugging, can be invoked if requested.

47

Executable Code

d

Header

Program
Text

Symbol
Table

Symbols
&

Strings

File Chain

Source Code Procedure Chain

MAP Table

Figure 4.1 Basic data structures for GDB

The GNU C compiler (GCC) [54] attaches symbol tables and the mappings between source

code statements and object code addresses to the generated executable code. The line incre-

ments in both the source code and the executable code are maintained in the mappings. When

the object file being debugged is first loaded, only partial information is read in. It will be

expanded to a whole symbol table only when it is necessary. Figure 4.1 illustrates the basic

data structures and mapping connections required for the GDB to function correctly. The

executable code may contain procedures from different files, and system library routines. The

file chain records source file names, pointers to internal and external symbols, and pointers to

corresponding procedures. The procedure chain includes procedure names, pointers to symbols,

and pointers to corresponding PC ranges and source file line ranges. The implementation is

actually a modified GDB, based on the structures and connections in Figure 4.1. We refer to

the modified GDB as GDB thereafter. For the clarity of presentation, we omit the links that

are used mainly for bookkeeping.

48

Executable Code

GDB main routine

Read in symbol table

! Accept user command ;

run

break

step

call

list \

! wait;

Create child

-AUuuUts ll stack irame "Data-

Source Code

Headers
(a.mit, Text & datu, ST)

Line mapping

Files & procedures

Symbols & strings

Symbol Table (ST)

fj GNU C compiler (GCC)
generated with -g option

continue
next
print
assign
break... if expression

Figure 4.2 The GDB frame work

Figure 4.2 outlines the frame work of GDB. The breakpoint setting command involves

checking the MAP table, converting the line number specified by the user to a PC within

range, and attaching the information to a breakpoint list. The step command plants temporary

breakpoints in order to perform single stepping. In response to the run command given by the

user, GDB retrieves and saves the instructions in the program text specified by the breakpoint

list, plants break instructions accordingly, and then creates a child process executing the object

file. The parent process then waits for its child's halting. The causes for halting may be normal

exit, error abort, stopping at a user-preset breakpoint, or stopping due to single stepping. The

parent process can distinguish them by the type of signals received, and take corresponding

actions, e.g., print proper messages, ignore the signal and continue the child process, or accept

further user commands from the terminal.

The special UNIX trapping utility, ptrace, is the main tool for communication between the

parent and child processes. The parent process can peek the data (registers, program counter,

and memory contents) from the child process's address space, and monitor the child process's

49

control flow (restarting, resuming, single stepping). The command break ... if expression, de-

noting 'stop if the expression is true', is implemented by trapping every statement, and checking

the condition specified in expression. Although the execution is slowed down dramatically, the

users can choose to utilize such a command at their own discretion. This is sometimes useful

to catch deeply hiding bugs.

4.3 Recording Mode and Undo Command

Software implemented data recording induces performance degradation during normal exe-

cution. To run the entire program in a data recording mode would make the cost of debugging

process extremely high. Therefore, we introduces several new commands, record-on, record-

off, and undo, for GDB. The user can turn on the recording mode at certain critical regions,

and turn off the mode for a faster program execution. Such critical regions may start at the

beginning of the program, the beginning of a subroutine, or some user-defined breakpoints.

Undo command is valid only when the debugger is in the recording mode. These additional

commands satisfy the backward execution requirements, including selective use and easy en-

ablement/disablement [51].

4.4 Buffering Schemes

This section describes the two buffering schemes, read buffer and history write buffer, which

can be employed to record useful values. We also discuss the buffer size limitation and propose

a twin-buffer to increase the expected number of valid buffer entries.

4.4.1 Read buffers and history write buffers

Read buffer scheme stores to the buffer every value read, while history write buffer scheme

stores the old value before it is overwritten. Table 4.1 summarizes the values that are saved

in various instructions for both buffering schemes, assuming that the current instruction has

label LI. For example, the memory store instruction, 'sw $31, 20($sp)', stores the value in

register $31 to a memory location addressed by 20 + value in $sp. We need to save the contents

of registers $31 and $sp for the read buffer scheme, and save the old value in the memory

50

Table 4.1 The stored values vs. instruction types

Instruction Type Example
save to read buffer save to write buffer

register memory PC register memory PC

Load Iw $25, 36($sp) $sp 36($sp) $25

Store sw $31, 20($sp) $31
$sp

20($sp)

Move move $10, $11 $11 $10

2-Operand (or 1-)
Operations

addu $8, $10, $11 $10
$11

$8

Branch b LabeLi L\ £1

Conditional
Branch

bge $10, $11, LabeLi $10
$11

LI 11

Subroutine Call jal test 11 $31 LI

Return j$31 $31 LI LI

location with address 20 + value in $sp for the history write buffer scheme. Note that both

schemes do not store the register numbers and memory addresses to the buffer, as the hardware

implemented buffers usually do [2,17]. During the backward execution, the values in the buffer

can be restored to correct destinations by decoding the current instruction under investigation.

We can have faster normal execution while shifting the burden to the recovery process.

Branch instructions, subroutine calls and returns can alter the control flow. Therefore, the

current program counter (PC) needs to be saved for potential later recovery. For sequential in-

structions, however, their PC values are not saved, since their addresses can be easily recovered.

Figure 4.3 depicts the recovery procedure using the read buffer scheme. The PC column keeps

track of the flow control, so that the previous instruction can be recovered. A "0" denotes that

the immediate next instruction will be executed. For example, consider a recovery procedure

stopping at instruction Z3. After the procedure restores the old values of r5 and r6, the PC

value in the previous read buffer entry can be used to recover the previous instruction L2.

Similarly, LI is the next instruction to be recovered.

4.4.2 Buffer size

Table 4.1 indicates that the read buffer scheme needs three buffers, two for operands and

one for PC, and the write buffer scheme needs two. However, by a proper interleaving, we only

need one buffer. For example, we can maintain a variable bufJndex, serving as the buffer index.

Assuming that each buffer entry takes four bytes. For the read buffer scheme, the first operand

51

•

LI: bge rl, i2, L2

L2 : bge r3, r4, L3

L3 : use r5, r6
L4 : use r7, r8

•

OP 1 OP 2 PC

value (rl) value (r2) address (LI)

value (r3) value (r4)
i v,

{address (L2^i

Rvalue (r5); Rvalue (r6); 0

value (r7) value (r8) 0

(a) The flow control. (b) The read buffer.

Figure 4.3 Recovery using a read buffer

(a register value) is saved to location buf.index + 8, the second operand (either a register

value or a memory content) is saved to location bufJndex + 4, and the PC is stored to location

buf.index, while for the history write buffer scheme, the old operand (either a register value

or a memory content) is saved to location bufJndex + 4, and the PC is stored to location

bufJndex. The index decrements by 12 and 8 for both schemes respectively, until it reaches the

buffer boundary pointed by bufJimit, in which case the index will be reset to the beginning of

the buffer to form a circular queue.

When the buffer is full, the buffer contents may need to be stored to secondary storages.

Depending on the applications, the flush buffer process can take a long time to complete, since

it may involve external I/O operations. Also the storage that is required to save old values can

be extremely large. If the user can carefully choose critical regions to examine, the buffer can

serve as a sliding window, such that the undo can only function within the window. There is

no need to flush the buffer in this case, which greatly reduces the program execution time with

a recording mode.

4.4.3 Twin-buffers

Although the buffer is implemented as a circular queue, not all buffer entries are useful

all the time. For example, Figure 4.4 illustrates that when the normal execution stops with a

52

reverse

A
i
i

normal

buffer limit + 8 ••
buffer limit + 4 •■
buffer limit

4
1 * 1

\
1

-- T

— —

A
v !

) '

backup
buffer

working
buffer

J A

i v :

V

(a) Invalid entries. (b) All valid entries.

Figure 4.4 The twin-buffer approach

(c) Twin-buffer.

buffer entry i, the user undoes several instructions, thus moving buffer index back to entry ;'.

Solid boxes denote valid entries. The normal execution continues until it halts with a buffer

entry k. The entries between k and i may not be valid historical information, as shown in

Figure 4.4(a). By marking i as the smallest index that the buffer has used after the previous

buffer flushing, we can determine if the buffer entries are valid. However, it requires extra

attention during normal execution, to check if the current buffer entry k passes through entry

i, as shown in Figure 4.4(b). Such a checking would further increase the program execution

time. Therefore, to obtain a fast debugging time, the undo wraparound capability should be

disabled, reducing the effective buffer usage. To increase the expected number of valid buffer

entries without slowing down the program execution, we employ a twin-buffer where one buffer

serves as the current working buffer and the other as the backup, as shown in Figure 4.4(c).

When the current buffer is full, the backup buffer contents are void (or flushed). The roles

of both buffers are then interchanged. The buffer index is reset to the beginning of the new

working buffer. Also, when a sequence of undo commands exhausts the working buffer, the

backup buffer becomes the working buffer and there is no backup buffer in this case.

4.4.4 Queueing models

Queueing models can be established to measure the effective buffer usages for different

implementations, i.e., wraparound buffer, single buffer without undo wraparound, and twin-

buffer without full undo wraparound. As discussed in the previous section, wraparound buffer

53

entry rollback
Probability numbering distance

1/n 1 0
1/n 7 1

1/n n-1 n-2

1/n n n-1

Probability
entry

numbering
rollback
distance

n/2
n/2+1

n-2
n-1

1/n / 1/n

1/n 7 1/n

1/n nO.-l 1/n

1/n n/2 1/n

n/2+1

"/?+?

JLJ-

n/2
n/2+1

n-2
n-1

The buffer usage = (n-1)/2 The buffer usage = (3/4)n - 1/2

(a) single buffer without undo wraparound. (b) twin-buffer without full undo wraparound.

Figure 4.5 The buffer usages for two without undo wraparound implementations

implementation needs a special marker to represent the smallest buffer index that has been used,

thus slowing down the normal program execution. The other two implementations improve the

debugging time by eliminating the special marker maintenance, while disable the full undo

wraparound capability. Using two different models, the wraparound buffer implementation is

shown to have the best buffer usage. Also by disabling full undo wraparound, the twin-buffer

implementation has a better buffer usage than the single buffer implementation.

Let n be an even number and denote the number of buffer entries. Without loss of generality,

we assume that there is no system routine call to interrupt the filling of the buffers. The

buffer usage is defined as the expected number of valid entries that can be used to undo

instructions. The first model deals with the steady state, assuming that it is equally likely to

hit any buffer entry, i.e., with a probability 1/n. The buffer usage for a wraparound buffer is

n. The buffer usage equals Y^?=o(i' n) n-1 for the single buffer without undo wraparound

implementation, and 2£)™L0
_ [(| + i) • ^] = \n - \ for the twin-buffer without full undo

wraparound implementation, as shown in Figures 4.5(a) and (b). Without considering undo

wraparound, the twin-buffer scheme performs better than the single buffer scheme in terms of

buffer usage.

The second model employs the discrete-time birth-death process [55], where state i repre-

sents that the number of instructions undo-able is i, and Pt is its stationary probability, for

i = 0,1,2, ...,n. The transitions between states denote the possibilities of forward and undo

commands, with values p and 1—p respectively. Because the computation can only execute one

instruction at a time, either forward or backward, the discrete-time model is chosen through-

54

out the examination. Assuming that both forward and undo commands can execute only one

instruction, and there are no system library calls interrupting the single birth (advance) and

single death (undo) sequence. Since a forward command occurs more frequently than an undo,

we confine p's range to 1/2 < p < 1. The buffer usage is £"=o«-P;, the expected number of

instructions that can be undone. Figure 4.6(a) illustrates the state transition diagram for the

wraparound buffer implementation. A forward command at state n stays at state n due to

wraparound, while an undo command at state 0 stays at state 0 due to no valid buffer entries

at this state. The wraparound implementation can apply to both single buffer and twin-buffer.

We can obtain the following equations during steady state.

Pn = pPn+pPn-l

Pn-l = (l-p)Pn+pPn-2

Pt = (l-p)P2+pP0

P0 = (l-p)P1 + (l-p)P0

Since YZ=opi = 1> we can solve tne equations and obtain Pi = rn~* ■ ^'J+i, where r =

(1 - p)lp and i = 0,1,..., n. Therefore, the buffer usage equals

,A _ n - nr - r + r"+1 _ n + 1 1_
2^lPi ~ (i- r)(i - rn+i) ~ 1 - r^1 1 - r'
i=0 ^ yv '

The buffer usage approaches n when p approaches 1 and r approaches 0. If the user chooses

the forward command most of the time, the entire buffer entries are always valid. When the

forward command and the undo command occur equally likely, i.e., p = 1/2 and r = 1, we can

have the buffer usage
n — nr — r + rn+1 n

Si (l-r)(l-r"+1) = 2 "

Figure 4.6(b) illustrates the state transition diagram for the single buffer without undo

wraparound implementation. Because the undo wraparound capability is disabled, all the

buffer entries are invalid when we detect a full buffer. Therefore, a forward command at state

n — 1 transfers to state 0. We can obtain the following steady state equations and YA=O -Pi = 1-

Pn-l = pPn-2

P„_2 = (l-p)Pn_i+pi>n_3

55

1-p
p p p /^~\

1-p 1-p 1-p 1-p

(a) wraparound implementation.

p p p p

l-p

1-P

(b) single buffer without undo wraparound implementation.

i KB
i-p

(c) twin-buffer without full undo wraparound implementation.

Figure 4.6 Queueing models for three implementations

Px = (l-p)P2 + PPo

P0 = (l-p)P1 + (l-p)P0 + PPn-1

As p approaches 1 and r approaches 0, we can have PQ = Pi = ■ ■ ■ = Pn-\ = 1/n. The

buffer usage is J27=o z' « = ^T^- When p = 1/2 and r = 1, we can have Pi = (n — i)Pn_x, for

i = 0,1,..., n — 1, and Pn-\ = nt^+l\ ■ Therefore, the buffer usage is

n-l n-1

Y^ iPi = J2 Z(n ~ 0-fn-l =
n-l

t'=0 i=0

Figure 4.6(c) illustrates the state transition diagram for the twin-buffer without full undo

wraparound implementation. When we detect a full working buffer, the roles of the working

buffer and the backup buffer are interchanged. Although the entries in the original backup

buffer are invalid due to no undo wraparound, all the entries in the original working buffer are

valid, and can be used to undo instructions. State n — 1 thus leads to state ra/2 for a forward

56

command. We can obtain the following steady state equations and ^™=o Pi = 1

P„_l = pPn-2

P„_2 = (1 ~ p)Pn-l + pPn-3 i ; Pn/2+l = (1 ~ P)Pn/2+2 + pPn/2

Pn/2 = (1 ~ P)Pn/2+l + PPn/2-1 + pPn-l

Pn/2-1 = (l-p)Pn/2+pP*/2-2', ;P1 = (l-p)P2+pPo

P0 = (l-p)Po + (l-p)pi

As p approaches 1 and r approaches 0, we can have

Pn-l = Pn-2 — • ' • = Pn/2+1 = -Pn/2

^n/2 = -Pn-l + Pn/2-1

Pn/2-1 = -Pn/2-2 = • • • = Pi = PQ

Therefore,

Pi={
I for* = n/2,n/2 + l,...,n-l

0 fort' = 0,l,...,n/2-l

The buffer usage is YA=O
ipi = E?J«/2 *' (£) = fn *~ §• When J» = 1/2 and r = 1, we can have

8
Pn-l =

and

P = <

n(3n + 2)

(n — «)-Pn-i f°r l = n/2i «/2 + 1,.
n r>
örn-l for t = 0,l,...,n/2-l

Therefore, the buffer usage is ^"-Jo1 «Pi — isn+12 •

Table 4.2 summarizes the buffer usages for a large n under different models, implementa-

tions, and forward probability p. When p = 1, the buffer usages of the second model match

those of the first model. Among the implementations listed, the twin-buffer performs better

than the single buffer in terms of the buffer usages. It is very unlikely that a user will issue

more than two consecutive undo commands when one realizes that the buffer is empty. To

incorporate this condition, we can adjust the stationary probability to 1 (or 0) from state 0 to

state 1 (or from state 0 to state 0). We can further divide the buffers into more smaller buffers,

so that the buffer usage increases. The buffer usage for a fc-buffer, k > 2, is ^^rn — \ under

57

Table 4.2 The buffer usages for a large n

First
model

Second model
p=l P=l/2

Wraparound n n n/2
Single buffer

no undo
wraparound

n/2 n/2 n/3

Twin-buffer
no full undo
wraparound

3n/4 3n/4 7n/18

the first model. For example, we can implement a four-buffer without full undo wraparound by

adjusting the working buffer whenever the buffer is full. One buffer serves as the working buffer

and the other three buffers as the backup buffers. State n — 1 leads to state 3n/4 for a forward

command. In fact, we can divide the buffer into n small buffers, where each small buffer include

only one entry. There is one working buffer and n - 1 backup buffers. The ra-buffer without full

undo wraparound implementation switches the working buffer for every instruction. The actual

debugging time does not improve because the frequent working buffer switching is no better

than the marker checking for every instruction in the single buffer wraparound implementation.

We choose the twin-buffer due to its ease of implementation, better buffer usage than single

buffer, and less frequent working buffer switching.

4.5 Implementation

Two approaches have been implemented for incorporating the undo capability in GDB. The

first approach performs a direct modification to GDB, using the standard ptrace and trapping

system utilities. The implementation is straightforward, but the cost of trapping every instruc-

tion is high. The second approach employs a compiler to insert buffering instructions around

each instruction. The normal execution time when the recording mode is on is significantly

improved, with a code expansion penalty. We introduce several new commands which perform

backward execution, and can enhance the user's debugging power. As mentioned in Section 4.3,

record-on, record-off, and undo are the basic commands for the user to choose critical regions

to examine. Record-run executes the program in a recording mode from the beginning. It is

58

useful in measuring the run-time overhead induced by backward execution. Print-buffer dumps

the twin-buffer contents to allow a close investigation over the program execution history.

The twin-buffer, proposed in Section 4.4.3, serves as the temporary storage, so that the

effective buffer usage is increased without slowing down the debugging time. System library

routines are considered well-developed programs. Both buffers are flushed when library routines

are executed, to save the program debugging time. As a consequence, the debugger does not

allow undoing system library routines. The strategy can apply to user-defined routines, such

that the user can choose to skip recording certain well-debugged routines.

4.5.1 De-assembly and context switching

Without changing the compilers, the GDB can be modified directly to incorporate the

undo command. The twin-buffer is implemented at the debugger's working space. When

the recording mode is on, the debugger traps every instruction during continuous program

execution. The current instruction is analyzed (or de-assembled) before its execution. The

debugger can decide which values should be saved, fetch values from the corresponding locations,

and store them to the working buffer. The debugger then switches the control back to its child

process to execute the current instruction. Undo command involves decoding the previous

instruction, fetching the values from the working buffer, restoring them to the corresponding

locations, and adjusting the buffer index. This implementation is a direct extension of the break

... if expression command.

4.5.2 Compiler-assisted

Both the compiler and the debugger can be modified. The twin-buffer is implemented at

the user's address space. Suitable instructions are inserted around each instruction by the

compiler. Such instructions can be used to store register or memory values to the buffer, to

adjust the buffer index, and to check if the buffer index is still within range. To better illustrate

our idea, we insert buffering instructions at the assembly code level. Figure 4.7 illustrates

the standard instructions inserted around the current instruction. Depending on the type of

the current instruction, the values that need to be saved are different. Flush-buffer routine

interchanges the roles of the backup buffer and the working buffer by reassigning bufJndex and

bufJimit to the beginning and the end of the backup buffer respectively. The buffer contents

59

store $rl;
load $rl with bufJndex;
store values to buffer using index $rl;
store PC;
decrease $rl;
store $r2;
load $r2 with bufJimit;
if ($rl < $r2)

flushJbufferQ;
restore $r2;
store $rl to bufJndex;
restore $rl;
*current instruction;

Figure 4.7 Standard buffering instructions

can also be flushed into secondary storages using this routine. Such capability is disabled for a

faster program execution time in the recording mode. Figure 4.7 indicates that at least twelve

instructions are inserted for bookkeeping and executing the current instruction. Furthermore,

the third statement 'store values to buffer using index $rV may involve memory access, which

requires saving a new register $r3, loading the memory content to $r3, and restoring $r3. The

extra instructions result in both code expansion and a slower program execution time.

The strategy is to keep the registers holding bufJndex and bufJimit as long as possible

without restoring their values back to the corresponding memory locations. If two specific

registers are designated to hold bufJndex and bufJimit respectively, all of the loads and stores

of $rl and $r2 can be eliminated, reducing the number of instructions inserted by 7. However,

such assignment will impact the register usage since the number of available registers are two

less. A more flexible strategy identifies and utilizes the set of registers whose values have no

later uses at each instruction. A global dataflow analysis first computes the set of registers that

do not have later uses, i.e., the dead register set [22], for each instruction. The compiler assigns

priorities to the registers in the set, to serve as the guideline if a register should be chosen to

hold the values of bufJndex or bufJimit. For example, spill registers have the highest priorities

since their live ranges are within 3.

The implementation includes three BFS traversals over the original instructions in the entire

program. Actually the first BFS traversal builds up links so that the second and the third

60

traversals only perform sequential searches along the links. The first traversal assigns each

original instruction three registers, to hold bufJndex, buf.limit, and the memory content if the

current instruction is a store-to-memory instruction. The assignment is based on if the registers

are dead at the current instruction and their priorities. Dead registers are considered first over

the priority. If the number of the dead registers is less than 3, we choose the registers with the

highest priorities, which are not used nor defined at the current instruction. There are three

markers, load.rl, load-r2, and store.rl, initially O's associated with each original instruction,

representing if the current instruction should include 'load bufJndex to $rl', 'load bufJimit to

$r2', and 'store $rl to buf-index' respectively. The second traversal sets load.rl (or load.r2)

for the original instruction h if there exists a parent instruction whose $rl (or $r2) does not

match Jx's $rl (or $r2). In other words, there is no need to load the buffer index (or buffer

limit) from memory if the current instruction shares with all of its parents the same register

that holds the buffer index (or buffer limit). The third traversal sets store.rl for the original

instruction I\ if there is a child Ij whose load.rl marker is set. Since Ij will perform a load

$rl with bufJndex instruction, we must assign bufJndex a correct value. Therefore, I,- should

save its $rl value to bufJndex.

Example Consider the flow graph as shown in Figure 4.8. The pair of numbers associated

with each instruction denote the assigned values for $rl and $r2 respectively, in Figure 4.8(a).

There are three registers, 3, 24, and 25, chosen most of the time, since they are the spill

registers used in the old version of the IMPACT C compiler. Solid shadow, light shadow, and

white represent the colors of the nodes, i.e., the different assignments of $rl. In Figure 4.8(b),

since nodes B, F, G and X have at least a parent with different $rl's, i.e., in different colors,

their corresponding load.rl values are set to 1. Similar argument applies to nodes G and X for

$r2. In Figure 4.8(c), since nodes A, C, F, and G have at least one child with a load.rl value

set to 1, their corresponding store.rl values are set to 1.

A post-pass compiler have been implemented, which performs a global dataflow analysis,

inserts buffering instructions, adjusts procedure names, and generates the additional map table.

Both the original source code and the new expanded code in assembly format are compiled into

the new executable code. Procedure calls except system routines have two versions, the original

and the expanded one with a different name. Procedure call instructions in an expanded copy

are modified to call the corresponding procedures of the expanded versions instead.

61

load rl

(3, 24)
«3(24,25)

(3, 24)

(a) Assign temporary registers.

load_rl
load r2

load_rl
load_r2

(b) After the 2nd traversal.

store rl

f load_rl
load_r2
store_rl

load_rl
load_r2

(c) After the 3rd traversal.

Figure 4.8 The three BFS traversals for buffering instruction insertion

The compiler can generate an additional map table, MAP2, between the original executable

code and the new expanded executable code by incrementally maintaining the program counter.

When buffering instructions are inserted, their corresponding numbers of bytes are calculated

to update the beginning of the next instruction. In this way, the modified GDB can have correct

operations for several user commands.

When the GDB is in the record-off mode, the user commands are operated on the orig-

inal executable code, except the record-on and record-run commands. The record-run starts

the execution from the beginning of the expanded main routine, while the record-on sets the

program counter of the user program to the corresponding procedure of the expanded version,

both involving MAPI table lookup. During the recording mode, the user can type in usual

commands like step, next, continue, breakpoint etc., with the modification to GDB to include

checking MAPI table. Print-buffer command provides a way to examine the program recent

history. The record-off command in the recording mode switches the program counter back to

its corresponding original procedure, using the MAPI table.

The undo command, however, is more complicated, since we need to recover the value

of buf.index, and possibly, the value of bufJimit. Because of the elimination of certain load

and store instructions, the most recent value of bufJndex may be in its corresponding memory

location, or in register $rl. We need to find the buffer index first, and then adjust the content in

either the memory location, i.e., bufJndex, or $rl, for the previous instruction. Assuming that

the user program stops at a location in the expanded code, corresponding to the beginning of a

specific instruction in the original executable code. The 'load $rl with bufJndex' for the current

instructions may be present or absent. The cases can be determined by de-assembling and

62

Previous PC

stop PC
load $rl with

bufjndex
[in buf_index]

if ($rl < $r2)
flush_bujferi)

[in $rl]

(a) Locate the buffer index.

[A] load $rl with bufjndex
decrease $rl
store $rl to bufjndex

[bufjndexs— new index]

[B] decrease $rl
store $rl to bufjndex

[$rl-^— new index]

[C] load $rl with bufjndex
decrease $rl

[bufjndexs— new index]

[D] decrease $rl
[$rls— new index]

(b) Adjust the variables holding buffer index.

Figure 4.9 Buffer index and buffer limit recovery

analyzing several instructions. If such an instruction is present, the correct buffer index value

is in bufjndex. Otherwise, we look for instructions in the format 'if ($rl < $r2) flush_buffer()',

and get the correct buffer index value from $rl, as shown in Figure 4.9(a). The buffer index

value is then increased by 8 for the history write buffer scheme, or 12 for the read buffer

scheme, which can be used to find the buffer entry for the previous instruction, and locate

its program counter from the buffer. The user program can then be rolled back using the

corresponding program counter, and the old values are recovered. However, the user program

can not continue without suitable modifications due to the fact that the memory content in

bufjndex or the register value in $rl does not have the most recent value.

Both 'load $rl with bufjndex'' and 'store $7-1 to bufjndex'' instructions for the previous

instruction may be present or absent in the expanded code, resulting in four cases as shown in

Figure 4.9(b). For cases [A] and [C], the memory location bufjndex must be reloaded with the

current buffer index, while for cases [B] and [D], $rl's value must be adjusted. In other words,

de-assembly and analysis should be applied to both the stopped instruction and the previous

instruction.

Similarly, bufjimit or $r2 can be recovered during the undo. Whenever an undo exhausts

the working buffer, and switches to the backup buffer, if any, the new buffer limit should

be assigned to bufjimit. Also if the instruction to be recovered does not include 'load $r2,

bufJimit', $r2 should be assigned the bufjimit value.

63

4.6 Experimental Results

The same set of benchmarks as in the previous chapters are evaluated for read buffer and

history write buffer schemes respectively. The experiments are conducted on a DEC-station

3100. The size overhead is measured by calculating the ratio of the numbers of assembly

instructions between the expanded code and the original code, while the execution time overhead

is the ratio of program execution times, between the expanded version of the program in a

recording mode and the original code.

For the first approach, i.e., the context switching approach, there is no code growth, since the

GDB is modified to run on the original executable code. However, the execution time overhead

increases drastically as the size of the twin-buffer increases. For example, it runs more than

2,000 times slower on the recording mode for QUEEN benchmark, using a twin-buffer of size

IM bytes.

The compiler-assisted approach improves the normal execution time significantly when the

recording mode is on, but with a moderate code growth. The code growth ratio ranges from

6.5 and 8.2, with an average 7.1 for the history write buffer scheme, and from 6.5 and 8.6,

with an average 7.3 for the read buffer scheme. In general, the history write buffer scheme

generates smaller code growth ratio than the read buffer scheme does. It may be because the

history write buffer scheme saves one operand, and the read buffer scheme saves two. Among the

twelve benchmarks, only PUZZLE and COMPRESS have a slightly better code growth ratio for

the read buffer scheme. We thus choose the history write buffer scheme in our implementation,

and measure its run-time overhead. The run-time overhead when the recording mode is on

ranges from 4.5 to 6.4, with an average 5.6, for a twin-buffer of size ranges from 4K bytes to

8M bytes. The overhead increases as the twin-buffer size decreases within 4K bytes, since the

effect of swapping buffers between the working buffer and the backup buffer impacts the normal

execution. For each benchmark, the overhead stabilizes when the size of the twin-buffer exceeds

4K bytes. The compiler aborts when we try to compile programs with a twin-buffer of size more

than 8M bytes for either schemes. Since the history write buffer scheme stores two data item,

accounting to eight bytes for MIPS machines, for each buffer entry, up to IM instructions can

be undone. The read buffer scheme saves three data item, accounting to twelve bytes per buffer

entry, and up to 666K instructions can be undone.

64

Although the undo command involves de-assembling and analyzing the expanded current

instruction and the expanded previous instruction, the time for an undo command to finish is

within 0.5 seconds, which is a reasonable number in an interactive environment. The normal

execution time in a recording mode will increase if the buffer contents are flushed to secondary

storages. The following formula is used to measure its effect. Let N be the total number of

instructions executed, 2 x s the twin-buffer size, avg the average number of instructions that

each original instruction is expanded, and B(s) the function of time needed to flush a buffer of

size s to a secondary storage. Assuming that each instruction takes a unit time to complete.

The total running time is avg x N + y x B(s). In other words, the overhead is (avg - 1) + -f*.

For the best case, it takes one unit time to flush each buffer entry, resulting in a total execution

time (avg + 1) x JV. However, the secondary storage access time is much larger than the

functional unit cycle time. The overhead ^ can be quite a large number. Because of this

factor, the larger the twin-buffer is, the longer time it takes to flush the buffer.

4.7 Summary

Two approaches that incorporate the undo capability into GDB were described. The

context-switching is easy to program, and has no code growth on the user executable pro-

gram, with a high normal execution time slow down. The compiler can significantly reduce the

run-time overhead, with a moderate code growth. A twin-buffer is proposed to allow half of

the buffer entries useful to undo instructions when the working buffer is full. The twin-buffer

without full undo wraparound implementation has a better buffer usage than the single buffer

without undo wraparound.

The data recording in the implementations is at the assembly code level due to its ease of

presentation [44]. The performance measurement can serve as the worst case that is required

to incorporate the undo capability into a debugger. A smaller code growth, and a faster

program debugging time can be achieved if the recording is at a higher level, e.g., each statement

boundary in C language [56]. Also if a page protection mechanism is employed, the buffer out

of bound checking can be done by protecting the last buffer entry. Therefore all the buffering

instructions that include $r2 can be eliminated.

65

System routines can not be undone. The strategy can apply to well-developed procedures.

Checkpoint setting can be easily incorporated in the implementation, so that the execution

can be rolled back to a previously saved checkpoints. Procedure and loop boundaries are the

potential locations to set checkpoints. With this extension, the user can have more power in

program debugging.

66

Chapter 5

Conclusions

5.1 Summary

This thesis has described schemes that have been implemented for multiple instruction

retry for RISC-type scalar processors. Incremental updating and post-pass code reordering

were employed to improve the code run-time and reduce the compilation time. The threshold

for the number of instructions increased from 800 to 15,000. The compilation time has been

reduced from more than two hours to within three minutes for a source program of 1,000 lines.

The multiple instruction retry has also been applied to VLIW architectures, using both

compiler-based, and hardware/compiler combined approaches. An analytical bookkeeping code

scheduling algorithm was proposed to schedule code for VLIW architectures. Such a code

scheduling algorithm alleviates the coding complexity of the previous trace scheduling algo-

rithm, and reduces the code duplication of the superblock scheduling. Experimental results

have shown that with a read buffer of 2n X P entries, both code growth and execution time

overhead due to multiple instruction word retry can be reduced to negligible amounts.

Approaches to incorporating the undo capability into debuggers were presented, using both

history write buffers and read buffers. A twin-buffer has been proposed to allow an efficient

buffer usage for undoing up to IM instructions. Two approaches were implemented based on

a modified version of the GDB. Context-switching traps every instruction and stores suitable

values based on de-assembling the current instruction. Storage overhead is zero for the user

executable code, but with a slow program debugging time. Compilers can be utilized to insert

suitable instructions to store values at the run-time. The normal execution time in recording

mode is significantly improved, with a moderate code growth.

67

5.2 Limitations

The compiler-based multiple instruction retry for both scalar processors and VLIW archi-

tectures resolves the data hazards associated with instruction rollback. The hardware delayed

write buffers are removed for general purpose register files. However, since memory disam-

biguation problem is pretty hard to handle during the compile time, a delayed write buffer for

memory is still needed. The I/O units should also maintain delayed write buffers. To perform

instruction retry using compiler approach, the system routines will have to be re-compiled.

Both the history write buffer and the read buffer have been employed to store the past

instruction history. The two buffering schemes can not replay output commit instructions,

which is the main reason that system libraries can not be undone, and the checkpoint setting

before each system library call is observed. Although the secondary storage may be present, it

may still be impossible to rollback to the beginning for long running programs. The variables

in the read buffer scheme may not be current [38], since the last read of the variable can be

out of the buffer range, and the buffer does not have its old value. Such a variable can not be

recovered if there is a write to that variable before undoing occurs. Also, the size of the buffer

is a main factor in the performance of the secondary storage.

5.3 Future Research

The code scheduling algorithm for VLIW machines does not include the advanced loop

scheduling, such as software pipelining [31] and loop unrolling [37]. Code motion around var-

ious program constructs, including loops, if-then-elses, and subroutine calls [57] can also be

incorporated in the scheduling algorithm. The assumption that each instruction takes a unit

time to complete can be replaced by the actual cycle time of the corresponding instruction, in

order to get a more accurate estimation for the VLIW performance.

Checkpoint setting can be incorporated into the current implementation of GDB, to bypass

loops, system libraries, and well-debugged procedures. In UNIX systems, the system library

gcore can be used to dump the child's code space to a file. However, to rollback to a specific

checkpoint requires the debugger to look into the checkpointed core file and to restore suitable

information from the file, including the stack frames, the heap data generated by memory

allocation libraries, local and global variables, the twin-buffer, the buffer index, the register file,

68

and the PC etc.. The buffering schemes can be applied in building a symbolic debugger for

VLIW and superscalar architectures. Also the modified GDB can serve as a frame work useful

for developing a symbolic debugger in a distributed environment.

69

References

[1] C.-C. J. Li, S.-K. Chen, W. K. Fuchs, and W.-M. W. Hwu, "Compiler-assisted multiple
instruction retry," Tech. Rep. CRHC-91-31, Coordinated Science Laboratory, University
of Illinois, May 1991. to appear in IEEE Trans, on Computers.

[2] N. J. Alewine, S.-K. Chen, C.-C. J. Li, W. K. Fuchs, and W.-M. W. Hwu, "Branch recovery
with compiler-assisted multiple instruction retry," in The Twenty-Second International
Symposium on Fault-Tolerant Computing, pp. 66-73, July 1992.

[3] X. Castillo, S. R. McConnel, and D. P. Siewiorek, "Derivation and calibration of a transient
error reliability model," IEEE Transactions on Computers, vol. C-31, pp. 658-671, July

1982.

[4] R. Iyer and D. Rossetti, "A measurement-based model for workload dependence of CPU
errors," IEEE Transactions on Computers, vol. C-35, pp. 511-519, June 1986.

[5] L. Svobodova, "Resilient distributed computing," IEEE Transactions on Software Engi-
neering, vol. SE-10, No. 3, pp. 257-268, May 1984.

[6] L. Lin and M. Ahamad, "Checkpointing and rollback-recovery in distributed object
based systems," in The Twentieth International Symposium on Fault-Tolerant Comput-
ing, pp. 97-104, 1990.

[7] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for distributed
processes," in IEEE 2nd Symp. on Reliability in Distributed Soßware and Database Sys-
tems, pp. 124-130, 1981.

[8] C.-C. J. Li and W. K. Fuchs, "CATCH - Compiler-assisted techniques for checkpointing,"
in The Twentieth International Symposium on Fault-Tolerant Computing, pp. 74-81, June

1990.

[9] W.-M. W. Hwu and Y. N. Patt, "Checkpoint repair for high-performance out-of-order
execution machines," IEEE Transactions on Computers, vol. C-36, pp. 1496 -1514, Dec.
1987.

[10] M. L. Ciacelli, "Fault handling on the IBM 4341 processor," in The Eleventh International
Symposium on Fault-Tolerant Computing, pp. 9-12, June 1981.

[11] M. S. Pittler, D. M. Powers, and D. L. Schnabel, "System development and technology
aspects of the IBM 3081 processor complex," IBM Journal of Research and Development,
vol. 26, pp. 2-11, Jan. 1982.

[12] W. F. Bruckert and R. E. Josephson, "Designing reliability into the VAX 8600 System,"
Digital Technical Journal of Digital Equipment Corporation, vol. pp. 71-77, Aug. 1985.

70

13] D. B. Fite, T. Fossum, and D. Manley, "Design strategy for the VAX 9000 system," Digital
Technical Journal of Digital Equipment Corporation, vol. pp. 13-24, Fall 1990.

14] P. M. Kogge, K. T. Truong, D. A. Richard, and R. L. Schoenike, "Checkpoint retry mech-
anism." United States Patent, no. 4912707, Mar. 1990, Assignee: International Business
Machines Corporation, Armonk, N.Y.

15] G. L. Hicks, D. Howe Jr., and A. Zurla Jr., "Instruction retry mechanism for a data
processing system." United States Patent, no. 4044337, Aug. 1977, Assignee: International
Business Machines Corporation, Armonk, N.Y.

16] J. E. Smith and A. R. Pleszkun, "Implementing precise interupts in pipelined processors,"
IEEE Transactions on Computers, vol. C-37, pp. 562-573, May 1988.

17] Y. Tamir and M. Tremblay, "High-performance fault-tolerant VLSI systems using micro
rollback," IEEE Transactions on Computers, vol. C-39, pp. 548-554, Apr. 1990.

18] Y. Tamir, M. Liang, T. Lai, and M. Tremblay, "The UCLA mirror processor: A building
block for self-checking self-repairing computing nodes," in The Twenty-First International
Symposium on Fault-Tolerant Computing, pp. 178-185, June 1991.

19] L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding, "Design for fault-tolerance in
system ES/9000 model 900," in The Twenty-Second International Symposium on Fault-
Tolerant Computing, pp. 38-47, July 1992.

20] D. A. Padua and M. J. Wolfe, "Advanced compiler optimizations for supercomputers,"
Communications of the ACM, vol. 29, pp 1184-1201, Dec. 1986.

21] P. Chang, W. Chen, N. Wärter, and W.-M. W. Hwu, "IMPACT: An architecture framework
for multiple-instruction-issue processors," in The 18th Annual International Symposium on
Computer Architecture, pp. 266-275, May 1991.

22] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

23] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. The MIT
Press, 1990.

24] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, 1979.

25] J. A. Fisher, "Very long instruction word architectures and the ELI-512," in The 10th
Annual International Symposium on Computer Architecture, pp. 140-150, 1983.

26] R. P. ColweU, R. P. Nix, J. J. O'DonneU, D. B. Papworth, and P. K. Rodman, "A
VLIW architecture for a trace scheduling compiler," in Proceedings of the 2nd Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 180-192, 1987.

[27] B. R. Rau, D. Yen, W. Yen, and R. A. Towle, "The Cydra 5 departmental supercomputer,"
Computer, pp. 12-35, Jan. 1989.

71

[28] J. A. Fisher, "Trace scheduling: A technique for global microcode compaction," IEEE
Transactions on Computers, vol. C-30, pp. 478 -490, July 1981.

[29] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. The MIT Press, 1986.

[30] W.-M. W. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter, R. Bringmann, R. Ouellette,
R. Hank, T. Kiyohara, G. Haab, J. Holm, and D. Lavery, "The Superblock: an effective
technique for VLIW and superscalar compilation," the Journal of Supercomputing, pp. 229-
248, July 1993.

[31] M. S. Lam, "Software pipelining: An effective scheduling technique for VLIW machines,"
in Proceedings of the ACM SIGPLAN1988 Conference on Programming Language Design
and Implementation, pp. 318-328, 1988.

[32] J. G. Holm and P. Banerjee, "Low cost concurrent error detection in a VLIW architec-
ture using replicated instructions," in The Proceedings of the International Conference on
Parallel Processing, pp. 192-195, 1992.

[33] M. A. Schuette and J. P. Shen, "Exploiting instruction-level resource parallelism for trans-
parent integrated control-flow monitoring," in The Twenty-First International Symposium
on Fault-Tolerant Computing, pp. 318-325, 1991.

[34] D. M. Blough and A. Nicolau, "Fault tolerance in super-scalar and VLIW processors,"
in 1992 IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, pp. 193-200,
1992.

[35] M. Johnson, Superscalar Microprocessor Design. Prentice-Hall, 1991.

[36] D. E. Knuth, The Art of Computer Programming, Vol. Ill: Sorting and Searching. Addison-
Wesley, 1973.

[37] S. Weiss and J. E. Smith, "A study of scalar compilation techniques for pipelined supercom-
puters," in Proceedings of the Second International Conference on Architectural Support
for Programming, pp. 105-111, Oct. 1987.

[38] J. L. Hennessy, "Symbolic debugging of optimized code," A CM Transactions on Program-
ming Languages and Systems, vol. 4, No. 3, pp. 323-344, July 1982.

[39] D. Wall, A. Srivastava, and R. Templin, "A note on Hennessy's symbolic debugging of
optimized code," ACM Transactions on Programming Languages and Systems, vol. 7, No.
1, pp. 176-181, Jan. 1985.

[40] M. Copperman and C. E. McDowell, "A further note on Hennessy's symbolic debugging
of optimized code," ACM Transactions on Programming Languages and Systems, vol. 15,
No. 2, pp. 357-365, Apr. 1993.

[41] M. Copperman, "Debugging optimized code without being misled," ACM Transactions on
Programming Languages and Systems, vol. 16, No. 3, pp. 387-427, May 1994.

[42] R. M. Balzer, "EXDAMS - Extendable debugging and monitoring system," in Proceedings
of the Spring Joint Computer Conference, pp. 567-580, 1969.

72

[43] E. H. Satterthwaite Jr., "Debugging tools for high level languages," Software-Practice and
Experience, vol. 2:3, pp. 197-217, July 1972.

[44] R. E. Fairley, "ALADDIN: Assembly language assertion driven debugging interpreter,"
IEEE Transactions on Soßware Engineering, vol. SE-5, No. 4, pp. 426-428, July 1979.

[45] G. B. Leeman Jr., "A formal approach to undo operations in programming languages,"
ACM Transactions on Programming Languages and Systems, vol. 8, No. 1, pp. 50-87, Jan.
1986.

[46] M. V. Zelkowitz, "Reversible execution," Communications of the ACM, vol. 16:9, pp. 566,
Sept. 1973.

[47] J. S. Vitter, "US&R: A new framework for redoing," in SIGPLAN Not. Proceedings ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments 19, pp. 168-176, Apr. 1984.

[48] G. B. Leeman Jr, "Building undo/redo operations into the C programming language," in
The 15th International Symposium on Fault-Tolerant Computing, pp. 410-415, 1985.

[49] J. E. Archer Jr., R. Conway, and F. B. Schneider, "User recovery and reversal in interactive
systems," ACM Transactions on Programming Languages and Systems, vol. 6, No. 1, pp. 1-
19, Jan. 1984.

[50] S. I. Feldman and C. B. Brown, "IGOR : A system for program debugging via reversible
execution," in SIGPLAN Notice, pp. 112-123, Jan. 1989.

[51] M. S. Johnson, "Some requirements for architectural support of software debugging," in
SIGPLAN Notice, pp. 140-148, Mar. 1982.

[52] GNU debugger. Free Software Foundation, Inc.

[53] B. W. Kernighan and R. Pike, The UNIX Programming Environment. Prentice-Hall, Inc.,
Englewood Cliffs, 1984.

[54] R. M. Stallman, Using and Porting GNU CC. Free Software Foundation, Inc., 1989.

[55] L. Kleinrock, Queusing Systems, Volumn I: Theory. Wiley-Interscience (New York), 1975.

[56] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, Inc.,
Englewood Cliffs, 1978.

[57] S.-K. Chen, W. K. Fuchs, and W.-M. W. Hwu, "An analytical approach to scheduling
code for superscalar and VLIW architectures," in The Proceedings of the International
Conference on Parallel Processing, vol. I, pp. 285-292, Aug. 1994.

73

Vita

Shyh-Kwei Chen was born in Kaohsiung, Taiwan, on August 9, 1961. He received the B.S.

degree in Computer Science and Information Engineering from the National Taiwan University,

Taipei, Taiwan, in 1983, and the M.S. degree in Computer Science from the University of

Minnesota, Minneapolis, MN, in 1987. While pursuing his Ph.D. degree at the University of

Illinois, he was a research assistant in the Center for Reliable and High-Performance Computing

at the Coordinated Science Laboratory from 1990 to 1994. He is a student member of the IEEE

Computer Society. After getting his Ph.D., he will be joining IBM T. J. Watson Research

Center, Yorktown Heights, New York, as a postdoctor, working on a parallelizing compiler

and architecture for VLIW and superscalar machines. His research interests include parallel

processing, compilers, debuggers, and fault-tolerant computing.

74

