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Abstract 

Multiple scale methods, which are based on discrete and continuous reproducing 
kernels, wavelets, and integral window transforms are developed . In this development, a 
microscope is constructed with a flexible space-time localized window function which 
translates and dilates in space and time to cover the entire domain of interest. This 
microscope can magnify, examine, and record the image of the various scales and frequencies 
of the response locally within the support of the window function. The degree of magnification 
will depend on the power of the microscope, a flexible space-scale and time-frequency window 
function. This complete characterization of the unknown response is performed through the 
integral window transform. This localization process can be achieved by dilating the flexible 
multiple-scale window function. The zoom in and zoom out capability of the window function 
is especially useful in examining complex flow phenomena, such as flow induced vibration, 
dynamic stability of flow-structure interaction, turbulence structures, and high frequency 
structural dynamics response. 

Introduction 

Traditionally, researchers in computational analysis have concentrated on bringing 
more detail into their structural system models, but have ignored the multi-time and multi- 
spatial scales inherent in the structural response. To obtain resolution of medium frequencies, 
finite element meshes consisting of several thousand structural and continuum elements are 
necessary. To resolve the problem in the time domain, either a very small integration time 
step is required or if modal superposition is used a large number of structural eigenmodes is 
called for. These solutions often require hours of computer time on even the latest 
supercomputers. This severely limits the usefulness of these computations since their use in 
the design process is almost impossible. 

Conversely, researchers in structural design and analysis have concentrated on the 
modeling of various structural components, usually via lumped parameters, but have often 
used drastic simplifications so that the multi-scales problem is eliminated; however, the 
accuracy of these methods is limited to the very low end of the spectrum. 

In fluid-structure stability problems, the unstable response often arises from a 
coupling between phenomena associated with substantially different frequencies. For 
example, vortex formation in a flow about a blade or airfoil is initiated by relatively high 
frequency modes of the structure. The excitation forces generated by the vortex and the 
instability itself generally involve low modes of structural response. The complete time 
integration of the equations for the fluid and structure combined can be prohibitively time- 
consuming in even two dimensions and is beyond the capability of even the largest 
supercomputers in three dimensions. Thus it can be seen that methods which can effectively 
treat problems with large ranges in scale are needed in many types of analysis which arise in 
structural dynamics problems. This report is aimed at developing such methods and in 
studying their applications to a class of structural dynamics problems. 
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Abstract 
Multiple scale methods, which are based on discrete and continuous reproducing 

kernels, wavelets, and integral window transforms are developed . In this development, a 

microscope is constructed with a flexible space-time localized window function which 

translates and dilates in space and time to cover the entire domain of interest. This 
microscope can magnify, examine, and record the image of the various scales and frequencies 
of the response locally within the support of the window function. The degree of magnification 
will depend on the power of the microscope, a flexible space-scale and time-frequency window 
function. This complete characterization of the unknown response is performed through the 

integral window transform. This localization process can be achieved by dilating the flexible 

multiple-scale window function. The zoom in and zoom out capability of the window function 
is especially useful in examining complex flow phenomena, such as flow induced vibration, 

dynamic staoility of flow-structure interaction, turbulence structures, and high frequency 

structural dynamics response. 



1. Introduction 
In a compressible flow-structure system, the unstable response often arises from a 

coupling between phenomena associated with substantially different frequencies. For 

example, vortex formation in a flow about a blade or an airfoil is initiated by relatively high 

frequency modes of the structure. The excitation forces generated by the vortex and the 
instability itself generally involve low modes of structural response. The complete time 
integration of the equations for the compressible fluid and structure combined can be 
prohibitively time-consuming in even two dimensions and is beyond the capability of even the 
largest supercomputers in three dimensions. Thus it can be seen that methods which can 
effectively treat problems with large ranges in scale are needed in many types of analysis 

which arise in structural dynamics problems. 
The development of computational methods for low-frequency response 3D structural 

systems are now reasonably well established. On the other hand, little success has been 
made in the structural area characterized by multiple scales, where response is often 
dominated by the middle part of the spectrum. The author believes that the multiple-scale 
reproducing kernel particle methods coupled with wavelets proposed here have great promise 
in dealing effectively with the difficult structural response problems in which the medium 
frequencies are important, such as problems involving impact, dynamic instability, 

compressible flow-structure interaction, and other local phenomena. 
Because the frequency shift enables the time step to depend only on the size of the 

frequency band and not on the frequency extent of the load, these methods will speed up 
analysis of medium frequency response immensely. This is particularly attractive for 

structural response exhibiting multiple time scales. This new development will enable 
engineers not only to bring more detail into their structural system models, but will also 
enhance the computer simulations of many classes of multi-scale structural dynamics 

analysis. It will improve the accuracy, efficiency, and reliability of dynamic analysis. 
In the next section, a review of the coupled compressible flow-structure interaction is 

presented. In section 3, the weak form of the equations of motion is given and some currently 
available solution methods are discussed. In section 4a, the discrete orthogonal reproducing 

kernel interpolation functions are reviewed. In section 4b, the multi-resolution wavelets 
analysis is given. In section 5, we present our proposed approach to study complex 
structures, the multiple scale reproducing kernel particle methods. Sample examples are 

given in section 6. 

2. Review of Coupled Compressible Flow-Structure Interaction 



The ability to solve general classes of fluid-structure interaction problems involving 

finite deformations and stability depends upon the ability to solve the corresponding 
uncoupled fluid and structural problems, and also the ability to interface fluid and structural 

subdomains. During the last two decades, considerable progress has been made in the 

solutions of free and moving boundary problems which involve large fluid deformations. 
Among these methods are the marker-and-cell (MAC) methods (Hirt [1975, 1983], Nichols 
and Hirt [1971], Harlow and Welch [1965]), the volume of fluid (VOF) methods (Amsden 
and Harlow [1970], Harlow et al. [1976]), moving mesh techniques (Subbiah et al [1989]), 
Eulerian and arbitrary Lagrangian-Eulerian (ALE) methods (Liu et al. [1988, 1991], Huerta 
and Liu [1988], Belytschko [1983], Belytschko and Kennedy [1978]), the smoothed particle 

hydrodynamic (SPH) methods and the free Lagrange methods (Monaghan and Gingold 

[1983], Gingold and Monaghan [1982], Burton and Harrison [1991]). However, the coupling 

of these methods with deformable structures is not well understood and often causes 

difficulties. 
In the MAC method, a fixed or Eulerian mesh is used for the fluid calculation and a 

Lagrangian set of marker particles is used to trace the moving free surface. Marker particles 
can be spread over all fluid occupied regions with each particle specified to move with the fluid 
velocity at its location. A free surface is defined as lying at the "boundary" between regions 
with and without marker particles. More specifically, a mesh is said to contain a free surface 

if the mesh contains cells with markers and has at least a neighboring cell with no markers. 
The MAC method offers the distinct advantage of eliminating all logic problems associated 

with intersecting surfaces. This method is also readily extendable to three dimensional 
computations. However, the MAC method requires significant increase in running time and 

storage. 
In the VOF approach, a function F is defined whose value is unity at any point fully 

occupied by fluid and zero otherwise. Cells with F values between zero and one must then 
contain a free surface. This fractional volume of fluid (VOF) method provides the same 
coarse interface information available in the marker particle method. In order to trace the free 
surface, a flow analysis network approach is developed. It uses the flux calculation at the 
boundary of each control volume to check the fraction of fill instead of tracking marker 
particles. One limitation of this control volume technique is that the time step must be 

controlled to ensure that free surface only passes one control volume in a time step. 
In a moving mesh approach, a numerical grid generation scheme, which facilitates 

solutions over arbitrarily shaped boundaries, has to be developed. This approach numerically 

maps the irregular shape of the flow field to a more regular shape in a computational domain 



where the governing equations are solved. The computation time of this method is relatively 
high because of the large number of time steps and the mesh generation at each time step. 

There are two approaches to ALE methods. One approach updates the solution 

variables in a single time step while the other performs a Lagrangian step follows by an 

Eulerian or remap (or advection) step. The latter strategy is often referred to as an operator 

split method. Similar to the moving mesh approach, a new mesh is required for the ALE 
calculations. However, this new mesh is required only if the Lagrangian mesh is too 
distorted. The major advantage of the ALE methods is the moving boundaries can be 
computed with high accuracy of the Lagrangian method, and the mesh can conserve its 
regularity in avoiding element entanglement Although a combination of multi-material ALE 
methods have also been developed, the application of this technique to multiple free surfaces, 

multiple materials, and fluid-structure interaction remains to be explored. 
The SPH (smooth particle hydrodynamics) and the free Lagrange methods are based 

on algorithms which are truly grid-free or mesh-free. Consequently, these techniques do not 
have the mesh entanglement problems and at the same time, maintain the high accuracy of 
the Lagrangian calculations. Similar to a finite difference/element Lagrangian calculation, the 
continuous fluid is approximated by a set of particles or fluid elements of equal mass. Unlike 
the traditional Lagrangian finite element/difference calculations, the inter-particle forces 
among these smooth fluid particles are derived from the pressure and these interacting 
pressure forces are governed by an interpolating function. Hence, the nodal or element forces 
(which are usually constructed from a finite element/difference mesh) are no longer needed; 
and consequently, these free Lagrange methods require no mesh and the mesh distortion 

problems are completely eliminated. The energy equation is similarly defined for each smooth 

fluid particle. Since the fluid is modeled by equal mass particles, the density for the fluid is 
constructed by defining a weighting function in which the density of the equal mass particles 

is proportional to the number of particles per unit volume. With these approximations, the 
motion of the fluid is governed by the movement of this set of smooth fluid particles, and the 

movement of the particles are governed by the particle interacting forces. 
Although SPH methods work well if there is no boundary (since the boundary terms 

are tossed out in the formulation, Libersky and Petschek [1990]), and when the number of 
unknowns (nodes) is large; SPH methods are not as accurate as the regular finite element 
methods, Johnson, Peterson and Stryrk, [1993]. From our study of SPH interpolation function 

via a simple one dimensional (ID) Galerkin formulation, we found that there is an additional 

deficiency in the SPH formulation. It is related to the boundary correction term of the 
reproducing kernel approximation. We shall make an attempt to identify this deficiency and 

present our view of improving the SPH kernel approximation. 



After reviewing the moving least square interpolation functions, Lancaster and 

Salkauskas [1981], and the diffuse element methods (DEM), Nayroles et al. [1992]. 
Belytschko et al. [1993] pointed out that an assumption made by Nayroles et al., the 

interpolation coefficients are constants, detracts from the accuracy of the method. They 

developed the Element Free Galerkin Methods (EFGM) and showed that by adding more 
accurate derivatives and enforcing boundary conditions by Lagrange multipliers, the methods 
could achieve very high rates of convergence. From our experience, EFGM are more accurate 
than the finite element methods, and hence, the SPH methods especially for a small set of 
nodes. One main drawback of EFGM is the computational expense, and we found that it is 

more computationally intensive than the SPH methods. 
The objective of the Reproducing Kernel Particle Methods developed by Liu et al. 

[1993], is along the same line of development as the SPH, DEM, and EFGM : to develop an 
accurate and efficient mesh free interpolation functions. A detailed discussion on smooth 

particle methods, the diffuse element methods and the element free Galerkin method, and the 

recently developed reproducing kernel particle methods, is also given in the paper. 
Since a continuous reproducing kernel can be derived for this method and it is also a 

free Lagrange particle method, we shall label this development as Reproducing Kernel 
Particle Methods (RKPM). This proposed approach is motivated by the theory of wavelets 

Chui [1992] and Daubechies [1992], in which a function is represented by a combination of 

the dilation and translation of a single wavelet, which is a window function. In a wavelet 
analysis, similar to the SPH interpolation kernel, the interpolation coefficients are defined in 
terms of the integral window transform of the window function and the solution itself. In this 

proposed study, we shall make use of the multiple frequency bands and/or multiple scales 
properties of wavelets analysis (multi-resolution analysis), and the time-frequency and/or 

space-scale localization properties of the continuous and discrete reproducing kernel 

approximations. 

3. Weak Form of the Equation of Motion and Solution Methods 
Consider the weak form of the equations of motion which can be written as: 

K <5uh, uh> + B<ouh(xerg), uh(x£rg) - g(x)> = f<8u»>, p> (3.1) 

where K<-, •>, B<-, •> and f<-, •> are the usual weak form operator of the governing 

equations, boundary constraint operator on rg, and the force assembly operator, respectively. 

8uh(x, t), uh(x, t), p(x, t) and g(x, t) are the test function, trial function, body force, and 
prescribed data on the boundary Tg.   The governing equations can be those of structural 



dynamics, fluid dynamics, coupled-fluid-structure interaction or structural acoustics, and 

among others. The classical Galerkin method is to approximate u*» (which is the 

approximation to u(x, t)) by: 

»Hx,0 = IC«x-,.) (32a) 

and 

A 
8uh(x,t) = XoCa<l>(x-xa) ^ 

where $(x - xa) can be the global finite element shape functions, Hughes [1987], spectral 

functions Gottlieb and Orszag [1977], the smooth particle hydrodynamic (SPH) interpolation 
kernel function, Lucy [1977] and Monaghan [1988], multiple scale finite element functions 
Liu, Zhang and Ramirez [1991], or wavelet-type bases, Chui [1992] and Daubechies [1992], 
etc. Substitute Eqs. (3.2) into Eq. (3.1) and solve for Ca for a = 1 A coefficients will result 

in the discrete approximation of u(x), provided certain continuity requirements are met. 
It is noted that the above solution procedures also hold for the various approaches such 

as the space-time discontinuous finite elements, Hughes and Hulbert [1988], and Shakib and 
Hughes [1991], deforming space-time discontinuous finite elements, Tezduyar, Behr and Liou 
[1992]; the arbitrary Lagrangian-Eulerian (ALE) and Eulerian-type finite element methods, 

Liu et al. [1991], and among others. All these methods employ the same type of 
interpolations, Eqs. (3.2), except a new set of motion, mesh motion, is introduced through 
similar equations (3.2). This additional motion is used to control the mesh or grid 
deformation so that mesh distortion can be minimized and the nodal points connectivity 

through the mesh or grid description would not give negative Jacobians, Liu et al. [1988]. 

Equations (3.2) give a good approximation to u(x, t) when the measure of the spacing 
among xa, call it h, becomes smaller and smaller. One can then visualize the coefficient Ca as 

an average value of u(x, t), and <f>(x - Xa) is the weighting function. If h approaches to zero Ca 

approaches to the true solution at xa. However, in practice, h does not approach zero and if 

u(x, t) is a very nonlinear function, solving for the average values, as all of these methods do, 

would probably leave out the fine details of the response u(x, t). 
Therefore, our objective is, instead of solving for the averaged u(xa) (i.e., Ca), we shall 

develop an alternative form of Eqs. (3.2), which is based on discrete reproducing kernels and 



integral window transforms. In this approach, if we include the time dimension into x, we can 
think of $(x - Xt) as a flexible space-time window function located at xa. Since u(x) is an 

unknown function, our goal then is to interpret the coefficient Ca as a microscope which 

magnifies, examines, and records the image of the response u(x) around xa. This can be 

achieved by employing a space-time localized window function that can recover the various 
scales and frequencies of the response u(x) locally around xa. This leads us to the use of 

scaling functions and wavelets which are discussed in the next two sections. 

4a. Discrete Orthogonal Reproducing Kernel Interpolation Functions 
If <J)(x - xa) is chosen to be the scaling function, Chui [1992], Ca is identified as the 

integral window transform of the unknown response u and 4>(x - xj over the domain. That is, 

the unknown coefficients are to be constructed so that: 

:, = C,(u, x.) = <u, <|>,> = I u(x) <|>(x-x,) dx 
(4.1) 

where <u, <J>a> is the integral window transform, and V is the domain of interest. The 

reconstruction formula Eq. (3.2a) becomes: 

A 

uh(x, t) = X <u, <|>a> <|>(x-x.) 
»l (4.2) 

Equation (4.2) is typical for a discrete reproducing kernel Hilbert space. In seeking for the 

solution ub(x, t) using Eq. (4.2) and a similar equation for 5ub(x), it is necessary to define 
nodal point xj; nodal uj ■ u(xj); and particles with nodal mass AMj and nodal density pj. 

Consequently, the nodal volume AVj is determined by AMj/pj = AVj for J = 1 NP, where 

NP is the total number of particles inside V. Hence, 

NP NP 
X AVj = V ;   and   £ AMj = total mass (4.3) 
j=i J=»i 

Using numerical integration in Eqs. (4.2) and the above definitions, ub(x, t) becomes: 

A 

uh(x, 0 = X <u- <l>a> <IKx-xa) 



«si I 
-1L  ' 

xjeB(x.) 

<t>(x,-Xa)AV, U,(t) 
«Ma) (4.4) 

where xj are the quadrature points, and B(x.j is the support of <fr(x-xa). Equation (4.4) is a 
discrete reproducing kernel approximation (DRKA), since u*»(x, t) is interpolated via 4>(x-xa) 

through the integral window transform of u(x, t). An interesting interpretation of Eq. (4.4) is 

as follows. There are a total of A sampling windows spread over the domain V. At each 
sampling location xa, a microscope, which is constructed from the integral window transform 
<u, «>a>, examines the motion of particles AMj carrying nodal values uj passing through the 
support B(xa). If the motion is very nonlinear, the number of "free Lagrange particles" AMj 
passing through each sampling window <|)(x-xa) is different from time to time. Therefore, Eq. 

(4.4) maintains the attributes of the free Lagrange methods, and with the appropriate choice 

of 4>(x-xa), gives more accurate results. 
Upon examining Eq. (4.4), since only a set of nodal" points or particles are involved in 

DRKA methods, similar to SPH methods, DRKA methods have no problems associated with 
mesh/grid distortion or negative Jacobian of the elements resulting from large deformation. 
Hence, it is suitable for large deformation and high velocity flow problems. However, unlike 
SPH methods in which <J>(x-Xa) in Eq. (3.2a) is the interpolation kernel function that mimic a 
Dirac Delta function and Ca is the product of the nodal mass AMa and the nodal value of the 

response ua (-u(xa)) divided by the nodal density pa, (Monaghan [1988]). That is 

u*(x, t) = X <Kx-xa) ^ ua = X 4>(x-xa) AVaua 

Comparing Eqs. (4.4) and (4.5), if only one point integration is used to integrate the integral 
window transform <u, $a>, which is a very bad approximation to the integral, especially for 

very nonlinear or complex u(x, t), the SPH and DRKA methods take a similar form. However, 
if more than one point quadratures are employed to evaluate the integral window transform 
<u, <t>a>, the difference between the two methods is apparent It is thus clear from Eq. (4.4) 
why we call Ca a microscope in which the magnification power will depend on the number of 

particles examined under the support B(xa). 

4b. Multi-Resolution Wavelets Analysis 



In this section, we wish to construct and interpret Ca as & flexible power microscope. 

This microscope can zoom in (sharpen the window function) to pick up the detailed structures 
of the response u(x); and zoom out (widen the window function) if no further magnification of 

the response is necessary. This zoom in and zoom out capability is especially useful in 

examining complex flow phenomena, such as flow induced vibrations; dynamic stability of 
flow-structure interaction, turbulence structures, structural acoustics, high frequency structure 
dynamic response, strain localization problems, and other engineering disciplines. 

In this development, since Ca is defined in terms of the unknown response u(x) and the 
multiple scale window function <j>(x-Xa), Eq. (4.2) has to be redefined for the multi-resolution 
wavelets analysis. The window functions <J>(x-Xa) will be replaced by flexible power window 

functions Vma(x); whereas the integral window transform coefficients Ca = <u, <|>a>, a = 1,..., 
A, become Cma, which are defined by <u, \yma>. The power of the window function is 

controlled by an index m = 0, 1, ..., M. The multi-resoluiion analysis is performed simply by 
the dilation of the window functions. That is, the discrete reproducing kernel formula Eq. 

(4.2) can be re-defined as: 

M    An M    An 
Uh(x) =XX<U, Vm,> Vma(x) = X X CmaVnu(x) 

m-0 »1 ' m=o «»1 (4.6a) 

where the dilation of Vma(x) is defined through the integer index m, and A0 > Al > .... > AM. 
The arbitrary scale, arj > 0, is usually set equal to 2. Hence, the flexible space-time and 

scale-frequency window functions are defined by: 

Vm«(x) = atf1'- vWx-x,))     ao > 0 (4>6b) 

and the integral window transform <u, Vma> is given by: 

¥»•> = I Vm«(x)u(x)dx Cm. = <ut 

(4.6c) 

where V is the space (or space-time) domain of interest 
As can be seen from Eq. (4.6b), the mother wavelet \|f(x) can be obtained by setting m = 

0 and xa= 0. Because of our choice of indexing, m = 0 corresponds to the smallest window 
width. The integral window transform <u, Voa>' tne microscope, can pick up the very fine 

scale and/or high frequencies up to the arbitrary scale arj.  For m = M, it corresponds to the 

10 



largest window width, and CMa = <". VMa>' the microscope, can pick up the large scale 

and/or low frequency response. 
It is apparent from Eqs. (4.6) that the microscope Cma located at xa can examine the 

finest scales of u(x) simply by dilation. The magnification factor is determined by the mother 
window function, and the flexible space-scale and time-frequency localized integral window 

transform <u, Vma>- 
Using a numerical quadrature integration scheme to discretize Eq. (4.6c) gives: 

xjeBm(x.) 

Cma = <U, <t>ma> =      X      Vma(*)AV,U, 
j (4.7a) 

where Bm(xa) is the support of the m^ scale window function located at xa and AVj is the Ith 

nodal volume evaluated at xj. Substituting Eq. (4.7a) into Eq. (4.6a), we obtain our desired 

discrete multi-resolution wavelet analysis of u(x): 

M    An (xjeB-d.) \ 

Uh(x) = £  X X      Vma (XJ) AVj Vma (X) ) Uj 
m=0 a=l  \       J ' (4-8' 

Similar equation can also be written for 8uh(x). Equation (4.8) can be written in a more 

familiar form of multi-resolution analysis: 

M 
uh(x) = X u&(x) = ufc(x) + uftx) + ••• + uh

M(x) 
Ü (4.9a) 

It can be seen from Eq. (4.7a) that uh(x) is a direct sum of the M-scale solution. For each 
refinement m, the m^-scale interpolation, which also represents the m^-frequency/wave 

number band of the solution, is defined by: 

An 

u&(x) = X «*) = Umi(x) + u£2(x) + ••• + u^Jx) 
S (4.9b) 

From Eq. (4.9b), we can view each ufea(x) as a flexible power microscope examining u(x) 
around xa and each u^x) is interpolated through the window function so that: 

11 



xjeB"(x.) 

U&»(x) =     X      ■   nü (*) Uj 
j (4.9c) 

and the 111th scale-a* wavelet shape function (Nmaj(x)) of particle J is given by (no sura on ra, 

a and J): 

Nmaj(x) = vm, (xj) ÄV, vma (x) (4.9d) 

From Eq. (4.9c), the summation on J for xj e Bm(xa) will define the global nodal connectivity. 
However, unlike the usual finite e! ment, the sequence of numbering uj would not cause any 

mesh distortion or negative Jacobian problems since there is no element 

If additional particles are added to the domain (this can easily be done by splitting up 
particles), the adaptive multi-resolution analysis can be summarized as follows: 

M 
uh(x) - Y ufe(x) multi-resolution analysis 

m=o (4.10a) 

M    /An \ 
= X I X UM (x))       summation of all frequency bands of interest 

m*)Ul / (4.10b) 

M   /An 

nw»0 Vasl 
X      Nm«j(x) Uj 

L      J 

uj are examined by the m* scale-a* 
wavelet under Bm(x,) ,4 1Qcx 

z,eB-(x.) j M    An \ 
X     (XX (Vnu(Xj)AVjVm,(x)) Juj     global interpolation functions 

J      lnrt.-i I (4.10d) 

As can be seen, there is no change in the multi-resolution analysis Eqs. (4.10a) and (4.10b), 
since the dilation index m and the number of window functions YmaOO are the same. There is 
also no change in the order of the window function as Vma(x) is derived from Yoa(x)- The 
only change is in the summation on J under the support Bm(xa) and the resulting 

"nodal/particle" matrix v/iv be larger because of the additional global interpolation functions of 
those nodes/particles. Similar procedures can also be developed for the deletion of particles. 
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If we can construct discrete multi-resolution wavelet functions according to Eqs. (4.10), 
we shall have a truly mesh or grid-free adaptive method and the interpolation is defined 
through a set of arbitrary-spaced nodal points or particles. Moreover, if V(x) is chosen to be 
C* smooth functions, i.e., smooth in its k* derivatives, the discrete multi-resolution 

reproducing kernel interpolation functions are also Ck. 

5. Multiple Scale Reproducing Kernel Particle Methods 

The multi-resolution wavelet analysis given in sections 4 is based on an infinite domain 
assumption. To apply wavelets to analyzing complex structures, this restrictive assumption 
is no longer valid. Another intrinsic deficiency of orthogonal wavelet is the stringent 

requirement: 

1 xm\y(x)dx = 0 m = 0, 1 q 

where q is the degree of polynomials of the mother wavelet v(x). From Eq. (5.1) it follows 
that a q* order wavelet can not represent 1, x, x\ ..., x\ parts of the solution. To remedy 

these two restrictions, we shall represent a function u(x) by: 

u(x) = uw(x) + P(x)c (5'2) 

where uw(x) is the part of the solution that is obtained by the multi-resolution wavelet 
reconstruction as given in section 4b. P(x)= {Pi(x), P2(x) Pn(x)} and c = {ci, c2,..., cn}T 

are the vectors of the n linear independent functions and unknown coefficients, respectively. 
A superscript T denotes the transpose. We can consider the P(x)c term as the residual 
representation of u(x) within a bounded domain. Following the procedures of deriving the 
reproducing kernel particle interpolation functions (see Liu et al.[1993]), the multiple scale 

reproducing kernel interpolation function coupled with wavelets can be shown to be: 

u(x) = uw(x) + I C(x, y, ao) aöl <|>(^) u(y) dy 

-j C(x,y, ao)aöl(J)(^-)uw(y)dy 
(5.3) 
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where the parameter ao determines the size of the scaling function <j>(x). The form of the 
correction function C(x, y, ao) will depend on the choice of P(x). It is noted that the second 

term in Eq.(5.3) is the reproducing kernel approximation described in Appendix A. The first 
term is the multi-resolution wavelet part, whereas, the third term connects the two 
reproducing methods. It is interesting to point out that by a proper choice of ao, the 
contribution of the coupling term can be shown to be negligible. With this construction, the 
wavelet and the reproducing kernel terms give the high and low frequency (or the fine and 
coarse scales) representations of the solution u. It is also noted that uw(x) can be expressed 
by other continuous or discrete multiple scale reproducing kernels. 

To further examine this multiple frequency/wave number bands wavelet approximation, 

we let 

M    An 
UW(X) = JX<U, Vm«> Vm«(x) 

m-0 t»l (5.4) 

Substituting Eq.(5.4) into Eq. (5.3) yields: 

M   An If \ 
u(x) = X X   I u(y) vma(y) dyj[vma(x)-vm,(x)] 

m=0 a~l  IJv 7 

+ Jc(x,y,ao)aö1«(^)u(y)dy 
(5.5) 

where the definition of: 

». Vm«> = I u(y) yD <u, Vm«> = | u(y) ^„„(y) dy 
(5.6a) 

has been used in Eq.(5.5). The approximation of the wavelet functions Vma(x) through the 
reproducing kernel, denoted by Vma(x) is: 

¥m.00 = I C(x, y, ao) a*1 <j,(^j Vma(y) dy 
(5.6b) 
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It is now clear from Eq. (5.6b) that ?„,«(*) is simply an approximation of Vma(x) via the 
reproducing kernel reconstruction. It is expected that Vm.(*) is very close to vma(x) for low 

frequency/wave number wavelets. Consequently, the contribution from the low 
frequency/wave number wavelets is close to zero. However, depending on the choice of ao, <l>, 

and \|/; the reproducing kernel might not be able to reconstruct the high frequency/wave 
number part of the solution (second term in Eq. (5.5)); and these high frequency/wave number 

components can be readily picked up by multi-resolution wavelets analysis. 
Presently, we are working on the theoretical analysis of this type of reproducing kernel 

methods. Upon the understanding of Eqs. (5.6), we shall implement the correct <|>, and y into 

the continuous multiple-scale frequency bands approximation of the response: 

uKx) = I C(x, y, ao, a») aö1 <►(££.) u(y) dy    low frequency band 

+ X I C(x,y,ao,am)aömv(^)u(y)dy       high frequency band 
m=l Jv 

(5.7) 

Unlike orthogonal wavelets, equation (5.7) holds for arbitrary domains. Discretization of Eq. 
(5.7) gives the desired multi-grid/multi-resolution analysis of the complex dynamic systems: 

NPO .      v 

uh(x) = x [c<». X
J- «o»am) AX

J 
uji "o1 ♦( air)  low frec*uencv band 

J=I 
scaling factor coefficients 

NPl 

+ 
J=I 

lst-scale wavelet coefficients 

NPl ,     xX 

£ [C(x, xj, ao, am) Axj uj] a-1 Mrjr)    lst higher frequency band 

NPM .        . 
+ X [C(x, xj, a0, am) Axj uj] aM Vf^arJ    M01 higher frequency band 

J=i (5.8) 

M^-scale wavelet coefficients 
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It is noted that NPM 2s ....£ Npl 2 npO; and it constitutes an unstructured multi-grid analysis. 
We also wish to emphasize that orthogonal wavelets are not necessary; hence there is a 

larger class of window functions which can give good time and frequency localization. 

6. Numerical Examples 

The steady-state advection-diffusion problem can be stated for the one-dimensional case 

as follows: 

u,xx-au,x = b(x) inii (6-D 

with the boundary conditions 

u(xg)=Ul a,rg (6.2a) 

u,x(xh) = u'2 oorh (6.2b) 

where Q is the domain (i.e., 0 £ x £ L ), Tg is the boundary within essential boundary 

conditions and Th the boundary with natural boundary conditions. The whole boundary is 

r = rgurh and rgnrh=J0J. ( ),x denotes derivatives with respect to x. u is the scalar 

unknown, a given constant, and b(x) a given source term. The parameter a is the advetive 

velocity divided by the diffusion coefficient The Peclet number is therefore 

Pe_aJki_ (6.2c) 
2 

The boundary conditions are given. This problem can be viewed as a heat transfer problem 

with convective and diffusive heat transfer. The source term b(x) can be caused by a 

chemical reaction. Following Hughes et al. [9] the weak form of equation (6.1) with the least 

square terra can be written as 
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J! w(u,xx-a u,x-b) dQ + I  (w,xx-a w,x) x (u,xx-a u,x-b) dß = 0 
n Ja 

(6.3) 

where w is an arbitrary test function and x is a parameter. Using the approximations uh and 

wh for the functions u and w, we obtain the usual matrix equation. 

The following numerical examples use a highly irregular source term to cause a 

nonlinear solution with two peaks. The source term consists of two terms that are very 

similar and summed together. Each part is 

j . _   2ciC2g<»-*°> (e»<*-*>>-1) SecKc i(x-xp))2 

(efctfi-xoM)? 
2c? SecKci(x-xp))2 TanKci(x-xp)) 

+ (ec2(x-*o)+erc2(x-Xo)) 
C^ecatx-xo)^gca(»-xo)) ♦ (l-Tantyci(x-xp))) 

(gcafx-xoj+ec^-xo)^ 

2cKec**-*°>-g<*»-»°>)2 »(l-TanKci(x-xp))) 
(gcjfx-xo^ecatx-xojp 

/ c^ec^x-xojLe^i'-xo)) (l-TanKci(x-xp))) | ct Sechfcifr-xp))2 \ 
+ *{ (ec^-xoj+^x-xo^ [efr-*ohc«*-»l))      (64) 

where the parameter xp governs the position of the peak, ci  controls the sharpness on the 

right side of the peak and C2 controls the decay on the left side. In the previous equation the 

second indice for the paramters xp, ci and C2 is omitted. Therefore xp = xpi, ci = cu and 

C2 = C2i for i=l,2. 

The resulting source term is 

b(x) = k1bi(x) + k2b2(x) (6.5) 
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2Ä23 

1^23 

1.0*23 

0.5*23 

"Xj 

Figure 6.1 Source terra used in the examples 

with the parameters 

i 1 2 

*0i 5.0 2.5 

Cli 50 50 

C2i 1.0 3.0 

k, 0.5 1.0 

where the parameter k determines the size of the peak. The source term using these 

coefficients is shown in figure 6.1. 

The homogeneous solution for the advection-diffusion equation on the domain 0 £ x £ 6 

with boundary conditions u(0^0. u(6) = 1 becomes 

1 '   e««-l 
(6.6) 

where the particular solution with b(x) given in (6.17) 
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utx) = klUflx}fk2uS(x) <6J) 

where 

P l-TanKc^x-xo)) f    . = u (6.8) 
uiW    ec^x-xo)+e«j(»-*o) 

with the appropriate constants from the table above. The parameter a is set to a=1000 in the 

following examples. 

The results for the diffusion equation were obtained by setting the parameter a to zero 

and setting the boundary conditions to u(0)=0, u(6) = 0. 

The results for the Reproducing Kernel Mothod are obtained by using a Window function 

W of the form 

W(z)= e-*2 <6-9> 

and 

a^Ax^ <6-10> 

To show the influence of the parameter;', the solution of the differential equation is calculated 

for several j. Note that for j=-2.2 the solution becomes unstable and that for a y<0 the 

solution approaches the finite element solution. 

Note that the wavelets are scaled with a factor Ax to scale the mother wavelet to the size of 

the mesh. 

The solutions of the Diffusion Equation and the Advection Diffusion Equation using several different 
methods are shown in Figures 6.1 - 6.6 An error plot for the Diffusion Equation is shown in Figure 6.5. The 

solution for 31 nodes is not representative, the source term is underintegrated. 
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num. of nodes 31 61 121 241 

Usual FEM 0.19545 0.18977 0.07468 0.01827 

RKPM j = -2.2 0.19511 0.18954 0.07829 0.06641 

RKPMj = -1.0 0.19589 0.19054 0.07507 0.01839 

RKPMj= 1.0 0.22884 0.11999 0.03746 0.00463 

2 WL dil., j=1.0 0.20792 0.16593 0.07138 

4WLdil.,i=1.0 0.19507 0.19137 0.07507 

Table 6. la  Error of numerical solutions for 
the Diffusion Equation 

num. of nodes 31 61 121 241 

Usual FEM 0.80144 0.79926 0.56435 0.27424 

RKPM j = -2.2 0.80144 0.79910 0.56383 0.27401 

RKPM i =-1.0 0.80283 0.80029 0.56555 0.27422 

RKPMj= 1.0 0.79341 0.63022 0.33317 0.07116 

2 WL dil, j=1.0 0.79900 0.73682 0.54145 

4WLdil.,j=1.0 0.80149 0.79854 0.55935 

Table 6. lb   Error in the derivative of numerical solutions for 

the Diffusion Equation 
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Reproducing Kernel Particle Methods 

Abstract 

A new continuous reproducing kernel interpolation function, which explores the attractive 

features of the flexible time-frequency or space-wave number localization of a window function, is 

developed. This method is motivated by the theory of wavelets, and it also has all the desirable 

attributes of the recently proposed smooth particle hydrodynamics (SPH) methods, moving least 

square methods (MLSM), diffuse element methods (DEM) and the element free Galerkin methods 

(EFGM). The proposed method maintains the advantages of the free Lagrange or SPH methods; 

however, it produces much more accurate results. It is labelled as the reproducing kernel particle 

method (RKPM). In computer implementation, RKPM is shown to be more efficient than the 

DEM, and EFGM. Moreover, if the window function is C°°, the solution and its derivatives are 

also C°° in the entire domain. Theoretical analysis and numerical experiments reveal the stability 

conditions and the effect of the dilation parameter on the unusually high convergence rates of the 

proposed method. 

1. Introduction 

During the last two decades, considerable effort has been devoted to the development of 

mesh free or grid free interpolation methods. In most methods, the interpolation functions are 

usually established by enforcing certain continuity requirements around a set of ordered (equally 

spaced) points. However, due to deformation, this set of points can become highly disordered and 

the accuracy deteriorates. In addition, if the interpolation methods, such as finite element and finite 

difference methods, require a mesh or a grid, the distorted mesh can terminate the calculation due 

to mesh entanglement problems, among others. 



Among the mesh or grid free methods are the Smooth Particle Hydrodynamic (SPH) 

Methods, which are sometimes called the free Lagrange methods. They depend only on a set of 

disordered points or particles as developed by Lucy [1977], Gingold and Monaghan [1977], 

among others. The Diffuse Element Methods (DEM) developed by Nayroles, Touzot and Villon 

[1992], and the Element Free Galerkin Methods (EFGM) recently proposed by Belytschko, Lu and 

Gu [1993] are based on the moving least square interpolation functions (MLSM) presented by 

Lancaster and Salkauskas [1981]. All these methods do not require a finite difference grid nor a 

finite element mesh. Furthermore, if the kernel functions (used in SPH methods), the weighting 

functions (used in MLSM, DEM, and EFGM), and their derivatives are continuous, the solution 

and its derivatives are also continuous. The truly mesh free, the continuous solution, and the 

continuous derivatives are the key selling points of these methods. 

The most attractive feature of SPH methods in a large deformation analysis is the free 

Lagrange concept. Although SPH methods work well if there is no boundary (since the boundary 

terms are tossed out in the formulation, Libersky and Petschek [1990]) and when the number of 

unknowns (nodes) is large, SPH methods are not as accurate as the regular finite element methods, 

Johnson, Peterson and Stryrk, [1993]. From our study of the SPH interpolation function via a 

simple one dimensional (ID) Galerkin formulation (see the numerical examples, Section 7), we 

found that there is an additional deficiency in the SPH formulation. It is related to the boundary 

correction term of the reproducing kernel approximation. We shall make an attempt to identify this 

deficiency and present our view for improving the SPH kernel approximation. 

After reviewing the moving least square interpolation functions and the diffuse element 

methods, Belytschko et al. [1993] pointed out that an assumption made by Nayroles et al. [1992], 

the interpolation coefficients are constants, detracts from the accuracy of the method. They showed 

that by adding more accurate derivatives and enforcing boundary conditions by Lagrange 



multipliers, the method could achieve very high rates of convergence. From our experience, 

EFGM are more accurate than the finite element methods, and hence, the SPH methods especially 

for a small set of nodes. One main drawback of EFGM is the computational expense, and we 

found that it is more computationally intensive than the SPH methods. 

The objective of this paper is along the same line of development as the SPH, DEM, and 

EFGM : to develop accurate and efficient mesh free interpolation functions. Since a continuous 

reproducing kernel can be derived for this proposed method and it is a free Lagrange particle 

method, we shall label this development as Reproducing Kernel Particle Methods (RKPM). This 

proposed approach is motivated by the theory of wavelets (Chui [1992]) where a function is 

represented by a combination of the dilation and translation of a single wavelet, which is a window 

function. In a wavelet analysis, similar to the SPH interpolation kernel, the interpolation 

coefficients are defined in terms of the integral window transform of the window function and the 

solution. We shall borrow three key ideas from wavelet analysis: the integral window transform, 

the dilation and translation of a window function, and the continuous and discrete reproducing 

kernel approximations. It is noted that the window functions used in this paper are not wavelets. 

Good candidates for the window functions are the scaling functions used to produce wavelets since 

the scaling functions can be constructed to be orthogonal with respect to its translates. 

We shall show the similarities between the smooth particle hydrodynamic methods, the 

diffuse element methods, the element free Galerkin methods and the reproducing kernel particle 

methods. We shall also show that SPH and RKPM are indeed developed through a continuous 

reproducing kernel approximation; whereas, DEM and EFGM, like finite elements, are developed 

through a discrete reproducing kernel approximation. As a by product of this development, the 

concept of the dilation of a window function will be used to explain why the accuracy of the 

diffuse element methods decreases relative to the element free Galerkin methods. 



In the next section, some preliminary concepts of integral window transform and SPH 

interpolation kernel functions are reviewed. In Section 3, the reproducing kernel particle 

interpolation functions are derived. In Section 4, the effect of the dilation parameter on the 

reproducing kernel, time-frequency or space-wave number localization, and the stability condition 

is discussed. In Section 5, some examples of the reproducing kernel window functions are 

presented. The similarities among SPH, DEM, EFGM, and RKPM interpolation functions are 

given in Section 6. Numerical experiments, which confirm the theoretical analysis, are presented in 

Section 7, followed by a conclusion. 

2. Preliminaries 

2.1 Dilation and translation of a window function 

Let x denote the spatial coordinates. If <D(x) is a window function located at x = 0, which 

has a support of B(x), then 

<D(x)*0 inB(x) (2.1a) 

<&(x) = 0        outside B (x) (2.1b) 

The dilation and translation of <&(x), denoted by <frab(x), is defined as: 

<Dab(x) = E(a) 4>(2L^jL) a > 0 (2.2) 

is a window function, located at x = b with a support scaled by the dilation parameter a. The 

function E(a) appearing in Eq. (2.2) scales <DabM such that: 



I  <Dab(x)dRx=| 
/R» /R* 

<t>(x) dRx = 1 (2.3) 

when the support B(x) is within the spatial region of interest, Rx. It is noted that when b is close 

to the boundary of Rx, 3RX, the integral of <J>ab(x) over Rx will be less than 1. We believe that 

this is a drawback for the SPH methods, as well as all other reproducing kernel methods, including 

wavelets, which assume the region is unbounded. 

2.2 Integral window transform and SPH interpolation kernel functions 

The integral window transform of a real function u(x) with a real window function OabOO 

is defined as: 

< u , <Dab > = I  E(a) <t>(*^±) u(x) dRx (2.4) 
A, 

As a matter of fact, one of the main concepts of the SPH method is to find a suitable smooth 

reproducing kernel function <I>(x) that mimics the Dirac Delta function. Hence, when a is chosen to 

approach zero and when b = x, the reproducing kernel approximation of u(x), denoted by un(x), 

is given by: 

uh(x) = <u,<Dax>=| 
JR, 

E(a) *{*—■) u(y) dRy (2.5) 



Discretizing the integral of Eq.(2.5) by NP distinct nodes (points) using a numerical quadrature 

formula gives: 

NP 

I 
J=l 

uh(x) s £ E(a) Wr^) u(xj) AVj (2.6a) 

Equation (2.6a) can be written in a more familiar notation; in terms of generalized global shape 

functions Nj(x): 

NP V V 
uh(x) = £ Nj(x) uj     ;    Nj(x) = E(a) *(iifi) AVj    no sum on J     (2.6b) 

J=I 

where uj ■ u(xj) and AVj * 0 is the Jth nodal domain (volume in three dimensions (3D), area in 

2D, and length in ID) associated with quadrature points xj. The sum of all AVj gives the total 

domain V. That is: 

NP 
X AVj = V (2.6c) 

The SPH methods use a similar interpolation formula as given in Eqs. (2.6). Instead of using AVj 

and E(a) <S(Xf "*), AMj and pj E(a) <I>(Xj^-) are employed. AMj and pj are the Ith particle 

mass and density, respectively. With this substitution in Eq.(2.6a) or (2.6b), the SPH 

approximation can be used in standard interpolation Galerkin, collocation, or spectral methods, but 

the particle methods use information from a set of disordered points based on kernel estimation, 

Monaghan [1982]. It is also pointed out by Monaghan [1988], SPH works quite well for 

arbitrarily moving fluid if the number of particles is large and in the absence of boundaries; 

however, there is not a systematic way to handle moving fluid with rigid or moving boundaries in 



SPH. Furthermore, it is not clear how to generalize SPH to non-uniform mass particles or the 

effect of the dilation parameter "a" on the accuracy of the solution. 

2.3 Moments 

We shall define the following moments for the window function <D(x). 

/B<»> 

m0(x) = I    p <t>(y) dRy zero moment (2.7a) 

mi(x) =1    p yi <I>(y) dRy first moment (2.7b) 

, x    I *., N jr. i*i cross moment f- _ * mij(x) =       p y, yj <D(y) dRy J. ^nnd mnmfint (2.7c) i=j second moment 
'«») 

In the above equations, the integral is evaluated with respect to the support B(x). Hence, if B(x) is 

close to the boundary of the spatial region Rx, mg(x) is less than one. The subscripted indices i 

and j take values from 1 to NSD, where NSD is the number of space dimensions. If <I>(y) is 

symmetric, raj(x) = 0 in the interior of Rx and mj(x) * 0 when x is close to the boundary, mjj(x) 

(no sum on i) denotes the second moment of <I>(x) in the xj direction; and mjj(x), i * j, denotes the 

cross moment Definitions for higher order moments can be defined in a similar fashion. We shall 

employ these moments to analyze the reproducing kernel particle interpolation functions which is 

described next 



3. Reproducing Kerne! Particle Interpolation Functions 

The objective is to use the concept of reproducing kernels and the local character of the 

window function to develop an accurate reproducing kernel function from a suitable smooth 

window function <Dab(*) multipled by a correction function C(a, x, b). If both <DaD(x) and 

C(a, x, b) are smooth functions within the spatial region Rx, that is, the functions and its 

derivatives are continuous, then we have developed global interpolation functions that do not 

require a finite element mesh nor a finite difference grid. In particular, unlike the SPH methods, the 

dilation parameter a can take a fairly large range of positive values provided certain stability 

conditions are met. 

Our goal then is to develop reproducing kernel particle interpolation functions which will 

have the following merits. 

1) If <&ab(x)is m even function, the correction function C(a, x, b) should be one when the 

support of $ab(x) is not close to the boundary, 3RX; it differs from one when <Dab(x) is close to 

the boundary. 

2) A truly element or mesh free particle method similar to SPH methods with much better 

accuracy, especially when the number of particles is small. 

3) Similar to MLSM, DEM, and EFGM, RKPM provides smoother approximations of the 

solution as well as its derivatives; however, RKPM is computationally more efficient and a 

mathematical analysis of the RKPM is also available. 



Consider a function u(x) represented in terms of m linearly independent functions Pi(x) 

such that: 

m 

u(x) = X Pi(x) ci (3-la) 

i=l 

or in matrix notation: 

u(x)=P(x)c (3.1b) 

where P(x) = {Pi(x), P2(x) Pm(x)}, a vector of m linear independent functions, and 

c = {Cl, c2 cm}T are the unknown coefficients. A superposed T denotes the transpose. In 

order to define c in terms of the solution locally around any point x, we multiply both sides of 

Eq.(3.1b) by p(y) PT(y) and perform the integral window transform with respect to a positive 

even window function ^(y) to yield (Note: x has been replaced by y in Eq.(3.1b)): 

( pPTu , <Dax > = < pPTP . 4>ax > c (3.2a) 

or the vector of coefficients c is solved in terms of the solution u: 

c = M-l(x)(pPTu,<Dax> (3.2b) 

where the m x m non-singular matrix M(x) is denoted by: 

M(x) = ( pPTP , <D„ > = I   p(y) PT(y) P(y) E(a) <D(*-^) dRy (3.3) 



It is noted that M(x) is a continuous function of the translation (x) of the window function <I>ax(y)- 

Substitute Eq.(3.2b) into Eq.(3.1b) gives the approximation of u(x), denoted by u*»(x) through a 

continuous reproducing kernel: 

uh(x) = < p P(x) M->(x) PT u , <Dax > (3-4) 

Using the definition of the integral window transform, uh(x) can be shown to be: 

uh(x) = I  k(a, x, y) u (y) dRy (3.5) 

where the reproducing kernel, which is a modified window function, is : 

k(a, x, y) = kax(y) = C(a. x, y) E(a) <J>(^) (3.6a) 

and the function C(a, x, y) is given by: 

C(a, x, y) = p(y) ( P(x) M"l(x) PT(y) ) (3.6b) 

To write Eq.(3.5) in a discrete reproducing kernel particle form, the integral of Eq.(3.5) is 

discretized by NP distinct points using a numerical quadrature formula to yield the usual 

approximation formula: 

NP 

uh(x) = X Nj(x) UJ (3-7a> 
J=l 
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and the reproducing kernel particle interpolation functions are given by: 

Nj(x) = C(a. x, xj) E(a) 0(^4^) AVj (3.7b) 

Comparing Eq.(3.7b) with the SPH interpolation formula, Eq.(2.6b), we believe that the 

discretized correction function 

C(a, x, xj) = p(xj) ( P(x) M-l(x) PT(xj) ) (3.7c) 

will improve the accuracy of the interpolation kernel tremendously, partly due to boundary 

corrections. Depending on the choice of P(x), we shall show that the correction function is 

composed of the moments defined in the previous session. In particular, if P(x) is chosen to be 

constant and linear polynomials: 

P(x) = {l,x1)X2, x3} (3.8a) 

it is shown that the continuous function C(a, x, y) takes the following form: 

C(a, x, y) = Ci(a. x) + C2(a, xM*-^) (3.8b) 

In Eq.(3.8b), C\ and C2 are continuous scalar and vector functions of the zeroth, first and cross 

moments. A dot denotes the inner product. It will also be shown that Ci(a, x) = 1 and 

C2(a, x) = 0 when the support of ^>ax(y)' B(x)- ls not c*ose t0 lne boundary of the domain; 

whereas Ci(a, x) * 1 and C2(a, x) * 0 when the window function moves close to the boundary of 

the domain. It is noted that M(x) needs to be computed only once, even in a large deformation free 

Lagrangian or Eulerian analyses. In the latter case, the density p is chosen equal to one. 

11 



Remark : It can be seen that if u(x) = P(x), then: 

P(x) = I  p(y) P(x) M"l(x) PT(y) E(a) 0(^) P(y) dRy = j  p(y) P(> 

= P(x)M'1(x) I  | 

a 

,y- *, P(y) PT(y) P(y) E(a) W1-^) dRy 

= P(x) 
(3.9) 

because of the definition of M(x). Therefore if P(x) is chosen to be {1, xi. x2, x3, xi2,...}, the 

reproducing kernel will satisfy the usual isoparametric finite element properties. In a discrete 

approximation, we have: 

NP NP 
£Nj(x)~=l     5    XNj(x)xj = x     ;     etc. (3.10) 
J=I J=i 

4. Effect of the Dilation Parameter on  the  Reproducing Kernel  and Stability 

Condition 

In this section, we restrict our discussion to one dimension. To explore the accuracy of the 

RKPM interpolation functions, we shall relate the dilation parameter a (sometimes called a scale) to 

the frequency content (in time); or the wave number/wavelength content (in space). For simplicity, 

we let x be the time axis and CD is the frequency axis. A similar interpretation can be made when x 

and co are the space and the wave number, respectively. 

4.1 Frequency band 

12 



Following Chui [1992], we define the center x* and radius A$ of a window function <I>(x) 

by: 

x* = 
*IEL 

x <t>(x) I  dx (4.1a) 

A<j> -mih' 
1/2 

)2|d>(x)| dx (4.1b) 

The width of the window function <I>(x) is defined by 2A<J>. The norm of <I>(x) is defined as: 

Il*ll2 = <*.*> 
1/2 (4.2a) 

For our choice of the scaling parameter, the norm of 3>ab(x) is related to <I>(x) by: 

lkJB-a-i||*|| (4.2b) 

Suppose that <D(x) is any function such that both O(x) and its Fourier transform <t(CD) are 

window functions. Following the definitions Eqs.(4.1), the center frequency co*. and the radius of 

A<)> of 4KG>) arc given by: 

CO I." CD <D(co) dco (4.3a) 

13 



A<|> = = _JL 
<D f 

W/2 

(CO-CO*) *^2 O(CO) dco (4.3b) 

4.2 Time-freqency band of the parent reproducing kernel function 

The center and radius in Section 4.1 are defined over an unbounded domain so that x* and 

A<|> are invariant with respect to the translation (x). Since the kernel function is a function of y and 

it is defined within Rx only, we redefine a parent kernel function as: 

k(y)sC(y)a-i*(y) (4.4) 

where C(y) is equivalent to C(a, x, y) of Eq.(3.6b) and the arguments a and x are dropped here 

because they are implicit parameters and only y is a variable. Let us denote the center and radius of 

k(y) as x and Ak, respectively. 

x = -I 
llklf 12 K 

y|C(y)a-i<t>(y)|2dy (4.5a) 

Ak = 1— 
||k|b 

I   (y-x)2|C(y)a-i<D(y)|2dy 
1 A, 

\l/2 

(4.5b) 

*"N SS, •"* 

If the Fourier transform of k(y) is denoted by k(co), the center (co) and the radius (Ak) of 

k(co) in the frequency space are given by: 

14 



CO 

'licil I 
co [ k(co) |  dco (4.6a) 

^ml (co - co)21 k(co) I   dco (4.6b) 

From the parent kernel function k(y), the two-parameter reproducing kernel fucntion 

kax(y) = k(a, *, y) can be generated by translation (x) and dilation (a): 

kax(y) = C(^)a-icD(y^)- (4.7) 

The relationship between the norms of k(y) and kax(y) are obtained by: 

llkaxlb^ I |C(^)a-»*(^)rdy 
1/2 

= a^2    j |c(z)a-1*(z)pdzj 
1/2 

(4.8a) 

(4.8b) 

= al/2||k||2 (4.8c) 

4.3 Time-frequency or space-wave number localization 

Because of the linear translation of the reproducing kernel kax(y), the integral window 

transform of the response u with kax(y): 

15 



(u, kax> = [ C(^) a-' cD(^) U(y) dy (4.9a) 

localizes the response with a time window or a space window: 

[x + ax-aAk ; x + ax + aAk] (4.9b) 

Furthermore, since the domain is bounded , x* and Ak have been replaced by x and Ak such that: 

x = x*= constant  ;  Ak = Ak = constant   ifB(x)in  Rx (4.9c) 

x = x* = variable ; Ak = Ak = variable  if B(x) is close to  Rx (4.9d) 

In Eq.(4.9d), x* and Ak have to be computed according to Eqs.(4.5). The center and radius of the 

reproducing kernel function kM(y) are shown to be: 

|2 I   3 l~v  a  '**   ~v   a center, 1—     y | C(^) a-» <J>(^) dy 
llkaxlir 

i = —1— |   (x + az) | C(z) a-1 <D(z) |2dz = x + a x (4.10a) 

-j^-Jl   [y-(x + ax)]2|C(^)a-i<I>(^)|2dy 

11/2 

=,, a      I \   (z - x)21 C(z) a-1 O(z) |2dz )     = a Ak (4.10b) 

16 



The window width is defined as 2aAk. Therefore, the integral reproducing kernel window 

transform can be interpreted as a time or space-localization of the response (Chui [1992]). Hence, 

the integral window transform Eq.(4.9a) gives local information of u with the time or space 

window in Eq.(4.9b). 

Since the Fourier transform of the reproducing kernel kax(y) denoted by kax(<o) is also a 

window function, k„(co) is given by: 

cax(co) = I  e-i*y (C(^) a-i <J>(^)) dy 

= ae-iü»|  e-i(aü))z{C(z)a-1<I)(z))dz = ae-i(,Äk(aü)) (4.11) 

To study u in the frequency domain, we shall employ the Parseval identity (Daubechies[1992]) in 

which the inner product of any two continuous functions is related to the inner product of the 

Fourier transform, denoted by u and g through: 

(u.g^^-fcg) (4.12) 

Therefore, if we let g(y) = k,x(y) , the integral reproducing kernel transform Eq.(3.5) becomes 

-*/_* 
uh(x) = <u, kax> = ^-    u((o) eiux k(aco) dco (4.13) 

17 



Equation (4.13) reveals that the integral reproducing kernel window transform also gives local 

information of u((0) with & frequency-window 

J£    Ak   .   0) + Ak 
a       a    '   a       a 

(4.14) 

and a bandwidth equal to 2Ak/a. It is noted that the ratio of the center frequency and the 

bandwidth is equal to üi/(2Ak), which is independent of the scaling parameter when the support of 

the window function is within the domain Rx We wish to construct C(y) = C(a, x, y) so that the 

ratio is fairly constant when x is closed to the boundary. Employing the definition of the center 

frequency, Eq.(4.6a), and the linear transform co" = aco, the center frequency of k(a co) is shown 

tobe: 

center = rr^—r=- I   © I k(a ©) P dco 

k(aco) 112 

k(co') | g L 
= 1__J__|   a>I|k(a>,)|2da>, = £ (4.15a) 

Similarly, using Eq.(4.6b), and the linear transformation co' = aco, the radius of k(a (D) can be 

shown to be: 

\l/2 
>2 1 — 12 

radius = ,, ^  *    ,.  {I    co-<£  I k(aco)| dco 
||k(aa))||2^

v ) 

Ir \m   - 
= 1    x        U'-SFrk^FdcD'    =^ -fP^-rr  f (co' - S)2 l^(co') p dco'      =A£ (4.15b) 

where 
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||k(aCD)||2 = a-i/2|| k(Cü') ||2 (4.15c) 

is the relationship between the norms. 

From the above analysis, it is interesting to point out that the integral reproducing kernel 

window transform in the time or space domain [Eq.(3.5)] and in the frequency or wave number 

domain [Eq.(4.13)], study the response u in a rectangular time-frequency or space-wave number 

window given by: 

[x + ax-aAk;x + ax + aAk] x [f-& ; f + & ] (4.16) 

The above window narrows to pick up the high-frequency or high wave-number phenomena of u 

and widens to study the low_-frequency or low wave-number response. This suggests that we 

employ a flexible time-frequency or space wave-number reproducing kernel window to define 

adaptive refinement of the local response of u around any point x. 

4.4 Stability analysis 

If <D(y) is symmetric, co is zero. Therefore, the frequency window is always located at 

CD = 0, and its frequency band becomes: 

[.Ak  ; ^] (4.17) 

The smaller the a, the larger the frequency band; the larger the a, the smaller the frequency band. 

This implies that the number of sampling point within B(x) must satisfy the relation: 

19 



Ax<CONxrc/M = CONx27ra/Ak (4.18) 

to avoid aliasing (Brigham [1974]). Ax is called the sampling rate. The constant, CON, will 

depend on the so-called frame bounds (Daubechies [1992]): 

A<^L|k(aco)|2<B (4.19) 
Ax 

The positive frame bounds coefficients A and B can be estimated numerically. If A/B is close to 

one, CON will be close to one. Equation (4.18) is referred to as the stability condition of the 

reproducing kernel window function methods. In practice, CON is chosen much less than one 

(Liu, Zhang and Ramirez [1991]). 

It is well known that even if the sampling rate satisfies Eqs. (4.18) and (4.19), there is not 

a good choice for a high frequency band window function that can provide accurate frequency and 

time resolutions of u simultaneously. Therefore, for a small a, an intelligent selection of the 

frequency band is necessary to be effective. One possible way to employ a larger sampling rate in 

high frequency or high wave number analysis is the multiple-scale method proposed by Liu, Zhang 

and Ramirez [1991]. In this approach, the response is divided into multiple frequency bands via a 

shifting theorem. If <^ab(x) *s a wavelet, then the center frequency co > 0. By breaking a up into 

different scales, we shall have a multi-resolution analysis (Chui [1992]). 

In this paper, we restrict ourselves to the analysis of a single frequency band, where 

$ab(x) k chosen to be the scaling function so that Co = 0. Consequently, depending on the choice 

of a and the scaling function, <J>(x), the integral reproducing kernel window transform, (u, kax>, is 

20 



a measure of the amount of change of u at the location x + ax with the zoom-in (smaller a) and 

zoom-out (larger a) capability. 

4.5 Limitation of very low frequency/wave number analysis 

The disadvantage of a single band reproducing kernel analysis is that the method will break 

down for very low frequency/wave number analysis, such as for large dilation parameter a. This 

can be seen by interpreting the reproducing kernel Eq.(3.5) as a continuous-time or space 

convolution: 

uh(x)=| {C(a, x, y) a-» *(^)} u(y) dy (4.20a) 

and the reproducing kernel is identified as: 

k(a, y) = C(a, y) a-» <D& (4.20b) 
d. 

Applying the Fourier transform to both sides of Eq.(4.20a) and employing the Fubini theorem 

(Daubechies [1992]) to the right hand side yields: 

ü*(co) = k(a, co) u(co) (4.21) 

In order for u^co) to approach u(co), k(a, GO) must be constructed such that k(a, oo) = 1 for all co ; 

however, this will violate the Rierr nn-Lebesgue Lemma that k(a, co) = 0 when co approaches ±«>. 
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An approximation of the convolution identity constructs k(a, co) so that k(a, co) - 1 as a approaches 

to zero. It is well known that the family of Gaussian functions: 

a-i <D(X) = _L_ e -*2/a2,     a > o (4.22) 
a     atTC 

will satisfy the above conditions provided C(a, x) is constructed so that it is equal to one when «fc^ 

is in the interior of the domain and is fairly constant when «D^ moves close to the boundary. With 

this construction: 

k(a, x) 2 a-1 *(*■) = 4= e "x2/a2 <4-23a) 

and the Fourier transform of k(a, x) is: 

k(a, co) = e-a2o)2/4 (4.23b) 

With the Gaussian function, it is noted that a is identified as the standard deviation, and k(a, co) 

approaches one as a approaches zero. However, when a is large Eq.(4.19) will break down since 

k(a, co) * 1 unless the frequency content of u(x) is close to zero, which is very restrictive. 

From the above argument, the dilation parameter should be chosen within a banded range, 

say amin ^ a £ a,^. The maximum amax will be chosen so that Eq.(4.23b) is close to one. The 

minimum amin can be a small number provided the stability condition Eq.(4.18) is met. From our 

numerical experiments, we found that a can take a large value. We believe that the correction 

function C(a, x, y) indeed improves the stability as well as the accuracy of the interpolation 

function. Furthermore, due to the presence of C(a, x, y) which contains the (x - y) term, the 

reproducing kernel particle interpolation function as given in Eq.(3.7b) will further increase the 
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order of the shape function by one so that the convergence rate will also be increased by one when 

a is large! This will be discussed further in the next section. 

We shall employ the Gaussian function and the cubic spline, which is a good 

approximation to the Gaussian function, as the window function <I>ax(y) m me subsequent 

development It is further noted that both Gaussian and cubic spline functions are scaling functions 

used to generate the "Mexican hat" wavelet 

5. Examples of Reproducing Kernel Window Functions 

We let the independent functions be: 

P(x) = {l,x} ID (5.1a) 

P(x) = {l,xi,x2} 2D (5.1b) 

P(x)={l,Xl,x2,x3}       3D (5.1c) 

By substituting the above vector of independent polynomials into Eqs.(3.3) and (3.6b), the 

correction function C(a, x, y) can be separated into two terms: 

C(a, x, y) = Ci(a, x) + C2(a, x).(^-) (5.2) 

where C\ and C2 = {C21,..., C2NSD) 
are a scalar and vector, respectively, which can be defined 

in terms of the zero, first and cross moments. It is noted that all moments are in general a function 
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of the location of the window function, x, eventhough they are constants if B(x) is not close to the 

boundary. The expressions for Ci and C2 in ID, 2D, and 3D are as follows: 

One dimension: 

Cl(a,x)=—SU- 
momn-mt 

(5.3a) 

C2(a, x) = 
mi 

m0mii-mf 
(5.3b) 

Two dimensions: 

Ci(a, x) = 
mnm22-nTf2 

mo(mnm22-m^2)-(m^m22-2mim2mi2+m5m1i) 
(5.4a) 

C2i(a, x) = 
mlrn22'rn2m12 

mo(m 1 im22-m2
12H m]m22-2m 1m2m 12+m^m 11) 

(5.4b) 

C22(a, x) = ■ 
m2mii~roimi2 

mo(mnm22-mi2)-( mjm22-2mim2mi2+m2mii) 
(5.4c) 

Three dimensions: 

2mi2m23m3i+miim22m33-m11m|rm22m%rm33m2
:2 

wv.a, x; — _ (5.5a) 

r   (     , _ mi(m22m33-m^3)+m2(m23m3i-mi2m33)+m3(mi2m23-m3im22) ,* ^ 
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c   ,      x _ m2(m33mii-m^1)+m3(m3im12-m23m1i)+m1(m23m3i-m12m33)  ^ ^. 

c   ,   xs _ m3(mnm22-m^2)+mi(mi2m23-m3im22)+m2(m3imi2-m23mii) ,5 5dx 

where D, the Jacobian of the 4 x 4 M(x) matrix, is: 

D = mo(2m12ni23ni3i+m1im22m33-m[1m2
23-m22m^rm33m2

12) 
+mi(m^3-m22m33)+m2(m^rm33mii)+m3(m2

12-muni22) 
+2m1m2(m33m12-m23m3i)+2m2m3(m1 im23-m3imi2) (5.5e) 
+2m3mi(m22ni3i-mi2m23) 

Because of the special properties of the moments, Ci(a,x) = 1 and C2(a,x) = 0 when the 

window function is within Rx; whereas Ci(a,x) * 1, and C2(a,x) * 0 when the window function 

is close to the boundary. It is particularly important to point out that if a is large, the support B(x) 

is large. Then the linear term appearing in Eq.(5.2), C2(a, x). (——2-), plays an important factor in 

the accuracy and convergence rate of the method. 

From Eq.(3.5) and Eq.(3.6), the reproducing kernel function and the approximation un(x) 

are given by: 

k(a, x, y) = C(a, x, y) E(a) ^i1^-) (5.6a) 

uh(x) = I   k(a, x, y) u 
Ax 

(y)dRy (5.6b) 
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Therefore, if <t>(r) (r = || x - y ||2 ) is the cubic spline function, the order of polynomials of 4>(r) is 

equal to 3. In a Galerkin formulation, the convergence rates of the solution (L2 norm) and its first 

derivatives (HI norm) (see numerical examples session for definitions) are expected to be 4 and 3, 

respectively. However, when a is larger, observing from the discretized Eq.(5.6a) and Eq.(5.2) 

(with y replaced by xj), the order of the polynominal of the reproducing kernel k(a, x, y) can be 

increased by one so that the L2 and HI convergence rates can be as high as 5 and 4, respectively. 

This unusual phenomena are observed in our ID numerical experiments. The convergence rates are 

much higher when 3>(r) is replaced by a Gaussian function. 

Another interesting observation can also be abstracted from Eq.(5.2). In order to increase 

the convergence rate by one order, it is suggested to underintegrate the first moments so that it is 

close to zero, and the term C2(a, x).(X " y) can act as a stabilization term to the SPH methods. At a 

the same time, this stabilization term can also improve the accuracy as well as the convergence rate. 

One way to achieve this is to use Trapezoidal Rule to integrate the M(x) matrix (that is, the 

moments) at each x. 

For higher order polynomials, as well as other independent functions, P(x) can also be 

similarly investigated for this class of RKPM interpolation functions; however, from our numerical 

experiments, we found that using linear polynomials are accurate enough for most purposes. We 

also found that linear polynomials give numerically more stable calculations than higher order 

polynomials. 

6. Similarities among SPH, DEM, EFGM and RKPM Interpolation Functions 

For an illustration of the comparison among the various interpolation funtions, only one 

dimensional linear polynomials, P(x) = {1, x}, are implemented. The window function, $(x), is 
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chosen to be positive definite and an even function. If we use the Trapezoidal Rule to discretize the 

reproducing kernel Eq.(3.5), the shape function N?(x) of the RKPM is (a>0): 

N?(x) = ( d(x) + C2(x) pLJ&)) a-» «Kp^) AM, (6.1a) 

C!(x)=      m"   , (6.1b) 
m0mii-m| 

C2(x) = ^^ (6.1c) 
momn-mf 

where AMj is the Jm particle mass. If m0 = 1, m t \ * 0, and m j = 0, the SPH interpolation shape 

function can be obtained. As a matter of fact, the shape functions of RKPM and SPH are 

equivalent in an interior, but there is a big difference when they are close to the boundary. Hence, 

the SPH methods are not accurate when boundaries are present. 

Direct differentiation of Eq.(6.1a) gives: 

NjiX(x) = { Cl'(x) + C2'(x) P4*I) + ^) ^xoc,) AMj 

+ j Ci(x) + C2(x) (*^i) ) a-2*'(^i) AMj 

(6.2a) 

r   =       mn        _ mn ( moma + m0mu - 2m1m1) 
momu-m] (m0mn-m])2 

>  _ m{ _ mi ( m0mn + m0mn - 2m1m1) 

momu-m2 (momu-m])2 
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In the above expression, a superposed denotes differentiation with respect to the argument 

Without going into details, the MLSM, DEM and EFGM interpolation functions can be 

written as (Belytschko et al.[1993]): 

Nj(x) = XPjW[A-1(x)B(x)]jj (6.3a) 

when constant and linear polynomials Pj(x) are employed. The P(x), A(x) and B(x) matrices are 

defined by: 

PT(x) = {Pi, P2}    ;    Pi(x) = l   ;   P2(x) = x (6.3b) 

A(x) = X a-^^T1) p(xi) pT(xi) (6-3c> 
1=1 

B(x) = ja-i$(x^i-)P(x1),..., a-KDf^j^Xn)) (6.3d) 

where n is the number of points in the neighborhood of x for which the weight function 

a-i<j)/x' XI\ * 0; and xj are the nodal coordinates of uj. The derivatives of the EFGM, Nj(x), given 

by Belytschko et al.[1993] are shown as: 

Nix« = I (Pj.x [A-^l, + Pj [A;»B + A-ißJ j) (6.4a) 

and the derivative of the A"* matrix is given by: 
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A"i = -A-1AXA-1 (6.4b) 

The derivative of Nj(x) of DEM developed by Nayroles et al.[1992] assumes A and B 

constant so that: 

2 

N?,X(X) = XPJ,X[A-
1
BJJJ (6.5) 

It is noted that no particle mass AMj nor nodal length Axj are included in Eqs.(6.3) through (6.5). 

Furthermore, the A and B matrices need to be computed at each quadrature point x. 

Although it is not very apparent, an interesting result arises from these three conditions. 

1) The nodal coordinates^, are equally spaced. 

2) The Trapezoidal Rule is used to numerically integrate M(x). 

3) The integration weights Axj, AMj, and pj in Eqs.(6.1a) and (6.2) are all set equal to 1. 

X» N? and N?)X, Eq.(6.1a) and Eq.(6.2), can be shown to be equivalent to Nj and Nj, 

Eq.(6.3a) and Eq.(6.4a), respectively. 

With the above assumptions, Nj^x can be similarly defined from the RKPM interpolation 

functions (with AMj =1): 
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N?,x(x) = - mi a-^2LJ5l) AMj 
almomn-mfj (6^ 

aim0mii-m|J 

Comparing Eq.(6.2) with Eq.(6.6), depending on O(x), the derivative N?,x might not be an 

accurate approximation to N^x, especially for large a values. For example, let us use the cubic 

spline functions: 

d,(r)=2_4ri_+4i!        for0<-r_<l (6.7a) 
3   Ax2    Ax3 Ax    2 

<j>(r) = 4- 4L + 4IL._4EL        forl<_r_<i (6.7b) 
3   Ax    Ax2   3Ax3 2    Ax 

r = ||y-x||2 (6.7c) 

as the window function, and the dilation parameter is set such that a = 2J+ • for j>0. The 

parameter j = 0 is adjusted so that Ax is right at the stability limit (see Eq.(4.18) and Eq.(4.19)). 

This corresponds to the smallest time bandwidth or the largest frequency bandwidth of the window 

function. Let us consider a set of 21 equally spaced nodes with Ax = 0.3 representing the domain, 

0 <, x £ 6.0. If we use a trapezoidal rule to discretize the domain, then Axj = Ax2i = 0.15, and 

Ax2 = Ax3 =...= Ax2o = 0.3. With this discretization and p = 1, the shape function given in 

Eq.(6.1a), its derivatives using Eq.(6.2) [exact] and Eq.(6.6) [approximation] are depicted in 

Figures.l and 2, respectively for nodes 1, 10, and 21. As might be seen for j = 0 (right at the 

stability limit), the shape functions and its derivatives look similar to those for the usual linear finite 

elements; however, the derivatives of RKPM shape functions are continuous and they try to 
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reproduce the finite element discontinuous derivatives. For j = 1.0 and j = 2.0, there is not much 

difference between the two derivatives especially for node 10 where the support is within the 

domain. There is a large difference between the two derivatives when the shape functions are 

located at the boundaries (x = 0.0 and x = 6.0). This difference will produce inaccurate derivatives 

in Eq.(6.6), and the solution deteriorates. 

If we pick <I>(r) as the Gaussian function such that: 

a-i <jJ.ily-) = J=e-(*-y)^2   ,    a>0 (6.8a) 
v     a     /     oVrr 

= 2(i+°-5)a, j>0  and ^ = i (6.8b) 

With O as the standard deviation, the exact derivative given in Eq.(6.2) and the approximate 

derivative given in Eq.(6.6) become, respectively: 

Nf,,(x) = j C,'(x) + C2'(x) (1^1) + ^) } a-'«(^) AM, 

.Z(ClW + ClWp^))p^).->4<^)AMJ 

NR.W - -    ,     "«     ..fifV«^) AMi 
avmomu-mtJ 

|alm0mii-mfjj 

(6.9a) 

(6.9b) 
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When the derivatives of the shape function are not evaluated close to the boundaries (mi=0), the 

two derivatives are represented with the same function a^t&p-y^) but different coefficients. 

When the derivatives are evaluated close to the boundaries, the two derivatives are again 

represented by the same Gaussian function, and from numerical experiments, the quadratic term, 

(*JL*lF appearing in Eq.(6.9a) does not play an important role. Therefore, the approximation in 

Eq.(6.9b) is a good approximation to Eq.(6.9a). This is further elaborated in the next section. 

7. Numerical Experiments 

We employ a one dimensional Laplacian type equation: 

u xx + 2 s2 sech2[s (x - 3)] tanh[s (x - 3)] = 0 (7.1a) 

with essential boundary conditions: 

u(0)=-tanh(3s) (7.1b) 

u(6)=tanh(3s) (7.1c) 

The parameter s controls the degree of localization of the gradient of u (u,x). As s increases, u,x 

has an increasing gradient. The exact solution is: 

u(x) = tanh[s (x - 3)] (7.Id) 
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In a numerical approximation, we employ a Galerkin formulation of Eq.(7.1a) and the boundary 

conditions are enforced via the standard Lagrange multiplier approach. For a detail description of 

this problem and the implementation of the boundary conditions (Belytschko et al. [1993]). 

We shall utilize the cubic spline and Gaussian function described in section 6 as window 

functions. For simplicity, linear polynomials, P(x) = {1, x}, and s = 10 are used throughout. Five 

different discretizations with Ax = 0.3 (21 nodes), 0.15 (41 nodes), 0.075 (81 nodes), 0.0375 

(161 nodes), and 0.025 (241 nodes) are solved. It is noted that similar to SPH, DEM, and EFGM, 

RKPM does not require an element nor element connectivities. The standard L2 and HI error 

norms are defined as: 

Jo 

(L2 norm)2 = I  (u«»cl - uh)2 dx (7.2a) 

■((<■ 

Jo 

(HI norm)2 =     (u^act - \Pxf dx (7.2b) 

The rates of convergence are defined as the slopes p and q appearing in the In (error) vs. In (Ax) 

equations: 

ln(L2 norm) = InGi + p hiAx (7.3a) 

ln(Hlnorm) = lnG2 + qlnAx (7.3b) 

The smaller the constants Gi and G2, the more accurate the method. Also, the higher p and q, the 

faster the rate of convergence. To obtain the convergence plots, ten and twelve Guass quadrature 
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points are used to integrate the matrices and the errors, respectively. Nevertheless, only three to 

five Guass quadrature points are sufficient to integrate the matrices accurately. The Trapezoidal 

Rule is used to integrate all the moments and the M(x) matrices. 

The exact solution of u,x and the SPH Galerkin approximation using a Gaussian window, 

81 nodes (Ax = 0.075), a = Ax/(0. IVTF) , and AX/(0.5VTF) is depicted in Figure 3. It shows the 

SPH solution depends very much on the dilation parameter (or the standard deviation). As a matter 

of fact, for a given Ax, the larger the a (the larger window), the better the gradient is at the center. 

However, both choices of a give bad approximations of the gradient of u at the boundaries. This 

confirms that SPH interpolation functions do not work well with boundaries. 

The L2 and HI norms plots for the spline window function are in Figures 4 and 5, 

respectively. As can be seen in Figures 4b and 4d, and Figures 5b and 5d, Eq.(6.2) works better 

than Eq.(6.6) when a is large (i.e., j is large). Similar conclusions can also be drawn from Figures 

4a and 4c, and Figures 5a and 5c. One interesting observation is that the L2 and HI convergence 

rates (see Figures 4c and 5c) can be as high as 5.7 and 3.9, respectively. This confirms our 

analysis in Section 6. 

Similarly, the L2 and HI convergence rates plots shown in Figures 6 and 7 are produced 

using the Gaussian window function. The standard deviation and the dilation parameter are chosen 

such that: 

A^=_L       and       a = 2(j+a5)a (7.4) 

As predicted in Section 6, the two formulas for the derivatives give virtually identical results. It is 

interesting to point out that the L2 and HI convergence rates can go as high as 15.92, and 14.91, 
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respectively. Finally, in Table 1, the peak values of u,x are compared with the standard linear finite 

element method (FEM) and the exact solution. The RKPM is able to capture the high resolution of 

the steep localized gradient using a flexible space-wave-number Gaussian window function. 

8.   Conclusions 

In this paper, a review of the mesh or grid free interpolation functions is presented. The 

dilation and translation of a window function, the integral window transform, and the SPH 

interpolation kernel functions are reviewed. By understanding the merits and deficiency of the 

SPH, MLSM, DEM, and EFGM methods, a new continuous reproducing kernel particle 

interpolation kernel function is derived in terms of a flexible time-frequency or a space-wave 

number localized window function. Comparing to the SPH interpolation function, a continuous 

correction function to the SPH methods, which is composed of the various moments of the 

window function, is identified. 

The effect of the dilation parameter and the stability condition of this new discretized 

reproducing kernel particle interpolation function are discussed. The convergence rate of this class 

of RKPM interpolation functions using a Galerkin method is shown to be at least one order higher 

that that of the window function when the dilation parameter is large. Since the correction function 

and the window function can be chosen to be smooth, the solution as well as its derivatives are 

continuous throughout the entire domain of interest, unlike the usual finite element methods. The 

numerical experiments confirm the theoretical analysis presented in this paper. 
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Reproducing Kernel Particle Methods (GAUSSIAN) FEM EXACT 

1=0.5 j-1.0 j=1.5 1=2.0 ,1=2-5 j=3.0 

Ax=.300 3.5100 3.8315 4.6672 5.3217 5.4837 5.1865 3.3168 9.9923 

Ax». 15 6.3599 6.7798 7.6968 8.3095 8.5252 8.5419 6.0343 9.9980 

AX-.075 8.7556 9.0684 9.6081 9.8416 9.8864 9.9010 8.4687 9.9995 

AX-.0375 9.6788 9.7992 9.9605 9.9984 9.9995. 9.9996 9.5562 9.9998 

Ax-0.005 9.8580 9.9155 9.9861 9.9998 9.9999 9.9999 9.7967 9.9999 

Table 1. Comparison of derivative peak values among RKPM, FEM, and exact solution. 
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Abstract 

This analysis explores a Reproducing Kernel Particle Methods which incorporates several 
inviting features. The emphasis is away from classical mesh generated elements in favor of a 
mesh free system which only requires a set of nodes or particles in space. Using a Gaussian 
distribution, flexible window functions are implemented to provide refinement in the solution 
process. It also creates the ability to analyze a specific frequency range in dynamic problems 
reducing the computer time required. This advantage is achieved through an increase in the 
critical time step when the frequency range is low and a large window is used. The stability of 
the window function is investigated to provide insight on Reproducing Kernel Particle Methods. 
Furthermore, there are no explicit elements in the formulation, allowing the derivatives to also be 
continuous, or C°°. The analytic theory is confirmed through numerical experiments by 
performing reconstructions and solving an elastic-dynamic one dimensional problem. 

1. Introduction 

There is always a drive to find new, more advantageous ways to analyze problems using 
numerical methods. Typical finite elements use linear or quadratic shape functions to define the 
response within each element. For large deformation or high frequency problems, the elements 
must be very small to accurately predict the characteristic response. To avoid these problems, the 
Reproducing Kernel Particle Method (RKPM) advantages are exploited. 

There is no explicit mesh, so mesh creation time is saved. Since a mesh is not required, 
there are not any problems due to mesh entanglements allowing for large deformations and 
unrestrained movement of nodes. Not only is mesh creation time saved, but mesh recreation time 
is eliminated since to refine the problem in an area of interest one needs only to add points in the 
interesting region. The method for meshless finite elements based on the moving least square 
interpolant was used by Lancaster and Salkauskas (1981) for graphics, but has been given new 
life recently by Nayroles et al. (1992) with application to Diffuse Element Methods. This was 
followed by the Element Free Galerkin Method (EFGM) by Belytschko et al. (1993) that 
improved upon Nayroles method, including a correction to the derivative of the shape function. 
There has also been work performed on Smooth Particle Hydrodynamic (SPH) method. The SPH 
method, developed by Gingold and Monaghan (1977) and others, provides a meshfree 
environment but it has some difficulty creating accurate solutions on the boundaries or when a 
small number of particles is used [Monahgan (1988)]. The SPH method is similar in basic 
construction as the Gaussian Reproducing Kernel (GRK) to be presented here, but it lacks key 
features of the GRK. 

In this Gaussian Reproducing Kernel, the procedure used is based on continuous 
reproducing kernel particle construction. It can also be viewed as a continuous Least Square 
polynomial. However, by exploiting the moment definitions of the flexible window function, the 
reproducing kernel can be reduced to a simplified form so its properties can be investigated. 
Second, a localized flexible window function is incorporated by translating the function across 
the entire domain to reproduce the response. The window function, part of the shape function, is 
controlled by two parameters. Unlike the typical finite elements which only have one, the two 
parameters allow a greater problem solving ability. The flexible window allows for response 
frequencies or wave numbers to be selectively reproduced in the numerical approximation. 
Essential to the development of this method is an understanding of the stability limits of the 
flexible window function, as well as the critical time step in dynamic analyses. The 
aforementioned properties of the flexible window function and reproducing kernel create 
interesting characteristics for the kernel stability. Determining equations are developed for both 
of these stability limits. 

The reproducing kernel in this derivation turns out to be similar to a free Lagrangian 
particle method [Libersky (1990)] with one major difference-the development of a correction 



function. The primary motivation behind the correction function is to provide accurate solutions 
at the boundaries, but by careful integration techniques it is also possible for the correction 
function to provide stability to the solution. Free Lagrangian methods provide accurate solutions 
in the interior of the problem when the number of particles is large, but they do not provide a 
means to get an accurate solution near the boundary. This method incorporates correction 
functions that are relatively dormant in the interior and then provide correction on demand at the 
boundaries. 

Through the implementation of a window function and the knowledge of the Fourier 
transform, it is possible to develop a new type of shape function that can still be used in the usual 
Galerkin formulation. The derivative of the shape function, and thus reproducing kernel, can be 
obtained by direct differentiation. The development of the proposed shape function will be 
derived in detail later, but for now we describe its characteristics. The two parameters in the 
shape function provide the ability to translate and dilate the window function. Translation is 
required to move the window function around the domain since the window functions themselves 
have a compact support. The ability to translate replaces the need to define elements. The 
dilation parameter is used to provide refinement to the solution by reducing the number of 
calculations necessary to find a solution. The larger the dilation parameter, the smaller the 
frequency band is in the solution, and the larger the critical time step becomes in dynamic 
analyses. The refinement parameter transformation between the time and frequency domain (or 
space and wave number) controls the solution space. This introduces the ability to choose the 
size of the frequency or wave number range in the calculation. 

2.0 Development of the Reproducing Kernel 

Prior examples of reproducing kernels can be found. The most obvious may be its use in 
the Fourier Transform Analysis. The Fourier Transform motivates this analysis since this is 
where the concept to analyze specific frequency bands incorporated into this type of reproducing 
kernel analysis originates. 

The general form of a reproducing kernel is a class of functions that output the function 
itself when the integral over the domain is performed. The Fourier Transform is an excellent 
example of a reproducing kernel. Its intricacies are defined by the following set of equations 

where the Fourier Transform, f(co) , of a function, f(x), is defined by equation (2.0.1) and the 
inverse Fourier Transform is described by (2.0.2). 

■f /•(*)=      e-ixof{x)dx (2.0.1) 

In] /W = 2^1   ebcmÄx)da> (2-0.2) 

The bounds of the Transform can be easily described if the interesting spectrum contains a single 

frequency band. The bounds of the Fourier transform, f(co), are given in equation (2.0.3). 

i '  ' (2.0.3) 
/(fi>) = 0    if|fi>|>Q 3 



It is now possible to show that by performing the inverse transformation on the transformation to 
obtain the original function, the following solution is obtained where f(x) * 0 only in the 

domain x e [0, L]. 

«*>-£ 
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,ixco i e-'yvfWdy da 

f J-a 
eKx-y)af(y)dy da) 

I >to*-y)] 
n{x - y) 

f(y)dy 

Jo 

rl(2(x-y)] 
n(x - y) 

f(y)dy 
Jo 

y)f(y)dy (2.0.4) 

This representation of a reproducing kernel using a sine function is presented in Chui (1992) as 
well as Liu (1991). In Liu's analysis, the multiple scale analysis predicts a critical time step 
according to the following equation. 

At<22- 
Aco 

(2.0.5) 

This is used as a guideline since equation (2.0.5) determines the sampling rate to prevent aliasing 
using the reproducing kernel for a given frequency band, Dw. It is believed that after discretizing 
the continuous reproducing kernel, a similar form exists for the stability condition of the 
reproducing kernel in space (see section 4). 

2.1 Window Function Selection 

The ideal window function, F(x), is chosen such that the following two conditions are 
satisfied. Its integral over the domain, Rx, must be unity, and it must also be orthogonal. 

( 
1) 4>(x)dRx=\ (2.1.1) 



over the entire domain, rather the value is zero. Furthermore, most wavelets cannot capture 
constant or linear terms, so they cannot reproduce the simplest of functions very well. For these 
reasons wavelets are not considered here, but appealing characteristics are used from the wavelet 
analysis, Chui (1992). Splines are always an option since we can custom tailor them, but they 
produce unnecessary irregularities. The Gaussian function is not orthogonal, but the Gaussian 
function is used in this analysis because of its special properties. It is also important to keep in 
mind that the integration over the entire domain will be less than one on the boundaries. 

2.2 Development of Window Function 

Like the Fourier series, we want to be able to reconstruct any function or response u(x) by 
a series of window functions, F(x). Since F(x) is a localized function, it becomes necessary to 
translate the function to represent the entire response. This is performed by inserting the 
argument, s - x, in the function. Now the response is represented by the following integral. 

1 C ${s -x)dRx = \ (2.2.1) 

Where C is the correction function to be defined later in the construction, section 2.4. Or it could 
be an arbitrary constant as in free Lagrangian particle methods, Libersky (1990). 

To the window function argument, it is also necessary to add the dilation or refinement 
parameter, r. This is incorporated by dividing the window function argument by this refinement 
parameter. For notational purposes this definition is used for the window function: 

L#(l^X.)s0K 

I   C4>rx(x)dRx=\ 
JRX JRX 

C 0(x) dRx = 1 (2.2.2) 

An intuitive sense of the refinement parameter can be revealed by thinking of the parameter as 
the standard deviation, when the Gaussian distribution is used for the window function. The 
additional constant, r ~1, is the proper constant only for one dimension, Liu (1993). This constant 
scales the window function such that integral over the domain of the window equals one 
according to equation (2.2.2). It also is useful to derive the moment equations in section 2.4.1. 

I   c\*(^*)dRx = \ (2.2.3) 
JRX 

This completes the development of the window function to be used in this 1-D analysis. 

2.3 The Reconstruction Equation 

The concept that any function can be represented as a sum of linearly independent 
functions initiates the analysis, starting with the following definition. 

u(x) = P(x)d (2.3.1) 

Where P(x) = [Pj(x), P2W,... , Pn(x)] which is any number of linearly independent functions 



dimensional case, P(x) = [1, x], or for a quadratic one dimensional case, P(x) = [I, x, x2], etc. 
This Moving Least Square Interpolant type of reconstruction has been used by Nayroles (1992) 
and Belytschko et al. (1993), for the Element Free Galerkin Method. 

It is possible to solve for the unknown coefficients d by using the window function. The 
variable x is changed to s in equation (2.3.1), and then both sides are premultiplied by r PT(s) 
and the integral window transform is applied, Liu (1993]) (Note: ris the density and it is 
included here to make the transition to a larged deformation case easier.) The integral window 
transform multiplies both sides by the window function, Frx, and then integrates over the 
domain. 

I    pPT(s)u(s) &rsds=\ 
JRX JR. 

p PT(s) u(s) 0n ds =      pPT(s)P(s) 4>rsdsd (2.3.2) 

JR 

(Xx)=\   pPT(s)P(s) <Prxds (2.3.3) 

Equation (2.3.3) is used in the next section to complete the.construction of the correction 
function. (In that section the merits of C are discussed which shows why the term is sometimes 
referred to as the boundary correction function.) By making this definition for C, the solution for 
d can be substituted back into (2.3.1), obtaining the reconstruction equation in (2.3.5) which can 
also be written as one integral (2.3.6). 

d = c\x)       pPT(s)u(s) &nds (2.3.4) 1 
u(x) = P(x) C\x) I    p PT(s) u(s) <Prx ds (2.3.5) 

JRX 

u(x)=\   pP(x)Cl(x)PT(s)u(s)^d>(s-^-)ds (2.3.6) 

2.4 Correction Function 

Comparing the reconstruction equation in (2.3.6) to the SPH method establishes that the 

only difference is the appearance of the P(x) Cx(x) PT(s) term in the GRK method. This term is 
defined as the correction function, and its merits are analyzed in this section. For simplicity, the 
characteristics of this function are derived here in one dimension for linear polynomials P(x), but 
it can be shown to be valid for multiple dimensions as well, Liu (1993). Expanding equation 
(2.3.3) reveals the following. fi 



The inverse of this matrix will be computed along with the r, P(x) and PT(s) from the 
reconstruction formula in equation (2.3.6) to form the correction function. The entire term, 

P(x) Cl(x) PT(s), function simplifies to one number regardless of the number of terms used for 
P(x) and PT(s). 

2,4,1 Definition of Moments 

Inordertocomputeequation 
m0 = |    p & (z) dz 

/B(x) 

mi 

1 
= I    pz& 

JBM 

i 
(z)dz 

mu = 1    pz2 ®(z)dz 
IBif) 

(2.4.1.1) 

(2.4.1.2) 

(2.4.1.3) 

These moment equations are integrated over the region B(x), where B(x) is the region 
where the window function is non-zero. The calculation could be performed over the entire 
domain; however, there are many unnecessary calculations involved. In order to determine the 
support B(x) using the Gaussian function, a three standard deviation criterion can be enforced 
which insures the calculation of 99.7% of the total area. The moment equations have the 
following characteristics that provide for an accurate solution near the boundary, and lie 
relatively dormant in the interior. 

Interior Region Near Boundaries 
m0 = 1 <1 
mi = 0 *0 
mu = r2 *£ 

Although our initial indication from the correction function was that it vanished in the 
interior, it is now known that through careful integration of the function and its inverse the 
function can have a profound effect on the stability of the kernel, see figures 4 and 5. It is noted 
that the stabilization effect is much more pronounced in the data when the number of nodes is 
relatively small. 

2.4.2 Final Correction Function Form 

The solution to P(x) Cx{x) PT(s) can be written in the simplified form shown below 
through manipulation. Equation (2.4.1) can be inverted and substituted back into the 
reconstruction in equation (2.3.6) to reveal a continuous reproducing kernel for the function u. 
This is the final reconstruction equation to be used in this analysis! (Note that the correction term 
is simplified into the sum of two terms which are defined in the following manner.) 

C,= "Mi 
\m0m\\ - ml) 

C,= ™!  

(2.4.2.1) 

(2.4.2.2) 



u(x)= [ [d + C2(^-)]u(s)^(^-)ds (2.4.2.3) 
J*x 

This is the reconstruction equation which is the basic building block of this method, and 
its intricacies are revealed throughout this investigation. In order to proceed, it is necessary to 
define the discretized form in order to implement the reconstruction into the numeric solution 
process later. 

NP 
uHx) = X [CX + C2(^)]1 *P4^) u(xj) AMj (2.4.2.4) 

The discretized reconstruction equation can be written in a more familiar form to perform 
the numerical analysis. The shape function is defined as Nj in equation (2.4.2.6). 

NP 
uh(x) =£ Nj(x) uj (2.4.2.5) 

7=1 

NAx) =[ CiCx) + C2(x) (^)] H tf(^) 4M, (2.4.2.6) 

By analyzing the properties of the moments, in a continuous case the values for Ci and 
C2 are found to equal 1 and 0 respectively in the interior of a solution (assuming a sufficiently 
large number of particles), but definitely not equal to these values on the boundary. In this 
continuous integral case, the GRK will be identical to the SPH in the only in the interior. 
However, in the discretized form, the effect of the correction function will depend on the 
integration technique used as well as the number of particles in the integration domain. These 
variables will determine whether the correction function will only act on the boundaries or 
enhance the stability of the solution throughout the entire domain. 

2.5 Gaussian Reproducing Kernel Formulation 

It is important at this point to define the Gaussian function used in this analysis at this 
time. The refinement parameter is defined to contain a measure of normalization so that a given 
dilation of the window function always contains the same number of nodes, regardless of particle 
density. The refinement parameter can also be recognized as the standard deviation in the 
Gaussian equation. 

r-i#(2L^L) = -L-e-(x-s)2/r2 (2.5.1) 
v   r '    rfiz 

r = 2J Ax yX (2.5.2) 

Defining the Gaussian function in this way has the advantage of maintaining the same number of 
nodes for support while changing the distance between nodes, but the window and shape 
functions will change while changing nodal coordinates as well as the j refinement. The 
parameter j can be any real number but stability limits are set in section 5. In prior analyses, the 
following definition was found to be optimal fLiu (1993)], so it is chosen as a starting point for 
this analysis. 



2.6 Dynamic Frequency Analysis 

One of the interesting aspects of this method is its ability to preconceive the frequency 
range studied in the analysis. The frequency range captured can be determined by calculating the 
Fourier Transform of the window function. The window function's shape can be changed by the 
refinement parameter, r, allowing for adaptability in the solution process. Even though the 
Fourier Transform of the Gaussian function is also bell shaped, a cutoff frequency for the banded 
window has been found to be 1/r, Liu (1993). This method matches the area under the Gaussian 
function with the area of the straight box created by the cutoff frequency. The approximation, 1/r, 
for the highest accurately reconstructed frequency inside the window function enables an 
understanding of the limitations of this method in its straight form. 

Unfortunately for this undeveloped implementation of this method, the frequency 
window is always centered around w = 0. This means that we cannot selectively consider only 
higher frequency bands; it is necessary to capture all the frequencies below the highest frequency 
of interest. The ability of this method to capture high frequencies is also limited by the stability 
of the reproducing kernel itself. Although the number of nodes in any one window function is 
variable, there must be at least two nodes to remain stable. This is necessary in order to have 
connectivity between window functions. Without the variable connectivity being always greater 
that two nodes, the response cannot be translated along to the adjacent nodes. 

It is hoped that the Multiple Scale Methods by Liu (1991), can be included in subsequent 
analyses to shift the interested frequency bands away from the origin, removing the unnecessary 
calculation of the frequencies in between the interesting areas. Another approach is to use 
wavelets to capture the high frequency bands which is being investigated by Liu, Oberste- 
Brandenburg, and Chen. 

3.0 Given Function Reconstruction 

The reproducing kernel is used to perform given function reconstruction, or curve fitting, 
as a demonstration and evaluation technique before it is implemented into a mesh free Galerkin 
type formulation. This is done by using the discretized form of the reconstruction equation 
(2.3.6) to reproduce a known function. The Trapezoidal Rule is used here for integration despite 
the fact that it is known to under integrate. The dilation parameter has a profound effect on the 
shape function. Examples of shape functions for several values of the dilation parameter are 
shown below. Note that for j = -2 the window function approaches the ordinary finite element 
shape function. 
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Figure 1    Shape function dilations for j = -2,0, 1, 2 

Figure 2   Reconstruction of sin(cax) where co = 1 with 21 nodes, demonstrating the advantage 
of the GRK over SPH near the boundaries. 

10 



Figure 1 portrays that as the dilation parameter decreases in magnitude, the window 
function approaches a Dirac delta function. If it was possible to reproduce the Kronecker delta 
function, all the frequencies would be able to be reproduced. Unfortunately, without additional 
tools this is not easily possible without large number of particles, due to the stability limit of the 
window function itself requiring a minimum of two nodes in its support, section 5.1. 

This reconstruction develops confidence in the method and helps to illustrate the 
intricacies. Most notably, it will show the difference between the reproducing kernel method and 
SPH methods. The big difference is the effect of the correction function, which enables an 
accurate approximation throughout the entire domain of the response as well as an increased 
range of stable operation, especially for a small number of particles. The accuracy of the 
correction function can be analyzed using a simple reconstruction of a known function. 

It is readily seen in figure 2 that the SPH solution is not even able to reproduce a simple 
sinusoidal wave near the boundaries. 

In order to relate a feel for the performance of the dilation parameter, figures 3 and 4 
depict a sinusoidal reconstruction with and without the correction function. Figure 3, which does 
not contain the boundary correction function, is a measure of the SPH method. The instability of 
the SPH method proves that the GRK correction function is enhancing stability of the solution as 
well as correcting the reconstruction near the boundaries. 

Figure 3    {Left} Sin(x) reconstruction using the GRK, 21 Nodes. 
Figure 4    {Right}SPH reconstruction for sin(x) using 21 nodes. 
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Figure 5    {Left} Sin(x) reconstruction using the GRK, 201 Nodes. 
Figure 6   {Right} SPH reconstruction for sin(x) using 201 nodes. 

It is important to note that j = -2 was not plotted in figure 4 since the instability of SPH 
method would have required are much larger scale. This occurs because the SPH kernel does not 
satisfy the consistency condition for small number of nodes; however, for large numbers of 
nodes the SPH method performs adequately (figure 6). 

Knowing the behavior or the dilation parameter, namely the effect of the j parameter, our 
discussion is turned toward a brief look at the frequency content of the window function. By 
dilating the Gaussian function (figure 1), it is easily seen how the function changes shape with 
the parameter j. It is this dilation that enables the types of analyses discussed in section 2.6. 

A reconstruction is now performed on a sinusoidal wave that has been augmented to 
increase its frequency as well as dampen its amplitude. 

f(x)=sin(&{x + .6x2))e 0.1 x (3.0.1) 

The results in figure 7 clearly show the ability of the window function to capture more or less of 
the frequency content. The larger the values for the refinement parameter the more quickly the 
reconstruction attempt fails. 

j = >2 to 1 — 
 !....}.-2.,^. 

j  j = 3~~ 
; exact — 

.6 
time 

8 10 12 

Figure 7    The reconstruction of a sine wave with increasing frequency and damped oscillations 
for several values of j with 201 nodes. 

12 



4.0 Galerkin GRK Formulation 

The reproducing kernel can be implemented into a Galerkin formulation in a similar way 
as typical finite elements. The major difference in construction is the loop occurs over nodes 
instead of elements, but the formulation is almost identical beginning from die weak form of the 
momentum equation. The following variables are used: / is the traction, b is the body force, s is 
the stress tensor, and « denotes acceleration. 

JpSui'u,;dRx + I    SuijOij dRx = \    Sujbj dRx + \      5uittdrx (4.0.1) 
RX JRX JRX JdRx 

This paper analyzes a one dimensional bar with a step force applied at one end (figure 10). The 
element matrices are simple, included a lumped mass matrix, but it is important to keep in mind 
that the matrices have a variable connectivity depending on the number of nodes in the support of 
the window function, NEN. 

{meJ =|    peoNaNb 1 dR$\     a,b = 1  NEN (4.0.2) 

finl{x, a)e = {(ft')e) =1    <f Najc dRe
x)     a = 1  NEN (4.0.3) 

VRi 

..I 

'I 
fb(x, b)e = {(fba)

e) =|    Nab
e dRe

x\     fl= 1  NEN (4.0.4) 

fix, t)e = \{ftf) =   I Nat
e drx\     a = 1  NEN (4.0.5) 

\3dRxr^Rx ) 

It is also difficult to implement the boundary conditions since several shape functions can be 
present at the node dictating the necessary response. The natural boundary conditions are simply 
entered into the force vector; however, the essential boundary conditions are more difficult to 
satisfy. In this analysis the essential boundary condition is satisfied by substituting a sum on all 
the shape functions in place of the row in the stiffness matrix that corresponds to the constrained 
nodes. The shape function and its derivative are derived with the correction function in the next 
two sections. 

4.1 Properties of the Shape Functions 

Using the final form of the continuous reproducing kernel (found in section 2.4), it is 
quite easy to obtain the familiar form of a "Galerkin approximation. If the equation is now 
numerically integrated and terms are grouped to follow the standard technique, the shape 



NP 
uHx) = ^NÄx)uj (4.1.1) 

7=1 

Nr 
u(x) =2 [d + CJffJ-)] \ <*>(^) u(xj) AMj (4.1.2) 

7=1 

Nj(x)^Cl(x) + C2(x)(x^)}r^ 0(*^L)AMJ (4.1.3) 

The characteristics of this new shape function must be carefully analyzed to avoid 
erroneous results. The most apparent difference is that the shape function does not meet the 
Kronecker delta identity since each node is influenced by several shape functions. However, the 
shape function will meet the consistency condition. This can be proven by the following equation 
(4.1.4) where the reconstruction equation can be substituted to reproduce itself. It is also pointed 
out that the integration method used to calculate C and C -1 must be similar in order to cancel 
and meet this condition. It is also proposed by Liu[93] that by using the Trapezoidal Rule to 
integrate the moments defined within C, the stability of the kernel is increased. 

P(x) =      p P(x) C\x)PT(s) <P(^-) P(s) ds i 
= P(x)Cl(x)\   p PT(s)P(s)L &(S^X_)ds 

jRr 

= P(x) (4.1.4) 

The shape functions will meet the following isoparametric shape function properties. 

NP NP 
X Nj(x) = 1       andX NJ(X)XJ = x (4.1.5) 
7=1 7=1 

4.2 Shape Function Derivatives 

Unlike the Moving Least Square Methods, Diffuse Element Methods, and Element Free 
Galerkin Methods, the derivative of the GRK shape function can simply be obtained by 
differentiation. It is necessary to consider the correction terms as well as the window function 
itself to obtain the derivative of the shape function. 

(4.Z.1) 

C i(x) + C 2(x) (^)) ^ '(^) AMj 



r•   _ m\ mi ( m0 mil + mp mn - 2m\ mx ) ,^ 2 4) 

mo mil-m? (>"o ^n - >"? )2 

Now it is necessary to calculate the derivatives of the moments which can be combined with the 
derivative of the Gaussian window function to reveal the final derivative in equation (4.2.8). 

m'0(x)=(    ^(^L)e(^rfds (4.2.5) 

\   -J-{2^Y - l}e-m ds (4.2.6, 
jB(x)r    1K 

m'iW 
IBM 

m'nW=f ^(17i)[(1ti^l]e',i^,2* (4-2-7) 
JB(x) 

NJAX) = ( C'i(x) + C2(x)(^) + ^ j r-1 tf(^)4My 

(4.2.8) 

5.0 Stability Analysis 

It is interesting to note that the stability of this type of analysis is two-fold. First there is 
the stability of the Reproducing Kernel itself, and then there is the stability of the time 
integration method. In this analysis an Explicit Newmark Beta Predictor/Corrector Type 
algorithm is implemented (Hughes and Liu [78]). 

5.1 Reproducing Kernel Stability 

The stability of the kernel is mainly a function of the number of nodes encompassed by 
the Gaussian window function. (Theoretically the number of nodes covered is the number of 
nodes in the analysis, since the function has an infinite domain.) The number of significant nodes 
in a shape function is controlled by the refinement parameter, r. From the aforementioned 
definitions for the shape of the window function the following equation can be derived to 
estimate the number of nodes under any given window function. If the radius of a given window 
function, Dxc, is defined as the distance from the center to the edge of the windows significant 
support. 

Then a ratio can be defined to relate the height of the Gaussian function at the peak to the 
small value where it is safely approximated to be zero. 
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Ax, c = Ax[*^) (5.1.2) 

Using these definitions it is possible to derive the kernel stability stated in equation (5.1.3) where 
the variables are as follows. 

n = the number of nodes covered by the Gaussian function 
j = the parameter controlling the dilation 
R = the ratio between the value at a node in the tails of the function to the 

significance of the peak of the Gaussian function. 

n=l + Jz2ME*2J + l i Tt 
(5.1.3) 

Theoretically the number of nodes should be at least two in order to maintain the variable 
connectivity window arrays. This is verified analytically through solutions that were run with 
values as low as -2.5 for j when the entire domain is used as the support of the Gaussian function, 
and as low as -2.2 when the support of the Gaussian function is limited. Solutions for the number 
of nodes in the support of a window function for various height ratios are shown in the following 

.1 n(2s) n (3s) 
-2.2 1.69 2.04 
-2 1.80 2.20 
-1 2.60 3.39 
0 4.19 5.79 
1 7.38 10.57 
2 13.77 20.15 
3 26.53 39.30 

NOTE: 2s and 3s corresponds to R = 1.83e-2 and R = 1.23e-4 respectively. 

5.2 Critical Time Step 

In order to perform analyses on the structural dynamic class of problems, it is very 
important to understand the relationship between this new shape function and the critical time 
step. This is determined here by performing the standard eigenvalue analysis, solving the 
determinant of [K -1M]. This calculation only needs to be performed for the element case since 
it is known that the maximum element frequency determines the upper bound for the critical time 
step. The critical time step was found to depend on several parameters including the dilation 
parameter and the boundary correction function. 

Using symbolic manipulation this determinant was solved for GRK shape functions 
containing several different numbers of nodes. By evaluating the determinant it was found that 
there is only one non-zero eigenvalue, regardless of the number of nodes in the support of the 
shape function. The result was able to be simplified for equally spaced nodes to equation (5.2.3) 
by defining the following terms. 

D(x,s)= Ci{x) + C2(x)(£j£-) (5.2.1) 

D'(x,s) = C\(x) + C2(x)(^-) + ^- (5.2.2) 
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.        . NP 

Xrnox =  p-f  r2  dx 2 [D,- #„■ + D\ tfj 'Ax, (5.2.3) 

where 
dx is the length between nodes (density = 1) 
Dxj is the integration weight using Trapezoidal Rule 
NP is the number of nodes in the shape function's support 

Finally, the critical time step is shown for a central difference time integration scheme in 
equation (5.2.4). By substituting the maximum eigenvalue corresponding to the maximum 
frequency, the critical time step can be calculated. 

At< 
0)ma 

(5.2.4) 

At< L(&)dx 
NP 
^iDiG'xi+D'i&^Axi 

1/2 
(5.2.5) 

Results for the critical time step were calculated using equation (5.2.5). The results are 
shown in the following table for 21 nodes. This can be compared to the standard finite element 

At <llcwhich is 2.455 x 10"5 s. 

J At (Analytic) At (Numeric) 
-1 2.456 x 10-5 2.432 x 10-5 

0 3.473 x 10-5 3.223 x 10-5 
1 4.912 x 10-5 5.651 x IQ"5 

The discretized form of the critical time step was perceived to have an simple translation 
to the continuous form. The discretized form contains the derivative of the reproducing kernel 
squared. Then the largest eigenvalue and thus the critical time step is as follows: 

A =£f-) r2 (   [D(X,y) V^) + D\x,y) 4>[^-f dy 

x'ffl*L k,x(x>y)2 dy 

where k(x,y) is the reproducing kernel defined by equation (5.2.8). 

k{x,y) = D(?c,y)4>[Zj2-) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

6.0 Numerical Experiments 17 



steel) E = 3 x 107 psi, r = 7.24 x 10"4 slugs/in3, and A = 1 in2. For the elastic - plastic problen, 
yield stress ay = 30000 psi, Ep = E/4 and FQ = 5000 lb are employed. 

2 
■*- x 

Fo = 1000 lb 
Length = 100"- 

Figure 8    1-D linear elastic rod with step input. 

The solution for the linear elastic deforming rod was obtained with the GRK and a 
Explicit Newmark-Beta predictor/corrector algorithm. There results coincided accurately with 
the closed form solution. 

Time (s) 

Figure 9   Displacement for node 11 (center node) showing a range for the dilation parameter 
and the exact solution. 

In order to visualize the effect of the dilation parameter in this application, the shape 
function are plotted in figure 10 along with the nodes which depicts the number of significant 
nodes providing the support of each shape function in each dilation (Technically every node is in 
the support of every Gaussian shape function.) This is shown directly above the plot for velocity 
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versus time which incorporated the shape functions in figure 10 to obtain this response (figure 
11). 

Figure 10    Shape functions used to calculate the wave propagation, with nodal support. 
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Figure 11    Velocity for node 11 (center node) showing a range for the dilation parameter and 
the exact solution. 

For completeness the stress is also plotted, figure 14. 
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Figure 12   The axial stress is plotted for the middle node versus time. 
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Figure 13   Axial stress at the tenth time step as a function of position. 
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Figure 14    GRK run with j = 0 and a time step of 3.32 x 10"^ which is 1.35 times the FEM 

critical step. 
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Figure 15     Elastic-plastic responses at the midpoint of the rod. 

Although the solution in figure 14 is not as accurate as the finite element solution, it is 
interesting to note that the problem was run at 1.35 times the FEM critical time step. 
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7.0 Conclusions 

The theory for a Gaussian Reproducing Kernel is presented here with numerical 
experiments performed to confirm the derived equations. The GRK method is proven here to 
possess the ability to solve a dynamic problem. Results are also presented to verify the 
supposition that the correction function can provide both boundary correction and reproducing 
kernel stability. Furthermore the implementation of the flexible window function as frequency 
control has been initiated. 

The results from the numerical experiments not only verified the theory presented, but it 
produced several encouraging results. Among the most important is the ability of the Gaussian 
Reproducing Kernel to perform at time steps larger than the critical time step for standard finite 
elements. It is also important that results for the correction function proved that it provided 
boundary correction as well as enhancing the stability of the reconstruction equation. The 
increased stability of the reconstruction equation enables the ability to use fewer particles in 
analyses. The correction function increased the stable range of the dilation parameter over the 
SPH method. 

The advantageous characteristics of the GRK were not able to produce superior results 
over the standard finite element method due to the finite element's inherent ability to solve this 
elastic-dynamic problem exactly when run at the critical time step. Nonetheless, the theory has 
been derived and it is logical that characteristics such as continuous derivatives, flexible window 
filtering, and the kernel's increased stability, and increased critical time step ability are valuable 
tools that can be exploited in further experiments. 
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