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Eclipsing Z-scan measurement of A/104 wave-front distortion 
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We introduce a simple modification to the Z-scan technique that results in a sensitivity enhancement that permits 
measurement of nonlinearly induced wave-front distortion of =»A/10\ This sensitivity was achieved with 10-Hz 
repetition-rate pulsed laser sources. Sensitivity to no"'mear absorption is also enhanced by a factor of =»3. This 
method permits characterization of nonlinear thin films without the need for waveguiding. 

Since the introduction of the Z scan,1 a sensitive 
single-beam technique for measuring nonlinear 
refraction (NLR), several variations have been 
introduced to enhance the technique. These include 
measurements in the presence of nonlinear 
absorption2 (NLA), the two-color Z scan for the 
study of nondegenerate nonlinearities,3,4 the time- 
resolved Z scan,4-5 and measurements of the 
anisotropy of NLR.6 Most of these experiments have 
been performed with low-repetition-rate (=10-Hz) 
picosecond or nanosecond laser systems. Even with 
these low data-acquisition rates, the technique has 
demonstrated a sensitivity to wave-front distortion 
of A/300 for a signal-to-noise ratio (S/N) of unity. 
It has been shown theoretically that a threefold 
enhancement of the Z scan's sensitivity to NLR can 
be achieved by the use of a lens between the sample 
and the aperture,7 but this has yet to be realized 
experimentally. Recently it was demonstrated that 
the use of a top-hat beam profile in the Z scan 
results in an increase in sensitivity to NLR of 
=2.5.8 Here we introduce a simple variation of 
the Z-scan technique that provides greater than an 
order-of-magnitude enhancement of the S/N. This 
modification involves replacing the far-field aperture 
used in the standard Z scan with an obscuration disk 
that blocks most of the beam. The resulting pattern 
of light that passes around the edge of the disk, shown 
in the inset of Fig. 1, appears as a thin halo of light, 
reminiscent of a solar eclipse; hence this technique 
is named the eclipsing Z scan (EZ scan). This 
modification of the Z scan, accompanied by methods 
to compensate for fluctuations of the beam spatial 
profile, results in a sensitivity to induced wave-front 
distortion of =A/104 with a S/N of unity from a 10-Hz 
repetition-rate pulsed laser. Significantly higher 
sensitivities should be possible for more stable or 
higher-repetition-rate laser systems. 

The EZ-scan experimental setup is shown in Fig. 1, 
where the aperture of the Z scan has been replaced by 
an opaque disk in the far field. As with the Z scan, 
a thin nonlinear sample is scanned along the Z axis 
of a focused Gaussian beam. In the case of a self- 
focusing nonlinearity (n2 > 0, where n = n0 + n27), 
the sample will behave as a positive lens near the 
focus. Thus, for the sample positioned prior to focus, 
the far-field beam divergence is increased, and more 

light will pass by the disk in the far field. Note 
that this is exactly opposite the decreased trans- 
mittance of the aperture for a Z scan. With the 
sample positioned after the focal plane, the effect of 
the sample is to collimate the beam, and the disk 
blocks more of the light. Consequently, in the EZ 
scan a self-focusing medium results in an increase in 
transmittance (peak), followed by a decrease (valley) 
as the sample is scanned from in front of to behind 
the focus. For self-defocusing media, the positions of 
the valley and peak are reversed. 

For a thin sample9 this behavior can be mod- 
eled by the separated equations for irradiance, I, 
and induced phase shift, A<£: dl/iz' = —al and 
dAö/dz' = kn-iliz'), where a is the linear absorption 
coefficient, k = 2-jr/A, and A is the wavelength in 
vacuum, z' is the depth within the sample, as dis- 
tinct from Z, the sample position with respect to the 
beam waist. In our modeling we assume the incident 
beam to be Gaussian. The integrated phase shift for 
a sample of length L follows the radial variation of the 

r\roo >n , /^rr*oi ' nogc nn/n 

Fig. 1. Experimental arrangement for the EZ scan. Dl 
is the input energy monitor, and D3 measures the energy 
transmitted through the sample and past the disk. D2 
monitors the energy transmitted through the reference 
arm, which is identical to the signal arm with no sample. 
The measured quantity is the ratio D3/D2. Inset: CCD 
image of a picosecond ND:YAG laser beam after it passes 
a 99% obscuration disk. 
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Fig. 2. EZ scan of a 1.5-mm-thick BK-7 sample per- 
formed with a frequency-doubled picosecond Nd:YAG 
laser. The solid curve is a fit to the data, indicating 
a peak wave-front distortion of A/2200 with a S/N of 
approximately 5. 

incident irradiance, I oc l^l2, for each sample position 
Z. Hence A<f>{r,Z,t) = A$0(t)\E(r,Z,t)/E(0,0,t)\2, 
where A$o00 = A 0(0,0, t) = kn2I(0,0, t)L^ is the on- 
axis phase shift at focus and L^ = [1 - exp(-aL)]/a. 
The electric field inside the medium at the exit sur- 
face is given by E'{r,Z,t) = E(r,Z,t)exp[-aL/2 + 
iA<b{r,Z, t)], and the irradiance distribution at the 
plane of the disk (or aperture) can be found through 
a diffraction calculation or by the Gaussian decompo- 
sition method of Weaire et al.9 

Figure 2 shows an EZ scan of a 1.5-mm-thick sam- 
ple of BK-7 glass in which the normalized trans- 
mittance change, AT, is plotted as a function of Z. 
The laser source is a hybridly mode-locked and Q- 
switched frequency-doubled Nd:YAG laser emitting 
single 28-ps (FWHM) pulses at 532 nm with the input 
energy purposely reduced to less than 50 nJ to show 
the system noise. The beam was focused to a spot 
size of 14 p.m. (half-width at 1/e2 intensity), resulting 
in a peak irradiance of 0.52 GW/cm2. Small beam- 
shape or beam-pointing fluctuations cause significant 
noise in the signal as measured by the ratio of ener- 
gies detected by D3 and Dl (see Fig. 1). This led to 
the introduction of the reference arm shown iri Fig. 1 
(first proposed by Ma et al. for the Z scan4), which 
propagates a portion of the beam along an identical 
optical path except without a sample. By taking 
the ratio of energies D3 and D2, we can increase 
the S/N by a factor of 3-5. In our system, with 
the 100-shot average per data point shown in Fig. 2, 
the rms noise can be reduced to ±0.1% with this 
method. The solid curve fitted to the data in Fig. 2 
gives A$0 = 2*7/2200 for S/N = 5. Thus with a S/N 
of unity we can resolve A<J>0 < 2TT/10*, correspond- 
ing to a physical displacement of the wave front of 
< A/104 or 0.05 nm. Using the same system with 
the reference arm, but performing a Z scan, we find 
that the sensitivity is limited to = A/700. The in- 
creased sensitivity of the EZ scan is due to the larger 
fractional change in irradiance in the wings of the 
beam that are detected in an EZ scan compared with 
that near the center, as detected in a Z scan.   We 

conservatively define S/N = ATpv/4o-, where ATpv is 
the difference between normalized peak and valley 
transmittances,1 and a is the standard deviation of 
the data in the absence of a nonlinearity. 

For the Z scan,1 ATpy is almost linearly related to 
the light-induced phase shift at the focus, A<t>0, 

ATpv - 0.406(1 - SJ^lA^ol, (1) 

where S is the aperture transmittance. This rela- 
tionship holds to within ±3% for phase shifts A4>0 < 
TV. With equal disk and aperture sizes, the corre- 
sponding absolute changes in transmitted power or 
energy are equal and opposite. However, the frac- 
tional transmittance changes may differ greatly for 
aperture and disk since much less light is trans- 
mitted with the disk for S near unity. In Fig. 3 
we show the calculated ATpv versus the disk radius 
and versus the aperture radius a for the EZ scan 
and the Z scan, respectively, for A<50 = 0.1. The 
fraction of light blocked by the disk is simply S, 
the aperture transmittance in a Z scan, which is 
S = 1 - exp(-2a2/">„2), where wa is the beam radius 
at the disk plane in the linear regime.1,2 We see from 
Fig. 3 that for large enhancement to be obtained, S 
must be within a few percent of unity. In practice 
this limits the maximum sensitivity enhancement as 
the energy reaching the detector becomes too small 
to detect. For our system S = 0.99, as used in the 
inset in Fig. 1, gave good enhancement while still 
giving sufficient energy for easy detection. Note that 
for S = 0.5, corresponding to a = wc-j2 In 2, the 
sensitivities of the Z scan and EZ scan are identical, 
as expected. 

For a large disk, 0.995 > 5 > 0.98 (the useful range 
for this technique), and a small nonlinear phase 
shift A<$0 < 0.2, we find a similar empirical linear 
relationship between ATpv and A<J>0 for the EZ scan: 

ATpv = 0.68(1 - 5)-°'44|AcD0|) (2) 

which is accurate to within ±3%.   For the above 
range of S the spacing between the peak and valley, 

0.5 

0.4 L 

4     0.3 

0.2  ■ 

0.0 
0.0 0.4 0.8 1., 

Aperture or disk radius 

Fig. 3. Calculated ATpv for an EZ scan (solid curve) and 
a Z scan (dashed curve) versus the normalized aperture 
or disk radius, respectively, for a peak on-axis phase shift 
of |A<3>0| = 0.1. 
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Fig. 4. Experimental comparison of an EZ scan (filled 
circles) and a Z scan (open circles) of toluene under iden- 
tical conditions. Note that the Z-scan data are plotted on 
a 10 X expanded scale for clarity. The laser source is a 
frequency-doubled nanosecond Nd:YAG laser. The solid 
and dashed curves are the result of calculations with a 
common A<J>0 obtained from a best fit to the Z scan only. 

AZpV, is empirically found to be given by AZpv = 
0.9Z0-1.0Z0 which grows to the Z-scan value of 
= 1.7Z0 as S — 0. As described in Ref. 1, the 
linearity of relations (1) and (2) allows for simple 
analysis of pulsed laser experiments, as we may 
simply integrate over the laser pulse shape to get the 
normalized energy transmittance change. Thus, for 
pulsed sources, AO0 in relation (2) should be replaced 
by its time-averaged value.1-2 

Figure 4 shows an EZ scan and a Z scan per- 
formed under identical conditions on a 1-mm-thick 
cuvette filled with toluene. Note that the vertical 
scale for the Z scan has been expanded by a factor 
of 10 for clarity. Both scans were performed with 
the second harmonic of a single-longitudinal-mode 
Q -switched Nd:YAG laser operating in the TEMoo 
mode. The A = 0.532 run, 4.7-ns (FWHM) pulse was. 
focused to a beam radius of 22 /im (half-width at 
1/e2 intensity).- In each case the incident energy 
was 62 /J.J, corresponding to a peak irradiance at the 
beam waist of 1.68 GW/cm2. The EZ scan used a 
disk of 5 = 0.99, while for the Z scan an aperture of 
S = 0.40 was used. The solid and dashed curves are 
fits performed with the thin sample approximation, in 
each case using the same A<E>0 as determined from the 
Z scan. Experimentally, we observe a factor-of-13 
increase in sensitivity for the EZ scan, compared with 
a predicted improvement of 15. This difference may 
be due to deviations from a perfect Gaussian beam 
profile or slight misalignment of the disk. Errors 
that are due to deviations from 5 = 0.99 are small, as 
the estimated error in (1 - S) is <±5%, which from 
relation (2) results in an error for A<J>0 of —±2%. 

As with the Z scan, one may also study samples 
exhibiting both NLR and NLA by performing succes- 
sive EZ scans with and without the disk. Removing 
the disk gives an open-aperture Z scan that is sen- 
sitive only to nonlinear losses.2 Interestingly, the 
presence of a far-field obscuration disk also results 

in an increase in sensitivity to NLA. For example, 
in the case of reverse saturable absorption or two- 
photon absorption the center portion of the beam is 
more strongly absorbed than the wings, thereby spa- 
tially broadening the beam as it leaves the sample. 
Propagation transforms this near-field broadening 
into far-field narrowing, causing more of the beam to 
be blocked by the disk and enhancing the fractional 
change in transmittance seen by the detector. For 
similar reasons, an obscuration disk also enhances 
the effect of saturable absorption. 

In summary, we have demonstrated that the EZ 
scan, in combination with beam fluctuation com- 
pensation, provides a highly sensitive method for 
measuring small nonlinearly induced phase shifts, 
while retaining the ability to discriminate between 
NLR and NLA, and for determining the sign of each 
of these effects. The method is particularly relevant 
to the current problem of determining nonresonant 
nonlinearities in thin films without the need for 
waveguide coupling. For films of thickness d = A, 
a sensitivity to wave-front distortion of A/104 corre- 
sponds to a sensitivity to index changes of An = 10"4. 

As we observed from Fig. 4, the enhancement in 
sensitivity comes at the expense of a reduction in 
accuracy caused, we believe, be deviations from a 
Gaussian irradiance distribution. We therefore rec- 
ommend use of this technique with a known reference 
to calibrate the system (for our system, without such 
calibration, the absolute accuracy was within 18%). 
The Z scan is still the method of choice unless the 
S/N is a problem. 
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We introduce a temporal delay in one beam of the two-color Z-scan apparatus, wmch measures nondegenerate 
We introduce a «^P°™    ntmde(renerate nonlinear refraction.    This technique allows us to time resolve 

toCresence ofa" s^ong excitation at frequency „..    For example, in semiconductor, we specificaHy measure 
JÄSS^tanicNondegenerate nonlinear refraction and nondegenerate two-photon absorption, as well 

l;£&^^££*~**te »»**» rd fbsorp^r Äi*"- We    ^ technique on ZnSe, ZnS, and CS2> using picosecond pulses at 1.06 and 0.532 ^ 
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1.    INTRODUCTION 
Interpretations of measurements of optical nonlinearities 
of materials are often complicated by the presence or the 
competition of two or more nonlinear mechanisms. In 
many cases the experimental technique cannot distin- 
guish between these different nonlinearities. For exam- 
ple, the degenerate four-wave mixing (DFWM) signal for 
a cubic nonlinearity is proportional to |*(3,l2, where xl3) is 
the third-order susceptibility.1 Index changes {Re[*l3)]} 
and losses {Imf*13']} both contribute to the DFWM 
signal; therefore they are indistinguishable in DFWM ex- 
periments. A further complication can arise from contri- 
butions of ultrafast and cumulative nonlinearities. For 
example, in semiconductors we have observed the simul- 
taneous presence of the bound electronic optical Kerr 
effect (ultrafast n2) and two-photon absorption (2PA), 
along with free-carrier absorption and refraction, which 
are cumulative for decay times longer than the pulse 
width.2-3 In this paper we present a technique for un- 
raveling the «various contributions to the nonlinear re- 
sponse of a material. We demonstrate this technique, 
which is a time-resolved two-color Z scan,0 for separat- 
ing the nonlinearities occurring in ZnSe, ZnS, and CS2 

when these materials are irradiated by picosecond pulses 

at 1.06 and 0.532 pm. 
The two-color Z scan0 measures the nondegenerate 

nonlinear response of a material at the probe frequency 
wp that is due to the presence of an excitation beam 
at frequency <u«. This method is capable of separating 
the refractive and the absorptive nonlinear contributions 
but cannot distinguish between ultrafast and cumulative 
nonlinearities. The introduction of a temporal delay into 
the two-color Z-scan apparatus permits separation of the 
nonlinearities having a different temporal response. 

We first describe the experimental arrangement and 
its calibration. An example of time-resolved data for CS2 

displaying only nonlinear refraction is given, followed by 
results on ZnSe and ZnS. The semiconductor data give 
values for the nondegenerate Kerr effect n2(<»p; at,), in- 

cluding the sign and the magnitude, the nondegenerate 
2PA coefficient ß{mp; at), and the free-carrier refractive 
coefficient crr(a)p) and absorptive cross section c-0(<up). 

2.    EXPERIMENTAL ARRANGEMENT 
The experimental arrangement, shown in Fig. 1, is an 
extension of the Z-scan arrangement of Refs. 6 and 7. 
The extracted 43-ps (FWHM) pulse from a Q-switched 
and mode-locked Nd:YAG laser (A = 1.06 /an) is sepa- 
rated into two beams by a variable beam splitter that 
controls the irradiance ratio between them. One of the 
beams passes through a variable time-delay stage while 
the second goes through a second-harmonic-generating 
crystal to produce 0.532-Mm light The polarization of 
the beams is separately controDed by half-wave plates. 
The two beams are recombined by a dichroic beam split- 
ter and are focused with a nearly achromatic lens of fo- 
cal length f = 15 cm onto the sample. A second dichroic 
beam splitter then separates the two beams for detection 
after passing through apertures of transmittance S. 

In this time-resolved two-color Z-scan experimental 
setup the sample position Z, with respect to the probe- 
beam'waist and the time delay td between the excitation 
and the probe beams, is independently varied according 
to the experiment, as described below. The measured 
quantity is the normalized transmittance as a function of 
Z (Z scan) or as a function of td (temporal scan). Analo- 
gous to the usual single-wavelength Z scan, an open- 
aperture (S= 1, i.e, no aperture) Z scan at a fixed delay 
is sensitive only to the induced changes in absorption, 
whereas a closed-aperture (i.e, partially closed aperture) 
Z scan displays the induced refractive changes as well. 
We use an aperture of S = 0.4 for all closed-aperture 
data given in this paper. In the absence of nonlinear ab- 
sorption, the change in transmittance between the peak 
(transmittance maximum) and the valley (transmittance 
minimum) in a closed-aperture Z scan, defined as AT,,», 
is linearly proportional to the induced phase distortion, 

0740-3224/94/061009-09$06.00       ©1994 Optical Society of America 
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Fig. 1.   Time-resolved excite-probe two-color Z-scan experimental apparatus.    D1-D4, detectors.    SHG, second-harmonic-generating 

crystal. 

which in turn is proportional to the nondegenerate non- 
linear refractive index. When nonlinear absorption is 
also present, as discussed in Ref. 7, the division of closed- 
aperture data by open-aperture data again gives the non- 
linear refraction, as long as the nonlinear absorption is 
not too large (the same criterion as is discussed m Ref. 7 
is valid here). We refer to the results of this division as 
a divided Z scan. If we measure the transmittance as a 
function of time delay for a fixed sample position, we can 
separately determine the dynamics of the nonlinear ab- 
sorption (open aperture) and refraction (closed aperture). 
If the time-delay stage is fixed at long time delays such 
that there is no overlap between probe and excitation, the 
Z scan is sensitive only to long-lived nonlinearities, which 
in semiconductors provides an independent measurement 
of free-carrier absorption and refraction, separated from 
the bound electronic nonlinearities. 

To determine the temporal response of the nonlinear 
absorption and refraction, we use the following procedure: 
Zero temporal delay is first determined in the manner 
discussed toward the end of this section. We then place 
the sample at the minimum transmittance position of an 
open-aperture Z scan (i.e., at the position of the waist). 
The temporal delay is then scanned to measure the nor- 
malized transmittance as a function of time delay td. We 
refer to this open-aperture transmittance as Top(.td), and 
it gives the nonlinear absorption as a function of time. 
Measurement of the nonlinear refraction is somewhat 
more complicated but is based on the linear relation be- 
tween ATpv and the phase distortion. 

For materials showing no degenerate or nondegener- 
ate nonlinear absorption, a closed-aperture Z scan at a 
fixed time delay is used to determine the transmittance 
peak and valley Z positions. With the sample fixed at 
the position of the peak, we scan the time-delay stage. 
This procedure is repeated with the sample placed at 
the Z position of the valley. The difference between 
these two sets of data is ATpv(td), which is directly pro- 
portional to the nonlinear-induced phase change. For 
the time delay fixed at td =0, this phase change is 
proportional to the nondegenerate nonlinear refractive 

index n2(.top; oie).   If both nonlinear absorption and non- 
degenerate nonlinear refraction are present, both open- 
and closed-aperture temporal scans must be performed 
at the position of the peak and the valley for the divided 
Z scan.   The temporal-scan results are then divided to 
obtain ATfMd) (one can perform these scans simultane- 
ously by using a beam splitter in the transmitted probe 
beam and the two detectors, one without and one with an 
aperture).   As long as the nondegenerate nonlinear ab- 
sorption remains small, n2(.ajp; ut) remains proportional 
to AT v.7    In general any two frequencies can be used as 
long as'the beams can be spatially and temporally over- 
lapped.   This technique can also be used for two beams 
having the same wavelength; however, the experiment 
becomes more difficult because of coherent interactions, 
which require interferometric stability for interpretation. 
However, the use of counterpropagating beams would 
permit separation of the beams but would add complexity 
to temporal-delay measurements. 

In   the   experiments   presented   here,   we   can   use 
either the fundamental (1.06-Mm) or the second-harmonic 
(0.532-/xm) beam as the excitation.   We absolutely cali- 
brate the pulse widths and the beam waists of the two 
Gaussian beams.   This necessitates performing spatial, 
beam scans and temporal autocorrelations of both the 
fundamental and the second-harmonic beams, as well 
as determining the longitudinal separation between the 
two beam waists caused by residual chromatic aberration 
of the focusing lens.   By performing single-wavelength 
closed-aperture Z scans at 1.06 and 0.532 pm on a 1-mm 
cell containing CS2, we determined that the beam waists 
were separated by 1.5 mm because of chromatic aberra- 
tion in the lens.   Such aberration is easily accounted for 
in the numerical fitting routine described in Section 4. 
Additionally, as the separation between the peak and 
the valley of the transmittance (AZpv) for a third-order 
response is =1.7 times the Rayleigh range, this meas"*e~ 
ment confirmed that the spot sizes at focus (half-width 
at 1/e2 maximum in irradiance) were 27 and 20 pm for 
the 1.06- and the 0.532-^m beams, respectively.    Using 
autocorrelation measurements, we determined the pulse 
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widths (FWHM) to be 43 and 31 pa at 1.06 and 0.532 /im, 
respectively. The estimated uncertainty in the spot-size 
and the pulse-width measurements are ±5%. The inci- 
dent and the transmitted pulse energies are detected by 
integrating silicon photodiodes. A spike filter at the ap- 
propriate wavelength is placed in front of each detector. 
Each data point is an average of 10 shots, taken with the 
aid of an automated data-acquisition system. While the 
Z-scan data are acquired, the pulse width and energy are 
also monitored, and acceptance windows of ±5% are set 
for both pulse width and input energy to increase the 
signal-to-noise ratio.8 The absolute irradiances at 
the sample for each beam can then be calculated given 
the energy as calibrated by a pyroelectric energy meter. 

A limitation of this method is the range of temporal de- 
lays that can be scanned while the position of focus and 
the waist size of the delayed beam are kept constant. We 
maximized this range by minimizing the divergence of the 
laser beams before the focusing-lens. We used a mea- 
sured input beam divergence of 3.4 X 10"4 rad, and we 
calculate for our geometry (=»2 m from the waist) that a 
1-ns time delay changes the waist size by =4% at 
1.06 /im. This delay also results in a displacement of 
the focus that is negligible (<1% of/"). 

For the two-color experiment, maintaining the spatial 
overlap around focus is crucial. A 6-arcsec angle between 
the two beams as they enter the focusing lens would give 
a 10% offset of the spatial overlap of the two beams at 
focus (Ax =» 2 /im for a beam waist of 20 /im). Prior to 
inserting the focusing lens, we propagate the two beams 
for =4 m and ensure their spatial overlap by maximizing 
the transmittances through apertures. A similar proce- 
dure is repeated near the focus once the focusing lens 
is inserted. Finally, we achieve a fine adjustment of 
the spatial overlap at focus by maximizing the change 
in transmittance of the probe, using a nonlinear ab- 
sorber. The change in the probe transmittance is maxi- 
mized when the two Gaussian beams are overlapped (i.e., 
their on-axis points are coincident). The nonlinear ab- 
sorber used in this technique may be a nondegenerate 
two-photon absorber, an excited-state absorber, or a sat- 
urable absorber; however, because the 2PA process is 
nearly instantaneous, it requires temporal overlap of the 
laser pulses as well. Therefore an excited-state or a sat- 
urable absorbing medium with a long recovery time is 
easier to use initially. 

After ensuring spatial overlap, it is necessary to deter- 
mine the position of zero time delay between the excita- 
tion and the probe beams. Performing a closed-aperture 
time scan on CS2 with the sample stage positioned near 
the Z-scan peak, we obtain the data shown in Fig. 2. 
This procedure gives the temporal cross-correlation 
function between the two beams, provided that the trans- 
mittance through the aperture varies linearly with the 
excitation irradiance. This result is valid as long as ATpv 

is linearly dependent on the excitation, i.e., for transmit- 
tance changes to as much as =«20% when the sample is 
placed at the peak or the valley.7 Returning to Fig. 2, 
we find that the width of 53 ps (FWHM) for this curve 
agrees with a calculation of the cross correlation for the 
pulses of FWHM 43 and 31 ps at 1.06 and 0.532 pm, 
respectively, as measured by the individual second-order 
autocorrelation functions.    Hence we have shown that 

the two-color Z scan can be used as a cross correlator 
to measure pulse widths, provided that one of the pulse 
widths is known or, as in the case of harmonic or para- 
metric processes, that a fixed relationship between the 
two pulses exist. Like any nonlinear correlation tech- 
nique, the temporal resolution of this technique is limited 
by the response time of the nonlinearity. For UV pulses 
for which second-harmonic-generating crystals are not 
available, this method may prove useful. 

3.    THEORY 
A. Semiconductor Nonlinearities 
In the picosecond regime optical nonlinearities in semi- 
conductors under nonresonant excitation (i.e., in the 
transparency regime) are generally a combination of 
bound electronic and free-carrier effects. Bound elec- 
tronic nonlinearities arising from an anharmonic response 
of the valence electrons are ultrafast, with a typical re- 
sponse time being of the order of an optical cycle. This 
process can be regarded as instantaneous when laser 
pulses containing many optical cycles are used. We 
characterize this response with xlZ) • In the transparency 
regime free-carrier nonlinearities rely on multiphoton car- 
rier generation and appear as higher-order phenomena. 
In particular, free-carrier refraction and absorption that 
are due to charge carriers generated by 2PA can be char- 
acterized as an effective *(5) process.3 Most importantly, 
free-carrier effects are further distinguishable from the 
bound electronic effect because of their long recovery 
time determined by the free-carrier lifetime.9 A time- 
resolved study of these processes can therefore identify 
and characterize the various contributions. 

We define the total change of refractive index (An) and 
absorption coefficient (Act) as the sum of the bound elec- 
tronic (subscript b) and free-carrier (subscript/-) contri- 
butions: 

An(wp;w,) = A/:;, + A/i^, 

&a(üjp;ti}t) = A04 + Aa/-. 

(la) 

(lb) 

-200 200 -100 0 100 
Time  Delay  (ps) 

Fig. 2. Time-resolved two-color Z scan of CSs obtained with 
A = 1.06 /im as the excitation and A = 0.532 /tin as the probe. 
This procedure gives the cross correlation of these two pulses 
and determines the zero-time-delay position. 
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The quantities for describing the bound electronic effect 
are the nonlinear refractive index n2(o)p; a>t) and the 
2PA coefficient ß(ap;w.) measured at probe frequency 
a„ that are due to the presence of the excitation beam 
at frequency *>,.   We define these coefficients as 

bnb(.a>p;a)t) = 2n2(^p; o>,)It, 

Aa(,(wp;w«) = 2ß(u>p;wt)Ie, 

(2a) 

(2b) 

where I, is the irradiance of the excitation beam. The 
factor of 2 comes from weak-wave retardation.5-10 The 
coefficients n2 and ß are related through Kramers- 
Kronig dispersion relations by virtue of the principle of 
causality.11"" Recently the Kramers-Kronig relations 
were employed to calculate the dispersion and the band- 
gap scaling of n2 in solids from the calculated nonlinear 
absorption spectrum (including 2PA) by use of a sim- 
ple two-parabolic-band model.12 The degenerate n2 and 
ß measured with single-beam Z scans strongly support 
this theory. Because the nonlinear Krämers-Kronig 
relation generally relates the nondegenerate nonlinear 
absorption with the nondegenerate nonlinear refraction, 
the two-color Z scan provides a direct comparison with 
this theory.5 

The induced free-carrier refraction and absorption 
naturally depend on the density of photogenerated car- 
riers (AiV) produced by 2PA when it is energetically al- 
lowed. For most cases in which the probe photon energy 
is far enough from the band edge (i.e., the index change 
is small enough), it is sufficient to assume a linear de- 
pendence on AiV, giving9,15-17 

&nf(a>p;wt) = o-r(ejp)AiV(0, (3a) 

(3b) 

where the time dependence of AiV is explicitly shown. 
Here o> (in cubic centimeters) denotes the change of re- 
fractive index per unit carrier density, whereas cra (in 
square centimeters) is known as the free-carrier absorp- 
tion cross section. In these experiments the probe is 
weak compared with the excitation beam, so we consider 
degenerate 2PA of the excitation beam as the only source 
of carrier generation. Thus the carrier-generation rate 
is given by 

dAiV _ ff(«a«;««) j 2 _ AiV 
di 2A<1), ' Tr 

(4) 

where rr is the carrier lifetime. Here we assume a 
quasi-equilibrium condition in which the 2PA-generated 
carriers in the conduction band have thermalized with the 
lattice. For the pulse widths used in our experiments 
this is a valid assumption because electron-phonon scat- 
tering ensures the quasi-equilibrium condition within 
1-2 ps.18 The mechanism for free-carrier refraction is 
a combination of plasma and band-filling effects2-15"" 
with a lifetime rr typically of the order of nanoseconds. 
On the other hand, free-carrier absorption in most semi- 
conductors originates from heavy-hole to light-hole inter- 
valence band absorption and is usually weak unless it 
is probed at longer wavelengths, i.e., in the mid or the 
far IR.19 
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B.    Propagation 
By invoking the slowly varying envelope approximation 
and the thin-sample approximation,20 we can reduce the 
Maxwell equations to obtain separate equations govern- 
ing the amplitude (|£p|) and the phase (<f>„) of the probe 

beam: 

d\EP 

Bz' 

d<t>, 

+ ap\Ep\= -2ß(u„;coe)\Ep\It 

- <7„(wp)AiVLEp|, (5a) 

££* - 2£ 2n2(a>p;».)/. + crr(«,)AN. (5b) 
Bz' c 

The depletion of the excitation beam is given by 

dl< 
Bz 

'- + oeJ« = -ß(cjt;wt)Ie
2, (6) 

where ap and ae are the linear absorption coefficients of 
the probe and the excitation beams, respectively. For a 
given sample position Z, the incident slowly varying field 
amplitude Ep and 7« (at z' = 0) are taken to have the well- 
known Gaussian beam functional dependence radially as 
well as temporally21: 

Ep(z' = 0) = E0p ^ exp 
wp w 

r*   I iZ 
;>[1 + z •Op 2V 

X exp —i tan" 

It(z' = 0) = Jo 
WOt exp 

2r 
w. 

■*-)] zQp)_ 
2      (i -td)2] 
2 ^    J 

(7) 

(8) 

where wp
2 = mPHl + &2/Z<>p

2)] *"* w' = Wo'& + (Z + 
Zcy/Z0e

2]} define the probe- and the excitation-beam radii 
(half-width at 1/e2 maximum in irradiance), respectively, 
with Zc. accounting for the axial shift of the two foci that 
are due to the chromatic aberration of the focusing lens. 
The nonradial-dependent phase shift in Eq. (7) is unim- 

. portant in these experiments and is henceforth ignored. 
Zoj = irwoj2/^, where (J = P< «>. a™ ** Rayleigh ranges, 
and rp and T, denote the half-width at 1/e pulse widths (in 
irradiance) of probe and excitation beams, respectively. 

A simultaneous solution to Eqs. (4)-(6) that uses the 
initial condition imposed by Eqs. (7) and (8) gives the ra- 
dial (r dependence) and the temporal variations of \EP\,- 
4>p and It after propagation through the sample of thick- 
ness L for a fixed sample position Z. Once the amplitude 
and the phase of the probe are determined at the exit 
surface of the sample, we can obtain the probe beams 
profile at the aperture plane (E„) by applying the Huy- 
gen-Fresnel principle through a Hankel transformation 
of Ep evaluated at z' = L.22   This yields 

Ea{r,t,Z) = -. 
2v 

iA.(d - Z) 
exp 

itTT2 

XJd - Z) 

X   [~r'dr'Ep(r',t,Z,z' = L) 
Jo 

2vrr' 
X exp 

\P{d - Z) Wo XAd - Z) 
(9) 
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where d is the distance between the position of the focal 
point of the excitation beam and the aperture plane and 
J0 is the Bessel function of zeroth order. The normalized 
transmittance is given by 

T{td,Z) 

J~dtfr°rdr\Ea 

f~dtfr°rdr\EM< = 0)\* 
(10) 

where r„ is the aperture radius that for an open-aperture 
Z scan is infinite. It is more convenient to specify the 
aperture transmittance S = 1 - exp(-2r„2/wa

2), where wa 

is the beam radius at the aperture in the linear regime. 
Under certain conditions Eqs. (4M 10) can be solved 
analytically, but in general a numerical solution is 
required.23 In the analysis of time-resolved data, the 
quantities ATpv and Top, as a function- of the time delay 
td, are calculated with Eq. (10): 

ATpvUj) = 
T(td, Z„)        T(td, Z.) 

T0Md, Zp)      Top (id, Z.) 

T.pto)-Tfa,0) 

for S < 1, 

with S = 1, 

(11) 

where Zp and Z„ are the positions of peak and valley of 
the Z scan, respectively. The sign of AT0V is given by 

the sign of Zp - Z„. 
As discussed in Section 4, the spatial separation be- 

tween peak and valley, ATpV, depends on the order of the 
nonlinearity equaling -1.7*0 for a third-order response 
and =1.2z0 for a fifth-order nonlinearity. Thus, in per- 
forming a temporal scan, one can optimize the signal for 
a third- or a fifth-order nonlinearity, although the differ- 
ence in signal is only approximately 20%. This must be 
accounted for in interpreting the results of a temporal 
scan when both types of nonlinearity are present. 
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4.    RESULTS AND DISCUSSION 
The semiconductor samples used in our experiments are 
zinc blende polycrystalline slabs of ZnSe and Cleartran 
ZnS. ZnSe has a band-gap energy of Eg = 2.6 eV,24 

no = 2.5 at A = 1 ^m, and n0 = 2.7 at A = 0.5 ^m. The 
sample thickness is 2.7 mm. The ZnS sample has a 
thickness of 1 mm, Eg = 3.7 eV,24 no = 2-3 at 1 ^m, and 
n0 = 2.4 at 0.5 fJLm. In the following discussion, <o refers 
to 1.06-£im light and 2eo to 0.532-/zm light. Table 1 
summarizes the results described below. 

A.    Excitation at 1.06 /im 
In both ZnSe and ZnS, degenerate 2PA with Xp = 1.06 pm 
is energetically forbidden (i.e., 2h(o < Eg). Therefore, 
with the strong excitation beam at 1.06 /im, the free- 
carrier density (AiV) remains small, and the induced 
An and A a are dominated by ultrafast bound elec- 
tronic effects. However, in experiments on both poly- 
crystalline ZnSe and ZnS, scattered second-harmonic 
light at 532 nm could be seen. Hence care was taken to 
ensure that second-order effects25 did not influence our 
results. In ZnSe the probe at Xp = 532 nm experiences 
a nondegenerate 2PA because hw + 2ft« = 3.5 eV exceeds 
the band-gap energy of ZnSe. The open-aperture and 
closed-aperture Z-scan data at zero temporal delay, ob- 
tained with an excitation irradiance (7«) of 0.7 GW/cm2, 
are shown in Fig. 3. Measurements were made for two 
cases of parallel-polarized (xx) and crossed-polarized 
(xy) excitation and probe beams. From the calcula- 
tions, the best fits give ßxx2(.io;cü) = 15 ± 3 cm/GW, 
ßxz{2u;a/ßX7(.2eo;ta) = 1.7 ± 0.4, n2=

:(2«;a>) = -(5.1 i 
1.0) X 10"u cm2/W, and n^ (2<u;«)/n2

iy (2*>; w) = 
2.0 ± 0.5 (see Table 1). All the results in Table 1 re- 
fer to parallel polarization unless specifically noted with 
the superscript xy. The observed polarization dichroism 
has been attributed to the interference between contri- 
butions to x™ from the heavy-hole and the light-hole 

valence bands. 
For ' ZnS with hu + 2hw < Eg, nondegenerate 

2PA is not permitted, and the measured nonlin- 
earities are purely refractive (degenerate 2PA for 
the probe  at  532 nm is weak).   Figure 4 shows the 

Table 1.    Nondegenerate Nonlinear Parameters Extracted from the Time-Resolved 
Two-Color Z-Scan Data" ;  

Material 

Parameter ZnSe ZnS 

0(1.06:1.06) 
0 (0.532; 0.532) 
0 (0.532; 1.06) 
0(1.06; 0.532) 
0*7 (1.06;0.532) 
ni (1.06; 1.06) 
712 (0.532;0.532) 
m (0.532; 1.06) 
n-f (0.532; 1.06) 
7i2 (1.06; 0.532) 
tra (1.06) 
<rr (1.06) 
r 

5.8 * 1 cm/GW 
15 ± 3 cm/GW 

4.6 ± 1 cm/GW 
8.6 = 2 cm/GW 

(2.9 * 0.3) x 10"M cm2/W 
(-6.8 ± 1.4) X 10"14 cm2/W 
(-5.1 ± 0.5) X 10"15 cm2/W 
(-2.6 * 0.3) X 10"14 cm2/W 

(-9 ± 5) X 10"15 cm2/W 
(4.4 * 1.3) X 10"18 cm2 

(-6.1 * 1.5) X 10"22 cm3 

—1 ns 

3.4 * 0.7 cm/GW 
0 
0 
0 

(6.3 = 1.4) X 10"15 cm2/W 
Not measured 

(1.7 2: 0.4) X 10"14 cm2/W 
Not measured 

<1.5 x 10~14 cm2/W 
(7 r 2) x 10"18 cm2 

(5.2 ~ 1.1) X 10"22 cm3 

T„ - 0.6 ns; rr - 0.8 ns 

aß, 2PA coefficient-, n» bound electronic nonlinear refractive index; <r. 
free-carrier absorptive cross section; <r,, free-carrier refractive coefficient. 
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1.* 

Fig. 3. Open-aperture data (filled circles) and closed-aperture 
data (open circles) for ZnSe obtained with perpendicularly polar- 
ized beams at zero time delay (excitation at 1.06 /im and probe 
at 0.532 pm). The squares show the division of the two data 
sets, and the curves represent theoretical fits. 

1.4 

Fig. 4. Closed-aperture degenerate Z-scan data (filled circles) 
and closed-aperture nondegenerate data (open circles) obtained 
with excitation at 1.06 /im and probe at 0.532 /im for ZnS 
obtained with parallel-polarized beams at zero time delay. The 
curves represent theoretical fits. 

closed-aperture Z-scan signal compared with the 
single-wavelength Z scan at 1.06 fj.ro. measured at 
I, = 8.5 GW/cm2. The best fit to these data gives a ratio 
of n2(.2(o;w)/n2(<o;a>) =* 1.9 ± 0.2 for parallel-polarized 
beams, with n2(co; w) = (7.6 ± 1.5) X 1CT15 cm2/W. This 
large ratio is due to a two-photon resonant enhancement 
of n2{<o; tu).27 The theoretical analysis regarding the 
observed dispersion of the nondegenerate n2 is given 
in Ref. 12. There is only an ultrafast response at this 
excitation wavelength, at which 2PA is not permitted. 

B.    Excitation at 0.532 /im 
With excitation at 0.532 ftm during probing at 1.06 /im, 
degenerate 2PA of the pump beam is present in both 
ZnSe and ZnS.   We. employ this arrangement primarily 
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to study the induced free-carrier nonlinearities. By per- 
forming a temporal scan in the two-color Z-scan experi- 
ment, we can differentiate the free-carrier nonlinearities 
from the bound'electronic effects. We use the method 
discussed in Section 2 to separate absorptive and refrac- 
tive nonlinearities. ' 

For ZnSe, Arpv(irf) and the maximum open-aperture 
transmittance change äT0f(td) are measured for several 
different input irradiances. As mentioned above, the sig- 
nal can be optimized for either the third- or the fifth- 
order response. Here (as was done for the data given 
in Fig. 5), we optimized the signal for the fifth-order re- 
sponse of the carrier nonlinearities by first performing a 
Z scan at a long delay (i.e., td » tp) to find the position 
of peak and valley.   This means that the fast-response 

< 
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Fig. 5. (a) Nonlinear refraction as determined by Arpy(td) a*1"* 
(b) nonlinear absorption from the normalized transmittance 
ToV(td) as a function of probe-beam time delay td for ZnSe mea- 
sured at J, = 1-2 GW/cm2 (open symbols) and It = 0.7 GW/cm2 

(filled squares). rr = 1 ns. The curves are fits to the data 
obtained with the values given in Table 1. 
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Fixing the delay of the probe relative to the excitation 
beam so that the two pulses have no temporal overlap and 
performing- a two-color Z scan, we see only free-carrier 
refraction and absorption. Experimental data, depict- 
ing the ratio of the closed-aperture to the open-aperture 
Z scans for ZnSe at 100 and 200-ps time delay (with 
I, = 1.5 GW/cm2), are shown in Fig. 6. Because a delay 
time of 200 ps is considerably less than rr, the number 
of free carriers is the same within 10% at the two delays. 
The free-carrier refraction, crr(a>) = 6 i 1.5 X 10" cm , 
and absorption, o-.(») = 4.4 ± 1.3 X 10~18 cm2, from 
these Z scans are consistent with those obtained from 
the time-delay experiment to within 10%. 

The data for ATpv for ZnS, as shown in Fig. 7(a), dis- 
play no fast-response signal near zero delay. This result 
indicates that the phase change produced by the free car- 

Fig 6. Nondegenerate divided Z scans on ZnSe.at time delays 
o g100 ps (circles) and 200 Ps (squares) obtainedi withLOSi^m 
as the excitation source and 1.06 Am as the probe The curve 
shows the theoretical fit for the free-earner refraction (and 
absorption). 

signal near zero delay (third-order response) is not opti- 
mized, and the signal from this nonlinearity is reduced 
The =20% reduction in this signal is easily calculated 
from Eq. (10).   The fits to the data discussed below take 
these effects into account.    At relatively low «radiance, 
&Toy(td) [Fig. 5(a)] consists of a peak near zero delay and 
a slow-decaying tail at longer delays, which lasts much 
longer than the laser pulse.   The peak is due to nonde- 
generate bound electronic nonlinear refraction, as is evi- 
denced by the fast response (i.e., the width is consistent 
with the width for CS2, as is shown m Fig. 2).      This 
nonlinear refraction is determined to be negative from 
the relative positions of the peak and the valley.   The 
slow-decaying tail comes from free-carrier refraction (also 
defocusing), at which the carriers are produced by degen- 
erate 2PA of the excitation beam.   As the irradiance in- 
creases, the relative value of the peak diminishes with 
respect to the long free-carrier tail.   This occurs because 
the bound electronic effect is a third-order nonlinearity, 
whereas the two-photon-generated free^rrier nonhnear- 
ities result in an effective fifth-order nonlinearity.2-3    Fit- 
ting the data shown in Fig. 5(a), we obtain n2»U^2*) = 
(9 ± 5) X 10-15 cm2/W, cxrtw) = 5.4 ± 1.5 X lO"22 cm3, 
and a carrier decay time of rr - 1 ns.   The errors on m 
are large as the nonlinearity is dominated by free-carrier 
refractive effects, and such a large difference between 

»,-(«;2 and n,-(2«; «>«> = '^\r^0),* T, wl 
is not expected from a two-parabohc-band model, which 
predicts values within =10% of each other. 

Figure 5(b) shows T.p(td) &r ZnSe, giving the fame- 
resolved nondegenerate nonlinear absorption. At zero 
delay the nondegenerate 2PA dommates and at longer 
time delays we see a small contribution from 2PA- 
generated free-carrier absorption. As stated above, 
the free-carrier refraction and absorption are propor- 
tional to the density of free carriers, which slowly de- 
cays with the recombination time rr of the carriers. 
The fit that' is shown uses ß = 4.6 i 1.1 cm/GW and 
a-a = (4.4 ± 1.3) X 10-1 cm . 
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Fig. 7. (a) Nonlinear refraction as determined by AXP, —- 
(b) nonlinear absorption from the normalized transmittance J0j. 
L a function of probe-beam time delay td for ZnS measured 
at j, = 0.7 GW/cm2 (filled circles) and I, = 1.45 GW/cm" (open 
circles). The curves are fits to the data obtained with the values 
given in Table 1. 
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riers is much larger than that produced by the bound 
electrons. In addition, based on the theory,12 we expect 
the nondegenerate n2 to be positive, partially negating 
the self-defocusing from the carriers. However, the free- 
carrier nonlinearities totally dominate the phase change 
at high irradiance, resulting in a good fit for ZnS by use 
of only carrier effects. The nonlinear absorption for Znb, 
shown in Fig. 7(b), is dominated by free-earner absorp- 
tion because there is no nondegenerate 2PA. Note that, 
for both irradiances, at zero delay there is a narrow spike 
of unknown origin. We speculate that this result may 
be caused by transient beam coupling or by a cascading 
of second-order nonlinearities. 

We find that, from the higher irradiance data 
shown in Fig. 7 for ZnS, <ra(«) = 8*2 XlO"1* cm2 and 
a M = -5 ± 1 X 10"22 cm3 (curves in Fig. 7). These 
two experiments give slightly different values for the 
carrier recombination time (r, - 0.6 ns for free-earner 
absorption and rr.- 0.8 ns for free-carrier refraction 
measurements). This small difference may be explained 
by the different relative contributions of free electrons 
and holes to refraction and absorption and by possible 
differences in electron- and hole-trapping rates. 

C.    Dispersion of Free-Carrier Nonlinearities 

There exist numerous theoretical models dealing with the 
effects of an electron-hole plasma on the complex dielec- 
tric constant.15"17 We find that the simplest model, • • 
which incorporates two parabolic bands, sufficiently ex- 
plains the magnitude and the dispersion of the observed 
free-carrier effects.3 In this simple model the change of 
refractive index for wavelengths below the band edge (i.e., 
for probe photon energy hup < Eg) that is due to an in- 
jection of an electron-hole density AiV is given by3' 
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represents the band-filling contribution to the refractive- 
index change. A more general expression can be ob- 
tained by elimination of the effective mass with the 

results of k-p'theory28: 

An(ojp) = 
27re2AiV 

tfle-h 
(12) 

where me.h is the electron-hole reduced effective mass 
and a. = Eg/h. The first term in Eq. (12) describes 
the Drude plasma contribution, and the second term 

(13) 

where only the heavy-hole valence band is taken into 
account.   Here E? = 21 eV is the Kane energy and is 
nearly material independent for most semiconductors. 

This allows us to write Eq. (12) as 

A/i(o)p) = A H 
noEg

3     \ Eg 

h-^)^, (14) 

where HW = [*2(*2 " »l-1 is *" free-earner dispersion 
function and A = 2*AV/mo = 3.4 X 10"22 cm3 eV2 The 
advantage of Eq. (14) is that it provides a simple Eg 

scaling as well as a dispersion function that is only a func- 
tion of ha/Eg. This is analogous to the useful expres- 
sions derived for the bound electronic nonlinearities in 
semiconductors.11-27 Under the quasi-equilibrium condi- 
tion the free-carrier effects are independent of the means 
of generation, and thus An has no explicit dependence on 
the excitation photon energy hut. 

A best fit to our experimental data for ZnSe and Znb is 
obtained with A - 2.3 X 10"22 cm3 eV2. We plot the dis- 
persion function HViup/E,) and the experimental results 
in Fig 8 The good agreement between our results and 
this simple model may exist in part because the carrier 
densities reached are relatively low, <±N < 1018 cm"3, and 
in part because we probe relatively far below the gap. At 
high carrier densities and at photon energies near the gap, 
many-body effects and excitons may become important. 

5.    CONCLUSION 
We have introduced a time delay for one of the beams in 
a two-color Z-scan apparatus to allow the temporal de- 
pendence of the nonlinear absorption and the nonlinear 
refraction to be separately measured.   We have demon- 
strated the utility of this technique by monitoring the 
several nonlinearities that occur in semiconductors on a 
picosecond  time  scale.   Whereas   these  nonlinearities 
normally require that several different types of experi- 
ments be performed to separate their similar effects this 
new technique (temporally resolved two-color Z scan) per- 
mits their separation by itself.   In particular we have 
separately measured the nondegenerate two-photon ab- 
sorption, bound electronic n2, free-carrier absorption, and 
free-carrier refraction in ZnSe and have performed simi- 
lar experiments on ZnS, for which nondegenerate two- 
photon absorption is not energetically permitted, and on 
C& which shows only nonlinear refraction.   ™e "J™": 
ous parameters extracted from these data (see Tab lesi) 
have been compared with simple band-theory models that 
have been presented elsewhere.    One can also extend this 
technique to obtain the temporal dependence of different 
nonlinear tensor components by changing the relative 
polarization of the excitation and the probe beams_ 

It may be of use to contrast this technique with DU ww 
at this point. Temporally resolved DFWM uses three in- 
teracting beams at the same wavelength to produce a 
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fourth beam whose energy can be measured as a func- 
tion of the time delay of any one of the three beams, 
with the other two being fixed at zero delay.   The abso- 
lute accuracy of determining a nonlinear coefficient with 
DFWM is expected to be considerably less than with 
the technique discussed in this paper because in DFWM 
three, as opposed to two, beams must be both accurately 
characterized (i.e., beam shape, pulse width, and energy) 
and overlapped spatially and temporally.   In addition, 
the results of the DFWM experiment for third-order non- 
linearities are proportional to |*(3)P such that absorptive 
and refractive contributions are mixed.   However, tempo- 
ral information and symmetry properties of the degener- 
ate susceptibilities can be measured.   On the other hand, 
decay is often governed by diffusion between fringes, 
which can be much faster than diffusion across the en- 
tire beam.   As stated above, measuring degenerate non- 
linearities with the time-resolved Z scan presents other 
difficulties.   Therefore this new technique should be con- 
sidered complementary to other experimental methods, 
such as DFWM, for determining the origins of optical non- 

linearities of materials. 
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Nondegenerate Optical Ken- 
Effect in Semiconductors 

Mansoor Sheik-Bahae, J. Wang, and E. W. Van Stryland 

Abstract—We calculate the nondegenerate bound electronic 
nonlinear refractive index ^(-'I;^) (i.e., an index change at 
frequency u>i due to the presence of a beam at frequency ui2) 
in semiconductors. We calculate this nonlinearity and its disper- 
sion using a Kramers—Kronig transformation on the calculated 
nondegenerate nonlinear absorption spectrum due to two-photon 
absorption, electronic Raman and optical Stark effects. The 
calculated 712 values and their dispersion are compared to new 
experimental values for ZnSe and ZnS obtained using a 2-coIor 
Z-scan. 

I. INTRODUCTION 

LIGHT-INDUCED changes in the optical properties of 
semiconductors have several applications including all 

optical switching [1]. The ultrafast optical Kerr effect (bound- 
electronic nonlinear refraction), leading to self-phase mod- 
ulation and self-lensing of laser beams in solids, has been 
studied extensively [2]-[4]. Recently, we presented a simple 
yet comprehensive theory for this nonlinear refractive index m 
in semiconductors [5], [6]. The theory used a Kramers-Kronig 
(KK) transformation to derive 712 from our calculated nonlin- 
ear absorption spectrum. The key features of this theory were 
the band-gap scaling and the dispersion of no which showed 
excellent agreement with a large number of experimental data 
for the degenerate case. Here, we derive a more general 
expression that gives the nondegenerate optical Kerr effect, 
namely, the change of refractive index at a frequency u)\ due 
to the presence of a strong excitation beam at frequency u)2- 
We define the nondegenerate coefficient 712 as well as the 
nondegenerate nonlinear absorption coefficient Qo by 

and 

An(a>i;w2) = 2n2{<j}\;ii>2)Iu 

ACü(U>I;W2) =2Q2(WI;W2)^UJ 

(la) 

(lb) 

where An and AQ are the changes in refractive index and 
absorption coefficient respectively, and- IU2 is the irradiance 
of the excitation beam at frequency u>2- The factor of two 
in these expressions arises from the interference between the 
pump and the probe beams. In a self-modulation (single- 
beam) process this factor is unity [7]. The nondegenerate 
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nonlinear coefficients no and c*2 are related to the real and 
imaginary components of the third order optical succeptibility 
X^3\u>i,u2, —0J2), respectively. We showed that the physical 
mechanisms responsible for the induced change of absorption 
(Aa) originated from three processes: two-photon absorption 
(2PA), electronic Raman, and optical Stark effect [5]. In the 
following section, we briefly review the formalism leading 
to an expression for the degenerate no and then present 
the extension of this theory to the nondegenerate case. In 
Section III, we present experimental results for ZnSe and 
ZnS obtained using a 2-color Z-scan [7]. In Section IV, 
possible effects of the electron-hole Coulomb interaction are 
considered using a simple Elliott-type envelope function. This 
simple approximation can qualitatively explain the two-photon 
and one-photon resonant enhancement of no, observed in 
semiconductors. 

II. THEORY 

The nonlinear Kramers-Kronig relations relate n2 and a2 

through the dispersion integral [4], [5], [8] 
r°° Q2(W';W2) 

7l2(wi;u>2) 
2   f°° a2(u 

* Jo     "'2 ■du'. (2) 

In [5], Aa(u';w2) was calculated using a two-parabolic band 
(TPB)' model. In this model a "dressed state" approach is 
adopted where the wave functions for the initial (valence) and 
the final (conduction) bands are given as follows: 

rt 

tyj (k, r, t) = Uj (k. r) exp ik  T •II*» dr (3) 

where j refers to either conduction (c) or valence (v) band 
and k is the lattice wavevector. The functions Uj are the 
usual (unperturbed) Bloch wavefunctions that have the same 
periodicity as the lattice. The effects of the optical fields are 
to alter the energy of the electrons and holes in the final and 
initial states, respectively. This is written as 

JEV(T) = Ev0 + AEVV{T) + A£v 

Ec(r) = £c0 + A£CC(T) + AEc 

(4a) 

(4b) 

where JEJO is the unperturbed band energy. A£jj (r) and AECV 

are the linear (LSE) and quadratic (QSE) optical Stark shifts of 
the energy bands due to the interaction Hamiltonian as follows: 

e 
■ffint = p • [A0i cos(o;it) + A02 cos(uj2t)]       (5) 

mrjC 

where p is the momentum operator. A01 and A02 are the 
vector potentials of the interacting optical fields. The resultant 

0018-9197/94S04.00 © 1994 IEEE 
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TABLE I 
THE VARIOUS CONTRIBUTIONS TO THE NONLINEAR ABSORPTION SPECTRAL FUNCTION ^2(^1; 22) 

Contribution 

2-Photon Absorption 

Raman 

Linear Stark 

Quadratic Staik 

•F2(*i;*2) 

(n + is-l)»/»/1        1 

ClXj \Xl X2/ 
forn +X2 > 1 

(Xl - X2 

27xjx2 

(«I - 1)3/2 1 
26x1x?,     x§ 

i-i  forxi-x2>l 

forxi > 1 

1 /      1 1 2(xi -1)        2(xi -1) \ 
"2i°x1x|(x1-l)1/2Vn-X2      X1+X2      (xi-x2)

2      (xi+x2)
27 

forxi > 1 

interband absorption change, as calculated using first-order 
perturbation theory, is given by [5]: 

a2(wi;w2) = K 
noino2^| 

F2(xi;x2) (6) 

where K is a constant, Eg(eV) is the band-gap energy, 
and xi = fiu>i/Eg,X2 = ftw2/£g and noj (j = 1>2) are 
the linear refractive indices at ui and o>2, respectively. The 
dimensionless spectral function F2, is defined in Table I. The 
Kane energy Ep (~21 eV) is related to the Kane momentum 
parameter P by Ep = 2P2/mh2, and is nearly material 
independent for most semiconductors [9]. In the TPB approx- 
imation, this parameter is related to the electron (or hole) 
effective mass mc (= mv) through 

mc/m0 ~ Ez/Ep (7) 

The constant K was determined from the average de- 
generate 2PA coefficient of several semiconductors to be 
~3100 cmGW-1eV5/2, but varied by up to ~30% from one 
material to the next [9]. A value for K of ~4000 gives a better 
value for ZnSe and ZnS as compared to the calculated value 
of 1940 cmGW-1eV5/2 from the TPB model [5]. This factor 
of ~2 in underestimating the absolute value of ß may be 
simply understood by realizing that the transition can initiate 
from two valence bands (heavy- and light-hole bands) rather 
than one as modeled here. More rigorously, a Kane 4-band 
model has been shown to give a closer absolute agreement 
for several zinc-blend semiconductors [10]. 

The dimensionless spectral function F2, shown in Table 
I, contains contributions from 2PA when Tiwi + hu)2 > E%, 
the stimulated Raman effect when Tuu\ — hu>2 > Eg and 
optical Stark effect when hui > Eg [5]. The nondegenerate 
2PA coefficient /J^ju^) is denned as equal to a2 when 
fiwi + ?lu>2 > -Eg (i.e., contains only the 2PA portion of 
F2). Note also that there are four terms associated with the 
quadratic optical Stark effect in Table I. The first two terms 
represent the repulsion of the bands which reduces the density 
of states in the vicinity of k — 0. The last two terms, on 
the other hand, arise from the conservation of total number 
of states and would lead to an increase in density of states 

at fc > 0 (i.e., removing states near k = 0 adds states at 
larger k). These terms, which contribute less than 10% to the 
degenerate n2(w) for hui/Eg < 0.95, were ignored in [5] 
but are included here for the nondegenerate n2(u;i;w2). As 
hu/Eg —► 1, the contribution to n2 from the QSE is reduced 
significantly if these two terms are included. 

It must be emphasized that we consider here only below 
resonance excitation (hcj2 < Eg). For ftw2 > Eg, in addition 
to the expressions given in Table I, a term accounting for the 
stimulated Raman gain of the probe beam when ftw2 - ß^i > 
£g must be included. In practice, however, above band-gap 
resonance excitation leads to well known carrier effects (e.g., 
band-filling) that mask the bound electronic contributions. 
Above band-gap ultrafast bound-electronic nonlinearities have, 
nevertheless, been observed in semiconductor laser amplifiers 
when operating near the transparency point where changes in 
carrier populations are negligible [11]. Theoretical analysis of 
active semiconductors has been presented elsewhere [12]. 

In calculating Aafui;^), it has been assumed that the 
two interacting beams have the same linear polarization. In 
general, one may assume that the two optical fields have 
arbitrary polarizations. For instance, consider two linearly 
polarized light beams with a fixed relative angle <p between 
their polarizations. If we assume that the valence band couples 
isotropically to all the k states in the conduction band, we 
obtain a polarization dependent prefactor 

K(<f>) = K(l - § sin2 4>). (8) 

The primary assumption leading to this symmetry property is 
that the electron quasimomentum hk is parallel in k space 
to the interband momentum matrix element p^ [5]. From 
Kane's k ■ p theory, this is characteristic of the transitions 
that initiate from the light-hole valence band [13]. The pCT 

associated with the heavy-hole to conduction band transition, 
on the other hand, is effectively perpendicular to k, leading 
to a more complex polarization dependence that varies with 
wavelength and is different for each mechanism [14]. In this 
paper, however, we focus our attention on the dispersion of the 
nondegenerate n2, and the details of the symmetry properties 
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TABLE H 
THE NONDEGENERATE DISPERSION FUNCTION G2 (X1; X2 ) OF (10) FOR THE ELECTRONIC KERR COEFFICIENT Tt2, CALCULATED BY A KK TRANSFORMATION OF F2 

(TABLE I). THE IR DIVEGENT TERMS ASSOCIATED WITH EACH CONTRIBUTION HAVE BEEN REMOVED . NOTE THAT THE TERMS INVOLVING (■ • -)3,/2 ARE ZERO 

WHENTHE ARGUMENT (••■) IS NEGATIVE. THE LAST TERM DUE TO THE DEGENERATE QSE IS THE LIMIT OF THE NONDEGENERATE G^S  (XI;X2)ASXI —> 12. 

Contribution <32(*i;i2) 

2-Photon Absorption 

Raman 
H(x1,x2) + H(-xi,x2) 
H(xu-X2) + H(-xi,-X2) 
where 

H(xux2) = 
2*xU\ L 

,.3 ,.2 2   2 ^loli   "T"   —Xi Xo   —   —Xi X2  "~   —Xo 
1621S12     41 4  2 

+ I(x? + X2)[l - (1 - X2)
3/2] + I(I1 + I2)2[(1 _ Xl _ l2)3/2 _ (1 _ Xl)3/a] 

- ^X2X§[(1 - XX)-
1/2 + (1 " X2)-1/2] + JX2X2(1 - X2)1/2 

+  fxafxj + X2)
2(l - *01/2 - |xix!(l - X!)-1/2 " ix2X?(l - XO-3/2 

Quadratic Stark 
xi 7^X2 

29X2J 

14        4 
~2~xf + xJ 

A !(i ■ xi )-l/2 _ (l+X!)"1^] 

Xl 

+!§^?^[(1-I2)1/2+(1+I2)1/2] 
-^fr#f(1-I1)1/2+(1+I1)1/2( 

Xl  = X2 

1 
¥x\ 

3(1- xQ-'/2 - (1 + xi)-1/2      (1 - xQ-3/2 + (1 + xi)"3/2      1 

4 xi 8 

associated with a more general two-valence band system will 
be discussed in future 

With a2(ui;u2) known, we can obtain the refractive con- 
tribution 712(^1 ;w2) by applying the KK transformation ((2)). 
This yields 

n2(wi;w2) = 
kcK 

2    ES01n02 
G2{xi;x2). (9) 

In [5], the interference factor of two, as appears in (la), was 
ignored in calculating the n2 coefficient. In correction, the 
value of K ~ 6000 gives a better fit to the degenerate n2 data 
for semiconductors, although variations of a factor of ~2 from 
one material to another occur. This difference of K values may 
be attributed to too simplistic a band structure employed in our 
model and/or electron-^iole Coulomb interactions (excitons). 
The possible effects of excitons are discussed in Section IV. 

Equation (9) is indentical to the expression obtained for the 
degenerate n2 [5] except the dispersion function G2 now has 
a general nondegenerate form determined by the KK integral 

G2(x1;x2) _ 
2   f 
n Jo e- '-<%. (10) 

It was noted in [5] that as a result of using Ap perturbation 
theory, the calculated dispersion function G2 diverges as 
x2 —* 0(u>2 —* 0). Using a power series expansion we 
identify the divergent terms of each individual contribution and 

find that the QSE term diverges as xj2 while the remaining 
contributions have divergent terms that vary as x^1, xj2, xj3, 
and x74. Upon summing these contributions, however, all 
divergences cancel except for the xj2 term. In fact, the 
contribution of the linear Stark effect (third term in Table I) 
is only to cancel the xj4 divergent terms of the 2PA and 
Raman contributions. Due to their unphysical consequences, 
it has been a common practice to subtract the remaining 
divergent terms [15]. This process of divergence removal 
can be considered as effectively enforcing a sum rule for 
the two-band system. We obtain an analytical expression for 
G2 by evaluating the KK integral of (10). The individual 
long wavelength divergent terms for each contribution are 
removed separately and the final result is given in Table LI. In 
summing the 2PA and Raman contributions, all the odd terms 
in x2, arising from the individual divergences, cancel. In this 
paper, we refer to G2 as the sum of the three divergence-free 
functions given in Table E (G2 = G|PA + Gf*™ + G$SE). 
Knowledge of the individual contribution from each one of the 
three mechanisms becomes important when considering the 
polarization dependence of n2 or in polarization dependent 
four wave mixing [14]. 

Fig. 1 depicts the dispersion function G2 as a function 
of xi = hui/Es for various excitation photon energies 
x2 = hu2/Eg. By examining the terms in Table II, we can 
determine their relative contributions to n2 in different spectral 
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Fig. 1.   The nondegenerate dispersion function G^i^i : 12) as a function of 
probe photon energy {x\), calculated for various pump photon energies (x2). 
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regimes. A general trend is evident in all the curves: 712 is 
nondispersive in the infrared regime {Jiw\ <C Es — ^2) 
where 2PA and Raman terms contribute equally, it reaches 
a two-photon resonance at fuvi + Tuo2 — Eg where it has its 
peak positive value, and above this two-photon resonance 712 
becomes anamolously dispersive and ultimately turns negative 
due mainly to 2PA and the optical Stark effect as hu>i 
approaches Eg. 

III. EXPERIMENTS 

We use the 2-color Z-scan [7], [16] to measure the nonde- 
generate n.2 in ZnSe and ZnS. A Q-switched and modelocked 
Nd:YAG laser is used to generate single tp ~ 83 ps (FWHM) 
pulses at A = 1.06 fim. as the excitation beam. Simultaneously, 
the second-harmonic of the same laser at A = 532 nm serves 
as the weak probe (tp ~ 58 ps). Using this arrangment, we 
measure n2(2w;w) and ß(2u;u). At these wavelengths, the 
choice of the above materials is appropriate for examining the 
various dispersion regimes of n-i as predicted by the theory. An 
important parameter in the experiment is the sum of the photon 
energies: Tuo\ + 7iu>2 — 3.5 eV. Since ZnSe has Ez ~ 2.6 
eV [17], it is a nondegenerate two-photon absorber at these 
wavelengths. ZnS, on the other hand, with Es ~ 3.6 eV 
[17] exhibits no nondegenerate 2PA. According to this theory 
however, it should exhibit a two-photon resonance enhanced 
positive n2. The degenerate rii and 2PA coefficient (ß) of 
ZnSe and ZnS have been studied in the past [5], [9], [16]. The 
measurements show good agreement with the degenerate limit 
of the TPB theory [5]. Table HI summarizes the earlier results 
along with the new nondegenerate measurements. 

To illustrate the dispersive behavior of the measured n2 

and compare it with this theory, we consider the functions 
G2(2i;i) and F2

2PA(2x;i) (2PA contribution in Table I) 
where x = hu/Ee and w corresponds to the fundamental of 

Fig. 2. (a) The measured degenerate ß(2u>\ 2w) (open symbols) and nonde- 
generate /J(2ui;u>) (solid symbols) for ZnSe (circles) and ZnS (triangles) using 
laser pulses at frequency u> (A = 1064 nm) and 2w (A = 532 nm). The data 
are scaled according to (6) to compare with the calculated F2(2x;x) (solid 
line) and ^2(2; x) (dashed line) functions, (b) The corresponding measured 
712 values, scaled according to (9), to compare with the calculated (?2(2x; 1) 
(solid line) and Gz(x;x) (dashed line) functions. 

TABLE Hf 
THE MEASURED 2PA COEFFICIENTS 0(2w,w),ß(2w;u) AND OPTICAL 

KERR COEFFICIENTS n2(2w;u),n2(2w:2u>) FOR POLYCRYSTALLINE 

ZnSe AND ZnS SAMPLES USING A TWO-COLOR Z -SCAN TECHNIQUE . 
HERE, U> CORRESPONDS TO A WAVELENGTH OF 1.064 fim. THE UNITS 

FOR n2 AND ß ARE |10~14 cm2/W] AND [10-9 cm/w], 
RESPECTIVELY. THE DEGENERATE DATA FOR ZnSe ARE FROM [16]. 

Linear 
Index 

no 

Energy Degenerate Nondegener 
Gap     0.532 pm 1.06 ^m    (0.532/zm, 

1.06 fim) 
.Eg       n2 3 n2    ß       n2     ß 
(eV) 

ZnSe 2.7 (0.532 /im) 2.6 -6.8 5.8 2.9   0 -5.115.3 
2.5 (1.06 fim) 

ZnS    2.4 (0.532 j*m) 3.6 N.A. 3.4 0.76 0 1.5    <0.073 
2.3 (1.06 ^m) 

the Nd:YAG laser frequency. Figure 2 depicts these functions 
along with the degenerate versions G2(x;x) and F|PA(x;a;). 
The measured data are scaled by the predicted band-gap 
dependence of E~3 for ß and E~4 for 712, where K = 
4000 was used. The enhancement of the nondegenerate ß 
in ZnSe is seen to agree with the TPB model. Though 
good qualitative agreement between experiment and theory 
is seen, the theory underestimates 712 by a factor of ~1.5 
when ß is quantitatively correct. In other words, as mentioned 
earlier, degenerate and nondegenerate 712 values can be fairly 
predicted by the theory provided that we use K ~ 6000 in 
(9) for ri2. A discrepancy of ~1.5 is not surprising for such 
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a simple theory, and it may be attributed to a more complex 
band structure than considered here and/or the neglect of the 
electron-hole Coulomb interaction. A simple treatment of the 
latter interaction based on the Elliott-Loudon approach, given 
in Section IV, can partially resolve this discrepancy. 

For ZnSe, with u> corresponding to the fundamental wave- 
length of the Nd:YAG laser, n2{2w;ijj) is negative and res- 
onantly enhanced due primarily to the effects of 2PA. As 
seen in Fig. 2(b), the degenerate 712 of ZnSe at 532 ran is 
also negative while at 1.06 fim the dominant contribution of 
the 2PA resonance results in a positive 712 [5], [17]. ZnS, on 
the other hand, has a positive and 2PA resonantly enhanced 
nondegenerate n-i at these wavelengths as predicted by the 
theory. 

IV. THE EFFECT OF EXCITONS 

It might be expected that the electron-hole Coulomb in- 
teraction could lead to an enhancement of the 2PA coefficient 
near the hu\ + hu2 = Eg resonance. The TPB theory (without 
including this interaction) appears to underestimate the exper- 
imental degenerate 2PA coefficients when 2hu/Eg is above 
but very near unity [9]. Analogous to the case of single photon 
(linear) absorption, 2PA excitonic enhancement should reflect 
the increase in the density of states near the band-edge (k ~ 0 
region) where hoji + hu2 = Eg. Additionally, this increased 
density of states will enhance the Raman and particularly the 
optical Start contributions near the fundamental absorption 
edge. Various approches have been taken previously to include 
this interaction in the perturbation theory of 2PA [18]. While 
a rigorous treatment can result in cumbersome calculations, 
approximate enhancement functions have been suggested as 
an alternative [19], [20]. In particular, Loudon [20] used an 
envelope function approach similar to that given by Elliott [21] 
for the interband one-photon absorption. For the continuum of 
excitons, this envelope function is given by the following [21]: 

^ 7T77 exp(7T77) 
\U{r>)\ 

2 _ 

sinh(7T7?) 
(11) 

where TJ
2
 = Eb/(hu> — Ez) with E^- denoting the excitonic 

binding energy. In Loudon's approach the energy denominator 
of 77 is replaced by the two-photon energy term tiwi+%u)2—Eg 

in the nondegenerate case. In the "dressed state" framework, 
this can be interpreted as neglecting the excitonic effect on 
the energy shifts (4) but accounting for it in the transition rate 
between the "dressed states." Therefore, in generalizing this 
approximation, we multiply the function F2{xi;x2), in Table 
I, by the continuum exciton envelope function |C7(T7)|2 where 
77 is now given by 

E 
(12) v2 = 

ii ± £2 - 1 

Here Et = E^/Eg, and the ± sign in the denominator 
corresponds to 2PA(+) and Raman ( —), while for the optical 
Stark effect the denominator in (12) becomes only xi -1 (i.e., 
x2 = 0). Thus, 1^(7?) I directly gives the enhancement of 0:2 
which has maxima when the denominator of (12) becomes 
small (i.e., where X2 + Xi = 1 at the 2PA edge, and when x\ 
approaches 1 for the optical Stark effect). 

0.4 

0.2 
CN 

X 

_   0.0 
x 
IN o 
-0.2 

-0.4 
0.0 0.4    . 0.6 1.0 

Fig. 3. The excitonic enhanced nondegenerate Gi function (solid lines) 
compared to that of Fig. 1 (dashed lines). A typical value of Er = 0.01 
was used in the calculation. 

In the TPB model and within the effective mass approxi- 
mation as indicated by (7), Er = R/2Epe2 where es is the 
static dielectric constant and R = 13.6 eV is the Rydberg 
energy. Using Ep ~ 21 eV, this gives ET ~ 0.33/ef. For most 
semiconductors es ranges from 5 to 10 leading to ET cz 0.013 
to 0.003. ZnSe and ZnS, for instance, have an ET of 0.008 
and 0.010, respectively [9]. 

Once the exciton-enhanced nonlinear absorption a2 is deter- 
mined, the refractive component can be obtained using the KK 
integral. This integral and its infrared divergent term can be 
numerically evaluated. In Fig. 3, the calculated result for the 
nondegenerate 712(0;].; 0^2) using a typical value of ET ~ 0.01 
is compared to the case Er = 0 (i.e., no exciton enhancement). 
As expected, the enhancement is most visible near the one and 
two-photon transition resonances. The most drastic change is 
seen near the band-edge (hui ~ Eg) where the contribution 
of the QSE becomes large. This is more clearly examined 
in Fig. 4 where the effects of excitons on each of the three 
contributions are plotted individually.1 It is seen that the QSE 
contribution has the largest enhancement near the band-edge 
resonance. 

Using Et = 0.008, as shown in Figs. 5(a) and 5(b), 
we compare the excitonic enhanced F2 and G2 functions 
with the data of Fig. 2. Now using K — 2600 for both 
ß and 7i2, excellent agreement between theory and experi- 
ment is achieved. Additionally, this value for K is closer to 
the calculated value of ~1940 [5]. Moreover, the predicted 
band-edge resonant (hwi/Eg ~ 1) enhancement is now 
in agreement with experiments, as the theory, without the 
excitonic effect, underestimated 712 for AlGaAs [22] and CdS 
[5] at wavelengths near the band. 

1 The nonenhanced G2 in our Fig. 4 (dotted line) is the corrected version of 
Fig. 4 in [5], in which the long-wavelength divergences of the individual con- 
tributions were removed incorrectly, thus suppressing the bandgap resonance 
of the electronic Raman effect. 
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Fig. 4. The effect of excitonic enhancement on the various contributing 
mechanisms to the degenerate Gi [x\; xi) compared to the nonenhanced G2 
as given by Table n. 
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Fig. 5. Data for both (a) and (b) are the same as in Fig. 2 but scaled with 
K = 2600. The lines in (a) and (b) are the F2 and G2 functions calculated 
using the excitonic enhancement with Er = 0.008. 

V. CONCLUSION 

The nondegenerate 2PA coefficient /?(w1;w2) and optical 
Kerr index ^(^l!^) were calculated using a dressed-state 
two-parabolic band model. Closed-form analytical expressions 
were derived giving the variation of these coefficients with 
bandgap energy, linear index, and photon energy. The ex- 
perimental results for ZnSe and ZnS show good agreement 
with this theory for u>2 and w\, the fundamental and second 
harmonic of the Nd: YAG laser, respectively. Finally, the possi- 

ble effect of electron-hole Coulomb interaction is considered 
using an Elliott-type envelope function. This approximation 
leads to an enhancement of n2, which is largest near the 
two-photon and one-photon resonances. 
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We discuss the characterization of nonlinear optical processes that give rise to changes in 

the absorption coefficient and refractive index. We primarily concentrate on methods for 

determining the dominant nonlinearities present in condensed matter and the responsible 

physical mechanisms. In extensive studies of a wide variety of material, we have found 

that there is seldom a single nonlinear process occurring. Often several processes occur 

simultaneously, sometimes in unison, sometimes competing. It is necessary to 

experimentally distinguish and separate these processes in order to understand and model 

the interaction. There are a variety of methods and techniques for determining the 

nonlinear optical response, each with its own weaknesses and advantages. In general, it is 

advisable to use as many complementary techniques as possible over a broad spectral 

range in order to unambiguously determine the active nonlinearities. Here we concentrate 

on the use of nonlinear transmittance, Z-scan and degenerate four-wave mixing 

experiments as applied to polycrystalline and single crystal semiconductors and dielectric 

materials. 

I. Introduction 

Numerous techniques are known for measurements of nonlinear refraction (NLR) and nonlinear 

absorption (NLA) in condensed matter. As the names imply, NLR describes optically induced 

changes in the refractive index of a material, while optically induced changes in absorption are 

categorized as NLA. Nonlinear interferometry [1,2], degenerate four-wave mixing (DFWM) [3], 

nearly-degenerate three-wave mixing [4], ellipse rotation [5], beam distortion,[6,7] beam deflection 

[8], and third-harmonic generation [9], are among the techniques frequently reported for direct or 

indirect determination of NLR. Z-scan is a single beam technique for measuring the sign and 

magnitude of NLR indices and NLA coefficients [10,11], which offers simplicity as well as high 

279 
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Nonlinear absorption and refraction always coexist (although with different spectral properties) as 

they result from the same physical mechanisms. They are connected via dispersion relations similar to 

the usual Kramers-Kronig relations that connect linear absorption to the linear index (or, 

equivalently, relate the real and imaginary parts of the linear susceptibiltity).[ 18-21] The physical 

processes that give rise to NLA and the accompanying NLR include "ultrafast" bound electronic 

processes and "excited state" processes, where the response times are dictated by the characteristic 

formation and decay times of the optically induced excited states. Ultrafast processes include 

multiphoton absorption [12,19], stimulated Raman scattering [22] and AC-Stark effects [19,20]. 

Excited-state nonlinearities can be caused by a variety of physical processes including absorption 

saturation [22], excited-state absorption in atoms and molecules [23] or free-carrier absorption in 

solids [24,25], photochemical changes [26], as well as defect and color center formation [27]. The 

above processes can lead to increased tränsmittance with increasing irradiance (eg. saturation, Stark 

effect) or decreased tränsmittance (eg. multiphoton absorption, excited-state absorption). The key to 

distinguishing these processes is to pay particular attention to the temporal response. One way of 

achieving this is the use of pulsewidths much shorter than the decay times of the excited states. As 

we shall show, in this regime, the excited-state nonlinearities are fluence (ie. energy per unit area) 

dependent, while the ultrafast effects remain irradiance dependent. 

It is important to note early in this paper the importance of accurately measuring the laser mode and 

pulse parameters. For example, two-photon absorption (2PA) is irradiance dependent. Thus, given 

the pulse energy, we need to know both the beam area (i.e. spatial beam profile) and the temporal 

pulse width (i.e. temporal shape) in order to determine the irradiance. Any errors in the measurement 

of irradiance translate to errors in the determination of the 2PA coefficient, ß. Similar comments 

apply to other nonlinearities. Figure 1 shows a plot of 0(cm/GW), on a semilogarithmic scale, as a 

function of year published in the literature for GaAs. It has been established that these large 

differences are not due to differences in the materials, but are due to experimental problems and 

interpretation errors.  Clearly, there are a great number of pitfalls for experimenters in NLO. 

II. 1 Nonlinear absorption: 

We will primarily limit our discussion to the increasing loss from two-photon absorption (2PA) and 

photogenerated excited-state absorption (ESA). The losses from 2PA occur in solids when the photon 

energy, fiw, is larger than one-half the band-gap energy, Ef. The equation describing 2PA (a third- 

order response) of a beam of irradiance I as a function of depth z in a material is; 

dl  _ _,„ i/m, (1) 
dz 
5i = -(a0+WI 

where ß is the 2PA coefficient, and the equation includes residual linear absorption of coefficient a0. 

This linear absorption in solids for fiuxEg can come from defects, impurities or band tailing and can 

often be ignored in good quality materials. 



Nonlinear optical absorption and refraction 283 

to some time t' in the pulse, substituting for N in Eq. 2 and then integrating over all times t' (i.e. -oo 

to oo) we find the fluence F varies with z as 

dF «o» 
dz-=T°+2^F (4) 

Notice that this equation is exactly analogous to Eq. 1 describing 2PA loss with the fluence replacing 

the irradiance and a0a/2hu> replacing ß. Therefore, since in most experiments the pulse energy is 

detected, FCA initiated by linear absorption and 2PA, will give nearly identical results for loss as a 

function of input energy (microscopically ESA can be considered as the limit of 2PA with a resonant 

intermediate state). The difference between Eqs. 1 and 4 when determining the transmitted energy is 

in the temporal integral over the pulse for 2PA. For FCA, this integral has already been performed. 

In other words, in order to determine which of these nonlinearities is present, the temporal 

dependence must be measured in some way. 

If the carriers are produced via a 2PA process (ß in Eq. 1) rather than by linear absorption (a0 in Eq. 

1), the resulting equations are considerably different, and cannot be solved analytically. Including 

2PA, Eq. 2 becomes, 

£ = -(a0+/3I+o-N)I , (5) 

which must now be combined with the 2PA carrier generation rate, 

dN =  ßV_ (6) 
dt      2hu> ' 

The factor of 2 indicates that the energy of two photons is needed to create the carrier pairs. Again 

we make the simplifying assumption that carriers do not diffuse or decay during the pulse. In 

semiconductors, this assumption is normally valid with picosecond pulses. In Eq. 5, a0 is again 

included only as a residual linear absorption from defects or impurities, and it is assumed that free 

carriers are not produced in the process. 

It is interesting to look at the order of the nonlinear response for the three cases given above. The 

first two, 2PA and linearly generated FCA, both appear as third-order responses. However, in one 

case, 2PA, the nonlinearity is proportional to Imfo'3'), while for the linear absorption generated FCA 

the nonlinearity is due to the cascaded process Im{xW}:Im{x(1)) (>e- tw0 linear absorption processes), 

where the first x'1' is associated with the ground state absorption and the second with FCA. Here 

X<j) refers to the jth order electric susceptibility. Without knowledge of the temporal dependence of 

the process, FCA and 2PA are indistinguishable. 

For the third case, 2PA generated FCA, the nonlinear response appears fifth order, a cascaded 

Im{x(3'):Im{x(1)} (i.e. 2PA followed by FCA). However, the overall nonlinear transmission as given 

by Eq. 5 has both the third-order response of 2PA (second term) and the fifth-order cascaded 
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Figure 2. Inverse transmittance for ZnSe as a function of the external incident irradiance using input 

pulsewidths of 40 psec and 120 psec (FWHM). 

where now T is defined as the ratio of output to input fluence. Again, including an integral over the 

spatial distribution only gives a small deviation from the straight line prediction of Eq. 10 whose 

slope, in conjunction with the intercept, now determines a. In experiments to determine T, it is 

usually the pulse transmitted energy, E, that is monitored, meaning that the spatial and temporal 

integrals for 2PA, or the spatial integral for linearly generated FCA, must be performed. Thus, for a 

single experiment of T = E(L)/E(0) versus the input energy, these very different nonlinear processes 

are indistiguishable. Only if the temporal dependence of the transmttance were directly monitored 

could these two processes be distinguished. 

This is a very important distinction between a direct x(s> response and a sequential, cascaded x(1):X(1) 

response. In general, many processes can have a third-order response but may not be strictly 

described by a x<3) susceptibility. Thermal nonlinearities, excited-state nonlinearities, electrostrictive 

nonlinearities, etc. are examples, and this statement is valid for absorptive (Im x(3)) and refractive 

(Re x(3)) responses. For example, a thermal nonlinearity is normally described by a x(1):X(1) 

response. The sample first linearly absorbs the light which changes its temperature (Im x(1))- This 

temperature change, in turn, changes the linear absorption (Im x(1)) or changes the linear refractive 

index (Re x'1' )• This latter effect is referred to as thermal lensing or thermal blooming as it is often 

a defocusing effect. The turn-on time for thermal effects depends upon the mechanism for the 

induced changes in x(1>-   For example, lattice heating induces a change in bandgap that, in time, 
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For the case where free carriers are generated from single photon absorption processes (see Eq. 3), 

<Vr An(t) = n2I(t) +   Äw 

t 
I(t')dt'. 03) 

The bound electronic response follows the temporal dependence of the pulse input while the FCR 

builds up in time through the pulse. For the case where the carriers are created solely by 2PA (see 

Eq. 6) Eq. 12 becomes, 

J-oo 
An(t) = 11,1(0 + ^      IJ(t')dt'. (14) 

J-oo 

Usually, especially when using picosecond or shorter pulses, the phase distortion is not time resolved 

and only the temporally averaged value is measured. Assuming the nonlinear refraction accumulates 

throughout the pulse without decay, it can be shown that the temporally averaged index change is 

simply one half AnFC(t=oo) or it equals AnFC(t=0) for a symmetric pulse in time.[ll] Here, AnFC 

refers to the second term in Eq. 13 or 14. The contribution from the bound electronic n2 (first term 

in Eq. 14) gives an index change Ann , averaged over a Gaussian temporal pulse, of l/v7! times the 

peak value. Thus, the temporally averaged index change is, 

(An) = ^=n2I(t=0) + ±AnFC(t=0) . U5) 

Integrating Eq. 11 over the sample length to obtain the total phase distortion A#r,t), we define (A$ 

as the temporally averaged phase distortion as determined from Eq. 15. We then define A* as A^ 

evaluated at the beam center (r=0), with similar definitions for the temporally averaged quantities, eg. 

(A*) is the on-axis temporally averaged phase distortion. 

A^ can also be a periodic function of the spatial coordinates x (or y) due to the interference of two or 

more coherent beams as in, for example, DFWM (discussed in section m.2). Beam propagation and 

diffraction are discussed in the next section along with experimental techniques. 

III. Experimental Techniques 

In a single article it would be impractical to satisfactorily describe the many experimental techniques 

to measure NLA and NLR, so we choose to give just three examples. We describe direct transmission 

measurements, Z-scan and temporally-resolved DFWM. We discuss the complementary infomation 

that these methods give. This choice only reflects the fact that the authors are most familiar with 

these techniques. In addition this article does not discuss methods that measure nonlinearties in fibers 

or waveguides; however, these three methods can measure nonlinearities of the constituent materials 

in bulk or thin film form. In general it is best to use as many complementary experimental 

techniques as possible to determine the nonlinear optical response of a given material. 
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traversing the sample. Figure 3 shows a transverse scan through the center of an initially Gaussian 

spatial profile beam (30 ps FWHM pulse at 532 nm, Z0=178 cm) after transmission through the ZnSe 

and then propagating 55 cm to the vidicon (near field). The beam breakup into two peaks is 

characteristic of a self-defocusing (negative induced lens) nonlinearity in the near field. This effect 

can become very strong at high irradiance and is enhanced for longer pulsewidths (having more 

energy) by free-carrier refraction. While a detector placed after the sample collects all the beam at 

low inputs, the detector can miss some of the light at high inputs. Again these effects result in an 

overestimation of ß (see Fig. 1). 

While FCA can be negligible for picosecond pulses (see discussion in section II. 1), the refraction 

arising from these free carriers, FCR is not.[12] As shown in Fig. 3, ZnSe displays strong self 

defocusing even for picosecond pulses. As discussed in section III.2, this defocusing is a combination 

of bound-electronic and free-carrier refraction as described by Eq. 14 (and 15). The solid line in 

Fig. 3 shows results of a computer calculation using parameters obtained from Z-scans (see section 

III.2). The field at the exit surface of the sample is determined by Eavle'*, and as described in Ref. 

[25], this field is propagated to the vidicon detector to give the results of Fig. 3. We discuss this 

further in the next section. 

III.2 Z-SCAN 

Z-scan measures both the nonlinear loss and phase distortion imposed on a Gaussian beam.[10,11] 

For measuring NLR this technique exploits the spatial narrowing and broadening of Gaussian beams 

in the far field which are due to self-focusing or self-defocusing caused by the nonlinear interaction 

of the beam with the material. A schematic of the experimental setup is given in Fig. 4. A Gaussian 

beam is focused onto the sample and then collected through an aperture in the far field by the 

transmission detector (D2). Keeping the input energy constant, the sample is translated along the 

beam propagation direction through the focal plane, and the transmittance (Dj/D^ is measured as a 

function of this sample position Z with 'respect to the focal plane (Z should not be confused with z, 

the depth within the sample). In the case of a material with a negative nonlinear refractive index, the 

self-defocusing will cause beam narrowing in the far field when the sample is before focus (negative 

Z) and beam broadening when the sample is after focus (positive Z). An increase in transmittance 

followed by a decrease in transmittance (peak-valley) for increasing Z denotes negative nonlinear 

refraction, while a valley-peak configuration implies positive nonlinearity. In Ref. [II] we give a 

detailed description and analysis of the Z-scan technique. Within the thin sample approximation 

[16,17], it is found that the change in the index of refraction (An) is given by a linear relation 

between the on-axis temporally averaged phase distortion at focus (A*„) (where the subscript on * 

refers to the sample positioned at the beam waist, i.e. at focus) and the difference between the 

maximum and minimum values of the normalized aperture transmittance, AT^. This relation for an 

aperture size that gives 40% linear transmittance is given by:[ll] 

(A*0) = 2.8ATpv . C« 

Examining Fig. 4 for a purely refractive case, if the aperture is removed i.e. if all the transmitted 
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We also measured n2 in ZnSe at 1.06 /im where 2PA is not present. Using 40 ps pulses (FWHM) from 

a Nd:YAG laser focused to w0=;40 /im, we obtained n2= +2.9xl0"14 cm2/W (+1.7xl0~n esu). In Fig. 

8 we plot closed aperture Z-scans obtained in ZnSe at 1.06 /im and at 0.53 /im showing the change in 

sign of n2. In this figure, the nonlinear absorption has been divided out of the 0.53 urn data. This 

observed dispersion in n2 and change in sign is consistent with the recent theory of Refs. [19-21] and 

shows the necessity of measuring the nonlinearity at more than a single wavelength. 

In addition to separately measuring NLA and NLR, Z-scan can be used to determine the anisotropy 

of these  responses (eg.  the different responses to linear and circular polarized light).    This is 

1.08 

0.00 i i i I I L 

(a) 

(b) 

-24    -16-8        0 8        16       24       32 

Z   (mm) 

Figure 6. Closed aperture Z-scan data (S=0.4) and theoretical fit (solid lines) of the ZnSe sample 

taken at irradiance levels of I0=0.57 GW/cm* (a) and I0=2.4 GW/cm' (b) where free-carrier refraction 

is large. 
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changes sign from positive at 1.06 pm to negative at 532 nm. 

amplitude gratings formed that can diffract a pump beam; one between £f and Ep, and the other 

between Eb and Ep. The grating spacing is determined by the angle 6 which is usually made to be 

small (a few degrees). In this case, one of the gratings has a spacing larger than A (=A/0n) while the 

other has a spacing of ^X/n. Calculating the direction of the beam diffracted off either of these 

gratings shows that this field, Ec (the conjugate wave), retraces the path of Ep (i.e. the sample 

retroreflects the beam).   This retroreflection is the basis for phase conjugation and phase-conjugate 
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Figure 9.   Schematic of experimental DFWM apparatus.   D, is the input pulse energy monitor, while 

D, monitors the phase-conjugate signal pulse energy. 
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Figure 11.   Log-log plots of the phase conjugate signal versus the total input irradiance (If+Ib+Ip) as 

all three beams were varied together, for (a) zero delay and (b) 240 ps delay. The solid lines are best- 

fits to the data giving power dependencies of I3-1*5-2 and I6-0*0-2, respectively. 
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experimental data to obtain the experimental functions; 

299 

p(ÄU/E«)=ic7rn°E^ 
and 

G«(^/Eg)=i^rn0Ejn« 

(21) 

(22) 

where f and n£ are experimental values of ß and n, and K and K' are proportionality constants. 

Here E is the Kane energy as discussed in Ref. [12,19,39] and is nearly material independent with a 

value near 21 eV. Figures 12 and 13 plot these scaled data versus photon Äo>/Eg, along with the 

predicted dependence from a two-parabolic band model using a value of K=3100 in units such that 

E and Eg are in eV and ß is in cm/GW.[ 18-20] The value of K'«0.94xl08 is determined from the 

Kramers-Kronig integral of the nonlinear absorption spectrum using the above value for K.[19] The 

data shown in Fig. 12 come primarily from direct transmittance measurements.! 12] The data in Fig. 

13 for semiconductors come from Z-scan measurements [19] and for dielectrics come from Z-scan 

[19] and nearly degenerate three-wave mixing [40]. Several materials have now been measured by 

both techniques and the agreement for n2 is excellent. As seen in Fig. 12 the experimental 2PA 

appears nearly step-function like, turning on at approximately Ef/2. Figure 13 shows a small, 

positive, nearly dispersionless n2 for Äu/Eg much less than E£, reaching a peak near Eg/2, where 2PA 
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Figure 12. The solid line is the two-parabolic band prediction for the function F plotted as a 

function of 2fiw/Eg using K=3100 in Eq. 21. The data are scaled according to Eq. 21 are from Ref. 

[12,62],  Figure reproduced from Ref. [62]. 
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Figure 14. A log-log plot of the scaled 2PA coefficient ß as a function of the bandgap energy Eg (in 

eV). The data are scaled from Eq. 21 as ^nVv^F. The straight line is a fit to the data within the 

dashed box from Ref. [62] for a line of fixed slope -3. The data to the right of the box are taken 

from Ref. [59] using the third (X's) and fourth (closed circles) harmonics of 1.06 /im picosecond 

pulses. The data to the left of the box (closed squares) are taken from Ref. [60] using 10 /im 

nanosecond pulses, which carefully accounted for free-carrier absorption. Figure reproduced from 

Ref. [64]. 
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Figure 16. Normalized Z-scan transmittance of BaF2 measured using picosecond pulses at A=266 nm 

with I0=72 GW/cm2. (a) Open aperture data and fit (solid line) (b) 40% aperture data and fit (solid 

line) and (c) The result of the division of the Z-scans of (a) and (b). 

shorter wavelengths. We find for BaF, at 266 nm, with the light propagating in the [100] direction 

and the field parallel to [010], ^0.06 cm/GW, and ^=+3.1x10-" cmä/W (+l.lxl0"13 esu) while the 

anisotropy in this material is large (eg. 30% change in n, with orientation). While a thorough study at 

this wavelength has not been performed, we expect the free-carrier effects at this irradiance and 

wavelength are small. This is due to both the small magnitude of ß and the smaller expected free- 

carrier cross sections at short wavelengths. 

In order to extract the data needed to plot Figures 12, 13, 14 and 15, a clear understanding of the 

nonlinearities involved was necessary.    In the final analysis these figures reveal relatively simple 
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We present results of optical limiting experiments designed to study optical geometries 
for increasing the dynamic range over which limiters function without incurring optical 
damage. Specifically, we investigate a tandem geometry with two passive nonlinear 
elements, one placed in the focal plane of a lens and the second placed "upstream" of 
the focal position to protect the material at focus from damage. To provide a proof-of- 
principle demonstration of this geometry, simple limiters consisting of combinations of 
reverse saturable absorber dyes and a carbon black suspension in thin cells were tested. 
Our results show that a substantial increase in device performance can be achieved by 
use of a tandem limiter geometry. Simple modelling predicts that the dynamic range of 
a separate-element tandem limiter is given by the product of the dynamic ranges of the 
individual component limiting elements, in agreement with our experimental results. 

1. Introduction 

An optical limiter is a device that can be integrated into an optical imaging system 
in order to protect sensitive components, such as detectors in the focal plane, from 
temporary or irreversible optical damage. For pulsed sources it is usually fluence 
(energy/unit area), rather than total integrated energy, that determines whether 
or not a device damages. Therefore, the purpose of the limiter is to keep the 
fluence below some specified value at all points in the focal plane. Similarly, for cw 
sources, it is usually the irradiance, rather than the total power that is the important 
parameter. The device must also exhibit high linear transmittance under normal 
imaging conditions. An ideal optical limiter response is shown in Fig. 1. 

Passive optical limiting has been demonstrated by using optical nonlineari- 
ties that result in self-action of optical beams. These include self-focusing1 or 
defocusing,2 nonlinear absorption (NLA)3 and nonlinear scattering.4 In the case 
of a purely absorptive nonlinearity, it is the total energy that is limited, while 
a purely refractive nonlinearity spreads the beam in the focal plane, so that the 
fluence is limited.   In many cases, both effects occur in the nonlinear material. 

'Also with the departments of Physics and Electrical and Computer Engineering. 
'Present address: Liquid Crystal Institute, Kent State University, Kent OH 44242-0001, USA 

483 



High Dynamic Range Passive Optical Limitcrs    485 

successful for 30 psec laser pulses, producing a DR of ~ 104 in a monolithic ZnSe 
limiter at an input wavelength of 532 nm. The performance of this device is shown 
in Fig. 2, which plots the normalized far-field fluence transmission as a function of 
input energy. This was measured by placing a small aperture on axis in front of the 
transmission detector. The overall low energy transmittance of this device was 12 %, 
with parasitic linear absorption and scattering being the primary loss mechanisms 
in this 30 mm long device. The transmission is reduced by more than three orders 
of magnitude over the range of input energies for which the device was tested. With 
these picosecond pulses, the device was never observed to damage. However, with 
nanosecond pulses, the DR is severely reduced by bulk optical damage, possibly 
caused by thermal nonlinearities.6 Such self-protecting geometries can be used for 
other materials, such as carbon-black liquid suspensions (CBS) or reverse-saturable 
absorber (RSA) dyes. 
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Fig. 2. Normalized fluence transmission of a monolithic ZnSe limiter for 30 psec, 532 nm input 
pulses. The fluence is measured by placing an aperture on axis in front of the transmission detector. 
The transmittance is normalized to the low energy aperture transmittance. 

A similar, but more versatile implementation of self-protecting devices is to place 
two or more limiting elements in tandem in the optical path. Such a geometry is 
schematically shown in Fig. 3, where element 1, the 'primary limiter', is placed at 
or near focus, while element 2, the 'protector' is placed in front of the primary at 
a region of lower irradiance. The basic concept is that the primary limiter pro- 
vides a low limiting threshold while the protector prevents optical damage to the 
primary limiter. The damage energy threshold of the system is thus determined by 
the damage threshold of the protector, which occurs at much higher input energies 
than damage to the unprotected primary. This is because it is positioned far from 
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transmission of this device are self-focusing, along with absorption and scattering as- 
sociated with the resulting laser-induced breakdown plasma. The response time has 
been shown to be ~ 2 psec in the visible.10 Even larger nonlinearities were found at 
10 /im when C02 laser pulses were used,11 which demonstrated the potential for ex- 
tremely broad band operation. However, the critical power, (~ 8 kW in the visible), 
is often too high for many applications. Large refractive nonlinearities (several or- 
ders of magnitude higher than that of CS2) have been found in liquid crystals;12 but 
they are obtained at the expense of speed (response times are usually nanoseconds 
or longer). Atomic vapors have also been used to build optical limiters. Bjorkholm 
et a/.13 built a device that uses self-focusing in Na vapor that is due to near-resonant 
excitation at a wavelength of 590 nm. Some of the largest nonlinearities exhib- 
ited to date are in semiconductors.14 Unfortunately, from the standpoint of optical 
limiting, these extremely large nonlinearities are associated with near band-gap 
resonance and are maximized in a region of relatively high linear absorption. In 
addition, solids undergo irreversible optical damage. Even so, effective limiting 
has been demonstrated in semiconductors using other mechanisms. In 1969 Geusic 
et al.15 reported limiting behavior in Si that was attributed to stepwise nonlinear 
absorption with 1.06 /an radiation. Later, Boggess et al.16 demonstrated fluence 
limiting in Si that was due to a combination of nonlinear absorption with a refrac- 
tive contribution induced by the photoexcitation of free carriers. Power-Kmiting 
experiments were conducted by Ralston and Chang17 in a series of semiconductors 
such as CdS, GaAs, and CdSe. This was the first report to our knowledge of the use 
of two-photon absorption (2PA) for optical limiting. Boggess et al.1& were the first 
to use the combined effects of 2PA and carrier defocusing to obtain optical limiting. 
The geometry used was to focus picosecond 1.06 /im pulses onto the surface of a 
thin sample of GaAs, refocus the beam, and monitor the transmission through an 
aperture. Since the damage-prone surfaces are subjected to the maximum fluence 
of the input pulses, the range over which these devices function without incurring 
damage is low. More recently, two-step absorption processes in GaP have been used 
to produce low threshold limiters.19 In 1989,5,6 we demonstrated that if samples of 
optical thickness much greater than the Rayleigh range are used, the large nonlin- 
earities of the semiconductor can actually be used to self-protect the limiting device 
from damage. 

2.2.  Two-Photon Absorbing Semiconductors 

For photon energies in the range Eg/2 < fiw < Eg, where Eg is the band-gap en- 
ergy, semiconductors exhibit large two-photon absorption (2PA) while maintaining 
high linear transmittance.3 Additionally, carriers excited by 2PA impose a negative 
contribution to the refractive index, resulting in self defocusing. This is in addition 
to the bound electronic nonlinear refraction, given by n — no+ ^7, which is highly 
dispersive in the region of 2PA. The quantity n2 can change sign depending on 
the wavelength, so that this effect can result either in self focusing or defocusing. 

I 
t 
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Thermal diffusion in ZnSe has a much longer relaxation time than free-carrier life- 
times (~ 1 nsec).24 Hence, for nanosecond or longer pulses, carrier nonlinearities 
may become dominated by thermal nonlinearities. This is opposite to the case of 
picosecond pulses. This problem may be overcome by the use of materials with 
negative thermo-optic coefficients. 
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Fig. 4. Level structure for nonlinear behavior of phthalocyanines. Solid arrows indicate absorption 
processes, dashed arrows indicate decay paths. 

2.3. Reverse-Saturable Absorber Dyes 

Studies of the nonlinear properties of a number of phthalocyanine and naphthalo- 
cyanine derivatives in solution,25 have shown these materials to be suitable for 
limiting applications. The dominant nonlinearities are excited-state absorption and 
refraction, (ESA and ESR). The generic level structure for these molecules is shown 
in Fig. 4. This five-level structure shows the possibility of both excited singlet 
and triplet absorption. Typically, absorption corresponding to excitation from the 
ground state to the Si band is peaked at wavelengths around 700 nm. The initial 
absorption at the second harmonic of the Nd:YAG laser, A = 532 nm, is low be- 
cause the excitation is high into the Si vibrational manifold. Fast relaxation to the 
bottom of this band allows ESA for (Si —► £2) to become resonant with the 532 nm 
input light. The degree of limiting therefore depends upon the ratio of the excited 
to ground state cross sections at 532 nm. For longer pulses, intersystem crossing 
leads to triplet-triplet ESA. Hence, these molecules have the attractive property 
that they are able to respond on both fast and slow timescales. Typical values of 
the intersystem crossing time rlsc are in the range of a few nanoseconds, so that for 
our pulsewidths, we can ignore intersystem crossing. Measurements of the nonlinear 
refraction in these materials have shown that this is dominated by refractive changes 
due to the occupation of excited states.25 However, nonlinear absorption is usually 
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Fig. 5. Limiting response of SiNc solution in 1-mm thick quartz cell. Solid line is fit to data with 
<712 = 1.65 X 10—17 cm2, Fa = 4.5 J/cm2. The dashed line is for the same <ri2, in the absence of 
saturation. 

than N, reducing the maximum obtainable optical density. Additionally, damage 
may occur before this high fluence limit is reached. 

In Fig. 5, we show the input-output energy response for a solution of silicon 
naphthalocyanine (SiNc) in toluene held in a 1 mm-thick quartz cell, with 4.6 nsec 
(FWHM) pulses at 532 nm from a single longitudinal mode Nd:YAG laser at a 2 
Hz repetition rate . The beam was focused to 8 /*m (HWl/e2M) at the center of 
the sample. The linear transmittance of the cell was measured to be 59 %. Damage 
to the front surface of the cell occurred for incident energies above 20 fi3. The solid 
line is a fit to the data using Eq. (6), but including a phenomenological saturation 
of the So —► Si transition, by setting a = a0/(l +F/F,). The best fit was obtained 
for <ri2 = 1.65 x 10-17 cm2 and Fa = 4.5 J/cm2. The value for <?\i is smaller than 
the value previously measured using psec pulses of 0*12 = 3.9 x 10-17.25 This is 
because in the present experiment the assumption that the pulsewidth (4.6 ns) is 
much less than the excited state decay time (3.1 ns) is not valid, and also because 
the sample thickness is larger that the confocal beam parameter so that the effective 
fluence is smaller than Fo. Hence, our value of <7i2 is an effective cross section for 
this experiment only. Nevertheless, the fit is good for all fiuences up to damage. 
The dashed curve shows the predicted output using the same G\i, but without 
saturation. From this, we see that the overall effect of saturation is to increase the 
transmitted energy by about a factor of two over the unsaturated case. In Fig. 6, 
we show the same data and fits plotted as transmittance versus input energy. From 
this data we conclude that for these pulsewidths it is not necessary to perform a 
lengthy numerical solution of the rate equations to obtain a satisfactory model for 
the limiting behavior of these dyes. 
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quartz cuvette filled with a solution of SiNc. A schematic of this tandem limiter is 
shown in Fig. 7. 

Fig. 7. Adjacent element SiNc/ZnSe limiter. 

The limiting in SiNc is dominated by RSA as described in Sec. 2. With the 
ZnSe sample situated at the rear of the cell, it behaves as the primary limiter, while 
the solution acts as the protecting element. To optimize the focusing geometry, 
a Z-scan27 was performed at low irradiance to find the position with respect to 
focus that yields a minimum transmittance. We find that the damage threshold 
is determined by the front surface of the quartz cell. The thickness of the device 
protects the first quartz surface from damage since it is many times z0 away from 
the beam waist, where ZQ = TTWQ/X is the confocal beam parameter and WQ the 
beam radius at the waist (HWl/e2M). The overall effect is a significant increase in 
the dynamic range of the device. 

Experiments show less than a factor of two increase of the limiting threshold 
between ZnSe and the hybrid limiter. The important observation was that no 
damage was observed on ZnSe in the hybrid device up to the maximum tested 
input energy of 80 fi3, while the damage threshold of unprotected ZnSe at 532 nm 
was measured to be 2/iJ. This shows an increase in the dynamic range of more than 
a factor of 25. The device has an overall linear transmittance of 40 percent, but 
does not have antireflection coatings. We also performed comparison experiments 
with a limiter consisting of chloro-aluminum phthalocyanine (CAP) and ZnSe as 
the individual elements. The results for both devices are presented in Table 1, along 
with measured limiting thresholds for CAP and SiNc without the ZnSe. From this 
table it is clear that the hybrid limiter gives a larger dynamic range than limiters 
made of the individual elements. In each case, the effect of placing the ZnSe in the 
cell is to reduce the limiting threshold below that of the dye alone, while maintaining 
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4 2   FOM for a Tandem Limiter 

damage fluence, FD, alttiougn me F wectine element some distance 

• We Position the ^^^^Z^^T^^y limiter is kept 

Mr t: "I^^'t focus is given by «8/2 and at the protector 
^/J^^uireinent is Fmax •»? < F* • «* or simply ^.(protec or 
is x^/2, then ou     ^ maximum energy transmitted by the protector 
< £D (pnmary).   Therefore   the ^^ ^ ^ protectop 

T t sti^tly cWh maximum energy transmitted by the primary 
iÄi energy of the entire device is determined by damage to the 

protector, then the FOM for the tandem limit« is: 

t o» Ep (protector)      ; 
iTOM(tandem)=£max(primary)-JJ 

M ♦    fv.    f.rtnr of T2 due to the two elements, since each has a linear trans- 
Note the factor of TL due t ^(protector) = Em„ 
mittance of Th.   Now applying r,q   v ;               ».,frtT\ ~ PVfnrimarv), we obtain 
(protector) -DR/U, so that by setting £max(protector) -E»U™»**)> 
^(protector) = £D(primary) -W^ We then obtain from Eq. (9), 

DR   -Eg(primary)     „2 _ (flm2 (10) 
FOM(iandem) = — £max (primary) '   L     k 

For two identical elements, each of dynamic range DR, the effect of evading 
tor two men ,(nmi   Sirniiarly, use of 3 elements can produce a FOM 

A To^J^s^Z linL transmission for „ elements in tandem 

H 'which may easily become unacceptably small.   Extension of the above 
(    }  't tatlem limiter with two nonidentical nonlinear absorbing elements 

arguments to a *^ ™^       ^2) we find that the overall FOM is just given with dynamic ranges PTO and M(J, ^^ ^ ^ is rf     , 

ÄÄÄ, i- FOM = W) • ^(2) • W) • • • DRiN). 

4 3   Experimental Results on Tandem Limiters 

We performed experiments on two separate element tandem ^ ^'^ 

Tcombination o/cBS and SiNc elements, and the ^^«^ ^ 
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Fig. 8. Limiting response of SiNc/CBS tandem limiters. Curve (a) shows low energy behavior, 
(b) shows high energy response. Solid circles: CBS as primary limiter, SiNc as protector. Open 
circles: SiNc as primary, CBS as protector. 

the overall linear transmittance is 21 %, smaller than that of the SiNc/CBS limiter. 
In Fig. 11, we show the same data in the form of transmittance as a function of 
input energy. From this curve, we can easily estimate the dynamic range by use of 
Eq. (8b). 
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Fig. 11. Transmittance vs. input energy for SiNc/SiNc tandem limiter. 

limiter elements were those obtained for the single element. As the beam was 
not diffraction limited, there was insufficient information to model the propagation 
accurately. To calculate the input fluence distribution at each element, we simply 
assume that the beam remains Gaussian, with the same spot sizes as measured 
in the absence of a nonlinearity. Nevertheless, this simple model can predict the 
limiting response to within a factor of two over an input energy range of seven orders 
of magnitude, as shown in the logarithmic plot of Fig. 11. The dashed curve shows 
the predicted output using the same excited state cross-section, but in the absence 
of saturation. Comparison of the solid and dashed curves shows that saturation has 
a major effect on the performance of the SiNc/SiNc tandem limiter. 

5.  Conclusions 

We have designed an optical geometry to extend the dynamic range of single element 
optical limiters without severely degrading the limiting threshold. The purpose of 
this study was to provide a proof-of-principle demonstration of the tandem limiter 
geometry, rather than to produce a fully optimized device. Although these devices 
have not been optimized, the preliminary results show considerable potential for 
improving limiter performance. The reason for using thin cells for these initial 
experiments was to allow simple modelling and optimization. Future studies will 
build upon these results by employing other geometries. One method for increasing 
the dynamic range is to make the thickness of the primary limiter much greater 
than the Rayleigh range. However, this requires a more sophisticated model of the 
nonlinear propagation equations. We recently succeeded in developing a nonlinear 
beam propagation code for this purpose and are in the process of performing such 
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We discuss the characterization of nonlinear optical processes in materials associated with loss 
and index changes using the Z-scan. The primary problem addressed is, given a new material, 
how do you determine the dominant nonlinearities present and their physical mechanisms. In 
particular, in extensive studies of a wide variety of materials we have found that there is 
seldom a single nonlinear process ocurring. Often several processes occur simultaneously 
sometimes in unison, sometimes competing. Distinguishing and separating these processes is 
important for understanding and modeling the interaction. There are a variety of methods and 
techniques for determining the nonlinear optical response, each with its own weaknesses and 
advantages. In general it is advisable to use as many complementary techniques as possible and 
vary as many experimental parameters as possible in order to unambiguously determinine the 
active nonlinearities. Here we show as examples the two cases of semiconductors and reverse 
saturable absorbing dyes. We concentrate on the use of the Z-scan in determining the 
responses, but utilize knowledge from other experiments to help in the interpretation. 

I. Introduction 

Numerous techniques are known for measurements of nonlinear refraction (NLR) and nonlinear absorption 
(NLA) in materials. Nonlinear interferometry [1], [2], degenerate four-wave mixing (DFWM) [3], nearly- 
degenerate three-wave mixing [4], ellipse rotation [5], beam distortion,[6,7] beam deflection [8], and third- 
harmonic generation[9] are among the techniques (direct or indirect) frequently reported for determining NLR. 
We have recently developed a single beam technique for measuring the sign and magnitude of NLR indices 
called Z-scan [10,11], which offers simplicity as well as high sensitivity. Techniques for measuring NLA 
include transmittance [12], calorimetry[13], photoacoustic[14], pulse-probe[15], and now Z-scan [11]. 

Given all these methods it is rare that any single experiment will determine the complete physics behind the 
nonlinear response of a given material. The most important point to be made in this paper is that a single 
measurement of the nonlinear response of a material, at a single wavelength, for a single pulsewidth gives very 
little information on the material, and in general should not be used to judge whether a material has a large 
nonlinearity or to compare one material to another. We will elaborate on this point by using two examples, a 
semiconductor and a reverse saturable-absorbing dye. Here we demonstrate the importance of the pulsewidth 
dependence of the nonlinear response. Similar comments can be given for, for example, the wavelength 
dependence. We first describe the Z-scan experiment and then present results for zinc selenide (ZnSe) and the 
organic dye chloro-aluminum-phthalocyanine (CAP) in solution with methanol. We then discuss the necessity 
for using different pulsewidths. 

II. Z-SCAN 

The Z-scan exploits the spatial narrowing and broadening of Gaussian beams in the far field which are due to 
self-focusing or self-defocusing caused by the nonlinear interaction of the beam with the material. A 
schematic of the experimental setup is given in Fig. 1. A Gaussian beam is focused onto the sample and then 
collected through an aperture in the far field by the transmission detector (D2). Keeping the input energy 
constant, the sample is translated along the beam propagation direction through the focal plane, and the 
transmittance (D2/D1) is measured as a function of this sample position Z with respect to the focal plane. In 
the case of a material with a negative nonlinear refractive index, the self-defocusing will cause beam 
narrowing in the far field when the sample is before focus (negative Z) and beam broadening when the sample 



is after focus (positive Z). An increase in transmittance followed by a decrease in transmittance (peak-valley) 
for increasing Z denotes a negative nonlinear refraction, while a valley-peak configuration implies a positive 
nonlinearity. In Ref. [11], we give a detailed description and analysis of the Z-scan technique. If the sample 
length is less than the confocal beam parameter and if the phase changes in the field caused by the nonlinear 
interaction are not transformed into amplitude changes within the sample then the sample is considered thin 
(external self-action).[l6,17] For such "thin" samples it is found that the change in the index of refraction 
(An) is given from the linear relation between the on-axis phase distortion at focus (A$0) and the difference 
between the maximum and minimum values of the normalized aperture transmittance (ATp.v). This relation 
for an aperture size that gives 40% linear transmittance is given by. 

A$0 = 2.8ATp_v. (1) 

SAMPLE        APERTURE 

Fig. 1. The Z-scan experimental setup.  D2/D1 is measured as a function of the sample position z. 

Examining Fig. 1 for a purely refractive case, if the aperture is removed i.e. if all the transmitted light from 
the sample is collected by D2, there will be no change in the transmittance at different sample positions. 
However, if the sample exhibits nonlinear absorption in addition to nonlinear refraction, the measurement will 
detect the change in the transmittance which is maximized at Z=0. This type of measurement, to which we 
refer as an open aperture Z-scan, yields the nonlinear absorption parameters of the material. When the 
aperture is in place, the measurement (closed aperture Z-scan) is sensitive to both nonlinear absorption and 
nonlinear refraction. Dividing the closed aperture data by the open aperture data yields a Z-scan signal which 
is due to nonlinear refraction which can be determined using Eq. 1 as long as the nonlinear absorption is not 
too strong. Figure 2 shows an example of this procedure for ZnSe where picosecond 532 nm pulseswere used. 
The limitations of this simple approach and when a more exact analysis is needed are described in detail in 
Ref. [11]. 

Considering a thin sample and using the slowly varying envelope approximation, we can separate the wave 
equation into an equation for the phase, d$°/odz, and an equation for the irradiance, dl%dz, where z denotes the 
depth within the sample (as opposed to the sample position Z). Here is where we need to model the nonlinear 
response of the material. In practice the experiment and analysis go hand in hand and are refined as more data 
is obtained. 
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Often the best place to start on a new material of unknown nonlinear response is to look for NLA since 
measurements of NLR will depend on the strength of the NLA. The open aperture Z-scan, or measuring the 
change in transmittance as a function of irradiance, I, are relatively straightforward experiments as long as care 
is taken to collect all the light transmitted by the sample and the detectors used have uniform response (i.e. if 
the lioht is spread over a larger or smaller surface area the detector response is unchanged) We have seen 
proble°ms with several detectors especially in the UV. After the NLA is determined the nonlinear refraction 

can be determined. 

III. Modeling of Nonlinear Loss 

We discuss two types of nonlinear absorption, two-photon absorption (2PA) and excited state absorption (ESA). 
For ESA the incident photon energy is resonant or nearly resonant with an intermediate state such that linear 
absorption is present and real transitions occur. For 2PA there is no intermediate level to give linear absorption 
such that the intermediate transition is termed virtual. Any residual linear absorption is not involved in the 
nonlinear response (eg. are caused by impurities). Both nonlinearities apear as third order responses. However, 
in one case (2PA) the nonlinearity is proportional to Im{X(3)}, while for ESA the nonlinearityis due to the 
cascaded nonlinearity ImkWjiImOtW} (i.e. two sequential linear absorption processes). Here x^ refers to the 
jth order electric susceptibility. In the x^X^ process the first x(1> is associated with the ground state 
absorption and the second with the ESA. 

Equations describing these third order responses for nonlinear absorption are; 

for 2PA, including residual linear absorption of coefficient a 

f - -<«*». • <2> 
and for ESA 

£ = -(a+aN)I , (3) 
dz 

where ß is the 2PA coefficient, a is the ESA cross section, and N denotes the density of excited states produced 
by linear absorption so that 

dN = al_ (4) 
dt      fiu ' 

Here hw is the incident photon energy. The irradiance is a function of the transverse spatial coordinate, r and 
time t as well as the sample position Z (note the distinction between Z and the depth in the sample z). .By 
integrating Eq. 4 up to some time t' in the pulse, plugging this integral into Eq. 3 and then integrating Eq. 3 
over all times f (i.e. -oo to co) gives 

dF 
dz ITLUJ 

F (5) 

where F=F(r) is the fluence (i.e. energy per unit area). Notice that this equation is exactly analogous to Eq. 2 
describing 2PA loss with the fluence replacing the irradiance and aa/2hw replacing ß. Therefore, since in most 
experiments the pulse energy is detected, 2PA and ESA will give nearly identical results for loss as a function 
of input energy or for a pulsed Z-scan where the transmitted energy is detected. The only difference is in toe 
temporal integral over the pulse for 2PA since for ESA this integral has already been performed.   In other 

'fäh&y/i^2 



words, in order to determine which of these nonlinearities is present, the temporal dependence must be 
measured in some way. 

The solution to Eq. 5 for ESA at the exit surface of the sample is 

_,.    ,     F(Q,r)e-°L 

F(L'r)=     l+p(r) (6) 

where p(r)=(ca7/2Äw)F(0,r)Leff, and Leff = (l-e"aL)/a with L the sample length.   Integrating over an assumed 
Gaussian spatial distribution of on-axis fluence F0, gives the normalized change in transmittance AT of; 

ln(l+P„)      , Po Q£7F0Leff 
lIin 

AT= = 1= 1~__= _  /7N 
Ti:„ p„ 2 4hu \'J 

where T is the transmittance, and TUn the linear transmittance. The last equality defines po=p(0) and the 
approximation is valid for small p0 (i.e. for small AT)-. All energy, fluence and irradiance levels are quoted as 
incident in the sample (i.e. after surface reflections are taken into account). For a Z-scan, F0 is a function of 
the position of the sample-with respect to the beam waist, Z. 

The calculation of AT for 2PA is complicated by the necessity to perform the time integral. The irradiance at 
the exit surface of the sample is obtained from Eq. 2 as, 

l(0,r,t)e-^ 
1 + q(r, t) (8) 

where q(r, t)=£I(0, r, t)Leff   (directly analogous to p in Eq. 6 with the substitutions previously mentioned). 
Integrating over space and time yields 

AT = q0 

FQo J 

lntl+q^dr-l* -^=, (9) 
-oo ^v*■ 

where q0 = £IpLeff (I0 the peak-on-axis irradiance) is the analogue of p0 in Eq. 7. The approximation is valid 
for small nonlinear absorption as in the approximation in Eq. 7. The extra factor of 1/-/2 comes directly from 
the temporal integral. 

The question now becomes how to differentiate between these two very different nonlinearities. They both 
have nearly identical dependences on pulse energy. 

The key to differentiating between these two processes is how they depend on time, and hence, the input 
pulsewidth. Pulses having the same energy but differing pulsewidths will have differing irradiances and 
therefore, for 2PA show a different AT. On the other hand, for ESA pulses having the same energy but 
differing pulsewidths will have the same fluence and therefore show the same AT. Thus, we can differentiate 
between these processes without having to completely temporally resolve the txansmittance changes (of course 
temporally resolving the transmittance changes as in a pulse-probe experiment will also determine which 
mechanism dominates). 

The next section experimentally demonstrates how the dominant loss mechanism is readily determined by 
observing the pulsewidth dependence of the nonlinear absorption. 
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IV. Experimental determination of dominant nonlinear loss mechanism 

Figure 3 shows experimental results using two different pulsewidths for ZnSe and for CAP. In Fig. 3a the 
inverse transmittance of ZnSe is plotted as a function of the input irradiance. Since the horizontal axis is 
irradiance and not energy the fact that the different pulsewidths give the same change in transmittance shows 
that 2PA is dominant. A Z-scan is shown for CAP in Fig. 3b for two pulsewidths where the energy, and thus 
the fluence, was held fixed. In this case the overlap of these data sets indicates that ESA dominates. If instead 
we had plotted inverse transmittance for CAP as a function of input fluence (rather than the irradiance I as for 
ZnSe), Fig. 3b would look the same as Fig. 3a. 

So far we have neglected the fact that excited carriers generated in the 2PA process in ZnSe could then linearly 
absorb (i.e. free carrier absorption). It has been shown [18,19] that this process may be ignored for irradiances 
below a critical irradiance !„, where la =* iVlhw/or. Here T is the laser pulsewidth. 
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Fig. 3. a) Inverse transmittance for ZnSe using input pulsewidths of 40 psec and 120 psec (FWHM). b) Open 

aperture Z-scans for 29 ps (squares) and 61 ps (triangles) pulsewidths (FWHM) at an incident energy of 1.16 /J 

in CAP. 

Therefore, Eq. 2 does not include free-carrier absorption. We verified that free-carrier absorption was 
negligible in our experiments by measuring the same 2PA coefficient at several irradiance levels. If 
nanosecond pulses had been used, however, free-carrier absorption would be large. Thus, great care must be 
taken in both experiment and analysis. While free-carrier absorption from carriers is negligible for picosecond 
pulses, the refraction arising from these free carriers is not.[20] This is discussed in the next section. Once the 
separation of the loss mechanisms is complete the nonlinear refraction can be measured and modeled. 

III. Modeling of Nonlinear Refraction 

The induced phase distortion, &<f>, imposed on a beam by nonlinear refraction is related to the index change, 

V-<. , *    6 



An, by 

dA<£ = An27r (10) 
dz A 

where A is the wavelength in free space. The refractive index can change from a bound electronic n2 or it can 
change from the redistribution of population among levels. In solids this redistribution generates free carriers 
and the refraction is called free-carrier refraction. In molecules we call this excited-state refraction (ESR)[21] 
We will henceforth refer to both as ESR. 

Defining cT2x/\ as the change in index of refraction per unit of photoexcitation density, N, An in Eq. 1 is 
written as; 

2       2:r   r 

Here aT is the excited-state refractive cross section (often the 27r/A is dropped in the definition of the index 
change). Here N for semiconductors is the free-carrier density while for dyes it is the excited-state number 
density. The nonlinear index, n2, due to the bound electrons is related to the nonlinear index n2(esu) through 
n2(esu)=(cno/40r) n2(m2/W), with c the speed of light in m/sec. 

Chloro-Aluminum Phthalocyanine (CAP): 

For the case where ESR from single photon absorption processes dominates the refraction in Eq. 10, Eq. 4 
shows that An is determined by the temporal integral of the irradiance, that is, 

rt 
dA^(Z,t) _ g<7r 

dz hw 
I(Z,f)dt'. (12) 

Under the condition that the nonlinear refraction accumulates throughout the pulse without decay (i.e. the 
pulse is much shorter than any excited state decay times), it can be shown that the temporally averaged phase 
distortion is simply one half A#t=oo) or it equals A#t=0) at the pulse maximum in time.[ll] Therefore, 
looking at the on-axis phase distortion, 

dAflZ.O) _ Qgr F (13) 
dz 2fiw    ° ' 

Integrating Eq. 13 to find the temporally averaged on-axis phase distortion at focus A$O=A<TK0,0) we obtain 

(14) 
A*o = £L 

a 
ln[l+p0] 

~ 'i>< ) 
~ a 

2hz 
7rF0Leff 

where c is the speed of light and the approximation is valid for small overall loss.   This phase distortion can 
now be determined experimentally from ATp.v in Eq. 1. 

Zinc Selenide (ZnSe): 
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For semiconductors the refraction from 2PA generated carriers can become important, and Eq. 4 for dN/dt 
needs to be changed to include this generation rate.  If N is generated primarily by 2PA, 

dN 
dt 2hu " 

(15) 

We have neglected the loss of N due to recombination or diffusion because these processes occur on time scales 
longer than°the picosecond pulses we use in the experiments. Again, if nanosecond pulses are used the 
equations and interpretation can be considerably more complex. From Eq. 15 the cummulative nonlmearity 
(second term in Eq. 11) is proportional to a temporal integral of P for 2PA, resulting in an effective fifth order 
nonlinearity.[22] In the 2PA case this is a sequential Im[x(3)] (i.e. 2PA) followed by Refrl1)] process (i.e. linear 
index change from the carriers or excited states). The existence of two different order nonlinearities having 
different decay times was observed in semiconductors by Canto-Said et. al [23] using picosecond DFWM. The 
third order effect showed a fast response and is due to a combination of 2PA and bound electronic refraction 
while the fifth order effect (carrier refraction) showed a slow decay. The DFWM technique cannot by itself 
identify the nature (refractive or absorptive) nor the sign of these nonlinearities; however, it does give 
information on the temporal response. Also, examining the two terms in Eq. 11, it is clear that the electronic 
Ken- effect (n2I) will be dominant at low irradiance levels (third order effect) while ESR (arN) will dominate 
at high input levels (fifth order effect form 2PA generated carriers). This can allow separation of the effects 
even without temporally resolving the response as in picosecond DFWM experiments.[22] 

The phase change experienced by the beam is given by integrating Eq. 10 using Eqs. 8, 11 and 15, to give,[12] 

kn, v oT 
A#r,t,Z) = -j-Hl + Q(r,t,Z)] + ^ 

,t 

where 

H(r,t,Z) = Q0ln[l +q(r,t,Z)] 
q(r,t,Z) 

-eff 

dfH(f), 
-oo 

e"°°L 

/'  1 +q(r,t,Z)_ 

(16) 

The second term (including H) corresponds to carrier refraction, while the first term describes the bound 
electronic refraction. Temporal averaging of the fast nonlinearity has been shown in Ref. [10] to result in a Z- 
scan signal AT of 1^2 of the peak phase distortion while the cummulative nonlinearity is divided by a 
factor of 2.  This results in an on-axis temporally averaged phase distortion as seen by a Z-scan of 

kn, 
A<5  = —- 0     V2ß 

.OS 

ln[l+q0)]+ Ahuß 
dt'H(0,t',0) . (17) 

Evaluation of this integral allows Eq. 1 to be used. Alternatively, the field at the exit surface of the sample is 
completely determined by Eqs. 8 and 16 for semiconductors (i.e. EavTeiA^). As described in Ref. [22] this 
field can be propagated to the aperture and integrated numerically to find both n2 and aT from fitting Z-scans 
at various irradiance levels. 

Using Eq. 1, we empirically find that the following simple procedure gives a quick estimate of n2 as well as 
ar(n2 is given quite accurately but ar can be overestimated by as much as =;37%when compared with the 
complete numerical fitting).[22] As before, a closed aperture Z-scan and an open aperture Z-scan are 
performed at the same input irradiance and the closed aperture data is divided by the open aperture data. 
From the resultant curve  ATp.v  is determined and this  value is divided by OJokL^yVl  (the 0.36 is 

f/3 i* A .-A    2 



determined by the 40% transmitting aperture). Here a in L^f is taken as O=Q0+^I0. This procedure is 
performed at different irradiances and the results of these calculations plotted as a function of I0. If there 
were no higher order nonlinearities this procedure would give a horizontal line with vertical intercept n2. 
Thus, with free-carrier refraction present, the curve is approximately a plot of An/I0 versus I0 which is a 
straight line with an intercept of n2 and a slope of kCar where C is given by, 

C * 0.23 ^, (22) 

for small losses.  How the constant C is determined is described in Ref. [22]. 

In what follows we compare the experimental results to theory for ZnSe and CAP. 

III. EXPERIMENTAL RESULTS 

Results for ZnSe 

With 27 picosecond (FWHM) pulses at 532 nm from a frequency doubled NdiYAG laser we performed Z-scans 
at different input energies on a 2.7 mm thick polycrystalline sample of chemical-vapor deposition grown ZnSe 
which has an energy gap of 2.67 eV.[24] The beam was focused to a radius of w0=i25 /mi. First, an open 
aperture Z-scan was performed. In Fig. 4(a) we plot the experimental data. In addition we show a 
numerically calculated Z-scan using ß=5.% cm/GW in Eq. 9 using Q0=0.3 cm-1. This value for ß is within 5% 
of the value reported in Ref. [12] of 5.5 cm/GW measured using nonlinear transmittance. The fitting 
uncertainties for this measurement and for the measurements listed below were ±10% but the overall 
experimental uncertainty is ±20% arising mainly from uncertainties in the irradiance calibration. With the 40% 
aperture another Z-scan was performed at the same irradiance (Fig. 4b). In this case the measurement is 
sensitive to both nonlinear refraction and nonlinear absorption. Experiments on ZnSe were conducted at 
irradiance levels from 0.21 GW/cm2 to 2.4 GW/cm2. All of the experimental irradiances reported here are 
within the sample (i.e. Fresnel reflections taken into account). At the lowest irradiance we expect the change 
in the index of refraction to be mostly due to the third order anharmonic motion of the bound electrons.[ll] In 
all, ten Z-scans were performed (5 "open" aperture and 5 "closed"). Closed aperture Z-scans at an input 
irradiance of Io=0.57 GW/cm2 and I0=2.4 GW/cm2 are shown in Fig. 5a and 5b respectively. 

Applying the method described in section TV to ZnSe at 532 nm we obtain n2=-6.4 x 10~14 cm2/W (-4.1 x 
10-11 esu) and ar27r/A=-l.l x 10~21 cm3. These values were extracted from Fig. 6 which shows the plot of 
An/I0 versus irradiance.  The intercept gives n2 while the slope determines aT. 

With /J=5.8 cm/GW we also performed a complete numerical fit. Using an iterative approach to best fit all the 
data, we found a better fit with n2=-6.2x!0-5 cm2/GW (-4.0 x 10"11 esu), and arA/27r=-0.8xl0-21 cm3. The fits 
to the data shown in Fig. 5(a) and 5(b) are shown in these figures as the solid lines. The agreement between 
experiment and theory is remarkable given that the change in transmittance between peak and valley ranges 
from approximately 10% at the lowest input irradiance to 90% in Fig. 5(b). The absolute errors on the 
measurement of cT of ±25% are only slightly larger than those for ß and n2 even though the nonlinearity is of 
higher order. This is in part due to the fact that the calculation of ar depends on the products ßl0 and n2I0 

which we know more accurately than ß or n2 separately. Note also that the approximate method for extracting 
crr described in section rv overestimates ar by s37%. 

We also measured n2 in ZnSe at 1.06 /im where 2PA is not present. Using 40 ps pulses (FWHM) from a 
NdrYAG laser focused to wQ~40 /im spot size, we obtained n2= +(2.9±0.5)xl0-14 cm2/W (+(1.7±0.3)xl0-11 esu). 
In Fig. 7 we plot closed aperture Z-scans obtained in ZnSe at 1.06 fim and at 0.53 /im showing the change in 
sign of n2. In this figure, the nonlinear absorption has been divided out of the 0.53 /im data. This observed 
dispersion in n2 and change in sign is consistent with the recent theory of Refs. [25,26]. 
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Results for CAP' 

For all of our Z-scan measurements on CAP, the beam is focused to a waist of radius w0-19/m ^l/ej-M) 
and the sample path length is 1 mm. We performed Z-scan experiments on CAP at a «ncaiüation^ .3x10 ' 
moles per liter. The linear transmittance of 84% gives a linear absorption coefficient of o-1.8±0.1 cm i, winch 
corresponds to an extinction coefficient of 580±40 liters cm- mole-. Here the exünction coefficient is 
defined as, e = -log10T/CL=10-aNA/ln(10), where C is the concentration in moles per liter. We also give the 
relation for an absorption cross section a in cm2 where NA is Avogadro's number. 

Going back to Fig. 3b, we show'open aperture Z-scans on a CAP solution at 532 nm for two different 
pulsewidths of 29 ps and 61 ps (FWHM) using the same input energy of 1.16 yi and hence, the same on axis 
fluence at focus of F0(Z=0)=205 mJ/cm*. Clearly the nonlinear transmittance for fixed fluence is independent 
of pulsewidth and hence we conclude that the mechanism is dominated by ESA. 
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Fig. 8. The results of the division of the closed aperture Z-scan data by the open aperture Z-scan data of Fig. 

3b for 29 ps (squares) and 61 ps (triangles) pulsewidths (FWHM) at an incident energy of 1.16 jJ in CAP.   . 

The solid lines in Fig. 3b are the results of numerically fitting the data to Eq. 6 by integrating over space 
Here Fn is a function of Z. This numerical fit, or simply using AT of Eq. 7, gives a value for a of 
~> 3xl0-17cm2 (£=6 020 liters cm"1 mole"1). Measurements show that a is the same for concentrations ot 
5.5x10-« moles per'liter and 1.3x10- moles per liter. We obtain the same values for o in CAP at input 
fluences from 0 4 /J to 3.6 /J. Absolute errors in the a values of ±13% were determined from an estimated Ik 
error in the concentration, 5% fitting error and a 10% possible error in the fluence calculation. 

In order to determine the nonlinear refractive coefficients of these dyes, we performed closed aperture Z-scans 
on CAP for 29 ps and 61 ps (FWHM) pulsewidths. Figure 8 shows the results of dividing these Z-scans by the 
open-aperture scans of Fig. 3b taken under identical conditions.   Clearly we see that the index change for the 
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different oulsewidths is positive and identical for the same fluence. This nonlinear refraction £ therefore 
fluencedepen^^d associated with the real excitation of the singlet state. To determine the contribution of 
fhesoWenfz scan? were performed on the pure methanol solvent. This yielded an n for methanol of 
7 OxlO-^cmVW (2.5x10-") esu.  As expected, no nonlinear absorption was seen in the pure solvent. 

The overlap of the Z-scans at different pulsewidths and the independence of our measurements on 
Inn^rSi indicate that the nonlinear refractive contribution of the solvent is neglible.   This is consistent 

IZ^ÄÄÄ of". Slaf— atcLe— of =W. .nCes/mer ano 

~1.3xl0-3 moles/liter in CAP also showed the same aT. 

IV. CONCLUSION 

The examples given here demonstrate the importance of measuring materials nonüneaxities at different 
puLwidSs Had we looked with only a single pulsewidth, we could equally well have fit the data for CAP of 
FS 3b and 10 with ß or n2 values rather than excited state nonlinear coefficients For example for a 
pul ew?dtr0f 29 psec for CAP* this would give an n2=1.3xl0- cm»/GW (4.6x10"« esu). However we wou d 
oSa larger n using 61 psec. Such an "effective" n2 for CAP would correspond to a third order 
hvSrpo arSTlity2of 4.58xlO--Pesu. The ß or n2 description is only globally valid ^ «*™or index 
change is dependent on the instantaneous irradiance and hence responds on an ultrafast ümescale. The most 
common eS of üüs is 2PA and the bound electronic Kerr effect as are operable m ZnSe. However, if it 
is re to thT population of excited states, it is much more useful to quote the exited state absorptive or 
refractive coefficients Hence what we are observing in CAP is not a true X(3> effect but is a sequential 
x5™5) p£2"where & refers to the jth order electric susceptibility. Here, the first x^^ associated with 
the ground state absorption, and the second with the resulting excited state absorption (Im{x«}) or refractionn 

(Re{x^)). 

In ZnSe we have measured these ultrafast nonlinearities associated with the thixd-order susceÄX^ 
well as excited-state refraction for the 2PA generated free carriers of strength oT \/2x (the refractive index 
change per two-photon generated carrier pair density).   The nonlinear absorption was due to 2PA and   h 
refraction was due to a combination of n2 and ar_   These two nonlinear refractive mechanisms were separated 

by determining the irradiance dependence. 

The Z-scan measurements on ZnSe and a number of other semiconductors and dielectric materials^ ^^ us 
to determine scaling rules for both the 2PA coefficient ß and the optical Kerr coefficient ^ From compar^ons 
of our results with theory, we have concluded that ß and n2 can be predicted withm factors of two from simpb 
two-band models.[25-28] In addition the free-carrier refraction is explained well by band-filling 

models.[29-32] 
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ABSTRACT 

The nonlinear optical properties of CSo, InSb, InAs, Ge and ZnSe have been 
studied using CO2 laser pulses in the 10 u.m wavelength region. The nonlinearities 
associated with CS2 and InSb are particularly strong, making these materials useful in 
optical power limiting applications that involve nanosecond and microsecond laser pulses. 
Liquid CS2 displays thermally induced nonlinear refraction, while two and three photon 
absorption have been observed with the semiconductor InSb at different temperatures.  In 
semiconductors such as Ge, ZnSe and InAs, having bandgap energy greater than three times 
the infrared photon energy, avalanche ionization of carriers is primarily responsible for the 
observed nonlinear behavior. Because the onset of the avalanche process is an abrupt 
function of laser irradiance, this effect is most conveniently studied with picosecond pulses. 
In addition, Z-scan measurements with picosecond pulses reveal nonlinear refraction due to 
bound electrons in these semiconductors. 

I. INTRODUCTION 

The characterization of the nonlinear optical properties of materials in the infrared region around 10 p.m is 
important not only because it broadens our knowledge of their fundamental physics and damage limitations, but also 
for applications such as laser beam modulation, optical isolation, and recently, to protect easily damaged infrared 
sensor elements from pulsed CO2 laser beams. We have applied the Z-scan technique, developed at CREOL [1] [2], 
to probe the nonlinear optical behavior of CS2, InSb, InAs, Ge and ZnSe at 10.6 |im. 

Briefly, Z-scan uses a single Gaussian beam to measure the transmittance of a nonlinear medium through a 
finite aperture in the far field, as illustrated in Fig. 1. By translating a nonlinear refractive sample along the optic 
axis (z direction) through the focus of a lens, a peak and valley in the detected signal will be obtained. By analyzing 
the transmission as a function of position, we can determine the magnitude and sign of the nonlinear refraction. 
Repeating the Z-scan with the aperture wide open causes the peak and valley associated with nonlinear refraction to 
disappear. However, it can reveal the presence of nonlinear absorption. We quantify aperture transmission with the 
parameter S, and denote these two measurements as closed-aperture (S < l).and open-aperture (S = 1) Z-scans. 

Laser induced changes to the index of refraction (An) of a material that are associated with y} processes are 
conveniently described by the coefficients 7 (mks) and n2 (esu), defined by the relationships: 

1 1   i2 
An =Yl = -no E 

2 l 

where I is the irradiance of the laser beam (mks) with peak electric field E (cgs). Much of the discussion in this 
paper is concerned with higher order effects in semiconductors, whereby the nonlinear process generates carriers which 
then refract and/or absorb the incident laser beam. The Z-scan will resolve such nonlinear behavior, but interpretation 
of the data becomes more complicated. Although it usually involves higher order effects, we will focus on the optical 
power limiting application because of its relevance for infrared sensor protection. 

Many infrared sensor applications have wide field-of-view requirements, and it is commonly assumed that a 
protection scheme utilizing nonlinear refraction requires a limiting aperture in front of the detector, thus limiting the 
field-of-view. Although in principle, the lensing caused by nonlinear refraction allows all the incident energy to 
strike the focal plane of the detector, the footprint of the focused beam will be changed. The redistribution of energy 



has the effect of reducing fluence (energy/area). Since it is fluence, not energy, that determines a detector's damage 
threshold, nonlinear refraction can be exploited successfully to protect sensors from damage. 

n. CS2 

Liquid CS2 is a well known nonlinear optical medium at wavelengths spanning the visible to 10 |im in the 
infrared, and its nonlinear coefficients have become a standard to which nonlinear properties of other materials are 
often referenced. In general, CS2 displays a strong optical Kerr effect leading to n2 - 1.3 x 10"11 esu, which is 
essentially independent of wavelength. However, in the proper focusing and imaging geometry, thermal lensing can 
be realized, suggesting interesting optical power limiting possibilities. 

Using 300 ns TEA laser pulses, we have obtained the limiting behavior shown in Fig. 2 by employing 
thermal lensing [3]. This limiter works in conjunction with an aperture placed in front of the detector in the far field. 
Only by proper positioning of the beam focus in a "thick" cell of CSo will the desired limiting operation take place. 
By thick, we mean a cell length much longer than the depth of focus. The proper position is found by locating the 
transmission minimum with a closed aperture Z-scan. A closed aperture Z-scan (S = 0.5), obtained with a 2.4 cm cell 
of CS2 is shown in Fis. 3. If the focus is placed instead at the point of transmission maximum, the device reverses 
operation and enhances, rather than limits, transmission at high irradiance. 

The thermal nature of the lensing was confirmed by increasing the linear absorption of CS2. This was 
accomplished by dissolving sulfur impurities in the liquid to increase the absorption coefficient from a = 0.22 cm"1 

to a = 2 cm"1. As depicted in Fig. 2, dramatic improvement of limiting performance was obtained, and is attributed 
to the increased deposition of heat in the focal volume. Bearing this in mind, we note that design of a thermal 
lensing device will depend on linear absorption, density, specific heat, and thermo-optic coefficient of the medium, as 
well as the laser pulse length and focused spot size. 

Thermal lensing in CS2 is not limited to pulsed lasers. We have also performed experiments with cw C02 

lasers which show limiting at less than 0.3 W input [4]. 

With 130 picosecond C02 laser pulses, we have been able to detect nonlinear refraction due to the 
reorientational Kerr effect. Thermal lensing is too slow to be a factor on the picosecond timescale of this 
measurement. A closed aperture Z-scan is shown in Fig. 4. By fitting this data with the solid line shown in the 
figure, we obtain n2 = 1.5 x 10"11 esu, in excellent agreement with previous measurements by other techniques at 10. 
6 |im and other wavelengths. 

HI. InSb 

Since its discovery in 1968 [5], two photon absorption of C02 laser light in InSb has been the subject of 
extensive study and characterization. The strength and efficiency of both nonlinear refraction and nonlinear 
absorption derived from two photon absorption has led to many applications including power limiting, pulse 
shaping, beam deflection, and optical switching. Although the two photon absorption process is broadband, 
insensitive to temperature, requires no external control or biasing, and is accessible to a wide range of laser 
pulsewidths, it is only recently that InSb has been embraced by the sensor protection community as an attractive 
alternative to heated vanadium dioxide, gas plasma shutters, and active electro-optical switching techniques. Several 
years ago, we demonstrated the utility of InSb as a C02 laser power limiter [6]. 

Two photon absorption has been observed in InSb at temperatures from 77°K to 300°K, over the entire C02 

laser spectrum with pulses ranging from several microseconds to tens of picoseconds. The immediate applicability of 
this material as an infrared sensor protection device is illustrated in Figs. 5 and 6. The curves clearly depict energy 
clamping action obtained with a 1 mm sample at room temperature with 300 ns and 60 ps pulses, respectively.   In 
these measurements, the clamping effect is enhanced by imaging only the central, high irradiance portion of the beam 
profile by placing an aperture in front of the detector.   The same effect would take place if InSb was used to protect a 
two dimensional detector array, since the high energy portion of the beam striking a pixel would be minimized. 

Depending on the optical layout, a system can be sensitive to nonlinear refraction, nonlinear absorption, or 
both. In Z-scan experiments, restricting transmission in the far field with an aperture will reveal nonlinear refraction 
and absorption, while removing the aperture shows only nonlinear absorption. In a power limiting arrangement that 
produced the data of Figs. 5 and 6, an aperture is placed behind an InSb device and in front of the detector in the far 
field. Electron-hole pairs are generated in InSb at sufficiently high irradiance, causing self-defocusing of a Gaussian 
laser beam that spreads a portion of the spatial profile outside the aperture. At higher irradiance, the generated carrier 



density will cause significant absorption of the incident beam   The effect of self defocusing is easily disce mble in 
the picosecond data of Fig. 6. When the aperture is present, the onset of clamping occurs at 20-25 nJ. With an open 
aperture, clamping starts at - 100 nJ.   The clipping aperture geometry displays the effect of nonlinear refraction at 
lower input energy, until nonlinear absorption dominates at higher input levels. 

Free carriers venerated by two photon absorption dominate the nonlinear absorption for nanosecond pulses in 
the 8-12 um spectrafregion. Two photon absorption does remove a small number of photons from the laser beam, but 
this effect is ne»li°ible compared to the absorption caused by direct transition of excited holes from the heavy to 
licht hole band° Therefore, the nonlinear absorption is actually a two step process: 1) two photon absorption of the 
10 pm light creates a high density of electron-hole pairs, followed by 2) strong absorption of the remaining 10 pm 
light by the excited holes. This appears as an effective fifth order nonhneanty. 

We should also mention that motion of electrons in a non-parabolic conduction band causes nonlinear 
refraction in InSb [71   This effect is small compared to the nonlinear optical properties caused by two photon 
absorption however, and great effort must be expended to isolate non-parabolicity from two photon absorption m 
experiments. It is not relevant for power limiting. 

Although InSb exhibits strong nonlinear absorption at room temperature, the background carrier density leads 
to unacceptable linear losses in most infrared sensor applications. An option is to make the InSb wafer extremely 
thin (- 100 pm), but this compromises the structural integrity of the device and limits the dynamic range in a 
focusing geometry. A tandem arrangement may make the use of thin wafers possible. 

A better option, in applications that permit it, is to use a thick InSb device cooled to T < 200°K at an 
intermediate focus in the sensor optical train. In this temperature regime, the background earner density will be 
reduced by - 100 compared to room temperature, resulting in small linear transmission loss m samples as thick as 1 
cm   Lowest linear loss will be obtained with samples that are slightly n-doped, to reduce the background hole 
concentration   Although the two photon absorption coefficient will be reduced at lower temperatures, this will be 
offset to some extent by an increase of the excited carrier lifetime. More important, a thick element takes advantage 
of the "self-protecting" nature of limiters that are longer than the Rayleigh length of the focused infrared beam 
Thick monolithic optical power limiters were first demonstrated by our group some time ago [8]. We have shown 
such limiters increase dynamic ranse by many orders of magnitude compared to thin devices [9],[10]. A systematic 
study of InSb limiters as a funetionof doping, length, temperature, as well as laser wavelength and pulse duration, 
needs to be done to provide the key design parameters for an infrared sensor protection device. 

Because of band bending, both two photon absorption and intervalence band hole absorption will occur in 
InSb throughout the 8-12 |im wavelength region. For T < 100°K however, the long wavelength two photon 
absorption°edge will increase to - 11 p.m. For sensor protection use, this is probably not an issue because it is 
difficult to make efficient lasers at these long wavelengths. 

At temperatures below - 100°K, there is no significant increase of the linear transmission of InSb in the 8-12 
pm spectral region  This is because free carrier absorption dominates at these wavelengths, and the free carrier 
concentration is set by material purity, not the intrinsic carrier density at low temperatures. The purest InSb available 
has an impurity concentration of - 1014 cm"3, and these shallow impurity levels are completely ionized even at 
temperatures as low as 2°K. 

When InSb is cooled to T < 50°K, the bandgap increases to Eg = 0.24 eV, making the material inaccessible to 
two photon transitions by 10.6 pm laser light. Consequently, nonlinear absorption is substantially weakened when   ■ 
sample temperature is reduced from 77°K (Eg « 0.228 eV) to < 20°K. For C02 laser excitation pulses ranging in 
duration from 1 ns to 90 ns, the irradiance at which nonlinear absorption occurs increases from - 100 kW/cm  at 
77°K to > 1 MW/cm2 at - 10°K [11]-[14]. This could have important implications for space-based sensor 
protection applications where the ambient temperature can be this low. 

The nonlinear absorption observed in InSb at T < 20°K has been attributed to laser-driven impact ionization 
of valence band electrons into the conduction band, and a number of modeling efforts have been reported [13], [15J- 
[18]. All of these calculations however, fail to predict the correct pulsewidth scaling of the nonlinear absorption 
threshold, particularly for picosecond experiments [19]. 

We believe that three photon absorption provides an alternative explanation of the low temperature nonlinear 
absorption. The data of Dempsey et al [12], obtained with 100 ns pulses, provides detailed spatial and temporal 
information for the incident and transmitted pulse shapes, permitting evaluation of three photon absorption in InSb at 
10°K. The three photon absorption carrier generation process is described by: 



9AN _   K3* 
3t        3ficD 

where AN is the induced carrier density, K3 is the three photon absorption coefficient, and I is the laser irradiance at 
frequency CO. Absorption of the laser light is attributed entirely to inter-valence band transitions due to the generated 
holes. We neglect free carrier absorption saturation in InSb, although its existence has been postulated [20]. Direct 
bandgap carrier recombination is negligible on this timescale (- 10"8 sec) at this temperature, and the excited carrier 
density (- 1016 cm"3) precludes Auger recombination. To obtain the transmitted pulse, the nonlinear absorption was 
spatially and temporally integrated using a numerical procedure with K3 as the only fitting parameter. This analysis 

generated a value of K3 = 0.003 cm3/MW2. 

Schwartz et al [19] have made low temperature (20°K) transmission measurements with InSb using 
picosecond 10.6 (im pulses. At a fixed irradiance of 30 MW/cm2, the pulse duration was increased in steps of 4, 12, 
22, 38 and 54 ps - causing increasing nonlinear absorption.  This data cannot be reconciled with any proposed 
avalanche theory, but our three photon absorption analysis produces K3 = 4.7 ± 0.3 x 10"3 cm3/MW2, consistent 

with the value found above. 

Wherret [21] has presented a calculation for estimating the magnitude of K3. Although this calculation is 
designed primarily to ascertain the relative scaling of multiphoton absorption coefficients in different materials, a 
simple formula is given in his paper that permits direct evaluation of K3. This formula yields K3 = 4.2 x 10"3 

cm3/MW2 for InSb at T < 20°K, in remarkably good agreement with the numbers deduced from the experiments in 
Refs. [12] and [19]. 

A consistent description of the nonlinear absorption, in experiments with pulse durations varying by over 
three orders of magnitude, tends to favor three photon absorption over avalanche ionization as the relevant carrier 
generation process in InSb at low temperature. Furthermore, the scaling relationship of Ref. [21], suggests that there 
may be a non-negligible component of three photon absorption at higher temperatures, where two photon absorption 
is allowed. Because of the importance of InSb as an infrared sensor protection material, this problem requires more 
experimental and theoretical study. 

IV.InAs 

We have performed a Z-scan analysis of an uncoated, 1 mm thick sample of n-InAs using 80 ps pulses. The 
results of an open aperture Z-scan measurement are shown in Fig. 7. At an incident intensity of 1.1 GW/cm2, a large 
nonlinear absorption is present, masking any possibility of observing weak nonlinear refraction in a closed aperture 
Z-scan. Reduction of the irradiance by a factor of 10 caused the nonlinear absorption to disappear, but no nonlinear 
refraction was detected. 

With a bandgap of E0 = 0.36 eV at room temperature, InAs is not likely to display two or three photon 
absorption when excited by 10.6 (im laser light. Unless there is more than 9 rneV of band tailing, a four photon 
absorption process would be needed to directly excite carriers across the bandgap. We believe that a more plausible 
explanation of our Z-scan data is that avalanche ionization of valence band electrons into the conduction band occurs. 
This "inverse Auger" process takes place when conduction band electrons are heated by the intense infrared fields and 
then collide with valence band electrons. If valence band electrons acquire energy greater than the bandgap in a 
collision, they can be scattered into the conduction band, thereby creating a new electron-hole pair in the material. 

To model the avalanche process, we use the approach first proposed by Yablonovitch and Bloembergen to 
describe laser induced breakdown in solids [22]-[24]. Although our experiments did not cause catastrophic damage, 
this model allows us to estimate the generated carrier concentration due to avalanche ionization at intensities below 
the damage threshold. 

We need to determine the ionization rate (r|) governing the build up of the carrier concentration (N) in the 
avalanche equation: 

N = N0exp(r,tp) 



where N  is the initial electron concentration and tp is the laser pulsewidth. In general, r\ is a very sensitive function 
of electric field. Bauer and Kuchar [25] have measured the ionization rate for InAs using dc fields, and their results 
are reproduced in Fig. 8. 

As pointed out by James [16], we need only consider electron avalanche, since hole avalanche is a much less 
efficient process under infrared excitation. To apply this data at infrared frequencies, the laser electric field is scaled 
by the electron momentum relaxation time (x): 

bdc-' 
Vl+lcot)2 

where CO is the laser frequency (1.77 x 1014 rad/sec) and Eac is calculated from the laser intensity inside the material. 
Strictly speaking, this is an approximate relationship that is valid provided x is independent of carrier energy. This 
should be true for InAs in the avalanche regime because there is negligible intervalley scattering. The momentum 
relaxation time can be obtained from the field dependent drift velocity. The Monte Carlo study of Curby and Ferry 
[26] yields a value of x = 0.38 ± 0.07 ps for fields around 1 kV/cm, in agreement with experiments at 77°K [25]. 

In our Z-scan experiment, we observed the transmission decrease by about a factor of 20 at an incident 
irradiance of - 1.1 GW/cm2 for 80 ps pulses. This irradiance corresponds to a laser field of Eac - 400 kV/cm when 
corrected for Fresnel reflection at the surface of the sample. Using x = 0.38 ps, we estimate an rms field of 5.9 kV/cm. 
From Fig. 8, we read an ionization rate of r\ = 8 x 109 sec"1. Note that no experimental data is available for this 
value of electric field. Therefore, we have made a linear extrapolation of the data using a least-squares fit into the 
high field regime. In the avalanche theory of Baraff [27], it was proposed that such a high field extrapolation 
requires log T| to be plotted against 1/E2. However, a detailed Monte Carlo calculation [26] revealed that a linear 
relationship between log T| and 1/E is more appropriate, and that is how we have scaled the data in Fig.8. 

Our n-doped InAs sample was specified with N0 = 5 x 1016 cm-3. The combined electron (N) and hole (P) 
absorption cross section at X = 10.6 urn is a = 6x 10"16 cm2 [13]. It has been proposed that the dominant hole 
absorption cross section will saturate at 5.1 MW/cm2 in InAs [28]. However, since no experimental evidence for this 
effect has been produced to date, we will neglect absorption saturation. Evaluating the ionization equation, we find 
N- d . d = 9.5 x 1016 cm"3 corresponding to AN = AP = 4.5 x 1016 cm"3. Assuming uniform illumination of our 
1 mm thick sample, we calculate a change of transmission by a factor of AT = 0.067, or a decrease in signal by a 
factor of 1/AT = 15. This compares well with the experimental value of 20. 

As a simple check on the validity of the analysis, the calculation was repeated at an incident irradiance of 110 
MW/cm2, where no induced absorption was observed. This irradiance is a factor of 10 below the level where strong 
nonlinear absorption was obtained. At this irradiance, we calculate Edc = 1.8 kV/cm. From Fig. 8, the ionization rate 
is found to be smaller than the previous case by over two orders of magnitude, resulting in a negligible increase of 
the carrier concentration, consistent with the experimental observations. 

Jamison and Nurmikko [13] have observed nonlinear absorption in n-InAs (N0 = 2.3 x 1016cm"3) with 1 ns 
C02 laser pulses at 30 MW/cm2. It is not stated whether their sample is AR coated or if the incident irradiance has 
been corrected for Fresnel reflection, so we will assume the stated incident irradiance is inside the material. Scaling 
the laser field as before, we get Edc = 1.2 kV/cm. Using Fig. 8, we find r\ = 1.1 x 108 sec"1. For a 1 ns pulse, we 
compute an excess carrier concentration of AN = AP = 3 x 1015 cm"3. This gives Ace = 1.8 cm"1, in excellent 
agreement with their observed value of Act ~ 2 cm" * .   Although the laser pulses used in their experiment are more 
than 10 times longer than in the Z-scan measurements, the simple theory correctly predicts the nonlinear absorption. 

To conclude this section, we would like to compare our avalanche analysis with the perturbation calculations 
of R.B. James [16], in which the ionization rate is computed as a function of CO? laser irradiance. For the 1 ns 
experiments, James obtains t| = 108 sec"1 at an irradiance of about 60 MW/cm2, in reasonable agreement with the 30 
MW/cm2 threshold found in Ref. [13]. As shown above, the needed ionization rate for the 80 ps Z-scan experiment 
reported here is close to 1010 sec"1. The theory of James indicates that the required rate will be produced at an 
irradiance of only 75 MW/cm2, which is a factor of 15 below our experimental threshold of 1.1 GW/cm2. 



We believe that the dc scaling model for avalanche ionization more accurately predicts the experimental results 
because it is based on an empirical curve - namely the dc ionization rate data. Only the electron momentum 
relaxation time (z) is needed to scale the dc avalanche ionization to optical frequencies. 

V.Ge 

Germanium is a well characterized and widely used infrared material. With an indirect bandgap of 0.67 eV, it 
is no surprise that multi-photon absorption has not been observed at C02 laser wavelengths. Other nonlinear optical 
properties are present however. Absorption saturation of p-type Ge at 10 urn has received much theoretical and 
experimental study, and several comprehensive reviews have been published [28]-[30]. Such saturable absorbers 
have been used for mode-locking high pressure C02 lasers, as external cavity pulse compressors, and for optical 
isolation between high power amplifier stages. In this paper, we will focus on the nonlinear behavior of n-Ge when 
excited by high power C02 laser pulses. 

Usino the Z-scan technique, we have been able to deduce both nonlinear refraction and absorption in n-type 
Ge with our picosecond C02 laser. Open and closed aperture Z-scan measurements of an AR coated 3 mm thick 
sample are presented in Figs. 9 and 10. To resolve nonlinear refraction, we kept the irradiance at - 0.8 GW/cm2 to 
prevent avalanche induced absorption from dominating the signal. The closed aperture data was fit with n2 = 2.7 ± 
1.1 x 10'10 esu or Y = 2.8 ± 1.1 x 10"13 GW/cm2 (MKS). The same value of n2 was extracted from a closed aperture 
Z-scan at a slightly higher intensity of 1.1 GW/cm2. The measured value of n2 compares favorably with the value of 
n2 = 2.3 x 10"10 esu deduced by Watkins et al [31] with an ellipse rotation technique.   Wynne and Boyd [32] 
measured n2 = 9.2 x 10"10 esu in a four wave mixing experiment, which is about three times larger than our value. 

The nonlinear refraction in Ge is caused by the anharmonic motion of bound electrons. Our measured value of 
n2 = 2.7 ± 1.1 x 10" * ° esu is in good agreement with the calculation of Sheik-Bahae et al [33] who obtained n2 = 
4.4 x 10-"10 esu. Previous theoretical efforts to compute n2 yield values ranging from 2.3 x 10"10 to 4.7 x 10"10 esu 
[29], that are in general agreement with our measurement. This agreement must be interpreted with some caution 
however. The relationship between n2 and %3, the most often quoted coefficient, depends on the definition of the 
nonlinear polarization, and the definition used is sometimes not given. 

The open aperture Z-scan with 60 ps pulses displays an abrupt decrease of transmission at an irradiance of 1.5 
GW/cm2. Recall that below 0.8 GW/cm2, the nonlinear absorption is negligible. As with InAs, we believe this 
abrupt irradiance dependence of nonlinear absorption is the signature of laser-induced avalanche ionization of 
electron-hole pairs. 

We have found the avalanche process difficult to model in Ge using the dc scaling arguments presented in the 
previous section for InAs. The electron and hole drift velocities are known to saturate as the electric field is increased 
into the avalanche regime. Therefore, we cannot make a reliable estimate of the momentum relaxation time T to allow 
calculation of the rms (dc) field. 

James and Smith [28] and later James [16] have treated C02 laser-induced avalanche ionization in Ge. Since 
both the hole and electron absorption cross section are irradiance dependent, the avalanche threshold was defined as 
the point at which the electron density doubles. For 60 ps pulses, this requires r\ - 1010 sec-1. From the results in 
Ref [16], this ionization rate occurs at - 300 MW/cm2, which is a factor of five below the measured irradiance of 1.5 
GW/cm2. This should be considered reasonable agreement in view of the uncertainties associated with free carrier 
absorption and the experimental calibration. The calculation also predicts negligible carrier generation when the 
threshold irradiance is reduced by a factor of two, in agreement with the trend observed in our experiment. 

VLZnSe 

Like Ge, ZnSe is a well known and often used window material in the infrared. To our knowledge, no non- 
thermal, nonlinear refraction has been observed with ZnSe at X = 10 [im unless picosecond pulses are used. We have 
made open aperture Z-scan measurements with ZnSe using 80 ps pulses, the results of which are depicted in Fig. 11. 
The data indicates an abrupt onset of high density carrier generation at an intensity of - 7 GW/cm-, which we again 
attribute to avalanche ionization. The avalanche irradiance is much higher than observed with the Ge and InAs 
samples, and is qualitatively consistent with our physical picture of the avalanche process induced by C02 laser 
pulses. Because the bandgap of ZnSe is wider (Ea = 23 hü) at 10.6 |im) than the other semiconductors tested, the 



quiescent carrier distribution must be excited to much higher energies to initiate the impact ionization process, 
necessitating stronger infrared fields. 

An interesting effect occurs when the peak irradiance is increased slightly to - 9 GW/cm2. The transmission 
was observed to increase, producing a "kink" in the Z-scan data at the irradiance maximum. This feature can be 
clearly seen in Fi° 11   Complete recovery of low intensity linear transmission assures that no damage has occurred. 
Since the avalanche process is highly nonlinear, we cannot reconcile this behavior with saturation of homogeneous or 
inhomo°eneously broadened absorption. Because it is a comparatively weak function of intensity, absorption 
saturation by itself cannot reverse the aggregate attenuation caused by the rapid build-up of free earners in the 
avalanche ionization. Therefore, we speculate that the free carrier absorption cross section becomes drastically reduced 
(unlike a standard saturable absorber) at sufficiently high carrier temperatures. 

We are still studying the free carrier absorption process in ZnSe. Unlike In As, InSb and Ge, there is not a 
strong intervalence band transition in ZnSe in the mid-infrared. There are probably components of free earner 
absorption due to both the conduction and valence band carriers, and our data forces us to consider the possibility 
that the absorption cross section may be intensity dependent. Furthermore, the initial earner concentration m ZnSe is 
verv low « 105 cm'3) so the ionization rate scaling arguments used to analyze the other semiconductors must be 
applied here with caution. ZnSe may behave more as alkali-halide dielectrics at C02 laser wavelengths, where crystal 
inhomoeeneities and defects have been directly linked to the high field damage process [34]. Clearly this problem 
requires further study, and at present we cannot determine the generated earner density as a result of avalanche 
ionization in ZnSe. 

When the irradiance is lowered to - 5 GW/cm2, the avalanche induced absorption causes - 10% modulation in 
a closed aperture Z-scan (S = 0.4). Since nonlinear refraction was not observable at this irradiance, we can place an 
upper limit on n2 < 5 x 10"11 esu or y < 8 x 10'14 cm2/W for X = 10.6 p.m. 

VH. CONCLUSION 

We have described a variety of measurements that have been made with CS2, InSb, InAs, Ge and ZnSe using 
CO? laser pulses. In addition to enhancing our knowledge of the fundamental physics of laser-material interactions 
in the infrared, we have a good understanding of the potential and limitations of these materials in certain 
applications. 

We have shown that n-Ge, ZnSe, and InAs display an avalanche carrier generation mechanism that has an 
abrupt irradiance dependence. Although more subtle nonlinear effects are evident in these matenals, the avalanche 
process will define the maximum energy density that can be withstood without damage. The abrupt nature of laser- 
induced avalanche makes these semiconductors poor choices for use as optical power limiters with nanosecond laser 
pulses. 

In contrast, InSb possesses a strong two photon absorption carrier generation mechanism that is of great 
utility in sensor protection scenarios. The onset of limiting can be as low as - 100 kW/cm2 for laser pulses of 
duration - 1 |is. Two photon absorption generates an electron-hole plasma that manifests in both nonlinear refraction 
and absorption depending on the optical geometry. These nonlinearities are fairly insensitive to temperature, and 
excellent performance can be obtained at 77°K, which makes InSb compatible with cooled detector focal planes. The 
linear absorption of InSb is very low at cryogenic temperatures, which gives the sensor engineer the option of 
inserting a thick (- 1cm) slab at or near a focal plane. Thick pieces of InSb, with length greater than the depth of 
focus, will have low clamping power, high dynamic range (ratio of damage threshold to clamping level), while 
maintaining low insertion loss. 

The laser-induced thermal lensing in liquid CS2 can also be exploited for optical power limiting.   Using the 
Z-scan to locate the optimum position of focus in a 2.4 cm CS2 cell, we have built a power limiter that is effective 
against nanosecond CO2 laser pulses, as well as cw sources. A good understanding of the thermal nature of laser- 
induced lensing gives the designer flexibility to accommodate different pulselengths in various optical trains. 

f Supported by a Hughes Aircraft Company doctoral fellowship 
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SAMPLE APERTURE 

Fig.l. The Z-scan experiment in the closed aperture (S < 1) arrangement. The signal on detector D2 is monitored a the 
nonlinear sample is translated through the focus of a lens.  Detector Dl normalizes shot-to-shot variations of the laser 
beam. 
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Laser induced ultrasonic standing waves are observed in molecular beam deposited ZnSe thin 
films using the transient grating technique. This observation is attributed to a very short 
trapping time for single photon absorption in the band tail. The period of the standing wave is 
used to determine the acoustic phonon velocity in the ZnSe thin film which indicates that it is 
longitudinal acoustic phonons which are excited. 

I. INTRODUCTION 

Laser induced ultrasonic waves1-3 have been observed 
and studied in liquids,4 molecular solids,1,2 and supercon- 
ducting thin films5 using the transient grating method. The 
technique uses two time-coincident laser pulses to create an 
optical interference pattern in the medium. Energy is then 
transferred to the material by optical absorption or Bril- 
lioun scattering, which results in the launching of counter- 
propagating ultrasonic waves with a wavelength matching 
that of the original grating. This leads to a standing wave 
pattern whose oscillations can be probed with an additional 
time delayed probe pulse. By varying the grating spacing, 
(by changing the angle between the incident pulses) the 
acoustic frequency can be continuously tuned. This tech- 
nique is also referred to as laser-induced phonon spectros- 
copy (LIPS)3 as it provides a probe of the phonon disper- 
sion. 

Coherent acoustic phonon gratings are not observed in 
bulk semiconductors under normal conditions because op- 
tically excited excess carriers usually have (a) relatively 
long recombination times and (b) high mobilities allowing 
them to diffuse significant distances before recombining. 
Either of these effects will inhibit the creation of oscillating 
ultrasonic standing waves. Acoustic phonons are created in 
semiconductors from the energy dissipated in nonradiative 
carrier recombination. In order to produce the necessary 
coherence of the phonons which will result in an oscillating 
standing wave (a) carrier diffusion must be restricted to 
avoid washing out of the grating, and (b) the energy trans- 
fer to the lattice must occur on a time scale shorter than 
the phonon period. When both of these conditions are sat- 
isfied a modulating diffracted signal should be observed by 
the transient grating technique due to the beating of coun- 
terpropagating acoustic, waves. 

In this article we describe the optical generation and 
detection of acoustic phonon modes in a semiconductor 
using the transient grating method. The appropriate con- 
ditions are created by employing a film of ZnSe microcrys- 
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c)Present address: OCLI, Dunfermline, KY11 5JE, Scotland. 

tallites with sizes much less than the grating period. Mo- 
lecular beam deposited (MBD) films of thickness sufficient 
to allow efficient diffraction of picosecond pulses are used 
to time resolve the dynamics of the phonon grating. This 
provides a noncontact method of determining the acoustic 
phonon velocities. 

II. BACKGROUND 

The transient grating method is a technique frequently 
used for measuring and determining the dynamics of opti- 
cal nonlinearities. Basically, a grating is formed by inter- 
fering two coherent light beams on a sample.6 This can be 
accomplished with the two beams incident on the same or 
opposite sides of the sample. The grating may even be 
derived from one beam if there is some back reflection 
within or external to the sample. The optical nonlinearity 
in the sample results in a corresponding grating modula- 
tion in either or both the refractive index and absorption 
coefficient. This grating in the optical constants can cause 
the diffraction of a light beam which can be a separate 
beam or one of those that write the grating (self- 
diffraction). The amount of diffracted light depends on the 
grating amplitude and so is a direct measure of the mag- 
nitude of the optical nonlinearity (although it gives no 
information regarding the sign of the nonlinearity). Dif- 
fraction from refractive gratings is more commonly ob- 
served as efficiencies are typically higher than for absorp- 
tive gratings. 

In the three beam configuration, if the beam that reads 
the grating is time delayed, this technique becomes a pow- 
erful method for observing the dynamics of optical nonlin- 
earities. For example, by measuring the decay of a carrier 
induced grating in semiconductors, information can be ob- 
tained about carrier diffusion and recombination.7 

One of the applications of the transient grating tech- 
nique is laser-induced phonon spectroscopy.3 Here, the op- 
tical energy in the grating is transferred into coherent pho- 
nons (usually longitudinal) whose wavelength matches 
that of the optical grating. The mechanism by which these 
coherent phonons are generated generally depends on 
whether the sample is optically absorbing or transparent at 
the laser wavelength. If the sample is absorbing (into vi- 
brational or electronic states) and there is a rapid radia- 
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tionless relaxation, there will be local heating at the grating 
maxima. Thermal expansion then causes the net movement 
of atoms or molecules away from the interference maxima 
towards the minima thus setting up the counterpropagat- 
ing ultrasonic waves. The alternative mechanism for non- 
absorbing media is that optical energy can be coupled di- 
rectly into coherent phonons by stimulated Brillouin 
scattering. Here a photon from one of the writing beams is 
scattered to create an acoustic phonon and a lower energy 
photon in the other beam (though still within the spectral 
bandwidth of the picosecond pulse). The same process also 
occurs for the other writing beam with the phonon having 
the opposite wave vector to the first and thus setting up 
counterpropagating ultrasonic waves. Experimentally, 
these two mechanisms can be differentiated by the time 
response with the thermal mechanism giving one diffrac- 
tion maximum per acoustic cycle and the stimulated Bril- 
louin mechanism giving two diffraction maxima per cycle. 
It should be noted though that in both cases the diffraction 
signal will be at a minimum at the instant the grating is 
written and then increase as the material is displaced and 
strain is induced. 

Coherent phonon osculations have also been optically 
detected using the excite-probe method with femtosecond 
pulses in GaAs,8 single crystals of Sb, Bi, Te and Ti203, 
and thin-film YBa2Cu306+^10 where the excite pulse acts 
as an impulse and the probe detects the "ringing" of the 
lattice. This technique generally excites optical phonon 
modes, hence the requirement that the optical pulses be 
less than a phonon period means that optical pulses typi- 
cally have to be less than 100 fs in duration. 

Absorption of light of wavelengths close to the band 
edge in semiconductors can lead to a change in the optical 
properties usually through free-carrier or thermal effects. 
The excitation of electrons from valence to conduction 
band can change the optical properties, e.g., by inhibiting 
further transitions or phenomena associated with the 
change in conductivity (e.g., photorefractive effect, self- 
electro-optic effect devices). For wavelengths longer than 
the fundamental absorption edge in semiconductors, free- 
carrier effects normally give rise to a reduction in the re- 
fractive index. Thermal expansion leads to an increasing 
band gap with temperature whereas changing the phonon 
population leads to a decreasing band gap with tempera- 
ture.11 In most semiconductors it is the latter of these ef- 
fects which dominates and the band gap decreases with 
increasing temperature giving an increase in the refractive 
index. 

III. EXPERIMENT 

The samples used in this experiment are ZnSe thin 
films of thickness 5 /xm grown by molecular beam deposi- 
tion on glass substrates.12 This method was developed for 
the growth of high quality, high density optical coatings. 

Films were grown in a Vacuum Generators load- 
locked ultrahigh vacuum system fitted with Knudsen 
sources and in situ surface diagnostics. The zinc selenide 
source was ultrahigh purity polycrystalline ZnSe which 
had previously been prepared by chemical vapor deposition 

532nm 

35ps FWHM 

Time Delay 

Sample 

FIG. 1. Standard backward degenerate-four-wave-mixing setup. The for- 
ward pump and probe pulses are time coincident on the sample and create 
a grating which is probed by a variably time delayed backward pump 
pulse. 

from a mixture of zinc vapor and hydrogen selenide. The 
source material was contained within a high purity graph- 
ite crucible which was carefully outgassed following baking 
of the entire deposition chamber at 180 °C. The deposition 
process allows the deposition of films with a high degree of 
perfection. Thick films could be produced which do not 
delaminate from the substrate and which have a high de- 
gree of optical stability as a consequence of lack of open 
porosity. Interference filters grown by this technique have 
been used in optical bistability experiments and show 
higher stability than those produced by more conventional 
techniques.13 

MBD ZnSe films on glass substrates show extremely 
low photoluminescence efficiencies indicating that the pri- 
mary relaxation of the carriers occurs through traps. This 
implies a very short relaxation time for the carriers. Time 
resolved photoluminescence studies in this type of material 
confirm this with no photoluminescence being visible on a 
time resolution of 10 ps.14 

Three samples were used in the present experiment. 
These were grown at substrate temperatures of 20, 100, 
and 300 "C. Cross-sectional transmission electron micro- 
graphs indicate a dense columnar polycrystalline structure 
with the columns growing perpendicular to the surface and 
having a length equal to the film thickness. Higher sub- 
strate temperatures produce larger microcrystalline diam- 
eters. Crystallite diameters measured for MBD ZnSe on 
GaAs are —25 nm for room temperature growth and 
-100 nm for a growth temperature of 190 °C.12 Similar 
measurements for MBD ZnSe on glass are unavailable due 
to the inability to cleave the sample but microcrystalline 
diameters are not anticipated to be much larger than those 
grown on GaAs. 

The experimental geometry is the standard backward 
degenerate-four-wave-mixing geometry as shown in Fig. 1. 
The input pulses are at a wavelength of A=0.532 /zm pro- 
duced by frequency doubling a g-switched mode-locked 
Nd:YAG laser (Quantel model YG401C) with a single 
pulse switched out at a repetition rate 10 Hz. The pulse 
width, which was deduced from an autocorrelation of the 
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Glass Substrate     ZnSe 
/ 

Backward 

FIG. 2. Sample geometry. The time coincident forward pump and probe 
pulse writes a transverse grating in the ZnSe film which is read by the time 
delayed backward pump incident through the substrate. 

fundamental pulses, was 35 ps full width at half-maximum 
(FWHM). The spatial profile of the pulses consisted of a 
single transverse mode of Gaussian form. In this experi- 
mental setup, the 0.532 /xm pulses are split into three sep- 
arate pulses; forward pump, backward pump, and probe. 
All three pulses pass through separate delay stages which 
can be adjusted to ensure the forward pump and probe are 
temporally coincident and all three pulses are spatially co- 
incident at the sample. The backward pump and forward 
pump are counterpropagating with approximately the 
same energy. The probe enters the sample at an angle with 
respect to the forward pump, with 5% of the backward 
pump energy (Fig. 2). The beam radii (1/e2 irradiance) at 
the sample position are 0.73 mm for the backward pump, 
0.61 mm for the forward pump, and 0.43 mm for the 
probe. Typical energies for the backward pump pulses were 
around 150 p.1 (corresponding to a peak irradiance of 0.47 
GW/cm2). The two time-coincident laser pulses (forward 
pump and probe) are crossed inside the sample to setup an 
optical interference pattern with grating period 

(1) 'In sin(0/2) ' 

where n is the linear refractive index of the material and 6 
the angle between forward pump and probe beams inside 
the material. By altering, the angle between the forward 
pump and probe beams, the grating spacing can be ad- 
justed. If some nonlinear mechanism exists in the material 
whereby intense light causes a change in the optical prop- 
erties of the material, the backward pump will experience 
diffraction into the counterpropagating direction of the 
probe beam. The dependence of the diffracted signal 
strength on delay allows a measurement of the decay of the 
grating modulation. 

Each data point is an average of ten shots, taken au- 
tomatically by computer. While taking the data, the pulse 
width and amplitude are also monitored and windows of 
±5% have been set for both pulse width and energy in 
order to increase the signal to noise level. The signals are 
detected by integrating silicon photodiodes with a peak 
sample and hold circuitry. A calcite polarizer and half- 
wave plate were used to adjust the total input energy. 
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FIG. 3. Comparison of the diffracted signal as a function of time delay 
(up to 200 ps) for bulk polycrystalline and MBD thin film ZnSe. 

IV. RESULTS 

Figure 3 shows a comparison of the time response of 
the diffracted signal obtained from a MBD thin film ZnSe 
sample to that obtained in bulk polycrystalline ZnSe using 
the same experimental setup. The diffracted signal from 
bulk ZnSe shows a peak at zero delay which is the auto- 
correlation of the laser pulse attributed to the combined 
effects of the instantaneous bound electronic nonlinear re- 
fraction «2

15 and two photon absorption. This is followed 
by an exponentially decaying tail arising from the refrac- 
tive index change associated with bandfilling by free carri- 
ers generated by two-photon absorption.16 The decay time 
of the tail is set by a combination of recombination and 
ambipolar diffusion of the free carriers washing out the 
grating. 

In contrast, the diffracted signal from the thin film of 
ZnSe is basically an integration of the input pulse and 
shows no signs of decay on comparable time scales ( < 200 
ps). There is some evidence of a coherence spike at zero 
delay which is due to self-diffraction of the backward pump 
from the grating produced by this pulse and the probe 
pulse. This may arise from the free electronic contribution 
to the nonlinearity but needs further investigation. 

The lack of an observed decay on these time scales is 
consistent with a thermal grating. The absorption tail at 
the band edge is quite extensive in the thin film MBD 
ZnSe13 and a. substantial density of free carriers can be 
generated by single photon absorption at 532 nm. These 
carriers become trapped on time scales on the order of or 
less than the pulse width as indicated by photolumines- 
cence studies. 

The grating modulation is generated along the thin 
film and so if carrier diffusion were to wash out the grating, 
it would need to be in a direction perpendicular to the 
crystallite columns. Using a diffusion coefficient of 4.5 
cm2/s for ZnSe16 gives a time scale of around a picosecond 
for the carriers to reach a 25 nm microcrystallite boundary. 
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FIG. 4. Diffraction signal as a function of time delay (up to 3 ns) in 
MBD thin film ZnSe for two different external angles between the forward 
pump and probe beams as indicated. Changing the external angle results 
in a variation in the grating spacing and so varies the wave vector of the 
excited phonon mode. 

The crystallite column diameters are much smaller than 
the grating spacings employed. The trapping of the carriers 
in defects at these boundaries is consistent with experimen- 
tal observation. The excess energy of the electrons is all 
deposited as heat to produce a thermal grating. 

The diffracted signal from the thin film MBD ZnSe on 
longer time scales is shown in Fig. 4 for two different grat- 
ing spacings using the sample grown at 300 °C. These sig- 
nals show an oscillating signal superimposed on a back- 
ground which may show some signs of a slow decay. The 
period of the oscillation is 1.65 ns for an external input 
angle of 4.6° (corresponding to a grating spacing of A = 6.6 
/im) and 0.60 ns for an external input angle of 11.9° (A 
=2.6 urn). The ratio of the magnitude of the oscillation to 
the background signal seems to be independent of angle. 
Similar data is obtained for samples corresponding to dif- 
ferent growth temperatures Fig. 5 indicating there is no 
dependence on the microcrystalline diameter (at least in 
the limit where the diameter is much smaller than the 
grating spacing). 

The oscillating diffraction signal results from an ultra- 
sonic standing wave which is set up in the film (laser in- 
duced phonon grating).3 The transfer of energy to the lat- 
tice is spatially inhomogeneous, matching the original 
sinusoidal optical interference pattern. Thus the atoms will 
be more energetic at the grating peaks causing a net move- 
ment of the atoms from the grating peaks to the troughs. 
This movement results in the initiation of two counter- 
propagating sound waves which can also be described in 
terms of a standing wave.1 This standing wave has exactly 
the same spatial separation as the original light grating 
from the interference of the forward pump and probe 
beams. The fact that the coherence of this ultrasonic stand- 
ing wave is so evident indicates that energy is transferred 
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FIG. 5. Diffraction signal as a function of time delay for three different 
MBD thin film ZnSe samples grown at the different substrate tempera- 
tures indicated. The signal shows no dependence on the growth condi- 
tions. 

from the excited carriers to the lattice on very short time 
scales (certainly much shorter than the oscillation period). 

The period of the oscillation can be used to determine 
the speed of sound along the ZnSe thin film given that the 
grating spacing is known. For the 4.6° external angle mea- 
surement this gives the speed of sound as u=4000 m/s and 
for the 11.9° external angle measurement, w=4300 m/s. 
These results are summarized in Table I. These measure- 
ments are in agreement with tabulated values for longitu- 
dinal acoustic phonon velocities in bulk ZnSe which he in 
the range 4000-4600 m/s.17 This is to be contrasted with 
the reported observation of coherent longitudinal optical 
phonons in GaAs using a femtosecond excite-probe tech- 
nique.8 

The slowly decaying background signal is due to dif- 
fraction from a refractive grating associated with the ther- 
mal grating. This can be considered as an incoherent pho- 
non effect. Most semiconductors have a positive dn/dT at 
frequencies in the vicinity of the band edge including bulk 
and thin film ZnSe,13 hence the grating consists of an in- 
crease in refractive index. The energy for the temperature 
rise is also obtained from the release of energy from the 
optically excited carriers. The time evolution of the carrier 
density N and temperature rise AT is described using the 
coupled partial differential equations 

TABLE I. Summary of the data on the two different grating spacings 
examined. For the external angles indicated, the grating spacing was cal- 
culated from Eq. (1), the period is from the observed oscillation in the 
time-delayed diffracted signal from which the speed of sound is inferred. 

"ext A Period Acoustic velocity 

4.6° 
11.9' 

6.6 fim 
2.6 Jim 

1.65 ns 
0.60 ns 

4000 m/s 
4300 m/s 
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dt            T,' 

d(AT)     1 
/fV2(AD+  

dt        pc 

< 

(2) 

(3) 

with the initial conditions Ar(f=0)=0 and N(t=0) 
=JV~0sin2 (trx/A). The solution of this is 

AT=TQ(l-e-^) + T0     (1_T/rtd)     cos^-j, 

(4) 
where the thermal time constant rtd is given by 

(5) 

1.5 

pcAL 

Ttd=4Ä' 

and we define T0=2ErN0/pc. The recombination of the 
carriers occurs with a time constant rr and releases a quan- 
tity of energy Er per carrier to the lattice, p, c, and K are the 
density, specific heat capacity, and thermal conductivity, 
respectively, which for bulk polycrystalline ZnSe at room 
temperature are tabulated as p=5.27 g/cm3, c=0.081 cal/ 
(g'C), and «-=0.043 cal/(cm s"C).18 

The observed decay of the background signal will de- 
pend on the recombination of the trapped carriers and 
thermal diffusion washing out the grating. It can be seen in 
Fig. 4 that the relative contribution to the diffraction effi- 
ciency from the ultrasonic standing wave does not depend 
on the grating spacing. Since the thermal diffusion time 
constant rtd is proportional to the square of the grating 
spacing [Eq. (5)], and the temperature modulation of the 
grating is proportional to (and so the diffraction efficiency 
is dependent on) the quantity (1— VTtd)

-1 [Eq. (4)], it 
can be concluded that rtd>rr and the observed decay of the 
thermal grating is completely dominated by thermal diffu- 
sion. Hence, Eq. (4) can be simplified to 

AT=Tr 0- -r/V)+e- ■'/*td cos 
2irx 

(6) 

Using the above constants for bulk ZnSe gives thermal 
time constants Ttd of 120 and 17 ns for our two grating 
spacings using Eq. (5), which is consistent with the exper- 
imental observations although the limited delay times pre- 
vent an accurate estimation of these time constants. This 
simplified analysis is for a bulk material (of infinite extent) 
with no net heat diffusion in the beam propagation direc- 
tion. Obviously this is not quite the case for a thin film on 
a glass substrate. However, as the ZnSe thermal conduc- 
tivity is much larger than for the glass, and the film thick- 
ness is of the same order as the grating spacing, it will be 
the direct transverse route along the film that dominates 
the decay of the thermal grating rather than any route for 
the heat diffusion through the glass substrate. Hence, this 
simplified model is reasonable. 

It can be seen from Fig. 4 that the oscillating and 
background components of the diffraction signal combine 
together in such a fashion that the overall diffraction effi- 
ciency shows an initial increase. It has already been noted 
that the background (thermal) component is associated 
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FIG. 6. Diffraction signal as a function of time delay for four different 
optical energy levels as shown. The optical power level is varied before the 
beam splitters and so is equally varied in all three beams. The signal is 
normalized by dividing by the cube of the relative optical input energy. As 
the normalized signal is identical in all four cases it can be concluded that 
no saturation of the nonlinearity is evident at these pulse energies. 

with a refractive index increase. The observed form of the 
signal could arise with the oscillating component initially 
at a minimum and also giving an increase in refractive 
index. This can be attributed to the atoms being initially 
equidistant but as they move due to thermal expansion 
(thereby launching the standing longitudinal acoustic 
wave), the resulting larger spacing at the grating maxi- 
mum gives a refractive index increase (and smaller spacing 
at the minimum gives a decreased refractive index). It 
should be noted though that the same form of signal could 
arise if the oscillating component has opposite sign but is 
initially at a maximum. 

To check if the nonlinearity shows any saturation ef- 
fects (i.e., shows the same power dependence as a third 
order nonlinearity), the input energy was varied. Figure 6 
shows the normalized diffraction signal against the delay 
time of the backward pump. The normalization process 
involves dividing the diffraction efficiency by the input en- 
ergy cubed since the input energy is adjusted before the 
beam splitters which maintain a constant energy ratio be- 
tween the three beams. As the normalized signals are iden- 
tical, it can be concluded that both the coherent acoustic 
phonon process and the background thermal grating show 
the same power dependence as a third order nonlinearity 
with no indication of saturation. Hence, over these optical 
energy ranges the refractive index change is directly pro- 
portional to the optical energy. This implies that the car- 
rier density generated is proportional to the optical energy, 
the transfer of energy from carriers to acoustic phonons is 
density independent and shows no saturation of the traps, 
and the resulting temperature rise is small enough to give a 
linear dependence of the refractive index on temperature. 
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V. CONCLUSIONS 

Transient grating measurements were performed on 
high quality MBD ZnSe films on glass substrates. Using 35 
ps pulses at near band gap resonance no evidence of free- 
carrier induced optical nonlinearities were observed. This 
is attributable to fast trapping of the photogenerated car- 
riers at the boundaries of the microcrystallites. This pro- 
cess results in a rapid transfer of energy into the lattice 
such that a coherent ultrasonic standing wave is produced. 
While the same phenomena has been observed in various 
media, it is rare for it to be observed in semiconductors 
since ambipolar carrier diffusion usually washes out the 
excitation grating before the energy is transferred to the 
lattice. 

This LIPS technique provides a noncontact means of 
determining the acoustic phonon dispersion. At present 
only the acoustic velocity has been determined for the thin 
film ZnSe but similar measurements using longer time 
scales and shorter grating spacings may allow a more de- 
tailed determination of the acoustic phonon dispersion 
curve. 

It is interesting to speculate whether the same tech- 
nique could be applied to other semiconductors. Certainly 
thermo-optic coefficients in the vicinity of the band edge of 
most semiconductors are of comparable magnitude. It 
would be necessary to prevent the diffusion of energy be- 
fore it is transferred to the lattice. This should be possible 
by introducing a higher density of impurities or defects to 
reduce the free-carrier relaxation time. This reduction in 
relaxation time has been demonstrated by ion- 
bombardment19 and by low temperature molecular beam 
epitaxial growth.20 It also may be possible to use quantum 
well material in a geometry where the wells are parallel to 
the grating. Another approach may be to highly excite the 
carriers given that electrons and holes thermalize with the 
lattice on a time scale typically of a few picoseconds and 
this excess energy could result in a LIPS signal superim- 
posed on the usual carrier induced diffraction signal. How- 

ever, as the carriers would be excited well into the band, 
absorption coefficients would be high necessitating the use 
of thin film samples. 
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ABSTRACT 

We discuss the characterization of nonlinear optical processes that give rise to changes in the absorption 
coefficient and refractive index. We primarily concentrate on methods for determining the dominant 
nonlinearities present in condensed matter and the responsible physical mechanisms. In extensive studies of a 
wide variety of materials we have found that there is seldom a single nonlinear process occuring. Often 
several processes occur simultaneously, sometimes in unison, sometimes competing. It is neseccary to 
experimentally distinguish and separate these processes in order to understand and model the interaction. 
There are a variety of methods and techniques for determining the nonlinear optical response, each with its 
own weaknesses and advantages. In general, it is advisable to use as many complementary techniques as 
possible over a broad spectral range in order to unambiguously determinine the active nonlinearities. Here we 
concentrate on the use of nonlinear transmittance, Z-scan and degenerate four-wave mixing experiments as 
applied to polycrystalline and single crystal semiconductors and dielectric materials. 

* also with the Departments of Physics and Electrical and Computer Engineering 

I. INTRODUCTION 

Numerous techniques are known for measurements of nonlinear refraction (NLR) and nonlinear absorption 
(NLA) in condensed matter. As the names imply, NLR describes optically induced changes in the refractive 
index of a material, while optically induced changes in absorption are categorized as NLA. Nonlinear 
interferometry [1,2], degenerate four-wave mixing (DFWM) [3], nearly-degenerate three-wave mixing [4], 
ellipse rotation [5], beam distortion,[6,7] beam deflection [8], and third-harmonic generation [9], are among 
the techniques frequently reported for direct or indirect determination of NLR. Z-scan is a single beam - 
technique for measuring the sign and magnitude of NLR indices and NLA coefficients [10,11], which offers 
simplicity as well as high sensitivity. Other techniques for measuring NLA include transmittance [12], 
calorimetry [13], photoacoustic [14], and excite-probe [15] methods. 

Despite the wide range of available methods, it is rare that any single experiment will completely determine 
the physical processes behind the nonlinear response of a given material. The most important point to be 
made in this paper is that a single measurement of the nonlinear response of a material, at a single 
wavelength, and a single pulsewidth may give very little information on the material. In general such a 
measurement should not be used to judge the device performance of a material or to compare one material to 
another. We will elaborate on this point by using data for semiconductors (eg. ZnSe) and dielectric materials 
(eg. BaF,). The importance of the pulsewidth and wavelength dependence of the nonlinear response will be 
demonstrated through these examples. We begin with a background description of the consequences of NLA 
and NLR in section n. Section HI is divided into three subsections covering the experimental techniques of 
transmittance, Z-scan and DFWM. Each subsection gives a description of the experimental technique and 
experimental results along with the physical interpretation for the example materials. Section IV describes the 
importance of determining and understanding the frequency dependence of the nonlinearities and section V 
contains brief conclusions. 

\ .; 



n. BACKGROUND 

Nonlinear absorption directly affects the amplitude of the propagating electric field while NLR directly 
affects the phase. However, during propagation, phase changes propagate to give spatial (and temporal) 
amplitude changes. This can be seen as the coupling of phase and amplitude in the differentia^ equation 
describing this propagation (i.e. the wave equation). A great simplification results by making the "thin sample 
approximation". In this approximation we can separate the wave equation into an equation for the phase <f>> 
and an equation for the irradiance, I, as a function of the depth z within the sample. We write the electric 
field as E = AVI/n. Re[e'* eK1"-"*) ] where k is the wave number and A is a material independent constant of 
proportionality. The thin sample approximation allows us to separate phase and amplitude propagation within 
the nonlinear material by assuming that the sample is thin compared to any changes in the laser beam 
irradiance distribution .due to linear and. nonlinear propagation effects. That is, the sample is thin compared 
to the depth of focus of the beam (i.e. the diffraction length), and compared to distances in which a 
nonlinearly induced phase distortion can propagate to give amplitude distortion.[16] By choosing the sample 
thickness and focusing geometry correctly this approximation can be satisfied. If this assumption is not valid 
the full wave equation must be solved numerically including both spatial and temporal beam characteristics. 
This often requires a supercomputer. Throughout this paper, we assume the thin sample approximation to be 
valid. Experimentally the requirement is that the sample thickness L is less than the diffraction length, 
Z0=TW£/A where w0 is the half-width at the e"2 of maximum (HWl/e2M) of the irradiance distribution and A 

is the wavelength in air. In addition, irradiances must be used that give integrated phase shifts less than 
approximately 2TT. This situation is also known as "external self-action".[16,17] 

1000 

1965     1970     1975     1980    1985     1990     1995 
Year 

Figure 1. The two-photon absorption coefficient ß as a function of year published for GaAs: a [41]; b [42]; c 
[43]; d [44]; e [45]; f [46]; g [47]; h [48]; i [49]; j [50]; k [51]; 1 [52]; m [12]; n [53]; o [54]; p [55]; q [56]; r [57]; 
s [58]; t [25]. 

Nonlinear absorption and refraction always coexist (although with different spectral properties) as they result 
from the same physical mechanisms. They are connected via dispersion relations similar to the usual 
Kramers-Kronig relations that connect linear absorption to the linear index (or, equivalently, relate the real 
and imaginary parts of the linear susceptibiltity).[18-21] The physical processes that give rise to NLA and the 
accompanying NLR include "ultrafast" bound electronic processes and "excited state" processes, where the 
response times are dictated by the characteristic formation and decay times of the optically induced excited 
states. Ultrafast processes include multiphoton absorption [12,19], stimulated Raman scattering [22] and AC- 

• Stark effects [19,20]. Excited-state nonlinearities can be caused by a variety of physical processes including 
absorption saturation [22], excited-state absorption in atoms and molecules [23] or free-carrier absorption in 



solids [24,25], photochemical changes [26], as well as defect and color center formation P^V^J*0^ 
nrocesses can lead to increased transmittance with increasing irradiance (eg. saturation, Stark effect) or 
te^ZZrl^ce (eg. multiphoton absorption, excited-state absorption) The key^^ 
these processes is to pay particular attention to the temporal response. One way of achieving this is the use of 
ÄS^udi sÄ than the decay times of the excited states. As we shall show, in this regime, the 
SSÄ^Siaiitie» are fluence (ie. energy per unit area) dependent, while the ultrafast effects remain 

irradiance dependent. 

It is important to note early in this paper the importance of accurately measuring the laser mode and pulse 
parameters For example, two-photon absorption (2PA) is irradiance dependent. Thus giyen the pulse 
en^y we need to know both the beam area (i.e. spatial beam profile) and the temporal pulse width i.e. 
empört shape) in order to determine the irradiance. Any errors in the measurement of irradiance trans ate 

to erroS in the determination of the 2PA coefficient, ß. Similar comments apply to other nonlineariües^ 
Figure 1 shows a plot of #cm/GW), on a semilogarithmic scale, as a function of year published in the 
Sire for GaAs It has been established that these large differences are not due to differences in tiie 
materials, butaTdue to experimental problems and interpretation errors. Clearly, there are a great number 

of pitfalls for experimenters in NLO. 

n.l Nonlinear absorption: 

■ We will primarily limit our discussion to  the increasing loss from two-photon absorption (2PA)  and 
photogenerated excited-state absorption (ESA).  The losses from 2PA occur in so^he»^ ^^^^^^^ 
L, is larger than one-half the band-gap energy, Ef.  The equation describing 2PA (a third-order response) 
of a beam of irradiance I as a function of depth z in a material is; 

fz = -K+£Di, W 

where B is the 2PA coefficient, and the equation includes residual linear absorption of coefficient a This 
linear absorption in solids for *u,<Eg can come from defects, impurities or band tailing and can often be 
ignored in good quality materials. 

Once absorption has taken place, electrons are excited across the energy gap and are available to subsequently 
absorb linearly.   In semiconductors this linear absorption process is known as free-carrier absorption  FCA 

■■ and also includes intraband absorption of holes between light and heavy hole bands.   In atoms or^ecuks 
this process is referred to as ESA.  For pulses longer than a few picoseconds U^^^*^^*^ 
scattering rates) how the carriers were originally excited is irrelevant to the subsequent FCA    However the 

- equations governing the transmitted irradiance, and the order of the nonlinear response, are intimately tied o 
the carrier generation process. If linear absorption (a0) creates the carriers (as, for example, in a thm 
indirect-gap material [24], doped semiconductor, or organic [23]) the equation governing I (ignoring 2PA) 

- becomes, 

g = -(Qo+aN)I , (2) 

where c is the FCA cross section, and N denotes the density of excited carriers produced by linear absorption. 
- The rate of carrier production is given by 

dN= ^ (3) 
dt      fiu ' 



Here fiw is the incident photon energy used to produce an electron-hole pair. We have ignored all decay and 
diffusion processes that can reduce the carrier density in writing Eq. 3. In general these processes must be 
included which can greatly complicate the determination of nonlinear parameters, however, if pulses are short 
compared to the recombination and diffusion times (eg. picosecond pulses), this assumption is valid. An 
analogous pair of equations is valid for excited-state absorption in atomic or molecular systems where N is 
then the density of excited states. By integrating Eq. 3 up to some time t' in the pulse, substituting for N in 
Eq. 2 and then integrating over all times t' (i.e. -co to co) we find the fluence F varies with z as 

i 

dF 
dz 

a0a 
(4) 

Notice that this equation is exactly analogous to Eq. 1 describing 2PA loss with the fluence replacing the 
irradiance and a0a/2hoj replacing ß. Therefore, since in most experiments the pulse energy is detected, FCA 
initiated by linear absorption and 2PA, will give nearly identical results for loss as a function of input energy 
(microscopically ESA can be considered as the limit of 2PA with a resonant intermediate state). The 
difference between Eqs. 1 and 4 when determining the transmitted energy is in the temporal integral over the 
pulse for 2PA. For FCA, this integral has already been performed. In other words, in order to determine 
which of these nonlinearities is present, the temporal dependence must be measured in some way. 

If the carriers are produced via a 2PA process (ß in Eq. 1) rather than by linear absorption (a0 in Eq. 1), the 
resulting equations are considerably different, and cannot be solved analytically. Including 2PA, Eq. 2 
becomes, 

£ = -(a0+ßl+atJ)I , (5) 

which must now be combined with the 2PA carrier generation rate, 

dN.jglL (6) 
dt     '2fiu) ' 

The factor of 2 indicates that the energy of two photons is needed to create the carrier pairs. ^ Again we make 
the simplifying assumption that carriers do not diffuse or decay during the pulse. In semiconductors, this 
assumption is normally valid with picosecond pulses. In Eq. 5, a0 is again included only as a residual linear 
absorption from defects or impurities, and it is assumed that free carriers are not produced in the process. 

It is interesting to look at the order of the nonlinear response for the three cases given above. The first two, 
2PA and linearly generated FCA, both appear as third-order responses. However, in one case, 2PA, the 
nonlinearity is proportional to Im{x(3)}, while for the linear absorption generated FCA the nonlinearity is due 
to the cascaded process Im{xW}:Im{xW} (i.e. two linear absorption processes), where the first x(1) is 
associated with the ground state absorption and the second with FCA. Here x(j) refers to the jth order 
electric susceptibility. Without knowledge of the temporal dependence of the process, FCA and 2PA are 
indistinguishable. 

For the third case, 2PA generated FCA, the nonlinear response appears fifth order, a cascaded 
Im{x(3)}:Im{xW} (i.e. 2PA followed by FCA). However, the overall nonlinear transmission as given by Eq. 5 
has both the third-order response of 2PA (second term) and the fifth-order cascaded response (third term). 
This can give quite complicated transmission curves as a function of input energy or irradiance. We find 
similar ambiguities in the interpretation of nonlinear refraction experiments as seen in section II.2 (also see 
Results for ZnSe in section IEL2). If pulses having the same peak irradiance but different temporal widths 
are incident on a material obeying Eqs. 5 and 6, the longer pulses, having more energy, will create more 
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carriers. Thus, the longer pulse will induce more FCA, assuming slow carrier decay times, and suffer more 
loss. This is a useful method to determine if such processes are present. 

The FCA resulting from 2PA generated carriers can be shown [12,28] to be small compared to the direct 2PA 
process for irradiances below a critical irradiance, 1^ s iVlhu/crr, where r is the laser pulsewidth. This is 
one of several reasons why short pulses are valuable for measuring ß without the influence of other nonlinear 
phenomena. In addition the NLR from these carriers is also reduced for shorter pulses. 

The solution to Eq. 1 for 2PA at the exit surface of the sample is 

KL,r,t)-SS^ 
1 + q(r, 

a0L 
(7) 

-"o1- where q(r, t)=ySI(0, r, t)L^f, and L^ = (l-e""°")/a0. Here, we have explicitly shown the possible time (t) and 
transverse spatial (r) dependences of the irradiance. Assuming continuous, spatially homogeneous beams, Eq. 
7 can be written in terms of the transmittance, here given by the ratio of irradiances, T=I(L)/I(0), as 

1 = e 
a„L (1 + ^I(0)Leff) , (8) 

I 

where Fresnel reflections are ignored. This simple expression has led to the historical method of measuring 
the transmittance as a function of input irradiance 1(0), and plotting T"1 versus I(0).[12,28] The result is a 
straight line, the slope of which determines ß, and the intercept gives a0. There is only a small deviation 
form this straight line dependence when integrals over the spatial and temporal profiles are included (see Fig. 
2). 

4.0 

IRRADIANCE (GW/W 

Figure 2. Inverse transmittance for ZnSe as a function of the external incident irradiance using input 
pulsewidths of 40 psec and 120 psec (FWHM). 

Analogous to the case of 2PA, the solution of Eq. 4 for linear absorption generated FCA is 



I 

nUl)=m^_ (9) 
1 + p(r) 

where p(r)=(aoa/2fiw)F(0,r)Leff.  Equation 9 for FCA gives a result similar to Eq. 8 for 2PA but is a function 
of the input fluence, F(0).  That is, assuming a spatially uniform beam, 

i - e
a°L 

T"e 1 + -2- FC0JL.B (10) 

where now T is defined as the ratio of output to input fluence. Again, including an integral over the spatial 
distribution only gives a small deviation from the straight line prediction of Eq. 10 whose slope, in 
conjunction with the intercept, now determines a. In experiments to determine T, it is usually the pulse 
transmitted energy, E, that is monitored, meaning that the spatial and temporal integrals for 2PA, or the 
spatial integral for linearly generated FCA, must be performed. Thus, for a single experiment of T = 
E(L)/E(0) versus the input energy, these very different nonlinear processes are indistiguishable. Only if the 
temporal dependence of the transmttance were directly monitored could these two processes be distinguished. 

This is a very important distinction between a direct x^ response and a sequential, cascaded x^X^ 
response. In general, many processes can have a third-order response but may not be strictly described by a 
x(3) susceptibility. Thermal nonlinearities, excited-state nonlinearities, electrostrictive nonlinearities, etc. are 
examples, and this statement is valid for absorptive (Im x(3)) and refractive (Re x^) responses. For 
example, a thermal nonlinearity is normally described by a x^X^ response. The sample first linearly 
absorbs the light which changes its temperature (Im x^)- This temperature change, in turn, changes the 
linear absorption (Im x^) or changes the linear refractive index (Re x^ )• This latter effect is referred to as 
thermal lensing or thermal blooming as it is often a defocusing effect. The turn-on time for thermal effects 
depends upon the mechanism for the induced changes in x^ • For example, lattice heating induces a change 
in bandgap that, in time, alters the spectrum of RefxW) and Imfx^}. The turn-on time for this is dictated 
by the rate at which heat is given to the lattice, a combination of electron phonon inelastic scattering rates 
and nonradiative recombination rates. If the index is changed by thermal expansion of the medium, which is 
usually the dominant process in liquids, the turn-on time is given by the transit time of an acoustic wave 
across the beam. In both cases the decay time is dictated by thermal diffusion. The determination of the 
underlying physics describing the nonlinear response is the major point to be made in this paper. 

Section in demonstrates how the dominant loss mechanism is experimentally determined by observing the 
pulsewidth dependence of the nonlinear absorption. Such experiments are also useful for determining NLR 
mechanisms as discussed below. 

n.2 Nonlinear Refraction: 

As discussed in section II, NLR always accompanies NLA and results from the same physical mechanisms. 
Just as 2PA is a physical process that can be described in terms of Im(x(3)}, there is a corresponding Re{x^) 
that describes ultrafast nonlinear refraction.  The same is true for cascaded processes. 

The induced phase distortion imposed on a laser beam by NLR is related to the index change, An, by 

di _ An2% 
dz X     ' 

(11) 

The refractive index can be changed from the same large variety of mechanisms that can change the 
absorption. We, for example, discussed thermal effects in the previous section. Here we discuss the bound- 
electronic nonlinear refraction characterized by n2 and excited-state or free-carrier refraction (ESR or FCR). 



We restrict the use of n2 here to only the ultrafast electronic response. FCR has its analogue in atomic and 
molecular systems where the NLR comes from the redistribution of population among levels. For example, in 
a two-level system, the absorption saturates which by causality [20] changes the refractive index. In solids 
this redistribution generates free carriers which block further transitions (Drude band blocking) and the 
refractive index is changed (i.e. FCR).[25,29] 

Defining cT2ir/\ as the change in index of refraction per unit of photoexcitation density, N, An in Eq. 11 is 
written as; 

An = n2I + ^r crrN . (12) 

Here aT is the FCR cross section (often the 2x/\ is dropped in the definition of the index change), and n2 is 
in units of m2/W. The nonlinear index, n2, due to bound electrons can also be expressed in Gaussian units as 
An=n2|E|2/2, where n2 is in units of (cm/statvolt)2, or esu. n2(MKS) is related to n2(esu) through 
n2(esu)=(cn0/407r) n2(MKS), with c the speed of light in m/sec. 

For the case where free carriers are generated from single photon absorption processes (see Fq. 3), 

i.t 

An(t) = n2I(t) + a°ar 

hw I(f )df . (13) 
-oo 

The bound electronic response follows the temporal dependence of the pulse input while the FCR builds up 
in time through the pulse. For the case where the carriers are created solely by 2PA (see Eq. 6) Eq. 12 
becomes, 

An(t) - n,I(t) + iEx. 
2hw 

P(t')dt' . (14) 
-oo 

Usually, especially when using picosecond or shorter pulses, the phase distortion is not time resolved and only 
the temporally averaged value is measured. Assuming the nonlinear refraction accumulates throughout the 
pulse without decay, it can be shown that the temporally averaged index change is simply one half 
AnFC(t=co) or it equals AnFC(t=0) for a symmetric pulse in time.[ll] Here, AnFC refers to the second term 
in Eq. 13 or 14. The contribution from the bound electronic n2 (first term in Eq. 14) gives an index change 
An^ , averaged over a Gaussian temporal pulse, of 1/V2 times the peak value. Thus, the temporally averaged 

index change is, 

(An) = ^n2I(t=0) + \AnFC(t=0) . (15) 

Integrating Eq. 11 over the sample length to obtain the total phase distortion A#r,t), we define (Atf) as the 
temporally averaged phase distortion as determined from Eq. 15. We then define A$ as A<f> evaluated at the 
beam center (r=0), with similar definitions for the temporally averaged quantities, eg. (A$) is the on-axis 
temporally averaged phase distortion. 

Aif> can also be a periodic function of the spatial coordinates x (or y) due to the interference of two or more 
coherent beams as in, for example, DFWM (discussed in section IH2). Beam propagation and diffraction are 
discussed in the next section along with experimental techniques. 



1 
IK. EXPERIMENTAL TECHNIQUES 

In a single article it would be impractical to satisfactorily describe the many experimental techniques to 
measure NLA and NLR, so we choose to give just three examples. We describe direct transmission 
measurements, Z-scan and temporally-resolved DFWM. We discuss the complementary infomation that these 
methods give.' This choice only reflects the fact that the authors are most familiar with these techniques. In 
addition this article does not discuss methods that measure nonlinearties in fibers or waveguides; however, 
these three methods can measure nonlinearities of the constituent materials in bulk or thin film form. In 
general it is best to use as many complementary experimental techniques as possible to determine the 
nonlinear optical response of a given material. 

ffl.l Nonlinear Transmittance 

Perhaps the simplest method to measure NLA is to monitor the energy transmitted by a sample as a function 
of the input energy. We choose energy since normally the irradiance needed to give significant absorption is 
=d07 W/cm2 or higher and short pulses (difficult to time resolve) are extremely valuable to reduce competing 
nonlinearities. 

Figure 2 shows experimental results for the inverse transmittance of a 2.7 mm thick chemical-vapor 
deposition grown (polycrystalline) sample of Z'nSe (linear index n=2.7) plotted as a function of the external 
input irradiance using two different picosecond pulsewidths at 532 nm. ZnSe has an energy gap of Eg=i2.6 
eV and, therefore, displays 2PA at 532 nm.[25] Since the horizontal axis is irradiance and not energy the fact 
that the different pulsewidths give the same change in transmittance shows that Eq. 1 for 2PA is consistent 
with the measurement. 
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Figure 3. Spatial beam profile (+'s) through the center of an originally Gaussian profile beam after 
transmission through a 2.7 mm thick CVD grown ZnSe sample and s;55 cm free space propagation to a 
vidicon detector. The input irradiance is 2.7 GW/cm2. The solid line is a theoretical calculation using values 
for the nonlinear coefficients as determined by Z-scan measurements as discussed in the text. 

Many of the discrepancies between values for ß shown in Fig. 1 come from the use of nanosecond rather than 
picosecond pulses. Longer pulses can make competing nonlinear absorption processes such as 2PA induced 
FCA dominant (see Eq. 5), leading to larger losses than from 2PA alone. Not accounting for such effects 
results in overestimation of ß, sometimes by orders of magnitude.   An additional problem in transmission 



experiments is the seemingly simple task of collecting all the transmitted beam. Due to the NLR that 
accompanies 2PA the beam can rapidly spread after traversing the sample. Figure 3 shows a transverse scan 
through the center of an initially Gaussian spatial profile beam (30 ps FWHM pulse at 532 nm, Z0=178 cm) 
after transmission through the ZnSe and then propagating 55 cm to the vidicon (near field). The beam 
breakup into two peaks is characteristic of a self-defocusing (negative induced lens) nonlinearity in the near 
field. This effect can become very strong at high irradiance and is enhanced for longer pulsewidths (having 
more energy) by free-carrier refraction. While a detector placed after the sample collects all the beam at low 
inputs, the detector can miss some of the light at high inputs. Again these effects result in an overestimation 
of ß (see Fig. 1). 

While FC A can be negligible for picosecond pulses (see discussion in section HI), the refraction arising from 
these free carriers, FCR is not.[12] As shown in Fig. 3, ZnSe displays strong self defocusing even for 
picosecond pulses. As discussed in section EI.2, this defocusing is a combination of bound-electronic and 
free-carrier refraction as described by Eq. 14 (and 1-5). The solid line in Fig. 3 shows results of a computer 
calculation using parameters obtained from Z-scans (see section IH.2). The field at the exit surface of the 
sample is determined by EavTe'*, and as described in Ref. [25], this field is propagated to the vidicon 
detector to give the results of Fig. 3.  We discuss this further in the next section. 
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Figure 4. The Z-scan experimental setup. D2/D1 is measured as a function of the sample position z. 

m.2 Z-SCAN 

Z-scan measures both the nonlinear loss and phase distortion imposed on a Gaussian beam.[10,11] For 
measuring NLR this technique exploits the spatial narrowing and broadening of Gaussian beams in the far 
field which are due to self-focusing or self-defccusing caused by the nonlinear interaction of the beam with 
the material. A schematic of the experimental setup is given in Fig. 4. A Gaussian beam is focused onto the 
sample and then collected through an aperture in the far field by the transmission detector (D2). Keeping the 
input energy constant, the sample is translated along the beam propagation direction through the focal plane, 
and the transmittance (Dj/D^ is measured as a function of this sample position Z with respect to the focal 
plane (Z should not be confused with z, the depth within the sample). In the case of a material with a 
negative nonlinear refractive index, the self-defocusing will cause beam narrowing in the far field when the 
sample is before focus (negative Z) and beam broadening when the sample is after focus (positive Z). An 
increase in transmittance followed by a decrease in transmittance (peak-valley) for increasing Z denotes 
negative nonlinear refraction, while a valley-peak configuration implies positive nonlinearity. In Ref. [11] we 
give a detailed description and analysis of the Z-scan technique. Within the thin sample approximation 
[16,17], it is found that the change in the index of refraction (An) is given by a linear relation between the 
on-axis temporally averaged phase distortion at focus (A$0) (where the subscript on $ refers to the sample 
positioned at the beam waist, i.e. at focus) and the difference between the maximum and minimum values of 
the normalized aperture transmittance, ATpv. This relation for an aperture size that gives 40% linear 
transmittance is given by: [11] 



(A$0> =, 2.8ATpv . (16) 

Examining Fig. 4 for a purely refractive case, if the aperture is removed i.e. if all the transmitted light from 
the sample is collected by D2, there will be no change in the transmittance at different sample positions. 
However, if the sample exhibits nonlinear absorption, the measurement will detect the nonlinear loss which is 
maximized at Z=0. This type of measurement, to which we refer as an "open aperture" Z-scan, yields the 
nonlinear absorption parameters of the material. When the aperture is in place, the measurement (closed 
aperture Z-scan) is sensitive to both nonlinear absorption and nonlinear refraction. Dividing the closed 
aperture data by the open aperture data yields a Z-scan curve due only to nonlinear refraction which can be 
determined using Eq. 16 as long as the nonlinear absorption is not too strong. Figure 5 shows an example of 
this procedure for ZnSe where picosecond 532 nm pulses were used. Figure 5(a) and 5(b) show open aperture 
and closed aperture results respectively, while Fig. 5(c) shows the results of the division of 5(b) by 5(c). The 
solid lines are fits as discussed later under "results for ZnSe". The limitations of this simple approach and 
when a more exact analysis is needed are described in detail in Ref. [11]. 

The open aperture Z-scan, or measuring the change in transmittance as a function of irradiance, I, is a 
relatively straightforward experiment as long as care is taken to collect all the light transmitted by the sample 
and the detectors used have uniform response (i.e. if the light is spread over a larger or smaller surface area 
the detector response is unchanged). 

As a final comment, we note that the Z-scan curve can serve as a calibration on the input fluence. The 
distance in Z between the peak and valley for a Gaussian beam and a third-order nonlinearity is given by 
AZ v~1.7 Z0. Thus, a Z-scan gives the the beam size. This is a very convenient method to use if the 
nonlinear response is understood. On the other hand, once the system is calibrated, the Z-scan shape also 
contains information concerning the order of the nonlinearity. For example, a fifth-order response has a 
narrower Z-scan curve with AZpv=d.2 Z0.[ll] 

The following experiments on the semiconductor ZnSe illustrate the complexity of the nonlinear interactions 
even for picosecond pulses, and the difficulties in unraveling the different nonlinear processes. 

Results for ZnSe 

With 27 picosecond (FWHM) pulses at 532 nm from a frequency doubled NdYAG laser we performed Z- 
scans at different input energies on the 2.7 mm thick polycrystalline ZnSe sample. The beam was focused to 
give w0~25 fan. First, an open aperture Z-scan was performed. In Fig. 5(a) we plot the experimental data. 
In addition we show a numerically calculated Z-scan using £=5.8 cm/GW and Q?=0.3 cm-1 in Eq. 7 including 
spatial and temporal integrals. The Z (as opposed to the depth z) dependence is introduced in the irradiance I 
in Eq. 7 by the standard Gaussian beam propagation equation, 

I(z) =       !(0) (17) 
^  ;     1+(Z/Z0)2 

giving a Lorentzian shaped curve for loss versus Z. 

" With a 40% linearly transmitting aperture a closed aperture Z-scan was performed at the same irradiance (Fig. 
5b). In this case the measurement is sensitive to both NLR and NLA. Experiments on ZnSe were conducted 
at peak irradiance levels from I0=0.21 GW/cm2 to 2.4 GW/cm2. The experimental irradiances are within the 
sample (i.e. Fresnel reflections taken into account). 

In all, ten Z-scans were performed (5 "open" aperture and 5 "closed"). Closed aperture Z-scans at a peak 
input'irradiance of 0.57 GW/cm2 and 2.4 GW/cm2 are shown in Fig. 6a and 6b respectively. Open aperture 
Z-scans show a third-order response and a strictly irradiance dependent loss as confirmed by using different 
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Figure 5.    Normalized Z-scan transmittance of ZnSe measured using picosecond pulses at A=532 nm with 
I0=0.21 GW/cm2. (a) Open aperture data and fit (solid 1 ""' ' ' "'   '   "J 

The result of the division of the Z-scans of (a) and (b). 
I0=0.21 GW/cm2. (a) Open aperture data and fit (solid line) (b) 40% aperture data and fit (solid line) and (c) 



pulsewidths (see Fig. 2).   This confirms that 2PA is the dominant nonlinear loss mechanism and a value of 
j8=:5.8cm/GW is obtained as shown by the fit to the data of Fig. 5a. 

1.06 

Figure 6. Closed aperture Z-scan data (S=0.4) and theoretical fit (solid lines) of the ZnSe sample taken at 
irradiance levels of Io=0.57 GW/cm2 (a) and I0=2.4 GW/cm2 (b) where free-carrier refraction is large. 

Using the 40% aperture Z-scan and dividing out the nonlinear absorption, we calculate An from the phase 
shift data (i.e. using Eqs. 11 and 16).[25] Plotted in Fig. 7 is An/I0 versus the peak input irradiance I0. If 
this graph showed a horizontal straight line we could interpret this as a third-order response, and since we are 
using picosecond pulses in a spectral range where there is little linear absorption, we could conclude that it is 
most likely due to the third-order anharmonic motion of the bound electrons (i.e. n2).[ll,25] Performing Z- 
scans at different pulsewidths, with pulses shorter than carrier decay rates, could confirm this conclusion by 
showing a strict irradiance dependence rather than a fluence dependence as would be indicative of linearly 
generated FCR. The negative slope of the line in Fig. 7 indicates a higher order self-defocusing. Since the 
graph shows a linear dependence we conclude a fifth order response consistent with 2PA generated FCR. 
The intercept of this line gives a fitted value of n2=:-6.4 x 10-14 cm2/W (-4.1 x 10"11 esu) and the slope gives 
ar27r/A=i-l.l x 10"21 cm3. The details of how this simple method is used to estimate these numbers is given 
in Ref. [25]. 

With £~5.8 cm/GW we also performed a complete numerical fit to the Z-scans. Using an iterative approach 
to  best  fit all  the  data,  we  found  a better  fit with n2=-6.2xl0"14  cm2/W  (-4.0  x  10-11  esu), and 
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Figure 7.  An/I0 directly derived from ATpv plotted as a function of I0 for ZnSe. 
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Figure 8. Closed aperture (S=0.4) Z-scan experimental data (filled circles) of ZnSe at 1.06 p.m and 532 nm 
(open circles) in units of Z0=xw0

2/A. This figure clearly shows the dispersion in n2 as it changes sign from 
positive at 1.06 ^m to negative at 532 nm. 



a A/2TT~-0.8XJ0"
21
 cm3 (ar^-9x]0-17 cm2). The solid lines shown in Fig. 5 are the fits to the data. These 

numbers were also used to give the theoretical curve of the beam profile shown in Fig. 3. 

We also measured n2 in ZnSe at 1.06 pm where 2PA is not present. Using 40 ps pulses (FWHM) from a 
NdiYAG laser focused to wQ~40 /im, we obtained n2= +2.9x10"" cm2/W (+1.7xl0-11 esu). In Fig. 8 we plot 
closed aperture Z-scans obtained in ZnSe at 1.06 pm and at 0.53 pm showing the change in sign of n2. In 
this figure, the nonlinear absorption has been divided out of the 0.53 ^m data. This observed dispersion in n2 

and change in sign is consistent with the recent theory of Refs. [19-21] and shows the necessity of measuring 
the nonlinearity at more than a single wavelength. 

In addition to separately measuring NLA and NLR, Z-scan can be used to determine the anisotropy of these 
responses (eg. the different responses to linear and circular polarized light). This is particularly important for 
single crystal materials. We recently applied these methods to single crystals of GaAs, BaF2 and KTP to 
determine various x(3) tensor elements.[30]        , ' 

One of the difficulties in the interpretation of the Z-scan data is the absence of temporal information. 
Recently we introduced a temporally resolved, 2-color Z-scan that can separately give the temporal evolution 
of the NLA and NLR.[31] Next, however, we describe the use of picosecond DFWM to time resolve the 
nonlinear response. 

m.2 Degenerate Four-Wave Mixing 

In the experiments described here, the standard "backward" DFWM geometry is used.[3,32,33] A schematic 
of the experimental geometry using single 43 ps (FWHM) 1.064 /xm pulses, or 30 ps (FWHM) 0.532 /an pulses 
is shown in Fig. 9. .The single pulse input is divided into three pulses which, after passing through variable 
time delays, are incident on the sample. The three pulses can be independently adjusted in amplitude and 
polarization using half-wave plate and polarizer combinations. Two strong beams, forward (E{) and 
backward (Zb) pumps, of approximately equal irradiance are incident on the sample from counterpropagating 
directions.  A weaker beam, the probe (Ep), is incident on the sample at an angle 6 with respect to Ef. 
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Figure 9.   Schematic of experimental DFWM apparatus, 
monitors the phase-conjugate signal pulse energy. 

D, is the input pulse energy monitor, while D2 

The physical operation of this technique involves scattering of one of the strong pump pulses off the grating 
produced by the interference of the probe with the other pump through the nonlinear modulation of the 
refractive index and±or absorption coefficient.   The grating is only formed by a nonlinear interaction of the 



light with the material. While this is a somewhat simplified physical interpretation (eg. it doesn't describe 
two-photon coherence effects [3]), it suffices for most experiments. Thus, assuming all beams are linearly 
polarized parallel to each other, there are two amplitude gratings formed that can diffract a pump beam; one 
between Ef and E , and the other between Eb and Ep. The grating spacing is determined by the angle 6 
which is usually made to be small (a few degrees). In this case, one of the gratings has a spacing larger than 
X (~X/8n) while the other has a spacing of cz\/n. Calculating the direction of the beam diffracted off either 
of these gratings shows that this field, Ec (the conjugate wave), retraces the path of Ep (i.e. the sample 
retroreflects the beam). This retroreflection is the basis for phase conjugation and phase-conjugate 
mirrors.[34] If the beams that write the grating are not polarized parallel, there is a polarization grating 
formed in the material that can diffract light if the effective nonlinear susceptibility tensor has nonzero off 
diagonal elements (i.e. polarized light can induce an anisotropy).[34,35] The different DFWM signals 
obtained using different polarization combinations are useful for determining the various tensor components 
of the nonlinear electric susceptibility (eg. x^ )• 

Given the above physical interpretation, any spatial modulation of the optical properties of the material, 
index or amplitude grating, will give rise to Ec. Herein lies the major difficulty with this method in 
characterizing nonlinear material coefficients. Both NLA and NLR give rise to a similar measured response, 
thus making it difficult to determine the origin of the nonlinearity. However, by temporally delaying one 
beam with respect to the others, the lifetimes of the various gratings can be determined which is helpful in 
determining mechanisms (this is similar to the information obtained by performing pulsewidth dependent 
studies in transmission or using Z-scan). In what follows we show how DFWM can be used to characterize 
nonlinearities using ZnSe at an input wavelength of 532 nm as an example. 

DFWM in ZnSe 

The DFWM signal in ZnSe is monitored as a function of input energy and pulse delay for different 
combinations of the polarization of the three input beams. Figure 10 shows a plot of the DFWM signal versus 
the temporal delay rb of Eb, with Eb polarized perpendicular to both Ef and Ep (0=13°, Ib=; 34 MW/cm2 and 
^=22 MW/cm2). This polarization combination results in an interference between Ef and Ep so that Eb is 
diffracted into Ec off either amplitude or phase gratings induced by this interference. In addition there can 
be polarization gratings which can also diffract light into Ec. In this arrangement (Fig. 10) no signal is 
observed for Eb incident prior to the other two beams, the grating rapidly forms reaching a maximum near 
zero time delay and then decays. Clearly, two very distinct nonlinearities are evident from Figure 10. Near 
zero delay, a large rapidly decaying signal is seen, while at longer delays, we observe a more slowly decaying 
signal. To better understand the two nonlinear regimes, irradiance dependence experiments were performed 
at different delays. Figure 11 shows a log-log plot of the DFWM signal versus the total input irradiance, (all 
three input beams were varied simultaneously) at two different delay times. The line in Fig. 10 labeled (a) 
shows the irradiance dependence at zero delay which follows a power dependence of p-üO-*, indicative of a 
third-order nonlinearity. This could be explained by either 2PA, n2, or linearly generated FCR. FCA was 
ruled out by the results of Fig. 2 as our irradiance is less than 1^. However, as seen in Fig. 10, this third- 
order response, with a peak near r=o, lasts for only a time of the order of the pulsewidth. If FCR were 
responsible, the grating would last as long as the" carriers remained excited and did not diffuse to wash out the 
grating. For many semiconductors, with carrier lifetimes >10"9 s and grating spacings of the order of 
micrometers, diffusion dominates the grating decay. By performing experiments for different values of 8 (i.e. 
different grating spacings), the fast component of response is unchanged. The decay of this fast component 
is too fast to attribute to decay of the carrier grating. The line in Fig. 11 labeled (b) shows the dependence at 
a delay of 240 ps, where Eb is no longer temporally coincident with the other two beams, giving a power 
dependence of I5-0*0-2. The fifth order dependence of the DFWM signal on the input beams is consistent 
with 2PA generated FCR as discussed previously. Studies in other two-photon absorbing semiconductors, 
such as CdTe at 1.06 /mi, reveal the same basic behavior, i.e. a fast third-order signal followed by a slowly 
decaying fifth-order signal. The results obtained from the DFWM experiments help to confirm the Z-scan 
results.  Thus, the rapidly responding signal near zero delay in Fig. 10 is due to a combination of 2PA and n2 
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(|x(3)|2=[im x(3)p+[Re x(3)]2), while the slowly decaying signal is due to FCR (the real part of an effective 
fifth order nonlinearity).[25,35] 

IV. FREQUENCY DEPENDENCE 

Having performed picosecond experiments on a number of different materials using transmission and/or Z- 
scan and/or DFWM we have observed many similarities. If the photon energy is less than one half Eg, the 
bound electronic nonlinear refraction dominates the nonlinear response and n2>0 (if very high irradiance is 
used we have occasionally observed 3-photon absorption when energetically allowed prior to damage). Above 
one half E , the nonlinear response is complicated by both 2PA and 2PA generated FCR. At very high 
irradiance the associated FCA can also become significant prior to damage. In addition we find that n2 

becomes negative for photon energies above approximately 3/4 Eg. Figure 8 shows this sign change for 
ZnSe. 

To determine the spectrum of 2PA and the dispersion of n2, it would be best to perform the above series of 
experiments as a function of fiu. This is often extremely difficult since the range of frequencies needed can 
be extremely large (i.e. the transparency range) and tuneable sources with the required irradiance, pulsewidth 
and beam quality are not typically available. However, using some very simple scaling rules some remarkable 
relations can be observed. Wherrett [39] has shown that the third-order nonlinear susceptibiltiy x^ in 
inorganic solids should scale as 

x(s>*i/(to/Eg), (18) 
Eg 

where the complex function / depends only on the ratio ftw/Eg (i.e. upon which states are optically coupled). 
The nonlinear coefficients ß and n2 are related to x^3^ by; 

ß(hw/Eg) « ^ Im{X(3)) «x^^ ImC/(Ä«/Eg)} (19) no n0Eg -fcg 

« "fa F(^/£*) 
<ZS 

and 

n2(Äw/Eg) a  Re{X(3)) « -^ G(hw/Eg) (20) 

where the defined functions F and G are band structure dependent. Thus, F gives the 2PA spectrum and G 
gives the dispersion of n2. One method to test the above scaling relations is to scale the experimental data to 
obtain the experimental functions; 

1        -2^3 a. (2]) 

and 
"p 

G«(ftw/EK)= —i=i,0Ejn; (22) 
KVhp 

where ße and n\ are experimental values of ß and n2 and K and K' are proportionality constants.  Here Ep is 

the Kane energy as discussed in Ref. [12,19,39] and is nearly material independent with a value near 21 eV. 
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2ftu/E using K=3100 in Eq. 21. The data are scaled according to Eq. 21 are from Ref. [12,63]. Figure 
reproduced from Ref. [63]. 
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Figure 13. A plot of n2 data scaled according to Eq. 22. The circles are measurements in [61], the diamond 
is from [62], and the squares are our Z-scan measurements [19]. We have labeled the semiconductor data. 
The solid line is the function G(7iw/Eg) derived here for a two band model of a semiconductor using the 2PA 
data for the fit to the constant K'. 
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Figures 12 and 13 plot these scaled data versus photon hu/E     along with the predicted dependence from a 
two-parabolic band model using a value of K=3100 in units such that ED and E    are in eV and B is in 
cm/GW.[18-20]   The value of K'=0.94xl0« is determined from the Kramers-Kronig'inteeral of the nonlinear 
absorption spectrum using the above value for K.[19]  The data shown in Fig. 12 come primarily from direct 
transmittance measurements.fi2]   The data in Fig. 13 for semiconductors come from Z-scan measurements 
[19] and for dielectrics come from Z-scan [19] and nearly degenerate three-wave mixing [40]     Several 
materials have now been measured by both techniques and the agreement for n2 is excellent.   As seen in Fig 
12 the experimental 2PA appears nearly step-function like, turning on at approximately E /2    Figure 13 
shows a small, positive, nearly dispersionless n2 for hu/Eg much less than E     reaching a peak near E /2 
where 2PA turns on, and then decreases, reaching negative values as fiv approaches the band edge    This 
curve is reminiscent of the behavior of the linear index in a solid which has its peak value at the band edee 
where linear absorption turns on, and then rapidly turning down toward smaller values as fiv increases    Just 
as the linear index n is related to the linear absorption through Kramers-Kronig relations, so the nonlinear 

SS in Xefs[till]™ abS0rpti0n-   These nonlinear Kramers-Kronig relations are discussed in more 

E.(ev) 

Figure 14. A log-log plot of the scaled 2PA_ coefficient ß as a function of the bandsap energv E   Tin eV) 
me uata are scaled from Eq. 21 as ^nVv^F.   The straight line is a fit to the data within the dashed box 

totiikd raS1^ f^w,^? SlTVu-   ^ data t0 thS right °f the b0X are taken from Ref- P9] using 
hnl M«3 ]        I Se/ C1JCleS) harmonics of L06 Axm picosecond pulses.  The data to the left of the" 

ftssrr?" om?ef-i6,03usingiomnanosecondpuises>whichcarefui1^account°d° iree-carner absorption.  Figure reproduced from Ref. [65]. 

™Jäd ?aVhe S™121«^ in Ae data displayed in Figs. 12 and 13 are well described using the simplest 
^Son "fe

SSTpA *• ■ ^^f^^ ^e solid line in Fig. 12 comes from a calculationTh 
ransition rate for 2PA using such a band structure. Performing a Kramers-Kronig transformation on the 
nonlinear absorption calculated using this band structure gives the solid line of Fig. 13 Whik there are 

IhTST of0" theSe,CUrV" £?P t0 factors °f 3. - ««end there is surprisingly good agreement considering 
sTecnS*IJL0Z differences m band-gap energies (from 0.2 to 10 eV).    Using the calculate? 
SeMSe    ri can comPare the ^ge of values of ß and n, for the different materials studied by 

«plotting the scaled data on a log-log plot versus E£ as in Figs.   14"and 15 (i.e. dividing out the respective 



theoretical frequency dependences of the nonlinearities). This shows the E"3 dependence of 2PA in Fig. 14 

and the E^4 dependence of n, in Fig. 15, revealing more than four orders-of-magnitude change in n2. 

After having separated the contributions of "fast" (i.e. ß and n2) and "slow" (i.e. aT) we can compare 
theoretical results for the free-carrier nonlinear refraction with experiment. As long a/ the photogenerated 
carriers thermalize extremely rapidly with the lattice, a and ar are independent of their generation 
mechanism. The so-called Drude band-blocking theory of the frequencv dependence of these carrier 
nonhneanues appears to describe experiments reasonably accuratelv under a varietv of conditions such that 
the spectral dependences are known.[36-38] Reference 25 gives a detailed comparison of different theories 
with experiments on semiconductors. 

(eV) 

n«nU/£J!-rA l°Xl0l Pl°! °f ,SCfled °2 data " a fuDCli0n 0f Ez- Th£ data are scaled fr°m Eq- 22 as n2n/WEpG.    The data (circles) are taken from Ref. [61] using nearly degenerate three-wave mixing 

SfTnT Z"SCan ^urei»ents from Ref- [«I (solid squares at 0.532 ßm open squares at 1.06 m and 
nt SH\SqTeJl 10-6 ^ ^ the AlGaAS data (trjan^«) axe taken from Ref [64]. These data Te 
now scaled by the dispersion function G.  The solid straight line has a slope of -4. 

V. CONCLUSION 

tofL^lEZ^i e?UCi^ S
k
h0WD data for ZnSe> <** °b^ed for other materials looks remarkably 

similar For example, Fig. 16 shows Z-scan data for BaF2 at an input wavelength of 266 nm where the 
material is a two-photon absorber (Eg.9.2 eV). This figure is to be compared with Fig. 5 for ZnSe The 
deviation of the fit for negative Z is due to a linear background (i.e. independent of I) caused bv surface 
curvature.   Such background effects become more pronounced at shorter wavelengths.   We find for BaF   at 

f^TlxlT-^vi-V^TfnS8 «^OOldi««.^ «d the field parallel to [010], 0*0.06 cm/GW, and 
n.-+0.1x10 " cmVW (+1.1x10 » esu) whale the anisotropy in this material is large (eg  30% chant-   n n 
with orientation). While a thorough study at this wavelength has not been performed, le «pe« £ free- 
STZ*n " thf ,irradiance and w^elength are small.   This is due to both the small magnitude of ß and 
trie smaller expected free-carrier cross sections at short wavelengths. 
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Figure 16. Normalized Z-scan transmittance of BaF2 measured using picosecond pulses at X=266 nm with 
I0=72 GW/cm2. (a) Open aperture data and fit (solid line) (b) 40% aperture data and fit (solid line) and (c) 
Tftie result of the division of the Z-scans of (a) and (b). 

In order to extract the data needed to plot Figures 12, 13, 14 and 15, a clear understanding of the 
nonlinearities involved was necessary. In the final analysis these figures reveal relatively simple trends and 
scaling rules. We have found that a simple 2-parabolic band model for semiconductors describes 
semiconductor data well and even appears to work for wide-gap dielectric materials. 

The examples given here demonstrate the importance of measuring materials nonlinearities using different 
techniques and/or as functions of several parameters including pulsewidth and wavelength. For example had 
we only measured nonlinear refraction in ZnSe at one pulsewidth we could not have determined whether the 
response was due to a bound electronic n, or to linearly generated free-carier refraction. Additionally, the 
nonlinear refraction in ZnSe coming from the two-photon absorption generated carriers, depending on the 
irradince range of the experiment, could be mistaken for a larger third-order response (i.e. the fifth-order 
response may not be recognized without analyzing data over an extended range of irradiance levels). In turn, 
when analyzing data from different materials in an attempt to discover scaling rules, trends could easily be 
masked if the nonlinearities were not properly separated. 
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The wavelength dependence is not only of importance to determine nonlinear mechanisms, but it can be 
crucial in determining whether a material is promising for a given application. As seen in Fig. 13, n2 has a 
zero near 3/4 E . If a measurement were made near this wavelength, the material could be labeled useless 
for applications involving large n2's independent of how large the peak n2 is (see Fig. 13). While the 
wavelength dependence of the nonlinearities in these inorganic materials as shown in Figs. 12 and 13 is 
relatively simple, molecular (organic) crystals can be expected to have considerably more structure, for 
example several wavelength separated 2PA peaks. It is hoped that the knowledge gained in understanding the 
nonlinear response of inorganic materials will be helpful in unraveling the response of organics. 
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An algorithm is presented for the calculation of the nondegenerate two-photon absorption coefficient by using 
tcond-order^pXbation theory and a Kane band-structure model, including the effects of nonparabohcity 
and nonzone-center wave functions. The polarization dependence is included by correctly accounting for the 
symmeS of thfelectronic wave functions. A comparison is made with degenerate two-photon absorption data 
n various t nc blende semiconductors, and excellent agreement is found without the use of fittmg pararneter^ 

Comparisons are also made with nondegenerate two-photon absorption spectra measured in ZnSe and ZnS by 
Sfa picosecond continuum and with some polarization-dependent measurements obtained by a two-color 
Z-scan measurement. 

INTRODUCTION 
Degenerate (self-action) two-photon absorption (2PA) in a 
zinc blende semiconductor was previously described and 
characterized; see, e.g., Refs. 1-3. However, there has 
been recent interest in the nondegenerate 2PA whereby 
one light field induces absorption in a second light field, 
resulting in the loss of one photon from each field. Here 
we use the term nondegenerate to indicate the effect of 
one light beam on a different (usually in wavelength or 
polarization) light beam (cross action), as opposed to self- 
action effects, which are the effects of light beams on 
themselves and which we term degenerate. This interest 
is due partly to recent measurements of nondegenerate 
nonlinear absorption in semiconductors4'6 but also to the 
fact that the nondegenerate absorption can be used to de- 
termine the nonresonant nonlinear refractive index n2 by 
means of a nonlinear Kramers-Kronig relation.6,7 

A calculation for degenerate 2 PA that uses a two- 
parabolic-band model for a semiconductor is presented in 
Refs. 7 and 8. This two-parabolic-band model provides 
the proper scaling of 2PA with material parameters and 
gives a frequency dependence matching that of experi- 
mental data. However, the absolute value of the pre- 
dicted values is consistently low by approximately a factor 
of 2 over a wide range of direct-gap semiconductors and 
some dielectrics.3 This factor can be accounted for by 
using the present band structure, which is more realistic 
near the center of the Brillouin zone. In particular, the 
degeneracy of the valence bands and the band nonparabol- 
icity are correctly accounted for. By this improvement in 
the band-structure model, one can accurately predict 2PA 
without the use of fitting parameters. 

Another reason for using a more comprehensive band- 
structure model is that the simple two-band model does 
not, by itself, give any polarization dependence. This is 
because the two-parabolic-band model does not provide a 
direction for the momentum matrix element (although 
most calculations assume a momentum matrix element 
parallel to the electronic k vector). The Kane band struc- 
ture used here automatically provides a direction and a 

magnitude for the momentum matrix element, permitting 
the determination of nondegenerate 2PA for arbitrary po- 
larization orientations between the two light inputs. 
However, as the Kane band structure for zinc blende (cu- 
bic) semiconductors is isotropic, there will be no polariza- 
tion dependence with respect to the crystal orientation. 

THEORY OF DEGENERATE TWO-PHOTON 
ABSORPTION 
There have been two basic approaches to the calculation of 
degenerate 2PA coefficients in a crystalline solid. First, 
second-order perturbation theory can be used to calculate 
the transition rate from valence to conduction band (re- 
sulting from the absorption of two photons). Second, 
first-order perturbation theory can be used with elec- 
tronic wave functions that have been dressed to include 
the acceleration of the electrons as a result of the ac Hght 
field. The latter approach was developed by Keldysh9 and 
is often termed tunneling theory. 

Second-Order Perturbative Approach 
Fermi's golden rule (derived from second-order time- 
dependent perturbation theory) provides the form of the 
two-photon transition rate: 

W2 

-T2 n   v. 
2 (tAH^i)^^) 

£,„(k) - ha> 
5(£cv(k) -2hoj), 

(1) 

where H„pt = (e/mc)A • p is the optical interaction Hamil- 
tonian applicable to solids, «WM is the Bloch wave func- 
tion for the conduction (valence) band, and Ecv(k) is the 
energy difference between the bands. The sum is over all 
possible intermediate states i and over all possible transi- 
tions starting from a filled state and ending at an empty 
state (usually valence to conduction band for an intrinsic 
semiconductor), i.e., a sum over bands and the electronic 
wave vector k.   The subtlety in this calculation is in de- 
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Fig. 1. Band structure for a zinc blende semiconductor near 
the center of the Brillouin zone as given by Kane.12 Only the set 
of four doubly degenerate (in spin) bands are considered: 
conduction band (cb), heavy-hole band (hh), light-hole band (lh), 
and split-off band (so). 

ciding what model to choose for the band structure and 
over what bands the summations will be performed. 

The simplest model for a semiconductor consists of a 
single parabolic conduction band and a single parabolic va- 
lence band in which the intermediate states are also these 
bands.8,10 Hence the summation will involve an inter- 
band (allowed) and an intraband (forbidden) matrix ele- 
ment. This calculation gives a two-photon absorption 
coefficient of the form 

ß(ü)) = -Kpb^  2 

F2 

VEP        (hu> 

n0Hw)Ee 

(2x - If'2 

Ec 

(2xT 
(2) 

where Ep is related to the interband momentum matrix 
element and for the two-parabolic-band model is defined 
Ep = 2|pvc|

2/m0 {Ep is approximately 21 eV for most semi- 
conductors),11 nQ is the linear refractive index, and Eg is 
the band gap. Kpb is a material independent constant, 
which the two-band theory gives as7 

•Kpb — 
297T 

= 1940 cm/GW (eV)5 (3) 
5   Vnüfi2 

Equation (3) gives the correct material scaling (n0'
2Eg~3) 

over a large range of semiconductors and wide-gap optical 
materials3; however, 2PA coefficient predictions are con- 
sistently low. This difference has been compensated for 
by fitting the constant Kpi> to the experimental data, which 
gives a value for the constant of Kpb = 3100 in the same 
units as above.3 

One of the deficiencies of the above model is that it does 
not correctly account for the valence band degeneracy. 
Zinc blende semiconductors usually have a valence band 
maximum at the center of the Brillouin zone. This maxi- 
mum consists of three bands: a heavy-hole band and a 
light-hole band (degenerate at k = 0) with a spin-orbit 
split-off band separated by the spin-orbit interaction en- 
ergy A (Fig. 1). For direct gap materials (conduction 
band minimum also at zone center) the theory of Kane1 

provides a good description of the bands and the Bloch 

wave functions around zone center, which is sufficient for 
many of the band-edge optical properties. 

Lee and Fan13 used the Kane band structure with para- 
bolic bands to determine 2PA coefficients (they also dis- 
cussed excitonic effects). Two-photon transitions still 
consist of an allowed and a forbidden transition from a 
valence to a conduction band, but now possible forbidden 
transitions consist of intervalence band transitions as 
well as the self-transitions that exist for the two-band 
model. This calculation (neglecting the split-off band, 
i.e., A » Eg, and without excitonic contributions) results 
in a 2PA coefficient that is a factor of 2.7 greater than 
that obtained from the two-parabolic-band model but with 
identical frequency and material dependencies. This 
form of calculation was extended by Pidgeon et o/.,M who 
included nonparabolicity, and by Weiler,2 who correctly ac- 
counted for nonzone-center wave functions with non- 
parabolicity, which results in a significant reduction in 
the expected 2PA coefficient. The latter calculation gives 
a predicted 2PA coefficient that agrees well with (reliable) 
experimental data for a wide range of semiconductors and 
optical solids.315 

Tunneling Approach 
Keldysh's tunneling theory involves the use of dressed elec- 
tronic wave functions, which include the effect of an ac 
electric field and first-order perturbation theory. It not 
only provides 2PA coefficients but can be used for any 
multiphoton process. Jones and Reiss applied this 
method to a two-parabolic-band model of a semiconductor, 
using an S-matrix approach, for circularly polarized 
light,16 and Brandi and de Araüjo made a similar applica- 
tion for linearly polarized light.17 Provided that the same 
band-structure assumptions are used in both cases, ex- 
actly the same result as that predicted by second-order 
perturbation theory is obtained for 2PA. This is not sur- 
prising since the dressed-electron-states approach is 
equivalent to a self-transition (intraband) in the second- 
order perturbation theory approach. However, the tun- 
neling theory cannot easily be applied to the Kane band 
structure, as the tunneling approach has problems dealing 
with multiple valence band degeneracies and so cannot 
correctly account for intervalence band transitions. Care 
needs to be taken when one is using tunneling theory for 
mulitphoton absorption in general, as this theory often 
does not account for the dominant contributions. For ex- 
ample, in three-photon absorption the dominant term 
arises from a threefold interband transition,8 whereas 
tunneling theory accounts only for terms corresponding to 
one interband and two intraband transitions, which are 
usually much less significant. 

To conclude this preliminary discussion on degenerate 
2PA theory, a simple two-parabolic-band model of a semi- 
conductor (that uses either the second-order perturbative 
or the tunneling approach) provides the material scaling 
and general frequency dependence but usually underesti- 
mates ß by approximately a factor of 2 (this difference 
has been compensated for by fitting to measured data). 
Including other factors, such as correct valence band de- 
generacies, nonparabolicity, and correct electronic wave 
functions away from zone center, in the calculation pro- 
vides an accurate prediction of the degenerate ß without 
the use of fitting parameters. 
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THEORY OF NONDEGENERATE 
TWO-PHOTON ABSORPTION 
In the presence of 2PA alone (i.e., with no linear absorp- 
tion), the absorption of two spatially and temporally over- 
lapping light beams is described with the following 
coupled set of equations showing both degenerate (ßu) and 
nondegenerate (/3y) terms: 

dh 

dz 
-ßnh2 -2ßl2IJ2, 

-— —   ~ß22I2    —  2ß2\l\I2. dz 
(4) 

The factor of 2 in the nondegenerate term is sometimes 
referred to as weak-wave retardation,18 and this definition 
ensures that the nondegenerate coefficient approaches the 
degenerate one as the parameters of the I2 beam approach 
that of 7i, i.e., ßu —* ßu as m2 -* <*>i- 

Two-Parabolic-Band Model 
The nondegenerate 2PA coefficient can be determined by 
using two parabolic bands and an S-matrix (tunneling) ap- 
proach7 or second-order perturbation theory to give 

/3i2 — Kp\ 
VE~P d, htü!    Äü>2 

■T2 pbno(a)i)n0(co2)Ee
3"   \Ee ' Eg 

where the spectral function F2
ni is defined as 

(*x + x2- l)3'2 

^;^   > (5) 

F2
ni(Xl;x2) 

21xlx2
2 

1       1 
- + — 
X\      x2 

(6) 

provided xi + x2 > 1, and is zero otherwise. For the two- 
parabolic-band model we define the parameter Ep = 
2\pve\2/m0.   The functional form of F2

nd is shown in Fig. 2. 

Kane Band-Structure Model 
In a manner similar to our treatment of the degenerate 
case, we now use a more realistic band structure for the 

determination of the relevant optical transitions close to 
the center of the Brillouin zone. The model used in the 
following calculation was developed by Kane1112 and is 
based on k • p theory with spin-orbit interaction for 
three-valence bands plus one conduction band. The basis 
functions are denoted S f and S | for the two spin states 
for the unperturbed conduction band with spherical sym- 
metry and Xt,Xl,Yt,Yl,Z\, and Z 1 with p-like 
symmetry for the unperturbed valence bands. The re- 
sulting band structure is shown in Fig. 1 and consists of a 
conduction band (cb), heavy-hole (hh) and light-hole (lh) 
valence bands degenerate at k = 0, and a split-off (so) 
valence band removed by an energy A at k = 0. On di- 
agonalization, the band energies can be obtained from 

E' = 0, 

EXE' - Eg){E + A) - (kP)\E' + 2A/3) = 0,        (7) 

where E' — E — (h2/2m0)k
2 is the electron energy with 

the free-electron mass taken into account and P is the 
Kane parameter defined from the momentum matrix 
element: 

P=-—{S\px\X) 
mo 

■—<s|p,|y> = - — <ß\P,\z). 
mo mo 

(8) 

The first of Eqs. (7) gives the heavy-hole energies, which 
are zero (plus the free-electron mass contribution) be- 
cause there is no coupling with other bands, and the cubic 
equation provides the energies for the conduction, light- 
hole valence, and split-off valence bands. This diagonal- 
ization is such that the total angular momentum (sum of 
orbital plus spin) J = L + a and its z projection Jz are 
also diagonal in the new basis. The conduction band 
(L = 0,cr = 1/2) has the two (degenerate) spin states of 
J = 1/2, with Jz = ±1/2. The valence bands (L = l,cr = 
1/2) have the possible values of J = 3/2, Jz = ±(3/2) for 
the heavy-hole band, or J = 3/2, Jz = ±(1/2) for the light- 
hole band, and of J = 1/2, Jt = ±(1/2) for the split-off 
band. 'The diagonalization also gives the electronic wave 
functions 

4>ia = ai(iS i) + bt[(X - iY) T /V2] + c.-CZ i), 

4>iß = ai(iSV + bi[-[X + iT)l/V2] + c,(ZT), 

4>hh« = [(X + im/V2], 

4>hhß = [(X-iY)l/V2], (9) 

where a and ß denote the two (degenerate) spin states and 
the coefficients for the conduction, light-hole, and split-off 
bands are determined from the energies 

at = kP(Ei' + 2A/3)/2V, 

bi - (V2A/3)(£i' - Eg)/N, 

d = (£,■' - Eg)(E' + 2A/3)/2V, (10) 

where N = (a2 + b2 + c2)112 is a normalizing factor. 
The transition rate for nondegenerate 2PA can be deter- 

mined by using second-order perturbation theory13: 

n    „„ I '<c|H2|i><i|H,|«,> _ (cl&liXfl&lt;) 
-E,„(k) - hu>i 

X 5[Scv(k) — hail ~ ÄW2]i 

Ei„(k) - ho)2 

(11) 
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Table 1    z Components of the Scaled Momentum Matrix Element My = {i\pz\j)h/m0P as a Function of the 
Electronic k Vector in Polar Coordinates"  

Spin 
States hha lha so a 

c a 

cß 

hha 

hh/3 

lha 

lh/3 

so a 

SO0 

2acc, cos 8 

0 

0 

 — sin 8 

(acc/ + aicc)cos 0 
(ac6i - aibc)   . 
 — sin 8 

V2 
(acc, + a,ce)cos 0 
(ac6, - a,6e)   .   . 
 — sine 

V2 

0 

sin 8 __ 
"VI 

0 

0 

0 

—■= sin 0 
V2 

0 

__. 
"V2 

(acCi + aicc)cos 6 
(ac6i — ai6c) sin 8 

: sin 6 

sin 8 

V2 
0 

a/ 
V2 

2a;Ci cos 0 

0 

(aic, + a,cj)cos 8 
(a;6, - a,bi)   . 

■ sm 8 

(aec, + a,cc)cos 0 
(acb, - a,bc)   .  _ sln g 

V_ 
0 

a 

V2 
(0|C, + OjC|)C0S 0 

(a/b, — a,öi) 

 = sin 8 

V2 

V2 
2a,c, cos 6 

0 

sin 8 

The labels a and ß refer to the two (degenerate) spin states in each band [conduction (c), heavy-hole (hh), light-hole (lh), and spht-off (so ]. The coefficients 
a J and ca^eThelinTcotfficienL determined from Eqs. (10). Only transitions from a spin states are shown here, but to get transU.ons from the ß spm 
states the relations MißJß - Af_.j. and M*.* - Mfe.i. can be used. 

where the interaction Hamiltonians are given by 

Hj = A,-p, 
—0c 

Using the expression for the nondegenerate two-photon 
transition rate given in Eq. (11), we obtain the following 
expression for the 2PA coefficient: 

lT7lo(t)j 

2irlj 

_n0(.Wj)c_ 
(12) 

hP 
ßl2(a>üo>2) - l-l 2no{ui)ntl(aa)Ey*\Et ' E, 

I hü>i hb>2 

Here äj is the unit vector in the direction of polarization 
of the jth. optical beam, which has frequency to, and an 
irradiance 2}. 

In order to determine this transition rate, one must ob- 
tain the momentum matrix element among the various 
bands described by the Kane theory. Table 1 shows the z 
component of the scaled momentum matrix element taken 
among the various sets of bands, which we define as 

= K 
VE~P 

no{u>\)na{a>2)Eg 
(15) 

where the dimensionless spectral function f2 is defined as 

f2(xüx2)= 5 2       H   sin edel  I — I -=- 
XiX2   vc Jo       Jo Jo K&g/     ^g 

MX MSW? 

M,^(k) = 
m0P 

(>,k|p|i,k>. (13) X 5 

Y lEJk)/Ee - Xl     Eiv(k)/Eg - x2 

E. 
Xi - x2 

Only the matrix elements from the a spin states are 
shown, but those from the ß spin states can easily be ob- 
tained by using the facts that 

The material dependent constant K is given by 

Mißjß = Miaja , 

Mia,jß= M?ß,ia. 

(16) 

(17) 

(14) 

Lee and Fan13 show a similar table for the particular case 
of parabolic bands and zone-center wave functions. Here 
the k vector is given in polar coordinates (M.,d,4>), and the 
(a,b,c) coefficients are the ^-dependent wave function co- 
efficients described in Eqs. (10). For parallel optical po- 
larizations we can take both polarizations to be in the z 
direction. For arbitrary polarizations we can use the z 
component for one beam and determine the other matrix 
element for the appropriate orientation. In examples be- 
low we consider cross-polarized beams, so the x component 
(or the y component) of the momentum matrix element is 
also required, which we show in Table 2 (using the same 
formalism as above). Whereas the z component is inde- 
pendent of the <j> component of the electronic wave vector 
k, it can be seen the same is not true for the x component. 

which has the value of 2.2 cm/GW (eV)M (allowing Ep and 
Eg to be given in electron volts), and Ep is related to the 
Kane parameter P by Ep = 2m0P

2fi2. 
In the Kane band-structure case, there is a dependence 

on the ratio of the split-off energy to the band gap, A/Eg, 
which is contained within the dimensionless spectral 
function f2 (the parameter P also appears, but only for 
scaling the integral), which obviously does not appear in 
the two-parabolic-band model. The summations involved 
are over all valence to conduction band routes via all pos- 
sible intermediate states (which are themselves the vari- 
ous valence and conduction bands described in this 
band-structure model). In this calculation only the bands 
described above are used, i.e., one conduction and three 
valence bands, each doubly degenerate in spin. Higher 
band contributions are neglected. With the matrix ele- 
ments described above for the Kane model, there are 46 
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contributing transitions from valence to conduction band, 
compared with 4 for the two-parabolic-band model (which 
can be further reduced to one calculation, as all 4 transi- 
tions occur at the same magnitude of the k vector). In 
both the two-parabolic-band and the Kane band models, 
these transitions consist of an allowed term (valence to 
conduction band) and a forbidden term, i.e., not allowed at 
k = 0 (self-valence, self-conduction, or intervalence band). 

The algorithm for computing the nondegenerate 2PA is 
as follows. First, for the given optical frequencies w x and 
ü)2, the magnitude of k at which this optical transition oc- 
curs is determined. This involves calculating the root of 
the argument of the Dirac delta function in Eq. (16) 
[which in turn involves computing the roots of Eqs. (7)]. 
Second, the wave functions for these states are deter- 
mined by computing the (a,b,c) coefficients [Eqs. (10)]. 
Third, the appropriate scaled momentum matrix elements 
M(«f (k dependent) are determined (Tables 1 and 2). 
Fourth, the summation is performed over all valid inter- 
mediate states, and the integrals are computed over the 
angular coordinates of the k wave vector (d,4>). 

RESULTS 

Indium Antimonide 
To check the above algorithm, we first make a comparison 
with established theories for degenerate 2PA in narrow- 
gap semiconductors, citing InSb as an example. Weiler2 

gives an analytic expression for the degenerate spectral 
function f2 that includes nonparabolicity and nonzone- 
center wave functions in the limit of a large split-off en- 
ergy, A » kP, Eg, which is applicable to narrow-gap semi- 
conductors: 

f2nPM 
iir(2x - l)3'2 

3*3 

4(3x)L- 

(3x - 1) 

3\3;2(9x4 + 10x2 + 6) 

;+l3* + ¥J  55?  
(18) 

Weiler also gives the correct form of the frequency depen- 
dence, using parabolic bands and zone-center wave func- 
tions (also in the limit A » kP, Eg), which was calculated 
by Lee and Fan13: 

8TT(2X - If 

^) = -V6V 
4 + 

29V|\ 

12   ) 
(19) 

The material scaling of both of these models is exactly the 
same as that given above in Eq. (15). These forms are 
plotted in Fig. 3 for InSb at room temperature (Eg = 
0.175 eV; Ep = 21.3 eV; A = 0.85 eV), along with the results 
of the numerical model presented here. It can be seen 
that the omission of nonparabolicity and nonzone-center 
wave functions leads to a considerable overestimation of 
2PA, except close to the 2PA edge, although the overall 
shape is qualitatively similar to that in the nonparabolic 
case. This is a result of the decrease of the interband 
momentum matrix element with increasing k as the k • p 
perturbation causes more mixing of the s- and p-like wave 
functions. We find that our calculation gives a result 
close to that of Weiler's nonparabolic calculation, with only 

D. C. Hutchings and E. W. Van Stryland 

a small deviation at higher photon energies. This devia- 
tion is due principally to there being a term proportional 
to Eg/A in the effective mass as a result of the interaction 
of the split-off band, which is neglected in Weiler's expres- 
sion. In the same plot we show some experimental data 
taken with a C02 laser at 10.6 and 9.6 ^m.19"22 The 
spread in the experimental data makes the frequency de- 
pendence impossible to confirm, but the results given here 
seem to confirm that, for 2PA in InSb, nonparabolicity 
and nonzone-center wave functions have a marked effect 
on the overall magnitude of the 2PA but that the fre- 
quency dependence is not greatly changed, as was stated 

in Ref. 2. 

Degenerate Two-Photon Absorption at 1.06 and 0.53 /xm 
Reference 3 gives a range of degenerate 2PA measure- 
ments in semiconductors at a wavelength of 1.06 pm and 
its second harmonic, 0.53 /im. The results for the semi- 
conductors with a zinc blende structure are shown in 
Table 3 along with the predicted values from the present 
theory. The uncertainty in the measured values was 
given as ±40%.   For CdTe, GaAs, ZnS, and ZnSe, excel- 
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Fig. 3. Frequency dependence of the degenerate 2PA in InSb. 
Included for comparison are various experimentally determined 
values at 10.6 and 9.6 /xm: A, Ref. 19; O, Ref. 20; D, Ref. 21; O, 
Ref. 22. 

Table 3.   Degenerate 2PA in a Variety of Zinc 
Blende Semiconductors 

Wavelength 

ß (cm/GW) 

Material (/xm) Ref. 3 Ref. 23 Theoretical" 

ZnSe 0.532 5.5 5.8 5.0 

ZnS 0.532 2.0-3.5 — 3.0 

GaAs 1.064 23 26 22 

CdTe 1.064 15-22 26 18 

ZnTe 1.064 4.5 4.2 1.2 

"The theoretical values were determined by using the algorithm pre- 
sented here, which includes band nonparabolicity, the contribution from 
the split-off band, and the use of nonzone-center wave functions. 
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Kpb = 3100 cm/GW (eV)5'2, for the degenerate 2PA in InSb, GaAs, 
and ZnSe. 

lent agreement is obtained, especially considering that 
there are no fitting parameters whatsoever in the present 
treatment. However, the 2PA in ZnTe at 1.06 fj.m is con- 
siderably underestimated. It should be noted, however, 
that this measurement lies close to the 2PA edge. It has 
been suggested that this discrepancy is due to excitonic 
enhancement since the difference corresponds to only a 
few times the exciton binding energy.3 Other possible ex- 
planations are that there may be some degree of band tail- 
ing or that allowed-allowed transitions via higher bands 
become relatively more important close to the 2 PA edge. 

One of the surprising features of the simpler two- 
parabolic-band model is that, when it is scaled (i.e., 
üTpb = 3100), it provides a remarkably good prediction for 
the degenerate 2PA over a wide range of materials and 
frequencies.3 To confirm this fact we compare the re- 
sults of this model with our present theory in Fig. 4 for 

InSb, GaAs, and ZnSe. It can be seen that in all three 
examples the two curves lie fairly close together over the 
whole frequency range shown here (certainly well within 
typical experimental errors for these types of measure- 
ment). Note, however, that as the band gap increases, the 
two-parabolic-band result increasingly underestimates ß 
as the split-off band plays a greater role. 

Zinc Selenide 

One of the semiconductors in which we make a compari- 
son between theory and experiment for the nondegenerate 
2PA spectra is ZnSe. In this material the band gap and 
split-off energies are of comparable magnitudes (E, = 
2-67 ey Ep = 24.2 eV, A = 0.42 eV), fulfilling neither of 
Weilers analytic expressions for the degenerate 2PA that 
were calculated for A » E, and A « Ee. That this is so 
is demonstrated in Fig. 5, which is a plot of the degenerate 
2PA coefficient against frequency and from which it can 
be seen that the exact numerical calculation performed 
here (solid curve) agrees with Weiler's nonparabolic ex- 
pression for A » Eg (short-dashed curve) close to the 2PA 
edge but asymptotically approaches the expression for 
A « Eg at higher frequencies. The point of inflection 
near 1.5 eV in the present calculation occurs because the 
photon energies have reached the threshold of split-off to 
conduction band transitions. The data denoted by the 
circles are two measurements at 0.532 Mm,3'23 which show 
excellent agreement with the present calculation. Also 
shown in Fig. 5 is the polarization dependence of the 
frequency-degenerate 2PA. The solid curve discussed 
above also gives the nondegenerate 2PA in the limit of 
identical frequencies and parallel polarizations. The long- 
and-short-dashed curve shows the same quantity, but now 

L5 2.0 2.5 3.0 
Photon Energy (eV) 

Fig. 5. Frequency dependence of the degenerate 2PA in ZnSe. 
The solid curve shows the present calculation; the short-dashed 
curve and the long-dashed curve; show Weiler's nonparabolic ex- 
pressions in the limits A » £, and A « E„ respectively. The 
dotted-dashed curve shows nondegenerate 2PA where the two 
wavelengths are identical but the optical polarizations are per- 
pendicular. Also included are some data points with appropriate 
error bars taken from Refs. 3 and 23. 
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Fig 6 Nondegenerate 2PA in ZnSe at the second-harmonic fre- 
quency that is due to the presence of light at the fundamental 
frequency. The solid curve corresponds to parallel optical polar- 
izations; the dashed curve; to perpendicular. Two data points 
are shown, measured at 0.532 pm because of the presence, of a 
beam at 1.064 Aim, by the two color Z-scan technique. The 
square corresponds to parallel polarizations, and the triangle to 
perpendicular. 

the optical polarizations of the two beams are perpendicu- 
lar. It can be seen that in the perpendicular case the 2PA 
coefficient is approximately a factor of 2-3 less than in 
the parallel case over all frequencies beneath the band 
edge, ha < Ee. For ZnSe at a wavelength of 705 nm this 
theory gives a ratio of 2.4 between the two polarization 
cases, which agrees fairly well with an experimental mea- 
surement of 2.24 Note that the threshold for the split- 
off transitions is much less obvious in the perpendicular 
case. This result is a consequence of the direction of the 
matrix elements involving the split-off band resulting in 
a reduction in the angular (Euler's) integral for these 
transitions. It should be noted, though, that one must 
take care when considering nondegenerate optical effects 
that arise from two beams of identical frequency, as coher- 
ence must play a significant role. The nondegenerate 
2PA values given in Fig. 5 should be considered only as the 
limit obtained, as the two (different) frequencies tend to 

the same value. 
One method of obtaining a nondegenerate 2PA measure- 

ment is to frequency double a portion of a pump beam and 
use it as a probe beam. However, it should be noted that 
this method can be used only to obtain nondegenerate 
measurements along a particular line in the («i, w2) plane, 
as the two frequencies used must have a fixed relation 
between them (i.e., wx = 2<u2). Figure 6 shows the non- 
degenerate 2PA in ZnSe at the second harmonic that is 
due to the presence of the fundamental within the mate- 
rial, i.e., ß(to; w/2). Once again a solid curve is used to 
denote parallel optical polarizations; and a long-and-short- 
dashed curve, perpendicular. Again the point of inflec- 
tion where split-off transitions become allowed is readily 
seen in the parallel case. The data shown here are nonde- 
generate 2PA coefficients measured at 0.532 pm that are 

D. C. Hutchings and E. W Van Stryland 

due to the influence of a strong 1.064-/im pump beam 
measured by the two-color Z-scan technique. 

A recent paper4 reported the measurement of nondegen- 
erate 2PA in several wide-gap semiconductors by using a 
pump at 705 nm and a picosecond continuum pulse as a 
probe. This directly gives the form of nonlinear absorp- 
tion applicable to the determination of the nonlinear re- 
fractive index n2 by the nonlinear Kramers-Kronig 

"0.5 1.0 1-5 2.0 
Photon Energy (eV) 

2.5 

Fig 7. Nondegenerate 2PA in ZnSe as a function of probe fre- 
quency for a fixed pump frequency at 0.705 /xm (parallel polariza- 
tions) The data are from Ref. 4. The circles correspond to a 
high irradiance, h = 8 GW/cm2'(errors ±30%), and the squares 
and triangles to a lower irradiance measurement, h = 0.7 GW/cm 
(errors ±45%). 

°1.5 2.0 2.5 
Photon Energy (eV) 

Fig. 8. Nondegenerate 2PA in ZnS as a function of probe fre- 
quency for a fixed pump frequency at 0.705 pm (parallel polariza- 
tions) The data are from Ref. 4. The circles correspond to a 
high irradiance, h = 8 GW/cm2 (errors ±30%), the squares to a 
medium irradiance, h = 1.8 GW/cm2 (errors ±45%), and the tri- 
angles to a lower irradiance h = 0.7 GW/cm  (errors ±45%). 
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relation.6 Figure 7 shows the results for ZnSe along with 
the results of the corresponding theoretical calculation. 
The circles correspond to a pump irradiance of =8 GW/ 
cm2 and have an estimated error of ±30%. The triangles 
and the squares correspond to a lower irradiance level 
(«0.7 GW/cm2) and have an estimated error of ±45%, 
The sizes of these errors make it difficult to infer any 
details of the nonlinear absorption spectrum, but the 
magnitude is in complete agreement with the present 
calculation. 

Zinc Sulfide 
Reference 4 also presents data for ZnS, which is also a zinc 
blende semiconductor, but in this case the spin-orbit 
interaction is small, and the split-off energy is much 
smaller than the band gap (Eg = 3.54 eV, Ep = 20.4 eV, 
A = 0.064 eV). In the case of ZnS, the picosecond contin- 
uum provided the nondegenerate 2PA around the 2PA 
edge (i.e., hui + hw2 ~ Ee), as shown in Fig. 8. Here the 
circles correspond to an irradiance level of =8 GW/cm2 

with an estimated error of ±30%, the squares to =8 GW/ 
cm2 (±45%), and the triangles to =0.7 GW/cm2 (±45%). 
Once again, the solid curve is the calculated 2PA and 
shows excellent agreement with the wavelength depen- 
dence and magnitude, considering that the calculation is 
absolute. Note that in this case because of the small split- 
off energy A the point of inflection corresponding to the 
threshold of split-off transitions is no longer obvious. 

CONCLUSIONS 
We have presented an algorithm for the determination of 
2PA in zinc blende semiconductors. The calculation uses 
the band structure described by Kane,11'12 consisting of a 
conduction band and three valence bands (heavy-hole, 
light-hole, and split-off) and includes the effects of non- 
parabolicity and nonzone-center wave functions. The 
2PA coefficient is determined from the transition rate, 
which is calculated by using second-order perturbation 
theory (Fermi's golden rule). 

The motivation for this study is threefold. First, while 
a simple two-parabolic-band model gives the correct mate- 
rial scaling and spectral dependence, the results of that 
model have to be scaled to fit reliable experimental data 
(replacing the material independent constant Kpi> = 1940 
with the best-fit value of 3100 for a range of semiconduc- 
tors3). We have shown that this fit provides a good ap- 
proximation to the fuller band-structure calculation for 
the degenerate 2PA. However, it is desirable to use a 
band-structure model that does not require any fitting pa- 
rameters. The Kane band structure with nonparabolicity 
and nonzone-center wave functions2 seems to satisfy this 
requirement. Second, in order to account for the optical 
polarization dependence, one must know the direction as 
well as the magnitude of the momentum matrix element. 
The simpler two-band model does not provide this, but the 
polarization dependence is an integral part of the Kane 
band-structure model. Third, the nondegenerate 2PA is 
one of the contributions that can be used to determine the 
nonlinear refractive index n2 by a nonlinear Kramers- 
Kronig transformation6 (the other methods being Raman 
transitions and the ac Stark effect). This determination 
has already been made by using a two-parabolic-band 

model,17 but again it must be scaled by approximately a 
factor of 2 to fit the available data. This present research 
provides the groundwork for a nonlinear Kramers-Kronig 
calculation of n2 for the Kane band structure that we hope 
will not require the use of any fitting parameters. 

It is found that the results of the calculation that uses 
the algorithm presented here agrees well with available 
degenerate as well as nondegenerate 2PA data in various 
zinc blende semiconductors (with the exception of degen- 
erate 2PA in ZnTe at 1.06 /im). Previous publications 
claim that excitonic effects are important even well above 
the 2PA edge.213 We find that in most of our examples 
good predictions are obtained without the inclusion of 
such effects. It is shown in Ref. 25 that the coulombic 
enhancement for linear absorption vanishes at higher pho- 
ton energies such that hco — Ee » Et,, where Eb is the ex- 
citon binding energy (Rydberg). We would expect the 
same to be true for nonlinear absorption. The examples 
given here almost all occur well away from photon ener- 
gies where coulombic enhancement is relevant (again an 
exception being 2PA in ZnTe). Also, impurities and de- 
fects in the semiconductors will lead to screening of the 
coulombic potential and band tailing, which will reduce 
the bound exciton resonant absorption and the unbound 
contribution that gives rise to the aforementioned en- 
hancement of the 2PA. We conclude that the enhance- 
ment reported in Ref. 13 must be considered an upper 
limit of 2PA. 

Another effect that is neglected in the present calcula- 
tion is any contribution from other bands. This contribu- 
tion has a twofold effect. First, the calculated band 
structure will be different when other bands are allowed 
to mix with the set of four bands used in the band-edge 
optical properties (conduction plus three valence). For 
example, these contributions are necessary if one wishes 
to obtain a heavy-hole effective mass different from that 
of free electrons. In particular, away from zone center, 
the calculated shape of the conduction band is quite differ- 
ent from that of the Kane model. So, for instance in 
ZnSe, significant deviations from the Kane model should 
occur near 1 eV above the band edge26 (corresponding to 
degenerate 2PA 0.5 eV above the 2PA edge). It is quite 
remarkable that our model (and to a certain extent the 
two-parabolic-band model) works so well at these higher 
photon energies. Second, there are possible two-photon 
transitions for which the additional bands can be used as 
the intermediate state. However, these transitions 
should be significant only close to the 2PA edge (as these 
are allowed-allowed transitions, compared to the allowed- 
forbidden transitions considered in this paper) and for 
transitions high into the conduction band (where the 
energy difference denominators for transitions via a 
higher band are not so large). For the intermediate pho- 
ton energies examined here, these extra transitions should 
be negligible. 

We have calculated only the 2PA contribution to the 
nondegenerate nonlinear absorption, using transition 
rates that correspond to loss of energy to the material. 
Loss or even gain from energy transfer between beams 
(four-wave mixing) is ignored. This is as it should be for 
2PA coefficients; however, one must exercise great care in 
performing experiments in order to separate clearly the 
loss contributions of 2PA and energy transfer. 
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ABSTRACT 

Using an excite^obe two-color Z^can -d« £ ^ *üJÄ ^^f 

=^^ *p—ZnSe -d show how *can 

Solve the bound electronic and free carrier components. 

2. INTRODUCTION 

1, «« fmir wave mixing [1] and nonlinear interferometry [2] have 
Time-resolved excite-probe techniques such as foor-™ "^Siities Here, we show that the simple Z- 
be" used in the past for studying the dynamo; of ^2tTSX«Seiai excite-probe geometry. In 
scan technique [1] can be extended to obtain ^^äi lifetimes and dispersion of both absorptive 
this scheme, we obtain information regarding the> sign ma|^™\^ü . of practical interest in the 
and refractive components of optical nonhneariues ^^^^eo^tor linoiters, thermal self 
optimization of self-protecting ^J^^f^1,^ ^ Jutawklths in excess of the carrier 
focusing is believed to initiate bulk damage to the^sample ^P f fte nondegenerate bound 
ecombLation or diffusion times Furthermore, ^ de^ J^^rption (2PA) coefficient </0 in 

electronic nonlinear refractive index (n^and ^ .^^Xearites in these materials. Experimental 
semiconductors would give a better insight intothe P***««™^ a ^.parabolic-band (TPB)   theory 

theory. 

3. EXPERIMENTS 

where there was no time-delay capabüity.   The arrangement «* NdYAG laser, and the other at 
frequencies, for example one at ^.^J^^J After to delaying one of the beams, the two 
^=0.532 lira by second harmonic gene «Jon "Ma!^J^Satic lens and the far-field transmittance of both 
beams are recombined and focused with »^„^^SnH dichroic beamsplitter. In this geometry, 
beams (through apertures) can ^^^^^^£^t thus making it possible to use either 
we are able to selectively attenuate each of the two^f^^f^ J^ probe or vice-versa. Independent 
the fundamental as the strong pump and die second harmonic ^ ^ £ ±e ^ singie-wavelength 
control of the polarization state of ^J^ ^^^ fSy sensitive to the induced changes m 
SÄÄ2 S^^SST^ induc/d refractive changes as we, 

~S. WA^& >jb *A 
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Figure 1. Two-Color time-delay Z-scan experimental setup, 
the fundamental beam white D4/D2 measures 
harmonic. 

D3/D1 gives the transmittance of 
the transmittance of the second 

T» two-color Z-scan for ZnS, measuredat£» ^^^Z^t^^eT^ 
the probe beam at A=0.532 „m is shown in Fig.2 Abo ^«^^ of n -m both degenerate and 
peak-valley configuration of the Z-scans is mdicativeo"the ^ve ^ ^ 2modulation, we observe a 
nondegenerate cases.   Aside from a factor of two enhancement due to^cr0^Pn^ ment ^ in exceUent 
two-photon resonance enhancement of the nondegeneratn^Regenerate2?A is energetically allowed 
agreement with the TPB calculations. In ZnSe, on «^ otter hand, i^^ene^te £ ^ agreement with the 
and the two-color Z-scan measurement grves a negative ^eg^rate n    *üsom |       ^ ^ ^ 
TPB theory.     A comparison of the degenerate and nondegenerate n2 values tor z.roe 
predicted by the theory is given in Fig.3. 
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Figure 3. 
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The response ti.es of the bound electronic —^ 
would appear as instantaneous with P««econdpulses, lotte presence ^ ^ ^ temporal 

of photogenerated carriers is long hved and <^ *««£** ™%[ % generate 2PA is allowed for the 
overlap between excitation and probe beams   ^ ^^^ ^y ^ ^ 
excitation beam. Fig. 4 shows the tune iresolved^?^^™J ^U at A=0.532 Mm and probed 
is a direct measure of the nonlinearly induced phase sluft ^^^P

u^7lectronic Kerr effect at small 

S&^£ SSI ^cÄ^S rtf^tiÄd^ ^r delays, The 
reluS' otour measurements of both nondegenerate 2PA and n2 are summed m Table 1. 
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COMPARISON BETWEEN EXPERIMENTAL DATA AND THEORY 
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ABSTRACT 

increase in the damage threshold of the latter with only a small mcrease of the limiting threshold. 

2. INTRODUCTION 

A material possesing large nonlinear refraction and/or ^^e^ f SO;ptiX:e
ad^l5%^FtSe^Thows 

axis transmittance is monitored through an aperture in the far field. 

SAMPLE        APERTURE 

DETECTOR 

Fig.!.       Typical limiting geometry where the transmitted beam is monitored through an aperture in 

the far field (d»z0). 
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The nonlinear element is placed close to or at focus to increase the incident fluence or irradiance and 

defined as the ratio ot its oam g seif.defocusing effect as was demonstrated by Van Stryland et al 

reduces thrdTmage threshold since the surface of the material is more prone to damage than the bulk. 

Fig.2.       The   cascaded  optical  limiting  device. NL1   determines  the  limiting   threshold  and NL2 
determines the dynamic range. 

In this paper we place a second nonlinear element in front of focus which acts as a protector of the first 
nonnnea7e?ement    The second nonlinear element acts as a nonlinear attenuator which turns on at high 
SSTSrSnS whose strength inceases with energy.   Therefore  it protects the fest nonhnear e^n 

from damage at high input energies.    This scheme is shown in figure 2 where NL1 gives the limiting 
^holTand NL2 determines ^damage threshold^ Two different ?»£*£££^^^ 
hybrid limiter is devised where the first element NL1 is immersed m the second element NL2 which 

liquid. 

In section 3 we show the formalism and experimental'results of the hybrid limiter. In section 4 we 
discuss the "cond case where NL1 and NL2 are physically separated by a distance D. Both theoretical and 
experimental results are presented.  A conclusion is given in section 5. 

3. HYBRID LIMITER 

The hybrid limiter consists of a solution with nonlinear optical properties in which is immersed a solid 
possesing nonlinear refraction and nonlinear absorption. This tandem hmiter is shown m figure 3 1=_our 
experiment performed with 30 picosecond pukes (FWHM) at 532 nm, the solid is a 2.7 mm *«* ZnSe 
samole immeS in a 1 cm ceil filled with a solution of metallo-phthalocyamne or r^phthalocyamne 
NonSea"Xction and nonlinear absorption in ZnSe were completely analysed and ^nderstood » h 
picosecond regime.[7-9] The optical limiting properties of ZnSe were also studied^] In fact, one 
MONOPOL devices by Van Stryland et al. [1] was made of ZnSe. 
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Fig.3.       The hybrid limiter where ZnSe is immersed in a solution of CAP or SiNC. 
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Fig.4.       Comparison between the limiting results for ZnSe (squares) and the hybrid limiter (x) of 
ZnSe.  Only a slight increase in the limiting threshold is obtained. 
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THe   solution   was   either   ^ro-^nrn   ^oc^J,   ***** £*$J^ ifSse 

The nonlinear effects in CAP £**.are^^SSSÄ SLÄ 
sample situated at the rear surface of.he ^the^™ ^ still dominated by ZnSe as long as the 
increases with increasing energy ^.^f.^^ means that the limiting threshold, usually a low 
concentration of SiNC in the solvent is not too ^ ™ me ^ rf ^ ^ high ffiput 

input energies, might be increased by »»^Xfaa significant increase in the dynamic range 
energies, will increase b>, a large*'^^^ *%£„*£ to find the optimum position o the 
of the device. First a Z-scan ^ ^ hy£*^r dP a ition where ^ Z-scan signal yields a 
device with respect to *°<™-™™^^^vL n cm) protects the first surface from damage since 
f JvTbe STÄ «SS ÄtSÄ is the confoca, beam P— and w0 

andl are ^beana waist (HWI/eM) and wavelength respecdvely. 

damage was observed on ZnSe mthe hyb ndl de™^P «an input en«» _£ ^^ ^ ft ^ 

ä oL^dt Sot r^ ä " £ru* ^ *-.—<*«* 
range than the limiters made of any of the individual elements. 

Limiting 

Threshold 

Damage 

Threshold 

Dynamic 

Range 

ZnSe 0.15 uJ 2uJ 13 

CAP/ZnSe 

(CAP) 

0.8 uJ 

1.6 uJ 

50 uJ 63 

SiNc/ZnSe 

(SiNC) 

0.25 uJ 

0.45 uJ 

>80uJ >320 

Table 1.   Limiting imitins and damage thresholds for ZnSe and hybrid limiters. 
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(a) Comparison of the calculated limiting threshold of a single element limiter and a cacscaded 
limiter, and (b) the irradiance incident on NL1 for both cases. 
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Fig.6. Experimental   limiting   results   for   a  single   element  limiter   W   -d^a  -^d   ^ 
(diamonds). NL1 is a modified solution of acetone and NL2 is SiNC. The damage tnres 
was increased from 17 pJ to more than 50 yZ. 
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4. CASCADED LIMITER 

In the 8eometry of *«. 2, ;wo •^^^X^^^T^ Ä^ 

surface of NL2 is given by 

T ^      - (1) 

*2 ~ 1 + QCz») 

K      rv   >     /tt^L     for two-photon absorption (2PA) and I(z2) = IJl + (z2/z0)2] is the input irradiance 
Tt NL2Q(^ I Spf coefficient and I0 is^he on-axis input irradiance at focus.   1^ is the effects 
interaction length for a material with linear absorption and it is glven by 

j _ e-„L (2) 
Leff - a 

maintains its Gaussian shape after exiting ™-^£ we caQ determine the input irradiance or 
axis transmittance in the^te f«ü  Given ^ ^-axity^       ^ ^ ^ ^ ^ ^ ^ 

deTcCeew°Äl Sd NL2 bol preSn,   In this case Q0= 4A*0 where A*0 is the on-axis induced phase 
shTffby rZl at the focus and z2= -2z, Q0 and A*0 are given respectively by 

(3) 
Qo = ^oWf 

and (4) 
A$0 = k7l0leff. 

,, ■ , .u r XTT i v-->fl\ k the wave vector and T is the nonlinear index of refraction 
?? Y« f 1 W le^Sed"ulAtXost no changl in to limiting threshold. On the 
defined as n = n0 + 71.    me caicui<ucu   »i»       _ decreases sienificantly when NL2 is 
other hand, figure 5(b) shows that the incident irradiance on NU_decreases ^ica    y 
added.   This translates to a significant grease in the ^^^^^f^^^ threshold 
range.   For example, consider the case where NL1 has a damage threshold of 10 ^.^ 
is reached at an input irradiance of * 10 arb umts in ^ abscence^of NL2 ^^^^oiL caL 
threshold is not reached with input irradiance^o  up to 40 a^uni^ ^^^^2^^ added 

is presented in figure 6   In this case NL1 is a    mm thick cell °f an ace^ so ^ ü     exhibits large 

to it in order to increase its linear absorption in the visible. ^ ****£%*™^^ * a 2 mm 
thermal defocusing when irradiated with nanosecond pulses (=40 ns F^HM) at 5,2 m- ^L^ The 

thick cell filled with a solution of ^«^ mm. 

ITS^"^^^ *• «*~ ** *»i7 *»— 
than 50 pJ with a very small increase in the limiting threshold. 

5. CONCLUSION 

demonstrated a cascaded geometry where two nonlinear elements are combined in a limiting 
We have 



devi ,    We ^^»^^^ZS^J^™ ^ äÄ^tSS 
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We performed a series of experiments on suspensions of carbon particles in liquids (ink) and carbon particles 
deposited on glass to determine the mechanisms for the observed optical-limiting behavior. Both materials 
show reduced transmittance for increasing fluence (energy per unit area). We found that nonlinear scattering 
dominates the transmissive losses and that the limiting is fluence dependent, so that limiters based on black 
ink are effective for nanosecond pulses but not for picosecond pulses. Additionally, the nonlinear scattering 
and the limiting behavior cease after repeated irradiation. For the liquid, flowing eliminates this effect. All 
the data obtained are consistent with a model of direct heating of the microscopic-sized carbon particles by lin- 
ear absorption with subsequent optical breakdown initiated by thermally ionized carriers. A simple calcula- 
tion gives temperatures higher than the sublimation temperature at the onset of limiting. Emission spectra 
measurements show singly ionized carbon emission lines with a hot blackbody background emission consistent 
with temperatures of =4000 K. A rapid expansion of the microscopic plasmas generated by the breakdown will 
effectively scatter further input light. Indeed, in time-resolved experiments the trailing portion of the pulse is 
most heavily scattered. The time-resolved transmittance of a weak cw probe beam also follows the temporal 
dependence of the singly ionized carbon emission (=102 ns). We directly monitored the expansion of the scat- 
tering centers by angularly resolving the scattered light for different input fluences and fitting to Mie scatter- 
ing theory. Since the carbon is black and the microplasmas are initiated by linear absorption, the limiting is 
extremely broadband. Within the context of this model we discuss the limitations and optimization of ink- 
based optical limiters. 

1.    INTRODUCTION 

There is considerable interest in the application of the 
nonlinear optical properties of materials for optical limit- 
ing. The ideal optical limiter would have high linear 
transmittance for low-input-energy laser pulses and low 
transmittance for input energies above a user-specified 
value so that the output would become clamped. In addi- 
tion, this ideal limiter would have rapid response (picosec- 
onds for some applications), broadband response (e.g., the 
visible spectrum), and a large dynamic range. Here dy- 
namic range is defined as the ratio of the input energy at 
which the device no longer clamps the output or at which 
the device itself is irreversibly damaged to the input en- 
ergy at which the output first becomes clamped. Figure 1 
shows the input-output characteristics of such an ideal 
limiter. Figure 2 shows the input-output characteristics 
of a 1-cm-thick glass cuvette filled with a carbon-black 
suspension (CBS), a suspension of carbon-black particles 
in a mixture of water and ethylene glycol (i.e., diluted 
black drawing ink) along with a similar curve for an 
identical cell filled with carbon disulfide, CS2.12 In our 
experiments we filtered the suspension through a 0.25-yxm 
filter, and the largest agglomerates seen after drying and 
measuring with an electron microscope were 0.21 /an, 
with an individual particle size of =35 nm. Later we will 
see that scattering measurements gave an average size of 

=0.14 pm. For these measurements the input pulses 
were focused, 20-nsec (FWHM), 1.06-^.m, linearly polar- 
ized pulses from a Q-switched Nd:YAG laser run at a repe- 
tition rate of 1 Hz. The power needed to initiate limiting 
in a CBS of =100 W (energy =1 yxJ) is compared with 
kilowatts for CS2. This low threshold for limiting makes 
CBS's interesting for a variety of applications. 

In this paper we report a comprehensive series of experi- 
ments aimed at determining the basic physical mecha- 
nisms responsible for the nonlinear response observed in 
Fig. 2. Our conclusion from the results of these experi- 
ments is that the tiny suspended carbon particles are rap- 
idly heated by strong linear absorption, giving rise to 
thermionic emission, which in the presence of the strong 
electric field leads to avalanche ionization. The resulting 
microplasmas then rapidly expand into the surrounding 
liquid and strongly scatter the incident light for the dura- 
tion of the existence of the plasma (=102 ns). Subse- 
quently, at incident energies well above the threshold for 
obtaining a clamped output, the heating leads to bubble 
formation and further scattering that lasts for microsec- 
onds. These conclusions imply that the limiting is broad- 
band and depends on fluence (energy per unit area) rather 
than on irradiance, both of which agree with our observa- 
tions. In addition, since the carbon particles are ionized 
(and vaporized) during the process, the suspension 
must be replenished after each laser exposure, again 
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Fig. 2. Energy output for CS2 and CBS as a function of input 
peak power for 14-ns (FWHM), 532-nm pulses focused to 
wo — 3.5 /im for input powers of 1 to 12 kW. 

as observed. The experiments leading to these conclu- 
sions and the organization of this paper are briefly out- 
lined below. 

In Section 2 we first describe optical limiting experi- 
ments on the CBS and on a sample of carbon particles 
deposited upon glass (CBG) performed at 1.06 and 
0.53 fim with both nanosecond and picosecond input 
pulses. In Section 3 we describe three methods for moni- 
toring the contribution of nonlinear refraction to limiting, 
all of which showed negative results. In Section 4 we de- 
scribe the results of an experiment in which we simulta- 
neously monitored transmittance, absorptance, and the 
fraction of side-scattered light in CBS, and we also de- 
scribe a similar experiment in CBG in which we measured 
transmittance and scattering. Time-resolved transmit- 
tance measurements using both a single beam and a 
pulse-probe technique are discussed in Section 5. In Sec- 
tion 6 we show results of emission-spectra measurements, 
and we time resolve them. The results of these measure- 
ments suggest that microplasmas that scatter the incident 
light are being formed. Growth of these plasmas in 
size must be the explanation for the observed limiting, 
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since the carbon particles already block some of the 
transmission by their high linear absorption. In Section 
6, therefore, we compare the results of measurements of 
the angular distribution of the side-scattered light for dif- 
ferent fluences with results obtained with theory. This 
comparison confirms growth of the scattering centers as 
fluence increases. Finally, in Section 8 we look at limit- 
ing geometries for which the sample thickness is large 
compared with the depth of focus of the input beam (thick- 
sample geometry), and we show why what is fundamen- 
tally a f luence-dependent nonlinearity manifests itself as 
an energy dependence in this thick-sample geometry. 

2.   OPTICAL LIMITING 
Using a nanosecond Q-switched Nd:YAG laser and a mode- 
locked picosecond Nd:YAG at 1064 and 532 nm, we exam- 
ined optical limiting in a CBS and CBG as a function of 
carbon-black microparticle concentration, input polariza- 
tion, repetition rate, and beam radius. For 14-ns, 532-nm 
linearly or circularly polarized laser pulses incident upon 
a 1-cm-thick sample of CBS with 70% linear transmission 
at 532 nm, we found that the onset of limiting begins for 
incident peak powers of the order of 100 W for a tight- 
focusing limiting geometry, as shown in Fig. 3. However, 
the output is approximately clamped (i.e., the slope of out- 
put versus input becomes small) for incident powers 
S160 W. This value (the limiting threshold) is that input 
power (energy, fluence, or irradiance) at which the linear 
response line, in a plot of output versus input, intersects 
the line passing through the "clamped" output. This lim- 
iting threshold is approximately 1/24 that for CS2 

(=3.8 kW) if the same focusing geometry is used. The 
reorientational nonlinearity in CS2 is known to lead to a 
power-dependent limiting.3 The lower limiting threshold 
in CS2 for 14-ns laser pulses compared with that for single 
42-ps pulses (=8 kW) possibly results from electrostrictive 
self-focusing that occurs for the longer pulses with a tight- 
focusing geometry.4   Identical focusing geometries were 
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Fig. 3.    Energy output for CS2 and CBS as a function of input 
peak power for 14-ns (FWHM), 532-nm pulses focused to 
wo = 3.5 Aim for input powers of 1 to 1000 W. 
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Table 1.   Limiting Thresholds for CBS and CS2 in 
a Tight-Focusing Geometry 

Material 
A 

(nm) 
Wo 

(um) (ns) 
Power 
(kW) 

Energy 
(pJ) 

Fluence 
(J/cm2) 

cs2 532 3.5 14 3.8 57 300 

cs2 532 3.5 0.042 8 0.36 1.9 

cs2 1064 5.1 20 13.5 290 710 
CBS 532 3.5 14 0.16 2.4 12 
CBS 532 3.5 0.042 30     • 1.3 6.8 
CBS 1064 5.1 20 0.40 8.5 21 

o 
_l 
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r- 
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Fig. 4. Limiting threshold fluence as a function of beam radius 
for 20-ns (FWHM), 1064-nm laser pulses. Circles represent the 
measured value for a 100-/xm-thick flowing jet of CBS with 707c 
linear transmittance, and X's are for a 1-cm-thick sample of CBS 
with a 70% linear transmittance at 1064 nm (the thin-sample cri- 
terion is satisfied). 

used in experiments with both the nanosecond and pi- 
cosecond laser sources. The calculated spot size at focus 
at 532 nm was w0 - 3.5 fim (half-width at 1/e2 maximum 
in irradiance). Best-form lenses were used for focusing 
the laser beam in all experiments reported in this paper. 
We found that for 20-ns, 1064-nm laser pulses focused to 
w0 - 5.1 yum, a CBS limits the output for an incident 
power of =400 W, which is approximately 1/34 that of the 
threshold for CS2 at this wavelength. These results 
clearly indicate that a CBS is a promising material for op- 
tical limiting applications, such as optical sensor protec- 
tion. However, for single 42-ps, 532-nm laser pulses the 
limiting occurs for incident peak powers of the order of 
=30 kW at 532 nm if a tight-focusing geometry similar to 
that used for the nanosecond laser pulse experiment is 
used. This limiting threshold is nearly four times that 
for CS2 (=8 kW). These results are summarized in 
Table 1. We conclude that limiting works well in a CBS 
for long pulses (2:10 ns) but is less effective for short (pi- 
cosecond) pulses. We found that for tight-focusing ge- 
ometries the limiting depends on input energy, whereas 
for a collimated beam geometry the limiting depends on 
fluence (J/cm2). The energies (and fluences) for limiting 
in a CBS for nanosecond and picosecond pulses are equal 
to within better than a factor of 2, as may be seen from 
Table 1. The small difference (picosecond pulses limit at 
a slightly lower energy) could be due to small geometry 
differences and self-focusing in the solvent at the high ir- 
radiance used for picosecond pulses. 

In Section 8 we discuss the reasons for energy- 
dependent rather than fluence-dependent limiting for 

thick (tight-focusing) versus thin limiters. For thin lim- 
iters (i.e., those in which the beams are well collimated 
within the length of the sample) we used focal beam radii 
of 14-454 /xm with nanosecond laser pulses incident upon 
a 100-/wn-thick jet of flowing CBS (as in a dye laser) to 
measure the limiting threshold. The results shown in 
Fig. 4, along with the picosecond measurements discussed 
above, demonstrate that the limiting is fluence dependent. 
These measurements show that the onset of limiting (for 
collimated beams) occurs at =200 raJ/cm2 for 532-nm, 
14-ns (FWHM) pulses (not shown) and at =380 mJ/cm2 

for 1064-nm, 20-ns (FWHM) pulses, independent of spot 
size. Thus optical nonlinearities leading to limiting in a 
CBS depend on the temporally integrated irradiance (i.e., 
fluence). 

We found that the onset of limiting is independent of 
the concentration of carbon-black particles. However, 
samples with a higher concentration of carbon-black par- 
ticles and, in turn, lower transmittance for low-input-light 
levels block the output light more effectively at higher in- 
cident fluences than do samples with a low concentration 
of carbon particles. As we discuss below, the attenuation 
of the output light is dominated by scattering from mi- 
croplasmas initiated at the positions of the carbon parti- 
cles. Therefore we should observe more microplasma 
scattering centers and stronger attenuation for the more 
highly concentrated samples. 

The optical nonlinearities in the solvent make a negli- 
gible contribution to the limiting processes in the CBS for 
nanosecond inputs. However, because of the presence of 
highly absorbing carbon-black microparticles in the CBS, 
heat diffusion to the surrounding liquid could lead to ther- 
mal nonlinearities in the solvent. We investigated the ef- 
fects of such nonlinearities and found that the nonlinear 
index change was S3 X 10~6 (see Section 3). This nonlin- 
ear index change is too small to have any significant effect 
on the limiting threshold for a CBS. In addition, we stud- 
ied the optical-limiting response of CBG. Here, there is 
no liquid to heat, and we can ignore the thermal nonlin- 
earities of the host medium. We found the optical limit- 
ing threshold for CBG to be =800 W peak power for 20-ns, 
1064-nm laser pulses, as shown in Fig. 5.    This limiting 
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Fig. 5.   Energy output for CBG and glass substrate as a function 
of input peak power for 20-ns (FWHM), 1064-nm pulses focused 
to wo — 8 /i.m.   The solid lines are guides for the eye. 
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threshold is only twice that of the CBS. This factor-of-2 
difference may result from the different particle sizes in 
these samples. Whereas CBS has an average particle size 
of =0.14 Aim, the toner particles used for CBG have an 
average size of =5 fim. Thus for the same input fluence 
the temperature rise is smaller in the larger particles, and 
this leads to a higher threshold.4 

We observed that for a pulse repetition frequency a 2 Hz 
the limiting effect diminished after a few laser firings. 
This is illustrated in Fig. 6 for a 10-Hz pulse repetition 
frequency. The magnitude of this effect depends on the 
beam radius and input energy. In addition, for CBG, if 
we did not translate the sample after each laser firing for 
inputs above the limiting threshold, limiting ceased for 
subsequent pulses. Examination of the glass slide 
showed that the particles were removed from the surface 
after irradiation. Flowing the liquid at a rate sufficient 
to replenish the CBS between laser firings removes the 
apparent dependence on pulse repetition frequency. 

To understand the optical nonlinearities leading to the 
observed nonlinear transmittance, we investigated non- 
linear refraction (self-focusing or defocusing), nonlinear 
absorption, nonlinear scattering, and combinations of 

these mechanisms. 

3.    NONLINEAR REFRACTION 
The contribution of nonlinear refraction in a CBS was 
studied by using three different techniques: beam distor- 
tion "5 measurement of the transmitted on-axis lrradi- 
ance,6'7 and the Z-scan method.8 These techniques 
allowed us to investigate the contributions of phase distor- 
tion from a thermo-optic effect, electrostriction, or any 
other nonlinear refractive mechanism. Using the beam- 
distortion measurement, we monitored the far-field spa- 
tial transmitted beam profiles of the TEM00 Gaussian 
input pulses at 532 and 1064 nm from a Nd:YAG Q- 
switched laser as a function of incident irradiance.   The 
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beam-distortion measurements indicate that the contribu- 
tion of nonlinear refraction to optical limiting is small. 
We estimated the upper limit of the nonlinear refractive 
index n2 to be =4.6 X 10"12 esu at 532 nm.    This value 
was calculated with the assumption that the maximum 
phase distortion was <0.3A (the sensitivity limit of this 
technique) for both wavelengths, even at inputs 20 times 
the optical limiting threshold in a CBS.    By using the 
more sensitive Z-scan technique with wave-front distor- 
tion sensitivity =A/25 for our laser system, we found that 
the estimated value of n2 for CBS was =8 ± 5 X 10'12 esu 
at 532 nm.   The positive sign eliminates the possibility of 
thermal defocusing.    If we compare the n2 of CBS with 
that of the solvent calculated by Marburger's equation9 for 
catastrophic self-focusing, we find that the values agree to 
within the range of error; thus the measured n2 value is 
that of the solvent.   This clearly indicates that for intensi- 
ties for which limiting is observed in CBS, the contribu- 
tion of nonlinear refraction is negligible.   This point also 
was confirmed by the on-axis transmittance measure- 
ment, in which we measured the limiting threshold for 
CBS with or without an aperture in front of the transmis- 
sion detector and observed no change in limiting thresh- 
old.   Note that these measurements also indicate that the 
small-angle forward scattering is always smaller than the 
transmitted beam. 

4.    SIMULTANEOUS MEASUREMENT 
OF TRANSMITTANCE, ABSORPTANCE, 
AND SCATTERING 
Figure 7 shows the experimental setup used for the simul- 
taneous measurement of absorptance (A), the fraction of 
side-scattered light (S), and the transmittance (T) in a 
CBS for nanosecond laser pulses at 532 and 1064 nm. 
This experiment was performed with a well-collimated 
beam within the length of the sample.   The absorptance 
signal was obtained by placing a piezoelectric transducer 
at the bottom of the CBS-filled cell.    The gated signal 
voltage from this transducer (with a peak-and-hold cir- 
cuit) is directly proportional to the absorbed energy. 
Figure 8 shows the results of these measurements as a 
function of incident fluence at 1.06 /xm.    Data taken at 
532 /xm show qualitatively identical results.  . The data 
shown are for inputs near the threshold for limiting, so 
that only a small change in transmittance is seen.   The 
transmittance data are absolutely calibrated, whereas the 
absorptance and scattering fraction are arbitrarily scaled 
(i.e., A+S + T#lin this figure).   The deviation from 
a horizontal straight line indicates nonlinear behavior for 

all three signals. 

Liquid Cell 

Variable 
Attenuator 

BS Lens 
Transmitted 
Energy 
Monitor 

Input Energy 
Monitor 

r\ 

Lens 
'| Transducer 

Scattered Energy 
Monitor 

Fie   7     Schematic diagram for simultaneous measurements of 
transmittance, absorptance, and the fraction of side-scattered 
light.   BS, beam splitter. 
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We found that for fluences above the onset of a change 
of transmittance (i.e., =200 mJ/cm2 for 14 ns, 532 nm and 
380 mJ/cm2 for 20 ns, 1064 nm), there is a strong increase 
in the fraction of side-scattered light as well as an in- 
crease in the absorptance. The absorptance levels fall off 
for higher fluences. In addition, we found that the trend 
of increased side-scattered fraction continues for input 
fluences even 50 times the threshold, as is shown in Fig. 9. 
These data indicate that for relatively low fluence levels 
the material changes from a linear absorber to a nonlinear 
scatterer. 

The strong nonlinear scattering is illustrated best in 
Fig. 10, which is a photograph of the 532-nm side-scattered 
light at low [Fig. 10(a)] and high [Fig. 10(b)] fluences. 
Note that at the high fluence level the input never reaches 
the back of the cell. That light from plasma emission is 
overwhelmed by side-scattered laser light was quantita- 
tively verified in experiments on the angular scattering 
profile; these are discussed in Section 7.   Only at 1.06 pm 

Mansour et al. 

could we see the plasma emission in a darkened room af- 
ter our eyes had adapted to the darkness. 

We repeated the measurement of transmittance T and 
side-scattered fraction S for CBG at 1.06 pm and found 
that, as the transmittance decreased for fluences 
si J/cm2, the side-scattered fraction rapidly increased, as 
for a CBS, again indicating similar mechanisms for the 
two materials, independent of surroundings. We were un- 
able to perform the photoacoustic experiment to monitor 
the absorption because the sample had to be moved after 
each irradiation, changing the photoacoustic signal in an 
unpredictable fashion. 

5.   TIME-RESOLVED TRANSMISSION 
We performed time-resolved transmission measurements 
for the 14-ns, 532-nm laser pulses in a CBS. For fluences 
below the onset of limiting, the material behaves linearly, 
and the shapes of input and output pulses are the same, as 
is shown in Fig. 11. However, for fluences above limiting, 
we observed that a transmittance cutoff occurs within the 
duration of the pulse and that latter portions of the pulse 
are strongly attenuated. This is shown in Fig. 1Kb), for 
which the input reference was attenuated by a factor of 10 
with respect to the transmitted pulse, which now appears 
shifted toward early times because of the truncation. 
These results are reminiscent of those of laser-induced 
breakdown experiments.11'12 The results of this experi- 
ment and those described in the previous sections indicate 
that the physical mechanisms leading to the truncation of 

X =532 nm 

tp=14ns 

Low Intensity 
(a) 

Front of the Cell^- 1 cm ■^ Back of the Cell 

High Intensity (b) 

Fig. 10. Photographs of side-scattered 532-nm light from a 1-cm 
cuvette of CBS for (a) low and (b) high incident intensities 
(fluences). 
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Fig. 11. Temporal profiles of the incident and transmitted 532- 
nm, 14-ns (FWHM) laser pulses, (a) Incident and transmitted 
pulses for fluences of =100 mJ/cm2 (below threshold), (b) Inci- 
dent (attenuated by a factor of 10) and transmitted pulses for a 
fluence of =1.1 J/cm2 (above threshold). The spot size was 
wo — 250 /Am. 

monitored by using the same monochromator-fast- 
photomultiplier combination. Monitoring the emitted 
light at =800 nm, which coincides with a singly ionized 
carbon emission peak, resulted in the data of Fig. 13 for 
CBG. Whereas the decay does not fit a single exponen- 
tial, the emission decays to 1/e of its initial value in 
=102 ns. This decay time is consistent with previous 
measurements for the lifetime of ionized carbon.1314 

This =102-ns decay time is also consistent with the re- 
sults of excitation and probe measurements in which we 
monitored the change in the transmittance of a cw He-Ne 
beam as a function of the incident fluence of a 20-ns, 
1064-nm excitation pulse. From this measurement, 
shown in Fig. 14, we found that for the CBS the He-Ne 
transmission recovers to 50% of the attenuation within 
=100 ns, which is comparable with the emission time of 
ionized carbon. Figure 15 shows similar results for CBG. 
However, for CBG at longer times the transmittance actu- 
ally increases above the original level. This again indi- 
cates that the carbon is ionized and vaporized so that it no 
longer efficiently absorbs or scatters the incoming light. 
This is not seen in the CBS, since the material is thick 
and only a small fraction of the carbon is vaporized with a 
single laser firing. At the very highest fluence levels in 
the CBS the transmittance does not fully recover to the 
original level.    This may be attributed to another high- 

the pulse and subsequent absorption and scattering of the 
final portion of the pulse may result from the formation 
and rapid expansion of microplasmas, as occurs in laser- 
induced breakdown. Before truncation, carbon-black 
particles linearly absorb the leading edge of the pulse effi- 
ciently. The carbon particles are rapidly heated, and the 
carbon vaporizes and ionizes to form a rapidly expanding 
microplasma that strongly scatters and absorbs the latter 
part of the pulse. If microplasmas are formed, we should 
be able to monitor their emission spectrum and time re- 
solve both their emission and the induced transmittance 
changes.   Such experiments are described in Section 6. 

6.    EMISSION SPECTRUM AND 
TEMPORAL DEPENDENCE 
We examined the microplasma formation by using spec- 
trally and temporally resolved fluorescence measure- 
ments. We monitored the side emission spectrum with a 
monochromator-fast-photomultiplier system connected to 
a computer-controlled digitizing oscilloscope. The laser 
pulses at 1.06 /xm were focused into the CBS or onto the 
CBG, and the side-scattered light was collected onto the 
entrance slit of the 0.25-m monochromator. The samples 
were repetitively irradiated at a fixed fluence (the CBG 
sample was moved after each firing), and the wavelength 
was scanned. Figure 12 shows spectral data for CBG. 
Superimposed upon the data is a blackbody spectrum at 
4250 K, which is higher than the sublimation temperature 
of carbon (=3850 K). Singly ionized carbon emission 
wavelengths that coincide with emission peaks in the ob- 
served spectra are shown. Data for the CBS show quali- 
tatively similar results, except that the frequency range 
over which data could be taken was significantly reduced 
by self-absorption and scattering within the CBS. 

The temporal dependence at specific wavelengths was 

200   400   600   800   1000  1200  1400 

WAVELENGTH ( NANOMETER) 

Fig. 12. Spectral emission from carbon particles irradiated by 
40-ns, 1.064-/xm laser pulses. The triangles show tabulated 
wavelengths for singly ionized emission lines. The thick solid 
curve shows the calculated emission for a blackbody source at 
4250 K. 
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Fig. 13.   Semilogarithmic plot of the emission signal at 800 nm 
as a function of time. 
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Fig. 14. Semilogarithmic plot of the He-Ne probe-beam trans- 
mittance as a function of time for different input powers for 20- 
ns (FWHM), 1.064-/i.m excitation pulses for a sample of a CBS 
with 70% linear transmittance. The dots highlight the digitized 
curves at specific time intervals. 
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Fig. 15. Semilogarithmic plot of the He-Ne probe-beam trans- 
mittance as a function of time for a 4.2-kW, 20-ns (FWHM), 
1.064-/zm laser pulse for a sample of CBG with 28% linear trans- 
mission at 632.8 nm. The dots, triangles, and squares highlight 
the digitized curves at specific time intervals. 

input limiting mechanism, such as vapor formation (i.e., 
cavitation and bubble formation), which can scatter light 
for microseconds.15 Indeed, at high inputs bubbles can 
be seen in the cell and have been reported by other 
researchers.16 

The fact that we see the transmittance of CBG almost 
completely recover to the uncoated glass slide transmit- 
tance within =600 ns implies that the carbon particles are 
removed or destroyed within this time. To be removed 
the particle velocities would need to be near the speed of 
sound if we assume velocities perpendicular to the beam. 
We conclude that the carbon particles are destroyed (va- 
porized or atomized) in the limiting process. The result 
is smaller particles (or atoms) much smaller than the 
wavelength A, so that they no longer scatter or absorb the 
light efficiently. This conclusion is consistent with the 
limiting behavior discussed in Section 2. 

7.    ANGULAR SCATTERING PROFILE 
To study the nonlinear scattering process in this material, 
we measured the intensity of the scattered light as a func- 
tion of angle from 20° to 160°, using a 100-^im-thick flow- 
ing jet of CBS with nanosecond 532- and 1064-nm laser 
pulses. Spike filters that transmit only the laser fre- 
quency were placed in front of the detectors, as in the 

other transmittance and scattering experiments. The re- 
sults of these measurements indicate an increase in the 
scattered light in the forward direction for fluences for 
which limiting was observed. The normalized scattered 
radiation pattern for 1064-nm light is shown in Figs. 16 
and 17 for fluences near and four times as high as the 
limiting threshold, respectively. From these results we 
determined the average size and the index of refraction of 
the scattering centers by numerically fitting the experi- 
mental results with Mie scattering theory. The best 
theoretical fits to the experimental results are shown as 

• Experimental Scattering Profile 
— Theoretical Fit 

Fig. 16. Polar plot of the fraction of scattered light (arbitrarily 
scaled) for a CBS for an incident fluence of =550 mj/cm2 for 20- 
ns (FWHM), 1064-nm linearly polarized light parallel to the 
plane of observation. The spot size was wo — 96 /xm. The theo- 
retical fit is based on Mie scattering theory. 
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•  Experimental Scattering Profile 
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Fig. 17. Polar plot of the fraction of scattered light (arbitrarily 
scaled) for a CBS for an incident fluence of =1.5 J/cm2 for 20-ns 
(FWHM), w0 = 96-/im, 1064-nm linearly polarized light parallel 
to the plane of observation. The theoretical fit is based on Mie 
scattering theory. 
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solid lines in Figs. 16 and 17. We found that the average 
radius of the carbon particles at low input energies is of 
the order of 0.14 /xm with a complex index of refraction 
m = 2.16 - 0.77i and that the average size of the induced 
scattering centers (at high input energies) is of the order 
of 0.40 fim with a complex index of refraction m = 1.96 - 
O.lli. These results not only indicate that the induced 
scattering centers are larger by a factor of =3 than the 
initial particles but also reveal that the optical properties 
of these centers are different from those of the initial 
particles. Similar results were observed at 532 nm. 
Clearly, this measurement integrates the scattering over 
the entire pulse width during the time the scattering cen- 
ters are growing. Presumably the average size at the end 
of the pulse is considerably larger than that measured in 
these experiments. We attribute the production of the in- 
duced scattering centers to the formation and rapid ex- 
pansion (within the pulse width) of microplasmas 
initiated by rapid heating and subsequent thermoioniza- 
tion of the carbon particles. The increase in size but 
decrease in the imaginary parfof m (i.e., decrease in ab- 
sorption) can explain the observed small increase in over- 
all absorptance but large increase in scattering. In 
particular, the absorption of the particles decreases sig- 
nificantly (i.e., by a factor of =7). Thus the area in- 
creases by approximately 32, whereas the loss decreases by 
=7, which is consistent with the observed small increase 
in absorption. 

8.   THICK-SAMPLE LIMITING 
The experiments described in previous sections that show 
the fluence dependence of the limiting in CBS were per- 
formed with thin-sample geometry, for which the depth of 
focus of the input beam is larger than the sample thick- 
ness. This ensures that the beam is collimated in the 
sample. We found that the fundamental fluence depen- 
dence of limiting in a CBS (or CBG) manifests itself quite 
differently if the focusing geometry is changed so that the 
sample is much thicker than the beam depth of focus (i.e., 
thick-sample or tight-focus geometry). This is expected 
for a f luence-dependent nonlinearity, as is described below. 
It is analogous to the irradiance-dependent two-photon ab- 
sorption (2PA) that appears as a power dependence in 
tight-focusing geometries. 

In this experiment the input beam at 532 nm was fo- 
cused into the CBS sample with a linear transmittance of 
60% by using one of three lenses with focal lengths 
of 51, 25.5, and 10 mm. The depth of focus for 
all three lenses is much less than the cell thickness of 
1 cm. The spot size at the input lens position was wa = 
0.207 cm half-width at 1/e2 maximum at 0.53 /xm. The 
input (and output) energy was monitored by a 1-cm- 
aperture, uniform-response p-i-n photodiode to collect all 
of the transmitted beam for each of the input lenses. The 
output energy versus input energy was recorded for one 
input lens focal length, and then the input lens was 
changed. This was repeated for all three input lens focal 
lengths. 

Figure 18 shows the data plotted as transmittance (out- 
put divided by input) versus input energy. The downward 
slope shows the limiting behavior.   We know that all the 

light was collected because the linear transmittance (out- 
put energy divided by input energy for low input energy) is 
independent of the lens used and is approximately equal to 
the linear transmittance of the 1-cm-thick cell of T =» 0.6. 
The important point to be made from these data is that 
the curves for all three lenses are nearly the same. There 
is a deviation of the data for the most tightly focused lens 
(10-mm focal length) at high input energies for which the 
limiting becomes less efficient (not shown), but this devia- 
tion is much smaller than that expected for a fluence-de- 
pendent nonlinearity. 

The following argument shows how a f luence-dependent 
nonlinearity (or an irradiance-dependent nonlinearity, 
such as 2PA) can behave as an energy-dependent (or power- 
dependent in the case of 2PA) nonlinearity for a thick- 
sample geometry. 

The depth of focus z0 of a lens is.given by 

•zo 
7711'Ö 

(1) 

where w0 is the beam radius at the focus of the lens (half- 
width at 1/e2 maximum). The area of the beam is given 
by 

TTwl 
(2) 

If the nonlinear interaction is fluence dependent, the 
transmission change will, to some approximation, be pro- 
portional to the product of the fluence and the effective 
interaction length Lett. For a short cell Leff is the sample 
thickness, and the nonlinear change in transmittance is 
fluence dependent. However, for the thick cell, the inter- 
action length can be given approximately by z0. Thus the 
change in transmittance (AT) is 

. m    „        Energy 2 
AT oc Fz0 -^2o = Energy = 

2       TTWQ 

TTwl      A 
Energy—- 

(3) 

So now the nonlinear change in transmittance appears to 
be energy dependent and is independent of the beam size 
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25.5mm fl lens 
10mm fl lens 

SAMPLE : CBS 
'/. = 532 nm 
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Fig. 18.    Plot of transmittance of a 1-cm-thick sample of CBS 
with =60% linear transmittance at 532 nm as a function of input 
energy for a thick limiter for 5-ns (FWHM) laser pulses for input 
lenses with focal lengths of 51, 25.5. and 10 mm. 
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at focus. That is, AT is independent of both the focal 
length of the input lens and its /"-number, and this is what 
our experimental results show. In addition to these focal 
considerations, the effects of lens aberrations may also be 
contributing since we are using short-focal-length lenses 
and small /"-numbers.17 However, we cannot easily deter- 
mine how large such aberration effects are. 

This result may be clearer in the case of 2PA, for which 
the nonlinear equations are well defined and the irradi- 
ance change d7 with depth in the sample dz is 

f=-/3/d2, (4) 

where ß is the 2PA coefficient.    This means that the 
change in transmittance is approximately 

A7 
AT = — = -ßILe{{, (5) 

where Le{[ is the effective interaction length. For a thick 
cell the inverse area dependence of the irradiance cancels 
the area dependence of Leff = z0) which leaves AT power 
dependent. 

Our conclusion from these data is that extremely tight 
focusing is not helpful in lowering the threshold and may 
indeed be detrimental to the performance. However, fo- 
cusing is necessary for obtaining sufficient fluence to ion- 
ize the carbon particles in CBS. A compromise between 
these requirements is needed. 

9.   CONCLUSION 
We conclude that the dominant nonlinearity leading to lim- 
iting in both carbon black suspension and carbon deposited 
on glass is nonlinear scattering and that the mechanism 
for this nonlinearity is rapid heating of carbon particles 
and their subsequent vaporization and ionization, which 
lead to the formation of rapidly expanding microplasmas. 

We can estimate the temperature rise of the carbon par- 
ticles at the limiting threshold if we are given the laser- 
beam parameters and the optical properties of carbon 
black. Ackerman and Toon18 give the complex index of 
refraction of carbon black as m — 1.96 - 0.66i, which 
gives an absorption coefficient of a — 3 X 104 cm-1. 
These values are consistent with our measurements of the 
Mie-scattered light. Donnet and Voet19 show that absorp- 
tion with the different types (sizes, etc.) of carbon par- 
ticles varies by factors of no more than 2 to 3 and scales 
linearly with concentration. It is also observed that the 
optical properties of a carbon-black dispersion in a liquid 
behave similarly to those of the powder form. This is true 
since the powder form generally has a void volume of over 
90%, so that it may be considered a dispersion in air. 
This, in turn, implies that the absorption that must be 
used to calculate a temperature rise for carbon without 
voids is an order of magnitude larger than the reported 
value. If we use this higher value of a = 3 X 105 cm"1 

and assume single carbon particles of diameter =0.14 /xm, 
we estimate a temperature increase of approximately 
10"°C with 12-nsec, 20-MW/cm2 pulses. This is consistent 
with the temperature experimentally estimated from 
emission measurements. 

The dominant role of nonlinear scattering in this pro- 
cess was shown by simultaneous measurements of trans- 
mittance, absorptance, and the fraction of side-scattered 
light. In addition, nonlinear refraction was shown to be 
insignificant, and the absorptance changed only by a fac- 
tor of 2, a change far too small to explain the observed 
limiting. Measurements on CBG confirmed the role of 
scattering, independent of the surrounding liquid. How 
scattering could increase the loss over that from the al- 
ready highly absorbing carbon-black particles is explained 
by the growth in size and change of index of refraction of 
the scattering centers. The angular dependence of the 
side-scattered-light fit to Mie theory demonstrated this 
growth. The observed volumetric expansion of the 
plasma is necessary because the volume percent of carbon 
is small and the carbon particles are already highly ab- 
sorbing. In addition, the index changes observed in these 
experiments are not consistent with either shock waves or 
bubble formation. 

The nature of the scattering centers as ionized particles 
was confirmed from line emission spectra and time- 
resolved fluorescence measurements, which were consis- 
tent with previous measurements of plasma production 
with carbon targets.20 The time-resolved transmittance 
measurements also showed that the limiting lasted only 
for the lifetime of the microplasma, which is again consis- 
tent with the microplasma scattering model. The role of 
bubble formation at the onset of limiting was investigated 
by performing experiments on samples of CBG. The 
similarity of the results obtained for these samples and 
those for the liquid suspensions shows that bubbles are not 
important at or near threshold. However, well above 
threshold the heat vaporizes both the carbon and the liq- 
uid, so that bubbles are formed. These appear on longer 
time scales, as reported in Ref. 16, and can cause prob- 
lems for high-energy or high-repetition-rate limiting ap- 
plications. The disappearance of the limiting effect after 
multiple-pulse irradiation of a single site (before the liquid 
can be replenished) also confirms that the carbon par- 
ticles are destroyed, i.e., in this case they are ionized and 
vaporized, or atomized, so that they no longer effectively 
scatter light. 

The fluence dependence was confirmed by focal-spot- 
size-dependence measurements with collimated beams 
and by pulse-width-dependence measurements with 
nanosecond and picosecond irradiation. However, we 
showed that for a tight-focusing geometry for which 
the depth of focus is shorter than the sample thickness, 
the fluence dependence is masked, and the response 
becomes energy dependent (i.e., independent of focusing;. 
This is an important consideration in optical-limiting 
applications. 

The process involved in a CBS is commonly referred to 
as laser-induced damage, and we have prepared a material 
with a low damage threshold. Our understanding of the 
limiting mechanisms also tells us that we will not be able 
to lower the limiting threshold significantly (i.e.. by 10/; 
or increase the bandwidth. The reasons are that the 
carbon is black and therefore broadband and highly 
absorbing. To lower the threshold we must either in- 
crease the absorptance (we cannot do this to any signifi- 
cant degree) or lower the ionization threshold (flooding 
the suspension with ionization radiation may do this;.   At 
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the moment, a carbon-black suspension is one of the most 
effective optical-limiting materials available for nanosec- 
ond laser pulses. 
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We introduce a method for measuring the anisotropy of nonlinear absorption and nonlinear refraction in crystals 
by incorporating a wave plate into the Z-scan apparatus. We demonstrate this method by measuring the 
polarization dependence of the nonlinear refractive index or two-photon absorption coefficient in BaF2, KTP, 
and GaAs at wavelengths of 532 and 1064 nm. 

The techniques most often used to determine compo- 
nents of the third-order susceptibility, *(3), include 
degenerate four-wave mixing,1 nearly degenerate 
three- and four-wave mixing,2 ellipse rotation,3 

optical third-harmonic generation,4 photoacoustics,5 

beam-distortion methods,6-8 and nonlinear transmis- 
sion.9 Some of these have been adapted to mea- 
sure the anisotropy of ^-O).2^6.9 We introduce a 
method based on the Z-scan8'10 to determine the 
polarization dependence of nonlinear refraction and 
nonlinear absorption in crystals. We demonstrate 
this technique to measure anisotropy of the ultrafast 
bound electronic nonlinear refractive index n2 and 
the two-photon absorption (2PA) coefficient ß. Mea- 
surements of the anisotropy can also give information 
about the band structure of the material.11 Sheik- 
Bahae et al.8 describe the Z scan in detail, where 
the transmittance of a sample is measured through 
an aperture in the far field as a function of the 
sample's position relative to the beam waist. If 
only nonlinear refraction is present, a transmittance 
curve, with a maximum (peak) and a minimum 
(valley), antisymmetric around the position of the 
beam waist is obtained. The peak-to-valley change 
in transmittance, ATpv, is approximately proportional 
to the on-axis nonlinear phase shift A4>0.

8 It is 
shown that ATpv = p|A<I>0| = pk\An\L, where k is 
the propagation vector and L is the length of 
the sample. The constant p depends on the size 
of the aperture in the far field and equals 0.36 
for an aperture allowing 40% linear transmittance. 
Placing the sample at the Z position corresponding 
to the peak, a half-wave plate situated in front of the 
sample is rotated, and the transmittance through the 
aperture is measured as a function of the incident 
linear polarization direction. This is repeated with 
the sample positioned at the valley. By subtracting 
these two sets of data, we obtain ATpv as a function 
of incident electric-field polarization, from which we 
can infer the polarization dependence of n2. Here we 
define n2 by the change in refractive index, An = n2I. 

When the aperture is removed and all the trans- 
mitted energy is collected, the experiment is sensitive 
only to changes in transmittance due to the presence 
of nonlinear absorption.   When the sample is placed 

at the beam waist, the loss is maximized, and rotation 
of the wave plate shows the anisotropy of this loss. 
To normalize the transmittance change and eliminate 
other small polarization-dependent losses, a second 
measurement is performed, with the sample placed 
far from the waist such that the nonlinear loss is 
negligible. Subtraction of these data from the data 
with the sample at the waist gives the normalized 
transmittance change through the sample, and hence 
the 2PA coefficient ß can be calculated from a spatial 
and temporal integration of the equation 

dl(r,z',t) 
= -al(r,z',t) - ßl(r,z',t)2, (1) 

where z' is the depth in the sample and a is the resid- 
ual linear absorption coefficient.12 Measurement of 
the anisotropy of n2 in the presence of nonlinear 
absorption requires a more complicated procedure.8 

Following Ref. 13, given an input field E(t) = 
E0cos{ü)t), the amplitude of the third-order polariza- 
tion at co is given by 

piS)M = *^x%\e)Et 
3 

O   i (2) 

where e0 is the dielectric permittivity and Xett is the 
effective third-order susceptibility whose functional 
form depends on the symmetry and orientation of the 
crystal. The intensity-dependent refractive index n2 

and the 2PA coefficient ß are related to the real and 
imaginary parts of *(3) by8 

n2(m2/W) = 
4e„cn 2 Re xi3)((0' ~CÜ> w' w) 

and 

/3(m/W) 
3a) 

2e0c
2n0

2 Im^-(3)(w; -cj, (o, a), 

(3) 

(4) 

where n0 is the linear refractive index and c is 
the speed of light in a vacuum. We use mks units 
throughout, and the conventions used here follow 
those of Ref. 14. The conversion to esu is nfu = 
(pn„/40ir)nf, where An = nfaE0

2/2. 
The Q-switched mode-locked Nd:YAG laser used 

for these experiments produced single 30-ps (FWHM) 
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Fig. 1.    Curve (a), 532-mn 40% aperture transmittance 
trace as a function of incident electric-field polarization 
in BaF2.    Curve (b), 1064-nm trace in KTP to measure 
the polarization dependence of n2. 

TEMoo-mode pulses that could be frequency doubled 
to obtain 21-ps 532-nm pulses. When using 1064- 
nm pulses, we focused the beam to a measured spot 
size of 37 ^m (half-width at 1/e2 maximum) with a 
best-form lens, whereas at 532 nm, the beam waist 
was 24 fim. 

Looking first at BaF2) which has a cubic lattice 
belonging to the point group mZm, we define the 
electric-field polarization direction 6 relative to the 
[100] crystallographic axis and propagate k parallel 
to the [001] crystallographic axis. Figure 1, curve 
(a), shows data of the aperture transmittance versus 
polarization orientation of n2 at 532 nm with an 
irradiance of 61 GW/cm2 for a 0.5-cm-thick sample of 
BaF2. The electric-field polarization in the crystallo- 
graphic xy plane is given by E = JB0(cos 6x + sin 6y). 
Because we consider degenerate frequencies, intrinsic 
permutation symmetry leaves three independent *(3) 

tensor components given by xlJL> X^' and x^y' 
Note that this is true for both real and imaginary 
parts of ,y(3). For this specific geometry, the effective 
third-order susceptibility from Eq. (2) is 

*i»r(0) - 4i[i + 2^(sin4 e -sin2 w.    (5) 

where we define a coefficient of anisotropy cr as 

A3) 

a — 
\ y<3)   + 2y<3» 1 

/(3) 
(6) 

(3) If the material is isotropic, i.e., AT. 
cr yields a value of zero.   The dashed curve in Fig. 1 

(3) 
xxyy 

2y(3) , 

is a least-squares fit to Eq. (5) with only real compo- 
nents of x(3) • The values of the nonlinear coefficients 
for BaF2 and other materials are summarized in 
Table 1, where the absolute errors are ±20%. 

For 2-cut KTP, which has an orthorhombic lattice 
and belongs to the point group mm.2, we propagate 
k along the crystal's z axis so that the electric-field 
polarization will be in the xy plane making an angle 
4> with the crystallographic x axis. In this geometry, 
defr = 0 for both type I and type II phase matching15; 
thus, quasi-*(3) effects that are due to cascading 
of second-order processes16 are eliminated, and the 
nonlinearity is purely bound electronic and positive.16 

Applying intrinsic permutation symmetry, we arrive 
at an effective third-order susceptibility, 

*en-(<£) = x™  cos   * + 

where B is given by 

B = 2y<3)   + 2y<3)   + y«>   + v(s) . 
*xxyy A-yyxx Ar>yr "-yxxy 

y<3)   shV 
f*-yyyy 

<j> +B 
sin2 2(f> 

(7) 

(8) 

Figure 1, curve (b), shows the aperture transmittance 
versus 4> at 1064 nm in a 0.76-mm sample of KTP 
with an irradiance of 46 GW/cm2. The least-squares 
fit to Eq. (7) is shown as the solid curve in Fig. 1. 

At 532 nm, KTP exhibits 2PA. The solid curve 
and dots in Fig. 2 show the transmittance versus <f> 
with the aperture removed and the sample at the 
beam waist for an irradiance of 32 GW/cm2. The 
solid curve inFig. 2 is a least-squares fit of Eq. (7). 

GaAs is a 43m cubic material and shows 2PA at 
1064 nm. The GaAs sample was oriented so that 
k was normal to the [110] plane, and the electric- 
field polarization was measured relative to the [001] 
crystallographic axis. The dotted curve and crosses 
in Fig. 2 show the transmittance versus polarization 
angle 6 in a 0.8-mm sample placed at the beam waist 
with an irradiance of 180 MW/cm2. Following the 
analysis for cubic BaF2, we find that 

ATeiT 
(3,(0) = X™ 1 + 2cr 

(! 
sin4 6 - sin2 6 (9) 

In contrast to the case of BaF2, only the imaginary 
components of *(3) are used in evaluating Eqs. (6) 
and (9). The least-squares fit to the data is shown 
as the dashed curve in Fig. 2. The value of the 
anisotropy of ß reported here agrees well with that 
reported by Bepko,9 using nanosecond pulses, where 
2PA-generated carrier absorption is large and simply 

Table 1.   Summary of Nonlinear Coefficients n2 and ß Measured at 532 and 1064 nm 

BaF2 

532 nm 
GaAs 

1064 nm 
KTP 

1064 nm 
KTP 

532 nm 

1.59 X 10"22 

ImUiSLKmVV2) 
6.35 x 10"19 

Re[^](m2/V») 
23.2 X 10"22 

ImUjsyOnVV2) 
11.7 X 10~22 

-1.08 ± 0.10 
a 

-0.74 ± 0.18 
Ret^KmVV2) 

19.fx 10-22 

MÄOnTV2) 
7.77 X 10 -22 

7i2(m
2/W)[100] 

2.08 X 10-20 

/3(cm/GW)[100] 
18 

ReCSXnv'/V2) 
18.5 X 10"22 

ImCBXn^/V2) 
3.96 X 10"22 

rc2(m2/W)[010] 
2.08 X 10-20 

/3(cm/GW)[110] 
24 

7i2(m
2/W)[100] 

21.4 X 10"20 

/3(cm/GW)[100] 
0.24 

rc2(m2/W)[110] 
3.22 X 10"20 

/3(cm/GW)[lll] 
25 

rc2(m
2/W)[010] 

18.1 X 10"20 

/3(cm/GW)[010] 
0.16 

n2(m
2/W)[110] 

13.9 X 10"22 

0(cm/GW)[llO] 
0.14 
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Fig. 2. Curve (a), 532-nm data for KTP showing varia- 
tion in change in transmittance as a function of incident 
polarization. Curve (b), 1064-nm trace in [110] GaAs 
showing variation in transmittance as a function of in- 
cident electric-field polarization. 

reflects the anisotropic nature of the band structure. 
The same value of anisotropy has been theoretically 
predicted17 and subsequently measured18 for the real 
part of x{3) at a wavelength of 10.6 fim. 

Use of wave-plate rotation rather than repeated Z 
scans at different electric-field polarization orienta- 
tions keeps the sample stationary, thus minimizing 
any beam walk at the aperture, and hence increas- 
ing the sensitivity for measuring the anisotropy. By 
choosing specific crystal orientations and wave-vector 
propagation directions, different third-order tensor 
susceptibility elements can be determined. 
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Abstract. We report direct measurements of the excited singlet state absorption cross section 
and the associated nonlinear refractive cross section using picosecond pulses at 532nm in 
solut ons^pSalocyanine and naphthalocyanine dyes. By monitoring the transmittance and 
fw M^SMtSl team distortion for different pulsewidths in the picosecond regime, we determine 
^t^thSna^Soiption and refraction are fluence (energy per unit area) rather than 
££S3Lt Thus, edited state absorption (ESA) is the dominant nor^near absorption 
process, and the observed nonlinear refraction is also due to real population excitation. 

PACS: 33.00, 42.65, 42.80 

In recent years, conjugated organic molecules and poly- 
mers have come under critical study regarding their po- 
tential as nonlinear optical materials [1]. This has led to 
interest in: 1) developing a fundamental understanding of 
the mechanisms which contribute to the nonlinear optical 
response, 2) identifying means of enhancing and maxi- 
mizing the nonlinear susceptibilities, and 3) obtaining 
well defined and accurate measurements of the refrac- 
tive and absorptive contributions to the observed nonlin- 
earities. Here we report on the separation of nonlinear 
absorption and refraction in phthalocyanine and naph- 
thalocyanine solutions on the picosecond timescale using 
a combined nonlinear transmittance and beam distortion 
method which we refer to as the "Z-scan" technique 
[2,3]. We find that both the nonlinear absorption and 
refraction are dominated by creation of a real popu- 
lation of excited states even though the wavelength of 
observation lies between electronic absorption bands. 

Metallophthalocyanines and related conjugated ring 
molecules have attracted recent interest [4-11] because, as 
confined, reduced-dimensionality (2D) delocalized elec- 
tronic systems, large electronic nonlineanties are ex- 
pected. The rigid structural framework of these molecules 
leads to a small geometry change on excitation and a 
concentration of intensity into the Si «- So 0,0 vibromc 
transition, resulting in a strong narrowband absorption 
(2(0) band) [12]. Thus, the phthalocyanine dyes can ex- 
hibit a low saturation intensity depending on the relevant 
relaxation rates. For example, chloro-aluminium phthalo- 
cyanine (CAP) is well known as a saturable absorber at 

694 nm and was used early on as a passive ß-switch 
for ruby lasers [13-15]. It also exhibits excited triplet 
state absorption [16] at shorter wavelengths in the range 
between the Q and B bands [12] where the linear absorp- 
tion is quite weak. The nonlinear optical response in this 
spectral region is of interest because it can function as an 
optical pulse energy limiter [6,11]. This type of response 
has been referred to as reverse saturable absorption [17]. 

As part of our search for dyes which may be use- 
ful for optical limiting applications, we have surveyed 
the nonlinear transmission of a number of metallo- 
phthalocyanines and metallo-naphthalocyanines [6,11]. 
Here, we present data using picosecond laser pulses on 
two dyes in solution: CAP in methanol solution and a 
silicon naphthalocyanine (Nc) derivative [18], Si(OSi(n- 
hexyfhhNc, which we will refer to as SINC, in toluene 
solution. The Q-band absorption peaks of these solutions 
are at 670 nm and 774 nm respectively, while we are excit- 
ing at 532 nm. With picosecond input pulses (shorter than 
the time required to populate the triplet state), we find 
that the excited singlet state absorption is quite strong 
for both dyes [6,11]. The generic level structure for these 
molecules is shown in Fig. 1, and consists of five levels 
showing the possibility of both excited singlet and excited 
triplet state absorption. The linear absorption at 532 nm 
is initially low since we are exciting high in the vibra- 
tional manifold of S,. The fast relaxation to the bottom 
of this electronic state makes the excited state absorption 
(ESA) resonant with the 532 nm input light. For longer 
pulses, intersystem crossing also leads to resonant triplet 
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Fig. 1. Generic five-state model for nonlinear behavior of phthalo- 
cyanines. S0, Si, and SN are singlet states and Tt and TN are triplet 
states. The a's are absorption cross sections and the k's are rate 
constants. as is represented in the text simply as a. Wavy lines 
correspond to spontaneous decay processes. The total decay rale 
constant for Si is ks = k + JtISC 

state ESA. This ability to respond on both fast and slow 
timescales makes these materials particularly attractive 
for optical limiting. The singlet lifetimes and triplet state 
formation yields for both CAP and SINC are listed in 
Table 1. 

1 Excited State Absorption 

In the following analysis we examine the nonlinear trans- 
mittance of a material in which ESA is dominant. In 
Sect. 3 we show this to be the case for these materials. 
We solve a rate equation model including excited singlet- 
singlet state absorption as well as integration over the 
transverse beam profile. In this model we ignore satu- 
ration as discussed in Sect. 4. For pulses short relative 
to the decay time of the intermediate level the following 
equations apply: 

dl/dz' = - al - aNI 

and 
(1) 

where dz' is the differential element of depth in the sam- 
ple, I the irradiance, a the linear absorption coefficient, <x 
the excited singlet-singlet absorption cross section, N the 
density of excited states, and hca the photon energy. By 
temporal integration of (1) and (2) we find 

dF/dz' = -aF- xa/2tKoF2, (3) 

dN/dt = aI/h(o, (2) 

where F is the fluence (i.e. energy per unit area). The solu- 
tion to this equation, after integrating over the Gaussian 
spatial distribution of the pulse of on axis fluence F0, 
gives the normalized change in transmittance AT of 

Tun q 2 4/ia;    ' w 

where T is the transmittance, Tiin the linear transmit- 
tance, and Lefr = (1 - e-"L)/a with L the sample length. 
Here the last equality defines q and the approximation 
is valid for small q (i.e. for small AT). All energy and 
fluence levels are quoted as incident in the fluid (i.e. after 
surface reflections are taken into account). 

From (4), the same F for two different pulsewidths is 
expected to give the same nonlinear absorption for ESA. 
A similar analysis for two-photon absorption (2PA) gives 
a result that is / rather than F dependent. Thus, the 
transmittance change AT at a fixed input pulse energy 
will be independent of pulsewidth for ESA, but will de- 
pend on pulsewidth for 2PA. This serves as a simple test 
to determine the nonlinear mechanism. 

2 Z-Scan Techniques 

Most of the measurements of the nonlinear properties 
reported in this paper employed the "Z-scan" technique. 
This technique, as shown in Fig. 2, involves measurements 
of the far field sample transmittance of a focused Gaus- 
sian beam as a function of the position (Z) of the mate- 
rial relative to the beam waist [2,3]. Here, we give a brief 
description of the determination of nonlinear absorption 
and refraction using this method. First, consider a sample 
with a negative nonlinear refractive index and an aper- 
ture in place in Fig. 2. If we normalize the transmittance 
T to the linear transmittance of the aperture, and we 
begin the scan at large negative values of Z in Fig. 2, T 
is unity. As the sample is moved toward the focus of a 

Table 1. Singlet and  triplet properties of 
CAP and SINC Molecule ts* *Tb TJSC

C V *re esr 

CAP« 
SINC1 

7.0  (1) 
3.15(5) 

0.4 h 

0.2J 
18 
16 

580(40) 
740(40) 

19,000 
40,000   ■ 

6,000 
10,200 

* S| fluorescence lifetime (ns) measured using time-correlated single photon counting 
b Triplet yield 
c Calculated intersystem crossing time constant (ns) 
d Ground state extinction coefficient (M-1 cm-1) at 532 nm 
e Triplet-triplet extinction coefficient (M"1 cm"1) at 532 nm estimated from T-T spectra in 
[16] for CAP and [20] for SINC 
f Excited singlet-singlet extinction coefficient (M_l cm-1) calculated from measured a val- 
ues, this work 
* In ethanol solution 
b In 1-chloronaphthalene solution, [19] 
1   In toluene solution 

>   [20] 
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BS 

D1 

Fig. 2. The Z-scan experimental apparatus in which the ratio 
D2/DI is recorded as a function of the sample position Z 

The separation and evaluation process is simple: the 
closed aperture normalized Z-scan is divided by the one 
with the aperture open. The result is a new Z-scan show- 
ing the sign and magnitude of the refractive nonlinearity. 
This division process will give a faithful representation of 
the nonlinear refraction as if nonlinear absorption were 
absent for relatively small nonlinear absorption. How- 
ever, in the case of the large ESA shown by these dyes 
nonlinear absorption dominates, and we fit the data by 
numerical solution of (2-6) following the analysis given 
in [3]. 

laser beam the increased irradiance leads to a negative 
lensing effect which tends to collimate the beam, thus 
increasing the energy transmitted though the aperture 
(7* > 1). With the sample on the +Z side of focus, the 
negative lensing effect tends to augment beam divergence 
and the energy transmittance is reduced (T < 1). The 
approximate null at Z = 0 is analogous to the effect of 
placing a thin lens at focus which results in a minimal far 
field pattern change. For still larger +Z values the irra- 
diance is reduced and the transmittance returns to unity. 
A positive nonlinearity results in the opposite effect, i.e. 
lowered transmittance for the sample at negative Z and 
enhanced transmittance for positive Z. The Z-scans are 
readily analyzed to extract the nonlinear refraction as 
described in detail in [3]. 

The induced peak-on-axis phase distortion A$Q is de- 
termined by integration of the following equation through 
the entire length L of the sample: 

d4>0/dz' = 2TiAn(z')/A, (5) 

where An is the irradiance or fluence dependent change in 
refractive index and X is the wavelength, z' is the distance 
within the sample, to be distinguished from the sample 
position, Z. For an instantaneous (irradiance dependent) 
nonlinearity An = n2|£|2/2, where |£| is the electric field 
amplitude. For an index change due to population of an 
excited state, 

An = 
atNX 

2n   ' (6) 

where <xr is defined as the nonlinear refractive cross sec- 
tion. Thus, from (2) An depends on the temporal integral 
of the irradiance, or more simply, the fluence. 

If the aperture in the Z-scan experiment of Fig. 2 is 
removed (we term this an "open" aperture Z-scan as op- 
posed to "closed" aperture described above), the Z-scan 
becomes insensitive to nonlinear refraction and results in 
a null signal (i.e. flat response with Z) unless nonlinear 
absorption is present. In this case a symmetrical curve 
showing a reduced transmittance (T < 1) about the fo- 
cal position is obtained described by (4) where Fo is a 
function of Z. If both nonlinear refraction and nonlinear 
absorption are present simultaneously, an analysis of the 
open and closed aperture Z-scans can be used to sepa- 
rately determine the nonlinear refraction and nonlinear 
absorption. 

3 Experiment and Results 

CAP (Eastman Kodak Co.), was extracted from the com- 
mercial product with methanol and filtered to remove 
insoluble material. The methanol was removed by ro- 
tary evaporation using a room temperature bath. The 
resulting solid CAP was used for experiments. SINC was 
synthesized by the method described in [18]. Solvents 
used for measurements were absolute methanol for CAP 
and high purity toluene for SINC. 

In our experiments, we use single pulses of picosec- 
ond duration at 532 nm with a high quality TEMoo spatial 
mode obtained from a frequency doubled mode-locked 
Nd :YAG laser, with a single pulse switch-out apparatus. 
By selection of various etalons within the laser cavity, 
the pulsewidth can be varied from 30 to 100 ps full width 
at half maximum (FWHM). For all of our Z-scan mea- 
surements, the beam is focused to a waist of radius 
wo = 19 urn half width at 1/e2 maximum (HWl/e2M) 
and the sample path length is 1 mm. 

We performed Z-scan experiments on CAP at a con- 
centration of 1.3 x 10-3 moles per liter. The linear trans- 
mittance of 84% gives a linear absorption coefficient of 
a = 1.8 + 0.1 cm-1, which corresponds to an extinction 
coefficient of 580 ± 40 liters cm-1 mole-1. Here the ex- 
tinction coefficient is defined as, e = — log10 T/CL = 
10-3(7JVA/ln(10), where C is the concentration in moles 
per liter. We also give the relation for an absorption 
cross section a in cm2 where .JVA is Avogadro's number. 
In this paper we use <x as the ESA cross section. Similar 
measurements on SINC give a transmittance of 84% 
(a = 1.8 ±0.1 cm-1) at a concentration of 1.0 x 10"3 

mole per liter, corresponding to an extinction coefficient 
of 740 + 40 liters cm-1 mole-1. 

Figure 3 shows open aperture Z-scans on a CAP so- 
lution at 532 nm for two different pulsewidths of 29 ps 
and 61ps (FWHM) using the same input energy of 
1.17 uJ and hence, the same on axis fluence at focus 
of Fo(Z = 0) = 205mJ/cm2. Clearly the nonlinear trans- 
mittance is independent of pulsewidth and hence we con- 
clude that the mechanism is dominated by ESA. 

The solid lines in Fig. 3 are the results of numerically 
fitting the data to (4) by integrating over space. Here 
Fo is a function of Z. This numerical fit gives a value 
for a of = 2.3 x 10-17cm2 (e = 6,020 liters cm-1 mole-1). 
Measurements show that o-'is the same for concentrations 
of 5.5 x 10-4 moles per liter and 1.3 x 10""3 moles per 
liter. A similar measurement on SINC gave cof= 3.9 x 
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Fig. 3. Open aperture Z-scans for 29 ps (squares) and 61 ps (trian- 
gles) pulsewidths at an incident energy of 1.16 uJ in CAP 

1.18 

Fig. 4. The results of the division of the closed aperture Z-scan 
data by the open aperture Z-scan data of Fig. 3 for 29 ps (squares) 
and 61 ps (triangles) pulsewidths at an incident energy of 1.16 uJ in 
CAP 

10_I7cm2 (e = 10,200 liters cm-1 mole-1). We obtain the 
same values for a in CAP at input fluence from 0.4 uJ 
to 3.6 uJ and for SINC from 0.4 uJ to 1.9 uJ. Absolute 
errors in the a values of ±13% were determined from an 
estimated 7% error in the concentration, 5% fitting error 
and a 10% possible error in the fluence calculation. 

In order to determine the nonlinear refractive coef- 
ficients of these dyes, we performed closed aperture Z- 
scans on CAP for 29 ps and 61 ps (FWHM) pulsewidths. 
Figure 4 shows the results of dividing these Z-scans 
by the open-aperture scans of Fig. 3 taken under iden- 
tical conditions. Clearly we see that the index change 
is positive and identical for the same fluence. This non- 
linear refraction is therefore fluence dependent and as- 

Fig. 5. The results of the division of the closed aperture Z-scan 
data by the open aperture Z-scan cüta for 29 ps (squares) and 61 ps 
(triangles) pulsewidths at an incident energy of 1.89 uJ in SINC 

sociated with the real excitation of the singlet state. To 
determine the contribution of the solvent, Z-scans were 
performed on the pure methanol and toluene solvents. 
This yielded an n2 for methanol of 2.5 x 10-n esu and 
for toluene of 1.9 x 10-12esu. As expected, no nonlin- 
ear absorption was seen in the pure solvents. For the 
calculation of o-r, contributions of both solvent (712) and 
dye (ov) were included, thus J/i = n2\E\2/2 + atNX/2n. 
Substituting this expression into (5) and temporally in- 
tegrating to numerically fit the data of Fig. 4 then yields 
<7r = 1.8 x 10-I7cm2 for CAP. Measurements at con- 
centrations of = 5.5 x 10-4 moles/liter and = 1.3 x 
10-3 moles/liter in CAP showed the same aT. In Fig. 5, we 
show divided Z-scans for SINC again for pulsewidths of 
29 ps and 61 ps (FWHM) and. with an incident energy of 
1.89 uJ. The solid lines show fits, obtained in the same way 
as described above for CAP, giving aT = 4.7 x 10-18 cm2 

for SINC. The reason that the two curves in Fig. 5 do 
not coincide, as do the curves for CAP, is that the instan- 
taneous large nonlinear refraction {n2) of the toluene 
solvent plays a significant role. In the case of CAP 
the overlap of the Z-scans at different pulsewidths and 
the independence of our measurements on concentration 
indicate that the nonlinear refractive contribution of 
the solvent is negligible. We obtain the same values of c, 
over the input fluence ranges quoted for the determina- 
tion of a. 

4 Discussion 

Our results demonstrate the importance of measuring the 
nonlinearities at different pulsewidths. Had we looked 
with only a single pulsewidth. we could equally well 
have fit the data of Figs. 4 and 5 with simple n2 values. 
For example for a pulsewidth of 29 ps for CAP this 
gives an n2 — 4.6 x 10~12esu and for SINC this gives 
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n2 = 3.0 x 10-12esu. However, we would obtain a larger 
•n2 using 61 ps. From these fits and the n2s of the solvents, 
the contribution to the "effective" n2's for CAP and SINC 
at the given concentrations can be obtained by simple 
subtraction to give n2 = 4.4 x 10~12 esu for CAP and n2 = 
1.1 x 10~12esu for SINC. These correspond to effective 
third order hyperpolarizabilities of 4.5 x 10-31 esu for 
CAP and 3.3 x 10~32 esu for SINC. The "effective" n2 

is only globally valid if the index change is dependent 
on the instantaneous irradiance and hence responds on 
an ultrafast timescale. The most common example of 
this is the bound electronic Kerr effect. However, if it is 
due to the population of excited states, it is much more 
useful to quote the excited state refractive coefficient. 
Hence what we are observing is not a true x(3) effect 
but is a sequential *(1) : x(1) process, where xU) refers to 
the j th order electric susceptibility. Here, the first x(1) is 
associated with the ground state absorption, the second 
with the resulting excited state refraction. 

These refractive changes are a direct result of the 
changes in the linear absorption, as described by the 
Kramers-Kronig relations [20]. These relations predict 
a decrease in index above the induced absorption reso- 
nance and an increase below resonance. We can speculate 
that the cause for the observed positive sign of the non- 
linear refraction is the addition of such an absorption 
centered at a slightly shorter wavelength that our 532 nm 
light. Measurements of the transient absorption spectrum 
confirm increasing the absorption centered at a shorter 
wavelength that 532nm for CAP [6]. In SINC it is not 
clear where with respect to 532 nm the increased absorp- 
tion is centered, and we see a considerably smaller posi- 
tive nonlinear refraction. In addition we are on the high 
frequency side of the Q-band absorption which we are 
saturating. The nonlinear refraction from this saturation 
is, therefore, also positive in both CAP and SINC. 

We have ignored the above mentioned saturation of 
the O-band absorption, i.e. depletion of the ground state 
population, since we experimentally do not see a signifi- 
cant deviation from the fits using (4) and (6) until nearly 
an order of magnitude higher input fluence. This is our 
observation even though a simple calculation shows sig- 
nificant ground state depletion at the fluence levels used 
in these experiments. Allowing for saturation in the rate 
equations, and numerically integrating, gives excited state 
cross sections nearly 30% larger than we quote. How- 
ever, we find a much better fit to the data over the entire 
range of input fluences used in these experiments with 
the "simple (nonsaturating) model given here. A partial 
direct repopulation of the ground state from the excited 
state absorption process may account for the absence 
of saturation. Time resolved absorption spectra would 
answer this question. Nevertheless, the main conclusion 
that excited state absorption and excited state refraction 
dominate in these experiments remains unchanged. 

Garito et al. [9] have recently reported an enhance- 
ment of the third order hyperpolarizability using third 
harmonic generation at 1.54 urn upon optically inducing a 
population in the excited singlet state. In our experiments 
this would appear as a higher order nonlinearity (i.e. a 
yli) ..,13) pr0Cess, ■/}" for the initial excitation to the ex- 
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cited state, and x0) for the subsequent increase in hyper- 
polarizability). Therefore, the excited state nonlinearities 
we observe are not directly related to the nonlinearities 
observed by Garito. 

A summary of the results of our measurements along 
with the singlet and triplet photophysical properties of 
CAP and SINC are given in Table 1. The excited singlet 
lifetimes are two orders of magnitude longer than the 
30-60 ps pulse durations used in our measurements, so 
that our results are for excited singlet absorption and 
we neglect singlet decay in the analysis. While the ex- 
cited singlet extinction coefficients are roughly an order 
of magnitude larger than those for the ground states at 
this wavelength, they are a factor of 3 to 4 smaller than 
those for the triplet states at 532 nm. The triplet absorp- 
tion would play a significant role only with much longer 
pulses. 

5 Conclusion 

In conclusion we have used a simple sensitive single beam 
technique (Z-scan) to measure both nonlinear absorption 
and nonlinear refraction in solutions of phthalocyanine 
and naphthalocyanine dyes on a picosecond time scale. 
The nonlinear refraction is determined to be positive and 
both the nonlinear absorption and refraction are depen- 
dent on input pulse fluence (i.e. depend on the excited 
singlet state population). We give simple relations that 
allow this excited state absorption cross section and the 
associated nonlinear refractive cross section to be ob- 
tained directly from Z-scan data. For longer nanosecond 
time scales the triplet excited state absorption becomes 
significant and will lead to further enhancement of the 
absorptance. These materials are, therefore, promising 
materials for optical limiting applications. 
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University of Central Florida, Orlando, Florida 32816 

We report a sensitive single beam technique for measuring both the nonlinear 
refractive index and nonlinear absorption coefficient for a wide variety of 
materials. We describe the experiment and present a brief analysis including cases 
where nonlinear refraction is accompanied by nonlinear absorption. In these 
experiments the transmittance of a sample is measured through a finite aperture in 
the far-field as the sample is moved along the propagation path (z) of a focused 
Gaussian beam. The sign and magnitude of the nonlinear refraction are easily 
deduced from such a transmittance curve (Z-scan). Employing this technique a 
sensitivity of better than A/300 wavefront distortion has been achieved using 
picosecond frequency doubled NdYAG laser pulses. In cases where nonlinear 
refraction is accompanied by nonlinear absorption, it is possible to separately 
evaluate the nonlinear refraction as well as the nonlinear absorption by performing 
a second Z-scan with the aperture removed. We demonstrate this method for a 
solution of chloro-aluminum-phthalocyanine at 532 nm where excited state 
absorption is present and the nonlinear refraction is positive. 

We have recently developed a sensitive single beam technique for measuring both nonlinear 
refraction and nonlinear absorption.^ We refer to this technique as a Z-scan. This method 
is rapidly gaining use for measuring electronic nonlinearities (eg. n2) and nonlinear 
absorption (eg. two-photon absorption coefficients ß or excited-state cross sections a) in 
materials from semiconductors to glasses to organics. We review this technique and the 
analysis of Z-scan data to show how nonUnear refraction can be separated from nonlinear 
absorption. We then apply this technique to a solution of chloro-aluminum-phthalocyanme 
(CAP) dissolved in methanol which we have previously used for passive optical limiting.3 

SAMPLE       APERTURE 

BS 

\        I 
S                 \i 

D1 

Fig.l    The Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a 
function of the sample position z. 
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nonlinear refraction and nonlinear absorption are present simultaneously, an analysis of the 
"open" aperture (S=l) and "closed" aperture (S<1) experiments can be used to separately 
determine the nonlinear refraction and nonlinear absorption. 

The separation and evaluation process is simple: divide the "closed" aperture 
normalized Z-scan by the one with open aperture. The result is a new Z-scan where ATp.v 
agrees to within ±10% of that obtained from a purely refractive Z-scan. This division 
process will give a faithful value for n, as long as the nonlinear absorption is not dominant. 
In practice we have found this method to work quite well provided the curve obtained by 
division looks like Fig. 2 (ie. appears antisymmetric). We have checked it by numerically 
calculating the results of Z-scans including both nonlinearities.2 

We define ß as the two-photon absorption (2PA) coeffient and a as the excited state 
absorption (ESA) coefficient. For small nonlinear absorption (ie. ATp_v<0.1) the following 
approximation can be used to determine ß or a from the open aperture Z-scan; 

(3a) ATp.v 

ATp.v * 

■^I0(l-R)L«ff,for2PA, 

.^„(l-R^.forESA, (3b) 

where Ldf=(l-eoL)/a, with a the linear absorption coefficient.4«5 Here I0(W/cm2) is the 
peak on axis irradiance assuming a temporally and spatially Gaussian shaped pulse, and 
F0(J/cm2) is the on axis fluence assuming a Gaussian spatial beam. In the case of CAP we 
found that the nonlinear absorption was due to ESA and not 2PA. We determined this by 
monitoring the nonlinear absorption for different pulse widths of 29 ps and 61 ps (FWHM). 
The same fluence for the different pulsewidths gave the same nonlinear absorption as 
expected from Eq. 3b for excited state absorption. Equation 3a for 2PA predicts that the 
same irradiance would give the same absorption. 

1.20 
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Fig. 3. Open aperture Z-scan on CAP at 3.18 /J and theoretical fitting (solid line) 
with <M.8xlO~17 cm2 at a concentration of l.OxlO-5 moles/liter. 

The open aperture Z-scan, along with a numerical fit, is shown in Fig. 3 for an input 
energy of 3.2 /J at 532 nm using ~21 ps (FWHM) pulses. Note that for Fig. 3 the AT>0.1 
and Eq. 3b is not applicable.2 The parameters used are w0=28 urn (HWl/e2M), R=0.05, 
L=0.2 cm, a=1.42 cm-1 (or 1390 cm-1 per mole per liter) as determined from the 68% 
measured linear transmittance for a concentration of 1.02xl0"3 moles per liter. This 
numerical fit gives a value for a of (7=1.8xl0"17cm2. 
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this technique to several materials displaying a variety of nonlinearities on different time 
scales Here we have presented data on chloro-aluminum-phthalocyanine that gives the 
excited state absorption cross section and the nonlinear refractive index, all for 0.53 »m 
picosecond pulses. It is expected that this method will be a valuable tool for experimenters 
searching for highly nonlinear materials. 
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A simple dual-wavelength (two-color) Z-scan geometry is demonstrated for measuring nonlinearities at 
frequency a>p owing to the presence of light at cot. This technique gives the nondegenerate two-photon absorp- 
tion (2PA) coefficient ß{a>p; a,) and the nondegenerate nonlinear refractive index n2(<o„; a>,), i.e., cross- 
phase modulation. We demonstrate this technique on CS2 for n2 and on ZnSe where 2PA and n2 are present 
simultaneously. 

The newly developed Z-scan technique has been used 
as an accurate and sensitive tool for determining 
nonlinear refraction and absorption in a single- 
beam single-wavelength geometry.1 Here we intro- 
duce a dual-wavelength (two-color) extension of this 
technique for measuring changes of refraction An 
and absorption Aar induced by a strong excitation 
beam at frequency m, on a weak probe beam 
at a different frequency up; i.e., An(cop; coe) and 
Aa(wp; <De), respectively.2,3 In the lowest-order non- 
linearity such quantities are defined through the 
third-order susceptibility. 

Measurements of these nondegenerate nonlineari- 
ties potentially allow determination of material 
parameters not available from their degenerate 
counterparts. For example, it has been shown4 that 
the frequency difference (cop -41,) can be exploited 
to obtain information about the dynamics of the 
nonlinear response with a time resolution much less 
than the laser pulse width. With ultrashort pulses 
we can use a time delay between excitation and 
probing pulses to further give a detailed time- 
resolved picture of the nonlinear interaction. A re- 
cent theory based on the nonlinear Kramers-Kronig 
transformation predicts dispersion relations be- 
tween degenerate and nondegenerate nonresonant 
bound-electronic contributions of An and Aa.5 

Experiments performed with the single-beam Z 
scan strongly support the dispersion relations for 
the degenerate case. The two-color Z scan enables 
us to investigate the nondegenerate theory experi- 
mentally.8 From a practical point of view, investi- 
gating nondegenerate optical nonlinearities is of 
interest in the area of dual-wavelength all-optical 
switching applications in which cross-phase modula- 
tion plays an essential role. 

The two-color Z-scan experimental arrangement 
used in these experiments is shown in Fig. 1. Pi- 
cosecond pulses from a mode-locked Nd:YAG laser 
(A = 1.06 jxm) are used as the excitation beam. The 
copropagating probe is generated by inserting a 
3-mm-thick, thin KD*P crystal with a =1% conver- 
sion efficiency in the beam path.    The two beams 

are then focused with an achromatic lens of focal 
length f - 15 cm. The transmitted beam is split 
and sent to two detectors in the far field that each 
monitor only one wavelength (A = 0.532 or 1.06 pm) 
as the sample is scanned along the Z direction (propa- 
gation path) near the focal plane. Analogous to the 
usual single-wavelength Z scan, with a fully open 
aperture (100% transmittance), the measurement is 
only sensitive to the induced changes in absorption, 
while a partially closed aperture Z scan displays the 
induced refractive changes as well. In this geome- 
try, perpendicular polarization results from the 
type I phase-matched second-harmonic generation. 
Parallel polarization is obtained by inserting a cal- 
cite polarizer before the focusing lens. 

In the case of the two-color Z scan, the field con- 
sists of a strong excitation beam at frequency w, and 
a weak probe at a)p. Thus in the weak-probe ap- 
proximation and for thin samples in the external 
self-action geometry1-4 the propagation of the probe 
beam within the sample can be fully determined 
using the following equations: 

dz' -aj, - ßu((ot; coe)Ie
2, 

d/, 
dz ~, = -2ß12(top; coe)IJp 

^~T - — 2yi2(wP; o,)I,, 

(la) 

(lb) 

(lc) 

where Ie,p are the irradiances, which are functions of 
the depth into the sample z', the radial coordinate r, 
the time t, and the sample position Z. The nonlin- 
ear phase variation of the probe is given by 16p, 
which is also a function of Z, z', r, and t. The lin- 
ear absorption coefficient at the excitation wave- 
length is at, /321(wp; cot) and ßn{a)e; ue) denote the 
nondegenerate and degenerate 2PA coefficients, re- 
spectively, and 7i2 represents the nonlinear refrac- 
tive coefficient, which can also be given in terms of 
n2 (esu).1 The subscripts 1 and 2 denote the state of 
polarization of the excitation and probe beams, re- 
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Fig. 1. Two-color Z-scan experimental configuration. 
The measured signal is the ratio D2/D1 as the sample is 
scanned along the propagation (Z) axis. 

spectively, and may correspond to the transverse di- 
rections x or y. For example, with the probe and 
excitation beams perpendicularly polarized, we have 
1 = x and 2 - y. Equation (la) gives the pump de- 
pletion caused by 2PA, while Eqs. (lb) and (lc) de- 
scribe the cross amplitude and the phase modulation 
of the probe caused by the excitation beam. Note 
the factor of 2 in front of y12 and ßu in Eqs. (lb) and 
(lc). This factor arises from the interference be- 
tween excitation and probe fields,7,8 and its validity 
depends on the condition that the response time of 
the medium T must be shorter than the beat period; 
i.e., T\COP - o)e\ << l.9 This is true for degenerate 
(up = o)e) nonlinearities or nonresonant bound- 
electronic nonlinearities. For molecular reorienta- 
tional nonlinearities, such as those in CS2 (r — 2 ps), 
this factor of 2 should not be included in the analysis 
of the nondegenerate case for which üJP — ue = coe. 

The probe is assumed to be sufficiently weak not 
to induce any self- or cross-modulation effects. The 
linear absorption, refraction, and surface reflec- 
tions of the probe beam are immaterial if we nor- 
malize the probe transmittance to unity in the 
absence of any nonlinearity. Equations (la), (lb), 
and (lc) can be solved for a sample of length L to 
give the probe field, which is proportional to V/p 
exTp[-iA<f>(z, r, t, z' = L)], at the exit surface of the 
sample. The far-field electric-field distribution is 
then calculated from linear-diffraction theory.1 

The measured quantity in a Z-scan experiment is 
the normalized transmitted power through the far- 
field aperture that has a radius ra with a linear 
transmittance S as given by 1 - exp(-2r0

2/u/a
2), 

where wa is the beam waist of the probe at the aper- 
ture when lt = 0. If we assume pulsed radiation, 
the measured quantity is the transmitted pulse en- 
ergy. A full analytical expression can be obtained 
for the Z-scan transmittance by accounting for the 
differences in beam sizes, pulse widths, and focal 
lengths (chromatic aberration).2 

We first consider liquid CS2 where only nonlinear 
refraction is present [i.e., all /3's = 0 in Eqs. (1)]. 
The measured two-color Z scans for this material at 
an excitation irradiance of 2.9 GW/cm2 are shown in 
Fig. 2 for cases of parallel and perpendicular po- 
larization. The asymmetry in the two-color Z scan 
(unequal peak and valley magnitudes) results from 
the small chromatic aberration (Af/f = 1%) of the fo- 
cusing lens and has been accounted for in the beam 
propagation analysis. This aberration causes the 
beam with the shorter wavelength (in this case the 

probe) to experience a shorter effective focal length, 
which leads to unequal peak and valley amplitudes. 
The peak and valley configuration shows that self- 
focusing (An > 0) results for parallel polarization 
and that self-defocusing (An < 0) results for crossed 
polarizations. Here the excitation beam aligns the 
cigar-shaped molecules along its polarization (for ex- 
ample, x), which increases the refractive index for 
light that shares its polarization and reduces the in- 
dex equally along the other two directions (y and z) 
for crossed polarization. 

Nonlinear refraction in CS2 arises primarily from 
the molecular orientation effect (y£) with a =2-ps 
decay time, with small additional contributions 
from intermolecular, intramolecular, and electronic 
effects.10 Here we assume that these latter small 
contributions, which we denote by yf2, are of an 
electronic type; i.e., they are instantaneous (\a)p - 
we|r « 1) and isotropic. A simple molecular orien- 
tational model predicts that y£ = -2y£,7 while 
symmetry properties for an isotropic electronic non- 
linearity dictate that y'xz = Zy'xy.

6 Therefore in a 
two-color Z-scan measurement we can determine 
each contribution by equating the total index change 
as the sum of the electronic and the orientational 
effects 2y« = y£ + 2yL, 2yxy = -(y£)/2 + (2^/3, 
respectively. The solid curves in Fig. 3 are the 
best-fitted results for CS2 by using yxy = -0.67 x 
10'14 cm2/W and y„ = 2.13 x 10~14 cm2/W, which 
gives y?x = 3.3 x 1(T14 cm2/W and y'„ = 0.47 x 
10"14 cm2/W. These values indicate that the elec- 
tronic effect contributes =15% to the total nonlinear 
refraction. 

Although detailed calculations were performed to 
fit the above results, such a procedure is not always 
necessary for estimating y12. As was the case for 
the degenerate Z scan, for a given aperture trans- 
mittance S and input irradiance, it suffices to know 

Fig. 2. Measured two-color Z scans (A = 1.06 and 
0.532 jj.m) for liquid CS2 for parallel (squares) and perpen- 
dicular (circles) polarization. The solid curves represent 
theoretical calculations. 
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Z/Zo 
Fig. 3. Normalized transmittance as a function of 
sample position Z for ZnSe. The solid circles represent 
the open-aperture Z scan, the open circles represent the 
closed-aperture Z scan, and the solid squares represent 
the division of closed by open data values. The lines are 
from the best-fitted calculations. 

only the normalized peak-to-valley transmittance 
change ATp.u, which is defined as the difference be- 
tween the peak normalized transmittance and the 
minimum (valley) normalized transmittance. This 
value is used to extract the peak on-axis phase dis- 
tortion of the probe (A<J>12) at the exit surface of the 
sample as derived from Eq. (lc). A useful feature of 
the Z-scan technique is that for a purely refractive 
nonlinearity there exists a nearly linear relationship 
between A7^_„ and A3>12 as in the degenerate case,1 

AT,.» = j^A*! (2) 

where A<t>12 = W;,yl2Lo(l - e'^J/ca,, with 7e0 being 
the peak on-axis irradiance at the beam waist. Nu- 
merical analysis indicates that for very small aper- 
tures (S — 0) and small chromatic aberration, 
p = 0.42 for the two-color case, as compared with 
p — 0.406 for the degenerate case.1 Chromatic 
aberration that results in foci separated by one 
Rayleigh range can actually increase the sensitivity 
by up to =20%. The dependence of the p coefficient 
on the aperture transmittance S is numerically 
evaluated to approximately follow a (1 - S)035 

dependence. Attention should also be given to the 
time-averaging factor for the pulsed case, where here 
(A$12) = A<t>12/VL~5 as opposed to (A$n) = A<t>u/V2 
for the single-frequency Z scan.1 

We next consider ZnSe that has a band- 
gap energy of Eg — 2.6 eV for which the degen- 
erate 2PA coefficients are 0(1.06 \im) = 0 and 
0(0.53 /im) = 5.8 cm/GW.1 Nondegenerate 2PA 
with strong 1.06-^.m excitation that is probed at 
0.53 Aim is allowed; i.e., 0(0.53 ^m; 1.06 pm) * 0. 
Figure 3 shows the two-color Z scan of a 2.7-mm- 
thick polycrystalline ZnSe sample. These data are 
obtained by using orthogonal polarization of the 

pump and the probe. From the open aperture 
(S = 1), the data 012 can be unambiguously deter- 
mined by using Eqs. (1). The closed-aperture 
(iS = 0.4) Z scan, similar to the degenerate measure- 
ments, depends on y12 as well as on 012.

1 The effect 
of this cross-phase modulation can be made more 
visible by dividing the closed-aperture data by 
the open-aperture data as was done for the single- 
wavelength Z scan.1 The result of this division, 
shown in Fig. 3, shows a negative (defocusing) ef- 
fect.1 The solid curves in Fig. 3 are the results cal- 
culated by using Eqs. (1) with 012 = 8.8 cm/GW and 
ji2 = 2.7 x 10"14 cm2/W at a peak pump irradiance 
of 70 — 1.0 GW/cm2. The irradiances used are low 
enough that the negative nonlinear refraction from 
the 2PA (1.06 /im + 0.53 /im) generated car- 
riers is negligible. Thus this nonlinear refraction is 
the third-order nondegenerate bound-electronic 
Kerr effect.5 

In summary we have demonstrated an extension 
of the Z-scan technique to measure nonlinearities 
at one wavelength caused by a second. This two- 
color Z scan retains the sensitivity and many of the 
simple features of the degenerate Z scan and yields 
the sign and the magnitude of nonlinear refraction 
even in the presence of nonlinear absorption, where 
it also yields the nonlinear absorption coefficient. 
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We review dispersion relations, which relate the real part of the optical susceptibility 
(refraction) to the imaginary part (absorption). We derive and discuss these relations 
as applied to nonlinear optical systems. It is shown that in the nonlinear case  for 
self-action effects the correct form for such dispersion relations is nondegenerate i e 
it is necessary to use multiple frequency arguments. Nonlinear dispersion relations have 
been shown to be very useful as they usually only require integration over a limited 
frequency range (corresponding to frequencies at which the absorption changes) 
unlike the conventional linear Kramers-Krönig relation which requires integration over 
all absorbing frequencies. Furthermore, calculation of refractive index changes using 
dispersion relations is easier than a direct calculation of the susceptibility, as transition 
rates (which give absorption coefficients) are, in general, far easier to calculate than the 
expectation value of the optical polarization.  Both  resonant (generation of some 
excitation that is  long  lived compared with an optical  period)  and  nonresonant 
instantaneous' optical nonlinearities are discussed, and'it is shown that the nonlinear 

dispersion relation has a common form and can be understood in terms of the linear 
Kramers-Krönig relation applied to a new system consisting of the material plus some 
perturbation'. We present several examples of the form of this external perturbation 

which can be viewed as the pump in a pump-probe experiment. We discuss the 
two-level saturated atom model and bandfilling in semiconductors among others for 
the resonant case. For the nonresonant case some recent work is included where the 
electronic nonlinear refractive coefficient, n2, is determined from the nonlinear absorp- 
tion processes of two-photon absorption, Raman transitions and the a.c. Stark effect. 
We also review how the dispersion relations can be extended to give alternative forms 
for frequency summation which, for example, allows the real and imaginary parts of y{2) 

to be related. 

1. Introduction 
In this review we examine the application of causality to obtain dispersion relations for non 
linear optical properties. Linear dispersion relations were first derived for X-rays in the 

*Also with the Departmem of Physics. 
+Also with the Departments of Physics and Electrical Engineering. 
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where & denotes the Cauchy principal value. It is this relation that is most commonly 
referred to when one speaks of Kramers-Krönig relations in optics and is the original form 
of the relation as given in [1, 2] and derived in Section 2. 

Although dispersion relations for linear optics are well understood and documented, 
confusion has existed about applications to nonlinear optics. Clearly causality holds for 
nonlinear as well as linear systems. The question is, what form do the resulting dispersion 
relations take? For self-action nonlinear optical effects a nondegenerate form of dispersion 
relation is appropriate, where, for example, nonlinear refraction of two frequency argu- 
ments (the index change at co due to the presence of a strong perturbing field at Q) is related 
to an integral over co' of the nonlinear absorption at co' due to the presence of the same 
perturbing field at Q. Thus, both the nonlinear absorption and the nonlinear refraction 
are equivalent to pump-probe spectra with a fixed pump frequency and variable probe 
frequency. 

A first glance at the nonlinear optical susceptibility for a two-level saturated atom [10, 11] 
could lead one to the result that disperson relations are not valid for this nonlinear system. 
However, in the field of solid-state physics, dispersion relations have been used for resonant 
optical nonlinearities (where some real excitation is created within the material such as free 
carriers) (see, for example [12]). Furthermore, dispersion relations exist for harmonic 
generation where the real and imaginary parts of '/2) are related (see, for example [13]). It 
is the aim of this review to show how these different systems are related and to derive 
more-general dispersion relations. It is also indicated under precisely what conditions these 
dispersion relations can be used. 

The result is that we are able to derive and utilize nonlinear optical Kramers-Krönig 
relations and apply them to various types of nonlinearities, resonant as well as nonresonant. 
We present below several extremely useful examples, some of which have only recently been 
recognized. For example, we show how the electronic Kerr effect and two-photon absorp- 
tion are related by causality [14, 15]. 

This review is set out as follows. In Section 2 the linear Kramers-Krönig relations are 
derived from causality. These are extended to nonlinear optics in Section 3, and the 
nondegenerate dispersion relation is derived for nonlinear optics. In Section 4 it is shown 
how dispersion relations can be used in resonant nonlinear optics both for solid-state 
systems and for atomic systems. In Section 5 we give an example calculation for refractive 
index changes resulting from the Franz-Keldysh effect (d.c. field) in semiconductors. In 
Section 6 we consider dispersion relations for nonresonant (a.c, field) optical nonlinearities. 
and show as an example a calculation of the electronic Kerr effect in solids. We also extend 
the dispersion relations to derive a degenerate form that is applicable in some special cases 
such as harmonic generation. 

This review uses Gaussian (CGS) units throughout. Appendices are also provided which 
introduce some of the nonlinear optics terminology, equivalent SI expressions, and some 
of the more detailed mathematics. 

2. Linear Kramers-Krönig relations 
In a dielectric medium the optical polarization. P(t) can be obtained from the electric field. 
£(0- by means of a response function 

Pit)   =   J*y R(z)E(t - r)dr (2) 

The response function. R(x). is equivalent to a Green's function, as it gives the response 
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This form of relation is not confined to the field of optics only, but is a general property 
of Fourier transforms known as Hubert transforms [8]. 

It is more usual to write the optical dispersion relations in terms of the more familiar 
quantities; the refractive index, n(co), and absorption coefficient, a(a>) [5]. In order to derive 
this, consider the propagation of a monochromatic plane wave through a thin slice of a 
dielectric medium of (complex) refractive index 

77(a))   =   n(a)) + ia(o))c/2a) (8) 

£(z + Sz, a>)   =   exp ( H^ Sz) E(z, co) (9) 

and thickness Si 

This is essentially in the same form as Equation 3; that is, a product in frequency space that 
can be Fourier transformed.into a convolution in time 

E{z + Sz, 0   =   {^ g(Sz, x)E{z, t - x)dx (10) 

where the response function g{Sz', x) is defined 

exp(^fa)   =   |:^(fe,r)e-dT (11) 

Now relativistic causality states that no signal can propagate faster than c, the speed of light 
in vacuum. This then requires that g(Sz, T) = 0 for T < özjc. Thus, the lower limit in 
Equation 11 can be replaced with Szjc. By substituting T = x — bz\c we can write 

exp (| [rj{(o) _ I]*,)   =   j; g (sz, T + |) e-d7 (12) 

In a similar manner to the case for the susceptibility, x(co), the response function, g (time 
domain), need only be integrated over positive times T in order to calculate its Fourier 
transform. In terms of complex variables (see Appendix A), this left-hand side of Equation 
12 is regular and analytic in the positive imaginary frequency half-plane. This then requires 
that co[ri(co) — 1] can also be defined as an integral over positive times only (i.e. cv[r](co) — 1] 
is also regular and analytic in the upper frequency half-plane) and dispersion relations can 
be applied. This can be more clearly seen by taking the limit of a thin slice (5z -> 0) where 
the exponential can be expanded to a first-order Maclaurin series and we can write 

a>[n(co) - 1]   =   \*g*{T)t"TdT (13) 

where gf(T) is the Fourier transform of the left-hand side of Equation 13. defined from 
Equation 12 as 

•   fv    S(Sz.T+ öz/c) -5(T)\ 
g(T)   =   -iC(jim  j: J (14) 

The delta function is the Fourier transform of the zeroth-order term in the expansion of the 
exponential. The precise form of g*(T) is unimportant, and the result we require is that 
u)[}l(o) - 1] can be determined by a Fourier transform over positive times only. 

We can also obtain Equation 13 by considering the difference in the output field between 
the cases where the medium is present and absent (vacuum), again in the limit of a 
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f/^/re 2 (a) Imaginary part of the degenerate optical susceptibility for a two-level atom versus detuninq for 
var.ous .rradiance levels ///, = 0, 0.3, 1 and 3. As the irradiance increases, the oscillator strength of the 
transit.on is reduced in such a way that the width of the absorption line is broadened, which is often termed 
a power-broadened Lorentzian'. (b) Imaginary part of the nondegenerate optical susceptibility *(«■ £1) for 
a two-level atom versus probe detuning at the same irradiance levels as in (a) for the pump Note that the 
Lorentzian lineshape and width is preserved at high pump irradiances and only the overall magnitude 
decreases, unlike the degenerate form shown in (a). This is also an indication that the Kramers-Krönig relation 
can be applied in the nondegenerate case, (c) Ratio of the nondegenerate optical susceptibility of a two-level 
atom (i.e. effect on a weak probe at <o from a strong pump at SI) to the linear susceptibility as a function of 
pump detuning for the same irradiance levels as above. This quantity also gives the population difference 
between the ground and excited states (see text). 

calculating the expectation value of the real part of the polarization (see, for example [10]) 
is that calculating the absorption via transition rates is, in general, far easier. Furthermore 
this form of calculation of the refractive index for nonlinear optics is often more useful than 
for linear optics as absorption changes (which can be either calculated or measured) usually 
occur only over a limited frequency range and, thus, the integral in Equation 19 need be 
calculated only over this finite frequency range. In comparison, for the linear Kramers- 
Kromg calculation, absoption spectra tend to cover a very large frequency range and it is 
necessary to take account of this full range in order to obtain a quantitative^ for the 
dispersion, although a qualitative fit to the dispersion can often be obtained usins a limited 
frequency range. Unfortunately, the converse is not true as refractive index changes are 
usually quite extensive in frequency, so a calculation of absorption changes from refractive 
index changes is seldom performed. 

It is possible to use Equation 19 in nonlinear optics under resonant conditions, where the 
material is excited into some real state. This excitation can be treated as a perturbation 
itself. Essentially, the change in refractive index is calculated from the change in absorption 
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Refractive 

coefficient Figure 5 Calculation of the thermo-optic coefficient in a 
similar manner to Fig. 4, but now using an empirical form 
of the absorption edge consisting of an exponential tail 
with a square-root form at higher frequencies. This cal- 
culation was performed for thermally deposited ZnSe thin 
films. (From [38].) 

properties; thermally induced nonlinearities, where the absorption of light raises the tem- 
perature, which then affects the optical properties; and field-induced nonlinearities, where 
the creation of carriers causes a change in the d.c. electric field in the material. Note that 
all three of these mechanisms will take some time to disappear after the excitation, either 
by carrier recombination or by diffusion, and they cannot be accurately described usins a 
X    analysis. 

The modified relation given by Equation 19 is an extension of the linear relation, and it 
has not yet been justified for nonresonant nonlinearities where the intermediate (perturbed) 
state is no longer well defined. Referring to Equation Bl of Appendix B, we now consider 
causality for the nonlinear contributions to the polarization. The notation used in this 
section for the nonlinear susceptibility, and its relation to other common descriptions in 
nonlinear optics, is discussed in Appendix B. Causality requires that no contribution can 
be made to the nth order polarization, P(n){t), due to an electric field E(t - T) for times 
t < (t - T). This then requires that the response function, ^""(T,, T,, . . ., TJ. must be zero 
if any one of its arguments (i,, T2, . . . , z„) is less than zero" Hence the nth order 

fico<E_ 

VAA/v 

Figure 6 Schematic of the Franz-Keldysh effect where the 
presence of electric field and tunnelling can permit absorption 
at frequencies less than the band edge of semiconductors. 
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Figure 8 Theoretical frequency dependence of the 
nondegenerate nonlinear absorption for two dif- 
ferent 'pump' frequencies ha>2 = £g = 0.4 and 0.6. 
Below the fundamental absorption edge fccu, < E 
only two-photon absorption contributes to the 
nonlinear absorption. 

We can thus obtain the generalized nonlinear Kramers-Krönig relation for a non- 
degenerate nonlinear susceptibility 

rV,,co2,. CD 1 a> r   X(,,)(a>i.a>2, • • • , a • • ■ , co„) 
Q - ca, 

dH (22) 

Note here that the integral is over only one frequency argument, Q, and all other frequencies 
are held constant. Thus, we cannot obtain any relationship between the degenerate Kerr 
coefficient, y(cu), and the degenerate two-photon absorption coefficient, 0(cö)~as defined in 
Appendix B. If multiple step functions had been used at an earlier stage in Equation 21. a 
multidimensional integral would have resulted. The derivation of the nonlinear Kramers- 
Krönig relationship in Equation 22 can also be found in [16-18]. 

Now consider the case where we have two monochromatic electromagnetic waves 
incident on a nonlinear material 

E(t)   =   i(Eu e^' + E: e'w°') + \(Eb e-*4' + £* j*') (23) 
On calculating the third-order nonlinear polarization (see Appendix B)and considering 

TABLE   II   Dispersion of the nonlinear refraction G2{hu)/E9) for frequencies below the band edge as 
defined in Equation 38. ©(*) is the Heaviside or step function 

Contribution G2(x) 

Two-photon absorption    [1/(2A-)
6
][-|A-(1 - .r)"l/: + 3*(1 - x)x" - 2(1 - *)3/: + 20(1 - 2.v)(l - 2.v)-v:] 

Raman 

Linear Stark 

Quadratic Stark 

Diversem term 

[\l(2xn-i.x-(l + A-)-"'
:
 - 3*(1 + A-)

1
" - 2(1 + x?12 + 2(1 + 2.v)-,/:] 

[I/(2*)6][2 - (1 - A-)
3
'- - (1 + A-)

3
'
2
] 

[1/(2'V)][(1 - A-)"1- - (1 + *)-'■- - ix(\  - xf- - i.v(l -f- x)--'-] 

(2-v)6 -2 - ^- + J(3.v - 1)0 - A-)-"
:
 - 3.v0 - A-)

1
-- + (1 - .v)3': 

+  £(3.V   +   DO   +  A-)"1-  +   3A-0   -r  A")'-   -   (1   -r  At"' 

11 
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only the mixed terms that give rise to contributions at frequencies ±coa (i.e. isnorin* all 
third harmonic and frequency mixing terms, such as 2cob - coa) *" ° 

n'3)M   =   l\Ebn^hh{coa, cob, -cob)ö(co - coa)Ea + x%*(coa, a>b, -<ob)8(co + coa)Ea*] 

(24) 
These then lead to a change in the refractive index and absorption coefficient at frequencv 
a>a due to the presence of light at frequency, coh 

An(oa:cob)   =   (24n2/n0nbc)IbRc/ai\b(a^ cob, -Q»)     •' 

Aa(o;a;co6)   =   Wn2coJn0nbc
2)IbImy™bb(a>a, cob, -a>b) (25) 

where Ih is the irradiance of the light of frequency cob, and na and nb are the linear refractive 
indices at frequencies wa and cob, respectively, and we have assumed that the linear 
absorption is sufficiently small that a(coa)dcoa < na. This is not very restrictive, allowin* 
validity even for a ^ lO'cm"1 in the visible, and in most cases is a reasonable approxi* 
mation. For example, m a semiconductor, changes in the refractive index beneath the 
bandgap are attributable to absorption changes at frequencies close to the band ed-e and 
not the high absorption transitions at higher frequencies. This will be more apparent in later 
sections. Note that these results in the nondegenerate case are a factor of 2 greater than the 
corresponding degenerate quantities given in Equation B14 of Appendix B. 

Unfortunately, there is no universal convention for the definition of y°\ so some of the 
numerical prefactors may differ from those used in other papers. We discuss other common 
definitions in Appendix B. 
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1 

It has been suggested that the contribution of this pole can be included in the contour 
integral, and one could derive Kramers-Krönig type relations where an additional constant 
is added to the usual integral [11]. However, since this constant is derived from the residue 
at the pole of x(o>), it is necessary to know fully the form of x(co), i.e. both the real and 
imaginary parts. Since the usefulness of Kramers-Krönig relations is that, given only the 
imaginary part, the real part of x(co) can be computed (or vice versa), such a relationship 
is of little practical use. 

In order to apply the modified Kramers-Krönig relations as described in Equation 19 to 
the two-level atom problem, it is necessary to re-examine the source of the perturbation that 
causes the optical properties to change. In this instance the perturbation is a change in the 
excited-state population by optical excitation. Note, however, that if the frequency of the 
light varies, the excited state population varies also, due to the variation of the linear 
absorption coefficient with frequency. Thus, it should not be too surprising that the 
Kramers-Krönig relations do not apply to this form of nonlinear susceptibility, since the 
perturbation is changing over the frequency integral. 

The perturbation (excited-state population) can be forced to be constant, however, by 
replacing the single pump field by a pump field at a fixed frequency plus 'a probe field 
(considered weak) whose frequency can vary. Thus, we require a pump-probe spectrum, 
where the two frequencies can be different. Returning to the two-level atom calculation [10],' 
if the change in population is calculated solely from a pump field at frequency O. and then 
the polarization is calculated at a different probe frequency a>, Equation 27 for the 
susceptibility now becomes 

rtorfl) = (!?ANA( fo - °>) + ^ Y     K - ny- + VT?     \ 
- *    K-CO)

2
 + iiT;)\(cü0-ny- + (\ + nan 

(cop - ay + i/r2 

(o)0 - ay- + (i + ijQjTi <29) 

where I now refers to the pump irradiance. Here population pulsations have been ienored 
as discussed in the next paragraph. *0(co) refers to the susceptibility in the linear (low power, 
1 ~! 9 hmit" We note that this form of" nonlinear susceptibility does satisfy the Kramers- 
Krönig relations where the integral is over the probe frequency a> only. Figure 2b shows the 
imaginary part of the nondegenerate susceptibility at a fixed pump frequency (Q = co0) for 
several pump irradiances. It is of interest to note that, in the nondegenerate form, the 
Lorentzian lineshape and width are preserved, which is another indication that dispersion 
relations can be applied. In fact, this susceptibility can be separated into a product of the 
linear susceptibility, multiplied by some fraction that depends only on the pump field (Q). 
as shown in Equation 29. This fraction is precisely the fraction of atoms that occupy the 
ground state. Figure 2c demonstrates how this fraction varies with pump irradiance. This 
two-level description carries over directly to the solid state description of bandfilling, where 
nonlinear Kramers-Krönig relations have been utilized with great success. 

In this example calculation we have neglected any effects of population pulsations 
(alternate time-ordering) caused by the beating of the two optical frequencies (<y and Q) in 
the medium. Strictly, this approximation is valid only when the response of the medium is 
much slower than the beat frequency. Inclusion of population pulsations will lead to an 
enhancement in the nondegenerate susceptibility, typically by a factor of 2 for the third- 
order term y^ in the expansion of the susceptibility. The main point of this example. 
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This calculation is shown diagrammatically in Fig. 3. in which the reduction in absorp- 
tion is calculated from the product of the population distribution and the density of states. 
In other words, the distribution of electrons at the bottom of the conduction band removes 
the same distribution of states from the potential interband transitions. The modified form 
of the Kramers-Krönig relation can now be applied to produce the change in refractive 
index associated with this change in absorption as shown in Fig. 3. 

Further examples of this type of calculation have been performed on a theoretical change 
in absorption due to an excited electron-hole plasma by Banyai and Koch for their plasma 
model, which includes Coulombic effects for bulk semiconductors [29] and for semiconductor 
doped glasses [30], and the many-body calculations of Löwenau et al. [31]. 

This form of calculation need not be restricted to theoretical differential spectra. Provided 
the complete differential absorption spectrum is known (i.e. measured over all frequencies 
for Ace 7^ 0), the associated refractive index change can be calculated using Equation 19. 
The converse is also true, but this is unusual as it is far easier to measure absorption spectra 
(which also tend to be more restricted in frequency) than the dispersion of a material. 
Examples of this calculation can be found in [32] (bulk GaAs), [33] (saturation of GaAs 
quantum wells), [34] (quantum-confined Stark effect in GaAs quantum wells) and [35] 
(semiconductor clusters). 

4.3. Thermally induced optical nonlinearities in semiconductors 
Changes in the optical properties of a material occur not only for changes in carrier 
population as described previously, changes of temperature also have an effect. Often this 
can be a problem for applications involving optical switching; however, thermal effect alone 
can be used, for example in optical bistability [36, 37]. 

As an example calculation, consider light incident on a semiconductor. The energy from 
the illumination usually ends up as heat (for example, light generates carriers which 
recombine and give up their energy to the lattice). Close to the band edge the optical 
properties of the semiconductor change, principally through the thermal shift of the 
bandgap 

An   =   (dnjdT)AT 

on on 8E?      on 
cT        ÖE0 dT      oT 

(31) 

where we have also allowed for some background contribution to the thermo-optic coef- 
ficient, cnjoT, such as thermal expansion or lattice contributions. 

The coefficient onjcE% can be obtained from a Kramers-Krönig transform of the band 
edge absorption [38] 

on  ,   , ,.      c 
8Ea SEt-o n 

x a(eo'; £e + <5£J - a(a>'; Et) (co)   =    lim - 9   " ~v~ ' -«   ■   -~%>      -v- » -%> dQ)- (32) 
a/"   —   ÜT 

Using a square-root absorption edge for a direct-gap material, the dispersion of cnjcT 
around the band edge can be determined and is shown plotted in Fig. 4. Note the resonance 
as the frequency approaches the band edge; in fact, for a sharp square-root absorption this 
dispersion function is discontinuous at hoo - E%. Note that since dEJcT'xs usually negative 
[39]. this means that in most cases cnjdTis positive beneath the band edge of a semiconductor. 

Of course, this form of nonlinear dispersion can be applied to any process that causes a 
shift in the band edge. e.g. bandgap renormalization. It is also possible to perform the same 
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transitions and the a.c. stark effect. It is important to emphasize again that in this calcu- 
lation it is the nondegenerate form of the nonlinear absorption that is required. Existing 
expressions for nonlinear absorption, e.g. multiphoton absorption [41, 50, 51], are derived 
only for the degenerate form. 

The nondegenerate absorption was derived using tunnelling theory based on an A • p 
perturbation for a two-band model of a semiconductor. The details of the calculation are 
not relevant to this paper, but the result can be expressed in the scaling form as [15] 

El12    _ fhcj,   ha)2\ r ,-,., 

**»'• °* - 2*^*( vtv'1 (34) 

Here E is the energy gap and Ep is related to the momentum matrix element and is nearly 
constant at £ «21 eV over the vast majority of semiconductors. The refractive indices «, 
and n2 refer to the frequencies co, and co2, respectively, and I2 is the irradiance at frequency 
a>2. The constant AT is material-independent and was determined from the fit to degenerate 
two-photon absorption measurements [52] which gives K = 3100 cm GW"' eV5/2. It should 
be noted, however, that theoretical calculations of this quantity are not too different from 
this value. The dimensionless spectral function F2 can be determined for each of the 
nonlinear optical processes and is the sum of the terms shown in Table I. 

The spectrum of the nonlinear absorption F2(hcoJEg; hco2IEt) is shown in Fig. 8 for two 
different 'pump' frequencies co2. Note that for hco2 < Eg the Raman and Stark terms can 
contribute only to the nonlinear absorption for fcco, > £g. The negative (i.e. decreasing 
absorption) divergence at the bandgap results from the quadratic Stark shift causing a blue 
shift of the band edge. 

By using Equation 26 and substituting for the degenerate An, the following form for the 
degenerate Kerr coefficient is obtained [15]: 

where the dispersion function G2 is given by 

2 r=c F2(x';x)dx' 
x- — x- 

(36) 

We have neglected any dispersion in the linear refractive index n0 in-the integral. The 
magnitude of the dispersion is typically only 10% of the background refractive index 
around the band edge of semiconductors, so we do not anticipate any significant error, the 
factor of 1/2 is introduced when the degenerate coefficient is calculated from the non- 
degenerate as beating terms (cross-modulation or grating terms), double the magnitude of 
the nonlinearity in the nondegenerate case when the material can respond to the beat 
frequency. This is often referred to as weak wave retardation [53]. This factor has also been 
included in the determination of the nonlinear absorption (Equation 34). The origin of this 
factor can be seen by comparing the degenerate results in Equation B14 of Appendix B to 
the nondegenerate results given in Equation 25. Note that this factor of 1/2 was omitted in 
the nonlinear refractive index calculation in [15]. The individual contributions to G2 are set 
out in Table II. 

On examining the low frequency limit it is found that these terms diverge as to -► 0. In 
order to investigate such non-physical infrared' divergence we go one step back and 
examine the nondegenerate case. It is found that An{co: Q) is not divergent in w. and 
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in Equation 20. a change in variables is performed 

j 

T,   =   X(M-%T,. (39) 
j 

which ensures that Z,OJ,T, = H^Tj. This now gives 

£,n)(Q,,a,...,nj = jdr, |dr2- • ■ \dTnR
M(T{, T2, ..., 7-B)e

i<n,7'i+n27'2+-+n-r-' 

(40) 

where the integration region is the equivalent in T-space to the positive quadrant in t-space. 
Now consider a special case of the above transform where, for some k, {M~y)kj ^ 0 for all 
possible j. Since the response function is integrated over only positive Xj (as causality 
demands R be zero for any x} < 0), then the transformed variable Tk will be integrated over 
only positive values. That is, Rin)(Tu T2, ■ ■ ■ , Tk, . . . , T„) can be set to zero for Tk < 0. 
Hence, in a similar manner to the linear Kramers-Kröniig derivation, by transforming this 
property to the frequency domain, we obtain the dispersion relation for /'"'(Q,, Cl2, ■ • • > ^J 

*«<Q„n.............0.) = ^f ^n,.n        n,...,njdn 
17T J-« Q.   —   Q.k 

(41) 
Note that this is formally identical to the nondegenerate nonlinear Kramers-Krönig relation 
dervied above. On transforming back to real frequencies, we obtain co,- = Z^A/'"1)^. 
Since we have previously required (M~*)kj ^ 0, the coefficient of Q.k, {M~x)ik is always 
positive (or zero). This results in a generalized form for the nonlinear Kramers-Krönig 
transform 

y}n)(ax + /?,co, co2 + p2co, . . . , <o„ + p„co) 

±_9\* *(">(co' + PiCi, a)2 + p2n— , cpn + Pnn) dn 

17T J - =c Q   —   CO 

where /?,. ^ 0 for all possible /, provided that at least one p,- # 0. For the case where only 
one of the coefficients p,is nonzero and set equal to unity, we regain the nondegenerate form 
of the relationship. 

We also give here a new, simpler method for obtaining the same relationship in Equation 
42 using the Fourier transform as in Equation 7. Starting with the definition of y}n) from 
the response function R{n) in Equation 20. multiplying both sides by (Q — to)~l and 
integrating over Q 

& r-   Z"°(a>i + P& &2 + ^n, ■■■,con + pnQ) dQ 

J-* Q. — co 

=    J7  dt, j7 dx2 •  •  ■ j*  dT„^(T,. T,,  .... TJe*«.'."^-"".*.> 

O - co 
x & j_"y  - dD 

=     \n j*   dt,  J*   dt:   •   ■   •   ^   dTnJR,n)(T,.  T: .])^|;i-,:--V„)e.«f!:,-.:::--f„:„) 

=   \nx{n)(co{ +,p\Co..co2 + p2to, . . . . co„ + pnco) ■ (43) 
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phase modulator from changes in the absorption spectra of the desired material through a 
variation in a d.c. electric field. 

An important step discussed here is that the perturbation can be another optical field and. 
thus, extend this relation to nonresonant (fast) optical nonlinearities. This can be obtained 
from Equation 45, but we also include a derivation based on the causality of the system. 
However, since the perturbation has to remain constant over the integration, it is necessary 
to have a nondegenerate form for the change in absorption, i.e. a pump-probe spectrum, 
with the pump at a fixed frequency. Unfortunately, conventional experiments and theories 
tend to determine the degenerate (single frequency argument) form only. It is likely that this 
contributes to the confusion over nonlinear Kramers-Krönig relations, since these conven- 
tional results cannot be utilized, leading to the incorrect assumption that nonlinear 
Kramers-Krönig relations are invalid. 

A recent calculation using this dispersion relation is in the calculation of the scaling and 
dispersion of the electronic nonlinear refractive coefficient n2 in solids. We reproduce an 
outline of this calculation in this review. First, all of the relevant nondegenerate nonlinear 
absorption contributions are determined. This includes terms from two-photon absorption, 
Raman transitions and the a.c. Stark effect. Then the nonlinear Kramers-Krönig transform 
is computed and an analytic expression is obtained for the degenerate n2. On comparison 
with experimentally measured values, excellent agreement is obtained, considering the 
uncertainty in some of the materials parameters and the fact that a simple two-band model 
was used to calculate the nonlinear absorptive contributions. Note, although we have 
calculated the degenerate form of the electronic n2 in order to provide a comparison with 
experimental data, the nonlinear dispersion relation is much more general. No new infor- 
mation is necessary for the nondegenerate form of n2 to be calculated. 

As a final note, although in general nonlinear dispersion relations must take the non- 
degenerate form, it can be shown through a change of variables that in the particular case 
of frequency summation a degenerate form can be used. This has limited applications 
although as this is not a self-action effect, so one is usually concerned with the magnitude 
of x only and not the real and imaginary components. 
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Appendices 
A. Cauchy integral derivation of dispersion relations 
The susceptibility x(co) is derived from the response function by means of the Fourier 
transform in Equation 4. However, because of causality, the integral need over run only 
positive times. Generalizing this for complex co, for the condition Im co > 0, the conver- 
gence of Equation 4 can only be improved. This can easily be seen by writing co = co' + ico", 
which leads to a factor e"'u"rin the integrand. Thus, /(co) has a regular analytic continuation 
in the positive imaginary plane of co. 

Consider the Cauchy integral round the contour T in the frequency plane as shown in 
Fig. Al. 

X(oo) dco 
Jr co - 

0 (Al) 

which is zero since co is regular and analytic with no poles within the contour. First, consider 

Im ID 

Re ID 

Figure A 7 The contour f in the complex frequency 
plane used in the derivation of dispersion relations 

of the large semicircle of radius A. the axis Im w = 0 
and the small semicircle of radius F. centred around 
the point fi. 
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Here the summation over the various directions j. k. I is implied for the various tensor 
elements of x- Upon Fourier transformation we obtain the equivalent relations in the 
frequency domain 

P!2)((v)   =   f_x da), J*w dco2x
lijl(a)}, co.JEjioj^E^co.Jöico - Cü, - co2) 

P/
3
'(Cü)   =   f*   dcü, f*   dcü, f"   düj3X$/(co,,üJ2,w3)£/a)1)£A.(to2) 

x £-
/(a)3)5(a) — üJ, — cüi — co3) 

/W)   =   J^x dcü, |*w dw2 ■ ■ ■ j^ dco,,^...,,^,, w2 coj 

x £,.(a),)£A.(a;2) . . . En(a)„)S(co - üJ, - co2 - ■ • • - üJ„)        (B2) 

where ö is the Dirac delta function. The nth order susceptibility is generally obtained from 
the Fourier transform of the «th order response function 

X/"*...» (<*>,, (o2, . . . ,con)   =   Ylx dTi JTX 
dT2 ■ ■ • 

x J*B drn *$....(*.. t2, . . . , Tje*«.^^-+-.o      (B3) 

It can be seen that on evaluating the frequency integral for the linear polarization P0)(co), 
Equation 3 is again obtained. 

In this paper we are mainly concerned with monochromatic electromagnetic fields 
defined as 

E{t)   =   \{Eaz-™»' + £a*e,uv) (B4) 

whose Fourier transform is 

E{u>)   =   ±[Ea6(a> - coa) + Ea*ö(co + wj] (B5) 

Throughout much of this paper we are concerned with third-order nonlinearities. The 
reason for this is that this is the lowest order of nonlinearity that produces a nonlinear 
polarization at the same frequency as the applied electromagnetic field. This results in 
self-action effects such as nonlinear absorption and refraction. 

Upon inserting the monochromatic field defined in Equation B5 into Equation B2 for the 
third-order nonlinear polarization and performing the various frequency integrals, one 
obtains for the component Pa)(a>) parallel to E 

F»(a>)   =   H3xl-'(üv <oe. -coa)ElE*6(a> - toa) + 3z'?,*(w„. a>*, -wj£,£*:$(w + w„) 

+ x°'(col,. av u)a)Et5{w - 3OJ„) + f*(ia„. cu,,, aja)E,f 6(io + 3w„)]   (B6) 

Here we have used permutation svmmetry [64] to simplify the above result, where for 
example 

Zuli(wi. w2. Wj)   =   Xnl■ (&! • Wj . OJ: ) 

=     ^',(CJ3.  W:.  UJ,) (B7) 
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the relation between these quantities and x0) can be written as 

ß(a>)   =   (247c:cü/«oC2)Imx(3,(cü> w. —w) 

y((o)   =   {\27Z2lnic)RcX
0)(o>, o>, -co) (B14) 

Note that for the equivalent nondegenerate quantities derived in Equation 25. a factor of 
2 appears due to weak wave retardation [53]. 

C. Conversion from Gaussian to SI units 
This review uses Gaussian (CGS) units and in this appendix we indicate the differences that 
occur when SI (MKS) units are used instead. A good review of the differences in expressions 
under the systems can be found in [66] for linear quantities. However, in the field of 
nonlinear optics there are no consistent definitions over all publications, even within one 
set of units. In this appendix the notation of [64] is used, which is the direct SI equivalent 
of the notation used throughout here. 

In SI units the permittivity of free space, £0, appears in the relationship between the 
polarization and electric field, and hence, for example, for the first-order (linear) polariz- 
ation we have 

£/U(0     =     fiojTce^lKS/^'W   "   T') (C1) 

and in frequency space 

P}l\co)   =   SoxV^Ejico) (C2) 

Furthermore, the relation between electric displacement, polarization and field is now 
written as 

D(co)   =   £0[n(co) + ia(ü))cl2cü]2E(co)   =   £0£(co) + P(co) (C3) 

Under SI units the irradiance is now given by / = (£0/70c)/2)|£a|
2 when the definition 

£(/) = (Eaz
w"' + E*t~lw"')l2 is used. 

Using the same analysis as previously, which leads to a summation over the three indices 
for the third-order terms, for a /(3) nonlinearity it can be shown that the changes in 
refractive index and absorption coefficient are now given by 

A/7   =   -2-ReZ
1?l(ü;„,av -wfl)|£J2   =   - —^ Rex(3,(cofl, coa.' - coa) 

8/70 4 s0cn-Q 

Aa   =   /-Im/'^avov -cuu)|£J2   =   | -^Ä Im*,3W wB, -wu) (C4) 
4/70       " 2 En r nö 

Thus, the definitions for the Kerr and two-photon absorption coefficients will be modified 
accordingly. It is important to note, however, that the Kramers-Krönig relation between 
n and a is unaltered in SI units. 

Both in the literature and this review, two principal forms have been used for quoting 
values for nonlinear refraction: n2 and y. n2 is most often quoted in e.s.u. and y is usually 
quoted in SI or some derived unit (e.g. cm:GW~'). By comparing Equations B12 and B14 
and converting units accordingly, we can write the conversion between these two forms as 

/7,(e.s.u.)   =   (nor/407r)y    (SI) (C5) 

where all of the quantities on the right-hand side are quoted in SI. 
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We monitor the induced phase change produced by a cascaded xm'-Xm process in KTP near the phase-matching 
angle on a picosecond 1.06-^m-wavelength beam using the Z-scan technique. This nonlinear refraction is ob- 
served to change sign as the crystal is rotated through the phase-match angle in accordance with theory. This 
theory predicts the maximum small-signal effective nonlinear refractive index of n|fr = ±2 x 10"14 cm2/W 
(±1 x 10"11 esu) for an angle detuning of ±5° from phase match for this 1-mm-thick crystal with a measured 
defr of 3.1 pm/Y For a fixed phase mismatch, this n\!! scales linearly with length and as derr2; however, for the 
maximum ra|rf the nonlinear phase distortion becomes sublinear with irradiance for phase shifts near TT/4. 

The nonlinear phase distortion that arises from 
second-order processes in noncentrosymmetric crys- 
tals has recently received considerable attention.1"6 

Although the effective ^<3) that is due to cascading of 
X{2\3co; 2o), to)'-xi2)(2(i); w, <D) has long been used in 
generating the third harmonic of laser beams using 
two crystals, its extension to obtain nonlinear re- 
fraction through ^<2)(w; 2<w, — w):^(2)(2w; <w, w) cas- 
cading has not been fully utilized. There are two 
possible consequences of this nonlinearity for the 
fundamental beam, loss and phase distortion. The 
loss is well known and is simply due to conversion of 
the fundamental to the second harmonic. For low 
conversion efficiency this loss is nearly indistin- 
guishable from two-photon absorption, thus result- 
ing in an effective Im[,y(3)]. The refractive effect is 
less well known and usually ignored, occurring only 
off phase matching where a portion of the frequency- • 
doubled light is downconverted with a shifted phase. 
Hence the net phase of the fundamental wave is 
shifted in proportion to the irradiance of the funda- 
mental, which for low irradiance results in a Kerr- 
like nonlinearity {an effective Re[^<3)]}. Using the 
Z-scan technique,7 we monitor the self-action of 
1.06-/im picosecond pulses as they propagate through 
a KTP crystal close to the phase-matching angle for 
type II second-harmonic generation8 (SHG). It is 
observed that the sign of the nonlinear phase shift 
changes from positive (self-focusing) to negative 
(self-defocusing) on angle tuning the sample from 
negative to positive phase mismatch. The sign and 
magnitude of the observed phase change agree with 
the theoretical results as obtained from the coupled- 
wave equations. A primary application of a nega- 
tive, fast (electronic) Kerr-like nonlinearity in the 
presence of positive group-velocity dispersion is the 
self-compression of ultrashort pulses that can be 
achieved during such a cascading process.3   This is 

the mechanism responsible for self-compression of 
the idler pulse during optical parametric oscillation 
in ß-barium borate, described in Ref. 3. 

The coupled amplitude equations governing SHG 
in a noncentrosymmetric crystal as derived from 
Maxwell's equations in the slowly varying envelope 
approximation are9 

dE2 

dz' 

dz'. 

—i 
2cn2 

Acn, 

Xm{2a; a, a)EiEi exp(iAkz'),    (1) 

Xw(o; 2<o, -a)E2Ex* exp(-iAkz'), 

(2) 
where Eq. (1) describes the growth of E2(2o}) with 
depth z' in the sample, while Eq. (2) gives the evolu- 
tion (depletion and phase variation) of the funda- 
mental beam E\{a) during the SHG process. The 
wave-vector mismatch is Ak = k2a — 2ka = 
2a)(n2J — nj)/c, with i andj denoting the polariza- 
tion directions at frequencies 2&> and OJ, respectively. 
In the absence of loss, the Manley-Rowe relations 
apply and *(2)(«; 2u, -a) = 2*(2)*(2w; a, a). In 
order to simplify Eqs. (1) and (2), we define the 
parameter 

r = (tid.relE, 
(3) 

<Svn2wna 

where dea = |^<2,(2«; w, u>)\/2 and E0 is the incident 
fundamental field. Solving for the fundamental 
beam by eliminating E2 and assuming no initial 
second-harmonic field, we obtain 

dj£i 
dz 

dSi 
,2 + iAk ^ - r2(l - 2|£l/Eo|2)£i = 0. 

QZ 
(4) 

For perfect phase matching (Ak = 0), Eq. (4) yields 
the well-known E\ = E0 sech(rL) solution. Here 
we concentrate on the non-phase-matched solu- 
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January 1, 1992 / Vol. 17, No. 1 / OPTICS LETTERS       29 

2.0 

 |AkL| = 3 

 |AJtL| = 6 

---|AkL| = 20                         / 

-  |AkL| = 50            ...■■■/" ^. ---'" 

_. .--'*' 

- £/             ..--'' ' 
/"                                  - * 

- / ••''     y''   

L-i-'" «                     I I i 

20 40 

rt.2 

Fig. 1. Induced nonlinear phase shift versus T2L2 for sev- 
eral values of phase mismatch as calculated by the numer- 
ical solution of Eq. (4). 
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Fig. 2. (a) Calculation of the depletion of the funda- 
mental wave as a function of phase mismatch AkL. 
(b) Experimental measurement of the depletion of the fun- 
damental beam versus AkL. (c) Calculation of nonlinear 
phase shift (A$NL) as a function of AkL; the dashed curve 
is the small conversion efficiency limit, and the solid 
curve is the exact solution of Eq. (4). (d) Experimental 
measurement of ATP_„ as a function of AkL as the crystal 
is rotated through its phase-matching angle. 

tion to this equation. In the small conversion effi- 
ciency limit, \Ei\ = \E0\, and hence Ei(z') - \E0\ x 
exp[-iA<i>NL(z')] for all z'. From Eq. (4), the nonlin- 
ear phase change impressed onto the fundamental 
beam at the exit surface z' = L is given by 

Ac^AH^ 
[1 + (2r/AÄ;)2]1/2}. (5) 

It is clear from relation (5) that there is a nonlinear 
phase distortion, A$NL, on the fundamental beam 
even though depletion is assumed to be negligible. 
For large phase mismatch and/or low irradiance (I), 
|AA| » |r|, and this nonlinear phase shift varies 
linearly with irradiance I, similar to an optical Kerr 
effect, 

A<D NL  _ r2L2 

AkL 
(6) 

where this phase shift is evaluated at z' = L. As 
the optical Kerr effect is described by n = n0 + n2I, 
we can, by analogy, introduce an effective nonlinear 
index of refraction nf, where A$NL = (2vL/\)nfl 
and 

„eff - n2   = - 
Av L    d eff 

C£0 A n2<urtw  AkL 
(7) 

Note that this is proportional to the usual figure 
of merit for x(2) materials, de{{2/n3. For large phase 
shifts this approximation breaks down, and Eq. (4) 
must be solved exactly. In Fig. 1 we show the exact 
dependence of A<£NL on T2L2 as calculated by a nu- 
merical solution of Eq. (4) for several values of AkL 
without spatial and temporal averaging. This 
shows that for large 7i|ff the approximation is valid 
only for small nonlinear phase shifts. 

The depletion curve of Fig. 2(a) is a plot of \Ei(z' = 
L)\2/\E0\2 as a function of the phase mismatch with 
no spatial or temporal integration. The data of 
Fig. 2(b) are for a 1-mm-thick hydrothermally grown 
sample of KTP, using 27-ps (FWHM), lM-fim 
pulses, focused to a measured Gaussian waist of 
35 yxm (half-width at 1/e2 of maximum). The result 
for I = 9.4 GW/cm2 at AkL = 0, where the spatial 
and temporal averaging can be readily performed, 
gives a value of T2L2 = 4.2, corresponding to de{; = 
3.1 pm/V, which agrees with the results of Ref. 9. 
Owing to the large depletion observed (>50%), it is 
important to check that two-photon absorption does 
not contribute to the depletion. Z-scan measure- 
ments of the two-photon absorption coefficient at 
532 nm yield a value of 0.1 cm/GW, which gives a 
depletion much smaller than that due to SHG. In 
Fig. 2(c), approximate and exact solutions for A<E>NL 

are shown as a function of the phase mismatch AkL, 
again with no space-time integration. 

In our initial phase-measurement experiments we 
performed closed-aperture Z scans at <f> = ±10° 

u    1.1 

O   0.9- 

0.8- 

."•.. 

"—-. ,«»»*»* 

I  '  '  '  u I I I I I I I I 1 I j I 

-20 -10 0 10 20 

Sample Position Relative to Focus (mm) 

Fig. 3. Z scans showing positive A<5NL (circles) performed 
at AkL = -6 and negative A<J>N^ (triangles) performed at 
AkL = +6. The positive A$NL is significantly larger 
owing to the positive contribution of n% (Kerr). 
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(AkL = ±2TT), which correspond to minima in the 
SHG signal. These scans,7 shown in Fig. 3, show a 
change in sign of A<J>NL in accordance with the pre- 
dictions.6 However, an asymmetry is observed, 
which indicates that there is noticeably more self- 
focusing than self-defocusing. This is explained by 
the presence of the bound electronic Kerr effect, 
n2 (Kerr), which adds a positive phase distortion ir- 
respective of Ak. We measured this n2 (Kerr) to be 
s(2.4 ± 0.5) x 10"15 cm2/W by Z scanning with the 
beam propagating along the crystalline z axis, where 
deff = 0. This is consistent with n2 (Kerr) obtained 
from the asymmetry shown in Fig. 3. We then 
find that nf = ±(1.3 ± 0.3) x 10"" cm2/W at I s 
26 GW/cm2 for <f> = ±10° (AkL & ±2ir), where deple- 
tion is minimized. Since at this irradiance, the 
nonlinearity deviates from the nf approximation, 
this measured value should be somewhat lower than 
the small-signal value. The maximum nf should 
occur at <f> = ±5° (AkL = ±3) and have a value of 
±2 x 10"14 cm2/W (±1 x 10"11 esu). 

In order to obtain a plot of A<J>NL versus phase mis- 
match we monitored the transmittance through a 
far-field aperture with =40% linear transmittance 
as a function of angle with the sample placed at the 
position along the beam path that gives minimum 
transmittance and repeated this with the sample 
placed at the position of maximum transmittance. 
As described in Refs. 7 and 10, the difference be- 
tween the transmittance maximum and minimum 
is approximately proportional to A$NL. The result 
of this subtraction is shown in Fig. 2(d), where the 
measured value of n2 (Kerr) was also subtracted. 
This curve shows qualitative agreement with the 
theoretical curve for A<t>NL shown in Fig. 2(c). 

Several conclusions can be drawn from the above 
observations. While nf for the 1-mm sample of 
KTP can be approximately as large as that for CS2, 
this nf is linearly dependent on the sample thick- 
ness, which permits considerably larger values. 
The maximum nf occurs for a constant value of 
AkL = ±3, thus we have the linear dependence on L 
shown in Eq. (7). Also nf scales as the square of 
deff such that larger values will greatly enhance nf. 
Thus values of 10~u cm2/W (slO-8 esu) can be ex- 
pected for long, high-*'2' materials. Clearly organics 
are of interest here owing to their large xm values. 
Conceivably, organics with a derr of the order of 
100 pm/V can lead to ultrafast all-optical switching 
with low loss to the fundamental beam by using 
picojoule pulses over an interaction length of a few 
hundreds of wavelengths. However, because of the 
saturable nature of A$NL, one must use caution 
when quoting nf, as Fig. 1 clearly illustrates. In 
reality, it is the phase A<J>NL that is the more impor- 
tant parameter, and the advantage of using this 
method of achieving nonlinear refraction will de- 
pend on the particular application and the magni- 
tude of A<t>NL that it requires. 

The availability of an ultrafast nonlinearity that 
can be tuned in sign opens new device possibilities. 
For example, the fast electronic negative Kerr-like 
nonlinearity in a cascading process leads to self- 
compression of ultrashort pulses in the presence of 
positive group-velocity dispersion. This mecha- 
nism recently has been demonstrated in an optical 
parametric oscillator.3 Another example of an ap- 
plication of this nonlinearity is mode locking of 
lasers using the recently reported Kerr mode-locking 
technique. For example Carruthers and Duling11 

report mode locking a cw Nd:YAG laser using KTP 
in an antiresonant ring cavity, where the mode lock- 
ing was achieved for an angle tuning slightly off 
phase match. The induced self-phase modulation 
from the cascaded process may be the nonlinearity 
responsible for this mode locking. 

In addition the Z-scan technique yields a new and 
accurate, absolutely calibrated method to measure 
derr, which requires only a measurement of the irra- 
diance and either the loss or phase shift on the fun- 
damental beam. 
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i 
INTRODUCTION 

assive optical limiters based on nonlinear refraction have been 
emonstrated and analyzed for a variety of materials and laser 
avelengths1^* A common geometry is illustrated in Fig. 1. The 

laser beam is focused into a nonlinear refractive material and is 
(len collected through a finite aperture in the far field. At high 

radiance the far field beam distortion arising from the self- 
ction of the laser beam inside the medium will result in the 

limiting of the transmitted light through the aperture. Most of 
I he published analytical work regarding such a device has dealt 

l/ith thin samples. Here, "thin" means thinner than the depth 
of focus. Under this thin sample condition, it has been shown7,8 

^diat the position of the sample with respect to the beam waist 
■z in Fig. 1) is important in determining the output limiting 
•haracteristics. We note that for a thin medium, a displacement 

of the sample in z by a distance of the order of the depth of 
«focus, can result in reversing the operation of the device from 
■imiting to a transmittance enhancement.9 We have recently de- 
veloped a sensitive technique for measuring the sign and mag- 

nitude of the nonlinear refractive index «2 based on the z de- 

Abstract. We experimentally and theoretically investigate optical beam 
propagation in nonlinear refractive materials having a thickness greater 
than the depth of focus of the input beam (i.e., internal self-action). A 
simple model based on the "constant shape approximation" is adequate 
for analyzing the propagation of laser beams within such media under 
most conditions. In a tight focus geometry, we find that the position of 
the sample with respect to the focal plane, z, is an important parameter 
in the fluence limiting characteristics of the output. The behavior with z 
allows us to perform a "thick sample Z-scan" from which we can determine 
the sign and magnitude of the nonlinear refraction index. In CS2, we have 
used this method to independently measure the negative thermally in- 
duced index change and the positive Kerr nonlinearity with nanosecond 
and picosecond C02 laser pulses, respectively. We have experimentally 
examined the limiting characteristics of thick CS2 samples that qualita- 
tively agree with our analysis for both positive and negative nonlinear 
refraction. This analysis is useful in optimizing the limiting behavior of 
devices based on self-action. 

Subject terms: nonlinear refraction; optical limiting; Z-scan; aberration-free ap- 
proximation; self-focusing; internal self-action; CS2. 

Optical Engineering 30(8). J228-1235 (August 1991). 

We observe an analogous, but more complicated z dependence 
for thick limiters (i.e., nonlinear material thickness greater than 
the depth of focus).11 It is often desirable to use such thick 
materials in limiting geometries to either keep the focus away 
from damage prone surfaces or use in a "self-protecting" ge- 
ometry.3'12 Figure 2 shows the energy transmitted through the 
aperture of Fig. 1 as a function of input energy of 300-ns (FWHM) 
10.6-u.m pulses using thermal defocusing in CS2 as the nonlinear 
mechanism. Plots are shown for three different sample positions 
relative to the focal plane, showing the sensitivity to sample 
placement as described above. 

Based on a simple "distributed lens" model, we explain the 
observed limiting behavior of .thick limiters as a function of 
position z. We find that the lowest threshold for limiting is 
achieved by focusing the beam at the front surface for negative 
nonlinearity (An < 0) and rear surface for positive nonlinearity 
(An > 0). 

2. MODEL 

The nonlinear wave equation governing the propagation of a 
laser beam inside a nonlinear refractive medium is expressed as 

V2£ - \ ^2 [(n0 + AnfE] = 0 (1) 

bendence of the transmitted fluence, which we call a Z-scan. 9.10 

I 
Paper 2977 received Aug. 28, 1990; accepted for publication March 29, 1991. 

1991 Society of Photo-Optical Instrumentation Engineers. 

where E is the electric field, no is the linear index of refraction, 
and the nonlinearity is introduced through An, which in general, 
may include various order contributions such as x( \ X( > ••■ 
etc. Here, we consider the lowest order effect, namely a x(3) 

(Kerr-type) nonlinearity, which is commonly expressed in terms 
of the nonlinear refractive index «2 (esu) as An = «2|£| 12. In 
a thick medium, transverse variations accounted for by the V 
term in Eq. (1) become significant and an exact numerical so- 
lution to Eq. (1) can be quite complex. A useful technique to 

1228   / OPTICAL ENGINEERING / August 1991 / Vol. 30 No. 8 



NONLINEAR REFRACTION AND OPTICAL LIMITING IN THICK MEDIA 

SAMPLE APERTURE 

DETECTOR 
Fig. 1. Schematic of the limiting geometry where z is the distance 
between the focal plane in free space and the center of the sample, 
and d is the distance from this plane to the aperture plane. 
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Fig. 2. The limiting characteristics of liquid CS2 at 10.6 u.m measured 
at various z positions indicated by the arrows in Fig. 9, as explained 
in Sees. 3 and 4. 

simplify this problem is known as the "aberration-free" or "con- 
stant shape" approximation,13,14 in which a Gaussian beam 
propagating through the thick nonlinear medium is assumed to 
preserve its Gaussian shape. This requires that the radial vari- 
ation of the index of refraction be parabolic. For a Gaussian 
beam and cubic nonlinearity such a requirement is satisfied by 
using the following approximation: 

An(r) = An(0) exp(-2r2/w2) =* A/i(0)(l - 2r2/aw2) (2) 

where A«(0) is the on-axis index change, w is the local beam 
radius (HWl/e2M in irradiance) and we introduce a as a cor- 
rection factor to account for the higher order terms that have 
been omitted in the expansion of exp(-2r2/w2). Previous ap- 
plications of the aberration-free approximation set a = 1 (Refs. 
13 and 14). Our use of a =£ 1 allows for good quantitative 
agreement in evaluating the nonlinearity or the limiting thresh- 
olds. It is expected that the value of a that gives the best fit to 
the Fresnel wave optics analysis will be geometry and power 
dependent, and as we will show, a may take on values between 
3.77 and 6.4. For a thin medium, the parabolic approximation 
of Eq. (2) implies that the medium behaves as a thin spherical 
lens. Therefore, as depicted in Fig. 3, a thick sample can be 
regarded as a stack of such nonlinear lenses with focal lengths 

that depend on the local beam irradiance. The effective focal 
length of the w'th element in the stack can be written as 

/« = 
aw 

4AnmAL (3) 

where wm and A«m are the beam radius and on-axis index change 
at that element, respectively. AL denotes the separation between 
two adjacent lenses and should be chosen to be much smaller 
than both the diffraction length of the beam and/m. The latter 
requirement can be written as 

AL « (aw2
m/4\Anm\) 1/2 

(4) 

For a given z position of the sample, the input Gaussian beam 
can be propagated through the nonlinear medium using succes- 
sive ABCD matrices defined for the m'th element in the stack as 

B„ 1 - AL//i0/m    AL/«0 

- l//m 1 (5) 

A final free space propagation ABCD matrix is used to obtain 
the beam radius at the position of the aperture, wa, which is 
now a function of the sample position z and the distance to the 
aperture. The effect of linear absorption in the numerical cal- 
culation can be simply included by replacing Lnm by A/zm 
exp(-maAL) in Eq. (3). 

In the absence of nonlinearity, the field at any position z' is 
given by 

E{r,z',t) = Eo(t) 
WQ 

w(z') 

X exp 
ikrz 

w-(z')      2R{z') exp[-/<j>(z',0] . 

(6) 

where w (z') =w0(l + z'"/zo) is the beam radius at z', z0 = 
kwo/2 is the depth of focus of the beam, k = 2TT/X is the wave 
vector, \ is the laser wavelength, all in air, and R(z') = z'(l + 
zo/z'2) is the radius of curvature of the wavefront. Here, 4>(z',t) 
contains all the radially uniform phase terms. The term E0 de- 
notes the electric field at the focus and contains the temporal 
envelope of the laser pulse. 

AL 
Fig. 3. In the "distributed lens" approximation, the thick nonlinear 
medium is regarded as a stack of thin nonlinear lenses whose focal 
lengths depend on the local beam irradiance. 
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■a 

The quantity measured in a limiting experiment or Z-scan 
1 experiment is the power PT (or energy) transmitted through the 

perture of radius ra placed after the sample in the far field. 
Given the assumption of a Gaussian beam, this quantity, which 
iwe write as a function of z, is given by 

PHz) = Pa[l - exp(- ■Irllwl] (7) 

I 
I where Pa is the linear power transmitted to the aperture. Ac- 
counting for the temporal variation of a pulse, wa can be con- 
sidered a function of time t. The normalized transmittance is 
hen given by 

f PT(z,t) dt 

r(z) = 

(s: 

I: 

i 
(8) 

S     Pa(t)dt 

us 

1 
, 

here 5 is the aperture transmittance given by PTIPO in the linear 
(small signal) regime. 

We first compare the results for a thin sample using the thin 
ens approximation to the solution of the wave equation using 

e Fresnel wave optics approach given in Ref. 10. This allows 
us to determine the value of the constant a that best approximates 

e Gaussian beam shape. For the sample at position z with 
espect to the original focal plane,we can use a single thin lens 

ABCD matrix. With the aperture placed a distance d behind the 
riginal focal plane, this leads to the following expression for 
e spot size wa; 

1-* 

I 

i- 
2A®o(D-x)x 

aD{\ +x2)2 +   1- 
2A$>Q(D-X) 

a(l+x2)2 
(9) 

here D = d/zo and x 
hase shift at focus (z 
dex change A«o as 

<J?o = kAnoL , 

z/zo. Here, Ad>0 is the on-axis nonlinear 
0), given in terms of the corresponding 

(10) 

^vhere L is the thickness of the sample. In the case where linear 
absorption (coefficient a) is present L should be replaced by 
II — exp( — aL)]/a. 

Ignoring the temporal dependence, as is appropriate for a 
steady state condition, and using Eqs. 7 and 8 we obtain 

I U) = 
1 exp(- ■2r2

alwl) 
(11) 

«or a thin sample in the geometry of Fig. 1, the transmittance 
"alculated using the Fresnel wave optics approach as a function 

of sample position for a fixed input irradiance is shown in Fig. 4 
I long with the results obtained from Eq. (II).10 In these cal- 

ulations a positive nonlinearity with a A$o of 0.5 rad   was 
assumed. As shown in Fig. 4, the agreement in the total trans- 
mission change (from the valley to the peak) is quite good choos- 

Hnga = 5forS = 0.5. In general, based on a detailed numerical 
Analysis, we find that the peak to valley transmittance change 

is fit to within ±5% accuracy by choosing a as given by 

a = 6.4(1- S) 0.35 for 0 =£ 5 =£ 0.7 and A<t>0 =s TT/2 

(12) 

Numerical analyses show that at larger phase distortions a will 
decrease further. For very large induced phase distortions in 
thick materials we choose a = 3.77 for reasons explained in 
Sec. 4. The low-field small-aperture (S — 0) limit of this re- 
lation (a = 6.4) can be easily derived from Eq. (9) as shown 
in the Appendix. The deviation of a from Eq. (12) at higher 
irradiance reflects deviations from the constant shape approxi- 
mation at large phase distortions. 

3. Z-SCAN 

Plotting the z dependence of the transmittance as shown in Fig. 4 
is a sensitive and useful way to characterize the limiting prop- 
erties of the nonlinear material. Such pronounced variations of 
the beam transmittance through the aperture as a function of the 
sample position z have also provided the basis for an extremely 
simple and sensitive technique that we call Z-scan and use for 
accurate measurements of refractive nonlinearities.9,10 

The Z-scan technique is based on the transformation of phase 
distortions to amplitude distortions during beam propagation. 
The Z-scan experimental apparatus is as shown in Fig. 1, where 
the sample is moved along the propagation direction z while 
keeping the input pulse energy fixed. A qualitative physical 
argument that explains the transmittance variations in the Z-scan 
experiment10 can be given as follows: Starting the scan from a 
distance far away from the focus (negative z), the beam irra- 
diance is low and negligible nonlinear refraction occurs leading 
to linear transmittance. We normalize the linear transmittance 
to unity. As the sample is brought closer to the focus, the beam 
irradiance increases leading to self-lensing in the sample. A 
negative self-lensing prior to focus tends to collimate the beam 
and reduce the diffraction leading to a smaller beam at the 
aperture and an increased transmittance. As the scan continues 
and the sample crosses the focal plane to the right (positive z), 
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Fig. 4. The Z-scans of a thin nonlinear medium as calculated using 
the methods of wave optics (solid line) and the thin lens approxi- 
mation (dashed line). A 50% aperture is assumed (S = 0.5). 
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the same self-defocusing effect will tend to augment diffraction 
and reduce the aperture transmittance. A prefocal transmittance 
maximum (peak) and a postfocal transmittance minimum (val- 
ley) are, therefore, the Z-scan signature of a negative nonline- 
arity, while a positive one, following the same analogy, will 
give rise to an opposite valley-peak configuration. With a small 
phase shift and a thin sample, the peak and valley are9,10 sym- 
metrically positioned about the focal plane and are separated by 
a distance AZP-V — l-7zo- This separation is given by the wave 
optics calculation, while the constant shape approximation gives 
a somewhat smaller value, as described in the Appendix. 

We have used such thin sample Z-scan data to measure n-± of 
a large class of materials with a demonstrated sensitivity of 
=\/300 wavefront distortion.10 Here we extend the applicability 
of the Z-scan method to thick samples. With a limiting device 
in mind, the obvious optimum sample position to minimize the 
limiting threshold is the z region where the valley occurs. We 
will exploit this feature further in optimization of thick limiters. 

The calculated Z-scan for a rather extreme case in which 
L/(«ozo) = 15 is shown in Fig. 5. For a thick sample, z is defined 
as the distance from the center of the sample to the position of 
the focus in air in the absence of the nonlinear medium. A cubic 
nonlinearity with either sign and with Qla - ±0.5 is assumed 
where 6 = knoAn02z0. Note that 6 is approximately the induced 
phase distortion accumulated in the sample between -zoto +zo. 
An interesting feature of the thick sample Z-scan is that the 
separation between peak and valley of these curves is now dom- 
inated by the optical length of the sample, Lino. Furthermore, 
the two extremes correspond to focusing the laser beam on either 
surface. More generally, we find AZp-v(thick) = [{Lln0f + _ 
AZp_v)(thin)]1/:r where AZp-v(thin) is the thin sample limit of Leff 
= 1.7ZQ. Also evident from Fig. 5 is the existence of a nearly 
flat transmittance region where the beam is focused near the 
middle of the medium. This simply signifies the fact that al- 
though the laser beam experiences a large local phase distortion 
within the medium, the effects of prefocal and postfocal non- 
linear refraction are nearly cancelled in the far field. Using the 
lens analogy, the effect is similar to placing a pair of lenses of 

the same sign on both sides of the focal plane such that the far 
field beam pattern is relatively unaltered. 

The observations reported in the "Chinese Tea" paper15 are 
easily understood from the above analysis. In that paper, they 
observed a beam narrowing and expansion depending on the 
position of the focus within the linearly absorbing sample. This 
was interpreted as a change in sign of the nonlinearity. Clearly, 
for a purely defocusing nonlinearity both beam expansion and 
beam narrowing can be obtained in a thick sample depending 
on the position of the focus within the sample. We, therefore, 
explain their results as being due to simple thermal defocusing 
caused by linear absorptive heating. 

The existence of a large internal self-action results in a larger 
transmittance change for a positive nonlinearity than for a neg- 
ative one of the same magnitude as seen in Fig. 5. This results 
from the fact that with a positive nonlinear index the resultant 
self-focusing is a self-strengthening effect similar to an ava- 
lanche process, whereas with a negative nonlinearity we have 
self-defocusing inside the medium, which leads to a self-weakening 
of the nonlinear refraction. Nevertheless, at small enough phase 
distortions where variations of the beam diameter inside the 
medium due to nonlinear refraction are insignificant, nonlinear- 
ities with opposite signs will give rise to the same peak to valley 
transmittance changes. 

It is useful to look at what we call the effective interaction 
length inside the nonlinear material. Clearly for samples much 
thicker than zo, making the sample thicker will no longer increase 
the total ATP-V. We define Le/f as 

A7~p-v(thick) 

A7"n-V(thin) 
(13) 

where ATP-V(thick) is calculated using the distributed lens method 
and Arp_v(thin) is calculated assuming that the sample is much 
thinner than the depth of focus. As reported in Ref. 10, 
A7*p-V(thin) is given by 

0.25/ A7>-V(thin) = 0.406(1- S)u"3A<I>o (14) 
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Fig. 5. Calculated Z-scans of a thick medium using the distributed 
lens method for both positive (solid line) and negative (broken line) 
nonlinearities (0/a = ±0.5). The arrows on the z-axis indicate the 
corresponding positions at which the limiting curves of Figs. 7 and 
8 were obtained (see Sec. 4). Here, we chose na = 1 and S = 0.5. 

with A$o defined by Eq.(10). 
To graph the results in a way that will be useful in extracting 

the total phase distortion in the thick sample, we define the 
dimensionless parameters \eff = L?////iozo, and / = LITIQZQ. Fig- 
ure 6 shows leff for various values of Qla as a function of /. 
Figure 6 also shows how defocusing (6 < 0) lowers /«// and 
self-focusing (6 > 0) raises leff as the beam size within the 
thick (/ > 2) material is broadened (6 < 0) and narrowed 
(6 > 0), respectively. The curves in Fig. 6 were calculated 
using S = 0.5. Further calculations have shown that leff is highly 
insensitive to S. 

We see, as expected, that l—Uff for small / and that most of 
the total phase distortion or index change is achieved within a 
sample of thickness —2ZQ. Further increases in the sample length 
lead to only small increases in the Z-scan signal (ATP-V) and in 
the same way will be less effective in lowering a limiting thresh- 
old. Applications exist(e.g., when linear absorption is present) 
where we wish to maximize the phase distortion with a minimum 
of sample length or linear loss. 

As given in Fig. 6, leff also can be used to obtain an accurate 
estimate of the induced phase change 0 and, thus, the nonlinear 
refractive index of the sample. This can be achieved by noting 
that combining Eqs. (13) and (14) yields 
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Fig. 6. Calculated effective interaction length as a function of the 
sample length in units of zo for various degrees of nonlinear phase 
distortion 0/a. 

A7>_v(thick) = 0.406(1 - S) 0.25 ei, eff 
(15) 

Here 6/«///2 can be interpreted as the effective on-axis nonlinear 
phase shift when the focus is at the center of the sample. Because, 
according to Fig. 6, knowing leff requires knowledge of the 
value of 9, an iterative procedure can be used that converges 
rapidly to give 6 and, thus, An0. One may start by assuming a 
small |6| (=£0.2). Using Fig. 6, given this 0 and /, we obtain 
an /„//. Using this 4//, a new 0 can be reevaluated from Eq. (15). 
Repeating the process quickly converges to the correct 0. Al- 
though the curves in Fig. 6 were obtained assuming a lossless 
medium (a = 0), the same curves can be used if linear ab- 
sorption is present, provided that the left-hand side of Eq. (15) 
is multiplied by the absorption factor [1 - (exp-aL)]/(aL). 
Numerical calculations show that this procedure works well for 
OLL < 2 as long as |0| < 2. 

4. LIMITING 

As for the case of a thin sample, to maximize the limiting effect, 
we must place the thick sample at a position where the trans- 
mittance shows a valley similar to the one in Fig. 5. The the- 
oretical limiting behavior of the thick medium of Fig. 1 is shown 
in Figs. 7 and 8 for negative and positive nonlinearities, re- 
spectively. As the sample is positioned farther from the valley, 
the limiting threshold increases. We define the limiting threshold 
as the input at which the transmittance drops by a factor of two. 
For negative nonlinearity, the lowest limiting threshold is ob- 
tained at the valley corresponding to focusing at the front surface. 
This threshold is given by 0 — a. Focusing near the rear surface 
yields a transmission enhancing behavior that is undesirable for 
a limiting device. Similarly, for a positive nonlinearity, the low- 
est limiting threshold occurs at the valley that corresponds to 
rear surface focusing. However, as seen in Fig. 8, a sudden drop 
of transmission occurs at 0 — a due to the onset of catastrophic 
self-focusing. This threshold is seen to be nearly independent 
of the sample position. The term 0 can also be expressed as a 
power ratio:P/Pi, where P denotes the radiation power and Px 

is defined as the first critical power for self-focusing16,17: 

2      3      4      5      6 

Input     0/a 
7      8 

Fig. 7. The normalized limiting curves for a negative nonlinearity 
(n2 < 0) calculated for various sample positions (z) as indicated by 
the arrows in Fig. 5. The broken line shows the linear transmittance. 
(S = 0.5 was used in the calculations). 

1.25 

0.00 
0.00     0.25     0.50     0.75     1.00     1.25 

Input     0/a 
Fig. 8. The normalized limiting curves for a positive nonlinearity 
(r»2 > 0) calculated for various sample positions (z) as indicated by 
the arrows in Fig. 5. The broken line is the linear transmittance curve. 
Catastrophic self focusing occurs in all the curves at 0/a = 1 signified 
by a sudden drop in the transmitted power. (S = 0.5 was used in 
the calculations). 

P\ = (cgs units) (16) 

Numerical calculations of the nonlinear wave equation made by 
Marburger18 indicate that for focused Gaussian beams in a thick 
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medium with positive nonlinear index(«2 > 0), a catastrophic 
self-focus will occur at a critical power of Pc = 3.77 Pt (0 = 
3.77). The distributed lens method, therefore, predicts the cor- 
rect result, choosing a = 3.77, as stated in Sec. 2 for large 
induced phase distortion. 

Referring to Fig. 8, when the self-focusing threshold is reached, 
the laser beam is predicted to collapse and the local beam ir- 
radiance to become infinite. However, the paraxial approxi- 
mation and, hence, the analysis breaks down as the beam radius 
becomes19 comparable to trie wavelength A.. In addition, at the 
high irradiance produced by the self-focusing effect, one must 
consider higher order nonlinearities as well as plasma production 
and subsequent optical breakdown of the medium. 

5. EXPERIMENTS 

Optical limiting in liquid CS2 was examined using a TEA CO2 
laser with single longitudinal mode pulses of 300-ns duration. 
The laser beam was focused to wo — 60 \im (zo — 1mm) into 
a 24-mm cell (with NaCl windows) filled with spectrophoto- 
metric grade CST. With no = 1.63, the ratio L/nzo — 15, in- 
dicating a thick medium. First, we performed a Z-scan on this 
sample to verify the locations of the peak and valley of the 
transmittance. The result for a 1-mJ pulse energy along with the 
theoretical fit is shown in Fig. 9. The curve exhibits features 
predicted by the distributed lens method for a negative nonlin- 
earity, namely the peak and valley corresponding to the second 
and first surface focusing, respectively, and a nearly flat portion 
corresponding to focusing near the center of the cell. The origin 
of this negative nonlinearity is believed to be thermal, arising 
from the finite absorption of 10.6-u.m radiation in CS? (a = 
0.22 cm-1). Thermal lensing in liquids arises from the thermal 
expansion of the medium and has a rise time given by the '' acous- 
tic transit time," which is effectively the time a sound wave 
takes to traverse the beam radius.20 Knowing the sound velocity 
in CS2 (vs — 1.5 x 105 cm/s) and the focal beam radius (—60 
u,m), a response time of =40 ns is obtained, which is almost 
an order of magnitude smaller than the laser pulsewidth. The 
decay of the thermal lens, however, is governed by the thermal 
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-18    -12 0 
Z 

6 
(mm) 

12 18       24 

Fig. 9. The measured 2-scan of a 24-mm thick CS2 sample using 300- 
ns TEA CO2 laser pulses at 10.6 urn. The theoretical fit (solid curve) 
is obtained based on thermal self-defocusing in CS2. The arrows on 
the z-axis indicate the positions at which the limiting data of Fig. 2 
were obtained. Because no * 1, the curve is no longer symmetric 
about 2 = 0. 

diffusion process, which is on the order of 0.1 s, which is orders 
of magnitude larger than the pulsewidth and can be neglected.2 

Under such quasi-steady state conditions, the time averaged non- 
linear index change ((A/irj)) arising from nonuniform heating can 
be estimated in terms of the laser pulse fluence (F) at the focus10 

<A«o) = 
dn   aF 

dT 2pCv 

(17) 

where p is the density, C, is the specific heat and dnldT is the 
thermo-optic coefficient of the medium. The factor of 2 comes 
from the temporal averaging.10 The coefficient dnldT has long 
been investigated for CS2, and a value of = -8xlO~4oC-1 

has been reported in the literature.21 With the known value of 
pCv = 1.3 J/Kcm3 for CS2, we obtain (An0) = 1.1 x 10~3 at a 
==17 J/cm2 fluence. This is in good agreement with the (Ano) — 
- 1.0 x 10"3 used to fit the Z-scan of Fig. 9. Note that in this 
calculation, a value of =5, as obtained for S = 0.5, was used 
for the a parameter. Note also that the z = 0 point in the Z-scan 
curve is defined as the position of the focus in air in the absence 
of the nonlinear medium. After the insertion of a thick sample 
with no > 1, the beam waist inside the sample no longer will 
coincide with our z = 0 point. This is why the z = 0 point of 
the Z-scan in Fig. 9 differs from that of Fig. 4, which was 
calculated assuming no = I. 

The limiting behavior of the same CS2 cell at 10.6 (xm was 
shown in Fig. 2, where the normalized transmitted power was 
plotted versus the input power as measured for the various sample 
positions indicated in Fig. 9. They exhibit the predicted features 
given in Fig. 7. It is evident from Eq. (17) that thermal self- 
action can be enhanced by increasing the absorption coefficient 
of the medium. We obtained a limiting threshold of =0.5 kW 
(150 uJ) in CS2 at 10.6 u,m by desolving impurities (e.g., sulfur) 
to increase the absorption coefficient to —2 cm"1. This is shown 
in Fig. 10 where the results for two samples of pure and modified 
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Fig. 10. A low-threshold fluence limiter at 10.6 pirn using modified 
CS2 (a = 2 cm-1) as compared to pure CS2 (a = 0.22 cm"1). The 
measurements were obtained using a 3-mm cell placed at the trans- 
mittance valley. 
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CS2 are compared for a 3-mm cell positioned in the transmittance 
valley. 

Liquid CS2 is also well known for its strong optical Ken- 
effect with a relatively dispersionless nonlinear index 7 = + 3 • 
4 X 10"14 cm2/W («2 = 1.3 x 10" n esu).22"24 This effect was 
ignored when the thermal nonlinearity was dominant as was the 
case with 30-ns pulses. With picosecond pulses, however, tp « 
tac and nonlocal nonlinearities such as thermal or electrostriction 
no longer dominate. Thus, the reorientational Kerr effect with 
=2 picosecond decay time22 becomes the dominant mechanism 
for nonlinear refraction. Using 130-ps "optical free-induction 
decay" pulses at 10.6 (im (Ref. 25) and a peak power of 350 
kW, we performed Z-scans with the 24-mm CS2 cell. The result 
as shown in Fig. 11 exhibits a valley-peak configuration showing 
self-focusing indicative of the positive sign of the Kerr coeffi- 
cient. The theoretical fit in Fig. 11 with S = 0.4 is obtained 
using «2 — 1.5 X 10" " esu, which is in close agreement with 
previously reported values of n2 in CS2 measured in the visible 
and near IR regions.23'24 Note that use of gentler focusing gives 
a larger diffractive length (z0 = 4 mm or / =3.7), resulting in 
the disappearance of the rather flat portion of the Z-scan that 
was more visible in Fig. 9. 

A quick estimate of the nonlinear phase shifts can be evaluated 
from Eq. (15) and Le/f as obtained from Fig. 6 for both nano- 
second and picosecond Z-scan experiments. 

6. CONCLUSION 

We have shown that limiting in thick Kerr-like media may be 
simply modeled using a modification of the aberration-free ap- 
proximation. For small nonlinear phase shifts (9 < 2), this model 
shows excellent agreement with our Z-scan and limiting exper- 
iments. Therefore, we conclude that the method is of consid- 
erable use both in experimental measurement of «2 in thick media 
and in designing optimized limiting devices. 

This extension of our ability to measure «2 in media thicker 
than the depth of focus may find application for media where 
the nonlinearity is small and the laser beam must be focused 
very tightly to see a measurable effect. This is exemplified by 
our picosecond 10.6-p,m measurement of «2 in CS2, shown in 
Fig. 11. Here, / = 3.7 so that leff = 1.5, whereas if a truly 
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Fig. 11. The measured Z-scan of the 24-mm CS2 sample using 130- 
ps C02 laser pulses. The broken line is the calculated result using 
n2 = 1.5x10~11 esu. Here S = 0.4 giving a = 5.4. 

thin sample were used, leff « 1. Given that the result shown 
in hig. 11 was obtained with the maximum energy available 
from our picosecond source, a measurement of n2 would not 
have been possible with a thin sample. Furthermore, we have 
shown that a quick estimate of the nonlinear coefficient can be 
deduced from the Z-scan transmittance curve of a thick media 
by using the calculated effective interaction length U, intro 
duced in Sec. 3. ■"'      ° 

th J!if reSUltS °f t!lis.modeling as aPPÜed to limiting indicate 
hat the minimum limiting threshold is obtained by positionine 
he focus at the front (orrear) surface of the sample for a 2S 

(or positive) nonlinearity, respectively. In both cases thif cör 
responds to the Z-scan valley. Such a conclusion might le d one 
to believe that such limiters are inherently prone lo damage 
because a positive n2 with a long propagation path leads fo 
catastrophic beam collapse. Similarly, fof a negSen"   the 
beam must be focused on the damage-prone front surface How 
Z\ 0the'geom*ries for limiting may be envisioned that do 

<° n /?     lPK°bJeT- F°r CXample' the simPle addition of a second lens behind the sample will reverse the order of peak 
and valley in some plane after the lens. Thus, for a negative «, 
the limiting is optimized with the focus at the rear surface & 
Although to consider the optimization of other possible wo 
metnes is beyond the scope of this paper, the method of analysis 
introduced here should be adequate for such a task. Howeve 
the model has been applied to a purely refractive third-order 
nonlinearity in the presence of linear absorption. Nonlinear ab- 
sorption  such as occurs in semiconductor limiters, has not vet 
been included. ' 

In light of the conclusions made here, the observations re- 
ported m the "Chinese Tea" paper15 are easily understood as 
bang due to simple thermal defocusing. The reported sign change 
of the nonlinearity was not in fact a sign change, but simply the 
consecutive observation of the transmission "valley" to "peak" 
as the sample position was changed with respect to focus. 

7. APPENDIX 

To examine the validity and limitations of the "constant shape- 
approximation, we compare Eq. (9) in the limit of the small 
phase distortion with that of Ref. 10, which was obtained using 
the Fresnel wave optics approach. 

The far field condition imposed by having D » 1 (see Fig 1) 
along with the small phase distortion assumption (|A<E>nl < h 
will reduce Eq. 9 to ; 

-2~& 1   - 
4xA$o/a 

(1 + x2)2 (18) 

The on-axis(5 =* 0) irradiance is then inversely proportional to 
the beam area (iro#2). Therefore, the normalized on-axis trans- 
mittance is simply obtained as 

7/(A$0,--c) = 1 + A$n Ax 
2a (1 + -r) (19) 

The extrema (peak and valley) of the transmittance can be ob- 
tained from JTIdx = 0. This gives xp.v = ± 1/V3 as compared 
to the more rigorous result of ±0.858 as given in Ref 10 The 
peak-valley transmittance difference can, therefore, be deduced as 

A7D_V = r(A*o^>) - HAOo^v) = p|Ac&o| (20) 
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t'here/7 = 3V3/(2a). Equating this value forp with the value 
f p — 0.406 (Ref. 10) yields a — 6.4, indicating the signifi- 

cance of introducing this correction factor into the aberration- 
free approximation theory. 
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ABSTRACT 

In order to better understand the physical mechanisms responsible for the 

large observed optical nonlinearities of nematic liquid crystals, we have carried 

out nonlinear absorption and nonlinear refraction measurements on the pure 

liquid crystals 5CB and 8CB, and the liquid crystal mixture E7 using picosecond, 

nanosecond and millisecond pulses. We have used the recently developed Z-scan 

method1"2, a sensitive single-beam technique which allows the determination of 

the sign and magnitude of the nonlinear refraction and the magnitude of the 

nonlinear absorption for aligned samples3. We have performed these 

measurements on aligned samples at wavelengths of 514nm and 532nm. In 

addition, we have studied the temperature dependence of the nonlinear refractive 

indices. Possible mechanisms responsible for the observed nonlinearities are 

discussed. 

291 
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2.  Z-SCAN TECHNIQUE 

The schematic of the setup for the Z-scan experiment is shown in Fig. 1. 

A Gaussian laser beam is focused at z=0 plane, and the transmittance of a 

nonlinear medium through a finite aperture at z=+d0 (where d0 is the distance 

from focus to aperture) is measured in the far field as a function of the sample 

position z. 

TCH 

Fig. 1. Schematic of experimental setup for Z-scan measurements. 

The abbreviations are: WG, wedged glass; WP, wave plate; P, 

polarizer; BS, beam splitter; L, lens; TS, translation stage; S, 

liquid crystal sample; TCH, temperature controlled housing; A, 

aperture;   Dl and D2,   photodiode detectors. 

The following example illustrates the Z-scan method. A thin sample, 

with thickness smaller than the diffraction length of the focused beam, with a 

positive nonlinear refractive index n, can be regarded as a thin converging lens, 
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ATp-v ~ 0.406(1- A)025< A*o> (2) 

where A is the linear transmittance of the aperture, and the phase distortion 

<$o> is 

<*o> = "¥ < Anc> Leff. (3) 

The on axis index change at focus is related to the nonlinear refractive index n2 

and 7 by 

<An0>= < £ |Eo|2>= < y Io> (4) 

where E0 is the peak electric field on axis at focus. 

In the case where nonlinear absorption is taking place simultaneously with 

nonlinear refraction, the nonlinear absorption coefficient ß can be determined 

from an open aperture Z-scan. With ß known, a finite aperture (A<1) Z-scan 

can be performed to determine the nonlinear refractive index 7 or n2. Detailed 

calculations show1 that for a material with /3/2k|-yj < 1, there exists a simple 

procedure to calculate 7 with less than 10% error. The process is simply to 

divide the normalized finite aperture (A<1) transmittance by the normalized 

open aperture one (A=l); the new transmittance curve thus obtained can then 

be used to calculate n2 as if /?=0. 

3.  EXPERIMENTAL RESULTS 

The pure liquid crystals 5CB and 8CB, and the mixture E7 obtained from 

EMI Chemicals were used without further purification. The nematic-isotropic 

transition  temperatures  of 5CB,  8CB   and  E7  are  35.3*C,  40.5'C  and  60'C, 
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1.04 

Fig. 2. Transmittance of a planar aligned 120/jm thick 5CB sample in 

n±E geometry using 33 ps laser pulses from a frequency doubled 

Nd:YAG laser. □ represents trasmittance with 40% aperture; x 

represents transmittance with open aperture. The peak on-axis 

laser intensity was I0 = 23.3 GW/cm2. 

1.08 

£   1.04 

1.00 

£   0.96   - 
o 
2 

0.92 

Fig. 3.   Transmittance     obtained     by     dividing     the     small     aperture 

transmittance data by the open aperture transmittance of Fig.2. 
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Fig.4 shows measurements for the same planar sample but with the E||n 

geometry. The pulse duration TFWHM = 33ps is the same, but here the peak 

on-axis laser intensity is I0 = S.33 GW/cm2. The symbols used are the same as 

in Fig. 2, with D for the 40% aperture measurements and x for the open aperture 

measurements. From the open aperture measurements we 

obtain ßJEGA) = 2.27 cm/GW. The data, after removing the nonlinear 

absorption effects, is shown in Fig.5 and the nonlinear refractive index in this 

geometry  is n2[|(HGA) = 1.04xl0"n esu. 

Fig. 6 shows the results of measurements on a 120/im thick 

homeotropically aligned 5CB sample with TFWHM = 33ps pulses from the 

frequency doubled Nd:YAG laser with peak on-axis laser intensity I0 = 23.3 

GW/cm2. In this case , the electric field E of the laser beam is perpendicular to 

the nematic director n. The open aperture measurements are shown with the 

symbol x, and the 40% aperture measurements are shown in with the symbol D. 

The nonlinear absorption coefficient is /?j_(HTA) = 0.81 cm/GW. 

1.04 

0) 
o 0 
c 
o 1.00 

-TtfßSSS t\ ^ ««■ 
$ß 

E 0                 D 
^      *             C     X 

V) a x         x 

!_ 
O □   x     □ x 

h- 0.96 - DX        X 

"D 
"  *       X 

N °*°* 
O C  x 

h 0.92 - nR 

o 
-z. 

1 1 

-20 -10 0 10 

Z   (mm) 

20 

Fig. 6. Transmittance of a homeotropically aligned 120pm thich 5CB 

sample ( nJ-E ) using 33 ps laser pulses from a frequency doubled 

Nd:YAG laser. D represents transmittance with 40% aperture; 

and x represents transmittance with open aperture. The peak on- 

axis laser intensity  was I0 = 23.3 GW/cm2. 
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-3.0      -1.5 

Z (mm) 

Fig. 8. Transmittance obtained by dividing the small aperture 

transmittance data by those obtained with open aperture. 7 ns 

pulses were used from a frequency doubled Nd:YAG laser. Open 

circles are results of division, and the solid line is the theoretical 

fit. 

3 
w 

T-TN1    (-C) 

Fig. 9.   The temperature dependence of n2||     and n2j_ for the nematic 

liquid crystal   5CB   using   10ms Ar+   laser  pulses   at   A=514 nm. 

The nonlinear birefringence diverges as (TN[—T)"1. 
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Table II.   Nonlinear refractive indices and nonlinear absorption coefficients 

for homogeneously aligned  5CB at 24°C. 

TFWHM   (
S
) 10 xicr2 

6.5 xl(T9 33 xlO-12 

A   (nm) 514 532 532 

n2||   (esu) -1.30xl0"3 ^1.75xl0"9 +1.04xl0"n 

n2±   (esu) +0.26xl0"3 +0.25xl0"9 +0.69xl0'n 

/?N   (cm/GW) 265 2.27 

0±   (cm/GW) 36 0.78 

4.  DISCUSSION AND CONCLUSIONS 

All measurements reported in this paper were carried out using a single 

laser pulse at each sample position. Using 33 ps pulses at A=532 nm, we 

measured both nonlinear refractive indices and absorption coefficients for 

nematic liquid crystal 5CB in both n±E and n||E geometries using the Z-scan 

technique. For both polarizations we observed self-focusing. Electronic effects 

likely dominate in these picosecond measurements, although optical field induced 

changes in the orientational order could also contribute. Calculations to estimate 

the extent of this contribution are currently under way. The population of 

excited states may also contribute to the nonlinear response. If fast electronic 

effects dominate, then it may be possible to relate the measured anisotropies of 

both n2 and ß to the results of molecular hyperpolarizability calculations. 

In the 10 ms pulse measurements at A=514 nm we have observed strong 

nonlinear refraction and nonlinear birefringence. Self defocusing occurs in the 

E||n geometry where the polarization is parallel to the director, and self focusing 

in the E-Lh geometry. The nonlinear birefringence is strongly temperature 

dependent with An2 = n2±-n2|| ä 1.4xl0"2 (T^-T)"1 esu-K. In our 

geometry, director reorientation is not expected to occur because there is no 
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Abstract—Viz describe degenerate four-wave mixing experi- 
ments on ZnSe and CdTe semiconductor samples with pico- 
second laser pulses at wavelengths below the bandgap. Nonlin- 
earities of third, fifth, and seventh order are observed and the 
mechanisms for each are identified. In all of our measure- 
ments, we observe a fast third order nonlinearity. For two-pho- 
ton absorbers, this is attributed to contributions from both the 
real (refractive) and imaginary (absorptive) parts of the third- 
order susceptibility. Below the two-photon absorption edge, the 
nonlinearity is purely refractive. The higher order effects are 
due to carriers generated by multiphoton excitation. In ZnSe 
at 0.532 urn, carriers are generated by two-photon absorption 
such that a fifth order nonlinearity arises from the change in 
index due to these carriers, a sequential x<3):X(l> nonlinearity. 
From such measurements we determine the refractive index 
change per photoexcited carrier pair and the density depen- 
dence of the carrier diffusion coefficient. Analogous signals are 
observed in CdTe at 1.064 urn. The seventh order nonlinearity 
observed in ZnSe at 1.064 um results from the refractive index 
contribution of carriers generated by three-photon absorption. 

I. INTRODUCTION 

WE report a series of picosecond degenerate four- 
wave mixing (DFWM) studies conducted in ZnSe 

and CdTe at wavelengths of 0.532 and 1.064 /*m. The 
DFWM signal shows a fast third order nonlinearity, as 
well as higher order slowly decaying nonlinearities due to 
multiphoton absorption generated carriers. We attribute 
this signal to the combined effects of the real and imagi- 
nary parts of the third order susceptibility x<3)- The imag- 
inary part corresponds to two-photon absorption (2PA), 
while the real part is due to bound-electronic nonlinear 
refraction (index n2), as opposed to a free-carrier effect 
[1]. From our measurements, we obtain the absolute value 
of the third order nonlinear susceptibility for both ZnSe 
and CdTe. This, combined with independent 2PA mea- 
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surements, allows us to extract the real part of the sus- 
ceptibility which corresponds to the nonlinear refraction. 

We also observe a rapid third order nonlinear effect 
which is dominant at low incident irradiances in both 
semiconductors when all three beams are temporally co- 
incident (zero delay). Fifth and seventh order nonlinear 
effects are evident, depending on wavelength, when the 
gratings are probed at time delays greater than the pulse- 
width to eliminate the signal from the fast third order ef- 
fect. These higher order refractive nonlinearities are at- 
tributed to the refractive effect of carriers generated by 
2PA (fifth order) and 3PA (seventh order). Most of the 
experiments discussed here consist of the generation of a 
modulated carrier density or carrier grating created by in- 
terfering two of the three beams made coincident in the 
semiconductor sample. Diffraction of a third beam from 
this grating produces a DFWM signal yielding informa- 
tion on the nonlinearities resulting from the photogener- 
ated carriers and their decay mechanisms [2], [3]. Decay 
of this signal, which is the phase conjugate of one of the 
two interfering beams, takes place due to carrier diffusion 
and recombination. An expression for the diffraction ef- 
ficiency at long temporal delays is obtained from coupled- 
wave theory [4]. This expression leads to a calculation of 
the index of refraction change per carrier pair per unit 
volume generated via 2PA in ZnSe at 0.532 jtm. Mea- 
surements of the grating decay for several pump-probe 
angles gives values for the carrier diffusion and recom- 
bination lifetimes in ZnSe at 0.532 ftm. 

After describing the experimental techniques in Section 
II, we identify in Section III-A the dominant nonlineari- 
ties in the two materials ZnSe and CdTe. We determine 
these to be fast third order nonlinearities, due to the same 
processes which give rise to the effects of bound-elec- 
tronic refraction and two-photon absorption, while higher 
order effects are due to free-carrier refraction. In Section 
III-B we describe our measurements of the absolute mag- 
nitude of the combined third order susceptibilities. Stud- 
ies of higher order effects due to free-carrier gratings are 
discussed in Section III-C. In order to obtain a quantita- 
tive measurement of the carrier induced nonlinearities, in 
Section III-D we develop an expression for the diffraction 
efficiency of these carrier gratings and hence find a value 
for the free-carrier refractive index coefficient in ZnSe. 
By measuring the angular dependence of the grating de- 
cay, we determine the carrier diffusion coefficient as a 
function of carrier density. 

0018-9197/9 ISO 1.00© 1991 IEEE 
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Fig. 1. Schematic of experimental DFWM apparatus. D, is the input 
pulse energy monitor, while D2 monitors the phase-conjugate signal pulse 
energy. 

II. EXPERIMENTAL TECHNIQUE 

In our experiments the "backward" DFWM geometry 
is used. A schematic of the experimental geometry using 
single 43 ps (FWHM) 1.064 /xm pulses, or 30 ps (FWHM) 
0.532 /zm pulses is shown in Fig.  1. The picosecond, 
Gaussian spatial profile pulses are derived from a Q- 
switched mode-locked Nd: YAG laser system operating 
at 1.064 /xm. An electrooptic switch between the oscilla- 
tor and amplifier ensures single pulse performance. A sec- 
ond-harmonic  crystal  (KDP)  produces  the  0.532  /xm 
pulses.  This single pulse is divided into three pulses 
which, after passing through variable time delays, are in- 
cident on the semiconductor samples. The three pulses 
can be independently adjusted in amplitude and polariza- 
tion using half-wave plate and polarizer combinations. 
Two  strong beams,  forward  (Ef)  and  backward  (Eb) 
pumps, of approximately equal irradiance are incident on 
the semiconductor from counterpropagating directions. A 
weaker beam, the probe (Ep), is incident on the sample at 
an angle 0 with respect to Ef. The grating spacing deter- 
mined from the angle 0 can be varied from 1.2 to 8 /xm 
for the experiments at 0.532 /xm. At 1.064 /im the grating 
spacing is fixed at 8 /xm. The conjugate wave Ec, which 
retraces the path of Ep, is detected by a large area inte- 
grating photodiode as are various reference beams. These 
detectors are calibrated against pyroelectric energy mon- 
itors. All pulsewidths quoted are measured by autocorre- 
lation using a second-harmonic generator, while all quoted 
spot sizes were measured in both horizontal and vertical 
directions at the sample position by the method of scan- 
ning pinholes. 

The samples used in this series of experiments consist 
of zincblende, chemical-vapor-deposition-grown poly- 
crystalline samples of ZnSe and CdTe [5]. The ZnSe sam- 
ple was 3 mm thick and the CdTe was 2 mm thick. 

III. RESULTS AND DISCUSSION 

A. Identification of the Nonlinear Processes 
Using pulses at 0.532 /xm, the DFWM signal in ZnSe 

was monitored as a function of input energy and pulse 
delay for different combinations of the polarization of the 
three input beams. Fig. 2 shows a plot of the signal versus 
the delay rb of Eb, with Eb polarized perpendicular to both 
Ef and Ep. The angle 0 between the forward pump and 

probe, measured outside the sample, was 13° and the peak 
input irradiance of each pump was //, = 34 MW/cm2 and 
/, = 22 MW/cm2. Clearly, two very distinct nonlineari- 
ties are evident from Fig. 2. Near zero delay, a large rap- 
idly decaying signal is seen, while at longer delays, we 
observe a more slowly decaying signal. To better under- 
stand the two nonlinear regimes, irradiance dependence 
experiments were performed at different delays. Fig. 3 
shows a log-log plot of the DFWM signal versus the total 
input irradiance, (all three input beams were varied simul- 
taneously) at two different delay times. Fig. 3(a) shows 
the irradiance dependence at zero delay. The least-squares 
fit gives a power dependence of /32±0'2, indicative of a 
third order nonlinearity dominant at the zero delay peak. 
Fig. 3(b) shows the dependence at a delay of 240 ps, with 
a best fit giving a power dependence of /50±0-2. The fifth 
order dependence of the DFWM signal on the input beams 
can be explained by 2PA induced carrier refraction. This 
mechanism can be viewed as a two step process. First, a 
modulated carrier density is generated via 2PA; this is an 
Im {x(3)} effect. Second, a third beam diffracts off the 
carrier modulation; this is a Re {x("} effect. Hence, the 
mechanism is a sequential x<3):x(" process that appears 
as an overall fifth order nonlinearity [6]. Studies in CdTe 
at 1.06 /xm, where this material exhibits 2PA, reveal the 
same basic behavior, i.e., a fast third order signal fol- 
lowed by a slowly decaying fifth order signal. 

B. East Third Order Nonlinearity 
The third order effect observed near zero delay, as can 

be seen from Fig. 2, decays within the 30 ps pulsewidth, 
and appears unchanged when the pump-probe angle is 
varied. As DFWM is sensitive only to the absolute value 
of x(3\ this third order signal may arise from both the real 
and imaginary parts of the susceptibility, x/31 and x/'> 
where x(3) = X«' + 'X/3)- We define X<3) in terms of the 
nonlinear polarization in c.g.s.-Gaussian units by. P = 
X0)E + x0)\E\2E/2. For all beams linearly polarized 
parallel to each other, x(3) = 6x(mi[l 1], as we are dealing 
with polycrystalline (grain size = 1 /xm) and hence effec- 
tively isotropic media. The source of x/3) in the range 
Eg/2 < Aw < Eg, is 2PA (coefficient ß2). The real part 
of x<3) corresponds to nonlinear refraction. Usually, this 
nonlinear refraction is expressed in terms of n2, where 
n2 = «o + n2\E\2/2. n2 and ß2 are related to X

(3) by 

n-, — Xä 
(3) 

and 

ßi = 
47TC0 

9 X 10s eortöc- x?] 

(1) 

(2) 

where e0 is the permittivity of free space, n0 is the linear 
refractive index, and c is the speed of light in vacuum. 
Here n2 and x<3) are expressed in esu, and all other param- 
eters are in MKS units. We can estimate the magnitude 
of «2 from measurements of the DFWM reflectivity ec/ep. 
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where er and ep are the energies of the conjugate and probe 
pulses, respectively. In the degenerate case for small re- 
flectivity and in the "undepleted" pumps approximation 
the third order susceptibility is given by [7] 

4 4 2     7 
(3)|2   _     n C £0    i£ 

tfirljh lp 
(3) 

where / is the peak irradiance for each beam, n is the 
linear refractive index, and L is the sample thickness. In 
(3), the ratio of irradiances is given by 

£r tB 

IJh = -* 
*p U w, 

(4) 

For ZnSe n = 2.7 [9], L = 0.3 cm, and the measured 
probe and calculated conjugate spot radii are wp = 1.41 
mm (HWl/e2M) and wc = 0.99 mm, respectively. tp/tc 

is the ratio of the probe to conjugate beam pulsewidth 
which for a third order effect should equal V3, giving Ic/Ip 

= 0.069. At zero delay and 0.532 ptm the DFWM energy 
reflectivity of ZnSe was measured to be 1.6% for If = 46 
MW/cm2, Ib = 65 MW/cm2, and Ip = If/10. The 2PA 
coefficient for ZnSe at this wavelength is ß2 — 5.5 
cm/GW, [10] hence at these irradiance levels losses due 
to 2PA are less than 6%, so that the undepleted pumps 
approximation is valid. This gives for ZnSe: 

|x
(3)| = 2.6 X 10-19 m2/K2 = 1.9 X 10-12 esu 

where the estimated total absolute error in our measure- 
ment is estimated to be +30%. Substituting ß2 in (2) gives 
xp> = 6.4 X 10"l2 esu. As this is much smaller than our 
measured value, this indicates that there must also be a 
significant real component to x    • Using 

,(3) I 

we obtain |xs'| = 1.8 x 10"" esu. Thus, the effect of 
the 2PA contribution to the DFWM signal is negligibly 
small, given our estimated errors of ±30%. Expressing 
the measured \x(p\ in terms of n2 as \n2\ = 4.2 X 10" 
esu, we find this is in close agreement with the results of 
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references [1], [8] who measured n2 =  —4.4 x  10~" 
esu. using the Z-scan technique. 

In order to further investigate the nature of this fast third 
order susceptibility, we also performed DFWM experi- 
ments in polycrystalline CdTe at 1.064 /xm. CdTe ex- 
hibits 2PA at this wavelength. By measuring the conju- 
gate signal in CdTe versus the delay of the backward 
pump, using the same configuration as for ZnSe except 
using 1.064 /xm, we see results similar to those shown in 
Figs. 2 and 3 for ZnSe. At zero delay we find that the 
signal varies as / 3.1 ±0.3 while at long delays the signal 
varies as /4-5±0-4. For CdTe ß = 22 cm/GW [10] and 
thus beam depletion due to 2PA is no longer negligible 
for irradiance levels above =50 MW/cm2. The some- 
what reduced slope observed at long delays can be ac- 
counted for by beam depletion at higher irradiances. At 
an irradiance of =35 MW/cm2 per pump, the DFWM 
reflectivity for CdTe is 14.8% at zero delay. This yields 
a third order susceptibility of |x<3)| = 1.1 x 10"" esu. 
The 2PA coefficient in CdTe at 1.06 /xm has been mea- 
sured as j82 = 22 cm/GW. [10] Hence, X/3) = 5.6 X 
10"" esu, giving \XR

}
\ = 9.5 X 10_" esu, and \n2\ = 

2.1 X 10-10 esu. Once again, this is in remarkably close 
agreement with Z-scan results, which gave -2 X 10"10 

esu [8]. 
DFWM experiments were also performed in ZnSe at 

1.064 /xm where it exhibits three-photon absorption. At 
irradiance levels below 1 GW/cm2 per pump only a zero 
delay peak was observed that varied as / 2.8±0.3 , indicating 
the dominance, once again, of a third order nonlinearity. 
The DFWM signal as a function of delay of the backward 
pump is shown in Fig. 4, while in Fig. 5 we show a log- 
log plot of the irradiance dependence of the signal at zero 
delay. As the phase-conjugate reflectance measured at this 
wavelength was very much smaller than 4 %, the compar- 
ative method used previously for determining x(3) could 
not be used in this case. Therefore, x(3) was determined 
by comparison with the known CS2 value of n2 = 1.3 X 
10-11 esu, and hence |x$| = 5.6 X 10"I2 esu. [12] In 
order to make such a comparative measurement, we must 
account for differences in refractive index, surface reflec- 
tance and lengths of the two samples by using the follow- 
ing relationship [13] 

[xgkZnSe)p 
|X$(CS2)|

2 
^ZiiSe 

"CS2J 
X signal ratio 

L2
CSl  (1 R)c CS2 

'ZnSe (1 ^)znSe 
(5) 

where R is the surface reflectance and the signal ratio is 
the ratio of observed conjugate signal energies for ZnSe 
and CS2, respectively. Comparison of the signals from the 
two materials under identical experimental conditions 
gives a value of |x(3)| = 1-2 ± 0.35 X 10~" esu for 
ZnSe at 1.064 /xm. As there is no 2PA in this wavelength 
region for ZnSe, the imaginary part of x(3) is zero. Thus, 
we can rewrite our result as \n2\ = 2.7 + 0.9 x 10-11 
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Fig. 4. DFWM signal in ZnSe at 1.064 ^m versus backward pump delay 
with all beams parallel and both pump irradiances = 600 MW/cm2. 
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Fig. 5. Logarithmic plot of the DFWM signal in ZnSe at 1.064 ^m versus 
the total incident irradiance, at zero delay. The solid line is a best fit to the 
data, giving an ]2i±ai dependence. 

esu. This also agrees within errors with Z-scan results, 
which gave n2 = +1.7 x 10~" esu [8]. 

C. Studies of the Carrier Nonlinearities in ZnSe and 
CdTe 

Neglecting diffusion and recombination within the 
picosecond pulses, [14] the growth of the carrier density 
N generated in a 2PA semiconductor is governed by 

(6) 
dN 

dt 2/Jco 

where ß2 is the 2PA coefficient. Here we have ignored the 
z dependence of N which is valid for our experiments in 
ZnSe at 0.532 /xm where the irradiance is low and, there- 
fore, the 2PA is small (<6% loss). In the DFWM ge- 
ometry I2 = (Ef + Eb + Epf. We concentrate only on 
those terms which contain EfE* (for the large period grat- 

is* since En\ « \E, -/I ing) and neglect terms in \Ep 

Then the component of I2 effective in producing a grating 
leading to the DFWM signal is /2

ff = (n0ce0/2)2 (\Ef\
2 + 



2\Eb\
2)[2EfE* + c.c.]. Note that while j\„ is real, it has 

been broken down into the sum of two complex conjugate 
terms. The first gives rise to the conjugate signal, the sec- 
ond to a term which radiates with a wave vector of kp - 
2kf, and hence is not phasematched. As both terms are 
required to form the sinusoidal grating, we must retain 
both of them to calculate the solution of the diffusion 
equation; however, the effective contribution to the signal 
is /eff/2. Thus, the effective carrier density is given by 

NefKO  = \ \2hu) J- 
I;([dt'. 

The resulting nonlinear polarization source term PNL is 
proportional to E*A/eff- In the case where Eb is not tem" 

+ porally overlapped with Ep or Ef, /2
ff becomes 2{EfE 

c.c.)\Ef\
2 (effects of grating decay will be treated in the 

next section). Assuming phase distortions on Ep to be 
small, E* = Ep0 exp { + ikp(z cos 9 + x sin 0)} and Ef = 
Ef0 exp {-ikfz}, so that Neff can be written as 

AWO 
_ ( ß2\ (nc*o\ 

2hu 2 I 

2cos[Ksx]  \      \Ef(t')\
3\Ep(t')\dt'-   (7) 

J —00 

where Kg = kf - kp is the grating wave vector. In the 
limit of small 6, Kg = 2TT0/\, where X is the free-space 
wavelength. Since Ec « PNL, the total irradiance depen- 
dence of the DFWM signal is 

Ic oc IbIpIj. (8) 

In order to verify this, we measured the DFWM signal 
in CdTe at 1.064 pirn as a function of lf, only with the 
backward pump delayed by 240 ps. The signal was plot- 
ted logarithmically against 77and the slope of the resulting 
straight line was found to be 2.8 + 0.3 in accordance with 
(8). 

A similar expression can be obtained when the carriers 
are generated via a three-photon absorption process. Fol- 
lowing an analogous procedure, the end result is a seventh 
order dependence of the DFWM signal on the input beams 
as three-photon absorption is an Im x(5) process. In our 
experiments in ZnSe at 1.064 ^m, we find that at higher 
input irradiances, on the order of 1.2 GW/cm2 per strong 
pump, a free-carrier tail became evident. Fig. 6 shows a 
log-log plot of the irradiance dependence for rb = 240 
ps. A best fit gives a dependence of /6-9±0-2, agreeing 
closely with the power of 7 expected for 3PA induced 
carrier refraction. Under our experimental conditions with 
the backward pump delayed, the DFWM signal depen- 
dence is 

h « Wz- (9) 

Fig. 7 shows a similar plot to Fig. 6, except that in this 
case only If is varied resulting in a power dependence of 
I5 ' ±0'3, close to the power of 5 predicted in (9). 

Pump  Irradiance  (GW/cm ) 

Fig. 6. Logarithmic plot of the DFWM signal resulting from the three- 
photon absorption generated carrier grating in ZnSe at 1.064 ^m versus the 
total input irradiance. The measurement was performed with the backward 
pump delayed by 240 ps. The solid line is a best fit to the data, indicating 
an /6-9±02 dependence. 

in 
2 

~5 10 

IRRADIANCE (Arb.   Units) 

Fig. 7. As Fig. 6, but with only the forward pump varied and the backward 
pump and probe held at constant irradiance. The forward pump energy was 
not calibrated for this experiment. The solid line is the best fit. giving an 
/5-1*0-3 dependence for the DFWM signal in this case. 

D.  Temporal Evolution of Diffraction Efficiency in ZnSe 

In order to determine the refractive index change per 
excited carrier pair per unit volume, a„ (units of cm ), we 
need to measure the diffraction efficiency of the carrier 
grating in the absence of the third order signal. This ne- 
cessitates measurement of the DFWM signal at a delay 
long compared to the pulsewidth. a„ is thus obtained by 
fitting the theoretical diffraction efficiency to the mea- 
sured value. However, to calculate this diffraction effi- 
ciency we require a knowledge of the temporal depen- 
dence of the density of 2PA-generated carriers N(x, t). 
This is governed by [15] 

dNc„(x, t)   | Neff(x, t) 
dt T 

D 
d2Nef[(x, t)     ßlln(x, t) 

dx2 2h ico 

(10) 
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where r is the carrier decay time and D is the carrier dif- 
fusion coefficient. We use a constant carrier lifetime as 
the carrier densities in our experiments are several orders 
of magnitude too low to have significant bimolecular or 
Auger recombination. This is verified by the 75 power de- 
pendence in our experiments. Since the beam radius is 
much larger than the grating period we assume the diffu- 
sion occurs only in the direction x between grating max- 
ima and minima. Further, we have assumed low excita- 
tion such that the spatial amplitude of I2 does not vary in 
the propagation direction z, i.e., ßlL « 1 which was 
true for the irradiance levels used. The solution to the dif- 
fusion equation is then 

NeU(x, t) = ^f- exp (-t/Tg) 

2279 

2/io 

exp (f/Tg)I
2

e[((x, y, O dt'    (11) 

where Tg is the total decay time of the grating, given by 
Tg = 7

DTR/{TD + 7
R)- Here TD is the grating diffusion 

lifetime and TR is the carrier recombination lifetime [14]. 
We have again assumed that Eb is time delayed. Note that 
the product EfE* in /2

ff has a term 2|£y||£'/,| exp (iKgx), 
where Kg = 2-K/'A, and A = \/[2n sin (6/2)] is the grat- 
ing spacing. Hence \/rg = (4ir2D)/A2 + \/T [16]. For 
the sample thickness and grating spacings used, we were 
always in the thick grating limit. The diffraction effi- 
ciency for weak excitation of a thick lossless phase grat- 
ing was derived by Kogelnik [4], [17] to be 

, 2 

(12) rj = sin" 
AnirL \ 

X cos 6/ 

AnirL 

X cos 9 

where An = o„Ntff. The energy diffracted into the con- 
jugate beam ec is then given by temporally and spatially 
integrating the product of the diffraction efficiency 77 and 
the beam irradiance incident on the grating giving 

ec(rb) = r,(x', y', t')Ib(x',y', f - rb) dx' dy' dt' 
J —00 

(13) 

where Ib(x, y, t) = IM exp [-(x2 + y2)/w2 - (r2/^)2]. 
Here rb accounts for the time delay of the backward pump 
with respect to the interfering beams. Note for 77 = 1,(13) 
gives the energy in the backward pump eb. Defining rjt as 
the energy diffraction efficiency, we find 

i?« = ec/cft = £0 + a 
, 2y/2ßla2ji^tpL

2 

exp (r;/4T2) 
80 (M2X2 cos2 6 

Joo 

exp(-(r' - rb)2/t2
p) exp {-2f/rg) 

— 00 

• {1 + erf [y/2/rp(? - r2/4r,)]}2 dt' (14) 

where £ is the ratio of Ip to If. Note that this derivation is 
valid only when the beam widths are large compared to 
the grating period, when the length of interaction of the 
interfering beams is much larger than the sample thick- 

12 3 4 
Carrier Density (x10ls cm"3) 

Fig. 8. Plot of measured diffusion coefficient versus peak carrier density. 

ness, and when absorption of the interacting beams is 
small. Given ß2 = 5.5 cm/GW [10] at 532 nm for ZnSe, 
a numerical fit of (14) yields o„ and rg. 

The experimentally measured value for the diffraction 
efficiency for ZnSe at 0.532 /im at r = 240 ps is 77 = 6.8 
X 10-5 for a pump-probe angle 6 of 13°. The grating 
decay rate rg was determined from the best fit exponential 
decay to the data at long delays for several input irradi- 
ances. Using tp = 18 ps (HWl/eM in irradiance), and rg 

= 247 ps, and numerically integrating (14), we obtain 
|ff„| =5.1 + 2.5 X 10-21 cm3. This is considerably larger 
than the result of another recent measurement of a„ that 
obtained an = -0.8 + 0.2 X 10"21 [18] and probably 
indicates the difficulty of obtaining accurate absolute val- 
ues of nonlinearities from multiple beam diffraction effi- 
ciency measurements. Note that the measurement in [18] 
showed the sign of a„ to be negative [3]. The uncertainties 
stated are relative fitting errors. The absolute error bars 
on an are estimated to be =50%. 

We were also able to extract the density dependence of 
the carrier diffusion coefficient by measuring the angular 
dependence of the grating decay time for a number of dif- 
ferent pump irradiances and therefore different carrier 
densities [19]. This dependence is plotted in Fig. 8. We 
find that for irradiances above 40 MW/cra2, correspond- 
ing to carrier densities >5 X 1014 cm-3, D maintains a 
constant value of 4.5 + 0.5 cm2/s, while below 5 X 1014 

cm-3, the diffusion coefficient decreases rapidly. For these 
densities we do not expect to have any density depen- 
dence of either the mobility or the recombination lifetime. 
We therefore propose that the small diffusion coefficient 
at low density may be due to trapping of the 2PA excited 
carriers. As the carrier density is increased, these traps 
become filled and the diffusion is dominated by the am- 
bipolar mobility. This high density result is comparable 
to the result of 2.5 + 0.5 cm2/s obtained by Jarasiunas 
and Gerritsen, but their carrier density is not given [3]. 
Using data from Hall mobility measurements in ZnSe, 
[20] we calculate an ambipolar mobility of 26 cm2 V_i 

s-', corresponding to a diffusion coefficient of 0.7 cm2/s 
at 300°K. This is in good agreement with our low density 
measurements, since the Hall mobility measurements are 
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performed with low dopant densities. It should be noted 
that over the entire range of carrier densities measured, 
the carrier nonlinearity is fifth order. This rules out the 
possibility that the traps are filled by linear absorption. 
These measurements also gave an estimate for the recom- 
bination lifetime of TR = 725 ± 275 ps. 

IV. CONCLUSION 

We have presented a series of picosecond transient 
DFWM measurements performed in two direct-gap II-VI 
semiconductors. For ZnSe, large third order nonlinear 
mechanisms were observed both at 0.532 and 1.064 iim. 
The origin of these fast third order nonlinearities is be- 
lieved to be due to both two-photon absorption and the 
bound electronic Kerr effect [8]. The magnitude of the 
nonlinear susceptibilities found were |x(3)| — 1.9 ± 0.57 
x 10"" esu and 1.2 + 0.35 x 10"" esu at 0.532 /xm 
and 1.064 /xm, respectively. Similarly, for CdTe a third 
order effect yielded a |x(3,| = 7.2 ± 2.1 x 10"10 esu at 
1.064 /xm. Combined with independent measurements 
[10] of the two-photon absorption coefficients in these 
materials, this indicates that the measured susceptibility 
in ZnSe at 532 nm and CdTe at 1.06 fim is dominated by 
nonlinear refraction. As there is no 2PA in ZnSe at 1.06 
tim, we conclude that this susceptibility is entirely refrac- 
tive. Other data [8] indicates that in ZnSe n2 is negative 
at 0.532 /im and positive at 1.064 iim, while in CdTe at 
1.064 /j.m, n2 is negative. Higher order nonlinearities 
(higher than third order) were also observed in both semi- 
conductors. These nonlinearities are attributed to nonlin- 
ear absorption induced carrier refraction. 

When carriers are excited via the absorption of two 
photons, we have seen a fifth order dependence of the 
conjugate field on the input fields as expected. In the same 
manner, for carrier excitation achieved via the absorption 
of three photons, an effective seventh order nonlinearity 
was found. 

For ZnSe at 0.532 /xm and for low excitation, a value 
for the index of refraction per carrier pair generated of a„ 
— 5.1 + 2.5 x 10-21 cm3 was estimated. By monitoring 
the grating decay times for different grating spacings, the 
density dependence of the diffusion coefficient was ex- 
tracted. 
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ABSTRACT 

In order to better understand the physical mechanisms responsible for the 

large observed optical nonlinearities of nematic liquid crystals, we have carried 

out nonlinear absorption and nonlinear refraction measurements on the pure 

liquid crystals 5CB and 8CB, and the liquid crystal mixture E7 using picosecond, 

nanosecond and millisecond pulses. We have used the recently developed Z-scan 

method1"2, a sensitive single-beam technique which allows the determination of 

the sign and magnitude of the nonlinear refraction and the magnitude of the 

nonlinear absorption for aligned samples3. We have performed these 

measurements on aligned samples at wavelengths of 514nm and 532nm. In 

addition, we have studied the temperature dependence of the nonlinear refractive 

indices. Possible mechanisms responsible for the observed nonlinearities are 

discussed. 
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1.  INTRODUCTION 

The nonlinear optical response of liquid crystals has become the subject of 

increased study in recent years4"7. A large variety of mechanisms ranging from 

collective reorientation to electronic hj'perpolarizability can contribute to the 

optical nonlinearities in these materials. We have carried out measurements of 

third order responses of the liquid crystals 5CB (4-cyano-4'-n-pentybiphenyl), 

SCB (4-cyano-4'-n-octylbiphenyl) and E7 (a commercial mixture of biphenyls 

and terphenyls). In order to better understand the mechanisms contributing to 

the observed nonlinearities, we used geometries where director reorientation is 

not expected to occur, and we measured the nonlinearities on timescales ranging 

from milliseconds to picoseconds. 

Several techniques have been developed in the past to measure the 

nonlinear refractive index n2, or, equivalently, the real part of the third order 

susceptibility x • These include nonlinear interferometry8, wave mixing9,10, 

and beam-distortion measurements . Interferometry and wave mixing are 

potentially sensitive techniques, but require relatively complex experimental 

arrangements. Beam-distortion measurements, on the other hand, require 

precise beam scans followed by complex wave-propagation analyses.     We find 
.12. 

that the single-beam Z-scan technique ' is attractive because of its simplicity 

and sensitivity in measuring both the nonlinear refraction and nonlinear 

absorption. This technique is based on the transformation of phase distortion 

induced by the nonlinear medium to amplitude distortion during beam 

propagation. 

In this paper, we report our measurements using the Z-scan technique of 

the intensity dependent third order nonlinearities of the pure liquid crystals 5CB 

and SCB and the mixture E7 using nanosecond and picosecond pulses from 

frequency doubled Nd:YAG lasers and millisecond pulses from a CW Ar+ laser. 

Both the nonlinear refractive indices and nonlinear absorption coefficients for 

light polarized parallel (denoted by the subscript ||) and 

perpendicular (denoted by l) to the director have been measured. 



MEASUREMENTS OF THIRD ORDER OPTICAL NONLINEARITIES 

2.  Z-SCAN TECHNIQUE 

The schematic of the setup for the Z-scan experiment is shown in Fig. 1. 

A Gaussian laser beam is focused at z=0 plane, and the transmittance of a 

nonlinear medium through a finite aperture at z=+d0 (where d0 is the distance 

from focus to aperture) is measured in the far field as a function of the sample 

position z. 

Fig. 1. Schematic of experimental setup for Z-scan measurements. 

The abbreviations are: WG, wedged glass; WP, wave plate; P, 

polarizer; BS, beam splitter; L, lens; TS, translation stage; S, 

liquid crystal sample; TCH, temperature controlled housing; A, 

aperture;   Dl and D2,   photodiode detectors. 

The following example illustrates the Z-scan method. A thin sample, 

with thickness smaller than the diffraction length of the focused beam, with a 

positive nonlinear refractive index n2 can be regarded as a thin converging lens, 
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whose focal length varies with intensity; that is, with sample position along the 

z-axis. Starting the scan far from the focal point at large negative values of z, 

the beam intensity is low and nonlinear effects are negligible. Initially, therefore, 

the transmittance remains essentially constant. As the sample is moved closer to 

the focus, the beam intensity increases significantly, leading to a self-focusing in 

the sample. This self-focusing with the sample positioned at small negative 

values of z will cause the beam to broaden at the aperture, decreasing the 

measured transmittance. As the sample is moved through the focus to a post- 

focal position, the same self-focusing causes the beam to narrow at the aperture, 

increasing the transmittance. Consequently a pre-focal minimum (valley) 

followed by a post-focal maximum (peak) in the transmittance versus sample 

position curve corresponds to a positive n2; and conversely a peak followed by a 

valley is a signature of a negative n2. The magnitude of n2 can be evaluated 

using the analysis presented in Refs. 1 and 2. 

In addition, the nonlinear absorption can be determined by performing a 

Z-scan with the aperture removed (open aperture Z-scan). The transmittance in 

this case is independent of the effects of nonlinear refraction, so that the change 

in transmittance  gives a measure of the nonlinear absorption. 

While a complete analysis is given in Refs. 1 and 2, an estimate of both 

the nonlinear absorption coefficient ß and the nonlinear refractive index n2 can 

be made as follows. For an open aperture Z-scan, the total change in 

transmittance ATabs in moving the sample from a position far from focus (z > 

diffraction length) to focus (z=0) is 

ATabs ~ -J^ Io(l-R) Leff (1) 

where Leff= (1—e" )/a and a is the linear absorption coefficient, L is the 

sample thickness, I0 is the on axis intensity at focus, and R is the surface 

reflectivity. 

For a purely refractive nonlinearity, as shown in Ref. 2, the change in 

transmittance from peak to valley ATP.V is linear in the (time averaged) phase 

distortion on axis at focus.   For a finite aperture, this is given by 
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ATp-v a 0.406(1- A)025< A$o> (2) 

where A is the linear transmittance of the aperture, and the phase distortion 

<$o> is 

<$0> = 2* < AnQ> Leff. (3) 

The on axis index'change at focus is related to the nonlinear refractive index n2 

and 7 by 

<AnQ>= < ^ |Eo|2>= < 7 Io> (4) 

where E0 is the peak electric field on axis at focus. 

In the case where nonlinear absorption is taking place simultaneously with 

nonlinear refraction, the nonlinear absorption coefficient ß can be determined 

from an open aperture Z-scan. With ß known, a finite aperture (A<1) Z-scan 

can be performed to determine the nonlinear refractive index 7 or n2. Detailed 

calculations show1 that for a material with /3/2k|7| < 1, there exists a simple 

procedure to calculate 7 with less than 10% error. The process is simply to 

divide the normalized finite aperture (A<1) transmittance by the normalized 

open aperture one (A=l); the new transmittance curve thus obtained can then 

be used to calculate n2 as if ß=0. 

3.  EXPERIMENTAL RESULTS 

The pure liquid crystals 5CB and 8CB, and the mixture E7 obtained from 

EMI Chemicals were used without further purification. The nematic-isotropic 

transition  temperatures  of 5CB,  SCB  and  E7  are  35.3'C,  40.5'C  and  60°C, 
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respectively, and SCB also exhibits a nematic - smectic A transition at 33.5"C. 

The liquid crystal samples were sandwiched between two 25mm x 38mm x 

0.9mm glass plates. The plates were either coated with PVF (polyvinyl formal) 

and then buffed to achieve homogeneous (planar) alignment (HGA), or coated 

with silane for homeotropic alignment (HTA). The glass plates were separated 

by 25/zm and 120/im mylar spacers. The experimental setup is shown in Fig. 1. 

We used frequency doubled Nd:YAG lasers, one with TFWHM = 33ps and the 

other with TFWHM = 7ns Gaussian pulses, and a CW Ar+ laser with a shutter 

providing 10ms square pulses for our measurements. A wave plate and polarizer 

combination was used to control the pulse energy, which was selected to optimize 

the Z-scan measurements. In the millisecond and nanosecond measurements, the 

temporal pulse profile was monitored using a fast photodiode Dl, and the 

transmittance after the aperture was measured by detector D2. A converging 

lens (f= 125mm) was used to focus the Gaussian beam to a beam waist 

(HWe~2M) of w0 = 14.5/jm in the millisecond case, w0=7.5/im in the nanosecond 

case, and of w0 = 18.9/im in the picosecond case. The liquid crystal samples were 

mounted in an Instec temperature controlled housing (TCH) whose temperature 

was computer controlled. A Daedal translation stage (TS) was used to position 

the sample with ±lpm resolution. 

Fig. 2 shows the Z-scans (normalized transmittance as function of sample 

position z) of an 120/im thick homogeneously aligned 5CB sample for the E±n 

geometry. TFWHM = 33ps pulses from a frequency doubled Nd:YAG laser with 

peak on-axis laser intensity I0 = 23.3 GW/cm2 were used in this measurement. 

The symbols D show the normalized transmittance with a 40% aperture before 

detector D2. The valley-peak configuration indicates self-focusing, while the 

strongly suppressed peak indicates strong nonlinear absorption occuring 

simultaneously with the nonlinear refraction. Measured transmittances from an 

open aperture Z-scan are shown with the symbol x in Fig. 2. From this data we 

obtain the nonlinear absorption coefficient /3j_(HGA) = 0.78 cm/GW. After 

removing the contribution of nonlinear absorption by dividing the finite (40% in 

this case) aperture transmittance by the open aperture transmittance, the 

antisymmetric shape of the curve is recovered. The results of the divison are 

shown in Fig.3 with the symbol +. The nonlinear refractive index obtained by 

analysing the results of these measurements  is n,j_(HGA) = + 6.9xl0"12 esu. 
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1.04 

-24 

Z   (mm) 

Fig. 2. Transmittan.ee of a planar aligned 120/rni thick 5CB sample in 

nJ_E geometry using 33 ps laser pulses from a frequency doubled 

Nd:YAG laser. D represents trasmittance with 40% aperture; x 

represents transmittance with open aperture. The peak on-axis 

laser intensity was I0 = 23.3 GW/cm2. 

1.08 

Fig. 3.   Transmittance     obtained     by     dividing     the     small     aperture 

transmittance data by the open aperture transmittance of Fig.2. 
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Fig. 4. Transmittance of a planar aligned 120/rni thick 5CB sample in n||E 

geometry using 33 ps laser pulses from a freequency doubled 

Nd:YAG laser. D represents transmittance with 40% aperture; x 

represents transmittance with open aperture. The peak on-axis 

laser intensity was I0 = S.33 GW/cm2. 

1.08 

Fig. 5.   Transmittance     obtained     by     dividing     the     small     aperture 

transmittance data by the open aperture transmittance of Fig.4. 
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Fig.4 shows measurements for the same planar sample but with the E||n 

geometry. The pulse duration TFWHM = 33ps is the same, but here the peak 

on-axis laser intensity is I0 = 8.33 GW/cm3. The symbols used are the same as 

in Fig. 2, with D for the 40% aperture measurements and x for the open aperture 

measurements. From the open aperture measurements we 

obtain /?,,(HGA) = 2.27 cm/GW. The data, after removing the nonlinear 

absorption effects, is shown in Fig.5 and the nonlinear refractive index in this 

geometry is n,|.(HGA) = 1.04xl0"n esu. 

Fig. 6 shows the results of measurements on a 120/mi thick 

homeotropically aligned 5CB sample with TFWHM = 33ps pulses from the 

frequency doubled Nd:YAG laser with peak on-axis laser intensity I0 = 23.3 

GW/cm2. In this case , the electric field E of the laser beam is perpendicular to 

the nematic director n. The open aperture measurements are shown with the 

symbol x, and the 40% aperture measurements are shown in with the symbol D. 

The nonlinear absorption coefficient is /?j_(HTA) = 0.81 cm/GW. 

1.04 

Z   (mm) 

Fig. 6. Transmittance of a homoeotropically aligned 120/mi thich 5CB 

sample ( n±E ) using 33 ps laser pulses from a frequency doubled 

Nd:YAG laser. D represents transmittance with 40% aperture; 

and x represents transmittance with open aperture. The peak on- 

axis laser intensity  was I0 = 23.3 GW/cm2. 
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The results after division are shown in Fig.7,   and the nonlinear refractive 

index  is n,±(HTA) = 5.7xl0"12 esu. 

1.06 

Fig. 7.   Transmittance    obtained    by     dividing    the    small     aperture 

transmittance data by the open aperture transmittance of Fig.6. 

We have also carried out measurements on the 25/im thick planar aligned 

5CB sample in both n±E and n||E geometries with TFWHM = 6.5ns Gaussian 

pulses from a frequency-doubled Nd:YAG laser and 10 ms square pulses from a 

CW Ar+ laser. Fig.8 shows the nanosecond results measured at T=25.0 *C in 

the fi||E geometry for a 1% aperture after division by nonlinear absorption (open 

aperture) data. The peak-valley configuration of the data shows a strong self- 

defocusing process and the nonlinear coefficients are /?j,(HGA) = 265 cm/GW 

and n2|j(HGA) = — 1.75xl0~9 esu. The measurements for the same sample for 

n±E geometry give /?±(HGA) = 36 cm/GW and n,±(HGA) = +0.25xl0"9 esu. 

In the 10 ms measurements, the nonlinear refractive indices obtained at 

T=24 -C are n2||(HGA) = -1.30xl0~3 esu and n2±(HGA) = +0.26xl0"3 esu. 

Fig. 9 shows the temperature dependence of the measured nonlinear refractive 

indices for both parallel and perpendicular geometries. These results are 

qualitatively consistent with laser heating of the sample and the consequent 

reduction of orientational order. 
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Fig. 8. Transmittance obtained by dividing the small aperture 

transmittance data by those obtained with open aperture. 7 ns 

pulses were used from a frequency doubled Nd:YAG laser. Open 

circles are results of division, and the solid line is the theoretical 

fit. 
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Fig. 9.   The temperature dependence of n,,,     and n,j_ for the nematic 

liquid crystal  5CB   using   10ms Ar+   laser  pulses   at   A=514 nm. 

The nonlinear birefringence diverges as (TN,—T)"1. 
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The nonlinear birefringence approximately follows the power law 

( n2_|_— n2|| ) K ( ^NI
-T )_1 f°r temperatures below the nematic to isotropic 

transition temperature TNj. If the linear absorption and laser heating of the 

sample are independent of polarization, then one would expect the relation 

n,|| ~ —2 n2j_ to hold . Deviations from this relation in our results are likely- 

due to dichroism of our sample. In this regime (10ms Ar pulses) we did not 

observe nonlinear absorption within the sensitivity of our experiment. 

The measured nonlinear refractive indices and nonlinear absorption 

coefficients for the liquid crystals 5CB, 8CB and E7 at T=24 *C and A=532 nm 

with TFWHM=6.5 ns pulses from a Q-swithed Nd:YAG laser are summarized in 

Table I. The results are compared with the nonlinear refractive indices of CS2. 

For polarization parallel to the nematic director, the nonlinearities of these liquid 

crystals are two orders of magnitude larger than that of CS2. For polarization 

perpendicular to the nematic director, the nonlinearities are one order of 

magnitude larger than that of CS2. 

Table I.    Nonlinear refractive indices and nonlinear absorption coefficients 

for sample materials* at 24*C.    TFWHM = 6.5ns, A = 532nm. 

material CS2 5CB 8CB E7 

n2|,   (xlCrnesu) +1.2 -175 - 77 -115 

n2jL   (xl0"nesu) +1.2 + 25 + 11 + 10 

/?„   (cm/GW) 265 246 284 

/?JL   (cm/GW) 36 20 40 

homogeneously aligned liquid crystal samples 

The nonlinear refractive indices and absorption coefficients measured for liquid 

crystal 5CB at T=24 *C with different pulse durations are summarized in 

Table II. It is interesting to note that n,M changes sign from negtive to positive 

as the pulse duration is changed from nano- to picoseconds indicating a change 

in the physical response. 
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Table II.   Nonlinear refractive indices and nonlinear absorption coefficients 

for homogeneously aligned  5CB at 24°C. 

TFWHM  (
S
) 

10 xlO"2 6.5 xlO"9 33 xlO"12 

A   (nm) 514 532 532 

n2||   (esu) -1.30xl0"3 -1.75xl0"9 +1.04xl0"u 

n2j_   (esu) +0.26xl0"3 +0.25 xlO"9 +0.69X10"11 

/?„   (cm/GW) 265 2.27 

ß±   (cm/GW) 36 0.78 

4. DISCUSSION AND CONCLUSIONS 

Using 33 ps pulses at A=532 nm, we measured both nonlinear refractive 

indices and absorption coefficients for nematic liquid crystal 5CB in both nJ-E 

and n||E geometries using the Z-scan technique. For both polarizations we 

observed self-focusing. Electronic effects likely dominate in these picosecond 

measurements, although optical field induced changes in the orientational order 

could also contribute. Calculations to estimate the extent of this contribution 

are currently under way. The population of excited states may also contribute to 

the nonlinear response. If fast electronic effects dominate, then it may be possible 

to relate the measured anisotropies of both n, and ß to the results of molecular 

hyperpolarizability calculations. 

In the 10 ms pulse measurements at A=514 nm we have observed strong 

nonlinear refraction and nonlinear birefringence. Self defocusing occurs in the 

E||n geometry where the polarization is parallel to the director, and self focusing 

in the E±n geometry. The nonlinear birefringence is strongly temperature 

dependent  with  An,   =   n^-n^   «   1.4xl0"2     (TNI-T)_1  esu-K.        In  our 



P. PALFFY-MUHORAY et al. 

geometry, director reorientation is not expected to occur because there is no 

torque exerted on the director by the optical field with E||n; and because the 

threshold for optical twist transition11 in the Ein configuration is well above 

the intensities used in this experiment. We expect theorefore that the observed 

nonlinearity is mainly due to laser heating of the sample. Such heating would 

result in changes in the orientational order parameter, the density, and 

consequently the refractive indices. A crude estimate of the magnitude of the 

thermally induced nonlinearity7 is consistent with our measured values. 

However, preliminary measurements of the temporal profile of the outgoing pulse 

suggest that the response time of the process is longer than the estimated 

thermal diffusion time. The reason for this discepancy is not understood at this 

time. 

In the measurements using, 7 ns pulses at A=532 nm, we observed strong 

nonlinear refraction, birefringence and nonlinear absorption. The mechanisms 

which give rise to these large nonlinearities and large anisotropy are not well 

understood. It might be expected that one important contribution is again laser 

heating of the sample. The measured values are six orders of magnitude smaller 

than the millisecond results, which is comparable to the expected contribution 

from thermal effects with millisecond response times. However, preliminary 

pulse profile measurements indicate that this is a fast process, on the nanosecond 

scale. In addition, the large nonlinear absorption observed here, but not in the 

millisecond regime, suggest that excited state absorption rather than laser 

heating may be the responsible mechanism. 

The third order nonlinearities in the liquid crystals studied with 

nanosecond pulses are two orders of magnitude larger than that of CS2. The 

large nonlinear refractive index and nonlinear birefringence of these materials 

may be useful for device applications. 
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We describe the use of a novel method for the characterization of the nonlinear optical properties 
of materials which we refer to as a Z-scan. We utilize this technique along with other methods to 
determine the nonlinearities occurring in semiconductors when irradiated with picosecond pulses 
with-in the spectral region where two-photon absorption (2PA) is large. For example, we determine 
that nonlinear refraction at 532 nm in ZnSe is paused by a negative third order electronic Kerr effect 
in addition to the 2PA induced free-carrier refraction. We used beam distortion, and picosecond 
time-resolved degenerate four-wave mixing in addition to the Z-scan technique. Using these com- 
plementary characterization methods we determine the 2PA coefficient, the sign and magnitude of 
the bound electronic nonlinearity, ri2 and the negative refractive index change per free carrier. 

1. 'Introduction 

In this paper, we present the results of a com- 
prehensive study of the nonlinear processes in- 
volved in semiconductors when exposed to picose- 
cond pulses in a spectral range where two-photon 
absorption (2PA) is allowed, but so close to the 
energy band gap that direct band blocking from 
linear absorption or excitonic nonlinearities are 
present. This is spectral region of linear trans- 
parency where nonlinearities are useful for appli- 
cations including passive optical limiting (OL). 
OL utilizes the combined effects of nonlinear ab- 
sorption and nonlinear refraction in semiconduc- 
tors [1-3]. An ideal passive optical limiter may 
be described as the optical analogue of a Zener 
diode circuit. It has a high linear transmission 
up to a certain input threshold after which the 
output becomes clamped to a constant value. 

The nonlinearities present in this spectral range 
are 2PA, refraction arising from the 2PA gener- 
ated free carriers and nonlinear refraction due to 
the electronic Kerr effect. We conducted picosec- 
ond degenerate four- wave mixing (DFWM) stud- 
ies to examine the temporal response as well as 
the order of the refractive nonlinearities. The Z- 
scan technique [4] was employed to accurately de- 

termine the sign and magnitude of the different 
refractive nonlinearities as well as the 2PA coef- 
ficient of the semiconductors. Finally beam dis- 
tortion was used to verify the dominance of the 
nonlinearities for OL applications. 

We briefly describe the theory for the irradiance 
and phase changes on a beam induced by these 
nonlinearities is section 2, and in section 3 the 
DFWM results are presented. In section 4 the 
Z-scan technique is briefly described and the re- 
sults of the Z-scan measurements are presented. 
In section 5 we show the beam distortion mea- 
surements. Finally, in section 6 the experimental 
results are compared to theoretical models. 

2. Theory 

In all the experiments Gaussian spatial mode 
beams were used incident on samples thinner than 
the diffraction length of the beam. In this geome- 
try the thin sample approximation can be used to 
describe the beam propagation inside the sample. 
This allows separation of the wave equation into 
one equation for the irradiance I and one for the 
phase $. Also with 30 ps (FWHM) pulses and at 
low irradiance levels we can ignore the absorption 

© E.W. Van Stryland*, A.A. Said, M. Sheik-Bahae, D.J. Hagan*. E.J. Canto-Said, Y.Y. Wu and T.H. Wei. 1991 
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due to the 2PA generated carriers but not carrier 
induced refraction [5]. This leaves the nonlinear 
differential equations, 

di = -al-ßl\ 
dz 

and 
<fA£ 
dZ 

= kyl - kaN, 

(1) 

(2) 

where a is the linear absorption coefficient, ß is 
the 2PA coefficient, k = 2TT/A, A is the wave- 
length of incident radiation, j is the refractive 
index change due to the electronic Kerr effect, N 
is the density of free carriers and a is the change in 
the index of refraction per free carrier pair density 
generated [6]. Since the free carriers are created 
by 2PA, the generation rate is given by 

dN _ ßl2 

dt   ~ 2Aw" 
(3) 

When N is substituted in eq. (2), it becomes clear 
that the phase change due to the carriers depends 
on the square of the irradiance. Hence, the free 
carrier refraction appears as an effective fifth or- 
der nonlinearity [7, 8]. 

3.  Degenerate four-wave mixing experi- 
ments 

DFWM with picosecond pulses is a sensitive 
technique that gives information about the tem- 
poral evolution of nonlinear process in semicon- 
ductors and other materials. Two counter-propa- 
gating strong beams, forward pump Ej and back- 
ward pump Ei, are incident on the sample with a 
third weaker probe beam, Ep incident at an an- 
gle 6 with respect to the forward pump. Two of 
these beams interfere inside the sample to form 
a grating from which the third beam diffracts to 
form a conjugate signal Ec that retraces the probe 
path. The pulses used in these experiments are 
30 ps (FWHM) pulses at 532 nm. Various com- 
binations of polarizers and half-wave plates were 
placed in the path of each beam to independently- 
change their polarization and irradiance. Figure 1 
shows a plot of the conjugate signal versus the de- 
lay TZSD of Et which was polarized perpendicular 
to Ej and Ep. Two distinct regions are present, 

a fast decaying signal near zero delay and a slow 
decaying signal at long delays. To better under- 
stand the two nonlinear regimes, irradiance de- 
pendence experiments were performed at differ- 
ent delays. A log-log plot of the DFWM signal 
versus input irradiance (all three inputs varied) 
gives two different slopes as shown in the inset of 
Fig. 1. At zero delay a slope of 2.8 was meaoured 
indicating a third order nonlinearity and at long 
delays a slope of 4.9 was found. The fifth order 
dependence can be explained by the 2PA induced 
carrier refraction as mentioned in. the previous 
section. A modulated carrier density is created 
via 2PA; this is an imaginary x(3) effect. Then 
a third beam diffracts off the carrier modulation; 
this is a real x^ effect. Hence, the mechanism 
is a sequential x^:X(1^ process that appears as 
a fifth order nonlinearity. As to the third order 
effect decays within the 30 ps pulse width which 
is consistent with a bound electronic nonlinear- 
ity. This fast decaying effect can either be of re- 
fractive or absorptive nature as far as DFWM is 
concerned, Assuming that it is a refractive effect a 
value of |n2| = 4.4 • 10-11 esu was extracted where 
n2 is related to 7 by n2 (esu) = n0c/(407r)7(MKS) 
[7, 8]. Note that the sign of n2 is not given by 
DFWM. 

Backward Purr.o Delay (ps) 

Fig. 1. The DFWM signal vs backward pump 
delay for 30 ps pulses at 0.53 ^m in ZnSe. The 
inset shows a log-log plot of the conjugate signal 
as a function of the input irradiance at Ops (a) 
and 200ps (b). 
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4. Z-scan measurements 
SAMPLE        APERTURE 

D1 

Fig. 2. The Z-scan experimental setup in which 
the normalized transmittance is measured as a 
function of the sample position z. 

The Z-scan technique, which was recently devel- 
oped at our laboratories, is a simple single mea- 
surement experiment technique that readily gives 
the sign and magnitude of nonlinear refraction 
as well as nonlinear absorption [9]. It is also 
an excellent guide for geometrical optimization 
of optical limiting [10]. Figure 2 shows the Z- 
scan experimental setup. A focused Gaussian 
beam is incident on the sample and transmit- 
ted beam is collected through a finite aperture 
in the far field into detector D2- Dy monitors the 
input energy. Keeping the input energy fixed, 
the transmittance is measured as a function of 
the sample position relative to the focal plane. 
Since nonlinear refraction causes a lensing effect 
in the incident beam, the sample behaves as a 
negative or positive lens depending on the sign 
of the nonlinearity. As explained in reference [4] 
a valley-peak configuration in the Z-scan signal 
is a signature of a positive refractive nonlinearity 
and peak-valley pattern denotes a negative non- 
linearity. When the aperture is removed, i.e. all 
the transmitted light is collected, the Z-scan is 
only sensitive to nonlinear absorption. For semi- 
conductors with 2PA present, the Z-scan experi- 
ment was simulated by solving eqs. (1-3). Three 
parameters are to be determined /?, n2 and a. 
Using 27 ps pulses (FWHM) at 532 nm Z-scan 
measurements were performed on a 2.7 mm thick 

ZnSe sample at different input energies. With 
the aperture removed a Z-scan was performed at 
70 = O.lGW/cm2 where 70 is the on axis peak 
irradiance at the focus. In this case the mea- 
surement is insensitive to nonlinear refraction and 
thus independently gives the nonlinear absorp- 
tion coefficient. The best fit to the data shown in 
Fig. 3a gave ß = 5.8 cm/GW, in good agreement 
with the value of 5.5cm/GW obtained in refer- 
ence [6]. Our experimental errors were ±30% 
mostly arising from uncertainties in the irradi- 
ance values. Figure 3a shows the data and fit of 
the Z-scan signal at the same irradiance with the 
40 % transmitting aperture in place. At this low 
irradiance we expect the nonlinear refraction to 
lie mostly due to the 3rd order nonlinearity as can 
be deduced from eqs. 2 and 3. Hence, the carrier 
term in eq. 2 was dropped and an n2 = —4 • 10" 
was extracted. 

The negative sign of n2 is evident from the 
peak-valley pattern in the data. Moreover, this 
n2 value is within 10% of the value obtained by 
our DFWM measurement. For a 3rd order non- 
linearity, the change in the index or refraction, 
An, is a linear function of the irradiance, I. Fig- 
ure 4 shows that this is not the case at higher 
irradiance values meaning that the refraction due 
to the 2PA generated carriers becomes more sig- 
nificant at these levels. At I0 = 2.4GW/cm2 

(Fig. 5), and with ß and n2 known, the exper- 
imental data was fit with a = 0.8-10-21 cm3. 
The above measured values for n2l ß and <r were 
used at other irradiance values and gave good fits 
to the experimental data. The Z-scan was also 
used to determine the above parameters for other 
semiconductors at different wavelengths. For ex- 
ample at 1.06pm, we measured-/? = 26cm/GW, 
n2 = -2-10-10esu, <r = 5-10-21cm3 for CdTe 
and ß = 26 cm/GW, n2 = -2.7-10-10esu, a = 
8-10~21cm3 for GaAs. The experimental errors 
were ±30%. 
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Fig. 3. Normalized Z-scan signal of a 2.7 mm thick ZnSe sample using 27 ps 0.53 ^m pulses at 0.21 GW/cm2 

input irradiance.   The solid lines are the theoretical results,   (a) No aperture data and fit using ß = 
5.8cm/GW. (b) 40% aperture.data fitted with ß- 5.8cm/GW and n2 = -4-10"uesu. 
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Fig. 4. The refractive index change in ZnSe as 
a function of input irradiance as measured from 
the Z-scan experiments. The line represents a 3rd 

order nonlinearitv. 

1.20 

0.90 

0.60 

in 
C 
<0 
s- 

E- 

■O 

N 

I 0.30 
s- 
o •z. 

0.00 

ZnSe 
X=532 nm 

1=2.4  GW/cm' 

_L 

-24    -16     -8       0 8        16      24      32 

Z   (mm) 

Fig. 5. Normalized Z-scan signal for ZnSe at in- 

put peak irradiance of 2.4GW/cm2 with a 40% 

aperture. The solid line is the theoretical fit with 

ß = 5.8 cm/GW, n2 = -4-10_11esu and a = 

0.8   10-21cm3. 
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5. Beam distortion measurements 

A collimated beam 0.57 mm in radius (HW^M) 
at 532 nm was incident on a 3 mm polycrystalline 
ZnSe sample and the transmitted beam fluence 
was monitored with a vidicon in the near field. 
These data are shown in Fig. 6. The solution to 
eqs. (1-3) gives the electric field at the exit sur- 
face of the sample, which we then propagate in 
free space to the vidicon using a Hygens-Fresnel 
integral. We proceeded to fit the experimental 
data with the nonlinear coefficients obtained from 
the Z-scan and DFWM results. The result is the 
fit to the experimental data shown in Fig. 6 us- 
ing ß = 5.5cm/GW, n2 = -4-10~nesu and 
<r = 0.8-10-21cm3. 

-0.4 
-2.4 -1.2 0.0 1.2 

Radius  (mm) 
2.4 

Fig. 6.   (a) Transmitted spatial energy distribu- 
tion of a 30 ps 0.53/im pulse after propagation 
through ZnSe at 2.7 GW/cm2 as viewed on a vidi-. 
con.   The theoretical fit (solid line) is obtained 
with <r = 0.8-10-21cm3, na = -ü.in-ii 
3 = 5.5 cm/GW. 

4-10-nesu and 

6.  Conclusion 

As a result of conducting thorough studies of 
the nonlinearities in ZnSe at 532 nm using dif- 
ferent experimental techniques, we conclude that 
the bound electronic nonlinearity is negative and 
is a significant contribution to the overall nonlin- 

ear refraction. There is a great deal of experi- 
mental evidence that the bound electronic refrac- 
tion index change in solids is a positive effect, i.e. 
n2 > 0. This is seen for wide band-gap materials, 
since self-focusing plays a significant role in the 
laser induced damage of these solids [11]. How- 
ever, we find that for wavelengths significantly 
above the 2PA edge that the sign on n2 becomes 
negative. We now understand this dispersion and 
sign change of n2. As discussed in reference [12], 
n2, the real part of x^3\ an<^ 2PA, the imagi- 
nary part of x^3\ are related by causality (a re- 
lation similar to the Kramers-Kronig connection 
between linear absorption and the linear index of 
refraction) [12]. The value obtained for the refrac- 
tion index change per free carrier pair agrees with 
the band-blocking model suggested by Auston et 
al. [13]. The <r calculated from the above model 
is 1.1 ■ 10-21 cm3 compared to our experimental 
value of 0.8 • 10-21 cm3. In conclusion, we have 
identified the different nonlinearities that occur 
in semiconductors when two-photon absorption 
is present. 
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We describe the use of a novel method for the characterization of the nonlinear optical properties 
of materials which we refer to as a~Z-scan. We utilize this technique along with other methods to 
determine the nonlinearities occurring in semiconductors when irradiated with picosecond pulses 
with-in the spectral region where two-photon absorption (2PA) is large. For example, we determine 
that nonlinear refraction at 532 nm in ZnSe is caused by a negative third order electronic Kerr effect 
in addition to the 2PA induced free-carrier refraction. We used beam distortion, and picosecond 
time-resolved degenerate four-wave mixing in addition to the Z-scan technique. Using these com- 
plementary characterization methods we determine the 2PA coefficient, the sign and magnitude of 
the bound electronic nonlinearity, n^ and the negative refractive index change per free carrier. 

1. 'Introduction 

In this paper, we present the results of a com- 
prehensive study of the nonlinear processes in- 
volved in semiconductors when exposed to picose- 
cond pulses in a spectral range where two-photon 
absorption (2PA) is allowed, but so close to the 
energy band gap that direct band blocking from 
linear absorption or excitonic nonlinearities are 
present. This is spectral region of linear trans- 
parency where nonlinearities are useful for appli- 
cations including passive optical limiting (OL). 
OL utilizes the combined effects of nonlinear ab- 
sorption and nonlinear refraction in semiconduc- 
tors [1-3]. An ideal passive optical limiter may 
be described as the optical analogue of a Zener 
diode circuit. It has a high linear transmission 
up to a certain input threshold after which the 
output becomes clamped to a constant value. 

The nonlinearities present in this spectral range 
are 2PA, refraction arising from the 2PA gener- 
ated free carriers and nonlinear refraction due to 
the electronic Kerr effect. We conducted picosec- 
ond degenerate four- wave mixing (DFWM) stud- 
ies to examine the temporal response as well as 
the order of the refractive nonlinearities. The Z- 
scan technique [4] was employed to accurately de- 

termine the sign and magnitude of the different 
refractive nonlinearities as well as the 2PA coef- 
ficient of the semiconductors. Finally beam dis- 
tortion was used to verify the dominance of the 
nonlinearities for OL applications. 

We briefly describe the theory for the irradiance 
and phase changes on a beam induced by these 
nonlinearities is section 2, and in section 3 the 
DFWM results are presented. In section 4 the 
Z-scan technique is briefly described and the re- 
sults of the Z-scan measurements are presented. 
In section 5 we show the beam distortion mea- 
surements. Finally, in section 6 the experimental 
results are compared to theoretical models. 

2. Theory 

In all the experiments Gaussian spatial mode 
beams were used incident on samples thinner than 
the diffraction length of the beam. In this geome- 
try the thin sample approximation can be used to 
describe the beam propagation inside the sample. 
This allows separation of the wave equation into 
one equation for the irradiance I and one for the 
phase $. Also with 30 ps (FWHM) pulses and at 
low irradiance levels we can ignore the absorption 

© E.W. Van Stryland*, A.A. Said, M. Sheik-Bahae, D.J. Hagan», E.J. Canto-Said, Y.Y. Wu and T.H. Wei. 1991 
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due to the 2PA generated carriers but not carrier 
induced refraction [5]. This leaves the nonlinear 
differential equations, 

and 

M T     ail 
dz 

  = kyl - fcc/V, 
dZ 

(1) 

(2) 

where a is the linear absorption coefficient, ß is 
the 2PA coefficient, k = 27r/A, A is the wave- 
length of incident radiation, 7 is the refractive 
index change due to the electronic Kerr effect, N 
is the density of free carriers and a is the change in 
the index of refraction per free carrier pair density 
generated [6]. Since the free carriers are created 
by 2PA, the generation rate is given by 

dN_ 
dt 

ßl2 

2hu' 
(3) 

When N is substituted in eq. (2), it becomes clear 
that the phase change due to the carriers depends 
on the square of the irradiance. Hence, the free 
carrier refraction appears as an effective fifth or- 
der nonlinearity [7, 8]. 

3. Degenerate four-wave mixing experi- 
ments 

DFWM with picosecond pulses is a sensitive 
technique that gives information about the tem- 
poral evolution of nonlinear process in semicon- 
ductors and other materials. Two counter-propa- 
gating strong beams, forward pump Ej and back- 
ward pump Eb, are incident on the sample with a 
third weaker probe beam, Ep incident at an an- 
gle 9 with respect to the forward pump. Two of 
these beams interfere inside the sample to form 
a grating from which the third beam diffracts to 
form a conjugate signal Ec that retraces the probe 
path. The pulses used in these experiments are 
30 ps (FWHM) pulses at 532nm. Various com- 
binations of polarizers and half-wave plates were 
placed in the path of each beam to independently- 
change their polarization and irradiance. Figure 1 
shows a plot of the conjugate signal versus the de- 
lay TZSD of £4 which was polarized perpendicular 
to Es and Ep. Two distinct regions are present, 

a fast decaying signal near zero delay and a slow 
decaying signal at long delays. To better under- 
stand the two nonlinear regimes, irradiance de- 
pendence experiments were performed at differ- 
ent delays.   A log-log plot of the DFWM signal 
versus input irradiance (all three inputs varied) 
gives two different slopes as shown in the inset of 
Fig. 1. At zero delay a slope of 2.8 was meaoured 
indicating a third order nonlinearity and at long 
delays a slope of 4.9 was found. The fifth order 
dependence can be explained by the 2PA induced 
carrier refraction as mentioned in. the previous 
section.   A modulated carrier density is created 
via 2PA; this is an imaginary x(3) effect.   Then 
a third beam diffracts off the carrier modulation; 
this is a real x^ effect.   Hence, the mechanism 
is a sequential x(3);X(1) process that appears as 
a fifth order nonlinearity.  As to the third order 
effect decays within the 30 ps pulse width which 
is consistent with a bound electronic nonlinear- 
ity. This fast decaying effect can either be of re- 
fractive or absorptive nature as far as DFWM is 
concerned, Assuming that it is a refractive effect a 
value of \n2\ = 4.4 • 10"ll esu was extracted where 
n2 is related to 7 by n2 (esu) = n0c/(40s-)7(MKS) 
[7, 8].   Note that the sign of n2 is not given by 

DFWM. 

3 

< 

3" 
3- 

IT 

**S**J 
""»•w-vi. W—A 

U- 

Backward Pump Delay (ps) 

Fig. 1. The DFWM signal vs backward pump 
delay for 30 ps pulses at 0.53 urn in ZnSe. The 
inset shows a log-log plot of the conjugate signal 
as a function of the input irradiance at Ops (a) 
and 200ps (b). 
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4. Z-scan measurements 

SAMPLE       APERTURE 

Fig. 2. The Z-scan experimental setup in which 
the normalized transmittance is measured as a 
function of the sample position z. 

The Z-scan technique, which was recently devel- 
oped at our laboratories, is a simple single mea- 
surement experiment technique that readily gives 
the sign and magnitude of nonlinear refraction 
as well as nonlinear absorption [9].    It is also 
an excellent guide for geometrical optimization 
of optical limiting [10].   Figure 2 shows the Z- 
scan experimental setup.    A focused Gaussian 
beam is incident on the sample and transmit- 
ted beam is collected through a finite aperture 
in the far field into detector D2. A monitors the 
input energy.    Keeping the input energy fixed, 
the transmittance is measured as a function of 
the sample position relative to the focal plane. 
Since nonlinear refraction causes a lensing effect 
in the incident beam, the sample behaves as a 
negative or positive lens depending on the sign 
of the nonlinearity. As explained in reference [4] 
a valley-peak configuration in the Z-scan signal 
is a signature of a positive refractive nonlinearity 
and peak-valley pattern denotes a negative non- 
linearity. When the aperture is removed, i.e. all 
the transmitted light is collected, the Z-scan is 
only sensitive to nonlinear absorption. For semi- 
conductors with 2PA present, the Z-scan experi- 
ment was simulated by solving eqs. (1-3). Three 
parameters are to be determined ß, n2 and a. 
Using 27 ps pulses (FWHM) at 532 nm Z-scan 
measurements were performed on a 2.7mm thick 

ZnSe sample at different input energies. With 
the aperture removed a Z-scan was performed at 
Io = 0.1GW/cm2 where IQ is the on axis peak 
irradiance at the focus. In this case the mea- 
surement is insensitive to nonlinear refraction and 
thus independently gives the nonlinear absorp- 
tion coefficient. The best fit to the data shown in 
Fig. 3a gave ß = 5.8cm/GW, in good agreement 
with the value of 5.5cm/GW obtained in refer- 
ence [6]. Our experimental errors were ±30% 
mostly arising from uncertainties in the irradi- 
ance values. Figure 3a shows the data and fit of 
the Z-scan signal at the same irradiance with the 
40 % transmitting aperture in place. At this low 
irradiance we expect the nonlinear refraction to 
l>c mostly due to the 3rd order nonlinearity as can 
be deduced from eqs. 2 and 3. Hence, the carrier 
term in eq. 2 was dropped and an n2 = -4 ■ 10-11 

was extracted. 

The negative sign of n2 is evident from the 
peak-valley pattern in the data. Moreover, this 
n2 value is within 10 % of the value obtained by 
our DFWM measurement. For a 3rd order non- 
linearity, the change in the index or refraction, 
An, is a linear function of the irradiance, I. Fig- 
ure 4 shows that this is not the case at higher 
irradiance values meaning that the refraction due 
to the 2PA generated carriers becomes more sig- 
nificant at these levels. At I0 = 2.4GW/cm2 

(Fig. 5), and with ß and n2 known, the exper- 
imental data was fit with a = 0.8 • 10"21 cm3. 
The above measured values for n2, ß and a were 
used at other irradiance values and gave good fits 
to the experimental data. The Z-scan was also 
used to determine the above parameters for other 
semiconductors at different wavelengths. For ex- 
ample at 1.06 um, we measured ß = 26 cm/GW, 
n2 = -2-10-loesu, a = 5 • 10~21 cm3 for CdTe 
and ß - 26 cm/GW, n2 = -2.7-10_10esu, cr = 
8 ■ 10-"1 cm3 for GaAs. The experimental errors 
were ±30 %. 
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Fig. 3. Normalized Z-scan signal of a 2.7 mm thick ZnSe sample using 27ps 0.53 /mi pulses at 0.21 GW/cm2 

input irradiance.   The solid lines are the theoretical results,   (a) No aperture data and fit using ß = 
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a function of input irradiance as measured from 
the Z-scan experiments. The line represents a 3rd 
order nonlinearity. 
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5. Beam distortion measurements 

A collimated beam 0.57 mm in radius (HWpM) 
at 532 nm was incident on a 3 mm polycrystalline 
ZnSe sample and the transmitted beam fiuence 
was monitored with a vidicon in the near field. 
These data are shown in Fig. 6. The solution to 
eqs. (1-3) gives the electric field at the exit sur- 
face of the sample, which we then propagate in 
free space to the vidicon using a Hygens-Fresnel 
integral. We proceeded to fit the experimental 
data with the nonlinear coefficients obtained from 
the Z-scan and DFWM results. The result is the 
fit to the experimental data shown in Fig. 6 us- 
ing ß = 5.5 cm/GW, n2 = -4-10-11esu and 
<r = 0.8-10-21cm3. 

-0.4 
-2.4 -1.2 0.0 1.2 

Radius  (mm) 
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Fig. 6. (a) Transmitted spatial energy distribu- 
tion of a 30 ps 0.53//m pulse after propagation 
through ZnSe at 2.7 GW/cm2 as viewed on a vidi- 
con. The theoretical fit (solid line) is obtained 
with a = 0.8 • 10-21 cm3, n2 = -4 • 10-11 esu and 
3= 5.5cm/GW. 

6.  Conclusion 

As a result of conducting thorough studies of 
the nonlinearities in ZnSe at 532 nm using dif- 
ferent experimental techniques, we conclude that 
the bound electronic nonlinearity is negative and 
is a significant contribution to the overall nonlin- 

ear refraction. There is a great deal of experi- 
mental evidence that the bound electronic refrac- 
tion index change in solids is a positive effect, i.e. 
n2 > 0. This is seen for wide band-gap materials, 
since self-focusing plays a significant role in the 
laser induced damage of these solids [11]. How- 
ever, we find that for wavelengths significantly 
above the 2PA edge that the sign on n2 becomes 
negative. We now understand this dispersion and 
sign change of n2. As discussed in reference [12], 
n2, the real part of x^3\ an<^ 2PA, the imagi- 
nary part of x^3\ are related by causality (a re- 
lation similar to the Kramers-Kronig connection 
between linear absorption and the linear index of 
refraction) [12]. The value obtained for the refrac- 
tion index change per free carrier pair agrees with 
the band-blocking model suggested by Auston et 
al. [13]. The a calculated from the above model 
is 1.1 • 10-21 cm3 compared to our experimental 
value of 0.8 ■ 10-21 cm3. In conclusion, we have 
identified the different nonlinearities that occur 
in semiconductors when two-photon absorption 
is present. 
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Dispersion of Bound Electronic Nonlinear Refraction 
in Solids 

Mansoor Sheik-Bahae, Member, IEEE, David Crichton Hutchings, David J. Hagan, Member, IEEE, 
and Eric W. Van Stryland, Senior Member, IEEE 

Abstract—A two-band model is used to calculate the scaling 
and spectrum of the nondegenerate nonlinear absorption Aa(<jj; 
a>2>. From this, the bound electronic nonlinear refractive index 
n-i is obtained using a Kramers-Krönig transformation. We in- 
clude the effects of two-photon and Raman transitions and the 
ac Stark shift (virtual band blocking). The theoretical calcu- 
lation for n-, shows excellent agreement with measured values 
for a five order of magnitude variation in the modulus of n, in 
semiconductors and wide-gap optical solids. We also present 
new measurements of n2 in semiconductors using the Z-scan 
method. The observed change of sign of n2 midway between the 
two-photon absorption edge and the fundamental absorption 
edge is also predicted. Thus, we now have a comprehensive the- 
ory that allows a determination of n2 at wavelengths beneath 
the band edge, given only the bandgap energy and the linear 
index of refraction. Such ipformation is useful for a variety of 
applications including optical limiting, laser-induced damage, 
and all-optical switching! Some consequences for all-optical 
switching are discussed, and a wavelength criterion for the ob- 
servation of switching is derived. 

I. INTRODUCTION 

RECENTLY we reported measurements of the nonlin- 
ear refractive index n2 of a variety of solids using 

beam distortion methods (Z-scan technique) [1], [2] and 
four-wave mixing [3]. These data show a strong system- 
atic dispersion of the bound electronic nonlinearity (elecr 
tronic Kerr effect n2) near the two-photon absorption 
(2PA) edge. This eventually rums from positive to nega- 
tive at higher frequencies. We found that by using a Kra- 
mers-Krönig (KK) integral based on the degenerate 2PA 
spectrum as predicted by a two-parabolic band model, we 
could predict the observed universal dispersion, scaling, 
and values of n2 that range over four orders of magnitude 
and change sign [2]. This KK analysis relates the real and 
imaginary parts of the third-order susceptibility. The re- 
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suiting scaling rule correctly predicted the value of n2 for 
the 26 different materials we had examined at that time, 
except very near the gap where there was a systematic 
departure of the data from the theory towards larger neg- 
ative n2 values. More recent data taken at wavelengths 
closer to the gap show an even larger departure from the 
predictions of the 2PA model. We had speculated in [2] 
that the bandgap resonant ac Stark effect might make | n2\ 
larger near the gap. Here, we present a model that in- 
cludes the ac Stark effect and the electronic Raman effect, 
as well as 2PA. Indeed, the inclusion of these new effects 
does explain the large negative increase in n2 near the gap. 

There are two distinct frequency regimes for nonlinear 
optics in semiconductors which correspond to real and 
virtual excitation. Most studies have primarily concen- 
trated on bandgap resonant effects which result in real ex- 
citation [4], [5]. The very large nonlinear effects observed 
are the saturation of interband and excitonic absorption 
due to photoexcited free carriers and excitons. Real ex- 
citations usually result in a reduction of the refractive in- 
dex at frequencies of interest. In contrast, by exciting op- 
tical solids at frequencies much less than the gap, a 
considerably smaller, but faster, positive nonlinear re- 
fractive index n2 due to bound electronic effects is ob- 
served [6]. This n2 arises from the real part of the third- 
order susceptibility x-3\ and is defined through the refrac- 
tive index change A/i where 

\E I2 

An(w) = 7(oj)4 = n2(W) *-£- (1) 

with /„.and Eu being the irradiance and electric field at 
frequency w, respectively, and n2 cc Re x0)/no- The lin- 
ear refractive index is no, and 7 and n2 are related by n2 

(esu) = cn0y/40ir (SI) where c is the speed of light. The 
magnitude and dispersion of n2 is of interest because of 
its importance in applications such as nonlinear propaga- 
tion in fibers, fast optical switching, self-focusing and 
damage in optical materials, and optical limiting in semi- 
conductors [7]-[9]. 

Measurements of wide bandgap dielectrics show that n2 

> 0, which explains catastrophic self-focusing damage 
in such materials as NaCl and SiO: [8]. Our measure- 
ments in semiconductors below or near the 2PA edge {hw 
=■ Eg/2) also show positive n2. However, we found re- 
cently that for wavelengths substantially above the 2PA 
edge, n2 is negative [1]. We performed measurements on 

0018-9197/9I/06O0-1296S01.00 © 1991 IEEE 
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a large number of other materials, including semiconduc- 
tors and dielectrics, above and below the 2PA edge. As a 
result, we have been able to clearly demonstrate the dis- 
persion of n2. 

Our measurements utilized a newly developed sensitive 
technique (Zscan) [1], [10] that accurately determines the 
magnitude and sign of n2, even in the presence of 2PA 
where it also gives the 2PA coefficient ß. For example we 
found a negative n2 in materials such as ZnSe at 0.523 pm 
where 2PA is present, and a positive n2 at 1.064 ^m where 
2PA is absent. The values obtained for ß were in excellent 
agreement -with our earlier measurements using standard 
transmission experiments [11]. We also performed pico- 
second degenerate four-wave mixing (DFWM) measure- 
ments which -showed this third-order response to be fast 
(time resolution limited by the 30 ps pulsewidth). At 
wavelengths where 2PA was present, this fast third-order 
nonlinearity was dominant at low irradiance (e.g., up to 
0.5 GW/cm2 in ZnSe at 532 nm), while at higher irra- 
diance, the slowly decaying 2PA-generated free-carrier 
refraction (self-defocusing) became important [3]. DFWM 
studies in other semiconductors and other wavelengths 
showed this to be a universal phenomenon [12]. 

It has previously been predicted that x(3) should vary as 
E~A [13]. Using this scaling and the relation between n2 

and x(3) that includes the linear index n0, we can remove 
the Eg and n0 dependencies from the experimental values 
of n2 by multiplying them by nQEg. In Fig. 1, a plot of 
our experimentally determined scaled values of n2 as a 
function of hu>/Eg is shown. We also divide the data by 
a constant K' which we explain in what follows. We show, 
on the same plot, several data for large-gap optical crys- 
tals obtained from recent measurements by Adair et al. 
using a "nearly degenerate three-wave mixing" scheme 
[6]. Our own measurements of several of the same ma- 
terials studied in [6] show excellent absolute agreement. 
Assuming that there are no other relevant parameters 
unique to each material other than bandgap and index, this 
plot should be general to all optical solids. Upon exami- 
nation of Fig. 1, we immediately see a trend giving small 
positive values for low ratios of photon energy to bandgap 
energy which slowly rises to a broad resonance peak at 
the 2PA edge and then decreases, eventually turning neg- 
ative between the two-photon and single-photon absorp- 
tion edges. We should note that the scaling with Eg hides 
a variation in magnitude of n2 of four orders of magnitude 
so that the observation of a universal dispersion curve as 
in Fig. 1 is quite remarkable. This dispersion curve is 
qualitatively similar to the dispersion of the linear index 
around the single-photon absorption edge [14]. As these 
linear quantities are related by causality via a KK relation, 
it seems logical to investigate whether the observed dis- 
persion of n2 can be calculated using a nonlinear KK re- 
lation between the real and imaginary parts of x( '• In- 
deed, as we showed in [2], making some reasonable 
assumptions, the observed tendencies as well as the ab- 
solute magnitudes of this dispersion are well predicted by 
such a calculation. The solid line in Fig. 1 as reproduced 

0.10 

0.4 0.6 

WE, 
Fig. 1. Data of n2 scaled as n-i^EyK' versus Au/£, from [2]T-Note that 
the definition of the constant K' in this reference differs slightly from that 
used in this paper. These data include measurements of n2 at 1 .Qfi,/im in 
[6], as well as our own measurements at 1.06 and 0.53 pm. Recent mea- 
surements have revised some of the semiconductor n, values shown.in this 
figure (see Fig. 5). The solid line demonstrates the fit obtained in [2}.using 
a quasi-degenerate 2PA. 

from [2] is the direct result of such a calculation, includ- 
ing only the degenerate 2PA contribution to the imaginary 
part of x(3)- It should be noted that since the'2PA spectrum 
was previously determined [11] ji3], [15], ne additional 
fitting parameter was used in this calculation. 

II. KRAMERS-KRöNIG (KK) RELATION 

Most theoretical calculations of n2 have been confined 
to the zero-frequency limit [16]-[20]. Of these, semi-em- 
pirical formulations have been the most successful in pre- 
dicting the magnitude of n2 [19], [20]. For example, the 
formula obtained by Boling, Glass, and Owyoung (BGO) 
in relating n2 to the linear index (n0) and the dispersion of 
n0 in terms of the Abbe number has been successfully ap- 
plied to a large class of transparent materials [6], [20]. 
Their theory predicts the low-frequency magnitude of n2, 
but does not give the dispersion. The KK method predicts 
the dispersion as well as the magnitude of n2. While the 
calculation presented in [2] only included 2PA in the 
imaginary part of x(3), the present calculation includes all 
other relevant contributions, that is, from electronic Ra- 
man and the ac Stark effect ("virtual band blocking"). 
We, however, do not include possible effects from exci- 
tonic enhancement [21]. 

Based on the principle of causality, KK relates the re- 
fractive index and the absorption coefficient for any linear 
material [22]: 

c  ["    «(«')      ,   , 
x Jo  w    — w 

(2) 

We now introduce some perturbation £ into the system, 
and consider the change in the refractive index resulting 
from the effect of £. The KK transformation states that a 
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change in the refractive index (An) at co is associated with 
changes in the absorption coefficient (Aa) throughout the 
spectrum (to') and vice versa. We write this as 

A   /      tN        c   f" Aot(w'; f)  -.   . «x A/i(co; £) = -  I    —n 2 °w (3) 
I Jo   u     — CO 

where £ is a parameter (or parameters) denoting the 
"cause" of change in the absorption. 

The cause need not be of optical origin, but of any ex- 
ternal perturbation. For example, this method has been 
used to calculate the refractive index change resulting 
from an excited electron-hole plasma [23] and a thermal 
shift of the band edge [24]. For cases where an electron- 
hole plasma is injected, the consequent change of absorp- 
tion gives the plasma contribution to the refractive index. 
In this case, the £ parameter is taken as the change in 
plasma density (AN) regardless of the mechanism of gen- 
eration of the plasma or the pump frequency. In the case 
of 2PA, the change is due to the presence of a pump field 
of frequency ß (i.e., £ = ß). The corresponding nonlin- 
ear refraction is An(to; ß), which gives the index change 
at co due to the presence of light at ß. Although the cal- 
culation as illustrated above gives the nondegenerate non- 
linear refraction, in most cases we would set ß = co and 
consider self-refraction. This gives what is commonly re- 
ferred to as n2. Van Vechten and Aspnes [18] obtained 
the low-frequency limit of n2 from a similar KK transfor- 
mation of the Franz-Keldysh electroabsorption effect 
where, in this case, £ is the dc field. It is important to 
note that we must set ß = co and not ß = co', otherwise 
nonlinear KK relations do not apply as shown, for ex- 
ample, for the two-level atom [25]. The bound electronic 
contribution to x(3) can originate from various absorptive 
counterparts that are quadratic functions of the pump field. 
Effects of this order are 2PA, the electronic Raman effect, 
and the optical Stark effect. 

An alternative way of considering the nonlinear Kra- 
mers-Krönig calculation is to examine the causality of the 
system. By treating the system as consisting of the ma- 
terial plus light, causality relations between the nonlinear 
polarization and an additional light field give rise to re- 
lations between the real and imaginary parts of x<3) [26], 
[27] in an analogous way to the usual "linear" Kramers- 
Krönig relations. These resulting relations can be reex- 
pressed in the form given above. One can therefore think 
of the nonlinear KK relations as being not on a bare ma- 
terial, but on a system consisting of the material and an 
optical pump. 

In order to perform the KK calculation, it is necessary 
to know the nondegenerate absorption Aa(to, ß), which is 
the absorption of light at frequency co when a light field 
of frequency ß is applied to the material. This is neces- 
sary even if only self-refraction is desired. In what fol- 
lows, we calculate the nondegenerate absorption origi- 
nating from xc3), including the 2PA, ac Stark, and Raman 
contributions. The degenerate 2PA result, found by set- 
ting co = ß, will serve as a check against previous theo- 
retical and experimental results. 

Although nondegenerate nonlinear absorption is re- 
quired for the correct calculation of n2, an estimate can 
be obtained by substituting the degenerate 2PA at the 
mean frequency for the nondegenerate absorption: 

/co + to'\ 
Aa(co;co') - ß[—: )/,., (4) 

This calculation was presented in [2]. We note that (4) 
provides a good estimate of n2, except close to the band 
edge where the ac Stark contribution becomes large. This 
agreement reflects the fact that the denominator in the KK 
integrand (3) has the effect of strongly weighting frequen- 
cies close to co', so for self-refraction, Aa(co; co') needs 
to be known accurately only for co in the vicinity of co'. 
This approximation breaks down, however, when it is 
necessary to include divergent terms such as the ac Stark 
effect. 

III. NONLINEAR ABSORPTION CALCULATION 

Two-photon absorption processes require that pertur- 
bation theory be taken to second order. A variation of this 
is to use first-order perturbation theory on "dressed" 
states for the conduction and valence bands where the ef- 
fect of the acceleration (tunneling) of the electrons due to 
the oscillating electric field is already taken into account 
[28], [29]. In all of the following, we shall use the dipole 
approximation for the radiation interaction Hamiltonian: 

"Mm —  A ■ p 
rriQC 

(5) 

where A is the magnetic vector potential, p is the electron 
momentum operator, — e is the electron charge, and m0 is 
the free electron mass. We assume a two-beam interaction 
with both beams linearly polarized in the same direction, 
giving 

A = ä[AQ\ cos (ü^r) + A^ cos (to2r + $)]       (6) 

where ä is the unit vector in the direction of the optical 
polarization. Following Keldysh [28], in the same manner 
as [29], [30], such a dressed state can be approximated 
by a Valkov-type wavefunction [31]: 

i/-,(/c, r, t) = Ui(k, r) exp iJfc ilE> (T) dr (7) 

where i refers to either the conduction or valence band. 
u,(lc, r) are the usual Bloch wavefunctions which have the 
same periodicity as the lattice. The effect of the optical 
field is to alter the energy of the electrons and holes in the 
final and initial states, respectively. Only the first- and 
second-order ac Stark shifting of the bands give rise to a 
X(3) effect: 

EC(T) = £r0 + AEcc(r) + AEcr 

E„(T) = Er0 + A£,.,.(T) + A£„r 

(8) 

(9) 
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where, within the effective mass approximation, 

h2k2 

2mcc 

h2k2 

Eco = Eg + 

EVQ — 
2m,,c 

A£,7(r) = — k ■ A(r) 
rrijC 

(10) 

(11) 

(12) 

where we have defined the hole mass mv as being .nega- 
tive. AECV and AEVC are the time-independent quadratic 
ac Stark shirts of the bands, which are proportional to 
\A0\2 and will be discussed in Section III-C. The transi- 
tion rates will be calculated using an S-matrix formalism 

[32], with 

S = ~li I . dt \ d'r **{k' r' r)3Cte*"(*'' r' r)> 

(13) 

The resulting 5 matrix for these processes is 

5 = - 
i ea • pv 

5*t-        dt 
h    TTIQC 

• eiOK'[Am cos (cj,r) + A& cos (co2r + <£)] 

• exp [z'77, sin (co, r) + % sin (c^f + <?>)]        (14) 

where pvc is the interband momentum matrix element 
given by 

pvc=
l-h \d

iru*{k, r)Vur(k, r). (15) 

We define 

AtiV = Eg - AEVC + AEC 

h2k2 

2m„r 
(16) 

the reduced mass, by 

m„ 

and 

J 1_ 
mc      mv 

eA0jk • ä 

mtvcuj 

(17) 

(18) 

In order to perform the time integral, we make use of the 

identirv 

exp [iv sin (at)] =    S    J„(v)einu'. (19) 

On substitution and performing the time integral, the S 

matrix becomes 

= nr_ ea • p, 
2   Jm(vi)Jn(vi) 

h     m$c    m.n=- 

■ {/40l[5((/77 + l)o>, + nw2 + uIK) 

+ 5((m - l)c0| + nw2 + o)vc)] 

+ A02[5(mu] + (n + l)co2 + uiv) 

+ 5(mU| + (n — l)a>2 + w,*)]}. (20) 

A. Degenerate 2PA Calculation 

The delta function terms in the above expression indi- 
cate various combinations of multiphoton absorption pro- 
cesses. From the S-matrix description, transition rates can 
be determined [32] which lead to absorption coefficients. 
We first consider 2PA.at frequency «, in order to deter- 

mine the scaling. Therefore, consider the terms arising 
from A02 = 0, m = -1, n = 0. Using the lowest order 
MacLaurin expansion term for the Bessel function J„(x) 
= x"/2"n\, and ignoring the quadratic Stark shift terms 
for now, the resulting change in the transition rate due to 
2PAis 

_„2 ,2        I2 

ire A0] AW 
spin   J 

d'k 

(2ir)3 2T71Q/71, rC2ü>,. 

ä\2 

2-Kh 
6 E, + 2/zu, 

2m IV. 
(21) 

A two-band model will be used in this paper for the cal- 
culation of transition rates, consisting of a conduction 
band and a valence band of opposite curvature (m„ = 
—mc), each of which is doubly degenerate in spin. We 
will consider parabolic bands only. There is an angular 
dependence in k space for the \ä ■ pvc\

2 and \k • ä\2 

terms, which results in a factor of 1/5 when the angular 
integral is performed, assuming that pvc is parallel to k. 
For other cases, the resulting transition rate will have the 
same functional form and only differ by a numeric factor. 
For instance, in the Kane four-band model for the heavy- 
hole band, pvc is perpendicular to k [33] and the numeric 

factor is 2/15. 
Using the fact that Ay = üirclj/nja2 where Ij is the 

irradiance (cgs) and n;- is the linear index, the result for 
the change in transition rate is 

AW = 
24TT m 1/2 \P* 1\ 

n,c ™2 
m0 (/to,)' 

(2ÄC0, - E.?'2 

(22) 

from which the two-photon absorption rate can be deter- 
mined; ß(u>) = 2ho) AWI^2. In order to obtain a universal 
scaling law, we make use of the identity 

\Pv 

m0 2m ' 
(23) 
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which is obtained using k ■ p theory [33]. The resulting 
expression for the 2PA has exactly the same scaling and 
frequency dependence as that calculated in [13]. [15] 
using the second-order perturbation approach, namely, 

/3(o)) = K 
, hu 

(24) 

where E„ = 2 \pvc\2/m0 and 

- n3/1- 
F2(x) = 

{2x - 1) 

(2x)5 
(25) 

Note that /3 oc u Im x(3)/"o- The function F2 is only a 
function of the ratio of the photon energy has to Eg (i.e., 
denoting the optically coupled states). The functional form 
of F2 reflects the assumed band structure and the inter- 
mediate states considered in calculating the 2PA transi- 
tion rate. Ep is nearly material independent and possesses 
a value Ep — 21 eV for most direct gap semiconductors, 
and AT is a material-independent constant: 

K = 
29TT 

5   -JTUQC
1 

(26) 

which has a value of K = 1940 in units such that ß is in 
cm/GW and Eg and Ep are in eV. A wealth of experi- 
mental and theoretical work regarding 2PA in semicon- 
ductors and crystalline materials exists. The best fit to the 
data of [11] using (24) and (25) gave K = 3100 in the 
same units as above, while Weiier's second-order pertur- 
bation calculation for a four-band model gave K = 5200 
for parabolic bands neglecting any coulomb interaction 
[15]. When nonparabolicity was included, the predicted 
values of ß were on average only 26% higher than exper- 
iment; however, the frequency dependence of ß changed 
very little. Interestingly, (24) and (25) also give a fair 
estimate of ß for a number of transparent materials mea- 
sured using the third and fourth harmonics of picosecond 
Nd:YAG laser pulses [34], [9]. In Fig. 2, ß scaled by 
nl/(K^EpF2) versus Eg on a log-log plot is shown. The 
slope of the straight line is -3, and it shows good agree- 
ment with the data for semiconductors and is within a fac- 
tor of =5, even for wide-gap dielectrics [9]. 

B. Nondegenerate 2PA and Raman Transitions 

We now consider the case where one photon from each 
of (co,, a>2) is absorbed, i.e., terms which contain 5(w„c — 
o)x — o)2), 5(0)^. — o>, -f u2), and ö(a)„c + u, — co2) in 
(20). The first term corresponds to nondegenerate 2PA, 
whereas the second and third terms correspond to Raman 
transitions. On performing the integral over k space, it 
can be shown that for 2PA, the change in the transition 

»• 

10* ~ 

»* - ■   - 

w1 

A 

>? 

10s - o o j 

\    • 
10' 

10° - 
1 

1 

• 

Eg lev) 

Fig. 2. A log-log plot of the scaled two-photon absorption coefficient 
ßnl/K •fEpF1 versus energy gap from [9]. The solid line is a least squares 
fit of the semiconductor data enclosed by the dashed box to a line of slope 
—3. The fit also gives a good estimate of 2PA in wide-gap optical solids 
(lower right) [34] and InSb (upper left) [35]. 

rate is given as 

AW = S 
spin 

r d'k 
J (2x)3 

ire /40i/4o2 
2m^mvcc _ 

1 
— +.-)■ ^rM£. + „ 
w,      o)2/   2-Kh    V 2m 

\a ■ Pv 

h2k2 

I2 I*' «I 

— fiui — hu-, 

2 r     e      mc'  \pvc hh 
5   nxn2c

2      m\       (hux)
2 (hu2)2 

• l-r- + T~)  (Ä«i + hu2 ~ £P3/2- (27) 

Using this expression for the transition rate, a change in 
absorption of the wx beam due to the presence of a>2 is 
calculated to have the general form 

Aa{u3\\ o>2) = 2K 
\Ep       (fi(ji\   hu2 

nxn2E i
ri E      E ^z     ^z 

\-^)h      (28) 

where for nondegenerate 2PA, the F2 function as obtained 
from (27) is given by 

x,x l-*-2 X-, 

Needless to say, F2PA, and hence 2PA, is zero when (xx 

+ JC, - 1) < 0. 
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In a similar manner, the Raman terms can be calculated 
to give a change in absorption as in (28) with 

_ (x, - x2 - 1)3/2 - (-*, + x2 - 1)3/2 

21x\x\ 

(30) 

The above expression contains the Raman transitions in 
which an electron is excited from the valence band into 
the conduction band via absorption of a photon at Aw, and 
emission of a photon at hu>2 and vice versa. Therefore, 
the energy conservation terms corresponding to these 
transitions denoted by the (• • • )3/2 terms in (30) are zero 
when their argument is negative. 

The total Aa(co,; w2) from these multiphoton processes 
is the sum of the 2PA and Raman terms. Note that 2PA 
turns on when the sum of the frequencies is equal to the 
bandgap, but the Raman term turns on when the difference 
of the frequencies is equal to the bandgap so that one fre- 
quency must exceed the bandgap. 

C. Linear and Quadratic Stark Effects 
In addition to multiphoton absorption processes which 

involve the absorption or emission of a photon from both 
light fields, there can be a change in the absorption coef- 
ficient due to a shift in bandgap as a result of the ac Stark 
effect. For example, a change in the linear absorption of 
u>x occurs when the bands are shifted due to the ac Stark 
effect caused by o>2. Two terms arise out of this as the A 
• p radiation perturbation term couples 1) the conduction 
(or valence) band to itself, which we will term the linear 
Stark effect (LSE), and 2) the conduction band to the va- 
lence band, which we will term the quadratic Stark effect 
(QSE). In a physical sense, the effect of the LSE on the 
linear absorption is essentially a reduction of the oscilla- 
tor strength by renormalizing the interband coupling due 
to the acceleration of the electrons (or holes) in their final 
dressed state. The QSE, on the other hand, alters the lin- 
ear absorption through blue shifting the bandgap. 

The linear Stark shift (self-coupling) can be obtained 
from the previous calculation by expanding the zero-order 
Bessel function to the next higher order term in (20), J0(x) 
= 1 — x2/4. This results in a modification to the S-ma- 
trix term which describes the one-photon absorption. The 
transition rate for the single-photon absorption of co, is 
then modified as 

W = 2 
spin 

i:eA, 01 d3k 
(2r)J L mQc J 

1 - 
eA, 02 

2m„rcu-, 
a\2 

2-rrh 
6 [E. + 

frjr 
2m,,r 

— Aw, (31) 

On performing this integral over k space and considering 
the term proportional to /, I2, the following is obtained for 
the change in the transition rate: 

AW = - 
2V m 1/2 /.A \'2 

yy,2 m0 (/ko,)2(/iü>2)
4 5   n^n2c 

■ (Ä«, - Egf'\ (32) 

The resultant change of absorption Aa can be given in 
terms of (28) with F2 given by 

- I?'1 

?2   (xx\x2) = - 
2bxxx\ 

(33) 

where the scaling is the same as in (28). 
The quadratic Stark shift resulting from the coupling 

between the conduction and valence bands due to «2 is 
given by 

AE„ AEL 

eA02 

lm0ct 

h2k2 

E^2m 
- h Oi2 

-i 

+ h2k2 

*> + 2m. 
+ hu-, 

-i-i 

(34) 

It should be expected that in the low-frequency limit hoi2 

« Es, the energy shift due to the QSE as given by the 
above equations would approach the classical pondermo- 
tive energy of the electron/hole in an oscillating electro- 
magnetic field. This equivalence can indeed be simply 
verified by substituting \pvc \ from (23) into (34), which 
would yield 

AEe = -AEh = g2^02 (35) 

This classical energy shift, which is also referred to as the 
"mass energy shift," has been used in previous "dressed 
state" (tunneling) calculations of the interband transition 
rate [28], [30]. 

Returning to the QSE energy shift, we note that this 
energy term is time independent (i.e., nonoscillating). 
Therefore, it only appears in the 6-function energy con- 
servation terms. Thus, the one-photon transition rate is 
modified to give 

W E 
spin 

r d'k 
J (2x)3 

■weAn 
IUQC 

1 
\a ■ p„ 2-Kh 

.    »21,2 

51 Eg + 2m~ + AEn' " AEvc ~ h0>] (36) 

On performing the integration and expanding to obtain the 
term proportional to Iil2, the change in the transition rate 
is given as 

4TT 
AW =  

i   n\n2c 
mV2\Pv 

yy,A 

hh 
(hu>i)-(hcj)2)- 

(Aw, - £,) -1/3 1 + 1 
Acjj — hci>2      hu>\ + hu2_ 

(37) 
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TABLE I 
FREQUENCY DEPENDENCE OF THE NONDECENERATE ABSORPTION F2(hu,/E,.: hu,jEK) AS 

DEFINED IN (28) 

Contribution 
^(XIIXJ) 

Two-Photon Absorption 

Raman 

(x, + X;   ~   1)3/-   /l r 
27x,x; \X,     X:, 

x; - D3/: n _ j_ 
7X|X; \x,      J2. 

Linear Stark 

Quadratic Stark 

(x, -_x, - l)3/: /I 
2 

(x, - 1)^ 1 
26 2"* 

I JTj       JT^ 

l 

3 0.1 

0.0 

-0.1 

6u,/Ef=0.4 

0.0 0.5 1.0 1.5 2.0 

Frequency (huyEj) 

Fig. 3. Theoretical frequency dependence of the nondegenerate nonlinear 
absorption for two different "pump" frequencies hw2/EK = 0.4, 0.6. Be- 
low the fundamental absorption edge Aw, < Eg, only 2PA contributes to 
the nonlinear absorption. 

The resulting change in absorption coefficient is given by 
(28) with 

F?
SE

(XüX2)= - 
1 

2,(VlCx, - 1) 1/2 

1 + 1 

1*1   ~ 

Eg are sum- 

x\ + xi 
(38) 

Again, the total Aa(w,; u2) is given by (28) and using the 
sum of all the F2 terms for multiphoton and Stark shift 
terms. These results for the spectrum of the nondegener- 
ate absorption change for the two-band model with par- 
allel optical polarization vectors and hu2 < 
marized in Table I. 

The spectrum of the nonlinear absorption F2(hux/Eg\ 
hu*2/Ez) is shown in Fig. 3 for two different "pump" 
frequencies u2. Note that for hu2 < Eg, the Raman and 
Stark terms can only contribute to the nonlinear absorp- 
tion for Aw, > Eg. The negative (i.e., decreasing absorp- 
tion) divergence at the bandgap results from the quadratic 
Stark shift causing a blue shift of the band edge. The 
spectrum in Fig. 3 resembles that obtained by Yacoby 
[36], who calculated the interband transition rate when 
the modulating source (u2) is of very low frequency (i.e., 

2IOX,J:;(J:I - l)l/2 [x, - x2     x, + x2. 

RF excitation) and the resonant ac Stark effect is ne- 
glected. 

IV. NONLINEAR REFRACTION 

In general, we can evaluate the nondegenerate refrac- 
tive index change A/i(co; fi) as given by the Kramers- 
Krönig dispersion relation: 

"" Aof(w'; Q) An(u; Q) 
■K   Jn —   O!" 

■du'. (39) 

However, there are few experiments which measure this 
quantity other than at Q = o>. We therefore present in this 
paper only the calculated results for the degenerate An(u; 
w) which, in turn, will lead to the Kerr coefficients n2 or 
7 as defined by (1): 

hcJE„ 
j = K 

n0Eg 

where the dispersion function G2 is given by 

= 2  pFjCr,; x2) dxx 

■jr Jo 
G2(x2) 

r2 
— XI 

(40) 

(41) 

We have neglected any dispersion in the linear refractive 
index n0 in the integral. The magnitude of the dispersion 
is typically only 10% of the background refractive index 
around the band edge of semiconductors, so we do not 
anticipate any significant error. All that remains is for the 
above integral to be evaluated for the various contribu- 
tions to the nondegenerate absorption F2(x,; X2). All of 
the integrals are performed in a similar manner and make 
use of the identity 

x*~l dx        ._„ r(|t)r(n - n) 
 = aM  — (421 

Jo  (a + x)n T{n) { l) 

for n > fi. The individual contributions are given in Table 
II. 

On examining the low-frequency limit, it is found that 
these terms diverge as u -► 0. In order to investigate such 
unphysical "infrared" divergences, we go one step back 
and examine the nondegenerate case as given by (39). This 
equation indicates that, in general, Arc(u; Q) is not diver- 
gent in w, and therefore any zero-frequency divergence 
must be in the pump frequency Q as it appears in Aa. To 

f Jo 
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TABLE II 
DISPERSION OF THE NONLINEAR REFRACTION C2(AU>/£,) FOR FREQUENCIES BELOW THE BAND 

EDGE AS DEFINED IN (44). 6(JT) is THE HEAVISIDE OR STEP FUNCTION. 

Contribution C,(x) 

Two-Photon Absorption 

Raman 

Linear Stark 

Quadratic Stark 

Divergent Term 

1 
(2JT)6 — j2(l - x)-"2 + 3x(\ - x)'r- 

8 

2(1 - xf'2 + 29(1 - 2JT)(1 - 2x)3/2 

.   —J2(1 + J)-,/2 - 3*(1 + x)'/2 

(2xf[   8 

2(1 + xfn + 2(1 + 2xf 

— P ~ 0 ~ *>V2 " C1 + xf*l 
2 

(2x)' 

1 

2'V 
(1 - x)-'/2 - (1 + x)-,/2 

_£(1_„-3/i _£(,+,)-»/> 

1 

(2-r)6 L 
-2 — + - (3JT - 1)(I - x)~'/2 

—3x(l - .r),/2 + (1 - -c)3/2 + - (3x + 1)(1 + x)~'/2 

O 

+ 3x(l + *)'/2 + (1 + x)3/2 

further identify these divergences, A/z(a>; 0) can be ex- 
panded as a Laurent series around fl = 0. We find that 
there exist terms which diverge as Q-4, Q~3, Q-2, and 
n~'. On summing these terms, however, all the diver- 
gences vanish apart from a term proportional to fi-2, leav- 
ing the divergent term as ' 

,div _ S(<») GT = 
ßs (43) 

where g(w) has no divergence at o> = 0. Now, by setting 
Q = a), one arrives at the degenerate divergence function 
as shown in Table II. This diverging term is expected as 
A • p perturbation theory has been used in the transition 
rate calculations, and it is well known that divergences of 
this order can be introduced [37], whereas the comparable 
E ■ r perturbation theory avoids such divergences. The 
latter perturbation technique, however, is not suitable for 
solids with extended wavefunctions, and simple scaling 
rules cannot be easily derived. In a similar manner to Moss 
et ah [38], we treat such a divergence as unphysical and 
subtract it from the result for the nonlinear refraction. 

The individual contributions to the nonlinear refraction 
are shown in Fig. 4 as a function of frequency. The di- 
vergence in each physically identifiable process has been 
subtracted for clarity. It can be seen that the most signif- 
icant contribution to the spectral dependence of G2 arises 
from the 2PA term, except close to the band edge where 
the quadratic Stark term becomes dominant. The linear 
Stark term arising from the self-coupling of the bands is 
insignificant compared to the quadratic term. In terms of 
second-order perturbation theory, this is a result of the 
momentum matrix element being much larger when taken 
between conduction and valence bands than between the 
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Fig. 4. Frequency dependence of the various contributions to the nonlin- 
ear refractive index n2. Each contribution is derived from a Kramers-Krönig 
transform of the various nonlinear absorption processes: two-photon ab- 
sorption, Raman transitions, and linear and quadratic Stark shifts of the 
band edge. The divergence of each term as u — 0 has been removed for 
clarity. 

same bands [13]. The only significance of the linear Stark 
term in the present calculation is that it cancels terms 
which diverge as o>-4 arising from the 2PA and Raman 
contributions. 

The general scaled form for n2 is given by 

n2 (esu) = K' 
•JE 
—£ G2{hu/Eg) 
not. 

(44) 
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where, using the value of K obtained from the fit to 2PA 
in semiconductors (3100), the constant AT' = 1.50 x 10~8 

when Eg and Ep are defined in eV. Using the value of K 
predicted by theory (no fitting) gives K' = 0.94 x 10~8. 
We note the E~4 dependence for the magnitude of n2, cor- 
responding to the scaling predicted by Wherrett [13]. 

A graphical comparison of the dispersion function 
G2{hu/Eg) with measured values of n2 is shown in Fig. 
5(a). The values for semiconductors (squares) were ob- 
tained from Z-scan measurements at 1.06 and 0.53 urn 
[1], [10] (as previously plotted in Fig. 1). Included in 
these data are some new measurements. We also show 
"nearly degenerate three-wave mixing" n2 measurements 
of large-gap optical materials [6] (solid circles) and a 
measurement of n2 in silica at 249 nm [39] (diamond). 

Fig. 5(b) shows the extension to Fig. 5(a) for frequen- 
cies close to the band edge where the bound electronic 
refractive nonlinearity shows a resonance due to the qua- 
dratic ac Stark effect. This graph also includes recent 
measurements of n2 in AlGaAs by LaGasse et al. [40] 
using femtosecond time-division interferometry tech- 
niques (solid triangles). Table III shows the measured val- 
ues for n2 for the various semiconductors and wide-gap 
optical solids which are plotted in Fig. 5. The data for the 
semiconductor bandgaps and linear refractive index were 
obtained from [41], [42]. From the theory presented here, 
we also give the predicted values for n2. For the semicon- 
ductor measurements at 1.06 and 0.53 /xm (excluding 
CdSe at 1.06 /zm whose n2 could not be measured with 
any degree of accuracy because of the 2PA-induced band- 
filling refractive nonlinearity), we find an average differ- 
ence of less than 30% between the measured and pre- 
dicted values. Including the measurements for dielectrics, 
the average difference was less than a factor of 2. We 
note, however, that the measured n2 for these wide-gap 
solids are consistently smaller than the predicted values. 
One possible reason for this is that the absorption edge 
has been used to determine the bandgap. The band struc- 
ture for these materials is not well known, and the direct 
gap may well be larger than this. We find, however, for 
these wide-gap materials, that a good fit to the n2 data can 
be obtained by using a smaller value for the constant K' 
= 0.86 X 10-8, as shown by the dashed line in Fig. 5(a). 

For frequencies close to the band edge, the Stark effect 
results in a divergence in the nonlinear refractive index of 
— (Eg — hu)'3'2. This region can be examined in more 
detail by replotting data and theory in a log-log plot as 
shown in Fig. 6. Note the straight line dependence for 
small detunings, with a slope of -3/2 corresponding to 
the above asymptotic relationship. From Figs. 5(b) and 6, 
one notices an increasing deviation of the AlGaAs data 
from the theory as the photon energy is approaching the 
energy gap. One possible cause for this deviation is the 
excitonic enhancement which becomes significant near the 
band edge. 

The Stark effect can also be described as virtual band 
blocking since a blue shift of the band edge is equivalent 
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Fig. 5. (a) Dispersion of the nonlinear refractive index n:. Data forn2 are 
scaled as n2n()E*/K''JEl,. The circles are measurements in [6], the dia- 
mond is from [39], and the squares are our own Z-scan measurements. We 
have labeled the semiconductor data. The solid line is the G;(Aa>/£,) func- 
tion derived here for a two-band model of a semiconductor using the 2PA 
data for the fit to the constant K'. The dashed line corresponds to a fit to 
/i; for the wide-gap solids (K' = 0.86 x 10"*). (b) Extension of (a) to 
frequencies close to the band edge. The triangles are n; measurements of 
AlGaAs in [40]. 

to a reduction of optically coupled states at photon ener- 
gies corresponding to the bottom of the band (in a similar 
manner to the dynamic Burstein-Moss shift [43]). Indeed, 
the direct saturation model [44] predicts exactly the same 
frequency and material dependence of the nonlinear re- 
fractive index just beneath the band edge. This allows a 
conceptual link between below-gap (virtual carriers) and 
bandgap resonant (real carriers) nonlinear optical effects 
[45]. 

Hidden in Figs. 5 and 6 is the £? 
4 scaling of n2 that 

gives a variation of n2 from 2.5 X 10"14 esu for a material 
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TABLE 111 
LIST OF n. DATA SHOWING PARAMETERS USED IN THE CALCULATION (FROM |41], (42)) ALONG WITH THE EXPERIMENTALLY 
MEASURED AND THEORETICALLY PREDICTED VALUES OF n2. THESE n; DATA INCLUDE MEASUREMENTS IN |6]. [39]. [40). 
t INDICATES WHERE WE HAVE USED THE DIRECT GAP RATHER THAN THE FUNDAMENTAL ABSORPTION EDGE. THE COLUMN- 

INDICATED BY * USES A FIT TO THE CONSTANT A" FOR WIDE-GAP MATERIALS RATHER THAN THE FIT TO 2PA IN SEMICONDUCTORS 

[SEE FIG. 5(a)] 

Wavelength Bandgap Refr. n; (Exp.) n, (Pred.) «, (Pred.)* 

Material (Mm) (eV) Index xlCT'J(esu) Xl0""(esu) xio~" (esu) 

Ge 10.6 0.87' 4.00 2700 4400 

GaAs 1.06 1.35 3.47 -2700 -3100 
CdTe 1.06 1.44 2.84 -2000 -2100 
CdSe 1.06 1.74 2.56 -90 180 
CUSQ <OCQ J 1.06 1.93 2.45 1000 720 
ZnTe 1.06 2.26 2.79 830 540 

CdS 0.53 2.42 2.34 -3400 -1200 

ZnSe 1.06 2.58 2.48 170 190 
ZnSe 0.53 2.58 2.70 -400 -380 
SBN 1.06 3.3 2.4 30 51 29 
ZnS 1.06 3.54 2.40 48 36 
KTP 1.06 3.54 1.78 13 49 28 
BaF2 1.06 9.21 1.47 0.67 0.95 0.54 
BaF2 0.53 9.21 1.47 0.85 1.10 0.63 

AlGaAs 0.850 1.57 3.30 -2000 -2800 
AIGaAs 0.840 1.57 3.30 -4000 -3300 

AlGaAs 0.830 1.57 3.30 -7000 -3900 
AIGaAs 0.825 1.57 3.30 -10000 -4300 
AlGaAs 0.820 1.57 3.30 -14000 -4900 
AIGaAs 0.815 1.57 3.30 -20000 -5900 
AIGaAs 0.810 1.57 3.30 -26000 -7300 

CdS 1.06 2.42 2.34 280 330 
AgCl 1.06 3.10 2.07 23 81 46 
ZnO 1.06 3.20 1.96 23 73 41 
NaBr 1.06 5.63 1.64 3.3 6.6 3.8 
CaCo3 1.06 5.88 1.60 1.1 5.6 3.2 
KBr 1.06 6.04 1.56 2.9 5.1 2.9 
KC1 1.06 6.89 1.49 2.0 3.1 1.8 
KDP 1.06 6.95 1.60 0.7 2.8 1.6 
KH,P04 1.06 7.12 1.50 0.8 2.7 1.5 
NaCl 1.06 7.21 1.53 1.6 .    2.5 1.4 
AU03 1.06 7.30 1.75 1.2 2.1 1.2 
KF" 1.06 7.75 1.36 0.75 2.1 1.2 
MgO 1.06 7.77 1.70 1.6 1.6 0.94 
SiO, 1.06 7.80 1.40 1.1 2.0 1.1 
SrF; 1.06 9.54 1.44 0.50 0.84 0.48 
CaF2 1.06 9.92 1.43 0.43 0.72 0.41 
MgF, 1.06 11.27 1.38 0.25 0.44 0.25 
LiF 1.06 11.60 1.39 0.26 0.39 0.22 

Si02 0.249 7.80 1.60 1.7 2.4 1.4 

such as MgF2 at 1.06 pm to -2.6 x 10"* esu for AIGaAs 
at 810 nm [40] and 2.7 x 10"l0 esu for Ge at 10.6 fim, 
which we measured with a picosecond C02 laser. This 
five orders of magnitude variation of n2 is better displayed 
by plotting n2 scaled by n0 and G2 as a function of Eg on 
a log-log plot, as shown in Fig. 7. In spite of this very 
large variation in the magnitude of n2 (and the change in 
sign), this extremely simple model gives good agreement 
with the data for materials including both semiconductors 
and insulators. It is found that the E~4 scaling law holds 
true over the five orders of magnitude variation in the 
modulus of n2 for the data presented here. Additionally 
note that although the measured values of n2 for ZnSe at 
1.06 and 0.53 fim have different signs, both measure- 
ments are consistent with the scaling law. 

V. IMPLICATIONS FOR ALL-OPTICAL SWITCHING 

One of the applications of the nonlinear refractive index 
n2 is in the role of all-optical switching. Some examples 
are a nonlinear Fabry-Perot filter for image processing, 
or parallel optical computing [46], [47], or coupled wave- 
guides for communication switching networks [48], [7]. 
When it comes to optimizing devices for optical switch- 
ing, it is important that optical losses in the system are 
not too large. For instance, if optical absorption is too 
large, then the change in refractive index will fall off rap- 
idly as the optical beam propagates. 

It can be shown that for any optical switching system, 
one must achieve a refractive index change An such that 

\An\ > cswaX (45) 

1 
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where csw is a numeric constant of the order of unity 
whose precise value depends on the exact switching 
scheme. For example, using a Fabry-Perot filter, csw = 
(2>/3x)_' [49], whereas a nonlinear coupled waveguide 
gives Ciw« 2 [50], [51]. 

Below the band edge, the principal contribution to the 
absorption at irradiance levels of interest is two-photon 
absorption, a =■ ßl. In addition, the electronic Kerr effect 
gives the change in refractive index An = 7/. Hence, in 

Frequency (hu/E,) 

Fig. 8. Material-independent switching parameter as a function of fre- 
quency. Also shown are the minimum limits for all-optical switching in 
two different geometries: nonlinear directional coupler (NLDC) and Fa- 
bry-Perot (FP) filter. For switching to be possible, the switching parameter 
must exceed the relevant limit. The experimentally determined values of 
this parameter are based on the semiconductor n2 measurements here and 
our ß measurements in [11]. 

this regime, the requirement for all-optical switching 
[50] 

is 

> c„ (46) 

The theory presented in this paper gives the scaling and 
dispersion for both ß and 7, which are related through 
nonlinear Kramers-Krönig relations. Inserting the func- 
tional forms of ß and 7 given here gives the frequency 
dependence for the all-optical switching requirement: 

hu \G2(hw/Eg)\ 

E 
(47) -,.    /r.    > 2ircsw. 

g   E2(hu/Eg) 

Note that (47) has no explicit material dependence since 
it is only a function of the ratio hw/Ev Thus, although 
n2 can be enhanced by using smaller gap materials, this 
does not necessarily improve the conditions for switch- 
ing. The left-hand side of (47) is plotted in Fig. 8. In the 
same figure, we also show the experimentally measured 
values for this parameter |2TT7//3X| for some semicon- 
ductors using the n2 values measured here and our 2PA 
coefficients from [11]. We note that there is a range of 
optical frequencies where this quantity becomes too small 
for optical switching, which is given approximately by 
0.6 < hu/Eg < 0.9. This region is centered around the 
point where there is a change of sign in n2, covering most 
of the range of frequencies where 2PA is observed. 
Therefore, given a certain wavelength of operation, this 
immediately excludes certain materials from considera- 
tion for all-optical switching. This was first noted by 
Stegeman et al. [50]. DeLong and Stegeman [52] recently 
used the results of [2], which only included the 2PA con- 
tribution to 7, to give a similar requirement for all-optical 
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switching. Our result ignores free-carrier absorption and 
refraction, exciton effects, and linear absorption which 
may further restrict or enhance the choice of material. 

This result can also be extended to other applications 
for nonlinear optics. For instance, 2PA has been a prob- 
lem in the observation of spatial optical solitons based on 
the electronic Kerr effect [53]. We can use the above re- 
sult as a rule of thumb in determining for what material/ 
frequency combination 2PA would cause problems for 
nonlinear refractive applications. 

VI. CONCLUSIONS 

We have presented a simple two-band model calcula- 
tion that gives a universal bandgap scaling and dispersion 
of the electronic Kerr effect in solids. This simple model, 
for the first time, draws a direct relationship between the 
nonlinear refractive index n2 and its nonlinear absorptive 
counterparts, namely, two-photon absorption, Raman 
transitions, and the ac Stark effect. We have also pre- 
sented measurements of the bound electronic nonlinear 
refractive index for various materials beneath the band 
edge. Several new data, along with previously published 
data, are compared to this theory, and remarkable agree- 
ment is observed. 

A wide range of theoretical papers exists where nonlin- 
ear absorption is calculated by means of transition rates. 
We used a nonlinear Kramers-Krönig transformation ap- 
proach to obtain the nonlinear refraction in terms of this 
electronic nonlinear absorption because this method cir- 
cumvents a direct calculation of the complex nonlinear 
susceptibility. However, it is necessary to know the non- 
degenerate absorption in order to perform the calculation 
(or refraction in the equivalent converse expression). That 
is, we need expressions for the nonlinear absorption at all 
frequencies w, when an optical field o>2 is applied. This 
can be thought of as a pump-probe spectrum where, in 
the present convention, co2 would be the pump frequency 
and ü>! the variable probe frequency. We calculated this 
nondegenerate nonlinear absorption using a simple two- 
band model for a direct gap semiconductor. The next stage 
of complexity would be to do the same calculation for the 
Kane four-band model of a semiconductor. It was neces- 
sary to include transitions over all frequencies so that the 
Raman and Stark shift terms are included, as well as two- 
photon absorption. 

We performed the Kramers-Krönig integral on the non- 
degenerate nonlinear absorption to obtain analytic expres- 
sions for the nonlinear self-refraction. In this calculation, 
we set the two frequencies in the nonlinear refraction equal 
to determine self-refraction, but in general the nondegen- 
erate refraction can also be obtained, i.e., the change in 
refractive index seen by the light of frequency w when the 
light of frequency Q is present. 

Comparing the experimentally measured values of n2 to 
the theoretical dispersion presented here, we find that good 
agreement is obtained over a wide range of frequencies 
and materials, with only one fitting paramter K' obtained 

from 2PA measurements in semiconductors. We note, 
however, that the theoretical value for this parameter is 
only about 40% smaller than this fitted value for K'. This 
is quite remarkable, and to some extent surprising as a 
simple two-band model has been used to calculate the 
nonlinear refraction with no account for the full-band 
structure or excitonic effects. However, as has been shown 
by earlier calculations of the 2PA coefficients in semicon- 
ductors [15], the effect of nonparabolicity of the bands 
becomes important only for small-gap semiconductors 
such as InSb. Also ignored in this model is the contribu- 
tion of higher bands (conduction or split-off valence 
bands), and hence the effect of their specific structure. 
This can be justified by noticing the strong inverse photon 
energy dependence of the nonlinear transition rate as 
shown in Table I. This is better illustrated in Fig. 3 where 
the change in absorption becomes progressively smaller 
at higher frequencies (hu/Eg > 1.5), and hence the near- 
gap transitions will dominate. Including the effect of 
higher bands in calculating the transition rate will contain 
terms involving high-energy photons, and therefore, it 
should have a negligible effect. 

The other important simplification in our model has 
been the exclusion of the coulomb interaction or excitonic 
enhancement. Earlier calculations of the excitonic effects 
on two-photon transition rates had indicated a significant 
enhancement near the two-photon resonance hw ~ Eg/2 
[15], [21]. For example, the underestimation of both n2 

and the 2PA coefficient ß of ZnTe at X = 1.06 /xm may 
well be due to this two-photon exciton resonance [11]. 
Similarly, for photon energies approaching the energy 
gap, an excitonic enhancement of the quadratic Stark ef- 
fect is expected. For example, nonlinear refraction can 
occur due to the ac Stark shift of an exciton resonance 
[54]. We also expect the contribution from the quadratic 
Stark effect to be relatively larger when a four-band model 
for a semiconductor is used since the density of the va- 
lence band states is larger, which also may lead to a better 
fit. Therefore, the deviation pf the measured n2 data on 
CdS (at 532 nm) and AlGaAs (at - 800 nm) from the pre- 
dicted values may be due to these other near-bandgap ef- 
fects. 

It is also remarkable that the theory gives a reasonable 
fit to the data for large-gap optical materials, as well as 
conventional semiconductors. However, it can be seen 
that the predicted value for n2 is consistently on the large 
side for these materials. This may be due to the fact that 
the absorption edge has been used to determine the direct 
bandgap. We find that for Ge, as expected, it is necessary 
to use the direct bandgap rather than the smaller indirect 
gap in order to obtain a satisfactory fit, and the same 
should be true for wide-gap solids. This is because the 
transitions involving the lower indirect gaps require 
phonon scattering, and thus they should have a smaller 
oscillator strength than direct interband transitions. Un- 
fortunately, the band structure of these materials is not 
well known. We have also used the mean value of Ep for 
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semiconductors in order to predict n2, and this parameter 
may also be quite different in other materials. We find that 
for the wide-gap solid data presented here, a better esti- 
mate for n2 is obtained by replacing the K' from the fit to 
the semiconductor 2PA data with a smaller value, which 
may be more appropriate for these wide-gap materials, as 
indicated in Fig. 5(a) and Table III. 

The change in sign of n2 at about hu/Eg = 0.7 is pre- 
dicted and observed. It is also demonstrated that the ex- 
pected E~A bandgap dependence holds true for a five or- 
der of magnitude variation in the modulus of n2. 

It is noted that the main contribution to the dispersion 
of n2 below the bandgap arises from the two-photon tran- 
sition term, with the Stark shift term becoming dominant 
close to the band edge. This partly explains the good fit 
obtained by using the quasi-nondegenerate two-photon 
absorption alone, as shown in a previous letter by the au- 
thors [2] 
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AND BAND-GAP SCALING 
OF N2 IN SOLIDS 

BY M. SHEIK-BAHAE, D.C. HUTCHINGS, 

D.J. HAGAN, AND E.W. VAN STRYLAND, 

CREOL,  UNIVERSITY OF CENTRAL FLORIDA 

Using the "Z-scan" technique,' which can separately and 
accurately measure nonlinear absorption (NLA) and non- 
linear refraction (NLR). two-photon absorption (2PA) and 
the bound electronic Kerr effect (n2) have been measured 
in a large number of inorganic solids.2 As a result of this 
large database and detailed characterization, a universal, 
predictive capability for both the NLA and NLR of solids 
has been developed over a range of band-gaps from 0.2 to 
10 eV. It is found that n, displays strong dispersion and sign 
reversal as Scu approaches the band-gap energy E . 

This universal dispersion and band-gap scaling law for 
i'..were calculated us...= .; ^..iiaeii-xruuig (KK) transfor- 
mation of the NLA spectrum.- The KK transformation re- 
lates nondegenerate NLR to the nondegenerate NL\ (e.g., 
a change in absorption at u>1 due to the presence of üJ2). To 
third order, 2PA, AC-Stark, and electronic Raman effects 
contribute to this NLA and were calculated using a"dressed" 
state Keldysh formalism from a two parabolic band model. 
The resulting n2 varies as G^n^E4,-where n0 is the linear 
index and G2 is a dimensionless dispersion function that is 
an analytical expression, depending only on the ratio äW/E . 

The significant features of this theory are depicted in 
the top part of the figure, where our Z-scan experimental 
data, scaled by the predicted E 4 dependence, are com- 
pared with theory. Also included are measurements of. 
Ref.3 for large gap dielectrics. As evident from the disper- 
sion curve, a, is positive and nondispersive at long wave- 
lengths (small Aw/E ). A resonant enhancement due to 2PA 
is exhibited at half the band-gap energy where n2 reaches 
its positive maximum value and then exhibits anomalous 
dispersion, becoming negative near the band edge due 
primarily to the band-gap resonance of the AC-Stark effect. 

The remarkable agreement between this simple theory 
and the vast amount of experimental data that spans over 
four orders of magnitude in n2, points out the simple and 
fundamental physics underlying the fast electronic nonlin- 
ear processes in bulksemiconductors and largegap dielec- 
trics. In addition, the KK transformation of the NLA spec- 
trum yields, for the first time, a unified relationship be- 
tween n2 and 2PA, AC-Stark, and electronic Raman effects.2 

Such a relationship is crucial in evaluating a generalized 
figure of merit for allToptical switching applications where 
2PA imposes serious limitations.4 

Given both the 2PA coefficient ß that scales as n0
2Eg

3and 
n2, one can calculate the all-optical switching figure-of 
merit T = w!n2j/ßc.4 The theory shows that T is material 
independent, being only a function of Atü/Eg as shown in the 
lower part of the figure. Also shown are data obtained 
through a combination of ß and n2 measurements, verify- 
ing this material independence. For efficient switching, T 
must exceed some value (typically of the order of unity) 
that weakly depends on the particular switching scheme. 
As seen in the lower part of the figure, for most applica- 
tions, switching must be performed at frequencies below 
the 2PA edge. 
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Sensitive Measurement of Optical Nonlinearities 
Using a Single Beam 

MANSOOR SHEIK-BAHAE, MEMBER, IEEE, ALI A. SAID, TAI-HUEI WEI, 
DAVID J. HAGAN, MEMBER, IEEE AND E. W. VAN STRYLAND, SENIOR MEMBER, IEEE 

Abstract—We report a sensitive single-beam technique for measur- 
ing both the nonlinear refractive index and nonlinear absorption coef- 
ficient for a wide variety of materials. We describe the experimental 
details and present a comprehensive theoretical analysis including cases 
where nonlinear refraction is accompanied by nonlinear absorption. 
In these experiments, the transmittance of a sample is measured 
through a finite aperture in the far field as the sample is moved along 
the propagation path (;) of a focused Gaussian beam. The sign and 
magnitude of the nonlinear refraction are easily deduced from such a 
transmittance curve (Z-scan). Employing this technique, a sensitivity 
of better than X/300 wavefront distortion is achieved in n2 measure- 
ments of BaFj using picosecond frequency-doubled NdrYAG laser 
pulses. In cases where nonlinear refraction is accompanied by nonlin- 
ear absorption, it is possible to separately evaluate the nonlinear re- 
fraction as well as the nonlinear absorption by performing a second Z 
scan with the aperture removed. We demonstrate this method for ZnSe 
at 532 nm where two-photon absorption is present and n2 is negative. 

I. INTRODUCTION 

RECENTLY we reported a single-beam method for 
measuring the sign and magnitude of n2 that has a 

sensitivity comparable to interferometric methods [1]. 
Here, we describe this method in detail and demonstrate 
how it can be applied and analyzed for a variety of ma- 
terials. We also extend this method to the measurement 
of nonlinear refraction in the presence of nonlinear ab- 
sorption. Thus, this method allows a direct measurement 
of the nonlinear absorption coefficient. In addition, we 
present a simple method to minimize parasitic effects due 
to the presence of linear sample inhomogeneities. 

Previous measurements of nonlinear refraction have 
used a variety of techniques including nonlinear interfer- 
ometry [2], [3], degenerate four-wave mixing [4], nearly 
degenerate three-wave mixing [5], ellipse rotation [6], and 
beam distortion measurements [7], [8]. The first three 
methods, namely, nonlinear interferometry and wave 
mixing, are potentially sensitive techniques, but all re- 
quire relatively complex experimental apparatus. Beam 
distortion measurements, on the other hand, are relatively 
insensitive and require detailed wave propagation analy- 
sis. The technique reported here is based on the principles 
of spatial beam distortion, but offers simplicity as well as 
very high sensitivity. 

Manuscript received November 6. 1989. This work was supported by 
the National Science Foundation under Gram ECS-8617066. the DARPA/ 
CNVEO. and the Florida High Technology and Industry Council. 

The authors are with the Center for Research in Electro-Optics and La- 
sers (CREOL). University of Central Florida. Orlando. FL 32826. 

IEEE Log Number 8933825. 

We will describe this simple technique, referred to as a 
"Z-scan," in Section II. Theoretical analyses of Z-scan 
measurements are given in Section III for a "thin" non- 
linear medium. It will be shown that for many practical 
cases, nonlinear refraction and its sign can be obtained 
from a simple linear relationship between the observed 
transmittance changes and the induced phase distortion 
without the need for performing detailed calculations. In 
Section IV, we present measurements of nonlinear refrac- 
tion in a number of materials such as CS2 and transparent 
dielectrics at wavelengths of 532 nm, 1.06 /mi, and 10.6 
p.m. In CS2 at 10 /tm, for example, both thermooptical 
and reorientational Kerr effects were identified using na- 
nosecond and picosecond pulses, respectively. Further- 
more, in Section V, we will consider the case of samples 
having a significant absorptive nonlinearity as well as a 
refractive one. This occurs' in, for example, two-photon 
absorbing semiconductors. It will be shown that both ef- 
fects can easily be separated and measured in the Z-scan 
scheme. We also show how effects of linear sample in- 
homogeneities (e.g., bulk index variations) can be effec- 
tively removed from the experimental data. 

II. THE Z-SCAN TECHNIQUE 

Using a single Gaussian laser beam in a tight focus ge- 
ometry, as depicted in Fig. 1, we measure the transmit- 
tance of a nonlinear medium through a finite aperture in 
the far field as a function of the sample position z mea- 
sured with respect to the focal plane. The following ex- 
ample will qualitatively elucidate how such a trace (Z- 
scan) is related to the nonlinear refraction of the sample. 
Assume, for instance, a material with a negative nonlin- 
ear refractive index and a thickness smaller than the dif- 
fraction length of the focused beam (a thin medium). This 
can be regarded as a thin lens of variable focal length. 
Starting the scan from a distance far away from the focus 
(negative z), the beam irradiance is low and negligible 
nonlinear refraction occurs; hence, the transmittance 
[D2/D] in Fig. 1) remains relatively constant. As the 
sample is brought closer to focus, the beam irradiance in- 
creases, leading to self-lensing in the sample. A negative 
self-lensing prior to focus will tend to collimate the beam, 
causing a beam narrowing at the aperture which results in 
an increase in the measured transmittance. As the scan in 
z continues and the sample passes the focal plane to the 
right (positive z), the same self-defocusing increases the 

0018-9197/90/0400-0760S01.00 © 1990 IEEE 
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SAMPLE       APERTURE 

D1 

Fig. 1. The Z-sean experimental apparatus in which the ratio D2/DI is 
recorded as a function of the sample position z. 

beam divergence, leading to beam broadening at the ap- 
erture, and thus a decrease in transmittance. This suggests 
that there is a null as the sample crosses the focal plane. 
This is analogous to placing a thin lens at or near the fo- 
cus, resulting in a minimal change of the far-field pattern 
of the beam. The Z-scan is completed as the sample is 
moved away from focus (positive z) such that the trans- 
mittance becomes linear since the irradiance is again low. 
Induced beam broadening and narrowing of this type have 
been previously observed and explained during nonlinear 
refraction measurements of some semiconductors [9], 
[10]. A similar technique was also previously used to 
measure thermally induced beam distortion by chemicals 
in solvents [11]. 

A prefocal transmittance maximum (peak) followed by 
a postfocal transmittance minimum (valley) is, therefore, 
the Z-scan signature of a negative refractive nonlinearity. 
Positive nonlinear refraction, following the same anal- 
ogy, gives rise to an opposite valley-peak configuration. 
It is an extremely useful feature of the Z-scan method that 
the sign of the nonlinear index is immediately obvious 
from the data, and as we will show in the following sec- 
tion, the magnitude can also be easily estimated using a 
simple analysis for a thin medium.    . 

In the above picture describing the Z-scan, one must 
bear in mind that a purely refractive nonlinearity was con- 
sidered assuming that no absorptive nonlinearities (such 
as multiphoton or saturation of absorption) are present. 
Qualitatively, multiphoton absorption suppresses the peak 
and enhances the valley, while saturation produces the 
opposite effect. The sensitivity to nonlinear refraction is 
entirely due to the aperture, and removal of the aperture 
completely eliminates the effect. However, in this case, 
the Z-scan will still be sensitive to nonlinear absorption. 
Nonlinear absorption coefficients can be extracted from 
such "open" aperture experiments. We will show in Sec- 
tion V how the data from the two Z-scans, with and with- 
out the aperture, can be used to separately determine both 
the nonlinear absorption and the nonlinear refraction. We 
will demonstrate this data analysis on semiconductors 
where two-photon absorption and self-refraction are 
simultaneously present. 

III. THEORY 

Much work has been done in investigating the propa- 
gation of intense laser beams inside a nonlinear material 
and the ensuing self-refraction [12], [13]. Considering the 
geometry given in Fig. 1, we will formulate and discuss 
a simple method for analyzing the Z-scan data based on 
modifications of existing theories. 

In general, nonlinearities of any order can be consid- 
ered; however, for simplicity, we first examine only a cu- 
bic nonlinearity where the index of refraction n is ex- 
pressed in terms of nonlinear indexes /72(esu) or 
7 (m2/W) through 

n-, ,    .2 
"o + J IE |   = n0 + yl (1) 

where n0 is the linear index of refraction, E is the peak 
electric field (cgs), and /denotes the irradiance (MKS) of 
the laser beam within the sample. (n2 and y are related 
through the conversion formula /i2(esu) = 
(cn0/40T)y(m2/W) where c(m/s) is the speed of light 
in vacuum.) Assuming a TEMQO Gaussian beam of beam 
waist radius vv0 traveling in the +z direction, we can write 
£as 

E(z, r, t) = E0(t) 

• exp    - 
ikr2 

w2(Z)     2R(z) 
-!■*(:./) (2) 

where w\z) = w§( 1 + z2/zl) is the beam radius, R(z) 
= z(l + zl/z2) is the radius of curvature of the wave- 
front at z, Zo = fcvvo/2 is the diffraction length of the beam, 
k = 2x/X is the wave vector, and X is the laser wave- 
length, all in free space. E0(t) denotes the radiation elec- 
tric field at the focus and contains the temporal envelope 
of the laser pulse. The e~'ö(z-0 term contains all the ra- 
dially uniform phase variations. As we are only concerned 
with calculating the radial phase variations A<j>(r), the 
slowly varying envelope approximation (SVEA) applies, 
and all other phase changes that are uniform in r are ig- 
nored. 

If the sample length is small enough that changes in the 
beam diameter within the sample due to either diffraction 
or nonlinear refraction can be neglected, the medium is 
regarded as "thin," in which case the self-refraction pro- 
cess is referred to as "external self-action" [14]. For lin- 
ear diffraction, this implies that L « z0, while for non- 
linear refraction, L « zo/A<£(0). In most experiments 
using the Z-scan technique, we find that the second cri- 
terion is automatically met since A</> is small. Addition- 
ally, we have found that the first criterion for linear dif- 
fraction is more restrictive than it need be, and it is 
sufficient to replace it with L < ZQ. We have determined 
this empirically by measuring n2 in the same material 
using various zo's and the same analysis and have ob- 
tained the same value for n2. Such an assumption simpli- 
fies the problem considerably, and the amplitude V/ and 
phase <(> of the electric field as a function of z' are now 
governed in the SVEA by a pair of simple equations: 

and 

dA<f>          , v 
(3) 

57--■<')/ (4) 
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where z' is the propagation depth in the sample and a(I), 
in general, includes linear and nonlinear absorption terms. 
Note that z' should not be confused with the sample po- 
sition z. In the case of a cubic nonlinearity and negligible 
nonlinear absorption, (3) and (4) are solved to give the 
phase shift A0 at the exit surface of the sample which 
simply follows the radial variation of the incident irradi- 
ance at a given position of the sample z. Thus, 

A0(z, r, t) = A<t>0{z, t) exp    - 
2r2 

w2U) 
with 

A<t>0(z, 0 = 
A$o(0 

(5a) 

(5b) 
1 + z2/zi 

A$0(0, the on-axis phase shift at the focus, is defined as 

A$0(t) = kAn0(t) Lc{! (6) 

where Leff = (1 — e~aL)/a, with L the sample length 
and a the linear absorption coefficient. Here, An0 = 
7/0(r) with 70(r) being the on-axis irradiance at focus 
(i.e., z = 0). We ignore Fresnel reflection losses such 
that, for example, 7o(0 is the irradiance within the sam- 
ple. 

The complex electric field exiting the sample Ee now 
contains the nonlinear phase distortion 

Et{r, z, t) = E(z, r, t) e^'2 e
!^-r-'\        (7) 

By virtue of Huygen's principle, one can obtain the far- 
field pattern of the beam at the aperture plane through a 
zeroth-order Hankel transformation of £, [15]. We will 
follow a more convenient treatment applicable to Gauss- 
ian input beams which we refer to as the "Gaussian de- 
composition" (GD) method given by Weaire et al. [14], 
in which they decompose the complex electric field at the 
exit plane of the sample into a summation of Gaussian 
beams through a Taylor series expansion of the nonlinear 
phase term eiAölz-r',) in (7). That is, 

[iA<f>0(z, t)]"' 
eiA4(z.r.t)   _     2 

m = 0 

-2mrV «•=<;) 

ml 
(8) 

Each Gaussian beam can now be simply propagated to the 
aperture plane where they will be resummed to recon- 
struct the beam. When including the initial beam curva- 
ture for the focused beam, we derive the resultant electric 
field pattern at the aperture as 

Ea(r,t) = E(z,r = 0,t)e-"2   ^   L '* -aL/2  2 
ml 

W,nO 

ihr 
2R„ 

Defining d as the propagation distance in free space from 
the sample to the aperture plane and g = 1 + d/R(z), 
the remaining parameters in (9) are expressed as 

w M      2m + 1 

d,„ = 
kw «i0 

M'm   =   W'< 

R,n  =  d 

riO 

1 

r ,   d-] 
1         d„,\ 

8 
1 

g2 + d 2/d%\ 

-1-1 

and 

Om = tan" 
d/dm 

8 

The expression given by (9) is a general case of that de- 
rived by Weaire et al. [15] where they considered a col- 
limated beam (/? = 00) for which g = 1. We find that 
this GD method is very useful for the small phase distor- 
tions detected with the Z-scan method since only a few 
terms of the sum in (9) are needed. The method is also 
easily extended to higher order nonlinearities. 

The transmitted power through the aperture is obtained 
by spatially integrating E0(r, t) up to the aperture radius 

o  \Ea(r, t)\2 rdr (10) 

where e0 is the permittivity of vacuum. Including the pulse 
temporal variation, the normalized Z-scan transmittance 
T(z) can be calculated as 

Uz) = 

SOD 

Pr(A$0(0) dt 
— 00 

(      P-t{t) dt 
J —OS 

(11) 

where P,(r) = irwll0(t)/2 is the instantaneous input 
power (within the sample) and 5=1— exp( — 2r\/w\) 
is the aperture linear transmittance, with wa denoting the 
beam radius at the aperture in the linear regime. 

We first consider an instantaneous nonlinearity and a 
temporally square pulse to illustrate the general features 
of the Z-scan. This is equivalent to assuming CW radia- 
tion and the nonlinearity has reached the steady state. The 
normalized transmittance T(z) in the far field is shown in 
Fig. 2 for A$0 = ±0.25 and a small aperture (5 = 0.01). 
They exhibit the expected features, namely, a valley-peak 
(v-p) for the positive nonlinearity and a peak-valley 
(p-v) for the negative one. For a given A<i>0' the mag- 
nitude and shape of T(z) do not depend on the wavelength 
or geometry as long as the far-field condition for the ap- 
erture plane (d » c0) is satisfied. The aperture size S, 
however, is an important parameter since a large aperture 
reduces the variations in T(z). This reduction is more 
prominent in the peak where beam narrowing occurs and 
can result in a peak transmittance which cannot exceed (1 
- S). Needless to say, for very large aperture or no ap- 
erture (5 = 1), the effect vanishes and T(z) = 1 for all 
z and A$0. For small | A$0|, the peak and valley occur 
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Fig. 2. Calculated Z-scan iransmittancc curves for a cubic nonlinearity with 
either polarity and a small aperture (5 = 0.01). 

at the same distance with respect to focus, and for a cubic 
nonlinearity, this distance is found to be =0.86 ZQ as 
shown in the Appendix. With larger phase distortions 
(|A<i>0| > 1), numerical evaluation of (9)-(ll) shows 
that this symmetry no longer holds and peak and valley 
both move toward ±z for the corresponding sign of non- 
linearity ( ± A$0) such that their separation remains nearly 
constant, given by 

AZ__„ = 1.7 z„. (12) 

We can define an easily measurable quantity ATp_,, as the 
difference between the normalized peak and valley trans- 
mittance: Tp-Tv. The variation of this quantity as a func- 
tion of | A$01, as calculated for various aperture sizes, is 
illustrated in Fig. 3. These curves exhibit some useful 
features. First, for a given order of nonlinearity, they can 
be considered universal. In other words, they are inde- 
pendent of the laser wavelength, geometry (as long as the 
far-field condition is met), and the sign of nonlinearity. 
Second, for all aperture sizes, the variation of ATp.v is 
found to be almost linearly dependent on |A$0|. As 
shown in the Appendix for small phase distortion and 
small aperture (5 = 0), 

AT„.V = 0.406|A#o|- (13a) 

Numerical calculations show that this relation is accurate 
to within 0.5 percent for | A$0| < ir. As shown in Fig. 
3, for larger apertures, the linear coefficient 0.406 de- 
creases such that with 5 = 0.5, it becomes =0.34, and 
at S = 0.7, it reduces to =0.29. Based on a numerical 
fitting, the following relationship can be used to include 
such variations within a ±2% accuracy: 

s0.25 ATp.v = 0.406(1 - S) ASn 

for   IA$0| < ir. (13b) 

The implications of (13a) and (13b) are quite promising 
in that they can be used to readily estimate the nonlinear 
index (n2) with good accuracy after a Z-scan is per- 
formed. What is most intriguing about these expressions 
is that they reveal the highly sensitive nature of the Z-scan 

L  o.« 

1    V/ i s-°/ / 

S=0.5 - 
/x/ 

///,   S=0.7    I 

r      i        i        1 0.0 
0 n/2 7, 

|4»ol 
Fig. 3. Calculated A 7",.,. as a function of the phase shift at the focus (A*0)- 

The sensitivity, as indicated by the slope of the curves, decreases slowly 
for larger aperture sizes (5 > 0). 

technique. For example, if our experimental apparatus and 
data acquisition systems are capable of resolving trans- 
mittance changes ATp.„ of = 1 %, we will be able to mea- 
sure phase changes corresponding to less than X/250 
wavefront distortion. Achieving such sensitivity, how- 
ever, requires relatively good optical quality of the sam- 
ple under study. We describe in the experimental Section 
IV a means to minimize problems arising from poor op- 
tical quality samples. 

We can now easily extend the steady-state results to 
include transient effects induced by pulsed radiation by 
using the time-averaged index change < An0(t) > where 

Ano(t) I0(t) dt 

(An0(r)) = 

1 J —c 

(14) 
/0(f) dt 

The time-averaged <A$0(r)> is related to <A/i0(r)> 
through (6). With a nonlinearity having instantaneous re- 
sponse and decay times relative to the pulsewidth of the 
laser, one obtains for a temporally Gaussian pulse 

<A«o(0> = W^2 (15) 
where A/i0 now represents the peak-on-axis index change 
at the focus. For a cumulative nonlinearity having a decay 
time much longer than the pulsewidth (e.g., thermal), the 
instantaneous index change is given by the following in- 
tegral: 

An, M = A\_ I0(t')dt' (16) 

where A is a constant which depends on the nature of the 
nonlinearity. If we substitute (16) into (14), we obtain a 
fiuence averaging factor of 1/2. That is, 

<Ano(r)> =\AF (17) 
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where F is the pulse fluence at focus within the sample. 
Interestingly, the factor of 1/2 is independent of the tem- 
poral pulse shape. 

These equations were obtained based on a cubic non- 
linearity (i.e., a x(3) effect). A similar analysis can be per- 
formed for higher order nonlinearities. Regardless of the 
order of the nonlinearity, the same qualitative features are 
to be expected from the Z-scan analysis. In particular, to 
quantify such features, we examined the effects of a x(5> 

nonlinearity which can be represented by a nonlinear in- 
dex change given as A/z = til2. Nonlinearities encoun- 
tered in semiconductors where the index of refraction is 
altered through charge carriers generated by two-photon 
absorption (i.e., a sequential x(3):x0> effect) appear as 
such a fifth-order nonlinearity [20]. 

For a fifth-order effect, assuming a thin sample and 
using the GD approach, we find that the peak and valley 
are separated by =1.2 z0 as compared to 1.7 z0 obtained 
for the third-order effect. Furthermore, the calculations 
also show that for a small aperture (S = 0), 

ATp_„ = 0.21 |A*0| (18) 

where, in this case, the phase distortion is given by 

A$0 = W 
1 - e -2aL 

2a. 
(19) 

Calculations also indicate that the aperture size depen- 
dence of (18) can be approximated by multiplying the 
right-hand term by (1 - S )0-25, as was the case for a third- 
order nonlinearity. 

As will be shown in Section V, we can also determine 
the nonlinear refraction in the presence of nonlinear ab- 
sorption by separately measuring the nonlinear absorption 
in a Z-scan performed with the aperture removed. Within 
approximations elaborated in Section V, a simple division 
of the curves obtained from the two Z-scans will give the 
nonlinear refraction. 

IV. EXPERIMENTAL RESULTS 

We examined the nonlinear refraction of a number of 
materials using the Z-scan technique. Fig. 4 shows a Z- 
scan of a 1 mm thick cuvette with NaCl windows filled 
with CS2 using 300 ns TEA C02 laser pulses having an 
energy of 0.85 mJ. The peak-valley configuration of this 
Z-scan is indicative of a negative (self-defocusing) non- 
linearity. The solid line in Fig. 4 is the calculated result 
using < A$0> = —0.6, which gives an index change of 
<A/z0> = — l x 10"3. As mentioned earlier, such de- 
tailed theoretical fitting is not necessary for obtaining 
<An0> (only ATp.„ is needed). The defocusing effect 
shown in Fig. 4 is attributed to a thermal nonlinearity re- 
sulting from linear absorption of CS2 (a = 0.22 cm"1 at 
10.6 ftm). The rise time of a thermal lens in a liquid is 
determined by the acoustic transit time T = w0/vs where 
vs is the velocity of sound in the liquid [17]. For CS2 with 
vs = 1.5 x 103 cm/s and having w0 = 60 /im, we obtain 
a rise time of =40 ns, which is almost an order of mag- 
nitude smaller than the TEA laser pulsewidth. Further- 
more, the relaxation of the thermal lens, governed by 
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Fig. 4. Measured Z-scan of a I mm thick CS: cell using 300 ns pulses at 
X = 10.6 ^m indicating thermal self-defocusing. The solid line is the 
calculated result with < A*0> = -0.6 and 60% aperture {S = 0.6). 

thermal diffusion, is on the order of 100 ms [17J. There- 
fore, we regard the nonuniform heating caused by the 300 
ns pulses as quasi-steady state, in which case, from (17), 
the average on-axis nonlinear index change at focus can 
be determined in terms of the thermo-optic coefficient 
dn/dT as 

dn   F0a 
<A/io) = — 

dTlpC,, (20) 

where F0 is the fluence, p is the density, C,, is the specific 
heat, and 1 /2 denotes the fluence averaging factor. With 
the known value of pC„ = 1.3 J/K • cm3 for CS2, we 
deduce dn/dT = -(8.3 ± 1.0) x 10"4 °C"\ which is 
in good agreement with the reported value of —8 X 10-4 

°C_1 [16]. 
With ultrashort pulses, nonlocal nonlinearities such as 

thermal or electrostriction are no longer significant. Par- 
ticularly, in CS2, the molecular reorientational Kerr effect 
becomes the dominant mechanism for nonlinear refrac- 
tion. CS2 is frequently used as a standard reference non- 
linear material [18], [19]. We have used picosecond pulses 
at 10.6, 1.06, and 0.53 /tm to measure n2 in CS2. We 
obtain the same value of «2, within errors, at all three 
wavelengths, (1.5 ±0.6) x 10"" esu at 10.6 /im, (1.3 
±0.3) x 10" "esu at 1.06/im, and (1.2 ±0.2) x 10~" 
esu at 0.53 /tm. The external self-focusing arising from 
the Kerr effect in CS2 is shown in Fig. 5 where a Z-scan 
of a 1 mm cell using 27 ps (FWHM) pulses focused to a 
beam waist w0 of 25 /*m from a frequency-doubled 
Nd:YAG laser is illustrated. Its valley-peak configura- 
tion indicates the positive sign of n2. With AT,,.,, = 0.24, 
and using (13b) with a 40% aperture (S = 0.4), one read- 
ily obtains a < An0> = 5.6 x 10~5. Using the peak irra- 
diance of 2.6 GW/cm2, this value of < An0 > corresponds 
to an n2 = (1.2 ± 0.2) x 10"" esu. The main source of 
uncertainty in the value of n2 is the absolute measurement 
of the irradiance. In this paper, all irradiance values 
quoted are values within the sample, i.e., including front 
surface reflection losses. A plot of ATp.v versus peak laser 
irradiance as measured from various Z-scans on the same 
CS2 cell is shown in Fig. 6. The linear behavior of this 
plot follows (13) as derived for a cubic nonlinearity. 
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Fig. 5. Measured Z-scan of a 1 mm thick CS2 cell using 27 ps pulses at X 
= 532 nm. It depicts the self focusing effect due to the reoricntational Kerr 
effect. 
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Fig. 6. AT,.,, in percent as a function of the peak irradianee from the Z- 
scan data of CS-. at 532 nm. indicative of the reorientalional Kerr effect. 

Transparent dielectric window materials have relatively 
small nonlinear indexes. Recently, Adair et al. [21] have 
performed a careful study of the nonlinear index of re- 
fraction of a large number of such materials in a nearly 
degenerate three-wave mixing scheme at X = 1.06 /im. 
Using the Z-scan technique, we examined some of these 
materials at 532 nm. For example, the result for a ran- 
domly oriented sample of BaF2 (2.4 mm thick) is shown 
in Fig. 7, using the same beam parameters as for CS2. 
This Z-scan was obtained with a 50% aperture and at a 
pulse energy of =28 pJ corresponding to a peak irradi- 
anee (70) of = 100 GW/cm2. A low irradianee (4 yJ) Z- 
scan of the same sample was shown in [1] to have a phase 
distortion resolution of better than X/300. (The pulse en- 
ergy for this Z-scan was misquoted as 2 /J in [1].) Such 
a resolution is also shown in Fig. 7 by the arrows indi- 
cating the corresponding transmittance variation equal to 
the maximum scatter in the Z-scan data. For laser systems 
having better amplitude and pulsewidth stability, the sen- 
sitivity will be correspondingly improved. 

Aside from the statistical fluctuations of the laser irra- 
dianee, surface imperfections or wedge in the sample may 
lead to systematic transmittance changes with z that could 
mask the effect of nonlinear refraction. We found, how- 
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fig. 7. Measured Z-scan of a 2.4 mm thick BaF: sample using 27 ps pulses 
at X = 532 nm. indicating the self-focusing due to the electronic Kerr 
effect. The solid line is the calculated result with a peak A*0 = 0.73. 
The separation of the arrows corresponds to an induced phase distortion 
of X/300. 

ever, that such "parasitic" effects may be substantially 
reduced by subtracting a low irradianee background Z-scan 
from the high irradianee scan, after normalizing each scan. 
Fig. 8 shows Z-scan data before and after subtraction in 
a particularly poor 1 mm thick sample of ZnSe. A simple 
computer simulation of this process, assuming that the 
surface imperfections do not disturb the circular symme- 
try of the beam or cause any beam steering, indicated that 
background subtraction indeed recovers the original 
ATp.,. arising from the nonlinear refraction effect, even 
for quite large surface disturbances, that is, A<j>s of up to 

Returning to the Z-scan of Fig. 7, we obtain n2 — (0.9 
± 0.15) x 10-3 esu for BaF2 at 532 nm, which is in close 
agreement with our low irradianee measurement of = 
(0.8 + 0.15) x 10"13 esu as reported in [1]. This com- 
pares well with other reported values of 0.7 x 10"l3 esu 
[21] and 1.0 x 10"13 esu [3] as measured at 1.06 pm 
using more complex techniques of nearly degenerate 
three-wave mixing and time-resolved nonlinear interfer- 
ometry, respectively. Similarly for MgF2, we measure n2 

= 0.25 x 10"l3 esu at 532 nm as compared to the re- 
ported value of 0.32 x 10"13 esu at 1.06 /im for this ma- 
terial as given in [21]. Since the transparency region of 
these materials extends from mid-IR to UV, the disper- 
sion in n2 between 1 and 0.5 y.m is expected to be negli- 
gible. It should be noted that the n2 values extracted from 
the Z-scans are absolute rather than relative measure- 
ments. If the beam parameters are not accurately known, 
however, it should be possible to calibrate the system by 
using a standard nonlinear material such as CS2. 

V. EFFECTS OF NONLINEAR ABSORPTION 

We now describe a method by which the Z-scan tech- 
nique can be used to determine both the nonlinear refrac- 
tive index and the nonlinear absorption coefficient for ma- 
terials that show such nonlinearities simultaneously. Large 
refractive nonlinearities in materials are commonly asso- 
ciated with a resonant transition which may be of single 
or multiphoton nature. The nonlinear absorption in such 
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Fig. 8. (a) Measured 2-scans of a 1 mm thick ZnSe sample with poor sur- 
face quality for low irradiance (diamonds) showing the background and 
high irradiance (+). (b) Net transmittance change versus z after the back- 
ground subtraction of the data in (a). 

materials arising from either direct multiphoton absorp- 
tion, saturation of the single photon absorption, or dy- 
namic free-carrier absorption have strong effects on the 
measurements of nonlinear refraction using the Z-scan 
technique. Clearly, even with nonlinear absorption, a Z- 
scan with a fully open aperture (S = 1) is insensitive to 
nonlinear refraction (thin sample approximation). Such Z- 
scan traces with no aperture are expected to be symmetric 
with respect to the focus (z = 0) where they have a min- 
imum transmittance (e.g., multiphoton absorption) or 
maximum transmittance (e.g., saturation of absorption). 
In fact, the coefficients of nonlinear absorption can be 
easily calculated from such transmittance curves. 

Here, we analyze two-photon absorption (2PA), which 
we have studied in semiconductors with Eg < 2 ha < 2Eg 

where Eg is the bandgap energy and u is the optical fre- 
quency [22]. The third-order nonlinear susceptibility is 
now considered to be a complex quantity: 

(3) (3)    ,    .   (3) 
X     = XR   + iXi (21) 

where the imaginary part is related to the 2PA coefficient 
ß through 

(3)      nötpC- 
Xi   = ß (22a) 

and the real part is related to y through 

XR   = 2nle0cy. (22b) 

Here, we are concerned with the low excitation regimes 
where the free-carrier effects (refractive and absorptive) 
can be neglected. In view of this approximation, (3) and 

(4) will be reexamined after the following substitution: 

«(/) = a + ßl. (23) 

This yields the irradiance distribution and phase shift of 
the beam at the exit surface of the sample as 

Hz. r t) e~aL 

h{z, r, t) =   U; '[I] \ ,, (24) 

and 

1 + q(z, r, t) 

h L<t>{z, r,t) = jln[l + q(z, r, /)] (25) 

where q(z, r, t) = ßl(z, r, t) Leff (again, z is the sample 
position). Combining (24) and (25), we obtain the com- 
plex field at the exit surface of the sample to be [23] 

Ee = E(z, r, t) e-"1'1 (1 + q)<*t/»-W\     (26) 

Equation (26) reduces to (7) in the limit of no two-photon 
absorption. In general, a zeroth-order Hankel transform 
of (26) will give the field distribution at the aperture which 
can then be used in (10) and (11) to yield the transmit- 
tance. For | q\ < 1,.following a binomial series expan- 
sion in powers of q, (26) can be expressed as an infinite 
sum of Gaussian beams similar to the purely refractive 
case described in Section III as follows: 

Et = E(z, r, t) e-aL/2  S SlbJjjL 
r        *\        m=o       ml 

-      1/2-nH^J n   (iky/ß 
n = 0 

(27) 

ml n=0 \ 

where the Gaussian spatial profiles are implicit in q(z, r, 
r) and £(z, r, r). The complex field pattern at the aperture 
plane can be obtained in the same manner as before. The 
result can again be represented by (9) if we substitute the 
(iA<t>0(z, t))m/ml terms in the sum by 

with^ = 1. Note that the coupling factor ß/2ky is the 
ratio of the imaginary to real parts of the third-order non- 
linear susceptibility x(3)- 

The Z-scan transmittance variations can be calculated 
following the same procedure as described previously. As 
is evident from (28), the absorptive and refractive contri- 
butions to the far-field beam profile and hence to the Z- 
scan transmittance are coupled. When the aperture is re- 
moved, however, the Z-scan transmittance is insensitive 
to beam distortion and is only a function of the nonlinear 
absorption. The total transmitted fluence in that case (5 
= 1) can be obtained by spatially integrating (24) without 
having to include the free-space propagation process. In- 
tegrating (24) at z over r, we obtain the transmitted power 
P(z, t) as follows: 

P(z, t) = P,(t) e 
^ln[l + q0{z, Q] 

9o(z. 0 
(29) 

where q0(z,t) = ßI0(t)Lt({/( 1 + z2/zl) and P,(t) was 
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defined in (11). For a temporally Gaussian pulse, (29) can 
be time integrated to give the normalized energy trans- 
mittance 

T{z,S= 1) = 

767 

*f*qo(z, 0) 

•   f      ln[l + q0{z, 0) e~T2) dr.     (30) 
J — CO 

For | q01 < 1, this transmittance can be expressed in terms 
of the peak irradiance in a summation form more suitable 
for numerical evaluation: 

T{z, S= 1) =   S 
{-qoi^Oyf 

3/2 
»-0   (m + 1) 

(31) 

Thus, once an open aperture (5=1) Z-scan is per- 
formed, the nonlinear absorption coefficient ß can be un- 
ambiguously deduced. With ß known, the Z-scan with ap- 
erture in place (S < 1) can be used to extract the 
remaining unknown, namely, the coefficient 7. 

An experimental example of this procedure is shown in 
Fig. 9 where a 2.7 mm thick ZnSe sample is examined 
using 27 ps (FWHM) pulses at 532 nm. ZnSe with a band- 
gap energy of 2.67 eV is a two-photon absorber at this 
wavelength. With a linear index of 2.7, the diffraction 
length inside the sample (n0zo) was approximately four 
times the sample thickness. This allows us to safely apply 
the thin sample analysis developed'in this paper. Fig. 9(a) 
depicts the open aperture data at a peak irradiance I0 of 
0.21 GW/cm2. Also plotted is the theoretical result using 
(28) in (9) with ß = 5.8 cm/GW. This is in excellent 
agreement with the previously measured value of 5.5 
cm/GW [22]. Under the same conditions, the Z-scan with 
a 40% aperture, as shown in Fig. 9(b), exhibits a self- 
defocusing effect. These data have had a low irradiance 
background Z-scan subtracted to reduce the effects of lin- 
ear sample inhomogeneities. Note the significant differ- 
ence between this Z-scan and that of a purely refractive 
case. Here, the nonlinear absorption (2PA) has greatly 
suppressed the peak and enhanced the valley of the trans- 
mittance. The theoretical fit in Fig. 9(b) is obtained by 
setting ß = 5.8 cm/GW and adjusting 7 to be 6.8 x 
10"14 cm2/W (n2 = 4.4 x 10"" esu) with an uncer- 
tainty of +25% arising predominantly from the irradiance 
calibration. 

An irradiance-dependent Z-scan study of the ZnSe in- 
dicates that for an irradiance I0 < 0.5 GW/cm2, the non- 
linear refraction is dominated by a third-order effect. This 
is depicted in Fig. 10 where the measured nonlinear index 
change An0 varies linearly with the irradiance. At higher 
irradiance levels, however, the nonlinear refraction caused 
by 2PA generated charge carriers, an effective fifth-order 
nonlinearity, becomes important. This is indicated in Fig. 
10 by the small deviation of An0 at 70 = 0.57 GW/cm2 

from the line representing the cubic nonlinearity. An ear- 
lier investigation of ZnSe using picosecond time-resolved 
degenerate four-wave mixing (DFWM) at 532 nm had in- 
dicated that a fast x<3) effect followed by a slowly decay- 

Fig. 9. Normalized Z-scan transmittance of ZnSe measured using pico- 
second pulses at X = 532 nm with /„ = 0.21 GW/cm2. The solid lines 
are the theoretical results, (a) No aperture (5=1) data and fit using 5.8 
cm/GW. (b) 40% aperture data fitted with ß = 5.8 cm/GW and 7 = 
6.8 x 10'5 cm2/GW. 

ing Xefr resulting from two-photon generated charge car- 
riers was responsible for the DFWM signal [24]. Z-scan 
experiments reported here verify those results, and in ad- 
dition, can accurately determine the sign and magnitude 
of these nonlinearities. 

As was done for the case of a purely refractive effect, 
it is desirable to be able to estimate 7 and ß without hav- 
ing to perform a detailed fitting of the experimental data. 
A thorough numerical evaluation of the theoretical results 
derived in this section indicated that within less than 10% 
uncertainty, such a procedure is possible provided that 
q0(0, 0) < 1 and ß/2ky < 1. The first condition can be 
met by adjusting the irradiance. The second condition is 
an intrinsic property of the material implying that the 
Im(x(3)) should not be larger than the Re(x(3))- This is 
the case for the semiconductors studied as well as for a 
wide variety of other materials. The separation and eval- 
uation process is simple: divide the closed aperture (5 < 
1) normalized Z-scan (with background subtracted) by the 
one with open aperture (5 = 1). The result is a new Z- 
scan where ATp.„ agrees to within ± 10% ofthat obtained 
from a purely refractive Z-scan. The result of this proce- 
dure for the Z-scans of Fig. 9 is illustrated in Fig. 11 
where the division of the two Z-scans of both experiment 
and theory are compared to the calculated Z-scan with ß 
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sured from the Z-scan experiments. The line represents a cubic (n; type ) 
nonlinearity. The deviation from the line is indicative of higher order 
refractive effects arising from two-photon generated charge carriers. The 
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5 1.04  - 

£ l.oo 

0.92 

ZnSe 
X -532  nm 

**_« 

«5 **# \ ■i 

•    i 
\ 

S-0.4 

• 
' 

* 
- 

1 

•y 
, 

-24 -IB 18 24 32 

Fig 

0 3 

Z  (m:n) 

11. The result of the division of the Z-scans of Fig. 9 (b), 
perimental (diamonds) and theore:ical (solid line). The broken line shows 
the calculated result assuming 3=0. The \Tn.,. of the latter agrees with 
that of the solid line fit to within 3%. making it possible to quickly es- 
timate 7. 

will be a valuabk 
hieh!% nonlinear :: 

'.\\i for 

cubic nonlinearity and a small phase change. The on-axis 
electric field at the aperture plane can be obtained by !et- 

- ~ ;     "•   " "   i,n- 

-*ms in 
iimpli- 

.._.'_-...■ can be 

linear pr.ase cnu: 

ncations.  cne 
written as 

T{z. A<1>0) = 
EJ 

,(S ~ -o,   ; - id/di) 
-11- 

The far-field condition d » c0 
can 

simplify (Al) to give a .:ec~.e:---lr.ce 
transmittance as 

T(z. A'i>0) 

where x — z/Zo- 
The extrema (pea 

[2. res can be calcui 
AÖ-) 'dz = 0 Solu 

(Al) 

d to further 
normalized 

(A2) 

■ H  vr-.ll lc • ) u. 

rore. 

so. inserting :.~ 
ilev iransmitta: 

-scan transmit- 
:cua:ion dT(z, 

(A3) 

:c::on as 

(A4) 

. :he peak- 

= 0. A simple measurement of A Tp_,. and using (13) read- 
ily gives a value of 7 = 6.7 x 10-'4 cm:/W. which is 
in excellent agreement with the value 6.8 x lCrucnr/W 
obtained earlier. 

VI. CONCLUSION 

We have demonstrated a simpie single-beam technique 
that is sensitive to less than X/300 noniineariy :-cu:zz 
phase distortion. Using the Z-scan data, the magnitude 0; 
the nonlinear absorption and the magnitude and sign 0: 
the nonlinear refraction can be separately determined. We 
have derived simple relations that allow the refractive in- 
dex to be obtained directly from the Z-scan data without 
resorting to computer fits. We have applied this technique 
to several materials displaying a variety of nonlinearities 
on different time scales. It is expected that this method 
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ABSTRACT 

We present measurements of nonlinear absorption and refraction in semiconductors used in the realization of 
optical limiters. We show that nonlinear refraction at 532 nm in ZnSe is caused by a negative third order 
electronic Kerr effect in addition to the two-photon-absorption (2PA) induced carrier refraction. We have 
used time-resolved beam distortion, picosecond time-resolved degenerate four-wave mixing and our 
recently developed Z-scan technique to determine the sign and magnitude of the 2PA coefficient, the bound 
electronic nonlinearity, n2 and the refractive index change per free carrier. 

1. INTRODUCTION 

Passive optical limiting utilizing the combined effects of nonlinear absorption and nonlinear refraction in 
semiconductors has been demonstrated previously.[ 1,2,3] An ideal passive optical limiter may be described 
as the optical analogue of a Zener diode circuit. It has a high linear transmission up to a certain input 
threshold after which the output becomes clamped to a constant value. In reference [1] we described the 
development and characterization of broad-band self-protecting ZnSe limiters. In this paper, we present the 
results of a comprehensive study of the nonlinear processes involved in such devices using various 
experimental techniques. These nonlinearities are two photon absorption (2PA), refraction arising from the 
2PA generated free carriers and nonlinear refraction due to the electronic Kerr effect. Picosecond 
degenerate four wave mixing (DFWM) studies were conducted to examine the temporal response as well as 
the order of the refractive nonlinearities. Also, our newly developed Z-scan technique [4] was employed to 
accurately determine the sign and magnitude of the different refractive nonlinearities as well as the 2PA 
coefficient of the semiconductors. ' " .   • 

In section 2 we describe the time-resolved beam distortion measurements and the equations for nonlinear 
propagation of light inside the semiconductors. In section 3 the DFWM results are presented. In section 4 
the Z-scan technique is briefly described and the results of the Z-scan measurements are presented. 
Finally, in section 5 the experimental results are compared to theoretical models. 

2. BEAM DISTORTION MEASUREMENTS 

A collimated beam 0.57 mm in radius (HWl/e2M) at 532 nm was incident on a 3 mm polycrystalline ZnSe 
sample and the transmitted beam fluence was monitored with a vidicon in the near field. In this geometry 
the thin sample approximation (the sample length is smaller than the diffraction length of the beam) can be 
used to describe the beam propagation inside the sample. This allows us to separate the wave equation into 
two equations, one for the irradiance I and one for the phase $. Also with 30 ps (FWHM) pulses and at low 
irradiance levels we can ignore the absorption due to the 2PA generated carriers but not carrier induced 
refraction [5]. This leaves the nonlinear differential equations, 

ÜI--OMP. (i) 
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Fig.l. (a) Transmitted spatial energy distribution of a 30 ps 0.53 urn puke after propagation through ZnSe at 
2 7 GW/cm2 as viewed on a vidicon. The solid line is the theoretical fit to the experiment with <r=1.6 x 10"21, 
n2=0, and 0=5.5 cm/GW. In (b) the temporal evolution of the spatial profile shows the defocusing increases 
with time. 
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Fig.2. The DFWM signal vs backward pump delay for 30 ps pulses at 0.53 pm in ZnSe.   The inset shows a 
log-log plot of the conjugate signal as a function of the input irradiance at 0 ps (a) and 200 ps (b). 
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and 

dA$ 
dz 

= k7l-k<7N, (2) 

where a is the linear absorption cefficient, ß is the 2PA coefficient, k=2x/A, A is the wavelength of the 
incident radiation, 7 is the refractive index change due to the electronic Kerr effect, N is the density of 
free carriers and a is the change in the index of refraction per free carrier pair density generated. Since the 
free carriers are created by 2PA, the generation rate is given by 

dN= ill (3) 
dt     2Äw w 

When N is substituted in equation (2), it becomes clear that the phase change due to the carriers depends on 
the square of the irradiance. Hence, the free carrier refraction appears as an effective fifth order 
nonlinearity.[7,8] 

The solution to equations (1-3) gives the electric field at the exit surface of the sample, which we then 
propagate in free space to the vidicon using a Hygens-Fresnel integral. Using £=5.5 cm/GW for the 2PA 
coefficient from reference [6] we proceeded to fit the experimental data considering only free carrier 
refraction. The best fit was obtained with o=1.6 x 10"21cm3 as shown in figure 1(a). Using a streak camera 
in front of the vidicon, the time evolution of the spatial irradiance profile of the beam could be monitored 
as shown in figure 1(b). Here the beam is continuously broadened as the pulse temporally evolves, further 
indicating that the defocusing mechanism is a time integrating effect which is true for free carrier 
refraction. Therefore, our preliminary conclusion was that the self-defocusing observed in ZnSe is entirely 
caused by the carriers generated via 2PA. 

There is a great deal of experimental evidence that the bound electronic refractive index change in solids is 
a positive effect, i.e. n2>0. This is seen for wide band-gap materials, since self-focusing plays a significant 
role in the laser induced damage of these solids.[13] Based on this, and since all beam distortion 
experiments showed a self-defocusing effect, we at first attributed nonlinear refraction to 2PA generated 
free carriers alone.fl] However, as shown below we find n2 is negative for semiconductors at energies well 
above the 2PA edge. .   ' 

3. DEGENERATE FOUR WAVE MIXING EXPERIMENTS 

DFWM with picosecond pulses is a sensitive technique that gives information about the temporal evolution 
of nonlinear processes in semiconductors and other materials. Two counter-propagating strong beams, 
forward pump Ef and backward pump Eb, are incident on the sample with a third weaker probe beam, Ep 
incident at an angle 0 with respect to the forward pump. Two of these beams interfere inside the sample to 
form a grating from which the third beam diffracts to form a conjugate signal Ec that retraces the probe 
path. The pulses used in these experiments are the second harmonic of a Q-switched NdiYAG laser output 
with a 30 ps (FWHM) pulse width and a Gaussian spatial profile. Various combinations of polarizers and 
half-wave plates were placed in the path of each beam to independently change their polarization and 
irradiance. Figure 2 shows a plot of the conjugate signal versus the delay rD of Eb which was polarized 
perpendicular to Ef and Ep. Two distinct regions are present, a fast decaying signal near zero delay and a 
slowly decaying signal at long delays. To better understand the two nonlinear regimes, irradiance 
dependence experiments were performed at different delays. A log-log plot of the DFWM signal versus 
input irradiance (all three inputs varied) gives two different slopes as shown in the inset of figure 2. At 
zero delay a slope of 2.8 was measured indicating a third order nonlinearity and at long delays a slope of 4.9 
was found. The fifth order dependence can be explained by the 2PA induced carrier refraction as 
mentioned in the previous section.  A modulated carrier density is created via 2PA; this is an imaginary x^ 
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Fig.3. The Z-scan experimental setup in which the normalized transmittance is measured as a function of the 
sample position z. 
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effect. Then a third beam diffracts off the carrier modulation; this is a real x^ effect. Hence, the 
mechanism is a sequential x^ : X^ process that appears as a fifth order nonlinearity. As to the third order 
effect the signal decays within the 30 ps pulse width which is consistent with a bound electronic 
nonlinearity. This fast decaying effect can either be of refractive or absorptive nature as far as DFWM is 
concerned. Assuming that it is a refractive effect a value of |n2|=4.4 x 10"11 esu was extracted where n2 is 
related to 7 by n2 (esu)=noc/(40?rb(MKS).[7,8] Note that the sign of n2 is not given by DFWM. This third 
order effect was not expected from the fits of the beam distortion experiments. 

4. Z-SCAN MEASUREMENTS 

The Z-scan technique, which was recently developed at our laboratories, is a simple single beam 
experimental technique that readily gives the sign and magnitude of nonlinear refraction as well as nonlinear 
absorption.[9] It is also an excellent guide for geometrical optimization of optical limiting.[10] Figure 3 
shows the Z-scan experimental setup. A focused Gaussian beam is incident on the sample and the 
transmitted beam is collected through a finite aperture in the far field into detector D2. Dx monitors the 
input energy. Keeping the input energy fixed, the transmittance is measured as a function of the sample 
position relative to the focal plane. Since nonlinear refraction causes a lensing effect in the incident beam, 
the sample behaves as a negative or positive lens depending on the sign of the nonlinearity. As explained in 
reference [4] a valley-peak configuration in the Z-scan signal is a signature of a positive refractive 
nonlinearity and a peak-valley pattern denotes a negative nonlinearity. When the aperture is removed, i.e 
all the transmitted light is collected, the Z-scan is only sensitive to nonlinear absorption. For 
semiconductors with 2PA present, the Z-scan experiment was simulated by solving equations (1-3). Three 
parameters are to be determined ß, n2 and a. Using 27 ps pulses (FWHM) at 532 nm Z-scan measurements 
were performed on a 2.7 mm thick ZnSe sample at different input energies. With the aperture removed a 
Z-scan was performed at Io=0.1 GW/cm2 where I0 is the on axis peak irradiance at the focus. In this case 
the measurement is insensitive to nonlinear refraction and thus independently gives the nonlinear absorption 
coefficient. The best fit to the data shown in figure 4(a) gave a 0=5.8 cm/GW, in good agreement with the 
value of 5.5 cm/GW obtained in reference [6]. Our experimental errors were ±30% mostly arising from 
uncertainties in the irradiance values. Figure 4(b) shows the data and fit of the Z-scan signal at the same 
irradiance with the 40% transmitting aperture in place. At this low irradiance we expect the nonlinear 
refraction to be mostly due to the 3rd order nonlinearity as can be deduced from equations (2) and (3). 
Hence , the carrier term in equation (2) was dropped and an n2=-4 x 10"11 was extracted. The negative 
sign of n2 is evident from the peak-valley pattern in the data. Moreover, this n2 value is within 10% of the 
the value obtained by our DFWM measurement. For a 3rd order nonlinearity, the change in the index of 
refraction, An, is a linear function of the irradiance, I. Figure 5 shows that this is not the case at higher 
irradiance values meaning that the refraction due to the 2PA generated carriers becomes more significant at 
these levels. At I0=2.4 GW/cm2 (fig. 6), and with ß and n2 known, the experimental data was fit with c=0.8 
x 10"21 cm3. The above measured values for n2, ß and a were used at other irradiance values and gave good 
fits to the experimental data. The Z-scan was also used to determine the above parameters for other 
semiconductors at different wavelengths. For example at 1.06 /im, we measured 0=26 cm/GW, n2=-2 x 
10"10 esu, <^=5 x 10-" cm3 for CdTe and 0=26 cm/GW, n2=-2.7 x 10"10 esu, 0*8 x 10"21 cm3 for GaAs. 
The experimental errors were ±30%. 

Based on the results obtained from both the DFWM and the Z-scan measurements we reexamined our beam 
distortion conclusion. The same data shown in figure 1(a) was fitted again with the 3rd order refraction 
included in the propagation equations. The result is a much better fit to the experimental data shown in 
figure 7 using 0=5.5 cm/GW, n2=-4 x 10-11 esu and o=0.8 x 10-21 cm3. 

5. CONCLUSION 

As a result of conducting thorough studies of the nonlinearities in ZnSe at 532 nm using different 
experimental techniques, we conclude that the bound electronic nonlinearity is negative and is a significant 
contribution to the overall nonlinear refraction.   We now understand the negative sign of n,.  As discussed 
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Fig.5. The refractive index change in ZnSe as a function of input irradiance as measured from the Z-scan 
experiments. The line represents a 3rd order nonlinearity. The deviation from the line indicates the higher 
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in reference [11], n2, the real part of x^, and 2PA, the imaginary part of x*5>, are related by causality and 
a relation similar to the Kramers-Kronig connection between linear absorption and the linear index of 
refraction.[ll] The value obtained for the refractive index change per free carrier pair agrees with the 
band-blocking model suggested by Auston et al.[12]. The a calculated from the above model is 1.1 x 10"21 

cm3 compared to our experimental value of 0.8 x 10"" cm*. In conclusion, we have identified the different 
nonlinearities that make semiconductors good optical limiters. 
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Fig.7. Same experimental data as in figj(a). The theoretical fit (solid line) is obtained with o=0.8 x 10-21 

cm3, n2=-4 xlO-11 esu and 0=5.5 cm/GW. It is clear that this is a better fit than the one in figure 1(a) where 
the electronic Kerr refraction was neglected. 
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Dispersion and Band-Gap Scaling of the Electronic Kerr Effect in Solids 
Associated with Two-Photon Absorption 

M. Shcik-Bahae, D. J. Hagan,(a) and E. W. Van Stryland(b) 

Center for Research in Electro-Optics and Lasers (CREOÜ. University of Central Florida, Orlando. Florida 32816 
(Received 1 December 1989) 

Measurements of the nonlinear refractive index using beam-distortion methods and four-wave mixing 
show a strong systematic dispersion in the bound-electronic nonlinearity (electronic Kerr effect n2) near 
the two-photon-absorption edge. We find that with the two-photon-absorption spectrum predicted by a 
two-parabolic-band model, we can predict the observed universal dispersion, scaling, and values of m 
that range over 4 orders of magnitude and change sign, using a simple Kramers-Kronig analysis. The re- 
sulting scaling rule correctly predicts the value of «2 for 26 different materials, including wide-gap 
dielectrics and semiconductors. 

PACS numbers: 7S.20.Wc, 42.65.Bp, 42.65.Jx 

The study of nonlinear optics in semiconductors has 
primarily concentrated on band-gap-resonant effects. 
The very large nonlinear effects observed in this case arc 
the saturation of interband and excitonic absorption due 
to photoexcited free carriers and excitons, and the associ- 
ated negative change in the refractive index. In contrast, 
by exciting optical solids at frequencies much less than 
the gap, a considerably smaller and faster, positive non- 
linear refractive index («2) due to bound-electronic 
effects is observed. This ni arises from the real part of 
the third-order susceptibility *(3) and is denned through 
the refractive index change An, where 

A/i(üj)-y(ü))/4,-Tn2(ü))|£(B|
2, (1) 

with /„ and Ea being the irradiance and electric field at 
frequency «a, respectively, and n2"(2^/no)Re{^ J. 
The linear refractive index is n0, and 7 and n2 are relat- 
ed by «2(esu)-(c/!o7/40ff)(mks), where c is the speed 
of light. The magnitude and dispersion of «2 is of in- 
terest because of its importance in applications such as 
nonlinear propagation in fibers, fast optical switching, 
self-focusing and damage in optical materials, and opti- 
cal limiting in semiconductors. 

Most studies of «2 in optical solids usually concentrate 
on wavelengths far below the energy gap (Eg). Howev- 
er, recently we found that measurements in semiconduc- 
tors substantially above the two-photon-absorption 
(2PA) edge (Eg/2) yield negative values for n2.' We 
have extended these measurements to a large number of 
other materials including semiconductors and dielectrics 
above and below the 2PA edge. As a result, we have 
been able to clearly demonstrate the behavior of the 
dispersion of «2- 

Utilizing a newly developed technique (Z scan) for n2 

measurements1,2 that can determine its magnitude and 
sign, we have measured n2 for several semiconductors 
and wide-gap dielectrics at 1.064 and 0.532 /im. This 
simple technique has been shown to be an accurate and 
sensitive tool for measuring n2 even in the presence of 

nonlinear absorption. For example, we find a negative n2 

in materials such as ZnSe at 0.532 )im where 2PA is 
present, but find that the sign changes at 1.064 pm. We 
have also performed picosecond, degenerate, four-wave- 
mixing (DFWM) -measurements which show this third- 
order response to be fast (time-resolution limited by the 
30-ps pulse width) and dominant at irradiances up to 
=0.5 GW/cm2, while at higher irradiances the slowly 
decaying 2PA-generated free-carrier refraction becomes 
important.3 DFWM studies in other semiconductors and 
other wavelengths show this to be a universal pheno- 
menon. 

It has previously been predicted that x(3) should vary 
as £?~4.4'5 Using this scaling and the relation between 
n2 and x0) that includes the linear index no. we can re- 
move the Eg and «0 dependences from the experimental 
values of n2 by multiplying them by naEg. Figure 1 
shows a plot of our experimentally determined scaled 
values of n 2 as a function of hco/Eg. We also divide the 
data by a constant K' which we explain in what follows. 
We show on the same plot several data for large-gap op- 
tical crystals obtained from recent measurements by 
Adair, Chase, and Payne using a "nearly degenerate 
three-wave-mixing" scheme.6 Our own measurements of 
several of the same materials studied in Ref. 6 show ex- 
cellent absolute agreement. Assuming that there are no 
other relevant parameters unique to each material other 
than band gap and index, this plot should be general to 
all optical solids. Upon examination of Fig. 1 we im- 
mediately see a trend giving small positive values for low 
ratios of photon energy to band-gap energy which slowly 
rises to a broad resonance peak at the 2PA edge and 
then decreases, eventually turning negative between the 
two-photon- and single-photon-absorption edges. We 
should note that the scaling with Eg hides a variation in 
magnitude of «2 of 4 orders of magnitude so that the ob- 
served universal dispersion curve is quite remarkable. 
This dispersion curve is qualitatively similar to the 
dispersion of the linear index around the single-photon- 

96 © 1990 The American Physical Society 



I 
1 
I 
I 
I 

I 
i 
i 
I 
1 
I 
i 
i 
I 
i 
i 
i 
i 

VOLUME 65, NUMBER l PHYSICAL REVIEW LETTERS 2 JULY 1990 

0.10 

0.4 0.6 
fiw/E, 

FIG. 1. Data of m scaled as nmoEf/K'vs hco/Et. The open 
circles represent the data from Ref. 6 all obtained at X-1.06 
fim. The remaining data are our measurements using the Z- 
scan technique taken at X — 1.06 um (open squares), at 
X— 0.532 urn (solid squares), and at X —10.6 pm (solid trian- 
gle). Only the semiconductor data within the highly dispersive 
region are labeled for comparison. The solid line is the calcu- 
lated dispersion function GT. with no adjustable parameters. 

absorption edge.7 As these linear quantities are related 
by causality via a Kramers-Kronig (KK) relation, it 
seems logical to investigate whether the observed disper- 
sion of «2 can be calculated using a nonlinear Kramers- 
Kronig relation between the real and imaginary parts of 
X 3. Indeed, as we will show, making some reasonable 
assumptions, the observed tendencies as well as the abso- 
lute magnitudes of this dispersion are well predicted by 
such a calculation. Figure 1 is the direct result of such a 
calculation including only the 2PA contribution to the 
imaginary part of x . The 2PA spectral dependence is 
well established both experimentally and theoretical- 
ly.8"" It should be noted that no fitting parameter is 
used in this calculation, which is presented below. 

Most theoretical calculations of n2 have been confined 
to the zero-frequency limit.,2"16 Of these, semiempirical 
formulations have been most successful in predicting the 
magnitude of n2.15,16 For example, the formula obtained 
by Boling, Glass, and Owyoung in relating n2 to the 
linear index (no) and the dispersion of «0 in terms of the 
Abbe number has been successfully applied to a large 
class of transparent materials.6,16 Their theory predicts 
the low-frequency magnitude of n2, but does not give the 
dispersion. The KK method described here predicts the 
dispersion as well as the magnitude of «2- This calcula- 
tion assumes that 2PA gives the dominant contribution 
to n 2 and that other contributions from electronic Ra- 
man and the ac Stark effect ("virtual band blocking") 

are ignored. We will return to this assumption later. 
Based on the principle of causality, the KK transfor- 

mation states that a change in the refractive index (An) 
at co is associated with changes in the absorption coeff- 
icient (Aa) throughout the spectrum (a') and vice versa. 
We write this as 

nJo    („i —a* (2) 

where c is the velocity of light in vacuum and £ is a pa- 
rameter (or parameters) denoting the "cause" of change 
in the absorption. The cause need not be of optical ori- 
gin but could be any external perturbation, such as 
thermal excitation, etc. For cases where an electron-hole 
plasma is injected, the consequent change of absorption 
has been used to obtain the plasma contribution to the 
refractive index. In this case, the £ parameter is taken as 
the change in plasma density (AN) regardless of the 
mechanism of generation of the plasma or the pump fre- 
quency.17  In the case of 2PA the change is due to the 
presence of a pump field at n (i.e., £-n). The corre- 
sponding nonlinear refraction is Ar.((o,Sl), which gives 
the dispersion of the index change with a. For the case 
of self-refraction, «a — n, and this gives what is common- 
ly referred to as n2. Van Vechten and Aspnes14 obtained 
the low-frequency limit of n2 from a similar KK trans- 
formation of the Franz-Keldysh electroabsorption effect 
where, in this case £ is the dc field. The bound-electronic 
contribution to £(3) can originate from various absorptive 
counterparts that are quadratic functions of the pump 
field.   Effects of this order may include 2PA, the elec- 
tronic Raman effect, and the optical Stark effect. Here 
we consider only 2PA. 

A wealth of experimental and theoretical work regard- 
ing 2PA in semiconductors and crystalline .materials ex- 
ists. In accordance with the predictions derived from ei- 
ther a second-order perturbation calculation of the tran- 
sition rate5-8 or a Keldysh-type formalism,9 the 2PA 
coefficients of the semiconductors studied in Ref. 10 were 
found to be in good agreement with the theoretical ex- 
pression given as 

x^-'Jh 2W 

E, 
(3) 

where K \s z material-independent constant and Ep (re- 
lated to the Kane momentum parameter, a momentum 
matrix element) is nearly material independent and 
posseses a value of =21 eV for most direct-gap semicon- 
ductors. Note that 0-(4;rVno)Imfr(3)}. The function 
F2 is only a function of the ratio of the photon energy 
hco' to Eg (i.e., the optically coupled states). The func- 
tional form of F2 reflects the assumed band structure 
and the intermediate states considered in calculating the 
2PA transition rate. The simplest model assumes a pair 
of isotropic and parabolic bands and intermediate states 
that are degenerate to initial (valence) or final (conduc- 
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tion) states.   Neglecting the Coulomb interaction, this 
simple formalism yields5 

(2x-l)3/2 

F2(2x)> 
(2xV 

for 2x > 1 (4) 

The best fit to the data of Ref. 10 using Eqs. (3) and (4) 
gave K-3.1 xlO3 in units such that Ep and Eg were in 
eV and ß was in cm/GW, while theory gave 5.2xl03.8 

When nonparabolicity was included the average ß was 
26% lower than theory; however, the frequency depen- 
dence of ß changed very little. Interestingly, Eqs. (3) 
and (4) also give a fair estimate of ß for a number of 
transparent materials measured using the third and 
fourth harmonics of picosecond Nd-doped yttrium- 
aluminum-garnet laser pulses.'U8 

Equations (3) and (4) pertain to a degenerate case 
where the two photons involved are of the same frequen- 
cy and source. For a KK transformation the nondegen- 
erate 2PA coefficient for two distinct frequencies is need- 
ed [i.e., n the "cause" and a the integration variable in 
Eq. (2)]. Extending the same simple model to obtain the 
nondegenerate 2PA coefficient has led to dispersion func- 
tions that are afflicted with "infrared divergences."19-20 

This has been a common problem originating from the 
use of the A-p perturbation to calculate the bound- 
electronic nonlinear susceptibilities in solids." Although 

special cases have been considered,21 a general theory 
that would rigorously address the proper scaling and 
spectrum of the nondegenerate 2PA is yet to be 
developed. For this reason we assume that the spectral 
function F2 for the nondegenerate 2PA coefficient 
ß(co',il) can be given by Eq. (4) modified with the sub- 
stitution of 2ha' by ha'+hCl; thus, F2(2x) is replaced 
by F2(x'+X), where x'-hco'/Eg, X-hil/Eg, and x' 
+X>\. This substitution is strictly valid only for 
x' —X; however, the predictions resulting from this sub- 
stitution show remarkable agreement with the data, as 
will be shown. 

The change of the absorption spectrum (at a') in- 
duced by the presence of a strong pump at n can be 
written for 2PA as Aa(©';n)-0(a>';n)/n, where /„ 
denotes the irradiance of the pump field. Similarly, the 
change in refractive index at a induced by the presence 
of a strong pump at n can be written as A/j(<a;ß) 
— y(ü);n)/n. Applying the KK transformation Eq. (2) 
at this point yields a relation between 7(0; n) and 
ß(a';il). Using Eq. (3) with F2ix'+X) in Eq. (2) we 
obtain for the degenerate case (.a ~ fl), 

hcjE~pc 

2nlE$    2 
ha 

r-K 

where the dispersion function G2(x) is given by 

G2(x)- 
-2+6x-3x2-x3- is4- JA:

5
+2(1 -2;c)3/2e(l -2x) 

64* 6 

(5) 

(6) 

with 0tx) being the unit step function. 
Using the value of K obtained from the 2PA measure 

ments, Ep -21 eV, and converting from 7 to n2, we ob 
tain the final expression for n2 as 

r,G2{ha/Eg) 
n2(esu) —Ä" (7) 

tioEg 

where A"-3.4x 10"8 and Eg is in eV. Equation (7) ex- 
plicitly shows an Eg~* bind-gap dependence for the mag- 
nitude of n2 as predicted in Refs. 4 and 5, and the sign 
and the frequency dispersion of this quantity are given 
by the simple closed-form function G2. G2\s the func- 
tion plotted as the solid line in Fig. 1. It is important to 
note that no fitting parameter was used in plotting the 
theoretical curve and that the agreement between data 
and the calculation is extremely good for this wide 
variety of materials and large disparity in magnitudes of 
n2. A noticeable difference between the magnitude of 
the measured and calculated values is seen near the one- 
photon-absorption edge in Fig. 1. Considering the sim- 
plicity of the model in deriving Eq. (7), such deviations 
are not expected. The measured large negative values of 
n2 as compared to the calculated values near the func- 
tional absorption edge may be attributed to the refrac- 
tion due to the optical Stark effect which has been ig- 
nored in our calculations. The contribution of this mech- 

anism to the electronic nonlinear susceptibility has been 
shown to have a strong band-gap resonance and follows 
the same scaling as given in Eq. (7).4 This effect, which 
is negative for all frequencies below the band gap, van- 
ishes quickly for longer wavelengths (ha<Eg/2) and 
gives a negligible contribution in the transparency region 
of the material. 

The Ef* dependence of n2 gives a variation of n2 

from 2.5 x 10 ~14 esu for a material such as MgF2 at 1.06 
pm to 3xl0-10 esu for germanium at 10.6 ftm, which 
we measured using a picosecond C02 laser. This large 
variation of n2 is better displayed by plotting n2 scaled 
by n0 and G2 as a function of Eg on a log-log plot as 
shown in Fig. 2. In spite of this very large variation in 
magnitude of n2 (and change in sign), this extremely 
simple model gives good agreement with the data for 
materials including both semiconductors and insulators, 
except very near the absorption edge. However, we must 
emphasize that the justification for splitting 2© into 
a'+Cl in Eq. (4) is empirical. 

In conclusion, the measured n2 data follow a universal 
dispersion curve (see Fig. 1) from which values of n2 for 
other materials at other wavelengths can be calculated. 
We have also experimentally verified the predicted band- 
gap scaling of n2. From the excellent overall agreement 
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A. Miller, B. S. Wherrett, and S. Koch for useful discus- 
sions and J. Young, T. Wei, A. Said, and E. Canto for 
taking and analyzing portions of the ni data. 

FIG. 2. A log-log plot of the data of Fig. 1 vs energy gap 
(£r). Here the data are scaled by itoiK'Gi) _l. The solid line 
represents the theoretical result as obtained from Eq. (7) with 
no adjustable parameters and has a slope of — 4. The open cir- 
cles represent the data from Ref. 6 all obtained at X ~ 1.06 p.m. 
The remaining data are our measurements using the Z-scan 
technique taken at X —1.06 pm (open squares), at X—0.532 
pm (solid squares), and at X —10.6 pm (solid triangle). 

of the predicted magnitude and dispersion of «2. as cal- 
culated via the KK method, with the large number of ex- 
perimental data, we conclude that the process responsi- 
ble for 2PA also gives a significant if not dominant con- 
tribution to /i2- This in turn implies that the bound- 
electronic nonlinear refractive index is predominantly a 
causal consequence of two-photon absorption just as the 
linear index is a causal consequence of linear absorption. 
This calculational approach takes advantage of the his- 
torical fact that, for the solid state, the 2PA coefficient 
has been calculated from a transition-rate approach.22 

Thus, we have circumvented problems associated with 
performing a direct calculation of the third-order suscep- 
tibility. 
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OPTICAL NONLINEARITIES IN CARBON BLACK PARTICLES 

Kamjou Mansour, E. W. Van Stryland, M. J. Soileau 
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University of Central Florida, Orlando, FL 32826 

ABSTRACT 

We have characterized the nonlinear optical properties of carbon black particles in liquids and layers 
deposited on glass. We find that the limiting is dependent on the energy density (fluence) and that the 
material changes from a linear absorber to a nonlinear scatterer for fluence levels =* 0.2 J/cm2 and a 0.38 
J/cm2 for 0.532 fim, 14 ns and 1.064 fim, 20 ns laser pulses respectively. In this paper, we will discuss the 
possible mechanisms that have been proposed to explain the nonlinear scattering. These mechanisms are 
plasma formation, micro-bubble formation and change in index of refraction of the liquid surrounding the 
particles. We will show through a series of experiments that plasma formation is consistent with all of the 
experimental results while bubble formation may influence the limiting behavior at fluence levels 
substantially above the limiting threshold. In this model, the microscopic carbon particles are heated by 
linear absorption to a temperature at which a plasma can be created by the optical field. These 
microplasmas rapidly expand, thus scattering the incident light and limiting the transmittance. 

1. INTRODUCTION 

A wide variety of optical materials have been investigated for applications in optical limiting. An optical 
limiter utilizes the nonlinear properties of materials to limit the transmitted energy, power, fluence, or 
irradiance. One of the promising materials for constructing such a limiter is absorbing carbon black micro- 
particles suspended in a liquid. We show here that a layer of carbon black deposited on a glass substrate 
also limits the transmission. 

In this paper, we review measurements in which we apply a wide variety of techniques to characterize the 
nonlinear optical processes that occur in carbon black suspension in liquids (CBS) and carbon black particles 
deposited as layers on a glass substrate (CBG). As it will be shown, the results of these experiments indicate 
that nonlinear scattering is the dominant optical nonlinearity in both CBS and CBG. The possible 
mechanisms that have been proposed to explain the observed nonlinear scattering are micro-bubble 
formation, the change in the refractive index of the liquid surrounding the particles and plasma formation. 
The micro-bubble formation model is based on degasing and vaporization of the liquid around the particles. 
The second model is based on the change in index of refraction of the surrounding liquid due to thermal 
heating and shock waves. The plasma formation model is based on formation and rapid growth of micro- 
plasmas created by the optical field. After considering each mechanism we have found that only the plasma 
formation model is consistent with all the experimental results while the other models fail to explain one or 
more of the experimental results. 

We begin by reviewing some of the experimental results of optical limiting in CBS and CBG using ns and ps 
laser pulses at 0.532 pm and 1.064 fim, and we discuss experiments showing that nonlinear scattering is the 
dominant limiting mechanism in CBS and CBG. In order to understand the nature of the scattering 
mechanism, we present an experiment in which we measure scattered light as a function of angle for 
different incident fluences for ns laser pulses. The measured angular scattering profile indicates an increase 
of the scattered light in the forward direction as a function of incident fluence of the laser pulses. The 
dependence of scattered intensity as a function of laser pulse fluence is similar to numerical calculations of 
the angular scattering profile as a function of particle size derived from Mie's scattering theory.[l] To 
investigate whether micro-plasmas are created by thermo-ionization of carbon particles, we measure the 
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emission spectrum of the particles using ns pulses for fluences where limiting is observed. In addition, we 
measure the emission decay rate at 800 nm. This result enables us to understand the decay of the scatterers 
with time which is important for understanding the switching recovery. To understand how the excited 
volume relaxes we have performed excitation and probe measurements. Specifically, we measured the 
switching recovery time of CBS and CBG, using a 20 ns, 1.064 /xm excitation pulse and a continues- wave 
(cw) HeNe as a probe beam. 

2. OPTICAL LIMITING 

Last year [2] we presented a detailed characterization of passive optical limiting in carbon black particles 
suspended in a mixture of water and ethylene glycol using nanosecod and picosecond laser pulses at 0.532 
/xm and 1.064 /xm. We showed that the optical limiting threshold for such optical limiters is =*80 watts peak 
power for 15 ns, 0.532 /xm pulses and ^160 watts peak power for 20 ns, 1.064 /im laser pulses. We also 
showed that the limiting in this material is fluence dependent rather than intensity or power dependent. 
This effect was observed by performing transmission measurements for collimated beams for different beam 
radii for 20 ns, 1.064 /xm and 14 ns, 0.532 /im laser pulses. In addition, the onset of limiting was measured 
for both 14 ns and 30 ps, 0.532 /xm laser pulses. The limiting occured for approximately the same incident 
fluence for both ns and ps laser pulses. However, the input peak power was larger by a factor of 400 for ps 
pulses than for ns pulses. 

In this paper, we reexamine the optical limiting threshold of CBS as a function of incident fluence for 20 
ns, 1.064 /xm laser pulse for beam radii from 14 /xm up 460 /xm (HWl/e2 M). The experimental setup is a 
simple transmission measurement. We used a 100 /xm thick flowing jet of CBS for tightly focused beams 
and a 1 cm thick cuvette of CBS for larger spot sizes. The result of this measurement is shown in Figure 1. 
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Fiqure  1. Plot of transmitted fluence (J/cm2) as a function of beam radius 
(HWl/e2 M) for 20 ns (FWHM), 1.064 /xm laser pulses. 

This  result along  with  previous picosecond measurements illustrates that limiting in CBS is fluence 
dependent and the limiting fluence is on the order of 380 mJ/cm2 for 1.064 /xm laser pulses. 
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We also investigated the passive optical limiting for the CBG using 20 ns, 1.064 pm laser pulses. The 
motivation for this measurement was to determine how the liquid affected the limiting. These samples were 
prepared from carbon black particles which are commercially in use as toners in photocopying machine. 
These particles were uniformly deposited on a glass substrate. The sample linear transmission for 1.064 pm 
light was 30 percent. Using an optical limiting geometry discussed in detail in reference 2 we measured the 
limiting threshold for this material to be a 600 watts. This is shown in Fiqure 2. The relatively large 
scatter in the data compared to that for CBS is due to the fact that the coated glass had to be moved after 
each firing and each data point is a single laser firing. 
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Fiqure 2. The limiting response of CBG (squares) and uncoated glass (circles) as a" 
function of incident power for 20 ns (FWHM), 1.064 laser pulses. The limiting of 
CBG occurs at ^ 600 watts. 

3. OPTICAL NONLINEARITIES 

The transmission experiments using both CBS and CBG showed limiting thresholds of the same order 
(within a factor of three) for carbon particles in liquid or in air. The factor of three difference may be 
attributed to the different carbon particle sizes. While the CBS has an average particle size of ^ .1 pro. with 
aggloromates up to 0.5 pm. The toner particles used for the CBG has an average particle size of a 5 pm. 
The results of this experiment indicate that bubble formation is not a necessary occurance for limiting with 
carbon black. 

To understand the nature of optical nonlinearities leading to limiting in a liquid containing carbon black 
particles, we performed an experiment in which we monitored the change of transmittance, absorptance and 
fraction of side scattered light as a function of fluence for ns laser pulses at 0.532 pm and 1.064 /on. The 
detailed description of this experiment is reported in reference 2. The experimental results for 20 ns, 1.064 
pm in CBS is shown in fiqure 3. 
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Fiqure 3. Plot of change of transmittance (squares), absorptance (triangles) and 
scattering fraction (circles) as a function of incident fluence (mJ/cm2) for 1.06 pm, 20 
ns (FWHM) laser pulses. 

As shown in Fiqure 3, for incident fluences close to 0.36 J/cm2 at 1.064 /mi, the transmittance begins to 
decrease nonlinearly, the absorptance increases nonlinearly for incident fluences close to threshold value 
(i.e., onset of change of transmittance) and levels off at a higher input and the scattered fraction (side 
scattered light / input light) increases nonlinearly as the transmittance decreases. This trend continues for 
input fluences even two order of magnitude above threshold. Similar results are observed for 14 ns, 0.532 
pm laser pulses at incident fluences of 0.20 J/cm2. These results indicate that the observed nonlinear 
transmission is dominated by nonlinear scattering. 

We have repeated these measurements using CBG to monitor the transmittance and the fraction of side 
scattered light as a function of input fluence using the geometry of Fiqure 4. The laser light was focused 
by a 15 cm focal length "best form" lens and collected by a Si: PIN photodiode energy monitor (D2). 
Identical detectors (D2) and (D3) were used to monitor the input energy and side scattered light 
respectively. The input was varied using a rotating A/2 wave plate/polarizer combination. The polarization 
of the light was made perpendicular with respect to the line connecting the sample and D3. This 
polarization gave the maximum scattered signal at D3 for all input fluences as is expected from scattering 
theory. Fiqure 5 shows results for this experiment. The plain glass substrate showing no nonlinearity and 
was used as a reference. Again each data point is a single laser firing and the linear transmission of the 
CBG was 30 percent. 
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As is shown in Fiqure 5, for incident fluences above s 1 J/cm2 the transmittance decreased and the side 
scattered light fraction increased nonlinearly. This behavior is similar to that of CBS. 

The experimental techniques that we have used so far, allow us only to study the contribution of nonlinear 
scattering and nonlinear absorption in these samples. In order to investigate the contributions of phase 
distortion due to a thermooptic effect, electrostriction, or other nonlinear refractive mechanism, we have 
performed a series of measurements. First, we monitored the far field spatial transmitted beam profile of 
the TEMoo Gaussian input pulses at 0.532 /mi using a vidicon tube interfaced to an optical multichannel 
analyzer. The spatial profile of the transmitted pulse was undistored for incident fluences below and up to 
an order of magnitude higher than the limiting threshold. Second, we performed Z-scan measurements 
which are very sensitive to the self-focusing and self-defocusing nonlinearities. Details of the Z-scan 
technique are discussed in reference 3. The results of Z-scan measurements for 14 ns, 0.532 /mi and 20 ns, 
1.064 urn laser pulses with incident fluences below and above threshold indicate that nonlinear refraction is 
negligible in this material and has no influence on the limiting characteristic. In order to further validate 
this point we performed limiting experiments with and without an aperture in front of the transmitted 
detector and observed no change in limiting threshold. 

From our experimental results we conclude that the dominant nonlinearity for limiting in carbon black 
particles in liquids or as layers deposited on glass substrate, is nonlinear scattering. There are three models 
that have been proposed to explain the mechanism of nonlinear scattering for these samples. The first 
model is .based on the formation of micro-bubbles in the host media (i.e., water and ethylene glycol). The 
formation of these bubbles is based on degasing and vaporizing of the liquid around the absorbing particles, 
therefore, the dynamics of formation and growth of these micro-bubbles is a function of the properties of 
the absorbing particles and the properties of the liquid surrounding these particles. Hence, one would 
expect that the limiting threshold must be drastically decreased or increased as the properties of the host 
medium are changed. This has not been observed from our experimental results. Another model possible to 
explain the nonlinear scattering is due to a change in index by diffusion of heat or shock wave in the liquid 
(or gas) surrounding the carbon micro-particles. The size of these scattering centers (thermally induced 
index change) could be substantially larger than the carbon particles themselves yet smaller than the 
separation between particles thus, possibly leading to larger scattering according to Mie's theory. These 
effects are very small for 20 ns laser pulses since the heated liquid layers surrounding the particles are on 
the order of 100 A calculated from   a   |Dtp where tp is the laser pulse width and D is the diffusion 
constant for liquid. This is clearly insufficient to give the observed nonlinear scattering. In the case of 
propagation of shock wave, a shock wave travels a 70 fun during the 20 ns pulse. The average separation 
between particles for the densities used ( ~ 1011 1/cm3) is ^ 9 /mi. Thus, the index of the entire liquid 
must be considered to change. We have observed no net linear refraction with a sensitivity of =; A/100 
induced phase distortion. These leaves us with the micro-plasma model. As it will be shown this model is 
consistent with all of the experimental results. 

4. ANGULAR SCATTERING MEASUREMENT 

In all of these models the mechanism for nonlinear scattering is due to growth and expansion of "particles" 
(eg, air bubbles, micro-plasmas). To examine the validity of this volumetric expansion experimentaly and 
also have an estimate for the size of these "particles" we have constructed a light-scattering apparatus. The 
basic components of this apparatus are shown in Fiqure 6. This experiment was conducted using 20 ns, 
1.064 (im and 14 ns, 0.532 /on laser pulses. The laser light was focused by a 50 cm focal length "best form" 
lens into a 100 /im thick, 3mm wide flowing jet of carbon black suspension in a 50/50 mixture of water and 
ethylene glycol. The measured beam radius at focus was 93 /mi (HWl/e2 M) for 0.532 /im and 96 pm (HW 
1/e2 M) for 1.064 /mi laser pulses. The flow rate was set such that a laminar flow was achieved. The 
transmitted light was detected using a Si photodetector placed 60 cm from the sample. The detector used to 
monitor the scattered light could rotate in a plane which was perpendicular to the flow direction and parallel 
to the propagation direction.   This plane defines the plane of observation and the polarization of the 
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incident light was set parrallel to this plane. A 0.5 mm aperture was placed in front of the scattering 
detector to increase the angular resolution. The rotating platform and detectors were interfaced to an IBM 
computer. Scattering profiles for 20ns, 1.064 pm laser pulses at two different fluences are ploted in polar 
graphs in Fiqure 7. The size of the detector limited the angles to be between 20° and 160°. 
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Fiqure 7a is for input fluences where the sample behaves linearly. The asymmetry observed is due to 
agglomorates which are smaller than the wavelength of light but are larger than particles where one would 
see isotropic Rayleigh scattering. Fiqure 7b presents scattering data for incident fluences where limiting is 
observed. In this profile the scattered light is highly asymmetric and all of the scattered light is in the 
forward direction. This asymmetry is due to larger scattering "particles". This increase of scattered light in 
the forward direction as a function "particle" radius can be modeled using Mie's scattering theory. 
Calculated scattering profiles as a function of size parameter x where x=2*a/A and a is the radius of the 
particles are shown in Fiqure 8. 
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90" 

Fiqure 8. The numerical simmulation of the 0° to 180° scattering profile for different 
size parameters (x). Plot a,b,c and d are for x=0.1, x=0.7, x=1.3 and 3.1 respectively. 

Fiqure 8a shows the scattering profile for particle sizes which are very small compared to the wavelength of 
light. The scattering profile is symmetric and appears as a simple dipole radiation pattern. As the size 
parameter increases (i.e., particle radius increases) the scattered light in the forward direction increases 
relative to the backward scattered light. These results are shown in plots b,c and d. In plot d all the 
scattering is in the forward direction and the profile is highly asymmetric. This is similar to our 
experimental scattering profiles as the incident fluence increases. Therefore, results of angular scattering 
measurements indicate that nonlinear scattering observed is due to expansion of the "particles". Since, the 
observed scattering profile can be explained qualitively by Mie's scattering theory we have used this theory 
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to calculate the scattering cross section and absorption cross section as a function of "particle" size. This 
numerical calculation was performed for two different types of "particles". First, we assume micro-bubbles 
growing with a purely real index of refration. Second, we assume the expanding "particles" are micro- 
plasmas with complex index of refraction. We took the complex index to be n= 1.96 -0.66i which is the 
reported index of carbon black [4] and is consistent with what can be expected for a plasma. Our 
preliminary results for absorption cross section and scattering cross section indicate that both quantities are 
in a good agreement with experimental results if the expanding "particles" are assumed to be micro-plasmas. 

5. FLUORESCENCE MEASUREMENT 

If micro-plasmas are intiated by thermionic emission from carbon black particles we should expect to see an 
emission spectrum of ionized carbons. In order to investigate this, we have set up an experiment which 
enables us to monitor emission spectra resulting from irradiation using 40 ns, 1.064 /an laser pulses. In this 
measurement, the laser light is focused by a 15 cm "best form" lens into a 1 cm thick cuvette cell of CBS or 
onto samples of carbon particles deposited on glass substrates. The sample was placed about 1 cm from the 
entrance slit of a 1/4 meter monochrometer. An SI fast response photomultiplier was connected to the exit 
port of the monochrometer. The output signal from the photomultiplier was recorded and analyzed on a 
Tektronics digital osciloscope and Tektronics computer. A tungsten calibrated blackbody source at 3250 °K 
was used to determine the instrument spectral response. The schematic for the experiment is shown in 
Fiqure 9. 
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Fiqure 9. Experimental set-up for fluorescence measurement. 

Using the experimental set-up shown in Fiqure 9, we measured the emission spectrum from carbon black 
particles from 400 nm to 900 nm. The spectrum is shown in Fiqure 10. The strongest singly ionized lines 
tabulated in reference [5] are indicated by small connected triangles. These lines are consistent with peaks 
in the measured spectrum. Furthermore, we have calculated the radiation spectrum for a black body 
source at 4250 °K using Planck's equation . The calculated blackbody spectrum from 200 nm to 1200 nm is 
also shown in Fiqure 10 and is consistent with the experimental background emission. 

In order to determine the emission lifetime of the ionized particles we measured the emission intensity as a 
function of time at the emission line near 800 nm. We observed that the emitted light decays very rapidly 
to 50 percent of the peak intensity in the first 150 ns and decays much slower for later times. This is shown 
in Fiqure 11. In addition, we have plotted the incident pulse to show the time response of the detection 
system. These results are consistent with the decay of a plasma (150 ns) followed by the slow cooling of 
the thermal background emission. The results of these measurements are important for understanding the 
limiting and switching recovery time of CBS as discussed in the next section. 

358 / SPIEVol. 1307 Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors (1990) 



0.6 

B •*> 
"E 0.5 
3 

• 
XX 
1_ 
< 0.4 
^rf> 

£ o.s 
V) 
z 

I 0.2 
a 
LU 

§    0.1 ■ 

I    ■ 
0.0' <■ 

EUOStOM SPECTPUU OF CARBON PARTICLES 
BLACKBOOY RADIATION AT 4290 «LVIN 
SIRONCEST EMISSION UNE TOR C+1 

200        400        600        800       1000 

WAVELENGTH (NANOMETER) 

1200      1400 

Fiqure 10. Plot of the spectral emission from carbon particles using 40 ns, 1.064 ftm 
laser pulses. The solid line present experimental results. The triangles show tabulated 
results for singly ionized line. The connected circles show the calculated emission for 
a blackbody source at 4250 °K. 

a 
UJ 
N 

10° . 

10-1 

EMISSION DECAY RATE AT 800 NANOMETER 

SAMPLE: CARBON BLACK SUSPENSION IN LIQUIDS 

•——   INPUT PUISE _   I 
UM OF FUXffiESENCE DECKT ROT  I 

0  110 220 330 440 550 660 770 880 990 1100 

TIME ( NANOSECOND ) 

Fiqure 11. A semilogarithmic plot of the emission decay rate at 800 nm as a function 
of time. 

SPIEVol. 1307 Electro-Optical Materials for Switches, Coatings. Sensor Optics, and Detectors (1990) / 359 



6. EXCITATION AND PROBE MEASUREMENT 

The dynamics of the attenuation of Q-switched, 20 ns laser pukes in carbon black suspensions in liquid was 
investigated by time resolved transmission measurements^] We observed that the transmitted pulse had a 
sharp cutoff and was strongly attenuated during later portions of the pulse. To investigate the dynamics of 
limiting for times longer than the duration of the incident pulse we have set up an excitation and probe 
measurement. In this experiment the interaction of 20 ns, 1.064 jan laser pulses with carbon particles was 
monitored using a low power cw, 0.6328 fan laser beam. The excitation and probe beam were focused 
using a 75 mm focal length "best form" lens into the samples of 1 cm thick cuvette of CBS and CBG. All 
the transmitted HeNe beam was collected by a 2 inch diameter, 150 mm focal length "best form" lens and 
was monitored with a fast photomultiplier tube connected to preamplifiers and a 1 Ghz bandwidth 
oscilloscope and transient digitizer. The response time of the system was =£0 ns. A 633 nm bandpass filter 
and 1.064 urn attenuating filters were used to block the 1.064 urn radiation. The experimental setup is 
shown in Fiqure 12. 
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Fiqure 12. The experimental setup for 20 ns, 1.064 urn excitation pulse and cw HeNe 
probe beam. To measure the temporal response. 

Using this optical geometry, we monitored the change of transmission of the HeNe probe beam as a 
function of time for different incident fluences of the excitation pulse. The probe transmission of the 
sample in the absence of any excitation pulse was 70 percent. For excitation pulses with peak powers close 
to the onset of limiting (i.e., =:300 watts) we observed that the probe beam transmission decreases within the 
duration of the excitation pulse and recovers back to the 70 percent transmission level within 200 ns. This 
is consistent with the emission decay time of the ionized carbon particles discussed in the previous section. 
However, as the energy of the excitation pulse increased we observed that not only was the probe 
transmission attenuated more strongly but it remained partially attenuated for long periods of time. These 
results are shown in Fiqure 13. 
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Fiqure 13. A semilogarthmic plot of the HeNe probe transmission as a function of 
time for powers for 20 ns (FWHM), 1,064 /xm excitation pulse from 300 to 4200 watts. 
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Fiqure 14.  Plot of HeNe probe beam transmission of CBG as a function of time for 
4.2 KW, 20 ns, 1.064 /mi laser excitation. 

As is shown in Fiqure 13, for high input powers the HeNe transmission decreases within the the duration of 
the excitation pulse and recovers to the original level in two distinct time periods. In the first time period, 
the probe transmission recovers back to 50 percent of the total attenuation within 200 to 400 ns after the 
excitation pulse which is consistent with the emission decay rate measured using the fluorescence 
measurement    The recovery of the probe beam in the second time period is much slower and depends on 
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the excitation energy. The long time recovery for light input (4.3 KW) of a 100 /«sec appears to be either 
diffusion or convection dominated . Since all the transmitted light was collected we can rule out the 
contribution of thermal self-refraction. It may be that at input fluences well above threshold and after the 
plasma decays, bubbles are formed which can scatter « 50 percent of the HeNe beam. If bubbles are 
formed we should see a different response with CBG. This data is shown in Fiqure 14 using the same 
experimental apparatus of Fiqure 12. The linear transmission at 0.6328 /on was 28 percent as seen in Fiqure 
14. Upon irradiation with ss 4.4 KW at 1.064 /im the transmittance decreases rapidly and recovers to the 
original transmittance level of 28 percent within 200 ns. However, the transmittance continues to increase 
to a 72 percent within 2 /xsec. Indeed this high transmittance is permanent. Microscopic examination 
reveals that the carbon coating is nearly completely removed by the excitation pulse. These experiments 
show that this removal occurs within 2 /xsec. These data are consistent with plasma induced scattering and 
recovery, however, the recovery time can also be explained by simple thermally induced ejection of the 
particles out of the beam. Clearly bubbles play no role in this experiment on CBG. 

7. CONCLUSION 

The experimental results indicate that nonlinear scattering is the dominant mechanism for limiting in CBS 
and CBG. Results of angular scattering measurements clearly show that the nonlinear scattering is due to 
the increase in size of the scatterers (i.e., micro-plasmas or micro-bubbles) as a function of incident fluence 
for ns laser pulses. The results of transmission measurements in CBG indicate that bubble formation is not 
a neccessary occurance for limiting with carbon black particles. In addition, from excitation and probe 
measurements in CBS and CBG we observed that the probe beam transmission decreases within the duration 
of the pulse for both samples and recovers back to 50 percent of the total attenuation within 150 ns. This is 
consistent with the measured emmision life time from ionized carbon atoms. All of our experimental results 
are consistent with the plasma formation model while the other proposed models such as bubble formation 
fail to explain one or more of the experimental results. 
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Bound Electron Nonlinearities and Their Application to Optical Switching 

D. J. Hagan*, M. Sheik-Bahae, D. C. Hutching^, 
A.A. Said, T.H. Wei and'-E. W. Van Stryland 

Center for Research in Electro-Optics and Lasers (CREOL) 
University of Central Florida, Orlando, Florida 32826 

Abstract 

We have performed an extensive series of measurements of the bound electronic nonlinear refractive index n2 of 
TvS of soüds at several wavelengths. We find that as the photon energy approaches E (the band-gap 
eneTy) t£at n2 changes from positive to negative. This observed wavelength^dispersion of n can be well 
Sdfor wavelengths well below the fundamental absorption edge using a Kramers-Kronig transformation 

Two pho on absorption, AC Stark (virtual band-blocking), and electronic Raman contributions to the 
SLgteaiy part of the third order susceptibility. The fit thus obtained for n2 is amazingly good for more than 
f?ur orders of magnitude change of n2 including a change in sign. The change in sign from positive to negative 
whh increasing frequency occurs roughly midway between the two-photon absorption edge and the fundamental 
absorption edge. Thus, we now have a comprehensive theory that allows prediction of n2 at any wavelength 
below the band edge given only Eg and the linear index of refraction. Such information «useful for a variety 
of applications including optical limiting, laser-induced damage, and all-optical switching. We use our theory to 
estimate the minimum obtainable ultrafast switching powers for various wavelengths of practical interest. 

*  also with the Departments of Physics and Electrical Engineering 

2. Introduction 

Recent measurements of the bound electronic nonlinear refractive index n of several semiconductors and 
dielectric materials show that there is a strong systematic dispersion of n2 above the two-photon absorption 
(2PA) edge.[l] These data were taken using the newly developed Z-scan technique [2 3](abeam distortion 
method) and degenerate four-wave mixing,[4] and show that n2 turns negative between the 2PA edge and the 
?unlmenS absorption edge. We found that by using a Kramers-Kronig (KK) integral of the 2PA spectrum as 
given by a two-parabolic band model, we could predict the observed universal dispersion, scaling, and values of 
n that range more than four orders of magnitude and change sign.[l] This KK analysis relates the real and 
imaginary parts of the third order susceptibility. The resulting scaling rule correctly predicts the value of n2 for 
Ae 26 different materials we had examined at that time, except very near the gap where there was a systematic 
d^pa7mre of the data from the theory toward larger negative n2 values. More recent data taken at wavelengths 
neLr the gap show an even larger departure from the predictions of the 2PA model. We had specu ated in Ref 
[1] that the band-gap resonant AC Stark effect might make |n2| larger near the gap. Here we present a model 
that includes 2PA the AC Stark effect and the electronic Raman effect. Indeed the inclusion of these effects 
does explain the large negative increase in n2 near the gap. 

There are two distinct frequency regimes for nonlinear optics in semiconductors which correspond to real and 
virtual excitation. The study of nonlinear optics in semiconductors has primarily concentrated on bandgap- 
resonant effects which result in a real excitation. The very large nonlinear effects observed in this case, are the 
saturation of interband and excitonic absorption due to photoexcited free carriers and excitons Real excitation^ 
usually result in a reduction of the refractive index at frequencies of interest. In contrast, by exciting optical 
solids at frequencies much less than the gap, a considerably smaller but faster, P05^^0?1^,^^ 
index, n2, due to bound electronic effects is observed. This n2 arises from the real part of the third-order 
susceptibility, x(3), and is defined through the refractive index change An, where 

n2(u),_ (1) 
An(w) = 7(w) Iw = -4=—|EJ2, 



with 1   and E   beins> the irradiance and electric field at frequency u respectively and n2=(2*/n0)Re{x(3)}.  The 
with I,, ana fcw Deing uie lrrauuu^ „,,.,«,» hv n fesuWcn f/40*)(MKS) where c xs the speed of light, 
iineor rofVart vp index is n    and *r and n, are related oy n2(lesu.Mcn0j/'«v«A' *"—v     ... , <• linear reiracuve inaex is n0, «uiu ; 2 u^o„d «f ;tc imnnrtance in aDDhcations such as nonlinear 

SÄtlSÄÄ ÄXÄ UTA ÄH* an, OPUC «*. 
in semiconductors. 

i A<„,«\™a* t*rhn\nup (7-scan) \2 31 that determines the magnitude and sign of 
Our measurements ^J^J^^o S£Z SA«ffident * This simple technique has been shown 
n2 even in the presencej,f 2PA ^^^^ ^ ^ ^ Measurements of wide band-gap dielectrics show 
to be an accurate and sensitive tool lor measuring,n, « u P ^      NaC1 and Si0     0ur measurements 

n2>0 which.explains «J^*^?™ ^1 / S showpolti" nr However! we found a negative 

" r^STuch aTznsTX a 32^m where 2PA* present, but a positive n2 at 1.064 m where 2PA is 
^^ntSe values obtainTd for% are in excellent agreement with our earlier measurements using standard 
f £5«S F51 We iTperfomed picosecond degenerate-four-wave mixing (DFWM) measurements which 
^TZ^äZTrZ^ol^ (time resolution limited by the 30 ps pulsewidth).[6] At wavelengths 
wtere 2PA was present this fast third order nonlinearity was dominant at low irradiance (eg. up to «0 JGW/cm* 
SS 53?nm) while at higher irradiances the slowly decaying 2PA generated free-earner refraction (self- 
defocming) became important. DFWM studies in other semiconductors and other wavelengths showed this to I* 

vSphenomenon[6] We have also included in our analysis n2 data taken on a series of wide gap materials 
lyTeaSy degenerate three wave mixing« by Adair et. al. [7], and data taken by LaGasse et ah [8] on^AlGaAs 
using mtorferometry. As a result, we have been able to clearly demonstrate the behavior of the Ee band gap 

scaling[9,10] and dispersion of n2. It should be noted that since the 2PA spectrum was previously determined 
[11], no fitting parameter was used in the calculation of Ref. [1]. 

3. Kramers-Kronig (KK) Relation 

Most theoretical calculations of n2 have been confined to the zero frequency Umit [ 12-16] Of these semi- 
empirical formulations have been most successful in predicting the magnitude of n [15 16] ^example he 
formula obtained by Boling, Glass and Owyoung (BGO) in relating n2 to the linear index (n0) andi thepapers on 
of n0 in terms of the Abb! number has been successfully applied to a large class oT™^^^SJ2 
Their theory predicts the low frequency magnitude of n2, but does not give the dispersion The ^K me hod 
pred c^ the dkpersion as well as the magnitude of n2. While the calculation presented in Ref. [1] only included 
2PAh tne imaginary part of &), this calculation includes all other relevant contributions, that is, from 
electronic Raman and the AC Stark effect ("virtual band-blocking"). 

Based on the principle of causality, the KK relates the refractive index and absorption coefficient for any linear 

material. 

n(w)-l =- v it 
'"sfcQ-d,/ (2) 

o "/2"w2 

Now introduce some causal source of change f into the system and consider the change » ^j£^ ^ 
resulting from the effect of f. The KK transformation states that a change in ^/*^™£^^> at^£ 
associated with changes in the absorption coefficient (Aa) throughout the spectrum (u) and vice versa. We *nte 

this as: 

.oo 

c 
An(w,0 = 

where c is the velocity of light in vacuum and f is a parameter (or parameters) denoting the "cause" of change in 



the absorption. 

The cause need not be of optical origin but of «^ 

used to^culate the^ctive^^^^X^-Ä^^^ *' ™nt *»» °f 

shift of the band edge [9].    For cases wnereM' ™»=£ "        ^ h   ( parameter is taken as the 
absorption gives the plasma contribution ^°Jhe /^^^ £ g*^ 0f the plasma or the pump 
change in plasma density (AN) rega^dles* of ^ m f ^^^ of a pump fieId at n (ie. €-n). The 
frequency.[17] In the case at 2PA JV^^fves ^ ion of the index change with «. Although 
corresponding nonbnearrefrain *An(u£^^enerate nonlinelr refraction, in most cases we would set f^ 
the» calcula^on as i^tm**^^8^s what is commonly referred to as n2. Van Vechten and Aspnes [14] 
and consider self-refraction    Tlus gives    na ^     transformation of the Franz-Keldysh electro- 
obtained the low teW™yJ™<f*> the^ field ^The bound electronic contribution to X& can originate 
jTÄi'iÄSÄ Si «S£Ä functions of the pump field. Effects of this order are 
2PA, the electronic Raman effect, and the optical Stark effect. 

An aternative way of considering the KKRation *n» dotte «ff^^^St!!!^ 

SZ^^TlXk^f^^XnrS\^^^ > «A- of 0 is apphed to the 
maS^generate 2PA ckn be related to the case where the two frequence are set equal. 

Two-photon absorption processes requhe ^£«!<^^£^ cf*e —"oft 
is to use first order perturbation tor,..J^fj^™^^ We ^„„e a two beam AP interaotion 
eleotrons due to the osc, lattng electnc f.elc ni ajready h*en «»J"°u™- ^ „ the degeI,mte 2PA 
„ith both beams linearly R°^ "^^w££7 k the .wo-photon traction rate. The resulting 
£££, " ,£ £rSrZJ*£%* -S I frequency uependence form as that calculated in 

references [10], namely, 

ÄW)=K^F2(ÄW/Eg), 

„w F (x\=t(1x nV2V2x)6 Here K is a material independent constant and Ep (related to the Kane 
momn£m'plSml, ^near^material independent and ?°-'- tSeV^/UVwhe™* ££ & 

^ heftet oTreducing 0 slightly without significantly changing the frequency dependence [22]. Usmg the 
same method the nondegenerate 2PA is found to be, 

AOKCü,)   2Kv^ _ (5) 
I .2 

2 nfö 
^F^/E^/E^) , 

where the 2PA frequency dependence is given by, 

FfA(xi;x2)=! 
(x1+x2-l)

3/2 f j     n 

27xxx* *1    X2 

2 (6) 

However, we now have an additional term attributed to Raman terms giving a change in absorption of, 



-RAM 
27xxx^ 

1     1 
xi   xi 

(7) 

-2PA 
where the scaling is the same as in Eq. 5.  The total F2 due to two photon processes is just the sum of F2     and 
r-RAM 

Another effect which must be taken account of in these calculations is the change in linear absorption at wx due 
to the presence of the field at w1 shifting the bands by the AC Stark effect. Two terms arise out of this as the 
radiation perturbation term couples the conduction band to itself and to the valence band. It can be shown that 
linear AC Stark effect produces a change in absorption Aa with a spectral dependence given by Ff , where, 

_S1 2(xrl)3/* 
Ff^x,)- 4 (8) 

*-lA2 

The quadratic Stark shift resulting from the coupling between the conduction and valence band leads to a Aa 
given by, 

Ff(xi;x2)=- 1 

210x1x*(x1-l)
1/J 

1 
X1~X2    Xl'*'Xl 

(9) 

4. Nonlinear Refraction 

In principle we can evaluate AnCw^Wj) as defined in Eq. 2, however, there are few experiments of this quantity 
other than at w =w2, which is the case of self refraction. Using the KK relations discussed earlier, the change in 
refractive index An(w,w)=-7l can be calculated to give, 

KäCN/IT 
7=-^T^G2(^/Eg), (11) 

*t>K 

where the dispersion function G2(x) is given by, 

°>«-l 
OO 

F.(x';x) 
'2_-v2 

dx' (12) 

All that remains is for the above integral to be evaluated for the various contributions to the nondegenerate 
absorption, F^x^Xj). 

When these integrals are performed and the results summed a single divergent term proportional to W2 is left. 
This diverging term is not unexpected as A-p perturbation theory has been used in the transition rate calculations 
and it is well known that divergences of this order can be introduced whereas the comparable E-r perturbation 
theory avoids such divergences. In a similar manner to Moss et al. [23] we treat such a divergence as unphysical 
and subtract it from the result for the nonlinear refraction. Using the value of K obtained from 2PA 
measurements and using Ep=i21 eV, which is true for the majority of semiconductors, we obtain, 

K'N/ET 
n2(esu)= -f-Gz(hu/Eg) , 

noEg 

(13) 



where the constant K'-1.5xlO- when Eg is defined in eV.    We note the Eg
4 bandgap dependence for the 

magnitude of n2. 
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Fig. 1.       A plot of n2 dispersion function Gßu/Eg) containing contribution from 2PA, Raman and AC Stark 
effect. Data are scaled by n0E4/K'VE^. 

A graphical comparison of the dispersion function G2(*a,/Eg) with measured values of n2 obtained from Z-scan 
measurements at 1.06 »m and 0.53 /an [2,3] arid nearly degenerate three-wave mixing measurements of large gap 
optical materials [7] is shown in Fig. 1. Note we have agreement within a factor of 2 for a wide range of 
semiconductors and large gap optical materials. 

The scaling of n, with bandgap is demonstrated in Fig. 2. Here we plot the ratio of n2 to the dispersion function 
G2(Äw/Eg). The straight line indicated shows the expected E'4 dependence. It is found that the scaling law 

holds true over more than orders of magnitude variation in the modulus of n2. 

The E-4 dependence of n2 gives a variation of n2 from 2.5x10"" esu for a material such as MgF2 at 1.06 jim to 
3x10"" esu for Germanium at 10.6 jan, which we measured using a picosecond C02 laser. This large variation 
of n, is better displayed by plotting n2 scaled by n0 and G2 as a function of E, on a log-log plot as shown in 
Fig 2 In spite of this very large variation in magnitude of n2 (and change in sign), this extremely simple model 
gives good agreement with the data for materials including both semiconductors and insulators. 
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Fig. 2. ' A log-log plot showing the expected E~4 dependence of nr The data points are identical to those in 

Fig. 2 but now scaled by the dispersion function G2(hw/Eg). The solid line is the function E~4 which 

translates into a straight line of slope -4 on the log-log scale. 

5.      Application to All-Optical Switching 

One of the applications of n2 is in the role of all-optical switching. Some examples are the nonlinear Fabry- 
Perot for image processing or parallel optical computing [24,25] or coupled waveguides for communications 
switching networks [26,27]. When it comes to optimizing devices for optical switching it is important that 
optical losses in the system are not too large. If optical absorption is large, then the change in refractive index 
will fall off rapidly as the optical wave propagates. 

It can be shown that for any optical switching system, one must achieve a refractive index change An such that, 

|An| > c,waA, (14) 

where csw is a numeric constant of the order of unity whose precise value depends on the particular switching 
scheme. For example, for a Fabry-Perot, c,w=(2v/37r)_1 [28], and for a nonlinear coupled waveguide, cgw=2 
[29,30]. 

Below the band edge, the principal contribution to the absorption is 2PA, <r^9I at irradiance levels of interest. 
As the electronic Kerr effect gives an index change of An=il, the requirement for all-optical switching is [29], 

SL >c. (15) 

Using our relationship between 7 and ß through the KK relations, we obtain the frequency dependence for the 
all-optical switching requirement, 



fig, lG,(to/Ef)l 
Eg    F2(Äu/E8) 

>2xc. (16) 

Note that equation 16 has no explicit material dependence as it is only a function of the ratio hu/Eg. Thus 
although n can be enhanced by using smaller gap materials, this does not nesecarily improve conditions for 
switching The left hand side of (16) is plotted in Fig. 3. In the same figure we also show the experimentally 
determined values for this parameter \2iri/ß>\ for some semiconductors using the n2 values reported here and 
2PA coefficients from [5]. We see that ther is a range of optical frequencies where this quantity becomes too 
small for optical switching which is given approximately by0.6<ftw/Eg<0.9, covering most of the region where 
2PA is observed.  This was first noted by Mizrahi et al [29]. 
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Fig. 3. Material independent switching parameter as a function of frequency. Also shown are the minimum 
limits for all-optical switching for the nonlinear directional coupler and the nonlinear Fabry-Perot. 
For switching to be possible the switching parameter must exceed the relevant limit. The data points 
are based on our semiconductor n2 and ß measurements. 

We can use our results to predict switching powers in the nonlinear directional coupler (c8W=2) for the 
technologically important wavelengths 0.85pm, 1.55pm and 10.6 pm. We choose suitable materials based on the 
criterion that the photon energy must be just below the two photon absorption edge, i.e. Äw/Eg=i0.45, or as close 
to this as available materials will allow. Under this criterion, the some of the best available materials are ZnS for 
0.83pm, CdSe or the appropriate alloy concentration of AlGaAs (such that ftL/Eg=:0.45) for 1.55pm and the 
corresponding alloy concentration of InAsSb for 10.6pm. Folowing reference [29] we calculate the switching 
power as, 



P   -2Ai 
,w    -yL' 

(17) 

where we assume that the beam area is the minimized and hence a A2. L is the interaction length in the 
directional coupler. The resulting switching powers are shown below in Table 1. This shows that while 
switching powers decrease for longer wavelengths with correspondingly smaller bandgaps, the power does not 
decrease according to the E"4 dependence of n2.    This is due to the fact that longer wavelengths require 

proportionately larger index changes to produce a given phase shift and that the minimum cross-sectional area of 
a waveguide mode is =sA2. Also, even in the best case of PiW=80 Watts, this compares poorly with alternative 
technologies, such as excited carrier induced nonlinear refraction [29]. However, if longer interaction lengths 
can be tolerated, the lack of 2PA may make such devices useful in certain interactions [27]. In fact our studies 
indicate how the switching powers reported in reference [27] on switching in glass fibers may be considerably 
reduced by choosing more appropriate materials to optimize Aw/Eg. 

Wavelength Material Switching 

Power 

0.85/zm ZnS 1500W 

1.55/jm CdSe 410W 

AlGaAs 340W 

10.6fj.rn InAsSb SOW 

Table 1.   Calculated switching powers for the nonlinear directional coupler utilizing the bound electronic Ken- 
effect. 

6.  Conclusion 

In conclusion, the measured n2 data follow a universal dispersion curve from which values of n2 for other 
materials at other wavelengths can be calculated. We have also experimentally verified the predicted band-gap 
scaling of n2. From the excellent overall agreement with the predicted magnitude and dispersion of n2, as 
calculated via Kramers-Kronig, to the large number of experimental data, we conclude that the processes 
responsible for 2PA and the AC Stark effect also determine n2. This in turn implies that the bound electronic 
nonlinear refractive index is predominantly a causal consequence of these nonlinear absorptive processes just as 
the linear index is a causal consequence of linear absorption. This calculational approach takes advantage of the 
historical fact that, for the solid state, the 2PA coefficient has been calculated from a transition rate 
approach.[24] Thus, we have circumvented problems associated with performing a direct calculation of the third 
order susceptibility. 
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ABSTRACT 

We recently performed an extensive series of measurements of the bound electronic nonlinear refractive index 

n2 of a variety of solids at several wavelengths. We found that as the photon energy approached Eg (the 

band-gap energy), that n2 changed from positive to negative. This observed wavelength dispersion of n2 

can be well explained for wavelengths well below the fundamental absorption edge using a Kramers-Kronig 

transformation on the two-photon absorption coefficient ß which we had previously studied. While this 

theory fit the data well for 0.1Eg<#w<0.8Eg (Eg is the band-gap energy), there was a significant deviation 

toward larger negative values of n2 near the fundamental absorption edge. We speculated that the AC Stark 

effect could account for this deviation. Here we extend the data to photon energies nearer the gap and redo 

the Kramers-Kronig calculation to include the AC Stark (virtual band-blocking), and electronic Raman 

contributions to the imaginary part of the third order susceptibility. Indeed the fit obtained for n2 as 

calculated by Kramers-Kronig is amazingly good for a five orders of magnitude change of n2 including a 

change in sign. The change in sign from positive to negative with increasing frequency occurs midway 

between the two-photon absorption edge and the fundamental absorption edge. Thus, we now have a 

comprehensive theory that allows prediction of n2 at any wavelength below the band edge given only Eg and 

the linear index of refraction. Such information is useful for a variety of applications including optical 

limiting, laser-induced damage, and all-optical switching. 

also with the Department of Physics and Electrical Engineering 
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2. INTRODUCTION 

Recent measurements of the bound electronic nonlinear refractive index n2 of several semiconductors and 

dielectric materials show that there is a strong systematic dispersion of n2 above the two-photon absorption 

(2PA) edge.[l] These data were taken using the newly developed Z-scan technique [2,3](a beam distortion 

method), and degenerate four-wave mixing,[4] and show that n2 turns negative between the 2PA edge and the 

fundamental absorption edge. We found that by using a Kramers-Kronig (KK) integral of the 2PA spectrum 

as predicted by a two-parabolic band model, we could predict the observed universal dispersion, scaling, and 

values of n2 that range over four orders of magnitude and change sign.[l] This KK analysis relates the real 

and imaginary parts of the third order susceptibility. The resulting scaling rule correctly predicted the value 

of n2 for the 26 different materials we had examined at that time, except very near the gap where there was 

a systematic departure of the data from the theory toward larger negative n2 values. More recent data taken 

at wavelengths nearer the gap show an even larger departure from the predictions of the 2PA model. We had 

speculated in Ref. [1] that the band-gap resonant AC Stark effect might make |n2| larger near the gap. Here 

we present a model that includes 2PA the AC Stark effect and the electronic Raman effect. Indeed the 

inclusion of these effects does explain the large negative increase in n2 near the gap. 

There are two distinct frequency regimes for nonlinear optics in semiconductors which correspond to real and 

virtual excitation. The study of nonlinear optics in semiconductors has primarily concentrated on bandgap- 

resonant effects which result in a real excitation. The very large nonlinear effects observed in this case are 

the saturation of interband and excitonic absorption due to photoexcited free carriers and excitons. Real 

excitations usually result in a reduction of the refractive index at frequencies of interest. In contrast, by 

exciting optical solids at frequencies much less than the gap, a considerably smaller but faster, positive 

nonlinear refractive index, n2, due to bound electronic effects is observed. This n2 arises from the real part 

of the third-order susceptibility, x^> and is defined through the refractive index change An, where 

An(w) = 7(0,) Iw = ^l|Ej* , (1) 

with Iw and Ew being the irradiance and electric field at frequency w respectively and n2=(2x/n0)Re{x^3^}. 

The linear refractive index is n0, and 7 and n2 are related by n2(esu)=(cn07/40»)(MKS) where c is the speed 

of light. The magnitude and dispersion of n2 is of interest because of its importance in applications such as 

nonlinear propagation in fibers, fast optical switching, self-focusing and damage in optical materials, and 

optical limiting in semiconductors. 

SUeH^- V^cvl'C.e 2- 



Our measurements utilized a newly developed technique (Z-scan) [2,3] that determines the magnitude and 

sign of n2 even in the presence of 2PA where it also gives the 2PA coefficient ß. This simple technique has 

been shown to be an accurate and sensitive tool for measuring n2 and ß. Measurements of wide band-gap 

dielectrics show n2>0 which explains catastrophic self-focusing damage in such materials as NaCl and Si02. 

Our measurements in semiconductors below or near the 2PA edge (AwsEB/2) also show positive n2. 

However, we found a negative n2 in materials such as ZnSe at 0.532 /zm where 2PA is present, but a positive 

n at 1.064 pxa where 2PA is absent. The values obtained for ß are in excellent agreement with our earlier 

measurements using standard transmission.[5] We also performed picosecond degenerate-four-wave mixing 

(DFWM) measurements which showed this third order response to be fast (time resolution limited by the 30 

ps pulsewidth).[6] At wavelengths where 2PA was present this fast third order nonlinearity was dominant at 

low irradiance (eg. up to =^0.5 GW/cm2 in ZnSe at 532nm), while at higher irradiances the slowly decaying 

2PA generated free-carrier refraction (self-defocusing) became important. DFWM studies in other 

semiconductors and other wavelengths showed this to be a universal phenomenon.[6] We have also included 

in our analysis n2 data taken on a series of wide gap materials by "nearly degenerate three wave mixing'* by 

Adair et. al. [7], and data taken by LaGasse et. al. [8] on AlGaAs using interferometry. As a result, we have 

been able to clearly demonstrate the behavior of the dispersion of n2. 

It has previously been predicted that x(3) should vary as E~4.[9,10] Using this scaling and the relation 

between n2 and x(3) that includes the linear index n0, we can remove the Eg and n0 dependencies from the 

experimental values of n2 by multiplying them by n0Eg. Figure 1 shows a plot of our experimentally 

determined scaled values of n2 as a function of Äw/Eg. We also divide the data by a constant K' which we 

explain in what follows. We show on the same plot several data for large gap optical crystals obtained from 

recent measurements by Adair etal. using a "nearly degenerate-three-wave-mixing" scheme.[7] Our own 

measurements of several of the same materials studied in [7] show excellent absolute agreement. Assuming 

that there are no other relevant parameters unique to each material other than bandgap and index, this plot 

should be general to all optical solids. Upon examination of Fig. 1 we immediately see a trend giving small 

positive values for low ratios of photon energy to band-gap energy which slowly rises to a broad resonance 

peak at the 2PA edge and then decreases, eventually turning negative between the two-photon and single- 

photon absorption edges. We should note that the scaling with Eg hides a variation in magnitude of n2 of 

four orders of magnitude so that the observed universal dispersion curve is quite remarkable. This dispersion 

curve is qualitatively similar to the dispersion of the linear index around the single photon absorption edge. 

As these linear quantities are related by causality via a KK relation, it seems logical to investigate whether the 

observed dispersion of n2 can be calculated using a nonlinear KK relation between the real and imaginary 

parts of x(3)- Indeed, as we showed in Ref. [1], making some reasonable assumptions, the observed 

tendencies as well as the absolute magnitudes of this dispersion are well predicted by such a calculation.   In 
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Ref. [I] a calculation of n2 including only the 2PA contribution to the imaginary part of x(3)was presented. 

The solid line in Fig. 1 as reproduced from Ref. [1] is the direct result of such calculation. It is seen that the 

calculated result is in good greement with most experimental data measured at /zw/E_<0.8. It should be noted 

that since the 2PA spectrum was previously determined [11], no fitting parameter was used in the calculation 

of Ref. [1]. 

3. KRAMERS-KRONIG (KK) RELATION 

Most theoretical calculations of n2 have been confined to the zero frequency limit.[12-16] Of these, semi- 

empirical formulations have been most successful in predicting the magnitude of n2.[15,16] For example, the 

formula obtained by Boling, Glass and Owyoung (BGO) in relating n2 to the linear index (n0) and the 

dispersion of n0 in terms of the Abbe number has been successfully applied to a large class of transparent 

materials.[7,16] Their theory predicts the low frequency magnitude of n2, but does not give the dispersion. 

The KK method predicts the dispersion as well as the magnitude of n2. While the calculation presented in 

Ref. [1] only included 2PA in the imaginary part of x^3^. this calculation includes all other relevant 

contributions, that is, from electronic Raman and the AC Stark effect ("virtual band-blocking"). 

Based on the principle of causality, the KK relates the refractive index and absorption coefficient for any 

linear material. 

n(u)-l =5 

„oo 
oft/) 

0 W'2-W2 
da/ (2) 

Now introduce some causal source of change £ into the system and consider the change in the refractive 

index resulting from the effect of £. The KK transformation states that a change in the refractive index (An) 

at u is associated with changes in the absorption coefficient (Aa) throughout the spectrum (a/) and vice versa. 

We write this as: 

An(o;;0 = | 
0 
^f1 du/. (3) w2-w'2 

where c is the velocity of light in vacuum and £ is a parameter (or parameters) denoting the "cause" of change 

in the absorption. 



The cause need not be of optical origin but of any external perturbation. For example this method has been 

used to calculate the refractive index change resulting from an excited electron-hole plasma [17] and a 

thermal shift of the band edge [9]. For cases where an electron-hole plasma is injected, the consequent 

change of absorption gives the plasma contribution to the refractive index. In this case, the £ parameter is 

taken as the change in plasma density (AN) regardlesss of the mechanism of generation of the plasma or the 

pump frequency.! 17] In the case of 2PA the change is due to the presence of a pump field at n (ie. £=0). 

The corresponding nonlinear refraction is An(ar,n), which gives the dispersion of the index change with w. 

Although the calculation as illustrated above gives the nondegenerate nonlinear refraction, in most cases we 

would set n=w and consider self-refraction. This gives what is commonly referred to as n2. It is important to 

note that we must first perform the integral before setting ü=w. Van Vechten and Aspnes [14] obtained the 

low frequency limit of n2 from a similar KK transformation of the Franz-Keldysh electro-absorption effect 

where, in this case, £ is the DC field. The bound electronic contribution to x^3^ can originate from various 

absorptive counterparts that are quadratic functions of the pump field. Effects of this order are 2PA, the 

electronic Raman effect, and the optical Stark effect. 

An alternative way of considering the KK calculation is to do the calculation not for the basic material but 

on a system which consists of the material plus a light field. Thus, it is necessary to know the nondegenerate 

absorption change Aa(w;n), which is the absorption of light at w when a light-field of ft is applied to the 

material. Degenerate 2PA can be related to the case where the two frequencies are set equal. 

Two-photon absorption processes require that perturbation theory be taken to second order. A variation of 

this is to use first order perturbation theory on a "dressed" final state where the effect of the acceleration of 

the electrons due to the oscillating electric field is already taken into account. We assume a two beam A-P 

interaction with both beams linearly polarized in the same direction. Following Keldysh [18] and Jones and 

Reiss [19] such a final state can be approximated by a Valkov-type wavefunction. The transition rates are 

calculated using an S matrix formalism^ 19,20] Using this approach the degenerate 2PA coefficient can be 

determined; £(w)=2fcwWr2 where W is the two-photon transition rate. The resulting expression for the 2PA 

has exactly the same scaling and frequency dependence form as that calculated in references [10], namely, 

/?(w)=K-2-|F2(*a;/Eg) (4) 
noEg 

with 
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F(x)=(2x-l)3/2 
(2x)« 

Here K is a material independent constant and Ep (related to the Kane momentum parameter) is nearly 

material independent and posseses a value Ep~2l eV for most direct gap semiconductors. The best fit to the 

data of reference [21] gives K=3100 cm(eV)-6/2/GW, whereas theory [22] gives K=5200 cm(eV)-6/2/GW. 

This difference can largely be explained by the effects of nonparabolicity which has the effect of reducing ß 

slightly without significantly changing the frequency dependence [22]. 

Using the same method the nondegenerate 2PA is found to be, 

h n*E; 2,3 F2(ÄWl/Eg; WE*). (5) 

where the 2PA frequency dependence is given by, 

-2PA,„._, OW-Q3/2 r i. r2 

F2      (XvX2^~        OT„     2 Xl    X2 27x1x2
: 

However, we now have an additional term attributed to Raman terms giving a change in absorption of, 

(6) 

2 2'x^ 
1     1 

Xl    X2 

2 
(7) 

where the scaling is the same as in Eq. 5. 

The total F2 due to two photon processes is just the sum of F?,PA and F2 

Another effect which must be taken account of in these calculations is the change in linear absorption at wx 

due to the presence of the field at w2 shifting the bands by the AC Stark effect. Two terms arise out of this 

as the radiation perturbation term couples the conduction band to itself and to the valence band. 

It can be shown that linear AC Stark effect produces a change in absorption Aa with a spectral dependence 

given by Ff1, where, 

i&Yv-e'v'R-.-V^oKc^ 7~ 



„. 2(x.-l)3/2 m 
Ff^x .;x>-      *     4    • (8) 
212        27xax£ 

The quadratic Stark shift resulting from the coupling between the conduction and valence band leads to a AQ 

given by, 

F!
2
(*X;*2)=- 210XIX2(XI.1)I/2 

1 -+ J 

X1~X2    Xl+Xl 
(9) 

4. NONLINEAR REFRACTION 

In principle we can evaluate An^;^) as defined in Eq. 2, however, there are few experiments of this 

quantity other than at w=w2. Additionally, we have found an analytical expression for self refraction. Using 

the KK relations discussed earlier, the change in refractive index An(or,w)=7l can be calculated to give, 

7=^-^G2(Äo;/Eg) , (H) 

where the dispersion function G,(x) is given by, 

Ga(x)-| 

oo 

2 F'(X';X)dx' . (12) 
X'2-X2 

0 

All that remains is for the above integral to be evaluated for the various contributions to the nondegenerate 

absorption, F^x^xJ. 

When these integrals are performed and the results summed a single divergent term proportional to W2 is left 

given by, 

Gdiv/x-v=_5_ (13) 
^2    W~29X2  • 

This diverging term is not unexpected as A-p perturbation theory has been used in the transition rate 

calculations and it is well known that divergences of this order can be introduced whereas the comparable E-r 



perturbation theory avoids such divergences. In a similar manner to Moss et al. [23] we treat such a 

divergence as unphysical and subtract it from the result for the nonlinear refraction. 

Using the value of K obtained from 2PA measurements and using Ep=t21 eV, which is true for the majority 

of semiconductors, we obtain, 

n2(esu)=^^G2(ftW/Eg) , <14) 
noEg 

where the constant K'=1.5xl0-8 when Eg is defined in eV. We note the Eg
4 bandgap dependence for the 

magnitude of n2. 

A graphical comparison of the dispersion function G2(ftu>/Eg) with measured values of n2 obtained from Z- 

scan measurements at 1.06 /mi and 0.53 pm [2,3] and nearly degenerate three-wave mixing measurements of 

large gap optical materials [7] is shown in Fig. 2. Note we have agreement within a factor of 2 for a wide 

range of semiconductors and large gap optical materials. 

The scaling of n2 with bandgap is demonstrated in Fig. 3. Here we plot the ratio of n2 to the dispersion 

function G2(fcw/Eg). The straight line indicated shows the expected E"4 dependence. It is found that the 

scaling law holds true over 5 orders of magnitude variation in the modulus of n2. 

5.  CONCLUSION 

It has been established that the Kramers-Kronig relations not only hold true for linear optical properties but 

can be extended to nonlinear effects also. We derive a Kramers-Kronig relation between nonlinear refraction 

and nonlinear absorption. However, it is necessary to know the nondegenerate absorption (or refraction in 

the equivalent converse expression) i.e. the nonlinear absorption over all frequencies wx when a constant 

optical field w2 is applied.  This can be thought of as a pump-probe spectrum. 

We calculate the nondegenerate nonlinear absorption using a simple two-band model for a direct 

semiconductor. It is necessary to include transitions over all frequencies so Raman and Stark shift terms are 

included as well as two-photon absorption. In order to obtain the scaling of the absorption terms a 

comparison is made to the previously measured degenerate 2PA. 

The Kramers-Kronig integral can be performed analytically to give the nonlinear refraction.    In this 
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calculation we set the two frequencies in the nonlinear refraction equal as we wish to determine self- 

refraction, but in general the nondegenerate refraction can be obtained, i.e. the change in refractive index 

seen by light of frequency w when light of frequency Ü is present. 

A comparison is made between experimentally measured values of n2 and the theoretical dispersion presented 

here. It is found that agreement is obtained over a wide range of materials (within a factor of ~2). We also 

note that no fitting parameter is used since the 2PA coefficients were previously determined. Factors of two 

variation are quite reasonable as a very simple model has been used to calculate the nonlinear refraction with 

no account for the correct band structure or excitonic effects. Indeed the theory appears to apply to optical 

materials other than semiconductors as well. The change in sign of n2 at about hw/Eg~3/4 (ie. halfway 

between the 1PA edge and 2PA edge) is predicted and observed. It is also demonstrated that the expected 

E~4 bandgap dependence holds true for over four orders of magnitude variation in the modulus of nr 

It is noted that the main contribution to the dispersion of n2 below the bandgap arises from the two-photon 

transition term with the Stark shift term becoming dominant close to the band edge. This partly explains the 

good fit obtained by using the quasi-nondegenerate 2PA alone in a previous letter by the authors [1]. 

The E~4 dependence of n2 gives a variation of n2 from 2.5x10~14 esu for a material such as MgF2 at 1.06 pm 

to 3x10"10 esu for Germanium at 10.6 /mi, which we measured using a picosecond C02 laser. This large 

variation of n2 is better displayed by plotting n2 scaled by n0 and G2 as a function of Eg on a log-log plot as 

shown in Fig. 3. In spite of this very large variation in magnitude of n2 (and change in sign), this extremely 

simple model gives good agreement with the data for materials including both semiconductors and insulators. 

In conclusion, the measured n2 data follow a universal dispersion curve (see Fig. 3) from which values of n2 

for other materials at other wavelengths can be calculated. We have also experimentally verified the predicted 

band-gap scaling of n2. From the excellent overall agreement with the predicted magnitude and dispersion of 

n2, as calculated via Kramers-Kronig, to the large number of experimental data, we conclude that the 

processes responsible for 2PA and the AC Stark effect also determine n2. This in turn implies that the bound 

electronic nonlinear refractive index is predominantly a causal consequence of these nonlinear absorptive 

processes just as the linear index is a causal consequence of linear absorption. This calculational approach 

takes advantage of the historical fact that, for the solid state, the 2PA coefficient has been calculated from a 

transition rate approach.[24] Thus, we have circumvented problems associated with performing a direct 

calculation of the third order susceptibility. 
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ABSTRACT 

We present measurements of nonlinear absorDtion nnH „pr»^-«. • 
optical limiters. We show that noZ£^^VfS^taiT^W:t0?rd " ^ reaHzati°n °f 

electronic Kerr effect in addition to the two-phmon absornton nPM'Z^T *? " T'^ third 0rder 

used time-resolved beam distortion  picosecondI time Ü   (       }    r C3mer refraction-   We have 
developed Z-scan technique to determne tte In ™i degenerate four-wave mixing and our recently 
electronic -linearity, n^and tL S the 2PA  C°^nt,  *• bound' 

1. INTRODUCTION 

Passive optical limiting utilizing the combined effprM of „n„i;„„„     u 
semiconductors has been demonstrated pSv ouslvi: ~t L S,T abS0rptl0n and nonl^ar refraction in 
the optical analogue of a Zener diodecfrcuithisa LTv£? T*™ °PUC*1 Iimiter may be described « 
after which the output becomes clamped to ä ^^STS "P ? * <*"** lnpUt threshold 

and characterization of broad-band self-protecting ZnS^ üSito ffS? * ] "* ^"^ the develo>™nt 
comprehensive study of the nonlinear processes invXT \th'S paPer' we Pr«ent the results of a 
techniques. These nonlinearities are twptoSS^to^VSj?™" ^ Va"0US ^"^tal 
free carriers and nonlinear refraction due to theeSonic Ker ',rff t

Ctl°n ^"S fr™ the 2PA generated 
mixing (DFWM) studies were conducted o examined tf 7 Picosecond degenerate four wave 
refractive nonlinearities.    Also, our new,y deveZed ZiTTl -^^ M ^ M the 0rder of the 

s^uS.and—- - ^-^nSs S^JSS :s 

^~ o^^ «* equations for nonlinear 
Z-scan technique is briefly described and the resu£of the7c ^^ are presented-  *" section 4 the 
section 5 the experimental resu.ts are comp^!Ä«tä^SS.n,eaSUren,entS ™ ^^   FinaU* in 

2. BEAM DISTORTION MEASUREMENTS 

A collimated beam 0.57 mm in radius (HWl/e'M} at <« „m 

sample and the transmitted beam fluence was monitor^ £ Was. !ncident on « 3. mm polycrystalline ZnSe 
the thin sample approximation ÄX^^S» the nfar ^ * this geometry 
used to describe the beam propagation insidffhe sarnSf TS,", n dlffractl0n len8th of the beam) can be 
two equations, one for the irradiance I and oneforTh oh™l ^ V? » «P»«te the wave equation into 
"radiance levels we can ignore the absorpdon due "o ?he 2PA t T, 3° PS (FWHM) pulses and a< *>v, 
refraction [5].  This leaves the nonlinear differential equations! "^ ^ "0t Car"er induCed 

(1) 



1307-40 

t.c 

1.2 

c 
3 

ja 
< 

0.8 

0.4 

0.0 

-0.4 '  J. 
-2.4 -1.2 0.0 1.2 

Radius (mm) 

 I 
2.4 

b E-IS.2,.J 

 /L-SA-JAV 

. //W411"- ipL 
JAAAV  

/"V 
■ ' 1 1 =£= ! . 

R(rnm) 

2 7 GW/cJi « H
SP

        
e^ner8y Stnb .tl0n. °f 3 3° PS °-53 "m Pu,se after Propagation through ZnSe at 

n -?£B ?Sim
W/rwnTa 7MT- ^ SOh,d Hne iS the the0retiCal fit t0 the «Pendent with a=L6 x 10"», 

with time ( }        temP°     eVOlUtl°n °f the Spatial profile shows the defocusing increase 

24 

20 

16 

c 

ja 

< 

w 

12 

2 
J - 

1. 

V» 
■• ■".,«*«« 

'.'«-V 

-^ 
'"""■WW* 

VA-«A 

",0° 0 100 200 

Backward Pump Delay (ps) 

300 

jugate signal as a lunctton of the jnput irradiance at 0 ps (a) and 200 ps (b). 



1307-40 

and 

-T- = k^I-kaN, 
(2) 

where Q is the linear absorption cefficient  B h th* OPA ^rr- •   .   .   ^  „ 
9-        incident radiation, 7 is the refractive iS^ite^Ä v^V iS ^ Wave,en*th of the 

earners and a is the change in the index of refraction pr £ee carrS ™>7 ' N * ^ denSity °f free 

earners are created by 2PA, the generation rate is given by * generated-  Sin« the free 

dN      ßV 
dt = 2äW 

(3) 

nonlinearity.[7,8] ' lr6e Carner «action  appears as  an  effective fifth order 

The solution to equations (1-3) gives the efertr«. ««w „♦ *u 
Propagate in free space tothev£^?^^ ZL^u -°f ** S3mp,e' Which we *« 
coefficient from reference [6] we proceeded to fit tZT ^'   US1"8 /9=5"5 cm/GW for the 2PA 
refraction The best fit was obtained whhS 6 x J^r^ir"* r** COnsiderinS only free carter 
«n front of the vidicon, the time evolution of he spatll ££?„£ n '?? I(a)" Usi"8 a «reak camera 
shown In figure 1(b). Here the beam is continuous y broadened ^ °f ?' ^ C°Uld be monit0red «* 
»dicatmg that the defocusing mechanism is a timeTntegrahnfefftt JV^ temP°ral,v evolves, further 

^^^^^^ &«" *£ electronic refractive index change in solids is a 

p.1  However, as shown bei. "Ä^ ^^Z^^—^^ 

«>K gives information about the temporal evolution of 

« «*te rwithCkWard PUmP E* *re inciden< on the sample :L7SPr0P,f8atin8 Str°ng beams« forwani an angle 9 with respect to the forward pump Two ofThL K 
th rd Weaker Probe beam, ED incident at 

grating from which the third beam diffracts to f JZ , J  *      ***?* ,nterfere inside the sample to forta a 

SÄ* f th6Se eXperiments -e theicond SSonfc STo f^ ^ "*** the ^be P *   ™ (FWHM) pulse width and a Gaussian spatial nrofSv   •        Patched NdrYAG laser output with a M „! 

WS i ? PSth. °f each ^"^pe^ Pol-i-s and K^S 

meiuLw? difftrem Sl°PeS " shown   n the ins™ S ^«»P« fiance (all three inputs 

-ulated carrier density is 'Ä-W * Ä2. s^T A 
/ A     enect.  Then a third beam diffracts off 
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SAMPLE APERTURE 

^ÄS^ eXPerimemaI SStUP ln Which the — ** Pittance is measured as a function of the 

1.04 
1.04 

l^if^^^1^^^^^ rZeStsSaSPNUSin8 27 PS °-53/im PUlses at °-21 GW/cm»' 
(b) 40% aperture data fitted with £=5.8 cm/GW and ^S'xfo^^" ** ^ fit USing ß=5* Cm/GW- 



1307-40 

anJ^'Z rrrlati0w; thlS V real X(1) effeCt-  Hence' the mechanism is a sequential *(*) : X(D process that 

the sign of n, is not given by DFWM    Thi* thirM «rri». ~cr   .      2       ' nocA'w>rn(MKb).[7,8]   Note that 
distortion experiments * third °rder effeCt was not expected ^ the fits of the beam distortion experiments. 

4. Z-SCAN MEASUREMENTS 

through a finite aperture in the far field into detector D     D '   1 fh   •      transmi«ed beam is collected 
energy fixed, the transmittance is measured as a function JZSl ^ "f^ Keeping the input 

Since nonlinear refraction causes a lensing effect tateinddS S TT" ^T * the f°CSl plane" 
positive lens depending on the sign" of the nonLeariS A Ä£ n P 5 behaves

/f
as a ne8ative °' 

configuration in the Z-scan signal is a signature of a pos ve reticle nonfin^ £!?" [4i ' valley-peak 

denotes a negative nonlinearity. When The aperture ^removeM e all th" !"*•"? f- peak-vaI,ey Pa»ern 
Z-scan  is  only sensitive  to  nonlinear ahsnrnt!      rexnoved: "*" the transmitted light is collected, the 

experiment wj siaulateS by SÄul&S 0 3)    TL^T^
5
  ^  2PA  preSent'  the ^-scan 

Using 27 pS pulses (FWHM) at 53! nm Z-scan measuTe^n** T * be determined A "2 and a. 
sample at different input energies.   Wkh the anert™"remove?.v ' Perf°rmed °n a Z7 mm thick ZnSe 

where I0 is the on axis peak irLiance at he foci   L tnT^l t ^"^ ^ performed at ro=0-l GW/cm> 
refraction and thus independently E^^^r^£^^S^t^0^! * ^'^ 
in figure 4(a) gave a /?=5.8 cm/GW, in good agreementZuu T.     ,       r r       e best flt t0 the data shown 

[6].   Our experimental errors were ^30% mosüy S ne ?„* *'^ °f 5:5 Cm/GW obtained in Terence 
4(b) shows the data and fit of the Z-scan Z    9  ! 

8    °m u"certainties m the irradiance values.   Figure 
Place.    At this low irradiance we    xpec 8?he noni^SEE" ^ ^ 4°% tnmSmittinS ape^ in 
nonlinearity as can be deduced from equations(2andO)    Hence     °.       m°St,y dUe t0 the 3rd order 

dropped and an n,=-4 x 10"" was extracted   Thi L™,-(    •       r      '• the Camer term in eciuati°n (2) was 
in the data.   Moreover, this n2 valu^t wlthin^0% Q

8f7e T *,** V^' fr°m the ^"^^y pattern 
For a 3rd order nonlinearity, the.^.Ä^rf^.^"? °btainfd b* '°ur D™M measurement. 
I.   Figure 5 shows that this is" not the cJe at h eher irLnl^      /      ' * S hnear function °^ the irradiance, 
2PA generated carriers becomes more Snifican? at tw        ? ^ meani"g that the ^fraction due to the 
n2 known, the experimental data w fit SS^) 8 ^-»^5   ^V °W/Cm2 (fig- 6)> and with ß and 

were used at other irradiance values and »w Mod nl?t.\l • &b°Ve measured values for nr * and a 
to determine the above parameterfo■ oüTÄ^*atC5??,me?,aI **• "^ Z"SCan WaS aI'° used 

Mm we measured /?=26 cm/GW, n2=-2 x W"» ST^??7o-a» J?14 ^Vdea8ths- For example at 1-06 
10- esu, ^ x J0-21 cm3 for GaA  ^iUSn«^ were^/oi^ ^ ** Cm/GW' "^ X 

Based on the results obtained from both the DFWM and th* 7 .« 
dis ortion conclusion., The same data shown infiLre,£? r   "If23111-61"6"^ we reexamined our beam 
included in the propagation equation! ^e ^T*.^1"™ ^ with the 3rd o^der refraction 
figure 7 using ß,5.5 cm/GW, n2=-4 x 10"U   Su   nd i   ^   - *       * ^ CXperimental data shown in 

5. CONCLUSION 

As  a result of conducting  thorough studie«: of tu* „^ r       • •     . 
experimental techniques, we conclude ^tj£j££^v

m ^ at 532 ™ ^8 different 
contribution to the overall nonlinear refraction.  We now^S^S S^V negatiVC 3nd is a siSnificant 

We now understand the ^.^r ^As dSdt 
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reference [11], n2, the real part of x(3>, and 2PA, the imaginary part of x(s), are related by causality and a 
relation similar to the Kramers-Kronig connection between linear absorption and the linear index of 
refractional 1] The value obtained for the refractive index change per free carrier pair agrees with the band- 
blocking model suggested by Auston et al.[12]. The a calculated from the above model is 1 1 x 10"21 cm3 

compared to our experimental value of 0.8 x 10"" cm*. In conclusion, we have identified the different 
nonhneanties that make semiconductors good optical limiters. 

-1.2 o.O i.2 

Radius (mm) 
I.A. 

.ha '£^\j^££%*g£ « *» *» *" h * *"- «< «» *• one in figure .(a) where 
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Kramers-Kronig relation between n, and two-photon absorption 
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ABSTRACT 

J^Ä^ on senators show that the 
Kronig analysis. This analysis shows n2 changingTroTnos^v^"toZZT "TT Via a simp,e Kramers" 
the band-gap energy, consistent with observations AddffSTv tiS* • . " ', * Ph°t0n 6nergy aPP™<*es 
parabolic bands, gives good agreement with »SLÄSrf n in S T^f?^ Which "»™« two 

orders of magnitude smaller than in semiconductors. 2      Wlde~8aP ^electrics that are 2 to 3 

2. INTRODUCTION 

^-on^a^ on bandgap-resonant effects.  The very 
Photoexcited free carriers and ^^ZTü^^^^ T*?* *«* 6Xcit0nic Sorption dVe^ 
contrast, by exciting optical solids at r^nc^rnTch^^T" ^ * the refr3Ctive '"**• * 
positive nonlinear refractive index (n2) due to boun^elSrnnS rr ***■ 3 f0™*^^ smaller, and faster 
found that ^UT&mtnts in semk0^ct0Tl £tZZ£to^£!£ V?*"?* However, recently we 
negative values for n2.[l] This dramatic dh^Tl^c^^^'^^^ (2PA) ed*e *eld 

Kramers-Kronig (KK) relation between n and the 2PA ?L% ■ * P3rtia?y «P^ned using a nonlinear 
parts of the third order nonlinear susceptMy vOO ^S^S ^ <* **?™ the real and imaginary 
because of its importance in nonlinear pronaeaton in rij r 8 *de and dlsPe"^n of n2 is of interest 
jn optical materials, and optical ÄJfalSSS^^ ffÄ SWitCh> ^-focusing and damage 
bound electronic Kerr effect   n    and cnZ.T ,      *B ,etter> we de*cribe our calculation of the 
including semiconductors and dielectrics.        *       °Ur ^^ With data for a *W "umber of materials! 

This n2 arises from the real part of y(s) and h for,n0* *u     ' u  ,_ 
pan     * ,, and is defined through the refractive index change An, where 

An(a,) = 7(w)iw«^|Ej2) 

(1) 
wth Iw and Ew being the irradiance and electric fiP?H *t *v„„ 
-.near refractive index is n0, and 7 and ?Ä5 ^SS Sffl«^ 

^o^^ thezero fluency limit,2-6]  Semi-empirical 
obtained by Boling, Glass and Owyoung (BGO) in elat n* nT^v °f V?'« For «a^Ple, the formula 
m terms of the Abbe number has be! n^successful?!Zi^ , ""^ T^ (n«> and the dispersion of n0 
Their theory predicts the low frequen?m g tu of nKW* ^V?* °f transPa™t materials.^, 7 
predicts the dispersion as well as'the magnSe of n %££S2L* 

KK "^ f CalCU,ation of n> *« 
contribution to n2 and that other contributions frÄnS^anttt AC ZTM** ^ giveS ^ dom'nant 

are ignored. We will return to this assumption late? k effeCt 0r virtual band-blocking 

^V\c'\k-BciV\ae 
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3. CAUSALITY AND KRAMFRS-KRONIG TRANSFORMATION 

(An^a^ that . change in the refractive ^ 
versa.  We write this as: absorption coefficient (Aa) throughout the spectrum <«/) and vice 

^o-Sh^P". (2) 

Ä ab^Ä the «cause» of change 
excitation, etc. For cases where an electron-hofe pSsnS JrZSLSLZ ^^ *«*«»** s«<* * thermal 
been used to obtain the plasma contribution to L ScHvl^ ' ,* ??nsec>uent change of absorption has 
the change in plasma density (AN) ££dta£ o?£mthan^r " ^ ?*• *' * Parameter * *««» as 
frequency*«] In the case of 2PA theThan*? ifdu^to the n^ 8Trat,0n °f ^ p,asma or the PumP 
corresponding nonlinear refraction is An(<Tn) which SVSA^?** 

? ' PTP.fie,d at n (ie" *-°>- Thi 
the case of self-refraction, o^n, and this gives what SS.S5 T™*? °f the index chanSe wit» «* For 
[4] obtained the low frequency limit T^Z^T^S^^J^? " X ^ VeChten and A*™ 
absorption effect where, in this case, f% Z l£ fSd T^£ TT °f .the Fran2-Keldysh electro- 
originate from various absorptive counterpartLT^rln^J^r^ eleftron,c contribution to XW can 
«£ may include 2PA, the electronic -"ÄÄ^ 

Keldysh-type formalism [11], the 2PA coefficen^A '    •     T* "^ **»*«*» theory [9,10] or a 
be in good agreement with the theoreSc^exprSn gi!e„ £miCOnduCt0rs stud*d in Ref. [12] were found to 

n0tg (3) 

where K is a material independent constant and E   f related to th» v*„~ 
matrix element)  is nearly material independentPand £L~~ ,  mo^ntum parameter, a momentum 
semiconductors. Note *&**/„Jlm{$h The fUnct!«^ • ?*"* °f .a*1 ev for most di«ct gap 
energy fc, to E, (ie. the optical^ coup,ed s^tes) TT^'? °"V funC,tion of «*» rad° of «he photon 
structure and the* intermediate «HL^SÄ^STS^IPAT °f * "^ the Msuined band 

assumes a pair of isotropic and parabolic bands ain SSS2-8. transition rate.   The simplest model 
or fina, („„„, saK, N^ta^?^^-*~ *« <«*~> 

F,(2*>.ß>-i£L      for2;<>K     . 
(2x) (4) 

™ ^^ «■-* such that E_ and E, were in 
was 26% lower than theory- however the frLi^v iJ   7       nr

onParabohcity was included the average ß 
3 and 4 also give a fair S mate of i for      17 dependence of ' chan8ed very little.  Interestingly, Iqs 
harmonics of picosecond 5^14^^^/ taaspmt materia,s m^ured using the 3rd and 4th 

Equations 3 and 4 pertain to a degenerate case where the two photons involved are of the same frequency and 

^he'v^-BaVxo^ 
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source.   For a KK transformation the nondeeeneratp ?PA <*r*>rr.~:—> e    .      J.  - 
(ie. n the "cause" and «- the integration varfable in En ^ C°ff

t
1Cief fo5 two distinct frequencies is needed 

non-degenerate 2PA coefficiem hi fed to rt^i^ ?Xte"ding *« same simPle »odd to obtain the 
divergences"; 15,161   This has teen HJ,™ aversion   functions   that   are   afflicted   with   "infrared 
calcufate th/ bound ^^^J^^^^T^^ "T J|~ h°f «» ** PerturbatioTto 
considered [17], a general theory that would riaoroSlv SdL A?"

1
 

J ^ gh SpCC,al cases have ***" 
degenerate 2PA is yet to be developed For^^t^^S ^ and. **?*" °f the non" 
nondegenerate 2PA coefficient, ß(J}i) can ^1™ bv Fn„ 7 Jv-^ dispersion function F2 for the 
*/♦«* thus, F2(2x) is replaced by FAX? ^heZx'XJT^^i^ the subst^tion ofW by 
* strictly valid only for x'-X, howe'verthe predicttr^mL^^™^1' ™» nibstituto 
agreement with the data, as will be shown.        prea,ctl0ns «suiting from this substitution show remarkable 

SYPATÄ Ah" by ? T» °f a Str0n« ^P a< 0 can be written 
refractive indS at i induced % tL p eL^of a S^TSSf.? n^ T P "^ Similar* the <*S    n 
Applying the KK transformation Ea 2 at thS rlL J°M 

P    f ** ° Can ** Written M Än^«) - tfwoL 
3 with F2(x',X) in E0..2 we SSSn for th^S Sf!M?** *** ^ *^  "Ä" 

^o*« (5) 

where the dispersion function G2(x) is given by, 

G2(x) = -2+*x-3x*-x3-3/4x*-3/4x*+?(i-2x)*/*Q(l-->r\ 
64x6 

with 9(x) being the unit step function. 

oU%> Z Äp^o^/r *he 2PA "™=. Va'l'.V. and convening from , ,o „,. we 

V„.„) - y. G,Pto/E.) 
n»EJ ■ ■      ■       (7) 

4. COMPARISON WITH EXPERIMENTAL RESULTS 

<^Ä that can determine to 
has been shown to be an accurateand iStiJTS fo?3? • °6 and °53 "0L This sim?Ie techni<^ 
absorption. We find, for example, in ™X ,7ch£ZnlToTv 8 "2 ^V ^ presence of nonlinear 

but that the sign changes at 1.06 m KS5SI^S«L
0
'?

3
 ^ where.2PA is P^ent, n2 is negative, 

third order response (time resolution^*by the30 n™? Sl^6,"™™8 measu™ents show this 
decaying 2PA generated free-carrier rt^^j?J^^*\w™ at higher irradian«* the slowly 
gap dielectrics using theZ-scan method. "*   * * * 8k° meaSUred n* in a numb" of wide- 

A graphical comparison of the data is given in Fig. , which shows the band-gap scaling law and in Fig. 2 

64x6 * (6) 

5heik-BaV\ac 



1307-48 

Fig. J 
(eV) 

refining data^re T" C,rC'eS reprKent "» «^Tfrom «7m",,""^bk 1»™"»»« and has a 

The dispersive behavior of n   in Fie ? • 

^eTÄ^ 
•he simplicity of S. m£ i " ?culaKd «lues is seen near «£„„'' „£ ""'"«able difference between the 
negative vaaes of „ 7? "" "f'™8 E«- '• ««h 1ev°aüons are nm?" abS°rP"'0n ed8e- Considering 
attributed w The refkS'„ T^ '° ,he ralcula«=« valui S (he 71, PeC,'ed- ^ measur=<i 'arge 
blocking- and hL h-^  •      dUS ,0 ,he "°Plte" Stark Jw^hS! (undamenal absorption edge may be 

non,inea8
rs«o=pribimy

n
h2

nSd T °Ur Ca'CUta,i<""'   ^  Sntrlb to „f^is^r •" * "vi"uaI ^~ 

5>Keik-BaV\ae       4 
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n2=1.5xl0-u esu for ZnSe at J 06 h- ' 

absorption edge/^ve  rwr™fent?
aing "°''f«ÄÄ SSI* model *» •£ 

Fig. 2 

0-4 0.6 
fiw/Ec 

0.8 1.0 

The calcujated dispersion function o  versus WF   V 
Mo V* , are compared with the theorv n ? 7u * ' The same n

2 data as in Fi* »    ». 
re8i0n - «*- for compart        ^ °"* *" ""^ ** -'A Ä*^ 

sS£. 15SS »-e« SäT— - -— -»- * 
causal consequence of linear 

^«•'\k-pj0.\-\ a<° 



1307-48 

I 7. REFERENCES 

1.   M . Sheik-bahae, A.A  Said, TH. Wei. D.i. Hagan, and E.W1 Van Stryland, "Sensitive Measurements of 
Optical Nonhneanties Using a Single Beam,- to be published in IEEE J. Quantum Electron 

PhysLTm, £?-m\^ "Nonlinear °Ptlcal Susceptibility m Group-IV and III-V Semiconductors," 

3'   m^M^ °rder °PticaI SuSCeptibiIities in ^"^ and m-V Semiconductors," Phys. Lett. 31A, 
4-   lA'   Yan./echten   and   D.E.   Aspnes,    "Franz-Keldysh   contributions   to   Third-Order   Ont.Vo, 

Susceptibilities," Phys. Lett. 30A, 346-347(1969). .    hird °rder   0Ptlca* 
5. C.C.   Wang,   "Empirical   Relation   between   the   Linear   and   the   Third-OrrW   w„„i;„Mf   ^ ♦•   , 

Susceptibilities," Phys. Rev. B,_2, 2045-2048(1970).      • Nonlinear   Optical 

6. N.L. Boling, AJ. Glass, and A. Owyoung, "Empirical Relationships for Predicting Nonlinear Refractive 
Index Changes in Optical Solids," IEEE J. Quantum Electron. QE-14, 601-608(1978) "°nhnear Refractive 

3337L-3T49(L19L89?aSe' "* ^ ***** "N°nHnear ^^ ^"^ °Ptical CrySta,S'" ">»• *". B 39, 

8. D.A.B. Miller, C.T Seaton, M.E. Prise, and S.D. Smith, "Band-gap Resonant Nonlinear Refraction in IIT 
V Semiconductors," Phys. Rev. Lett. 47, 197-200(1981). """near Ketraction in III- 

9. M.H.   Weiler,   "Nonparabolicity   and   Exciton   Effects   in   Twn pt,n»n„    AU      .•       •     ~. 
Semiconductors," Solid State Commun. 39, 937-940?198O TW°"Ph°t0n   AbsorP^n   in   Zincblende 

10' St. ^wJ^^ RU,eS f°r Multiph0t0n Interband Abaction * Semiconductors," J. Opt. Soc. Am. 

11" pliysBCM^T2lC59y,e98A3r)aUJO' HMU,tiph°t0n AbS°rPti°n C<*™™™ '" Solids: a Universal Curve," J. 

12. E.W. Van Stryland, M.A. Woodall, H. Vanherzeele, and M.J. Soileau, "Energy Band-gap Dependence of 
Two-Photon Absorption," Opt. Lett. K), 490-492(1985). dependence of 

13. P  Liu, W.L. Smith, H. Lotem, J.H. Bechtel, N. Bloembergen, and R.S Adhav  "Absolute Twn Phm™ 
Absorption Coefficients at 355 and 266 nm," Phys. Rev. B 17, 4620-4632 1978)   ' Two-Photon 

14 ^rÄic^ÄÄ^"K-Mansou;- "optica*Limiting with 
15

- eJd" Äk^^ F'T- ArCCChi a"d E-°- *^°»**. 
\6i   2^),5ahan' IP160!? 0f Tw°-ph°ton Spectroscopy in Solids," Phys. Rev. 170, 825-838(1968) 
11' w  C?M   I"' Quantum Transitions in Optics," Sov. Phys. JETP, 23, TTIl-1123(1966) 

&^Ä-^(äft "d E'W- Van Stry,and' "Hi8h SenSitiV^ Sin8le Beam "2 Measurements," 
,9" S'J" Haj!an' E- C™to>. E- Mi«ak, M.J. Soileau, and E.W. Van Stryland, "Picosecond Degenerate Four 

Electro Zv T? " ^VJS?? 1^' PP-16°' T«*»*»! Di*est of the CoJ™n£TnLTJZ Electro-Optics, Anaheim, CA, OSA Technical Digest Series, No 7  1988 
20. B.S   Wherrett   A.C   Walker, and F.A.P. Tooley, "Nonlinear Refraction for CW Optical Bistability" in 

° !u-, °       antieS a"d InStabiHtieS in Semic"nri""-   H. Haug, eds. (Academic Press   Inc'T^S.) 

5i he vK-^o.vicxe     6 



/?   . fi 

Manuscript  received 
3-8-90 

SENSITIVE n2 MEASUREMENTS USING A SINGLE BEAM 

M. Sheik-Bahae, A.A. Said, T.H. Wei, 
D.J. Hagan, E.W. Van Stryiand and M.J. Soileau 
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We present a sensitive single beam technique for measuring nonlinear refraction in a variety of materials that offers 
simplicity, sensitivity and speed. The transmittance of a sample is measured through a finite aperture in the far-field as 
the sample is moved along the propagation path (z) of a focused Gaussian beam. The sign and magnitude of the 
nonlinearity is easily deduced from such a transmittance curve (Z-scan). Employing this technique a sensitivity of better 
than A/300 wavefront distortion is achieved in n2 measurements of BaF2 using picosecond visible laser pulses. 

Key words:      BaF2; CS2; experimental technique; Kerr effecr,  nonlinear refraction; Z-scan 

I. INTRODUCTION 

We have recently reported a single beam method, which we refer to as a Z-scan, for measuring the sign and magnitude 
of the nonlinear refractive index n2.[I] In practice we have found that this method has a sensitivity comparable to 
interferometric methods. Here we describe this method in detail and demonstrate how it can be applied and analyzed 
for a variety of materials. We also present a simple method to minimize parasitic effects due to the presence of linear 
sample inhomogeneities. 

Previous measurements of nonlinear refraction have used a variety of techniques including nonlinear interferometry [2], 
[3], degenerate four-wave mixing [4], nearly-degenerate three-wave mixing [5], ellipse rotation [6], beam distortion 
measurements [7], [8], and our recently reported Z-scan technique. The first three methods, namely nonlinear 
interferometry and wave mixing are potentially sensitive techniques but require a relatively complex experimental 
apparatus. Beam distortion measurements, on the other hand, are relatively insensitive and require detailed wave 
propagation analysis. The Z-scan technique is based on the principles of spatial beam distortion but offers simplicity as 
well as very high sensitivity. 

We will describe this simple technique in Section II. Theoretical analyses of Z-scan measurements are given in Section 
III for a "thin" nonlinear medium. It will be shown that for many practical cases, nonlinear refraction and its sign can be 
obtained from a simple linear relationship between the observed transmittance changes and the induced phase distortion 
without the need for performing detailed calculations. In Section IV we present measurements of nonlinear refraction in 
a number of materials such as CS2, and transparent dielectrics at wavelengths of 532 nm, 1.06 pnVand 10.6 pm. In CS2 

at 10 pm, for example, both thermo-optical and reorientational Kerr effects were identified using nanosecond and 
picosecond pulses respectively. We also describe how effects of linear sample inhomogeneities (eg. bulk index variations) 
can be effectively removed from the experimental data. 

2. THE Z-SCAN TECHNIQUE 

Using a single Gaussian laser beam in a tight focus geometry, as depicted in Fig. 1, we measure the transmittance of a 
nonlinear medium through a finite aperture in the far field as a function of the sample position z measured with respect 
to the focal plane. The following example will qualitatively elucidate how such a trace (Z-scan) is related to the 
nonlinear refraction of the sample. Assume, for instance, a material with a negative nonlinear refractive index and a 
thickness smaller than the diffraction length of the focused beam (a thin medium). This can be regarded as a thin lens 
of variable focal length. Starting the scan from a distance far away from the focus (negative z) the beam irradiance is 
low and negligible nonlinear refraction occurs; hence, the transmittance (D2/Dj in Fig. 1) remains relatively constant. 
As the sample is brought closer to focus, the beam irradiance increases leading to self-Iensing in the sample. A negative 
self-lensing prior to focus will tend to collimate the beam, causing a beam narrowing at the aperture which results in an 
increase in the measured transmittance.   As the scan in z continues and the sample passes the focal plane to the right 
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motive z)   the same self-defocusing increases the beam divergence leading to beam broadening at the aperture and 

Sü ASS o ™ "ffsrJSi v. S£Ä=s=asÄJSL: 
nd efpS dnuHnSno8n.inear refraction measurements of some semiconductors.^],! .0]   A sim.lar technique was also 

previously used to measure thermally induced beam distortion of chem.cals in solvents.!11] 

SAMPLE       APERTURE 

BS 

S rr 

D1 

Fig.l The Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a function of the sample 

position z. 

A nre focal transmittance maximum (peak) followed by a post-focal transmittance minimum (valley) is, therefore the 
iZl£z™*TrZ*™e refractfve nonlinearity. Positive nonlinear refraction following the: »me ana ogy, gives 
Hse to an opposite valley-peak configuration. It is an extremely useful feature of the Z-scan method that the sign of the 
nonlinear X Is immedfately obvious from the data, and as we will show in the following section the magnitude can 
also be easily estimated using a simple analysis for a thin medium. 

In the above picture describing the Z-scan, one must bear in mind that a purely refractive nonlinearity was considered 
Lsuming thatCabsoStive nonlinearities such as mu.tiphoton or saturation of absorption) ^^itSSS The 
nXhoton absorption^suppresses the peak and enhances the valley while saturation J^^^*^,^ 
sensitWity to nonlinear refraction is entirely due to the aperture, and removal of the »^™ ""^J ^^^ 
effect. However, in this case the Z-scan will still be sensitive to nonlinear absorption. Nonlinear absorption coefficients 

could be extracted from such "open" aperture experiments. 

3. THEORY 

Much work has been done in investigating the propagation of intense hser ^ ^ » ^Ä Tscut^pTe 
ensuing self-refraction [12], [13]. Considering the geometry given in Fig. 1. we will formulate and d.scuss simple 
method for analyzing the Z-scan data based on modifications of existing theories. 

In general various order nonlinearities can be considered; however, for simplicity, we first examine only a cubic 
nonHnearilV where the index of refraction n is expressed in terms of nonlinear ind.ces n2(esu) or «m>/W) through. 

^|E|» = n0 + Tl 
(1) 

•    L   ,• • A     „r   »fr„-t;™   V K thp neak electric field (cgs), and I denotes the irradiance (MKS) of the where n„  s the   mear index of refraction, fc is trie peax eiecirn. neiu v>B J, MrwWmS/wn where c 

direction, we can write E as: 

127 



I w f     1*2       ikr* I 
E(z,r,t) - E0(t) ^ *xp|;w2(z)   2R(z)j -i#(',t) (2) 

Ire w*<z)=w '(1+zVz') is the beam radius, R(z)=z(l+z07z*) is the radius of curvature of the wavefront at z, 
kw V2 k The diffraction length of the beam, k=2*/A is the wave vector and A is the laser wavelength, all m free 

J^t) denotes the radiation electric field at the focus and.contains the temporal envelope of the laser^ Thj 
#0 term contains all the radially uniform phase variations. As we are on y concerned w.th caIculating th rad.al 
Use variations A#r), the slowly varying envelope approximation (SVEA) appl.es, and all other phase changes that are 

liform in r are ignored. 

the sample length is small enough that changes in the beam diameter within the sample due to either diffraction or 
LTre rSn ctn be „eglected, the medium is regarded as "thin", in which case the self-refract.on process .s 

feZto^ as "external self-action».  Such an assumption simplifies the problem cons.derably, and the amphtude vf and 
se * of the electric field as a function of z' are now governed in the SVEA by a pa.r of s.mple equat.ons. r 

f 
dM = 
dz' 

= An(I) k 

dz 

(3) 

(4) 

Mere z' is the propagation depth in the sample and a is the linear absorpt.on coefficient.   Note that z shoulI no.: be 
infused with the sample position z.   In the case of a cubic nonlinearity, Eqns. 3 and 4 are solved to give the phase shift 
fat ,t exit surft« of Pthe sample, which simply follows the radial variation of the inc.dent .rrad.ance at a g.ven 

ition of the sample z. Thus, 

A#z,r,t) = A#0(z,t)exp l>*(z)r 
(5-a) 

tith 

I 
A*„(t) 

0(t), the on-axis phase shift at the focus, is defined as, 

A*0(t) = kAn0(t) i^ , 

(5-b) 

(6) 

Mere L is the sample length, and An0 = -,I0(t) with I0(t) being the on-axis irradiance at focus (ie.z=0).  Again we take 
0(t) as the irradiance within the sample to account for Fresnel reflection losses. 

I ie complex electric field after the sample, F, now contains the nonlinear phase distortion, 

E' = E(z,r,t) e-aI-/2 el**i*-TV . (7) 

t virtue of Huygen's principle one can obtain the far field pattern of the beam at the aperture plane through a zeroth 
er HankelSformation of E'.[14]  We will follow a more convenient treatment appl.cable to Gauss.an mput beams 

which w^refe?ToiThe "Gaussian Decomposition" (GD) method given by Weaire et. al.[15], mwh.ch they decompose 
2 complex electric field at the exit plane of the sample into a summation of Gauss.an beams through a Taylor ser.es 
■pansion of the nonlinear phase term eIA*^r-1) in Eq. 7. That is, 

I«**.*), y li^or e WMrt. (8) 
/_, m! 
m=0 

Each Gaussian beam can now be simply propagated to the aperture plane where they will be resummed to reconstruct 

I    i 
§ 
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the beam.  When including the initial beam curvature for the focused beam, we derive the resultant electric field pattern 
at the aperture as: 

E.«„, - E(„„0„ e-V>  f. ^ K)     -(-£ - £ * 4 
m=0 

where d is the propagation distance in free space from the sample to the aperture plane, and g=l+d/R , R=R(z) being 
the beam radius of curvature at the sample. As long as the far field condition is met, d can be considered independent 
of the sample position z resulting in symmetric Z-scans. The remaining parameters in Eq. 9 are expressed as: 

...1 W*(z) J     _  kw*mo w2     «. wl   „ W™°2m+1' dm=-2—• w m = W mO g*+ d*mJ' 

1- g*+d7d2 

1-1 
,    and 8„ = tan-1 PH 

The expression given by Eq. 9 is a general case of that derived in Ref. [15] where they considered a collimated beam 
(R=00) for which g=l. We find that this GD method is very useful for the small phase distortions detected with the Z- 
scan method since only a few terms of the sum in Eq. 9 are needed. The method is also easily extended to higher order 
nonlinearities. 

The transmitted power through the aperture is obtained by spatially integrating E5(r,t) up to the aperture radius r„ 
giving, 

PT(A*0(t))=^jk(r,t)i'rdr. (10) 

Including the pulse temporal variation, the normalized Z-scan transmittance T(z) can be calculated as: 

i: PT(A*0(t)) dt 

T{z)m — . do 

s I     P|(t) dt 
J-oo 

where P}(t) = *w0*I0(t)/2 is the instantanous input power (within the sample) and S is the aperture transmittance in the 
linear regime. 
We first consider an instantaneous nonlinearity and a temporally square pulse to illustrate the general features of the Z- 
scan. This is equivalent to assuming cw radiation and the nonlinearity has reached the steady state. The normalized 
transmittance, T(z), in the far field, b shown in Fig. 2 for A*0 = ± 0.1 and a small aperture (S=0.01). They exhibit the 
expected features, namely a valley-peak (v-p) for the positive nonlinearity and a peak-valley (p-v) for the negative one. 
For a given A*0, the magnitude and shape of T(z) do not depend on the wavelength or geometry as long as the far field 
condition for the aperture plane is satisfied. The aperture size S, however, is an important parameter since a large 
aperture reduces the variations in T(z). This reduction is more prominent in the peak where beam narrowing occurs and 
can result in a peak transmittance which cannot exceed (1-S). Needless to say, for very large aperture or no aperture 
(S=l), the effect vanishes and T(z) = I for all z and A*0. For small |A*0|, the peak and valley occur at the same 
distance with respect to focus, and for a cubic nonlinearity this distance is found to be =0.85z0. With larger phase 
distortions (|A*0|>1) this symmetry no longer holds and both peak and valley move toward ±z for the corresponding 
sign of nonlinearity (±A*o) such that their separation remains relatively constant given by, 

AZp.v.1.7z0. <"> 
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'e can define an easily measurable quantity ATp_v  as  the difference between  the normalized peak and  valley 
fismittance: T   - Tv.   The variation of this quantity as a function of |A*0|, as calculated for various aperture sizes is 

strated in Fig. 3.   These curves exhibit some useful features.   First, for a given order of nonlinearity, they can be 
snsidered universal.   In other words, they are independent of the laser wavelength, geometry (as long as the far field 
Dndition is met) and the sign of nonlinearity.   Second, for all aperture sizes, the variation of ATp.v is found to be 

•early dependent on |A*0|.  Particularly for on axis (S=0) we find, 

Calculated Z-scan transmittance curves for a cubic nonlinearity with either polarity and a small aperture 
(S=0.01). 

AT      = °-406 lA*ol    for      lA$ol * «"« (13-a) 

foe accurate to within 0.5 percent.  As shown in Fig. 3, for larger apertures, the linear coefficient 0.405 decreases such 
t with S=0.5 it becomes 0.34 and at S=0.7 it reduces to 0.29.   Based on a numerical Fitting, the following relationship 

an be used to include such variations within a ±2% accuracy; 

ATp_v=: 0.406(1-S)°-25 A*„ for A$J < r . (13-b) I 
Tie implications of Eqns. 13-a and 13-b are quite promising in that they can be used to readily estimate the nonlinear 
ndex (n2) with good accuracy after a Z-scan is performed. What is most intriguing about these expressions is that they 

Beat the highly sensitive nature of the Z-scan technique. For example, if our experimental apparatus and data 
■juisition systems are capable of resolving transmission changes ATR.Y of K1%, we will be able to measure phase 
lunges corresponding to less than A/250 wavefront distortion. Achieving such sensitivity, however, requires relatively 
ood optical quality of the sample under study. We describe in the experimental section IV a means to minimize 

ftblems arising from poor optical quality samples. 

Vt can now easily extend the steady state cw results to include transient effects along with pulsed radiation by using the 
jme averaged index change (An0(t)) where, 

I 
I 
1 

r J-o 
An0(t) I.(t)dt 

(An0(t)>= (14) 

. 
UOdt 

e time averaged (A*0(t)) is related to (An0(t)) through Eq. 6.   With a nonlinearity having instantaneous response and 
iecay times relative to the pulsewidth of the laser, one obtains for a temporally Gaussian pulse: 

I 
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Fig.3        Calculated ATp_v as a function of the phase shift at the focus (A*0). The sensitivity, as indicated by the 
slope of the curves, decreases slowly for larger aperture sizes (S>0). 

(An0(t)) = An./Vl , (15) 

where An   now represents the peak-on-axis index change at the focus.   For a cumulative nonlinearity having a decay 
time much longer than the pulsewidth (eg. thermal), the instantaneous index change is given by the following integral: 

i: An0(t)=A       I0(t')dt' (16) 

where A a constant which depends on the nature of the nonlinearity.   If we substitute Eq. 16 into Eq. 14 we obtain a 
fluence averaging factor of 1/2. That is, 

(An0(t)) = i A F , (17) 

where F is the pulse fluence at focus within the sample.   Interestingly, the factor of 1/2 is independent of the temporal 
pulse shape. 

» 
4. EXPERIMENTAL RESULTS 

We examined the nonlinear refraction of a number of materials using the Z-scan technique. Fig. 4 shows a Z-scaniof a 
1 mm thick cuvette with NaCl windows filled with CS2 using 300 ns TEA CO, laser pulses having an energy of 0.85 ml. 
The peak-valley configuration of this Z-scan is indicative of a negative (self-defocusing) nonlinearity. The solid line in 
Fig. 4 is the calculated result using <A*0)=-0.6 which gives an index change of (An^-lxlO"'. As mentioned earher 
such detailed theoretical fitting is not neccessary for obtaining (An,) (only ATp.v is needed). The defocusing effect 
shown in Fig 4 is attributed to a thermal nonlinearity resulting from linear absorption of CS, (a j 0.22 cm at IUKb 
urn) The risetime of a thermal lens in a liquid is determined by the-acoustic transit time, r=w„/v where v, is the 
velocity of sound in the liquid [17]. For CS2 with v, =, 1.5 x 10* cm/sec and having w0=60 pm, we obtain a risetime of 
=40 ns which is almost an order of magnitude smaller than the TEA laser pulsewidth. Furthermore the relaxation of 
the thermal lens, governed by thermal diffusion, is of the order of 100 ms.[17] Therefore, we regard the nonun.form 
heating caused by the 300 ns pulses as quasi-steady state, in which case, from Eq. 17, the average on-ax.s nonhnear 
index change at focus can be determined in terms of the thermo-optic coefficient, dn/dT, as: 

/A    \      d". l£- ^no> - dT 2pCv 

(18) 
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where F  is the fluence, p is the density, Cv is the specific heat and 1/2 denotes the fluence averaging factor   With th* 
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Fig.4 Measured Z-scan of a I mm thick CS2 cell using 300 ns pulses at A=10.6 pm indicating thermal self- 
defocusing. The solid line is the calculated result with A*o=-0.6 and 60% aperture (S=0.6) 

With ultrashort pulses, nonlocal nonlinearities such as thermal or electrostriction are no longer significant Particularly 
in CS the molecular reorientational Kerr effect becomes the dominant mechanism for nonl near refractionA \ 
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Sit™" °f ? V™ ^ CS> Ce" usin8 27 Ps PuIses at *=532 nm.   It depicts the self-focusing effect due to the reorientational Kerr effect. 
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The main source of uncertainty in the value of n, is the absolute measurement of the irradiance. A plot of AT versus 
peak™ er irradiance as measured from various Z-scans on the same CS, cell is shown m Fig. 6. The lmear behavior of 
this plot follows Eq. 13 as derived for a cubic nonlinearity. 

3Z 
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» 
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1                  1                  1 

0.00 0.90 -   1.80 2.70 

lrrodiance  (GW/cm2) 

3.00 

Fig.6        T _v in percent as a function of the peak irradiance from the Z-scan data of CS2 at 532 nm, indicative of 
the reorientational Kerr effect. 

Transparent dielectric window materials have relatively small nonlinear indices. Recently, Adair et al. [20] have 
performed a careful study of the nonlinear index of refraction of a large number of such materials in a nearly 
degenerate-three-wave-mixing scheme at tel.06 /im. Using the Z-scan technique, we examined some of these materials 
at 532 nm For example, the result for BaF, (2.4mm thick) is shown in Fig.7, using the same beam parameters as for 
CS This Z-scan was obtained by purposely lowering the pulse energy to 2 pj in order to observe the resolution and the 
sensitivity of this measurement. With a ATp.v a 0.035, this Z-scan corresponds to a A/75 induced phase distortion. For 
a unity signal-to-noise-ratio for our particular laser system, it is seen from Fig. 7 that the sensitivity to phase distortion 
is better than A/300. For laser systems having better amplitude and pulsewidth stability, the sensitivity should be 
correspondingly increased. 
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Fig.7 Measured Z-scan of a 2.4 mm thick BaF, sample using 20 ps pulses at A=532 nm indicating; the self- 
focusing due to the electronic Kerr effect. The solid line is the calculated result with A*o=0085 
corresponding to =4/75 total phase distortion. The error bar shown corresponds to approximately A/480 
induced phase distortion. 
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Aside from the statistical fluctuations of the laser irradiance, surface imperfections or wedge in the sample may lead to 
systematic transmittance changes with z that could mask the effect of nonlinear refraction. We found, however, that 
such "parasitic" effects may be substantially reduced by subtracting a low irradiance background Z-scan from the high 
irradiance scan. A simple computer simulation of this process assuming that the surface imperfections do not disturb the 
circular symmetry of the beam or cause any beam steering, indicated that background subtraction indeed recovers the 
original ATp.T arising from the nonlinear refraction effect even for quite large surface disturbances A^, of up to r. 

Returning to the Z-scan of Fig.7, we obtain n2 = (0.8±.15) xlO"" esu for BaF, at 532 nm, which is in close agreement 
with the reported values of 0.7x10"" esu [20] and 1.0x10"" esu [3] as measured at 1.06 ftm using more complex 
techniques of nearly degenerate-three-wave-mixing and time-resolved-nonlinear-interferometry, respectively. Similarly 
for MgFr we measure n2=:0.25xl0"" esu at 532 nm as compared to the reported value of 0.32x10"" esu at 1.06 pm 
for this material as given in [20]. Dispersion in n2 for these materials between 1 and 0.5 /im is expected to be minimal. 
It should be noted that the n2 values extracted from the Z-scans are absolute rather than relative measurements. If the 
beam parameters are not accurately known, however, it should be possible to calibrate the system by using a standard 
nonlinear material such as CS,. 

■'m 

m 

5. CONCLUSION 

We have demonstrated a simple single beam technique that is sensitive to less than A/300 nonlinearly induced phase 
distortion. Using the Z-scan data the magnitude and sign of the nonlinear refraction can be simply determined. We 
have derived relations that allow the refractive index to be obtained directly from the Z-scan data without resorting to 
computer fits. We have applied this technique to several materials displaying a variety of nonlinearities on different 
time scales. It is expected that this method will be a valuable tool for experimenters searching for highly nonlinear 
materials. 
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Question:   Are your results affected by surface nonuniformity? 

Answer:    If the scatter is homogeneous then it's no problem.  If it's 
grossly inhomogeneous or if the surface is corrugated or 
something, then it really effects the technique quite a bit.  In 
fact, you can use it to measure surface quality as well if you 
turn the radiance down to very low values. We have done 
experiments where we had rough surfaces and just took data from 
lower radiance values.  Then we took the data from higher radiance 
values and just divided it up. We still get good signal, but it 
does degrade as the quality of the optics degrade. 
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.„„,„ ;nHp_ measurements  two-photon absorption measurements, and four- We present evidence from nonlinear refractive  jd« me^uremen^  two P^ .^    ^ ^ ^„^ from 

wave mixing measurements on semiconductors showing that the «>un° e from 

two-photon absorption dispersion via a «^L^ÄSS enegy consent wife observations.  Additionally, 

Key words:     nonlinear refraction, two-photon absorption, Kramers-Kronig, four-wave mixing, semiconductors 

Optical nonlinearities in semiconductors andtransparentmaters have been the •*££££ *jj» *J £ 
past two decades. Of particular interest have .^"J^^^^ted negative change in the refractive index, 
primarily dealt with the production o a real earner J^^^^SÄ«». which is positive for photon 
In this letter we willI discuss the^smaller-*d f^J^J^Jp dielectric materials is to self-focusing from the 
energies much less than the bandgap energy.  ]Je_a« m        J P ^ ^ ^ measurements   n 

positive nonlinear refractive index n2 (eg. self toe*ang ;on QPA1 edee yield negative values for nr[l] This 
^conductors f**^**^^^ relation between n2 and 
dramatic dispersion of n2 can be partially expiaineu■       * d    nonlinear susceptibility, tf8».   The 
the 2PA coefficient ,, or ^«^^ffiSiS to nonlinear propagation in fibers, fast optical 
magnitude and dispersion of n2 is of .mte^^^.°, '^ ^tical limiting in semiconductors.  Below, we describe 

Ä^-^ÄÄÄ^ÄSÄ —— - *-f- • *» "mber °f 
materials, including semiconductors and dielectrics. 

This n2 arises from the real part of x«. and is defined through the refractive index change An, where 

An(w) = l(w) !„, = —j~ lEi 
(1) 

u •      u   -^H-,nrP „nd electric field at frequency u respectively and n2=(2ff/n0)Re(x«}. The linear 

^tivaetdEex TZ Stt~A™^<J*>«» ** C - SPCed °f li8ht- 

Most theoretical calculations of n   ^^n-« 
have been most successful in P^^,.^^ fn j'and the d spersion of n0 in terms of the Abbe number has 
and Owyoung (BGO) in relating n2 to the linea   index ^ anci ■ ^ » dicts the low frequency 
been successfully applied to a large ^ofJ^Sa of     ffiedte. the dispe'rsion as well as the magnitude 
magnitude of n2.   We ascribe a *£ ™*™.* ^"> a

contribution to n2 and that other contnbut.ons from 

i^ z£^^~^^^ «*"-■we wm return to this assumption ,ater- 
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Based on the principle of causality, the KK transformation states that a change in the refractive index (An) at w is 
associated with changes in the absorption coefficient (Aa) throughout the spectrum (w') and vice versa. We write this 
as: 

where c is the velocity of light in vacuum and £ is a parameter (or parameters) denoting the "cause" of change in the 
absorption. The cause need not be of optical origin but of any external perturbation such as thermal excitation, etc. 
For cases where an electron-hole plasma is injected, the consequent change of absorption has been used to obtain the 
plasma contribution to the refractive index. In this case, the £ parameter is taken as the change in plasma density (AN) 
regardlesss of the mechanism of generation of the plasma or the pump frequency.[8] In the case of 2PA the change is 
due to the presence of a pump field at fi (ie. £=fi). The corresponding nonlinear refraction is An(w,fi), which gives the 
dispersion of the index change with w. For the case of self-refraction, w=fi, and this gives what is commonly referred 
to as nr Van Vechten and Aspnes [4] obtained the low frequency limit of n, from a similar KK transformation of the 
Franz-Keldysh electro-absorption effect where, in this case, £ is the DC field. The bound electronic contribution to 
x(3) can originate from various absorptive counterparts that are quadratic functions of the pump field. Effects of this 
order may include 2PA, the electronic Raman effect, and the optical Stark effect. Here we consider only 2PA. 

A wealth of experimental and theoretical work regarding 2PA in semiconductors and crystalline materials exists. In 
accordance with the predictions derived from either second order perturbation theory [9,10] or a Keldysh-type 
formalism [11], the 2PA coefficients of the semiconductors studied in Ref. [12] were found to be in good agreement 
with the theoretical expression given as: 

Ä2W) = K -2-S- F,(2ÄW/E,), (3) 
noEj 

where K is a material independent constant and Ep (related to the Kane momentum parameter, a momentum matrix 
element) is nearly material independent and posseses a value of =21 ev for most direct gap semiconductors. These data 
?je shown in Fig. 1. Note ß=(4xu/n0)Im{xW). The function F2 is only a function of the ratio of the photon energy 
fiu' to E? (ie. the optically coupled states). The functional form of F, reflects the assumed band structure and the 
intermediate states considered in calculating the 2PA transition rate. The simplest model assumes a pair of isotropic 
and parabolic bands and intermediate states that are degenerate to initial (valence) or final (conduction) states. 
Neglecting the Coulomb interaction, this simple formalism yields:[10] 

F,(2x) = (2x-1)
c for 2x>l . (4) 

(2x)S 

Figure 2 shows the dispersion of ß as given by Eq. 4. 

The best fit to the data of Ref. 12 using Eqs. 3 and 4 gave K=3.1xl03 (see the line in Fig. 1) in units such that E and 
Eg were in eV and ß was in cm/GW, while theory gave 5.2x103.[9] When nonparabolicity was included the average ß 
was 26% lower than theory; however, the frequency dependence of ß changed very little. Interestingly, Eqs. 3 and 4 
also give a fair estimate of ß for a number of transparent materials measured using the 3rd and 4th harmonics of 
picosecond Nd; YAG laser pulses.[13,14] 

Equations 3 and 4 pertain to a degenerate case where the two photons involved are of the same frequency and source. 
For a KK transformation the nondegenerate 2PA coefficient for two distinct frequencies is needed (ie. fi the "cause" 
and of the integration variable in Eq. 2). Extending the same simple model to obtain the non-degenerate 2PA 
coefficient has led to dispersion functions that are afflicted with "infrared divergences".[15,16] This has been a 
common problem originating from the use of the Ap perturbation to calculate the bound electronic nonlinear 
susceptibilities in solids.f 15] 
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Figure 1.       A log-log plot of the scaled value of ß as a function of Eg to show the Eg dependence.  The line is a fit 
to the data using the F2 of Eq. 4. 

it. 

Figure 2.       A semilogarithmic plot of F2 as a function of 2hufEg with the data of Fig. 1 superimposed. 

Although special cases have been considered [17], a general theory that would rigorously address the proper scaling and 
dispersion of the non-degenerate 2PA is yet to be developed. For this reason we assume that the dispersion function 
F2 for the nondegenerate 2PA coefficient, £(o/,n), can be given by Eqn. 4 modified with the substitution of lh\J by 
ÄüZ+fifr, thus, F2(2x) is replaced by F2(x'+X), where x'=hu'/Eg and X=hClfEg, and x'+X>l. This substitution is strictly 
valid only for x'=X, however, the predictions resulting from this substitution show remarkable agreement with the 
data, as will be shown. 
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The change of the absorption spectrum (at uf) induced by the presence of a strong pump at fl can be written for 2PA 
as Ao(w';n) = 0(o>';n)In, where In denotes the irradiance of the pump field. Similarly the change in refractive index at 
u induced by the presence of a strong pump at n can be written as An(w,n) = T((ür,n)In . Applying the KK 
transformation Eq. 2 at this point yields a relation between Tf(w.n) and 0(w',n). Using Eq. 3 with F2(x'+X) in Eq.2 we 
obtain for the degenerate case (w=n): 

7 = K 
hcVEl 

W*t 

|G2(to/Eg), (5) 

where the dispersion function G2(x) is given by, 

r M     -2+6x-3x*-x'-3/4x<-3/4x*+2(l-2x)*/2€X 1 -2x) 
<J2W = 64x« (6) 

with 6(x) being the unit step function. 

Using the value of K obtained from the 2PA measurements, Ep=21 eV, and converting from 7 to n2, we obtain the 
final expression for n2 as: 

n2(esu) = K' . * 
noEg 

(7) 

where K'=3.4xl0-8 and E is in ev. Equation 7 explicitly shows an E~4 band-gap dependence for the magnitude of n2, 
and the sign and the frequency dispersion of this quantity are given by the simple closed form function G2. We can 
now readily compare the predictions of this theory with experiment. 

Utilizing a newly developed technique (Z-scan) for n2 measurements [1,18] that can determine its magnitude and sign, 
we have measured n2 for several materials at 1.06 and 0.53 ftm. This simple technique has been shown to be an 
accurate and sensitive tool for measuring 14 even in the presence of nonlinear absorption. We find, for example, in 
materials such as ZnSe at 0.53 /im, where 2PA is present, n2 is negative, but that the sign changes at 1.06 /im. 

Picosecond degenerate-four-wave-mixing (DFWM) measurements show this third order response (time resolution 
limited by the 30 ps pulsewidth), while at higher irradiances the slowly decaying 2PA generated free-carrier refraction 
is seen.[19] Figure 3 shows the DFWM experimental geometry. The DFWM signal as a function of backward pump 
delay is shown in Figure 4. This signal shows a "fast" third order nonlinearity followed by a slowly decaying "fifth" 
order nonlinearity. 

input detector 

output detector 

Figure 3.       A schematic of the experimental geometry of the degenerate-four-wave-mixing experiment. 

The order of the nonlinearity was determined by fixing the temporal delay at a) zero delay, or at b) long delay, and 
simultaneously varying the input energy of all three input beams. A log-log plot of the DFWM signal versus input 
energy (or irradiance) shows straight lines having slopes of three at zero delay (a) and five at long delay (b) as shown 
in Figure 5. The fast response of the third order nonlinearity at zero delay (time response limited by the 30 picosecond 
laser pulsewidth) indicate its bound electronic origin.   The higher order nonlinearity observed at long delays is the 

594 

■JWBPPWJU.W-WMjW-'Mt—II.H'..I 



plasma nonlinearity due to carriers produced by 2PA, a sequential Imfx^REfxt1)} effect, 
effective fifth order nonlinearity. 

This appears as an 

30 0 100 200 

Backward Pump Delay (pa) 

Figure 4.       A plot of degenerate-four-wave-mixing signal as a function of backward pump beam temporal delay 
using the geometry of Figure 3. 
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20 50 100 
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Figure 5.       A log-log plot of the DFWM signal at delays a) and b) of Fig. 4 as a function of input with the energy 
of all three input beams varied simultaneously. 

A graphical comparison of the data for n2 is given in Figure 6 which shows the band-gap scaling law and in Figure 7 
where the dispersion and sign of n2 are explicitly compared to the G2 of Eq. 7. Many of the experimental values for 
large gap optical crystals are obtained from recent measurements by Adair et.al. using a "nearly degenerate-three- 
wave-mixing" scheme.[7] We have also measured n2 in a number of these wide-gap dielectrics using the Z-scan 
method and have obtained comparable results. The dispersive behavior of n2 in Figure 6 is seen to be most significant 
within the range E /2<ÄoxEg where 2PA is present and relatively small in the low frequency limit Äux<Eg. 

A noticeable difference between the magnitude of the measured and calculated values is seen near the one photon 
absorption edge. Considering the simplicity of the model in deriving Eq. 7, such deviations are not unexpected. The 
measured large negative values of n2 as compared to the calculated values near the fundamental absorption edge may 
be attributed to the refraction due to the "optical Stark effect" which is also referred to as "virtual band-blocking" and 
has been ignored in our calculations. The contribution of this mechanism to the electronic nonlinear susceptibility has 
been shown to have a strong band-gap resonance and follows the same scaling as given in Eq. 7.[20] This effect, 
which is negative for all frequencies below the band-gap, vanishes quickly for longer wavelengths (fiaxEg/2) and has 
negligible contribution in the transparency region of the material. 
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Figure 6. 

Eg  (ev) 

A log-log plot of the scaled n2 versus energy gap (Eg) for a large class of optical materials. The solid line 
represents the theoretical result as obtained from Eq.(7) with no adjustable parameters and has a slope of 
-4. The solid circles represent the data from ref.[7] all obtained at A=1.06 fim. The remaining data are our 
measurements using the Z-scan technique taken at A=1.06 pm (solid squares) and at A=.532 pm (open 
squares). 
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region are labeled for comparison. 

:'-!rM> 

■•'•"'jS?'- 
■tää ■m 

'■wm 

m 
■'■'# 

596 

■ai 



I 

I 
I 

i 
I 

£:.-:' 

i 

■cl.-. 

I 
I 
I 

[16]    G.D. Mahan, "Theory of Two-Photon Spectroscopy in Solids," Phys. Rev. V7Q, 825-838(1968). 

[17]    F.V. Bunkin, "Two Quantum Transitions in Optics," Sov. Phys. JETP, 23, 1121-1123(1966). 

[18] M. Sheik-bahae, A.A. Said, and E.W. Van Stryland, "High Sensitivity, Single Beam n, Measurements," Opt. Lett. 
U, 955-957(1989). 

[19] D.J. Hagan, E. Canto, E. Miesak, M.J. Soileau, and E.W. Van Stryland, "Picosecond Degenerate Four Wave 
Mixing Studies in ZnSe," paper, TUX, pp.160, Technical Digest of the Conference on Lasers and Electro-Optics, 
Anaheim, CA, OSA Technical Digest Series, No. 7, 1988. 

[20] BS. Wherrett, A.C. Walker, and F.A.P. Tooley, "Nonlinear Refraction for CW Optical Bistability," in Optical 
Nonlinearities and Instabilities in Semiconductors, H. Haug, eds. (Academic Press, Inc. 1988.) pp.239-272. 

597 



Mo 
Manuscript received 

3-8-90 

Laser Induced Damage 
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We present results of a study of the laser induced damage thresholds of Tl3AsSe3 at 10 |xm using nanosecond 
and picosecond pulses. The damage threshold was found to be =10 J/cm2 with 130 ns (FWHM) and no damage was 
observed using 60 ps pulses. 

Key words: damage threshold; C02 laser; nonlinear crystals; TAS; SHG. 

Introduction: 

Thalium Arsenic Selenide, TI3AsSe3, or TAS is an important optical material for frequency conversion in the 
infrared region. It is an efficient material for harmonic generation and optical parametric oscillation. TAS posesses 
second order optical susceptibilities that are nearly three times larger than those of Ag3AsS2 (Proustite) and a 
transparency range from 1.26 to 18 /im.[l] This material has a low absorption coefficient of 8.2 m"1 which was 
determined by Barnes et c/[2] by using a calorimetric technique. 

In this paper, we present the results of a study of laser induced damage thresholds of two samples of 
Thallium Arsenic Selenide grown at Westinghouse. 

ATTENUATOR BEAM SPUTTER L1 SAMPLE 

ENERGY MONrtOR 

Fig.l.   The experimental set-up. The 10.6 /un pulse was tightly focused on the front surface of the sample. 
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Of the two samples one was doped with silver. It was cylindrical with a 2.5 cm diameter and 1.5 cm length. Only 
one surface was polished on which the damage measurements were taken. The other sample was undoped with a 
cone shape. The polished surface had a 2 cm diameter. The measurements were performed using linearly polarized, 
normally incident pulses from a TEA C02 laser system equipped with an optical free-induction decay system that can 
produce pulses from 30 ps to 300 ns. The laser beam was focused on the first surface of the sample by lens L2 as 
depicted in Figure 1. The continuously variable attenuator consisted of two wire grid polarizers. Rotation of the 
first polarizer varied the input energy keeping the polarization at the sample constant. Detector D, which monitored 
the input energy, was calibrated using various Gentec energy detectors. The laser was operated in the TEM00 mode 
and single longitudinal mode with pulsewidths of 130 ns (FWHM) and 60 ps (FWHM). Figure 2 shows the temporal 
shape of the nanosecond pulse and the second order autocorrelation function of the picosecond pulse. This 
autocorrelation function was obtained using a pump-probe method in another TAS crystal to produce 5 urn light 
dependent on the temporal overlap of the pump and probe. 

3HJ 
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Time  (ps) 
250 0 250 

Time  (ps) 
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Fig.2.   The temporal shape of the nanosecond (130 ns FWHM) 10.6 pm pulse (a) and   autocorrelation scan of the 
OFID picosecond pulse (b). A pulsewidth of 60 ps (FWHM) was measured. 
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Pinhole size spatial beam scans were taken for each pulsewidth at the focal position of a 6.35 cm focal length lens Lr 

These are shown in Figure 3 for nanosecond and picosecond pulses respectively. The beam spot size w0 measured was 
57 urn (HWl/e2M in the irradiance). This value agrees to witin 5% with the calculated w0 using the diffraction 
equation w =Af/xw, where w and w0 are the beam spot size before and after focusing respectively, X is the wavelength 
and f is the focal length of the focusing lens. Each site was irradiated only once. The damage was visually detected 
through a long working distance microscope. With the nanosecond pulses, a damage threshold of 9.2 J/cm2 (30 
MW/cm1) was measured for the doped sample when the beam waist was 57 pm and 11 J/cm2 (37 MW/cm2) with a 
calculated beam waist of 114 /im which was obtained by scaling the previously measured w0 to a 12.7 cm focal length 
lens. These thresholds do not show a significant difference. The damage thresholds for the undoped sample were 8.8 
J/cm2 (29 MW/cm2) and 12 J/cm2 (41 MW/cm2) respectively. Figures 4 and 5 show the data from which the above 
damage thresholds were extracted. With 60 ps pulses, no damage was observed on either sample. The maximum 
fluence that could be reached was approximately 1.56 J/cm2 (19 GW/cm2). Note that this maximum irradiance is =; 
500 times higher than the nanosecond threshold. At this maximum fluence, one site of each sample was irradiated 
for 5 minutes at 2 pulses per second without any damage observed. 
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Fig 3. Beam scan of the nanosecond pulse.(a) A spot size of 57 „m (HWl/e'M) in, the ^'«»«J'g 
Beam scan of the picosecond pulse.(b) The high background is due to the EMI noise arising from the 40 KV 
discharge of the laser amplifier. 

Conclusion: 

The damage threshold of TAS as obtained from the above «^^^£ J^not change SÄg 
comparable to the damage thresholds of GaSe and Zr,,Ge*. W   The damage me ^ m ^ 
TAS with silver.   Moreover, changing the spot size by a f«tor * ™ ™ ffid        of 7% was obtained 

£7 ÄtigtS 5S SÄ"Ä of 150 &^ and a beam radius of * 

mm (l/e2M in the irradiance). 
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Fig.4.   Damage data on doped sample using 130 ns (FWHM) pulses with 57 /»m (a) and 114 pm (b) incident spot size 
at 10.6 urn. 
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Fig.5.   Damage data on undoped sample using 130 ns pulses with 57 /im (a) and 114 urn (b) incident spot size at 10.6 
/im. 
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Abstract 

We have performed an extensive series of measurements of the bound electronic nonlinear refractive index n of 
L^vf * ,S    V£ T1 WavdenSths-   W* Knd that as the photon energy approaches E, (the bSd-'gap 
3°'H^ °2 C^l fr°n uP?ltlVlt0,negaÜVe- T^S 0bserved «avelength dispersion «A, can be weil 
explained for wavelengths well below the fundamental absorption edge using a Kramers-Kronig ^formation 
on two-photon absorption AC Stark (virtual band-blocking), and electronic Raman contributions to the 
imaginary part of the third order susceptibility. The fit thus obtained for n. is amazingly good for more than 
four orders of magnitude change of n2 including a change in sign. The change in sign from positive to negative 
with increasing frequency occurs roughly midway between the two-photon absorption edge and the fundamental 
absorpüon edge. Thus we now have a comprehensive theory that allows prediction of n2 at any wavelength 
below the band edge given only E and the linear index of refraction. Such information is'useful for a vS 
of^applications^ including[optical limiting, laser-induced damage, and all-optical switching. We use our theory to 
estimate the minimum obtainable ultrafast switching powers for various wavelengths of practical interest. 

also with the Departments of Physics and Electrical Engineering 

2. Introduction 

^c^rZT^rl °f ,w ^und.electronic "onlinear refractive index n2 of several semiconductors and 
?2PAfSJm ^ Z * therC ,* E StTOng SyStemadc ^V*™0» 0{ ^ above ** two-photon absorption 
Lettndf\il T W6re take-n USmS the newly devel°Ped Z-scan technique [2,3Ka beam distortion 
SSSnS? He§ei! J0" wa7 miXing'[4] 'ad Sh0W ** n* ^ ne8ative «***» the 2PA edge and tne 
o^enTTL ^ ^- f-7e ??Dd that bY USblg a Kram^-Kronig (KK) integral of the 2PA spectrum as 
given by a two-parabolic band model, we could predict the observed universal dispersion, scaling, and values of 

SaS^r^Z HUr.° erS °f ^r^6 aDd Change Sign-tl] ™> KK «■&* «** *• «1 and miagmary pans of Ae third order susceptibility.  The resulting scaling rule correctly predicts the value of n5 for 

£L^?5T Tf^ W1had. CXamined at ^ ^ eXCept very near *■ Sap when there was a systematic 
departure of the data from the theory toward larger negative n, values.  More recent data taken at wavelength 

rTfSL^S H      ^ 6Ven     f% dePartU/e fr°m thC P«^,00« of the 2pA model.  We had speculated in Ref. 
deludeTp^rT^T j^*? I'6? "?* makC '^ ,arger near *« W- Here we Present a m°d* doel «nSn tf t , effect and the electronic Raman effect.   Indeed the inausion of these effects 
does explain the large negative increase in n2 near the gap. 

vJSl «c£tiof ^/rZenCf regireS f°r a^ar °PtiCS * semicondu«°* which correspond to real and 
r^JTT\^ , y- °f DOnl,near °PÜCS " ^^^^uctors has primarily concentrated on bandgap- 
Tn^n r A 5 reS,Ult m a rCaJ excitation- ™e ^ ^ge nonlinear effects observed in this case are the 
uSv r^l"1 H *?   eXCrt(lniC absorption due to Photoexcited free carrien and excitons.  Real excitations 
SyJ7 a reduction of the refractive index at frequencies of interest. In contrast, by exciting optical 
sob* at frequencies much less than the gap, a considerably smaller but faster, positive nonlinear refractive 
index, n due to bound electronic effects is observed. This n2 arises from the real part of the third-order 
susceptibibty, XW, and is defined through the refractive index change An, where 

An(W) = 7(w)Iw=^W, (1) 
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with Iu and Eu being the irradiance and electric field at frequency w respectively and n2={2x/n0)Re{x(3)}. The 
linear refractive index is n0, and i and n2 are related by n2(esu)=<cno'7/40T)(MKS) where c is the speed of light. 
The magnitude and dispersion of n2 is of interest because of its importance in applications such as nonlinear 
propagation in fibers, fast optical switching, self-focusing and damage in optical materials, and optical limiting 
in semiconductors. 

Our measurements utilize a newly developed technique (Z-scan) [2,3] that determines the magnitude and sign of 
n2 even in the presence of 2PA where it also gives the 2PA coefficient ß. This simple technique has been shown 
to be an accurate and sensitive tool for measuring n2 and ß. Measurements of wide band-gap dielectrics show 
n2>0 which explains catastrophic self-focusing damage in such materials as NaCl and Si02. Our measurements 
in semiconductors below or near the 2PA edge (hax^Ez/2) also show positive n2. However, we found a negative 
n2 in materials such as ZnSe at 0.532 /im where 2PA is present, but a positive n2 at 1.064 /im where 2PA is 
absent. The values obtained for ß are in excellent agreement with our earlier measurements using standard 
transmission.[5] We also performed picosecond degenerate-four-wave mixing (DFWM) measurements which 
showed this third order response to be fast (time resolution limited by the 30 ps pulsewidth).[6] At wavelengths 
where 2PA was present this fast third order nonlinearity was dominant at low irradiance (eg. up to =4).5 GW/cm2 

in ZnSe at 532nm), while at higher irradiances the slowly decaying 2PA generated free-carrier refraction (self- 
defocusing) became important. DFWM studies in other semiconductors and other wavelengths showed this to be 
a universal phenomenon.[6] We have also included in our analysis n2 data taken on a series of wide gap materials 
by "nearly degenerate three wave mixing" by Adair et al. [7], and data taken by LaGasse et al. [8] on AlGaAs 
using interferometry.   As a result, we have been able to clearly demonstrate the behavior of the El* band gap 

scaling(9,10] and dispersion of n2. It should be noted that since the 2PA spectrum was previously determined 
[11], no fitting parameter was used in the calculation of Ref. [1]. 

3. Kramers-Kronig (KK) Relation 

Most theoretical calculations of n2 have been confined to the zero frequency limit.[12-16] Of these, semi- 
empirical formulations have been most successful in predicting the magnitude of n2.[15,16] For example, the 
formula obtained by Boling, Glass and Owyoung (BGO) in relating n2 to the linear index (n^) and the dispersion 
of n0 in terms of the Abbe number has been successfully applied to a large class of transparent materials^7,16] 
Their theory predicts the low frequency magnitude of n2, but does not give the dispersion. The KK method 
predicts the dispersion as well as the magnitude of n2. While the calculation presented in Ref. [1] only included 
2PA in the imaginary part of x^> this calculation includes all other relevant contributions, that is, from 
electronic Raman and the AC Stark effect ("virtual band-blocking"). 

Based on the principle of causality, the KK relates the refractive index and absorption coefficient for any linear 
material. 

UaT- 
n(w)-l =i s^n. 

ofi-v* de/ (2) 

...it: 

-.*-.■ 

M 

Now introduce some causal source of change £ into the system and consider the change in the refractive index 
resulting from the effect of £. The KK transformation states that a change in the refractive index (An) at w is 
associated with changes in the absorption coefficient (Aa) throughout the spectrum (</) and vice versa. We write 
this as: 

An(o/,0 = (3) 

where c is the velocity of light in vacuum and £ is a parameter (or parameters) denoting the "cause" of change in 
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the absorption. 

The cause need not be of optical origin but of any external perturbation. For example this method has been 
used to calculate the refractive index change resulting from an excited electron-hole plasma [17] and a thermal 
shift of the band edge [9]. For cases where an electron-hole plasma is injected, the consequent change of 
absorption gives the plasma contribution to the refractive index. In this case, the £ parameter is taken as the 
change in plasma density (AN) regardlesss of the mechanism of generation of the plasma or the pump 
frequency.[ 17] In the case of 2PA the change is due to the presence of a pump field at Ü (ie. £=fi). The 
corresponding nonlinear refraction is An(w,fl), which gives the dispersion of the index change with w. Although 
the calculation as illustrated above gives the nondegenerate nonlinear refraction, in most cases we would set fi=w 
and consider self-refraction. This gives what is commonly referred to as n2. Van Vechten and Aspnes [14] 
obtained the low frequency limit of n2 from a similar KK transformation of the Franz-Keldysh electro- 
absorption effect where, in this case, £ is the DC field. The bound electronic contribution to *(3) can originate 
from various absorptive counterparts that are quadratic functions of the pump field. Effects of this order are 
2PA, the electronic Raman effect, and the optical Stark effect. 

An alternative way of considering the KK calculation is to do the calculation not for the basic material but on a 
system which consists of the material plus a light field. Thus, it is necessary to know the nondegenerate 
absorption change Ao<w-,n), which is the absorption of light at w when a light-field of 0 is applied to the 
material. Degenerate 2PA can be related to the case where the two frequencies are set equal. 

Two-photon absorption processes require that perturbation theory be taken to second order. A variation of this 
is to use first order perturbation theory on a "dressed" final state where the effect of the acceleration of the 
electrons due to the oscillating electric field is already taken into account. We assume a two beam A-P interaction 
with both beams linearly polarized in the same direction [18-20]. Using this approach the degenerate 2PA 
coefficient can be determined; £(W)=2äU>WT

2
 where W is the two-photon transition rate. The resulting 

expression for the 2PA has exactly the same scaling and frequency dependence form as that calculated in 
references [10], namely, 

Ä^K-jg-F^/E,), (4) 

where Fj(x)=((2x-l)3/2)(2x)s. Here K is a material independent constant and Ep (related to the Kane 
momentum parameter) is nearly material independent and posseses a value E_:^21 eV for most direct gap 
semiconductors. The best fit to the data of reference [21] gives K=3100 cm(eVr5/2/GW, whereas theory [22] 
gives K=5200 cm(eV)_5/J/GW. This difference can largely be explained by the effects of nonparabolicity which 
has the effect of reducing ß slightly without significantly changing the frequency dependence [22]. Using the 
same method the nondegenerate 2PA is found to be, 

I. 2 
j-^FJfaJE+ltoJTLJ , (5) 

where the 2PA frequency dependence is given by, 

,2PA,. .. ,   (x^-l)»/» <■     - ^ 

27x,x, 1A2 

1   .    1 
(6) 

However, we now have an additional term attributed to Raman terms giving a change in absorption of, 

••* 

:& 

*°K;*,) 2KVI: ^, _, ^ _    ;i 
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■2PA 
where the scaling is the same as in Eq. 5.  The total F2 due to two photon processes is just the sum of F2     and 
,-RAM 

Another effect which must be taken account of in these calculations is the change in linear absorption at wx due 
to the presence of the field at w2 shifting the bands by the AC Stark effect. Two terms arise out of this as the 
radiation perturbation term couples the conduction band to itself and to the valence band. It can be shown that 
linear AC Stark effect produces a change in absorption Aa with a spectral dependence given by F| , where, 

(8) 

The quadratic Stark shift resulting from the coupling between the conduction and valence band leads to a Aa 
given by, 

Ff2(x1;x2)=- 1 

21°x1x^(x1-l)
1/2[xi~xJ  Xl+Xl 

1   -    » (9) 

4. Nonlinear Refraction 

In principle we can evaluate An(«x;u,) as defined in Eq. 2, however, there are few experiments of this quantity 
other than at w^, which is the case of self refraction. Using the KK relations discussed earlier, the change in 
refractive index An(ur,u)=il can be calculated to give, 

Käcv/ET 

noEj 

where the dispersion function G2(x) is given by, 

r°° 

(ID 

G2(x)=* 
F2(x';x) 

dx'. (12) 

All that remains is for the above integral to be evaluated for the various contributions to the nondegenerate 
absorption, FJCX^XJ). 

When these integrals are performed and the results summed a single divergent term proportional to w"2 is left. 
This diverging term is not unexpected as Ap perturbation theory has been used in the transition rate calculations 
and it is well known that divergences of this order can be introduced whereas the comparable E-r perturbation 
theory avoids such divergences. In a similar manner to Moss et al. [23] we treat such a divergence as unphysical 
and subtract it from the result for the nonlinear refraction. Using the value of K obtained from 2PA 
measurements and using E s21 eV, which is true for the majority of semiconductors, we obtain, 

K'VE~ 
n,(esu)= T2G2(*W/E_) , 

noEt 

(13) 
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where the constant K'=1.5xl0-8 when Eg is defined in eV.    We note the Ej4 bandgap dependence for the 

magnitude of n.. 
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A plot of n, dispersion function G,(#cj/Er) containing contribution from 2PA, Raman and AC Stark 
effect Data'are scaled by n0Ej/K'vE^. 

A graphical comparison of the dispersion function G,(Aw/E ) with measured values of n2 obtained from Z-scan 
measurements at 1.06 pm and 0.53 ^m [2,3] and nearly degenerate three-wave mixing measurements of large gap 
optical materials [7] is shown in Fig. 1. Note we have agreement within a factor of 2 for a wide range of 
semiconductors and large gap optical materials. 

The scaling of n2 with bandgap is demonstrated in Fig. 2. Here we plot the ratio of n2 to the dispersion function 
G2(Äo)/Eg).   The straight line indicated shows the expected E""4 dependence.   It is found that the scaling law 

holds true over more than orders of magnitude variation in the modulus of n2. 

The Ej4 dependence of nz gives a variation of n2 from 2.5x10"14 esu for a material such as MgF2 at 1.06 /xm to 

3xl0"10 esu for Germanium at 10.6 fim, which we measured using a picosecond C02 laser. This large variation 
of n2 is better displayed by plotting n2 scaled by n0 and G2 as a function of Eg on a log-log plot as shown in 
Fig. 2. In spite of this very large variation in magnitude of n2 (and change in sign), this extremely simple model 
gives good agreement with the data for materials including both semiconductors and insulators. 
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Fig. 2.       A log-log plot showing the expected E~* dependence of n2.  The data points are identical to those in 
—4 Fig. 2 but now scaled by the dispersion function G2(£w/Ej).  The solid line is the function E~* which 

translates into a straight line of slope -4 on the log-log scale. 

5.      Application to All-Optical Switching 

One of the applications of n2 is in the role of all-optical switching. Some examples are the nonlinear Fabry- 
Perot for image processing or parallel optical computing [24,25] or coupled waveguides for communications 
switching networks [26,27]. When it comes to optimizing devices for optical switching k is important that 
optical losses in the system are not too large. If optical absorption is large, then the change in refractive index 
will fall off rapidly as the optical wave propagates. 

It can be shown that for any optical switching system, one must achieve a refractive index change An such that, 

|An|>c,waA, <") 

where c,w is a numeric constant of the order of unity whose precise value depends on the particular switching 
scheme.'WFor example, for a Fabry-Perot, c,w=(2v/^r)-1 [28], and for a nonlinear coupled waveguide, cIW=2 
[29,30]. 

Below the band edge, the principal contribution to the absorption is 2PA, caßl at irradiance levels of interest. 
As the electronic Kerr effect gives an index change of An=il, the requirement for all-optical switching is [29], 

ßX 
>c. (15) 

Using our relationship between 7 and ß through the KK relations, we obtain the frequency dependence for the 
all-optical switching requirement, 
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to |G,(to/Ef)| 
Eg    Fa(Ä«/Ef) >2TC„ (16) 

Note that equation 16 has no explicit material dependence as it is only a function of the ratio Äw/E . Thus 
although n2 can be enhanced by using smaller gap materials, this does not nesecarily improve conditions for 
switching. The left hand side of (16) is plotted in Fig. 3. In the same figure we also show the experimentally 
determined values for this parameter |2*7/0AJ for some semiconductors using the n2 values reported here and 
2PA coefficients from [5]. We see that ther is a range of optical frequencies where this quantity becomes too 
small for optical switching which is given approximately by0.6<*w/Et<0.9, covering most of the region where 
2PA is observed. This was first noted by Mizrahi et al [29]. 
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Fig. 3. Ivfaterial independent switching parameter as a function of frequency. Also shown are the minimum 
limits for all-optical switching for the nonlinear directional coupler and the nonlinear Fabry-Perot 
For switching to be possible the switching parameter must exceed the relevant limit. The data points 
are based on our semiconductor n2 and ß measurements. 

We can use our results to predict switching powers in the nonlinear directional coupler (c„=2) for the 
technologically important wavelengths 0.85^m, 1.55pm and 10.6 pm. We choose suitable materialTbased on the 
criterion that the photon energy must be just below the two photon absorption edge, i.e. hw/E_M).45, or as close 
to this as available materials will allow. Under this criterion, the some of the best available materials are ZnS for 
0.83pm, CdSe or the appropriate alloy concentration of AlGaAs (such that «L/E =0.45) for 1.55pm and the 
corresponding alloy concentration of InAsSb for 10.6pm. Folowing reference [29] we calculate the switching 
power as, 
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where we assume that the beam area is the minimized and hence « A* L is the interaction length in the 
dkeSond^uSer The resulting switching powers are shown below in Table 1. This shows that while 
t£ZSrrZerTdecreal for longer wavelengths with correspondingly smaller bandgaps, the power does not 
SSSTJSSg to the E? dependence of n2. This is due to the fact that longer wavelengths require 

proportionately larger index changes to produce a given phase shift and that the minimum cross-sectional area of 
rXeTuSe mode is =\*. Also, even in the best case of P,w=80 Watts, this compares poorly with alternative 
LhnolSes SdT« excited carrier induced nonlinear refraction [29]. However, if longer interaction lengths 
2n teto eratedthe SS5Z may make such devices useful in certain interactions [27]. In fact our studies 
Siäe tow t titSig powers ^ported in reference [27] on switching in glass fibers may be considerab.y 
reduced by choosing more appropriate materials to optimize Äu/Eg. 

>m 

Wavelength Material Switching 

Power 

0.85pm ZnS 1500W 

1.55pm CdSe 410W 

AlGaAs 340W 

10.6pm InAsSb 80W 

Table 1.   Calculated switching powers for the nonlinear directional coupler utilizing the bound electronic Kerr 

effect. 

6.  Conclusion 

In conclusion the measured n2 data follow a universal dispersion curve from which values of n fo>"Other 
LerS at o'ther wavelengths can be calculated. We have also experimentally verified the predicted band-ga^ 
scaling of n,. From the excellent overall agreement with the predicted magnitude and1 dispers on of n as 
calculated via Kramers-Kronig, to the large number of experimental data, we conclud that the processes 
resoonsible for 2PA and the AC Stark effect also determine n2. This in turn implies that the bound electrode 
noSar refractive Zex is predominantly a causal consequence of these nonlinear absorptive processes just as 
tieüne^ indS i» a «usal consequence of linear absorption. This calculation^ approach takes advantage of the 
histoSSt to? to the soüd state, the 2PA coefficient has been calculated from a transition rate 
SrÄT-lSS we have circumvented problems associated with performing a direct calculation of the third 

order susceptibility. 
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Anomalous Dispersion of the Electronic Kerr Effect ni 

DJ. Hagan, Y.Y. Wu, E. Canto, M. Sheik-bahae, AA. Said, J. Young, T.H. Wei, 
M. Junnarkar, and E.W. Van S try land 

Center for Research in Electro-Optics and Lasers, 
University of Central Florida, Orlando, FL32816, USA 

Measurements of the bound electronic nonlinear refractive index n2, using picosecond DFWM 
and beam distortion, show a region of anomalous dispersion where n2 eventually turns negative 
between the two-photon absorption edge and the fundamental edge. 

We have performed picosecond Degenerate Four-Wave Mixing (DFWM) experiments and beam 
distortion experiments, including using the newly developed Z-scan technique,[I] to accurately 
measure the bound electronic nonlinear refractive index n2 in a variety of materials at 1.06 and 
0.53 pm. In semiconductors where two-photon absorption (2PA) is allowed, we find that n2 
decreases from its maximum value near the 2PA (2hu~Eg) edge to zero as the wavelength is 
increased, changing to negative nearer the fundamental absorption edge. In order to measure n2, 
we experimentally separated the effects of 2PA excited carrier refraction (coefficient a) from the 
electronic Kerr effect induced refraction. Using DFWM this is accomplished by observing that 
the carrier effects last for hundreds of picoseconds and vary as the fifth power of the incident 
irradiance I, while the x(3) effect follows the temporal variation of the pulse and varies as P. 
Such a signal is shown in Fig. 1. 

The inset shows the order of the nonlinearity (all beam irradiances varied simultaneously) at 
zero delay and at long delays where only the free-carrier refraction remains. DFWM studies in 
CdTe at 1.06pm showed similar fast x'3' and slow fifth order signals. 

To determine the nature of these unexpectedly large and fast x(3',s> beam distortion 
measurements were made at various irradiance levels and fitted numerically to a nonlinear beam 
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Fig. 1.   The DFWM signal as a function of the temporal delay of the backward propagating 
pump beam (forward pump and probe temporally overlapped) for 30 ps, 0.53 /im pulses in ZnSe. 
The inset shows a log-log plot of the irradiance dependence at temporal delays of a) 0 ps and b) 
200ps respectively (all three input beams varied simultaneously). 
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shown in Fig 4. The solid curve in Fig. 4 was obtained from a nonlinear Kramers-Kronig 
SormaSn of the 2PA dispersion as given in Ref. 2. This theory, as well as the daU, show a 

region of anomalous dispersion in n, between the 2PA edge and the fundamental edge. 
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(Received 6 March 1989; accepted for publication 11 October 1989) 

We have recently reported the formation of color centers in stabilized cubic zirconia (Zr02, 
18% Y203) by two-photon absorption at 532 nm. Here we present the results of measurements 
of the transmission of the colored samples as a function of time at room temperature. The 
results are found to be in good agreement with theory that assumes the color centers diffuse 
out of the irradiated region. The initial distribution of centers is assumed to have a Gaussian 
profile. For this model, the diffusion equation was solved exactly and the diffusion constant 
obtained (-3.4X10-8 cm2/s). 

We have reported1"3 that the transmission of stabilized 
cubic zirconia (Zr02, 18% Y20,) is decreased (about 
15%) by exposing the samples to high-irradiance nanosec- 
ond and picosecond, 532-nm pulses. The mechanism was 
found to be due to formation of color centers by two-photon 
absorption.2-3 The induced color centers can be removed by 
repeated irradiation with relatively low irradiance at the 
same wavelength (532 nm) as shown in Fig. 1. These pro- 
cesses (coloring and discoloring) have potential application 
in making erasable optical memory devices. 

In the present experiment, the transmission of colored 
samples (i.e., the density of color centers) was measured as a 
function of time at room temperature and was found to de- 
crease due to diffusion to the surrounding medium. The 
measurement of the diffusion constant is presented. 

The laser used in this study was a Nd:YAG oscillator- 
amplifier system, which has been described elsewhere.3 The 
laser was actively Q switched, operating at 1064 nm. Single 
pulses of measured Gaussian spatial profile were produced 
by the oscillator and amplified by a single pass through the 
amplifier. A KD*P crystal was used to produce pulses at 532 
nm. Residual 1064-nm radiation was eliminated by reflect- 
ing off three dichroic mirrors. The temporal pulse width was 
approximately 15 ns (FWHM) at 532 nm. The temporal 
width of each pulse was monitored by a p-i-n photodiode 
detector and fast storage oscilloscope. 

The laser beam was focused into the sample using a sin- 
gle element "best-form" lens designed for minimum spheri- 
cal aberrations. The lens was a/= 999 mm, which provided 
a nominal focal spot size of 155 /zm (HW \/e2 M in irra- 
diance). For this measurement the actual focused spot sizes 
were obtained by scanning the spatial profile in both the 
horizontal and vertical dimensions with a 5-//m-diam pin- 
hole placed in the plane of the sample. By using a rotating 
half-wave plate/polarizer combination to vary the irra- 
diance on the sample, the beam profile for high and low 
irradiance was held constant. The incident energy was con- 
tinously monitored by a sensitive photodiode where the out- 
put was digitized and calibrated with respect to pyroelectric 
energy meters. 

We measured the transmission of the colored samples as 
a function of time in the following sequence. First, the stabi- 

lized cubic zirconia (Zr02,18% Y2 03) sample was colored 
by exposing it to high-irradiance laser pulses at 532 nm. Sec- 
ond, after different time delays, the transmission of the sam- 
ple was monitored by low-irradiance laser pulses at the same 
wavelength (532 nm) as shown in Fig. 2. As clearly indicat- 
ed in the graph, when the sample was irradiated with high 
irradiance ( — 300 MW/cm2), the transmission started to 
decrease, which indicated that color centers were generated 
in this material. After some number of shots, the transmis- 
sion remained constant with further irradiation showing the 
saturation effects of the formation of these induced centers. 
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FIG. 1. Formation and bleaching of color centers in the stabilized cubic 
zirconia (ZrO,. 18 % Y, O,) sample. The change of transmission is shown 
as a function of number of laser shots at various input irradiance levels in the 
Zr02 sample with 15-ns, 532-nm pulses. Note that in the first set of data 
(shown by X 's) the transmission decreases with successive high-irradiance 
pulses of 300 MW/cm" until the effect (formation of color centers) satu- 
rates. The second set of data (shown by diamonds) was taken immediately 
after the first one by irradiating the sample at the same position with low- 
irradiance pulses of 20 MW/cm:. As indicated in the figure, the transmis- 
sion increased, and after some number of shots the transmission remained 
constant and equal to its value prior to the high-irradiance laser radiation. 
The other two sets of data show that the processes of generating and bleach- 
ing of the color centers are repeatable. 
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FIG 2 The transmission of the irradiated region in stabilized cubic ziiconia 
(ZrO„ 18% Y,0,) for 15-ns, 532-nm laser pulses. The jump show« after 
200 laser firings appears after shutting off the laser for times of ( = 1.4, 16, 
and 64 min. 

This allowed us to probe the transmission of the colored 
region of the sample for different time lapses before low- 
irradiance exposure (-20 MW/cm2). As clearly indicated 
in Fig. 2, the transmission of the colored specimen increases 
with time (i.e., the density of color centers decreases) at 
room temperature. In the paragraphs to follow, it will be 
shown that this is due to diffusion of the color centers to the 
surrounding medium. 

The general diffusion equation for the density N(r,t) of 
the color centers is given by 

£-N(r,t)=DV2N(r,t), 
dt 

(1) 

(2) 

(3) 

N(k,t) =——I        JV(r,f)exp(/k-r)d r, 
(27T)"J-=c 

and 

N(r,t) r J — oc 

tf(k,Oexp(-/kT)</"/c, 

W 

(5) 

where n determines the dimension of the problem. We sub- 
stitute (5) into (1) and perform the V2 operation. Then Eq. 
(2) reduces to 

—N(k,t)+Dk2N(k,t)=0, (6) 
dt 

where A:2 = k-k. The general solution of this ordinary differ- 

ential equation is 

jV(k,r) = C(k)exp(-ZMc2r), (7) 

where C(k) is the Fourier transform of the initial distribu- 
tion of color centers A^r.O): 

where D is the diffusion coefficient and has units of cm2 /s. 
Since the color centers are induced by irradiating the stabi- 
lized cubic zirconia (Zr02, 18% Y2 03) samples with well- 
collimated laser pulses, the initial distribution of these 
centers was modeled as cylinders of Gaussian profile extend- 
ing in the radial direction. For cylindrical symmetry, the 
diffusion equation [Eq. (1) ] is simplified to 

jLNiTtt)=Dl±(r^N(r,t)), 
dt r dr\ dr I 

subject to the initial condition (r = 0) of 

A'(r,0)=Ar
0exp( - —— 

\     (Aw)' 
where Aw is the \/e radius of the spatial irradiance profile of 
the laser pulses. The contribution of diffusion of the color 
centers in the z direction is neglected, since in the case of a 
thick sample (~ 1 cm) the net flux is very small. Also, as 
discussed in the previous paragraph, the transmission 
change saturates after a number of high-irradiance pulses 
giving rise to constant color center density in the z direction. 

To solve this problem, we introduce the Fourier trans- 

form pair for Ar: 
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C(k) =—— f+" Ar(r,0)exp(/k-r)J'V. 
(27T)nJ-» 

(8) 

Performing the inverse Fourier transform of N(k,r), we ob- 

tain 

AT(r,0 = f + " (—l— \ + " tf(r',0)exp(&T')<* V 
J-oc      \(2TT)" J - oc 

Xexp(-2>fc2r))exp(-k.r)<r/:. (9) 

Rearranging the order of integration, 

A(r,0 N(t',0) (-Dk2t) 1      f+' 

Xexp[-ik-(r-r')]</"*)</V. (10) 

The Fourier transform of exp( -Dk2t) is given in Ref. 4 as 

1      (+0> txp(-Dk2t)exp[-ik-{r-T'))dnk 
(2ir)"J-- 

=_L_f^y/2eXPf-i£^ii). 
(2ir)n\Dt)       y\        4Dr    J 

Hence 

Since we have cylindrical symmetry and the diffusion 
occurs in the radial direction, n = 2 and Eq. (11) can be 
reduced using Eq. (3) to 

1      f2"5      C   ,  , ,      (      (r-r')2\ 
N(T,t) = — \     dd       r dr expl ——- I 

4vDt Jo Jo V 4Df     J 

xNotJ--f-\. (12) 
\     (Aw) J 

Performing the integration over 6 and r, we obtain 

No 
N(r,t) -exp 

— r (13) 
\ + [4D/{Aw)2}  ~~"\(Aw)2 + 4Dt. 

Note that the solution has a Gaussian profile which broad- 

ens in time. 
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The total number of carriers in an element of sample 
length dz is given by rj(t)dz where 

v(t) = f    dO f   rdrN(r,t). 

If we weight this function with the Gaussian irradiance 
distribution, we obtain the effective number of color centers 
per unit length encountered by the beam in the irradiated 
region M(t): 

mt)=\ye[rdrN{r't)Aj^} (i4) 

Substituting for N(r,t) from Eq. (13) and performing 
the integration, the expression for M(t) can be found as 

(Aw)4 
v 

The number of carriers at t = 0 is 

M(0)= — N0TT(AW)
2
. 

2 

(15) 

(16) 

Rewriting Eq. (15) in terms of the initial carrier density 
(f = 0),wehave 

M(0) = !+• 22? 
;*. (17) 

M{t) (Aw)2 

which indicates that the ratio of the initial number of color 
centers per unit length M(0) to M(t) is a linear function off 
with slope 22?/(Aw)2. 

This ratio can be determined by monitoring the trans- 
mission of the sample as a function of time, given the trans- 
mission T(t) of the sample: 

T(t) = T'exp[-aMit)L], (18) 

where a is the linear absorption coefficient, 7" shows the 
linear tranmission of the unirradiated sample, and L is the 
thickness of the sample. Thus Mit) can be found from 

aMU)=_iln(my (i9) 
where Mit) denotes the number of color centers encoun- 
tered by the beam at time t (i.e., for a given pulse at time t). 

In the process of coloring the sample as is presented in 
Fig. 2, the saturation effect on the formation of the color 
centers was observed and the transmission remained con- 
stant at 7X0). Thus the initial number density of centers can 
be found from 

QM(0) = _J_ b(m). (20) 

Using Eqs. (23) and (24), MiO)/M(t) can be written as 

Af(0) 
In (im/in(im^+^, (21) 

M{t)       A   T'  II    ~\ T'J     ' '   (Aw)2 

The experimental results of M{Q)/M(t) as a function of 
t are presented in Fig. 3. The solid line presents the theoreti- 
cal fit [Eq. (25)] with the extracted diffusion constant 
(2? = 3.4X10-8 cnr/s). 

In order for a color center to diffuse at room tempera- 

600 1200 1800 2400 3000 3600 

t(sec) 

FIG. 3. The ratio of induced color center density at time t — 0 to the density 
at time / as a function of t. 

ture, it must have sufficient thermal energy to overcome the 
potential energy barrier presented by its neighbors. This ac- 
tivation energy E is related to the diffusion coefficient 2? 
which is generally described by5 

2? = 2?0 exp^ - —J , (22) 

where 2?0 is a temperature independent factor. Using the 
values of 2?0 = 1.3 cm2/s (Ref. 6) and T= 300 K, one can 
obtain the activation energy of approximately 0.5 eV given 
the diffusion coefficient obtained by our model. This activa- 
tion energy is the right order of magnitude for migration of 
anion vacancies as obtained in Ref. 7 for cubic zirconia. 

To conclude, we have shown that the density of color 
centers generated by two-photon absorption at 532 nm in 
stabilized cubic zirconia (Zr02, 18% Y,03) decreases due 
to slow diffusion to the surrounding medium with a diffusion 
coefficient of 2? = 3.4x10 ~8 cm2/s at room temperature. 
This can be seen by the fit of experimental results with the 
diffusion model in Fig. 3. 
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Abstract. We review the influence of self-focusing on the measurement of bulk 
laser-induced-damage (LID) thresholds in normally transparent optical mate- 
rials. This role is experimentally determined by measuring the spot size and 
polarization dependence of LID and by observing beam distortion in the far field. 
Utilizing these techniques, we find that by using a tight focusing geometry in 
which the breakdown power is below P2, the effects of self-focusing can be 
practically eliminated in an LID experiment. P2 is the so-called second critical 
power for self-focusing, and P2 = 3.77P,, where P, = cX2/32^2n2, where c is 
the speed of light in vacuum, k is the laser wavelength and n2 is the nonlinear 
index of refraction. This is in accordance with numerical calculations by J. H. 
Marburger [in Progress in Quantum Electronics, J. H. Sanders and S. Sten- 
holm. eds., Vol. 4, Part 1. pp. 35-110, Pergamon, Oxford (1975)]. With this 
knowledge we determine that damage is only partially explained by avalanche 
ionization and that the initiation of damage is strongly influenced by extrinsic 
processes. We therefore conclude that we are measuring extrinsic LID. 

Subject terms: laser-induced material modification; laser-induced damage; laser-induced 
breakdown; avalanche ionization; dielectric breakdown; multiphoton absorption: 
sell-focusing. 
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1. INTRODUCTION 

In this paper we discuss bulk (as opposed to surface) laser-in- 
duced-damage (LID) in transparent optical materials, i.e., 
materials whose linear absorption at the input laser wave- 
length is the order of 10~3 or less.1-3 In anticipation of our 
conclusion that, with few possible exceptions. LID is influ- 
enced by extrinsic processes, we refer to the damage as extrin- 
sic laser-induced-damage (ELID) in what follows. However, 
it is important to realize that how self-focusing affects damage 
threshold data is independent of the damage mechanism (i.e., 
intrinsic or extrinsic). By intrinsic we mean that the threshold 
is not increased by reducing the defect or impurity density. We 
investigate the role of self-focusing in LID and how the exper- 
imental geometry can alter this role. Misunderstandings con- 
cerning self-focusing effects have led researchers to incorrect 
conclusions concerning the observed parametric dependences 
of ELID, which in turn affect conclusions of the importance 
of extrinsic effects in LID. A clear understanding of the role of 
self-focusing in LID allows us to design experimental geome- 
tries in which such effects can be practically eliminated. 
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Fig. 1. Method of LID threshold determination. Damage (X on upper 
line) or no damage (X on lower line) for SiOr 

Parametric dependencies of ELID thresholds can then be 
unambiguously compared with predictions of theory. The 
overwhelming evidence from such studies points to the con- 
clusion that damage in these transparent materials is not 
completely explained by avalanche ionization theory4-5 but is 
heavily influenced by extrinsic effects. We give evidence sup- 
porting this conclusion by presenting ELID data for doped 
glasses and gamma-irradiated SiO,. 

ELID is a threshold-like phenomenon. The threshold 
behavior is illustrated in Fig. 1. which shows a set of ELID 
data taken on a fused silica sample using 40 ps, linearly 
polarized, 1.06 pm pulses focused to a Gaussian spot size of 
approximately 6.8 pm. Throughout this paper pulsewidths 
are quoted as FWHM, and spot sizes are the HW l/e^M in 
irradiance. The data are plotted as a function of internal 
irradiance with an X on the lower line if no damage occurred 
and on the upper line if damage did occur. The threshold is 
defined as the peak-on-axis fluence (J/cm2), irradiance 
(W/cm2), or rms electric field (V/cm), which results in an 
irreversible change in the specimen as determined by one or 
more of the following: an increase in scattering of a HeNe 
probe beam (either by visual observation or photometric 
detection), a change in morphology as seen in a microscope, 
or a permanent change in the transmittance of the sample. In 
most cases this type of damage is obvious and all of the 
symptoms are observed. In addition, ELID in these materials 
is usually accompanied by a visual flash associated with the 
onset of dielectric breakdown (i.e., avalanche ionization). 
These data as well as other data discussed in this paper are 
one-on-one measurements in which each site is irradiated only 
once even if the site did not incur damage. It is observed in 
some materials that preirradiation with pulses below the 
damage threshold as defined can alter the ELID threshold, the 
so-called N-on-one effect. Note the very sharp threshold 
shown in Fig. 1, which is indicative of damage in transparent 
dielectrics. The threshold shown of approximately 3.3 X 1012 

W/ cm2 is about two orders of magnitude larger than could be 
expected from the same sample used as an optical component 
in a system. This is the case since the failure mode for large 
illuminated areas used in practice is more likely surface dam- 
age where other extrinsic effects cause damage. In the experi- 
ments relevant to this paper, surface damage is avoided by 
"ocusing into the bulk of the material, keeping the irradiance 
it the damage-prone surfaces low. 

The threshold-like behavior illustrated in Fig. 1 is indica- 
tive of an extremely nonlinear process. Considerable effort 
has been spent to monitor subthreshold changes in the optical 
properties of these materials with little success. A notable 
exception is the recent work of Bräunlich and coworkers at 
Washington State University.*-* They report the observation 
of multiphoton absorption of 532 nm light in carefully 
selected alkali halide samples of as high an order as four prior 
to damage using luminescence and the photoacoustic tech- 

nique. We comment on the possible implications of their 
results in Sec. 5. No connection between the linear optical 
properties and the ELID thresholds has been found. Experi- 
ments have also shown that the transmittance of a laser pulse 
is cut off within a few picoseconds of the initiation of damage 
with no pulse distortion prior to damage.9 This highly non- 
linear behavior of ELID makes precise determination of the 
damage mechanism(s) difficult. In fact, we must infer the 
mechanism(s) of failure from parametric dependences (e.g., 
pulsewidth and wavelength dependence). This has resulted in 
slow progress in developing a complete understanding of the 
physical processes involved in ELID. On the other hand, as we 
shall see later in this paper, the first qualitative description of 
ELID was essentially correct.10-" 

2. HISTORICAL REVIEW 

The first reports of bulk ELID were by Bruma10 and 
Hercher" in papers at the 1964 spring meeting of the Optical 
Society of America. The principal conclusions of these initial 
reports are as follows: (1) Linear absorption plays no major 
role in this type of failure. (2) The damage process is highly- 
nonlinear. (3) Electron avalanche breakdown may be initiated 
by defects and/or impurities. (4) The ELID threshold and 
morphology depend on spot size. While there has been some 
controversy regarding the third statement, data now tends to 
confirm all of the statements made 25 years ago. Excellent 
sources for data on ELID in many materials are the proceed- 
ings of the annual Boulder Damage Conference starting in 
1970 and the references therein.'2 

One can divide much of the past results in ELID experi- 
ments into two distinct categories. Category A consists largely 
of work conducted at Harvard University by Bloembergen1 

and his students Yablonovitch,13-'5 Fradin,1*--0 and 
Smith2--1-23 and by their coworkers. The Category A experi- 
ments represent a systematic investigation of the breakdown 
thresholds of several alkali haiides and fused quartz over 
wavelengths ranging from 10.6 jum to 0.355 urn and for pulse 
durations ranging from nanoseconds to tens of picoseconds. 
The results were interpreted in terms of an intrinsic model of 
electron avalanche breakdown.2 The breakdown thresholds, 
were found to vary little from sample to sample for a given 
material even if the samples were supplied by different crystal- 
growers. The breakdown thresholds were found to agree 
within ±15% over wavelengths ranging from 10.6 pm t0 

1.06 pm. It is important to note that this agreement in damage; 
threshold for the alkali haiides was obtained by comparing 
damage thresholds for different focusing conditions at the 
different wavelengths over a wide range of pulse durations 
and focusing conditions. In addition, the Category A workers 
found that the frequency dependence of the breakdown thresh- 
olds agreed with the theory of intrinsic avalanche ionization 
over the full wavelength range, although some evidence of 
multiphoton ionization was observed at 0.355 pm.12 

In part, the agreement of the results of the Category A 
workers with the predicted frequency dependence of intrinsic- 
electron avalanche breakdown arose from attempts to correct 
the data at 1.064 pm. 0.694 pm. 0.532 pm, and 0.355 pm for 
the presumed effects of self-focusing. For example. Smith 
et al.:i" scaled the results of their picosecond breakdown 
work under the assumption that P, (discussed in the next 
section) was the critical power of importance for focused- 
Gaussian beams. They observed a slow increase in the scaled 
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thresholds with increasing frequency, consistent with the pre- 
dictions of intrinsic avalanche theory. We now know P, is not 
the critical power of importance in those experiments and the 
data should not have been scaled, thus invalidating the con- 
clusions. The unsealed thresholds decrease with increasing 
frequency, opposite to the prediction of the intrinsic ava- 
lanche ionization theory. 

On the other hand, the results of Category B workers were 
often found to be inconsistent with those of the Harvard 
group. Category B workers include Olness.24-25 Yasojima and 
coworkers in Japan.:6-27 Bass and Barrett28 and coworkers at 
the University of, Southern California. Manenkov29 and 
coworkers in the Soviet Union, Soileau.30-31 Van Stryland,32 

and Sparks/ One of the main conclusions to be drawn from 
the Category B experiments is that laser-induced breakdown 
is caused by extrinsic properties of the material. In a study 
reported by Manenkov29 in 1977, the breakdown irradiance at 
1.06 /im measured for 100 NaCl samples varied from sample 
to sample by a factor of 50. The highest thresholds reported in 
Manenkov's work were higher than previously reported 
"intrinsic" thresholds (e.g., three times those reported in Ref. 
13). Similar results have been seen by Soileau30-31 and in 
earlier studies by Olness25 and Yasojima.27 In addition, no 
systematic variation in the breakdown thresholds as a func- 
tion of material bandgap was observed in the results of 
Olness24-23 and Yasojima26-27 in contrast to the Category A 
measurements. A decrease in the breakdown threshold with 
decreasing laser wavelength was seen by Soileau et al.30-31 in 
the alkali halides over wavelengths ranging from 10.6 /im to 
1.06 pin, as was observed for the unsealed thresholds of Smith 
et'al.21-22 Again, this is opposite to the trend predicted by 
intrinsic avalanche ionization theory. Finally, results in Cate- 
gory B experiments indicate the presence of a strong spot size 
dependence for the breakdown field in the alkali halides and 
fused quartz as well as other materials that could not be 
explained by self-focusing and is inconsistent with intrinsic 
avalanche breakdown theory. Also, the measured damage 
thresholds differed from sample to sample even in materials 
from the same manufacturer. 

Much of the controversy found in the literature is due to 
the differences in the ways in which various authors account 
for, or attempt to account for, self-focusing. Early in the 
history of studies of ELID, self-focusing was recognized as 
one of the major contributors to catastrophic, irreversible 
changes in material properties.,2 Over the years many studies, 
both theoretical and experimental, have been conducted in 
attempts to account for self-focusing effects in bulk damage 
experiments. However, due to the complexity of the problem, 
agreement between theory and experiment has been mixed. 
While accurate, direct measurements of the nonlinear index of 
refraction, n,, have been made using various techniques (e.g., 
interferometry33-34), the power for which significant changes 
occur in the linear propagation of focused Gaussian beams 
through nonlinear materials has only recently been estab- 
lished experimentally.35-36 We present some of that work in 
what follows. 

3. THEORY 

3.1. Self-focusing 

Nonlinear refraction in a highly transparent dielectric results 
from a change in the index of refraction given by 

An = n,<E2> (1) 

where <E:> is the time-averaged square of the electric field 
and n: is the nonlinear index of refraction. Here, we assume 
that the nonlinearity has a response time much less than the 
pulse duration. An alternative way of expressing the index 
change that has come into common use recently is An = yl, 
where I is the irradiance and 7 is a nonlinear index coefficient. 
These coefficients are related by a constant with33 n-, (esu) = 
cn/40- y(m:/W), where c is the speed of light in vacuum 
(m/s) and n is the linear index of refraction. Many mecha- 
nisms can give rise to self-focusing effects in solids. For tight 
focusing geometries using nanosecond and longer pulse dura- 
tions, electrostriction. thermal self-focusing, and the elec- 
tronic Kerr effect can all contribute to a catastrophic self-focus. 
For picosecond pulse durations the dominant mechanism in 
transparent solids is believed to be the electronic Kerr effect. 

A large volume of work has been devoted to the study of 
self-focusing effects in solids.12 The theories developed to 
describe the process indicate that self-focusing is dependent 
on the power of the laser beam in the material. Two critical 
powers of importance are often cited in the literature for 
Gaussian beams. The first of these, P,, is given by37 

cX2 

(2) 

where X is the laser wavelength. Many theories based on the 
constant shape approximation have assumed that a cata- 
strophic collapse of the beam will occur in the material when 
the beam power approaches P|. This idea was first introduced 
by Zverev and Pashkov,38 who suggested the following equa- 
tion for the irradiance enhancement due to self-focusing: 

In 
J
SF       l-p/p. (3) 

where ISF is the peak irradiance in the presence of self-focus- 
ing and I0 is the peak irradiance in the absence of self-focusing. 
This equation was subsequently used by researchers to "scale" 
damage data and "correct" for the effects of self-focus- 
ing.I6-21-22 Equation (3) can be rearranged to give the follow- 
ing equation: 

— - — (—)     — 
P   _    In    IA/

+
   P, 

(4) 

where A is the focal beam area in the absence of self-focusing. 
Thus, a plot of inverse power for damage, versus inverse area, 
or spot size squared, was expected to yield both the critical 
power for self-focusing P, as the intercept and the damage 
irradiance ID from the slope. A critical assumption made in 
using this equation is that the damage irradiance is indepen- 
dent of focal area in the absence of self-focusing. We find this 
assumption invalid as discussed in Sec. 5.2. 

In contrast to the earlier self-focusing studies, exact solu- 
tions of the nonlinear wave equation made by Marburger37 

have shown that even for focused geometries, significant devi- 
ations from normal linear propagation do not occur until the 
beam power exceeds P, and a catastrophic collapse of the 
beam within the depth of focus does not occur until the beam 
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TABLE I  Comparison of the constant shape approximation (CSA) to 
numerical solutions" (NS) for focused Gaussian beams. 

1/1, l/l, 

?l?l CSA NS 

0.27 1.37 1.30 

0.60 2.50 2.08 

0.30 5.00 3.94 

0.90 10.00 7.15 

0.95 20.00 16.45 

0.96 25.00 28.60 

0.97 33.30 63.40 

0.98 50.00 100.00 

0.99 100.00 192.00 

power exceeds the second critical power P2. P2 is defined as 
(for Gaussian beams) 

P, = 3.77P. (5) 

The factor of 3.77 in Eq. (5) comes from numerical solu- 
tions of the nonlinear wave equation for an input beam with a 
Gaussian spatial profile. The power P2 is the least power for a 
singular self-focus to occur within the Rayleigh range, i.e., the 
beam confocal parameter, for both prefocused and unfocused 
geometries. This means that for samples thicker than the 
Rayleigh range (as is the case for most bulk laser-induced 
damage experiments) a singular self-focus will occur within 
the sample, and LID will occur for an input power equal to P2. 
Note that for tightly focused beams, i.e., very small spot sizes, 
the breakdown field will be reached before P approaches P2. If 
that is the case, then LID results can be nearly independent of 
self-focusing effects. The small focal spot size needed will 
depend on the material, P2, and the material breakdown 
threshold. 

Marburger37 found that the irradiance enhancement within 
the nonlinear material was given approximately by 

In 
lSF = I-P/P2 

(6) 

which is only valid for P < P,/4. Note that this is identical to 
Eq. (3) with P, replaced by P2. When the input power is 
significantly greater than P,/4 one must use the more com- 
plete numerical solution to compute the enhanced irradiance 
due to self-focusing. Table I is a comparison of the approxi- 
mation given by Eq. (6) and the exact numerical solution 
given bv Marburger (see Ref. 37, p. 66). Note that while the 
enhancement cannot be calculated accurately by Eq. (6) for P 
> P2/4, it still correctly predicts breakdown at a power of P2. 

In 1977 Smith et al.- also found some problem in using P, 
for correcting their 532 nm and 355 nm picosecond damage 
thresholds for self-focusing. In most cases, their 355 nm thresh- 
olds were higher than P,. A scaling factor was proposed such 
that the critical power varied between P, and P2 depending on 
the value of P at damage. However, since the exact functional 
dependence for the intensification was unknown at the time, 
the thresholds reported in Ref. 22 included the breakdown 
power and the uncorrected focal area so that future workers 
could re-examine the data in the light of new measurements. 
We re-examine that data in Sec. 5.1. 

We previously presented experimental evidence showing 
that, as predicted by Marburger, the important power for 
focused geometries  is  the second  critical  power.  P,.35-3' 

Indeed, Eq. (5) can be "verified" (i.e., we show that P, is the 
critical power of importance) as shown in Sec. 4. Additional:: 
evidence for high P, materials is given by measurements of the--: 
polarization dependence of the breakdown powers and mea-' 
surements of beam distortions in the transmitted, time-inte- . 
grated spatial beam profile discussed in Sec. 4. 

3.2. Polarization dependence of self-focusing 

The use of short pulses presents us with the advantage that we 
need only consider the fast electronic Kerr nonlinearity in 
data analysis. This nonlinearity is polarization dependent, 
and this polarization dependence presents us with a simple 
way of determining whether or not self-focusing effects are 
present in LID measurements. 

Early papers in the literature have shown that the nonlinear 
refractive index for isotropic materials (such as fused quartz)' 
is given by39-41 

12;r .(3) n2(L.P.) = -^-Xiiii 
(7) 

24J „(3> 
n, (C.P.) = — XÜ22 

for linearly polarized and circularly polarized light, respec- 
tively, where the J&» are third-order nonlinear susceptibility 
tensor elements. A symmetry relation exists for isotropic 
materials such that 

*!?!. = A+xiy, • (8) 

Measured values for these tensor elements indicate that for 
fused quartz X?\h is approximately equal to Xizli-41 Thus- we 

can express n2 (C.P.) in terms of the same x<3) tensor element 
as n, (L.P.), giving 

8TT (3) (9) n, (C.P.) = — Xhii 
"o 

We see that the ratio of n, for circular polarization to n, for 
linear polarization is 2/3."This implies that the 'ratio of the 
critical powers for self-focusing for the two cases is 1.5. 

A similar but slightly more complicated analysis for NaCl 
gives a ratio for the critical powers that varies between 1.37 
and 1.46 depending on the propagation direction in the cubic 
crystal. We do not know the orientation of the large grain size 
crystalline samples and, therefore, expect a ratio between the 
above values near 1.4. 

If we extend this concept to measurements of bulk optical 
breakdown and if self-focusing dominates the breakdown 
process, then, in both the isotropic and cubic cases, the ratios 
of the breakdown powers for the two polarization states 
should be equal to the ratio of the critical powers (i.e.. 1.5 for 
SiO, and =1.4 for NaCl). 

The polarization dependence of self-focusing has alread> 
been well established experimentally. For example. Moran c 
al.34 measured n, for various laser glasses (isotropic materials 
using time-resolved interferometry and found that n2 (L.P.) = 
1.5n, (C.P.). Feldman et al.42 measured the breakdown pow 
ers as a function of polarization for fused quartz and othe 
glasses using nanosecond pulse durations at 1.06 (xm. He usec 
the observed polarization dependence in an attempt to sepa 



TABLE II: The nonlinear refractive index n2 as measured using beam 
distortion" compared with other methods.   

MATERIAL 

CS, 

NaCI 

SiO, 

WAVELENGTH 

1.06 
0.53 

1.06 
0.53 

BK-7 

1.06 
0.53 

n, 
(x 10" esu) 

126 + 30 
123 + 30 

1.37 + 0.30 
1.38 + 0.30 

ni (Others) 
(x 10" esu) 

125 + 30« 

1.22+.0.21" 
1.59" 

1.06 
0.S3 

0.62 + 0.15 
0.60 + 0.15 

1.45 + 0.30 
1.0140.25 

0.9510.10" 
0.85" 

1.46 + 0.10" 
1.30" 

rate the various contributions to n, and was the first to point 
out that the presence or absence of self-focusing in breakdown 
measurements could be determined by measuring the break- 
down threshold power as a function of polarization. We use 
this concept in our own measurements to determine the con- 
tribution of self-focusing. The data presented in Sec 4.2 on 
fused quartz and NaCI clearly show the transition from an 
experimental geometry in which self-focusing dominates the 
damage process to a geometry in which self-focusing can be 
neglected. In the next section we first verify Marburger's theory 
by monitoring breakdown in CS2 at 1.06 ptn and 0.53 /mi- 

4. EXPERIMENT 
4.1. Experimental verification of Marburger's theory 

Marburger's prediction" that breakdown will occur at an 
input power P2 given by Eq. (5) in a tight focusing geometry 
can be verified by arranging an experiment m which the 
breakdown threshold is very high and P2 is very low. A classic 
example of such a material is the liquid CS2. This material is 
an excellent choice for model system studies since its non- 
linear behavior has been studied for years and is relatively well 
understood. The nonlinearity is due to nonresonant reorienta- 
tion of the CS2 molecules, which relaxes with a time constant 
of approximately 2 ps. The first step is to measure n2 in a 
manner independent of the laser-induced breakdown mea- 
surements. Table II is a summary of such measurements for 
CS, and other materials of interest using the beam distortion 
technique described in Ref. 43. Values obtained by other 
workers using various techniques are listed for compan- 
son 33.«-47 with the possible exception of SiO: (a 30% differ- 
ence) the agreement with other methods is excellent. It is 
important to note that the observation of beam distortion in 
the far field as reported in Ref. 43 is performed at irradiance 
levels not far below damage, and the agreement with other 
data confirms the propagation analysis for high input powers. 

We next set up a bulk breakdown experiment in CS:, i.e., 
arranged the sample length to be much longer than the confo- 
cal beam parameter, and measured the breakdown power/8 

We then used Eq. (5) to calculate n2 at both 1.06 /tm and 0.53 
Mm and compared this with values obtained by beam distor- 
tion measurements" and time-integrated interferometry/5 

The results of this comparison are shown in Table 111. In this 
experiment laser-induced breakdown is totally dominated by 
self-focusing and the breakdown power was experimentally 
determined to be independent of the focusing conditions. 
Note the excellent agreement between the n2 determined from 
the breakdown measurements using Eq. (5), which assumes 

TABLE III. Comparison of the LID method using P2 with other 
methods of measuring n2 in CS2. 

METHOD M»m) n,(x 10" esu) 

Equation 5 
Equation 5 
Beam Distortion 
Beam Distortion 
Interterametry 

1.06 
0.53 
1.06 
0.53 
1.32 

1.3+.0.3" 
1.2 + 0.3" 
1.5 + 0.3" 
1.5 + 0.3" 
1.3+.0.3" 

7=Mn 

T 
T 

ll 

Fiq 2 A plot of the ratio of PB for circularly polarized light to PB for 

linearly polarized light as a function of spot s.ze in S.02 (sample 
79-FO-7940-1). The dashed line represents the expected ratio when self- 
focusing dominates. 

that P, is the critical power, and those determined by beam 
distortion measurements. This verifies that the factor of 3.77 
predicted by the theory in Ref. 37 is correct to within the error 
bars shown. . 

We have also experimentally determined when sell-locus- 
ing is present in bulk breakdown experiments by observing 
the polarization dependence of damage as discussed in the 
following section. 

4.2. Polarization dependence 
Figure 2 is a plot of the ratio of the breakdown power for 
circular polarization to the breakdown power for linear polar- 
ization as a function of the focal spot radius measured in 
air 3J.36 The material is fused quartz, the laser wavelength is 
0 53 urn, and the pulse duration is 30 ps. Three regions of 
interest are clearly evident. For small focal radii and small 
breakdown powers the ratio PBcircuiar/PBiin«r 1S approxi- 
mately unitv. indicating the lack of electronic self-focusing as 
discussed in Sec. 3.2. For focal radii greater than 23 /an and 
large breakdown powers the ratio levels off to near the theo- 
retical value of 1.5 indicating the dominance of self-focusing. 
The transition regime shows the data increasing from unity to 
the theoretical maximum, clearly showing the onset of elec- 
tronic self-focusing in fused quartz. 

Now rather than looking at the ratio of the critical powers 
we examine the behavior of the breakdown powers directly in 
Fig 3 Here the breakdown power in megawatts is plotted as 
a function of the focal spot radius in air. The triangles repre- 
sent the breakdown powers for linear polarization, and the 
circles are the breakdown powers for circular polarization. 
The horizontal dashed line represents the critical power P2 tor 
linear polarization calculated from our measured n2 values for 
this sample.« As can be seen, the breakdown power for linear 
polarization increases with increasing focal radius and then 
reaches P2 for larger focal radii. In the region where the 
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Fio 3   A plot of the breakdown power versus spot size for the 
r-ig. j. M pioi ,triana|es-linear polarization, circles-circular 
Szat-L^The^SSe elves PJ as ca.cu.ated from the mea- 

sured value of n2.-° 

breakdown power becomes constant, the polarization ratio is 
ar?nroximatdv I 5 Similar results are seen for fused quartz at . 
?P06 uTSS ofthethese trends indicaie that self-focusing 
iomSte» the breakdown process when the breakdown 

^Tesu^Tmitto-those seen for Si02 are observed for 
NaCl. At 0.53 „m for 30 Ps pulses and small foca rack, and 
therefore, small breakdown powers   the ratio, is approxi- 
mately unity This indicates the lack of electronic self-focus- 
Sg whereas for large focal radii and large breakdown^powers 
the ratio levels off near the mean theoretical value of approx- 
imately 1.4. In this region self-focusing dominates.the break- 
down process. Again, in the region where the breakdown 
powersPremain constant with increasing spot size the rauo o 
The breakdown powers reaches approximately ^- S^jr 
results are also seen for this sample at 1.06 Mm. We discuss 
some of those measurements and their ^f™™™™. 

At this point we remind the reader of the definition of the 
criticalpower for self-focusing and discuss more of Mar- 
bureer's results." P, is the least power for which a cata- 
strophe collapse will occur for both Reused and unfocused 
geometries. The point of maximum on-ax»s irradiance does 
rSTccur at the beam waist; it occurs "downstream   of the 
oeam wa st at a distance comparable to the Rayleigh range in 
the material for P = P,. If the sample thickness is thinner than 
SeSÄ range, insufficient nonlinear material exists for 
df-focuing to caiise a catastrophic collapse of the beam to 

occur in the material at P,. For damage dominated by self- 
?ocusing this means that the material will not fail until the 
beam power exceeds P,. This type of behavior can be seen in 
the data presented in Fig. 4. Here we have plotted the break- 
down power in megawatts as a function of the focal   pot 
Radius in air for the NaCl sample. The laser waveleng .06 
am and the pulsewidth is 42 ps. The horizontal dashed line 
Presents the critical power P, calculated from measured n: 

valueso thSsample (see Table II)- The vertical dotted line 
dtvid s the data for which the sample thickness is less than he 
Rayleigh range (region to the right) from that^ wtach «he 
sample is thicker than the Rayleigh range (region o the left) 
Let us first examine only the triangular data points that are for 
a NaCl sample thickness of 2 in. If we examine the data for the 
region to the left, we see that the breakdown power increases 
with increasing focal radius to approximately< P2. However 
when the sample becomes shorter than the depth of tocus 
(region to the right), the breakdown power continues to 

\ jlOS/jm 

81- 

;MWI 

I- 

I- i-r 

»?l- 

2 

150 N» T *i »L. 
Cu«l)i«i| 

Sam equals trample thickness for the 2 in. sample. 

increase. If we now rotate the sample so that the beam propa- 
gates through 1 in. of material instead of 2 in   a dramatic 
increase in the breakdown power is observed. This is seen by 
examining the data points for the 150 £n spot sue.Jhe 
triangular point is for a sample thickness of 2 in  and the point 
represented by the X is for I in. of materiaL No other 
parameters have been changed. To show that the change in the 
breakdown power was not due to an orientation effect a 
similar test was performed for a case in which the sample was 
thick compared with the Rayleigh range for 1 in. of mater al. 
No change in the breakdown power was observed when the 
sample was rotated. This simple test clearly shows the effects 
of self-focusing in breakdown measurements. 

5. CONCLUSIONS FROM THE ROLE OF SELF- 
FOCUSING IN LID 
5.1. Re-evaluation of ELID data 

The significance of this work should be emphasized Much of 
the early experimental work on self-focusing used the scaling 
aw proposed by Zverev et al * to correct the data for self- 
focusing In that work the critical power of importance was 
assumedtobe P,. Spot size dependencies of the laser-induced 
dama^^thresholds were assumed to be merely a reflection ot 
t effec of sdf-focusing since the breakdown powers were„„ 
1st cases a fair fraction of P, However, since:the se:f-focus 
ine theory predicts and this work confirms that the critical 
Polens in fact P2 and not P „ the spot size depend««*> arn 
most cases due to other mechanisms in the «na£™wK"h2 
The contribution of defects to the LID thresholds. Work that 
used the method of Zverev et al. needs to be re-examined. 

Snformnately, much of the work, using the Zverev and 
Pashkov« scaling is not recoverable from the literature since 
fhe uncorrected Thresholds are not reported and cannot be 
extracted due to insufficient information. However, Fradin et 
""in anticipation of some problem with th^van 
Pashkov method did not scale the data repored inT973  or 
self-focusing, and in retrospect they were correct in no ««Jog 
the data They observed that the damaging power in NaU 
c led as the square of the focal length of the lenses used fo 

the picosecond pulsewidths. As noted earlier, in 1977 Srnuh et 
al a also found some problem in using P. to correct their 5J- 
nm and 355 nm picosecond damage thresholds for self-tocus 
Z They included the breakdown power and the uncorded 
oca  area in their report so that future workers could re 



TABLE IV. Breakdown thresholds at 0.53 >im of Ref. 22 scaled for 
self-focusing using P, (column 7) and P2 (column 8). P stands forthe 
breakdown power PB. E0 is the breakdown field, and A is the focal 
area calculated using linear optics. 

Material 

pB 
(KWI 

A 

ruAKMvdl 

P/P, P/P, iMVftffll 

turautedl 

EP, 
IKBttdt 

KH,P0. 151.0 16.0 0.57 0.15 15.3 23.4 (53%) 

Si0; 129.0 15.9 0.46 0.12 14.5 19.0(31«») 

NaCI 36.4 15.1 0.60 0.05 7.9 12.4 (57%) 

CaF, 146.0 15.9- 0.62 0.09 15.5 25.2 (63%) 

NaF 126.0 15.8 - 0.45 0.05 15.0 19.4 (30%) 

LiF 171.0 16.1 0.59 0.06 16.9 26.5 (57%) 

EP, 
IKittdl 

16.6 (8%) 

15.4 (6%) 

8.1 (3%) 

16.3 (5%) 

15.4 (3%) 

17.5 (4%) 

examine the data in the light of new measurements. 
We can now use Eq. (5) to re-examine the 532 nm break- 

down data of Smith et al.22 In that work, the breakdown 
powers are all below P,, so the irradiance increase predicted 
by Eq. (5) should be valid. Six materials were studied, includ- 
ing fused quartz and NaCI, as shown in Table IV. In examin- 
ing the data we find that the breakdown threshold fields 
increased as much as 50% to 60% using P,. These increased 
thresholds were reported. However, when the thresholds are 
properly corrected using the second critical power P2 we find 
on the average only a 5% increase. This is well within the 
±15% absolute uncertainty in the measurements. 

Smith et al.22 also reported breakdown thresholds at 355 
nm for three of the materials listed in Table IV. The results for 
this near-UV study indicate that, in most cases, the break- 
down threshold powers for these materials were substantially 
higher than the P, critical powers at this wavelength. The only 
exception was CaF2 where PB was found to be 0.7P,. In an 
attempt to correct their data for the presence of self-focusing 
they scaled their breakdown threshold irradiance levels in 
KH,P04, LiF, and Si02 using Eq. (5) but with a critical power 
somewhere between P, and P2. 

While they were on the right track, meaningful comparison 
of the 355 nm data with results at other wavelengths is difficult 

^due to the reported poor spatial quality of the 355 nm beam 
used in the measurements. The uncertainty in the energy 
distribution within the focal area lead Smith et al.22 to assign a 
factor of two range for the scaled breakdown threshold fields 
at this wavelength. The actual breakdown thresholds may or 
may not be within this range. A further complicating factor 
for interpreting the 355 nm work is the recent result that the 
effective n,,for a material may not be constant as a function of 
wavelength for photon energies approaching a substantial 
fraction of the band-gap energy. Based on our measurements 
using the technique of Ref. 43 in BK-7 (see Table II comparing 
n2 at 1 fim and 0.5 pm) and those of White et al.49 in BK-10 at 
355 nm, the n, values for the three materials studied at the 
third harmonfc wavelength may well be substantially lower 
than the values at 1064 nm. This points to the need for 
accurate measurements of n2 in these materials in the regime 
where multiphoton effects may be coming into play. It may 
also be necessary to measure nonlinear refraction at near- 
damaging irradiance levels as is done in the beam distortion 
method.43 This being the case, we will not attempt at this time 
to reexamine the 355 nm thresholds. 

In our re-evaluation of the breakdown results of other 
workers, we have concentrated on the work of Ref. 22 for two 
reasons. The first reason is that the breakdown measurements 
in that work were conducted for pulse durations comparable 
to our own. Therefore, the self-focusing mechanisms in the 
test materials will be the same. The second reason is that, of 
the experimenters who scaled their breakdown thresholds for 
the presumed presence of self-focusing, Smith et al.22 compose 
one of few groups whose work contains sufficient information 
and experimental parameters to determine the true break- 
down thresholds. Other workers merely reported the scaled 
breakdown threshold irradiance levels without including the 
focal spot radii used in the measurements. This makes it 
impossible to recalculate the breakdown thresholds. In addi- 
tion, the incorrectly scaled data of Smith et al.22 was used in 
support of the intrinsic avalanche ionization model. 

Several other breakdown studies have been conducted in 
these materials in which no self-focusing corrections were 
made. For example, Manenkov29 reported breakdown mea- 
surements in the alkali halides (including NaCI) for nano- 
second pulse durations at 10.6, 1.06, 0.69, and 0.53 pm laser 
wavelengths. There is some uncertainty in the focal spot 
radius used in the measurements since two values are reported 
without specifying which correspond to the breakdown irra- 
diance levels listed in Manenkov's work.29 Feldman et al.42 

estimate that electrostriction is of relatively minor importance 
for the nanosecond pulses used in these experiments. How- 
ever, we will use the larger value of n2 = 4X10-13 esu calcu- 
lated from nanosecond three-wave mixing experiments.50 

With this in mind we find that PB in NaCI is 0.5P2 at 532 nm 
and PB is 0.14P2 at 1064 nm if we use the larger of the two focal 
radii cited in Ref. 29. If we use the small focal radius we find 
that PB for NaCI is 0.07P2 at 532 nm and 0.02P2 for 1064 nm. 
Thus, self-focusing effects in Manenkov's29 work for NaCI are 
negligible except perhaps for the combination of the largest 
spot size and shortest wavelength and, therefore, should not 
be scaled. The wavelength dependence reported by Manenkov 
from 10.6 pm to 0.69 jum was an increase in threshold much 
stronger than that reported by Fradin17 (a factor of three). 
However, the threshold dropped at 0.53 pm for a net drop 
going from 1 junto 0.5 ^m consistent with our measurements. 

In a similar nanosecond study, Merkle et al.51"53 reported 
single shot damage thresholds for Corning 7940 fused quartz 
for laser wavelengths ranging from 1064 nm to 355 nm. In 
fused quartz as well as in NaCI, for the tight focusing geome- 
try used, electrostriction has been shown to play a small role in 
self-focusing effects for pulse durations around 30 ns.42 We 
use the n2 value of 0.95 XI0-13 esu reported by Feldman et 
al.42 for nanosecond pulse durations in Si02. We find that the 
breakdown powers reported by Merkle et al.51 for Corning 
7940 were less than 0.08P2 at 1064 nm and equal to 0.07P2 at 
532 nm. Therefore, self-focusing effects in the work of Merkle 
et al.51 are negligible. They report a decrease by a factor of two 
in threshold in going from 1.06 pm to 0.53 M™-

51 

We have also re-examined our own results published in 
Refs. 3 and 32. In Ref. 3 we used beam distortion and polari- 
zation dependence to verify that self-focusing was not the 
dominant breakdown effect. However, these tests (i.e., polar- 
ization dependence and beam distortion) were not conducted 
for each experimental condition used. For the most part, little 
(a few percent) or no adjustment of the originally published 
numbers is needed. For the ultra-short pulse data (pulsewidth 
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less than 5 ps) and largest spot size of 14 urn for Si02 at 10-54 
nm adjustments as high as a factor of two were needed. These 
corrections do not change any of the trends observed or 
conclusions drawn from that data as discussed in the next 
section.:»-12 in addition, we should note that we have studied 
many samples of these materials grown by various techniques 
over the past 15 years. While the thresholds vary from sample 
to sample, from boule to boule, and even from different 
samples taken from the same boule, the data presented here is 
consistent with data obtained from similar "good" optical 
quality material. We have not found an exceptional sample 
that behaved differently from the behavior of the samples 
reported here. 

52. Wavelength, temporal, and spot size dependence 

Given that we now can account for the effects of self-focusing 
in an LID experiment, we can unambiguously determine the 
dependence of the threshold on various parameters such as 
pulsewidth, spot size, and wavelength. The conclusion reported 
by Smith et al.22 that the observed wavelength dependence 
agreed with the predictions of avalanche ionization theory 
depended on the scaling using Eq. (3) with P, as the critical 
power. Using P„ the data of Ref. 22 shows a decrease in 
threshold with decreasing wavelength, which is not consistent 
with intrinsic avalanche breakdown. We find similar results 
for the wavelength dependence. While this wavelength 
dependence is in the direction predicted by intrinsic multi- 
photon-induced damage,54 the dependence is much too weak. 

As the order m of the multiphoton absorption process is 
increased, the irradiance needed to obtain the same absorp- 
tance increases approximately as the inverse ratio of the non- 
linear absorption coefficients.55 This ratio is estimated by 
Wherrett55 to be == 10~*I, where I is the irradiance. Experi- 
ments indicate that this ratio is = 10~3I (Refs. 56 and 58). For 
example, the two-photon absorption coefficient of CdS at 
0.53 urn is reported" as 5.5 cm/GW, and its three-photon 
absorption coefficient at   1.06  urn  is  reported58 as 0.01 
cm3/GW2. Thus, to obtain the same absorptance at the two 
different wavelengths would require an irradiance of —550 
GW/cm2 (or more, theoretically). Four-photon absorption 
would require a correspondingly higher irradiance. From 10 
urn to 0.5 urn the experimentally measured irradiance thresh- 
olds change but only by factors of two to four. The reported 
observation of four-photon absorption at 532 nm prior to 
damage by the group at Washington State University is inter- 
esting and may indicate that intrinsic multiphoton absorption 
is responsible or partially responsible for damage in the 
selected samples of NaCl studied by that group. We note, 
however, that the high irradiance used by the WSU group of 
550 GW/cm2 for picosecond pulses is =5.5 times the damage 
threshold  observed  for  the "best" samples  reported  by 
Manenkov using nanosecond pulses.29 The absorptance due 
to direct four-photon absorption would then be of the order of 
5.5-3, which is = 6X 10-3, lower for the nanosecond pulses. It 
seems unlikely that if damage for picosecond pulses is caused 
by intrinsic multiphoton absorption that the same mechanism 
is responsible for the nanosecond data of Manenkov.29 

Gorshkov et al.59 also found inconsistencies with the ava- 
lanche model in the temperature dependence of damage of the 
alkali halides at 0.53 urn. We agree with the authors of Ref. 8 
that "insufficient and contradictory data exist for m = 4 in 
NaCl (E. = 8.6 eV. hv = 2.33 eV) to unequivocally assign 
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Fig. 5. Wavelength dependence of EB for NaCl and SiOz forseveral-r 
pulsewidths at 1.06 and 0.53 pm. These thresholds have been scaled ~ 
by a few percent for self-focusing using P2 and measured values 
of n2." 

damage to the avalanche mechanism." However, since the .: 
damage threshold varies considerably from sample to sample,  ; 
we must still conclude that extrinsic effects are present and 
dominant for the lower threshold samples. Additionally, 
intrinsic multiphoton absorption may contribute carriers for 
an eventual avalanche, although no evidence for this was . 
observed in the photoacoustic data of Ref. 8. At 0.5 um in 
these wide-gap materials the question of the role of intrinsic 
multiphoton absorption in LID remains.  However, it is 
unlikely that for the wavelengths of 1 Aim and longer intrinsic 
multiphoton absorption is playing a role. 

We reported damage on 13 samples of NaCl at 1 urn and 
0.5 um in Ref. 3. While the field thresholds varied from 
sample to sample by as much as a factor of four, we saw no 
systematic differences in the parametric dependencies of the 
ELID thresholds, although not all experiments were per- 
formed for all samples. Figure 5 shows a bar graph of damage 
in NaCl (upper) and Si02 (lower) for a focal spot size in air of 
7.2 urn for various pulsewidths as indicated, for both 1.06 urn 
(unshaded) and 0.53 urn (shaded). The small corrections for 
self-focusing have been included in this figure. Except for the 
shortest pulses in both NaCl and SiO, samples, the ELID 
threshold is reduced in going from a wavelength of 1 urn to 0.5 
urn, which is inconsistent with an intrinsic avalanche model. 

In the avalanche breakdown model of Refs. 4 and 5 the 
ionization rate is proportional to E2 in the high field limit (i.e., 
short pulse limit). Then, the buildup of carriers is given by 

N = N0exp(aE2t) , <10> 

where N is the carrier density, N0 is the initial carrier density, 
and a is a material dependent constant. This limit corresponds 
to the situation in which the increase in energy of the electrons 
in the conduction band is simply proportional to the input 
irradiance and that all losses are negligible. This says that the 
ionization rate is limited by the rate at which the input light 
beam can supply energy to the conduction band electrons. It is 
commonly assumed that damage occurs when the carrier 
density reaches a critical value Nc. Thus, Eq. (10) can be solved 
for the breakdown field showing a t^05 dependence: 

EB = /at7        v^o 
(ID 

We find that for very short pulses for NaCl this pulsewidth 
dependence is valid and the breakdown fluence is constant, 
while for SiO, we see a somewhat weaker t^3 dependence. 
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For the low field limit, i.e., longer pulses, the ionization rate is 
exponentially dependent on E and the resulung pulsewidth 
dependence is relatively weak/ In Fig. 6, we reproduced the 
theoretS curves derived by Sparks et .1/ showing the pre- 
dictedTpendence of the breakdown field EB on P^ewidth 
and have extended the pulsewidth scale to longer and shorte 
nulses The overall dependence of the data for a given spot size 
Fs  n  ernarkably good agreement with this theory using no 
adjustable parameters. However, intrinsic avalanche ion za- 
tion does not predict a spot size dependence, which a.cleary 
seen in the data. This relatively large spot size dependence 
may well be due to extrinsic materials parameters such as 
Siphoton ionization of impurities or defects that provide 
the starter electrons for the avalanche N0> 

While the observed temporal dependence is consistent with 
an intrinsic avalanche, the wavelength and spot size depend- 
ence strongly indicate that the phenomena is an extrinsic 
Prooertv ofmaterials. In addition, the strong sample- to-sam- 
ple variations in thresholds support this conclusion^.» The 
extrinsic nature of bulk damage makes quantitative  first 
prndpk descriptions of the damage process very difficult 
One problem is that the good optical materials of interest^haye 
very low levels of defects and impurities. One solution to this 
problem is to do experiments with samp.cs prepared with 
known type and densities of defects and impurities. This is the 
approach we take below. 

6   CONTROLLED DEFECT STUDIES 
The effects of y irradiation (which produces, among other 
defecVsE'cent«)« on the ELID thresholds of fused silica 
were investigated. Samples were sliced into four quadrants 
On"qÄ was kept as a control (i.e., no irra lation , and 
the remaining three quadrants were subjected to 10    10   and 
10« rad of cobalt y irradiation from the Naval Researcn 
Laboratory cobalt source. Unfortunately, the density of 
defectTinnot be determined,« although their effects on lin- 
ea ab orption and ELID can be measured. Single specimens 
of three lypes of fused silica were testedSj^trasU A3 and 
WF (water free). Damage was performed with 18 ™(*y*™> 
pulses at 1.06 urn and 0.53 Mm focused into the bulk tfthree 3 
mm thick samples using a 40 mm focal length lens. Each site 
Zs irradiated only once. The ELID thresholds were found to 
he indeDendent of y irradiation at the 1.06 Mm wavelengtn. 
HoÖ nificai reduction in -^^«^S 
40%) was measured for the irradiated samples at 0^53Mm. 
Aea n. the effeas of self-focusing were determined to be neg- 
JSte by performing polarization dependent damage mea- 

Pin 7   Transmission as a function of wavelength X for the three 
sampleiTSSfS -irradiated and ,b> y irradiated w.th 10° rad. 

TAB LE V. Composition of the various fluorozirconate glasses studied. 

Sample Color Zrf. 

Clear       57 

Green      56.75 

Green 

Green 

BaF, UF, 

34.5 

34.25 

56.5 

Violet 

56.5 

55.75 

Yellow 

33.75 

56.75 |  34.25 

4.5 

4.5 

4.5 

4.5 

4.5 

CrF, 

0.5 

MnF, 

0.5 
0.5 

0.5 

NiF, NdF, 

0.5 

0.5 

1 

surements The ELID thresholds at 0.53 Mm are substantially 
"an those at 1.06 urn even for the unirradiated witness 

samples Avalanche ionization predicts an increase in thresh- 
old reduced wavelength. Thus, the ELID process is not 
simoW avalanche breakdown even for the witness sample. 

Figure 1shows the linear transmission spectra of the unir- 
radiS[and irradiated (10« rad) samples.-« Note thaUhu 
Lure shows no observable change in transmission at other 
1 06 um or 0.53 Mm but does show a substantial change at 
0 266 1 or the irradiated samples. This suggests hat the 
decrease in ELID threshold at 0.53 Mn> may be: «socated *nth 
the change in transmission at the harmonic 0.266 am. We will 
examine thTs relation after presenting data that shows a 
Sar dependence of ELID on linear absorption at a 

haWe0a!sCo performed a series of LID experiments °nfluorozir- 
r Ja« (FTglasses undoped and doped with Cr, Mn, Ni, and 

Son spectra are given in Ref. 63. The doped and undoped FZ 
elasses were studied at 1.06 Mm using 45 ps and 18 ns pulsesand 
f calculated 5.3 urn focused spot size. Measurements at 0.53 urn 

ÄÄ »« of ■!« "»P«1 FZ ^ WhE" C°mP"tä 

with the undoped sample A. „i„rtrrin ava- 
We present below a two-photon assisted ele« orava 

lanche breakdown model as given in Refs. 62 and 63 that we 

SSSSHSSSH5ESSS2 
SeaTdow "occurs wherTthe density of free earners generated 
S a combination of two-photon and avalanche processes 
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Fig. 8. Square of the damaging electric field at 532 nm versus the 
negative natural logarithm of the linear absorption at 266 nm for the 
irradiated and unirradiated Spectrasil A Si02 samples. 

reaches some critical value Nc. In the avalanche process the 
buildup of free carrier density is given by Eq. (10), where we 
assumed the high field limit with an ionization rate propor- 
tional to Eg. The model assumes that the initial free carriers 
are generated by two-photon absorption from impurity states 
within the bandgap. Therefore, N0 can be written as Nn <=c n, 
where n is the density of two-photon allowed impurity or 
defect states. Taking the natural logarithm of Eq. (10) yields 

aE| = —ln(n) -r constant (12) 

The final assumption is that the density of two-photon 
allowed states at the fundamental wavelength (X) is propor- 
tional to the linear absorption at the second harmonic (\/2). 
For that assumption Eq. (12) gives 

EßlatX<X-ln(a«latX/2 (13) 

where a is the linear absorption coefficient at the second 
harmonic wavelength and I is the sample length. 

Figure 8 is a plot of the square of the breakdown field at 532 
nm as a function of -\n{al) at 266 nm for the Spectasil A 
sample. Note that increasing irradiation dosage goes from 
right to left in this figure. A linear relation is also seen for the 
other samples (B and WF), although sample B shows a signifi- 
cant increase in absorption for only the highest y irradiation 
level. Figure 9 is a plot of the square of the breakdown field at 
1.06 /um versus -ln(ai) at 0.53 ^m using picosecond pulses 
for the updoped and doped FZ glasses. A similar plot for 
nanosecond pulses also yields a linear relation. Plotting the 
breakdown field squared at 0.532 /xm versus the -\n(ai) at 
0.266 ßtn using nanosecond pulses again gives a linear rela- 
tion. Similar plots of damage versus linear losses at the dam- 
aging wavelength show no systematic trends. The agreement 
with the prediction of Eq. (13) is quite good considering the 
extreme simplicity of the model and the assumptions made. 
Note that even in cases in which nanosecond pulses were used 
where the ionization rate is expected to depart from the E§ 
dependence good fits are obtained. At what pulsewidth or 
irradiance the deviation from an Eg dependence becomes 
large is not well established. However, we found that for all of 
the FZ glasses where both nanosecond and picosecond data 
were taken, the reduction in ELID threshold for the doped 
samples was nearly a factor of two larger for the picosecond 
irradiation. This trend is expected in this model where the 
staner electrons for an avalanche are created by nonlinear 
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Fig. 9. Square of the damaging electric field at 1064 nm versus the 
negative natural logarithm of the linear absorption at 532 nm for the 
Fluorozirconate glass samples listed in Table V. 

absorption since the breakdown field is substantially larger 
for picosecond pulses. 

In spite of the complexity associated with laser-induced 
damage mechanisms for dielectric materials, our experimen- 
tal results are consistent with a two-photon-assisted electron 
avalanche process. We should note that if this model is cor- 
rect, the implication is that the witness samples at 0.53 /im, in 
the case of the fused silica samples, and the undoped glass 
(sample A) in the case of the fluorozirconate glass samples are 
also dominated by extrinsic defect (or impurity) initiated 
ELID. This conclusion comes from the fact that these samples 
are included in the curves of ELID versus —In absorption, and 
they fit. Just how far we can take this simple model is not 
clear. The primary justification in presenting it is that the data 
fits the prediction. One conclusion, however, is certainly true; 
the damage in these materials is dependent on defects and 
impurities. 

7. CONCLUSION 
We have clarified the role of self-focusing in laser-induced- 
damage experiments and can readily account for its effects on 
measured thresholds. With this knowledge we have carefully 
examined both our data and the data of others to determine 
that intrinsic avalanche ionization theory cannot account for 
the parametric dependencies observed. Sample-to-sample 
variations, wavelength dependence, and spot size dependence 
of damage thresholds strongly suggest that damage to trans- 
parent dielectric materials is an extrinsic process. In a sense, 
this is good news in that the implication is that ELID thresh- 
olds can be increased as progress is made in the materials 
growth and preparation areas. 
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ABSTRACT 

Optical limiting measurements have been made on solutions of several metal containing 
phthalocyanines and naphthalocyanines. Measurements at 532nm using nanosecond pulses from a Q- 
switched Nd:YAG laser show limiting throughputs of 1-10 millijoules with mild focussing in alcohol 
solutions with nominal transmissions of 30-70%. Measurements on chloro-aluminum- 
phthalocyanine solutions utilizing individual 30 psec pulses or trains (spanning about 100nsec) of 
modelocked pulses have shown even lower limiting throughputs. Thus, the dynamic range of the 
limiting behavior has been shown to cover at least three orders of magnitude. Prompt limiting is 
attributed to strong singlet-singlet (S1-Sn) absorption, whereas the longer time limiting behavior is 
postulated to result from strong triplet-triplet (T1-Tn) absorption. In addition to these studies, 
efforts have been underway to identify materials with reduced limiting throughput and improved optical 
transmission characteristics. 

1. INTRODUCTION 

Transmission of light through an absorbing medium can usually be described by Beer's Law. The 
ratio of the transmitted to the incident intensity, l(out)/l(in), is a constant which depends only on the 
absorption coefficient and pathlength of the medium and is independent of the magnitude of l(in). In 
certain cases, however, when l(in) becomes large, as from a focussed laser beam, the transmitted 
intensity decreases relative to simple linear behavior and ultimately become fixed at a constant value 
independent of l(in).   This phenomenon is known as optical limiting. 

Such behavior can result from a number of processes which fall generally into two classes: 
nonlinear absorption and nonlinear refraction processes.   Nonlinear absorption can occur when incident 
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radiation is resonant or nearly resonant with an allowed transition in a medium and generates a 
population of excited metastable species which exhibit strong absorption at the incident wavelength, 
thus resulting in greatly enhanced extinction at that wavelength. Nonlinear, refraction occurs when the 
local index of refraction of a medium changes in response to intense (resonant or nonresonant) incident 
radiation, resulting in the formation of an index gradient or "lens". This lens either focusses or 
defocusses the propagating light beam resulting in divergence in the far field and thus altering the 
transmission through an   aperture located further along   the optical path. 

Optical limiting devices based on nonlinear materials are envisioned to have applicability in a 
number of areas including optical communications, optical processing and laser hardening. Clearly, the 
detailed requirements placed on the limiter are dependant on the application. Properties such as 
nominal transparency, bandwidth, switching threshold, temporal dynamic range and damage threshold 
are all relevant. 

Several years ago, optical limiting, or "reverse saturable absorption", was reported in some 
tetraphenylporphyrinsL It occurred to us that this phenomenon might be exhibited by other highly 
conjugated macrocyclic dyes. Recent experiments on optical limiting in solutions and suspensions of 
several metallophthalocyanine (M-Pc) and metallonaphthalocyanine (M-NPc) dyes have shown that 
some of these materials may indeed have application as passive optical limiters. For passive limiters, 
no external impulses (e.g. electric fields) are required to initiate the limiting, rather, the materials 
are "self-acting". Examples of M-Pc and M-NPc structures are shown in Figure 1. The best studied 
compound to date in our laboratories is chloro-aluminum-phthalocyanine (CAP). In this paper, we 
report linear, nonlinear and transient transmission measurements on solutions of CAP for a wide range 
of input powers and pulse durations. Preliminary limiting measurements on several related compounds 
are also reported. 

?. EXPERIMENTAL 

CAP was purchased from Eastman Kodak Co. Other M-Pc and M-NPc dyes were prepared by standard 
procedures2. Solutions and/or suspensions for analysis were prepared by heating and stirring small 
quantities of dye in spectrophotometric grade methanol or ethanol. True solutions were filtered to 
remove any undissolved matter. Transmission spectra were recorded on a dual beam spectrometer 
(Perkin-Elmer Lambda-9) before and after limiting experiments to detect any degradation of the 
samples. 

Nanosecond nonlinear transmission measurements were performed utilizing the standard geometry3. 
Excitation was with 5 nsec pulses at 532nm from a frequency doubled, Q-switched Nd:YAG laser 
(Quanta Ray, DCR-2A). Detection was with an integrating calorimeter. Experiments were performed 
in a single shot mode to avoid cumulative thermal effects in the solution. Many single shot 
measurements were averaged to obtain the incident and transmitted intensities. Picosecond optical 
limiting measurements were also performed in the standard geometry4 utilizing 30 psec pulses at 
532nm from a frequency doubled, modelocked Nd:YAG laser. In some experiments, trains of eight to ten 
30 psec pulses separated from each other by 10 nsec were utilized. 

Fluorescence lifetime measurements were performed by utilizing time-correlated single photon 
counting with 5 psec pulses at 600nm from a CW-modelocked Nd:YAG/synchronously pumped dye laser 
combination. Emission was detected with a red sensitive multichannel plate photomultiplier tube. The 
response function of this system is typically 75 psec FWHM.   Transient absorption spectra were 
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METALLO-PHTHALOCYANINE METALLO-NAPHTHALOCYANINE 

M = Al, Zn, Si, Cu, In, . . . X = CI, OH, OCH3, . . . 

Figure 1.   Structures of metallophthalocyanine and metallonaphthalocyanine dyes. 

recorded by exciting with 3 nsec pulses at 355nm from a frequency tripled, Q-switched NdrYAG laser 
and probing with white light from a pulsed Xe lamp.   Detection was with a gated optical multichannel 
analyzer which allowed for recording of entire spectra on each shot at a predetermined delay relative to 
the exciting pulses. 

3, RESULTS 

3.1 Absorption Spectra 

The absorption spectrum of CAP in ethanol solution between 200 and 800nm is shown in Figure 2. 
It is seen that this material (as is common to most phthalocyanines) shows two sets of absorption bands 
in this region associated with TZ-IZ* transitions in the macrocyclic ring system. The lower energy 
bands, commonly referred to as the Q-bands, are associated with transitions between the ground state 
(SO) and the first strongly dipole coupled excited singlet state (S1), and show a maximum absorption 
at 670nm with an extinction coefficient of e=2.5 X 105 LVmol-cm in this solvent. The bands in the 
near UV, commonly referred to as the Soret bands, show a maximum at 355nm with an extinction 
coefficient of e=6.0 X 104|_/mol-cm. Close examination of the spectra between 400 and 600nm 
reveals a broad weak absorption (e=900 iymol-cm @ 532nm) which is presumably associated with 
transitions to high vibronic levels of S1 or the low energy tail of the Soret band. 

3.2 Emission Spectra 

Excitation throughout the visible and near UV results in a deep red emission   with a maximum near 
680 nm.   The very small stokes shift and the mirror image character of this emission relative to the Q- 
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Figure 2.   Absorption spectrum of chloro-aluminum-phthalocyanine in ethanol solution. 

bands indicates that it is a fluorescence from S1. The measured fluorescence lifetime in ethanol is 7 0 
nsec which is in good agreement with the value of 6.8 nsec measured in l-chloronaphthalenes.^ The 
photophysics of CAP and several related compounds has been studied in some detail in 1- 
chloronaphthalene and the fluorescence and triplet yields for CAP were reported to be 0.58 and 0.4 
respectively* in that solvent. Given the similar fluorescence lifetimes and radiative lifetimes these 
quantities   are not expected to differ drastically in alcohols. 

3.3 Transient Absorption Soectra 

It is known that the excited state absorption in certain conjugated macrocyclic compounds is strong 
(e>60000 Umol-cm) and broadbande. Transient absorption spectra recorded at 5 nsec and 40 nsec 
delays after the excitation pulse are shown in Figure 3. The spectra at short times are dominated by S1- 
Sn absorption and at long times by T1-Tn absorption. It is seen that indeed, the excited state spectral 
bands are much broader than the ground state bands, covering the entire visible region of the spectrum. 
Although excited state extinction coefficients (e) have not been measured accurately, it has been 
estimated based on ground state bleaching considerations, that es are in the range of 104-105. Thus, 
with these materials there exists the possibility of the situation described in Section 1 for nonlinear 
absorption where, throughout most of the visible region of the spectrum, the ground state is weakly 
optically coupled to strongly absorbing long lived excited states (both S1 and T1). 

3.4 Nonlinear Absorption and Optical I imitino Measurements 

The first limiting experiments performed on CAP in our laboratory were nanosecond nonlinear 
transmission measurements carried out as a function of dye concentration in methanol solutions. The 5 
nsec, 532nm pulses were focussed into 1 cm pathlength cells containing the dye.  The focussing 
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Figure 3.   Transient absorption spectra of chloro-aiuminum-phthalocyanine in methanol solution, 
solid line represents the spectrum recorded with a 5 nsec delay relative to the   exciting pulse, 
dashed line  represents the  spectrum recorded 40 nsec after the exciting pulse. 
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conditions were very mild with a minimum spot diameter of only approximately 2.5 mm. The data 
from these measurements are shown in Figure 4. The thresholds for nonlinear response are in the 
range of a few millijoules and limiting throughputs of 5-13 millijoules have been achieved with 
solutions of 32-75% nominal transmission. Maximum input pulse energies have been in excess of 12C 
miilijoules/pulse. After many thousands of puisesi no degradation of the dye solution was observed. 
Qualitative observations made during the limiting experiments suggest that there is at least a partial 
nonlinear refraction component to the limiting in the nanosecond time regime. A refractive componen 
is indicated by the occurrence of "blooming" of the fluorescent trace through the cell at high inpu; 

energies. No information is available as to the relative contributions of nonlinear absorption anc 
nonlinear refraction in the nanosecond measurements. It is believed that with nanosecond pulses, the 
limiting throughput could possibly be pushed lower by increasing the fluence. However, attempts tc 
focus more tightly have resulted in damage to the optical cell. Improved limiting might be achieved by 
altering the cell geometry to reduce intensity at the cell window and thus aleviate the damage. 

Since fast response is of interest in many applications, studies were undertaken to characterize 
optical limiting effects in CAP solutions on a picosecond timescale. Utilizing 30 psec pulses with 
energies of up to 0.5 millijoules and focussing to a 75u.m spot size, a limiting throughput of 
approximately 60 ujoules has been achieved in solutions with nominal transmission of 58%. These 
data are shown in Figure 5. Complete flattening of the response has not been achieved because the 
maximum input energy was limited by the output capability of the laser system. Studies of the relative 
contributions of nonlinear absorption and refraction7 have shown that the limiting in this case is 
largely independent of whether the transmitted beam is apertured or not and thus is predominantly due 
to nonlinear absorption. 
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Figure 4.    Nanosecond nonlinear transmission data for methanol solutions of chloro-aluminum- 
phthalocyanine. 

Observation of optical limiting in solutions of CAP on the picosecond and nanosecond timescales along 
with the knowledge that there is likely a large triplet yield led us attempt to characterize the limiting 
behavior on longer timescales.  In order to do this, picosecond pulse trains of eight to ten 30 psec pulses 
separated by 10 nsec were used in limiting experiments.   The total input energy in the train was up to 
1  millijoule, however, individual pulses typically contained 0.05-0.2 millijoules each.    The intensity 
distribution in the train had the usual symmetric character with pulse energies increasing to a 
maximum and then falling off.    The data from these measurements are shown in Figure 6.   Limiting 
throughput of approximate 100 microjoules has been achieved under the same nominal transmission 
and focussing conditions described previously for the single picosecond pulse studies.   It must be 
understood that the energies of the individual pulses in the train are much lower than was the case in 
the single pulse experiments.   Prediction of the transmitted intensity based on summing the effects of 
single weak pulses (determined in the single pulse experiments) gives a transmitted intensity much 
higher than that observed.  Consequently, it is apparent that on the timescale of up to roughly 100 nsec, 
there is some cumulative effect occurring which increases the extinction of the pulses in the train 
beyond what would be predicted on the basis of the single pulse experiments.   Indications are that for 
the pulse train there is a slight nonlinear refraction (self-defocussing) component to the limiting, 
similar to that observed qualitatively in the nanosecond experiments, but that the dominant process is 
still nonlinear absorption. 

A preliminary survey of several other M-Pc and M-NPc dyes has been carried out using 5 nsec, 532 
-nm  excitation.    In addition to CAP, chloro-indium-phthalocyanine  (CIP), chloro-aluminum-t-butyl- 
naphthalocyanine (CA-t-Bu-NPc) and zinc-t-butyl-naphthalocyanine (Zn-t-Bu-NPc) have been 
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Figure 6. Picosecond optical limiting data on chloro-aluminum-phthalocyanine in methanol solution. 
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nominal transmission curve and a prediction of the transmission based on summing the expected 
transmitted intensities of the individual pulses. 
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investigated. Under conditions similar to those described above for the nanosecond experiments and 
nominal transmission of 50%, solutions of the latter three materials show limiting throughput values 
of approximatly 2,5 and 1 millijoules respectively. The CIP material does not form a true solution but 
rather a suspension in methanol which must be agitated periodically to maintain activity. The two 
naphthalocyanines are interesting because the Q-bands in these materials are shifted to longer 
wavelengths thus improving the transmission in the visible. Unfortunately, these materials appear to 
degrade somewhat with exposure to air and light. 

4.   Discussion 

The observation of nonlinear absorption in solutions of CAP on timescales from tens of picoseconds to 
hundreds of nanoseconds can be understood in terms of a relatively simple five state model shown in 
Figure 7. The leading edge of a visible laser pulse incident on the medium is weakly absorbed. The 
transition is from SO to some weak vibronic levels of the S1 state (or some other electronic state) 
which rapidly relaxes to the S1 state. Once a significant population is built up in S1, the remainder of 
the pulse is strongly absorbed via S1-Sn absorption which facilitates the limiting. The magnitude of 
the nonlinear absorption is related to the ratio of the excited state to ground state extinction coefficients 
at the exciting wavelength, es/eo. The larger this ratio, the better the limiting. In the case of CAP at 
532nm this ratio is estimated to be between 10 and 50, based on transient absorption measurements. 
Since the single picosecond pulses used in this study are so much shorter than the S1 lifetime of 7 nsec, 
this picture completely describes the limiting for that time regime. 

When excitation of longer duration is used, then the decay of the singlet state should have a mitigating 
effect on the limiting behavior. However, in the case of CAP, significant limiting behavior extends for 
one hundred nanoseconds. The limiting throughput for the pulse train is less than a factor of two 
greater than for a single pulse of equivalent energy and is much less that that predicted by summing the 
effects of individual pulses. While the limiting throughput for 5 nsec pulses is much greater than for 
picosecond pulses, it must be remembered that in the case of the nanosecond pulses, the incident power 
density is approximately three orders of magnitude lower. 

The question thus arises: What is the nature of the nonlinear response of the system at long times? 
One obvious possibility is that the triplet state, T1, produced via intersystem crossing from S1 with a 
quantum yield of 0.4 shows strong T1-Tn absorption. Indeed, the transient absorption studies at long 
delay times support this concept showing significant absorption near 532nm thus indicating that the 
ratio of excited triplet state to ground state extinction coefficients, et/eo, is large. For long times, 
temporal properties of the nonlinear absorption will be limited by the lifetime of the triplet state 
which is likely to be on the order of 1 millisec or longer. 

It has been suggested earlier in this paper that there is some indication of nonlinear refractive 
effects on nanosecond and longer timescales. These effects may be due to inherent electronic 
nonlinearities' in the dyes or dye/solvent combinations or they may be due to "thermal" nonlinearities 
resulting from energy dissipation in the medium. In any case, these effects appear to be weak relative 
to the nonlinear absorption effects. 

5.  Conclusions 

Optical limiting measurements have been reported on CAP and several related compounds. 
Thresholds of limiting as low as tens of microjoules and limiting throughputs as low as 60 microjoules 
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Figure 7.   Simple five state model for optical limiting in chloro-aluminum-phthalocyanine. 

have been observed for media with nominal transparency of close to 60%. The "switching" or response 
times for limiting are on the order of a few picoseconds or less while the temporal dynamic range is at 
least 3000 (30 psec-100 nsec) and may be as high as 108. 

While the experiments reported in this paper were all performed at 532 nm it is expected that the 
nonlinear behavior will be observed throughout most of the visible region of the spectrum. There is 
"continuous" weak absorption in SO between 400 and 600 nm and there appears to be "continuous" 
strong absorption in S1 and T1 over the same region. In fact, the limiting behavior may well be better 
at other wavelengths since, at least for the S1 state, there appears to be a minimum in the absorption 
near 525nm. 

While the results to date on CAP ar3 interesting and indicate the viability of this approach to optical 
limiting, there is still interest in improving the linear and nonlinear response of the materials. 
Specifically, it would be desirable to improve the nominal transparency and reduce the threshold for 
limiting. Both of these things could be accomplished if the ratio of the excited state to ground state 
extinction coefficients could be increased. In CAP, this ratio is believed to be relatively low (10-50) 
at 532nm in both S1 and T1. It would be desirable to achieve a value in excess of 100. There are two 
ways of doing this. First, it is possible to alter the chemical structure of the macrocyclic ring to 
achieve less ground state absorption in the visible. Secondly, it may be possible to find materials with 
stronger excited state absorption bands. We have begun to explore the first option. Several M-NPc 
dyes have been synthesized in our laboratory. In these materials, as stated previously, the absorption 
bands are shifted thus resulting in better transmission in the visible.        Further exploration of the 
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plethora of possible related compounds is called for to build up a photophysical data base from which 
structure-property relationships can be identified. Once these relationships are clearly understood, it 
will be possible to identify the most promising synthetic targets. 
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ABSTRACT 
Passive optical limiting based on nonlinear refraction in a "thick" medium is analyzed using a simple model. 
In a tight focus geometry we found that the position of the sample with respect to the focal plane is an 
important parameter in the limiting characteristics of the device. In particular we have examined such 
characteristics in liquid CS2 using 300 ns pulses at 10.6 /mi. 

1. INTRODUCTION 
Passive optical limiters based on nonlinear refraction have been extensively demonstrated and analyzed for a 
variety of materials and laser wavelengths. [1-4] A general (and most common) geometry is illustrated in 
Figure 1. The laser beam is focused into a nonlinear index material and is then collected through a finite 
aperture in the far field. At a high enough irradiance the far field beam broadening arising from the self- 
action of the laser beam inside the medium will result in the limiting of the transmitted light through the 
aperture. Most of the published experimental and analytical work regarding such a device has dealt with an 
"on focus" geometry in which the laser beam is focused at the middle of the sample indicated by having 
z=0 in Figure 1. Based on a simple "distributed lens" model, we show that depending on the nature of the 
refractive nonlinearity, this distance (z) is an important parameter in such a geometry. In fact, for a thin 
medium, a displacement of the sample by a distance of the order of a diffraction length (z0) would result in 
reversing the operation of the device from limiting to a saturating type behavior. Similar characteristics are 
also found for "thick" limiters where the thickness of the sample is larger than the diffraction length of the 
focused beam. In this case, the lowest threshold for limiting is achieved by focusing the beam at the front 
surface for negative nonlinearity (An<0) and rear surface for a positive nonlinearity (An>0). 

Such pronounced variations of the beam transmittance through the aperture as a function of the sample 
position (z) have also provided the basis for an extremely simple and sensitive technique called "Z-scan" 
which we developed and currently use for accurate measurements of refractive nonlinearities in a large class 
of materials with a demonstrated resolution of ^A/200 wave front distortion.[5] 

2. FORMALISM 
The nonlinear wave equation governing the propagation of the laser beam inside a nonlinear medium is 
expressed as: 

V2E" h i? [(n°+ An)2E] = ° (1) 

where E is the electric field, n0 is the linear index of refraction and the nonlinearity is introduced through 
An which in general, may include various order contributions such as x(s). X(5)> - etc. Here we consider 
the lowest order effect, namely a x(3^ (Kerr type) nonlinearity which is commonly expressed in terms of the 
nonlinear coefficient n2 (esu) as: An=n2|E|2/2. In a thick medium, transverse variations accounted for by the 
V2 term in Eq.l become significant and an exact numerical solution to Eq.l is extremely complex. A 
common technique to simplify this problem is known as the "aberration-free" approximation [6,7], in which 
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a Gaussian beam propagating through the thick nonlinear medium is assumed to preserve its Gaussian shape. 
This requires that the radial variation of the index of refraction be parabolic. For a Gaussian beam and 
cubic nonlinearity such a requirement is satisfied by using the following appoximation: 

An(r) = An0 e" 2r2/w* = An0 (1 - 2r*/aw») , (2) 

where An0 is the on-axis index change, w is the local beam radius (HWl/e2M in irradiance) and a is a 
correction factor introduced to account for the higher order terms that have been omitted in the actual 
expansion of e"2r2/w2 and its value is only of quantitative significance in evaluating the nonlinearity or the 
limiting thresholds. For a thin medium, the parabolic approximation of Eq.(2) implies that the medium 
behaves like a thin spherical lens. Therefore, as depicted in Figure 2, a thick sample can be regarded as a 
stack of such nonlinear lenses with focal lengths that depend on the local beam irradiance. The effective 
focal length of the i-th element in the stack can be written as: 

f „      aw2i (3) 
1      4Anj AL ' 

where w; and Ans are the beam radius and on-axis index change at that element respectively. AL denotes 
the separation between two adjacent lenses and should be chosen to be much smaller than both the 
diffraction length of the beam and fs .  The latter requirement can be written as: 

AL « (aw* AtAn;)1/2 . (4) 

For a given position of the sample (z) the input Gaussian beam can be propagated through the nonlinear 
medium using successive ABCD matrices defined for the i-th element in the stack as: 

A;       Bs l-AL/n0fj      AL/n0 

-1/f: 1 
(5) 

Having calculated the beam size at the aperture (wa) we can obtain the normalized transmittance through 
the aperture with radius ra as 

T(z) .  1 - exp(-2r*a /w*a) ^ (6) 

where S is the aperture transmission in the (small signal) linear regime and ra is the aperture radius. For 
simplicity we have assumed only cw radiation and a steady state nonlinearity. Temporal variations and 
transient effects, however, can be included with ease if pulsed laser radiation is to be assumed. 

3. DISCUSSION 
First, let's consider only a single thin sample in the goemetry of Figure 1. In this case the transverse effect 
inside the sample is negligible and the propagation process can be analyzed using an exact wave optics 
approach and has been given by us in reference [5]. Here we compare those results with that of the "thin 
lens" approximation. The calculated transmittance as a function of sample position for a fixed input 
irradiance is shown in Figure 3 using both techniques. In this calculation a positive nonlinearity with an 
on-focus (z=0) on-axis (r=0) phase change (A$0) of 0.5 radian was assumed. A$0 can be given in terms of 
the corresponding index change (An0) as, 

A*0 * ^ An0L , (7) 
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SAMPLE       APERTURE 

DETECTOR 

Fig.l The passive limiting geometry based on nonlinear self- 

action. Limiting occurs due to a significant beam 

broadening at the far-field aperture in the nonlinear regime. 

The important parameter, z, is taken as the distance 

between the focal plane and the center of the sample. 

C 

AL 

0.90 

. WAVE OPTICS 
■ LENS APPROXIMATION ' x 

Fig.2 In the 'distributed lens" approximation, the t*i"*V nonlinear 

mwliirm B regarded as a stack of thin ~™li~«r lenses 

whose focal lengths depend on the local beam imdiance. 

-«.0 -4.0 -2.0 0.0 2.0 4.0 6.0 

FigJ The Z-seans of a thin nonlinear medium as calculated using 

the methods of wave optics (ref^SP and thin lens 

approximation. A 50% aperture b assumed (S-0S). 
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where A is the laser wavelength and L is the thickness of the samp£ A udi™ Ä «Tj£ 
explains the transmittance variations in such »«PT^^^^Tbä irradiance is 
as follows. Starting the scan from .distance far away fromt the foc^^ve z) tt 
low and negligible nonlinear refraction occurs leading to ^ "^T^^iöSg in the sample. A 
closer to the focus, the beam irradiance increases [f^^^0^ ^ a beam" broadening at the 
positive self-lensing prior to the focus will enhance the diff™°" »^^ the focal plane t0 the 

^Ätei^ S "LSe Arming a beamP narrowing 
Ä^Äan mcreasj, m the transmittanc, A -^ -« ™™» 

(valley) and a post-focal ^mittance maxmum^J^ ^^^ t0 an opposite (peak-valley) 

STSi STpS W SÄ Ägi .Ä of ^ from the f.. 

We will exploit this feature further in optimization of a thick limiter. 

Returning to Figure 3, we notice good agreement between the.su!* of the £jwg^£^ 

wave optics approach is obtained by adjusting *«<^*0j/^r£ ^ " ? deceases with larger 
that S=0.5. In general we numerical found tha» ^ I^J^ ^ ^? further ^^ since the 

apertures but is nearly independen   ****"}*?r .phase a^ ^ ^ 

r?w?c-TSw1^ 
dSributed lens.   The calculated Z-scan for a rather extreme case for which^L/n z0=15 a re shown in Rgure 

Seure 4 is also the existence of a nearly flat transmittance region where the beam is focused near the 

effect in the far field.   In the lens analogy it is similar to placing pairs of lenses of the same sign 
sides of the focal plane such that the far field beam pattern is relatively unaltered. 

It is also noted (Figure 4) that the existence of a large internal self-action results in 1^8^^^ 

Äw^SivTS: XX r=s-fo^gSn MAS 

where variations of the beam diameter inside the medium due to nonlinear refraction is insignificant, 
nonlinearities with opposite polarities will give rise to the same transmittance changes. 

From a limiting point of view, as pointed out in the case of a thin sample, - --t Place the^ ^ 
vallev position to minimize the threshold.    The limiting behavior of the thick medium ol  figure 
explicit shown in Figures 5 and 6 for negative and positive nonhnMrit.es, resp^vely.   K xs s^n ^ as 
the sample is positioned farther from the valley the limiting threshold increases.   For £f ™ "™*^ 
as shown in Figure 5, the lowest limiting threshold is obtained at the valley corresponding to focusing at.the 
tont surface.    This threshold is given by N=*.    Focusing near the rear surface yields abeachintype 
behavior which is undersirable for a limiting device.    Similarly, for a posiive nonhneam^ fte   owe* 

limiting threshold occurs at the valley which corresponds ^J-^fJ^^et of ca Soph c sel?- 
Figure 6   there is a sudden drop of transmission at N^2 (for a-4) due to the onset oi«^     d;stortion 

&.'   This ««**. is seen ,o be near.y Indern,:j>M* =,;*?*£«£*£ 2°?^ 
number, N, can also be expressed as a power ratio. P/2P: where v Denotes 

defined as: 
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Fig.4 Calculated Z-scans of a "thick" medium using the method of 

distributed lens for both positive (solid line) aDd negative 

(broken line) nonlinearities. The arrows on the 2 axis 

indicate the corresponding positions at which the limiting 

curves of figs. 5 and 6 were obtained. 
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Fig.5 The normalized power transfer curves for a negative 

nonlinearity (na<0) calculated for various sample positions 

(z) as indicated by the arrows in Fig.4. The broken line 

shows the linear transmirtance. (a»4 and S-0.5 were used in 

the calculations). 

Fig.6 The normalized power transfer curves for a positive 

nonlinearity (n,>0) calculated for various sample positions 

(z) as indicated by the arrows in Fig.4. The broken line is 

the linear transmittance curve. The catastrophic self- 

focusing occurs in all the curves at N=2 signified by a 

sudden drop in the transmitted power, (a-4 and S-0.5 were 

used in the calculations). 
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c»» , ■   , (8) 

Numeric*, calculations of «he nonlinear wave equation ^^ .^^^^(T^'J^Zt 

the introduction of this correction factor. 

When the self-focusing threshold is reached, ^.^ZS^^olT, 2ÄEÄS 
becomes infinite.   However, the panrcal^approximationan which the method 01 a 

nonlS indtx, plasma production ana subseouen, optical breakdown of the medtum. 

4. EXPERIMENTS . . ,    •    .   longitudinal mode pulses of 
Optical limiting in liquid CS2 was examined using a TEACO,bs« w fcsnR* ^ ^ (wkh NaC1 

300 ns duration. The laser beam was focused to ^J^^^l^^, a -thick- medium, 
windows) filled with spectro^ ^ valley of the 
First we performed a Z-scan  or«this sampUto    en y ^ ^ ^^ ^ ^^ ?    The 

transrruttance. The result for a 1 mJ g^^J0^ method for a negative nonlinearity, namely the 
curve exhibits features predicted by the ^^ »ewT focusing respectively and a nearly flat portion 
peak and valley corresponding to the^second and tot ^^^S^vJ^r^xity is believed to 
corresponding to focusing near the center of the cell    ine wigi 8 lensin 
be thermal, arising from the finite absorption of 10.6 Mm radiation in Ub2<**£" > .        üc 
in liquids arises from the thermal expansion oJ* medium and hj, .   is   tim^ given^ ^ ^ 

ESA ^tsttz --^iStuTe ^r^^^ 

be estimated in terms of the laser pluse fluence (F) at the focus; 

An„ = 0.5 jjr ^ , 

where , is the density, Cv is me specific heat and dn/dT is the ^f^^^^f^l toteen 
The latter coefficient (dn/dT) has long been ravesfgated fomCS, and a value o^ Jfciu 

r^3^n,ir~TJ/cri',nuer & sr^s^s-^. - cw «* »,<*£ 
i^ of Figure 'A be noted that in this ^^^^ ^^f l^JVZ 

The iitniting behavior of the same CS2 cell a. »"J^^J^U'PX,^^S 
transmitted power is plotted versus the mpu. pow r « rn^ue, f* *«, P,^ can be enhanced 
the predicted features given in Figure 5.   It is evioeni irum «M*; 
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Fig.9 A low threshold fluence limiter at 10.6 jim using modified 

CS, (c=i2 cm"1) as compared to pure CS, (c=0.22 cm-1). 

The measurements were obtained using a 3mm cell placed 

at the transmittace valley. 
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ABSTRACT 

The principles of Operation of semiconductor optical limiters which utilize two-photon absorption and free- 
carrier induced defocusing are described. We present a review of early work using psec pulses at 532 nm in 
ZnSe, in which the problem of damage in solid state limiters is overcome by optimizing the focusing 
geometry. Limiting energies as low as 10 nJ are seen, and a dynamic range (damage energy divided by 
limiting energy) in excess of 104 is demonstrated. The somewhat complicated propagation theory is 
simplified into a set of scaling rules which are used to predict operating characteristics of semiconductor 
limiters at longer wavelengths and for shorter pulses. We present new limiting data obtained with longer 
pulses in ZnSe, in CdTe at 1.06 /nn and InSb at 10.6 pm, and we compare these results with the scaling 
rules. 

1.      INTRODUCTION 

Passive optical limiting results from irradiance-dependent nonlinear-optical processes in materials. [1,2] The 
ideal optical limiter has the characteristics shown in Figure I. It has a high linear transmittance for low 
input (e.g., energy E or power P), a variable limiting input E or P, and a large dynamic range, defined as 
the ratio of E or P at which the device damages (irreversibly) to the limiting input. Since a primary 
application of the optical limiter is for protection of sensitive optical components such as detectors, and 
damage to detectors is normally determined by fluence, this is the quantity of interest for the output of the 
limiter. Getting the response of Figure 1 turns out to be possible by using a wide variety of materials; 
however, it is difficult to get the limiting threshold as low as is often required and at the same time to have 
a large dynamic range. 
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Fig. 1.       Fluence output of an ideal optical limiter as a function of the input power or 
energy. 
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I 

detailed operational characteristics and a theoretical description of optical limiting devices based on 2PA and 
I the subsequent photogenerated free-carrier defocusing m semiconductors. 

2. HISTORICAL BACKGROUND 

I Semiconductors have exhibited some of the largest optical nonlinearities of all materials [3]  Unfortunately, 
from the standpoint of optical limiting, these extremely large nonlinearities are associated with near bandgap 

«resonance and Aus are in a region of relatively high linear absorption.    In addition   solids undergo 
■ irreversible optical damage.   Even so, effective limiting has been demonstrated by using other mechanism^ 
"in 1969   Geusic et al. reported limiting behavior in Si attributed to stepwise nonlinear absorption at 1.06 

urn  r4l' Later   Boggess et al. showed fluence limiting in Si that was due to a combination of nonlinear 
■ absorption with a refractive contribution induced by the photoexcitation of free carriers. [5] Power-hmitmg 

experiments were conducted by Ralston and Chang in a series of semiconductors such as CdS, GaAs and 
CdSe  T61    This was the first report to our knowledge of the use of 2PA for optical .limiting.   In those 

«studies nanosecond pulses were used where absorption by the 2PA-generated free carriers was sigmficant. 
In addition, although this was not noted at the time, the refractive index change caused by photo-generated 
carriers is strong and also useful in the limiting process.  In particular, this defocusing limits the transmitted 

I fluence Another type of limiter, which uses a combination of 2PA and nonlinear refraction in the narrow 
gap semiconductor InSb at 10 /mi, was developed by Walker et al. [7] This device relies on the etalon 
Properties of the nonlinear sample, and the device exhibits regions of bistability, but the range of input 
energies over which limiting is obtained is small.   Boggess et al. were the first to use the combined effects 

I of 2PA and carrier defocusing to obtain optical fluence limiting. [8] The geometry used was to focus 
picosecond 1.06 pin pulses onto the surface of a thin sample of GaAs, refocus the beam, and monitor the 
transmittance of an aperture.   Since the damage-prone surfaces are subjected to the maximum fluence ot 

I the input pulses, the range over which these devices function without incurring damage is low. What we 
have found is that if thick samples are used, the large nonlinearities of the semiconductor can actually be 
used to prevent damage. [9] The trick is simply to focus the light tightly into the bulk of the material. 
I Nonlinear absorption combined with nonlinear refraction keeps the irradiance within the semiconductor 
below the damage threshold, and the device is self-protecting. One problem now is that the wave equation 
can no longer be separated into two propagation equations, one for the irradiance and one for the phase. 
I This makes even numerical solutions difficult. However, we find that the analysis of thin limiters 
qualitatively describes the operation of thick limiters. 

1 3.        CHARACTERISTICS OF SELF-PROTECTING LIMITERS 

I Our initial experiments on thick limiters were performed in ZnSe using 30 ps (FWHM) pulses of 532 nm 
wavelength light obtained from a frequency-doubled mode-locked and Q-switched N±YAG laser with a 

m single pulse switched out.  The experimental arrangement is depicted in Figure 2. 

The second lens was used to refocus the transmitted beam through a pinhole, such that the low-energy 
I pinhole transmittance was approximately 90 percent. The energy transmitted through the pinhole was 

measured on a large-area Si photodiode placed immediately behind the pinhole. The input energy and 
pulsewidth were simultaneously monitored for each pulse. [10] The incident energy was continuously 
variable without beam distortion or deviation by using a half-wave plate and polanzer.    As the laser 

I repetition rate was 0.5 Hz, the experiments were effectively single shot. The total energy transmittance 
could be measured by removing the pinhole, thus showing the contribution of nonlinear absorption to the 
limiting   At high input levels, this was found to be less significant than the fluence limiting caused by sell- 

■ defocusing.   the device showed a linear transmittance for input energies much less than the limiting energy 
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(ET) and a constant transmitted fluence for input energies much greater than (EL). EL is defined as the 
input energy at which the transmittance falls to one half of the low-energy transmittance. It should be 
noted that EL was not particularly sensitive to the choice or position either of the pinhole or of the 
refocusing lens. We note that the aperture is used only as a convenient means for monitoring the on axis 
fluence. 

  Low Irradiance 

 High Irradiance 

\ = 532nm 
TL = 30ps 

Fig. 2.       Configuration for a Self-Protecting Optical Limiter. 

The limiting energy and the damage energy, ED, were measured for various distances AZ between the 
sample front surface and the beam waist. This was done for two sample thicknesses L (L = 10 and 3 mm) 
and two focusing lenses (f - 37 and 75 mm, producing measured focused spot radii in air of 8 and 14 /im 
half-width 1/e2 maximum, respectively). Figure 3(a) shows the limiting energy as a function of AZ for 
both samples with the f = 37 mm lens. A minimum limiting energy of 14 nJ was observed for the 10-mm 
sample, and 32 nJ for the 3-mm sample. The limiting energies when focused on the rear surface are 
similar' for both samples. The data for the f = 75 mm lens showed a similar response but with limiting 
energies between 3 and 5 times greater. For each position AZ, the device transmittance was measured for 
increasing energy until the front surface was damaged. 

It is useful to define the dynamic range (DR) of the limiter as the ratio of ED to EL. Single-shot damage 
occurred at a wide range of fluences attributed to variations in surface quality, as the general condition of 
the surfaces was poor. Assuming that a well prepared surface would give a constant damage fluence (or 
irradiance), we can show the variation of the DR with AZ by using the fact that ED is directly proportional 
to the beam area on the front surface of the sample. In Figure 3(b) we show this version of the dynamic 
range plotted versus AZ for the 10-mm-thick sample and 37-mm focal-length lens. This shows that the 
optimum condition for a large DR is when the focus is as far into the sample as possible (i.e., in this case 
on the rear face of the sample). Using a previously measured damage threshold, we estimate that with 
carefully prepared surfaces the maximum dynamic range would be >10<. The dynamic range was also 
measured for the 3-mm-thick sample with the same lens and the 10-mm-thick sample with a 75-mm focal- 
length lens. The behavior was similar for all configurations. However, the absolute value of the DR was 
found to be strongly dependent on the configuration. The 3-mm sample gave a maximum DR that was a 
factor of 20 smaller than for the 10-mm sample with the same lens. The /-number used is an even more 
important factor in determining the DR. The maximum DR for the 10-mm sample with a 75-mm focusing 
lens was almost 102 smaller than for the 37-mm lens with the same sample. 

These results allowed us to conclude that tight focusing and longer sample lengths are clearly advantageous 
in a low-energy, large-dynamic-range limiter. On the basis of this, we have designed and constructed a 
monolithic optical power limiter (MONOPOL). This device was fabricated from a single piece of 
semiconductor with spherically polished ends, so that a collimated input beam focuses inside the medium 
and is recollimated on leaving it for low input. In choosing this design, we have optimized the dynamic 
range of the device for the given /-number, in that the front surface is as far from the beam waist as is 
possible. 
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Fig. 3(a). Plot of limiting energy versus position of beam waist relative to the front surface 
of the sample AZ. (b) Dynamic range, plotted as w2/EL, where w is the spot size 
on the front surface of the sample. The true dynamic range (ED /EL) is 
approximately 1.3 times this number. 

The MONOPOL was fabricated from chemical-vapor-deposition-grown polycrystalline ZnSe. The ZnSe 
device had a length of 32 mm and diameter of 12 mm. The performance was determined by placing it in 
the path of the beam. A further 100-mm focal-length lens was placed at the output of the limiter to focus 
the output onto a pinhole detector arrangement as in the previous experiments. In this case, the low-energy 
(1-nJ) pinhole transmittance was =;65 percent. Thus we are monitoring primarily the-output fluence. The 
limiting input energy, EL, is 10 nJ, which is within a factor of 2 of the predicted scaling. We have 
calculated the DR of the ZnSe MONOPOL to be ^5 x 10s, using a conservative estimate for the surface- 
damage threshold of ~10 GW/cm2. The device was not tested to destruction, but it was successfully tested 
up to input energies of 100 /J, so that a minimum DR of >104 may be confidently stated for 20-psec 
pulses.   From the input energy where the input-output curve first becomes horizontal, up to the maximum 
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tested energy, the transmitted on-axis fluence changed by only a factor of 3. This corresponds to an 
average slope dET /dE^ ~ 3 x 10-4. The maximum energy transmitted was 3 nJ, while the low energy 
transmittance was 10 percent. 

4. SPATIAL AND TEMPORAL RESPONSE 

The spatial distribution of the transmitted fluence was measured for a number of different input energies 
using a vidicon. The vidicon was placed =2.8m behind the ZnSe device (toward the far field) we see the 
fluence-limiting characteristics of Figure. 4(b). Here the temporally integrated spatial energy distribution is 
shown as a function of position for input energies from 13 nJ to 61 /d. For the data shown, no filters were 
changed in front of the vidicon. As the input energy is increased, the energy simply gets spread out in 
space, limiting the fluence and thus protecting the sensitive vidicon photocathode. If we look just at the 
on-axis portion of this light through a 0.4 mm aperture, we get the input-output characteristics shown in 
Figure 4 (a). 
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Fig. 4. (a) Input-output characteristic for the ZnSe MONOPOL (note change of scale). 
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in the center, (b) Transmitted fluence at 2.8m behind the ZnSe monolithic 
limiter as detected by a vidicon as a function of position at various input 
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Sending the pulse through the limiter onto the entrance slit of a 2-psec-resolution streak camera allows us to 
look at the spatial and temporal energy distribution simulatenously on the vidicon screen. What we see at 
low inputs, shown in Figure 5 (a), is the Gaussian spatial distribution and a nearly Gaussian distribution in 
time. At higher input, Figure 5(b), as the pulse develops, the energy spreads out in space into two wings. 
This is clearly advantageous from the standpoint of protecting optical components. 

5.      SCALING RULES 

The effect of nonlinear beam distortion inside the nonlinear medium itself makes a detailed theoretical 
analysis of self-protecting thick limiters difficult. No analytical solution of the nonlinear wave equation is 
known for this problem, and a numerical solution is extremely complicated. For these reasons, we have 
made some relatively simple approximations which allow us to predict how thick limiters will behave for 
longer pulsewidths, how will they work at other wavelengths, and how well other direct-gap semiconductors 
with smaller bandgaps will work as limiters in  the infrared. 

. i    « <■ r*c 



In what follows, we assume that at the limiting threshold, the beam is not strongly distorted by nonlinear 
effects and that the beam is therefore still essentially a Gaussian in the region of the focus. The limiting 
in the far field is thus caused by only a nonlinear phase distortion A^, in this focal region. We assume that 
at the limiting threshold, the nonlinearly induced phase change AnL caused by a refractive index change An 
is A* si 2*. Since A* = Ir An L^ /A, this gives AnL a X/L^. Now for a thick limiter, the effective 
interaction length, L^, is that length over which the beam remains intense. Thus, Lrff oc z0, where z0 is 
the confocal beam parameter, *w0»/A, where w0 is the 1/e» beam radius at the beam waist, this leads to 
AnL a \*/w0*. 

Fig. 5. (a) Spatial energy distribution at 2.8m behind the ZnSe monolithic limiter at 
various times as detected by a streak-camera-vidicon system for an input energy 
of 5.6 nJ.  (b)  Same as (a) for an input energy of 8.1 /xJ. 

The refractive index change, An, is in proportion to the number of photo-generated carriers, N. This has 
been shown to be true [3] at least in the case of low to moderate carrier densities, which is" appropriate for 
the modelling of the onset of limiting. We have used two models for this nonlinear refraction, the "plasma 
generation" model of Auston et al. [11] and a slightly more sophisticated band filling or "Moss-Burstein 
shift" first proposed by Moss [12] and later developed by Miller et al [3]. Both give remarkably similar 
results so we shall concentrate on Auston's model for the purpose of demonstration.  This yields 

An a    N 
(Äw)2        1 -(ftw/Eg)2 (1) 

where E   is the semiconductor energy gap, and material independent and frequency independent constants 
have been incorporated into the constant of proportionality for simplicity.  The carrier density is given by 

N(t)    = A. 
2ft« 

,-t 

exp(-t/7-R) 
-oo 

P(f) exp(f AR) dt'     =    ^ G(I,rR) (2) 

where we have used G(I,rR) to represent a (frequency independent) carrier generation function, rR is the 
carrier recombination time and ß2 is the two photon absorption coefficient, ß2 oc F2(2ft«/Eg)/Eg and F2(x) 
= (x-l)3/2/xE.   These two-photon absorption relationships have previously been experimentally verified. [2] 
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Combining the above relations gives: 

x    E,    (2ftw/Ee-l)
3/2 

An(t) « G(I,rR) ^     i-(*w/Eg)2 (3) 

This is shown as a function of photon energy for the semiconductor ZnSe (Eg = 2.67 eV) in Figure 6 below. 
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Nonlinear refraction by two-photon excited carriers, calculated by Auston model 
(dotted line) and by Moss-Burstein shift (solid line). 

Remarkably, this somewhat complicated function gives an extremely flat response in the region of 2PA (Bg 
< 2hoj < 2E ). This is as expected, since above the two-photon resonance the efficiency of 2PA starts to 
decrease, while the excited carrier refractive index increases with frequency. The result is a flat response 
and An varies by less than ±25% in the range 0.57 < (Äw/Eg) < 0.94, corresponding to 500 < A < 810 nm for 
ZnSe. For shorter wavelengths, An becomes very large as the bandgap resonance is approached, but here 
the linear absorption is also large, so that there is no application for power limiting in that wavelength 
region. 

We may use the above result to simplify our scaling to other semiconductor/wavelength combinations. If 
we make the reasonable assumption that the limiter will be operated in the "flat" region defined above, then 
we can remove all terms in (Äw/Eg) from the formula for An given in equation 3.  Thus, 

An(t) a G (I, rR) 
(ÄW)7 

a G (I, rR) E. -7 (4) 

since we always choose a suitable semiconductor bandgap for the particular optical al frequency, w, and within 
(I,rR) a Ee   A2/w0

2, where 
-l 

the operating range fiw/Eg acts as a constant.   Now AnL a A2/w0
2 so that GL (I,rR 

GL is the value of the carrier generation function at limiting. However, A a (fiw)-1 a Eg"i in our case, 
giving, GL oc E_6 w„"2. The calculation of the carrier generation function is simplified in two limits, (i) 

» r„ . where r„ is the pulsewidth, i.e., the short pulse limit, and (ii) rR « rP, the long pulse limit.  For 
the short pulse limit, we can ignore recombination, and GL (t^oo) a IL   rp, where IL is the peak limiting 
irradiance which can now be given by 

IT. oc 
(Eg)*/2 

w<y^ 
(5a) 
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and thus, the limiting energy is determined by 

EL a (Ef)«/» w0V^". (5b) 

Note that for longer pulses, carrier generation is more efficient and IL decreases, however, EL increases as 
the square root of the pulsewidth. In the long pulse limit, the performance is expected to be degraded by 
the effects of carrier recombination. In this case, G(t) « I*(t)rR, so that the peak limiting irradiance and 
energy are 

IL « &£* «W 
wftVr7 'o1 

and 

EL ec (£,)•/* w0 i- . (6b) 
V^R 

Note that performance is reduced from the short pulse limit by a factor of (rp AR)
1
/*. Otherwise, the 

scaling is identical. 

Clearly then, narrow-gap semiconductor limiters should work in the infrared much better than the ZnSe 
visible limiter we tested. There is, however, one further restriction in that the focused spot size for any 
given /-number optics is proportional to A, i.e., w0 a Eg"a. Thus, in the case of diffraction-limited 
focusing we have 

EL oc (Eg)3A Vrp (short pulse limit) , (?) 

and 

EL a (E.)3/2 -^E- (long pulse limit) . (8) 
V^TR- 

6.        COMPARISON OF SCALING RULES WITH NANOSECOND AND INFRARED DATA 

In addition to ZnSe with 532 nm picosecond pulses, a number of other limiting experiments have been 
performed. In this section, we will compare our results of limiting in ZnSe with longer pulses, and with 
other materials at appropriately longer wavelengths. 

First the ZnS monolithic limiter was tested using 532 nm picosecond pulses. Applying equation (4), our 
scaling rules indicate that the limiting energy should be a factor of [Eg (ZnS)/Eg (ZnSe)]7 larger than E^ for 
ZnSe as in this case the wavelengths are the same. This gives a factor of 9-1, indicating an EL of 91 nJ. 
In fact, the measured limiting energy for the ZnS monolithic limiter was 120 nJ, in reasonable agreement 
with the calculation. 

Limiting experiments were also performed in a 10mm thick sample of ZnSe with nanosecond pulses of 532 
nm light.   The limiting energy is shown in Figure 7 as a function of position of the beam waist along z. 
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Comparing with the psec results when the waist is in the middle of the sample^ve see that the nanosecond 
puTes prepuce a limiüng energy of 2 /J, as opposed to 40 nJ for psec pulses. The appropmte^onfe 
thToicosecond data is (5b), whereas for the nanosecond data the long pulse approximation,equation (6b) is 
tlreZ^l Substituting for rpi w0 in each of these equations, and assuming a 1 ns >»«*>^£ 
time we estimate EL (nsec) =, 40EL

P (psec) «1.6 /J, again in good agreement. We estimate the 1 nsec 
recombination time from our degenerate four wave mixing experiment. 

! 
2       4 

AZ(mm) I 
12 

Focus on 
From Surface 

Focus on 
Rear Surface 

Fig. 7. Limiting energy as a function of waist position inside a  10mm thick ZnSe 
polycrystalline sample.   X = 532 nm, rp = 20 ns (FWHM) and w0 = 3.2 /mi. 

Limiting at 1 06 /mi with picosecond pulses was also observed in CdTe (see Figure 8) .   This sample was 
3mm thick  so we compare our data with the data obtained in thick ZnSe.   To make this comparison, we 
apply equation (5b) as the short pulse limit is valid for both cases.   Accounting for the different spot sizes 
pulsewidths and energy gaps, the predicted limiting energy in CdTe is 27 nJ, whereas we measured EL « 35 
nJ, again in very close agreement. 
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Fig. 8. Limiting curves for CdTe with 45 ps (FWHM) pulses of 1.06 /xm light and a spot 
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In Figure 9 we show limiting curves for InSb with 10.6 pm wavelength light from a C02 laser. This 
experiment involved a rather different experimental configuration than the previous data. The spot size was 
^rS Te sample length was 1mm, so that the limiter was not ^^^'^f^!* 
energy using an aperture in the beam to detect on axis fluence, was 4 /J with a 70 ns (HWl/eM) 
puSdSt It was decided to compare this with the nanosecond ZnSe data, as toft.results are in fte same 
long pulse limit and equation (6b) applies to both cases. However, scaling was difficult to do in tms case, 
^r^waTnoTthick, and tkere were difficulties in predicting the recombination time which is 
almost certainly carrier-density dependent. Using a best-guess of «5 ns for the recombmatiori time and 
L/Lrf, » 4 we obtain a scaled EL of 0.6 jd. considerably smaller than the 4 ,d observed. Although this 
mutt is probably good to within one order of magnitude, the uncertainties make the -sealing unreliable in 
this case. It is worft noting that we are extrapolating both the 2PA coefficient and the nonlinear refracüon 
over three orders of magnitude, while assuming that there is no excited state absorption, to obtain this 

result 
0 ■ iperturt 100% open 
+ • aperture  40* open 

,00000 ooOoooOoV cP0* 

++++. h+++++
++++++++ 

+ ++-k^-++++f 

Fig. 9. 

Input Energy (uJ) 

Input-Output curves for 1mm thick InSb at room temperature, with 10.6 pin 
radiation. 

7.    CONCLUSION 

We have built and characterized'limiters for the visible which exhibit very low limiting energies. Limiting 
ernte (poweS v low as 10 nJ (300 Watts) for picosecond pulses and 2 p3 (80 Watts) for nanosecond 
PS haS measured We have shown how theory predicts that these limiters should *.very bn»d 
band, and should work better (i.e. lower threshold) using narrow gap semiconductors in the «^««d. We 
have developed simple scaling rules to predict performance at longer wavelengths in appropriate narrow gap 
semiconductors, and for longer pulses.  Initial experiments have verified these scaling rules. 
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ABSTRACT 

We have characterized the nonlinearities observed in suspensions of carbon black particles in liquids (CBS). 
We have developed a preliminary explanation of the optical limiting characteristic of the CBS that 
qualitatively explains the low thresholds, broad-band response and other limiting characteristics. In this 
model, the microscopic carbon particles are heated by linear absorption to a temperature at which a plasma 
can be created by the optical field. These microplasmas rapidly expand, thus scattering the incident light 
and limiting the transmittance. This model is consistent with our observations that nonlinear scattering 
dominates transmission losses. We find that limiting depends on the input fluence (J/cm2) rather than 
irradiance (W/cm2). Therefore, limiting works well (i.e., low limiting energy) for long pulses (> 10 nsec) 
but is less effective for short pulses (^ psec). In addition, the CBS rapidly degrades with repetitive laser 
firings, thus, flowing or moving the liquid between firings is necessary. 

1.   INTRODUCTION 

Recently there has been a growing interest in the use of microparticle suspensions as nonlinear media. Most 
of the reported literature on microparticle suspensions, artificial Kerr medium and micro-emulsions which 
are formed from nonabsorbing microparticles, is on nonlinear refraction.[ 1,2,3] Here, we demonstrate and 
review the dynamics of limiting in a suspension of absorbing microparticles that exhibit primarily nonlinear 
scattering and nonlinear absorption. The absorbing microparticles of interest are carbon black particles 
which are ~ 35 nm in diameter with agglomerates up to 500 nm in diameter. We demonstrate an optical 
limiting threshold as low as 80 watts peak power for 0.532 ^m and 160 Watts for 1.06 /xm using pulses of 
14 nsec and 20 nsec (FWHM), respectively. 

Limiting is effective for five orders of magnitude above the threshold value. This large dynamic range is 
defined by the eventual damage of the glass cell containing the CBS. Because of the structure of these 
dispersions, different mechanisms including nonlinear absorption, nonlinear refraction (self-focusing, self- 
defocusing), nonlinear scattering and combinations of these mechanisms could be the source of the optical 
nonlinearity leading to such a low optical limiting threshold. In order to investigate the relative 
contributions of these mechanisms we perform a series of experiments. We first perform optical limiting 
experiments in the CBS at 0.532 /mi and 1.06 fan for nanosecond pulses. We present transmission 
measurements which directly show the fluence dependence of limiting in CBS. We also perform a 
measurement that monitors the absorptance, transmittance and fraction of side scattered light simultaneously. 
In essence, as will be demonstrated, we are performing a laser-induced-damage experiment on a material 
with an extremely low damage threshold. This leads us to discuss and show the repetition rate dependence 
of the CBS. We then examine the contribution of nonlinear refraction to limiting in CBS. At the end we 
present a simple model that qualitatively explains all of our experimental results. 

2.   OPTICAL LIMITING 

Passive optical limiting utilizing nonlinearities in a variety of materials including gases, liquids, 
semiconductors and liquid crystals has been demonstrated.[4,5,6,7]   However, in any of these materials, all 
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of the criteria needed for a good optical limiter have not been satisfied. These criteria are high 
transmittance for low inputs, broad-band frequency response, fast switching time (ns or shorter), and low 
input requirements for the onset of switching. The device should also be resistant to optical damage (i.e., 
self-protecting). Here we show that a suspension of carbon black particles (CBS) meet the above criteria. 
We also present a model which qualitatively explains all the data taken on CBS. 

The optical geometry often used as a screening test, as it is sensitive to both nonlinear absorption and 
nonlinear refraction, is shown in Figure 1. We used this arrangement with pulses from an NdYAG laser 
operated in the TEM^, mode of 14 ns (FWHM) duration at 0.532 /mi and 20 ns at 1.064 /mi. These pulses 
were focused by either a 40mm (532nm) or 50mm (1064nm) "best form" lens, shown as Lr This results in 
calculated beam radii of 3.5 /mi at a wavelength of 532 nm and 7 /mi at 1064 nm inside the 1 cm cuvette. 
The spot radii quoted in this paper are half-widths at the 1/e2 maximum in irradiance. The transmitted 
pulse was then collected by a 102 mm focal length "best form" lens L2 placed behind the sample. The laser 
beam then passed through a 400 pm aperture placed in front of a silicon photodiode. This system had an 
overall low input transmittance of 70 percent for both wavelengths. 

Using this optical geometry we have looked at optical limiting in various concentrations of CBS and a 
known standard sample CS2 which has been previously used as an optical limiting material [5]. Optical 
limiting in CS is primarily due to molecular reorientation of the molecules athough a small contribution 
from electrostriction may be present for nanosecond pulses and tight focusing geometries. The optical 
limiting of CBS and CS2 in a 1 cm thick cuvette is shown in Figure 2, for nanosecond laser pulses at 0.532 
/im. In order to resolve the onset of limiting, the measurement was performed for lower input powers as 
shown in Figure 3. The CBS begins clamping the transmitted fluence above approximately 80 watts input 
power and continues clamping for ^5 orders of magnitude of increased input power. The limiting of the 
CBS at 1.064 mm is shown in Figure 4 and Figure 5. As is shown, the onset of limiting for 1.064 /xm laser 
pulses is approximately 160 watts. 

The onset of limiting occurs approximately two orders of magnitude before that of CS2 for ns pulses. 
However, for 0.532 /an laser pulses with a pulse duration of 30 ps (FWHM), the CS2 limiting occurs for 
input powers lower than that of CBS. This is shown in Figure 6. The laser used is a passively mode- 
locked NdiYAG laser with a single pulse switched out. The CBS limits the input light for ps laser pulses at 
a peak power in excess of 30 kw at 0.532 /an as shown in Figure 7. The limiting energy of 1.1 /J obtained 
with picosecond pulses is approximately the same as the 1.2 /J limiting energy for nanosecond pulses using 
the same focusing geometry. It has been demonstrated earlier that the optical limiting for picosecond laser 
pulses in CS2 is due to molecular reorientation (Kerr effect) and is a power dependent phenomenon. 
However, as we see here and will further demonstrate, the limiting in CBS is fluence dependent, ie. the 
onset of'limiting for both nanosecond and picosecond measurements occurs approximately at the same 
fluence. 

The observed optical limiting using the geometry shown in Figure 1, could be due to several mechanisms 
including nonlinear absorption, nonlinear refraction and nonlinear scattering. Below we describe a series of 
experiments performed to determine the dominant nonlinearity. 

3.   NONLINEAR TRANSMITTANCE MEASUREMENT 

We have studied the fluence dependence of the transmittance of CBS at 0.532 /tm and 1.064 /mi. The 
optical goemetry used is shown in Figure 8. Both a one meter and 50 centimeter "best form" lens were used 
to focus the nsec pulsed input beams at the two wavelengths. This resulted in spot sizes of 158 /an and 460 
/an for 1.064 /mi, and 108 /mi and 254 /im for 0.532 /an. The transmitted signal was collected by a large 
area uniform response Si photodiode located very close to the cell. The diameter of the detector is 1 
centimeter and the beam radius at the detector is approximately 1mm in diameter. The difference between 
this geometry and the optical limiting geometry of Figure 1 is that we are not using tight focusing and the 
aperture has been removed so that this experiment is insensitive to nonlinear refraction.   The results of the 
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Figure 3. Plot of onset of limiting of CS, 
(circles) and CBS (squares) as a function of 
input power for 14 ns (FWHM), 0.53 m 
pulses. 
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Figure 5.   Plot of on set of limiting of CS 
(circles) and CBS (squares) as a function of 
input power for 20 ns (FWHM), 1.06 fim 
pulses. 
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transmittance measurements are plotted as a function of incident fluence and incident power in Figures 9 
?H7S 12 ^IZ 7m and 1.064 ,xm laser pulses. For incident fluences above 200 mj/cm for 0 532 
Im and^50 mi/m» for L06 pm, the transmission becomes increasingly nonlinear and is essentially identical 
to Si to Sü at a given wavelength as shown in Figures 9 and 11, respectively. However the onset 
of a^chanT^^LmittLce appears at two different incident power levels for these beam radii as shown 
1 JigS'Z^SZn. T1* again clearly indicates that the nonlinear transmittance observed is fluence 

dependent. 

4.   MEASUREMENT OF TRANSMITTANCE. SCATTERING AND ABSORBTANCE 

•In order to understand the nature of this fluence dependent nonlinear transmittance we have set up an 
SrSenY which enables us to monitor for a single pulse , the absorptance and the fraction of side 
s23TlhtZvtoneously with the transmittance measurement. This simultaneous measurement was 
SSd^T^witcLd Nd:YAG laser. The laser light was focused by a 1 meter focal length »best 
WtoM L into a one centimeter cuvette cell. (See Figure 13) The transmitted light was monitored as 
uZJSS described. The absorption of the incident light was directlv monitored by a sensitive 
p eSSric"SSL* which was placed in contact with the bottom of ehe cuvette with silicone greasy 
PhXaSustic measurements have been used to directly detect very small changes in abwjjoatf] The 
side scattered light was collected by a two-inch diameter, 98 mm focal length lens and detected by a Si 
photodiode.  The optical geometry for this measurement is shown in Figure 13. 

The results of the simultaneous measurement of absorptance, transmittance, and the fraction of side 
scattered light (side scattering light divided by incident light) are plotted as a function of incident fluence 
to 0 532 Mm and 1.064 ^m laser pulses in Figure 14 and Figure 15, respectively For very low mpu 
fluences the CBS is linear and there is no change in the three quantities monitored. However, for input 
fluence dose to 200 mj/cm* for 0.532 Mm light and 360 mj/cm* for 1.064 Mm light, the transmittance 
S to d° reL nonlinearly as is shown by squares in Figures 12 and 14 The ^™£"»™~ 
nonlinearly for incident fluence close to this threshold value (i.e onset of change of transm «ance) and 
levels off at higher values even for input fluences two orders of magnitude above threshold. The 
scattered fraction increases nonlinearly as the transmittance decreases as shown by circles in Figures 14 and 
15 This trend continues for two orders of magnitude above threshold. From these results we see that 
blocking of the light by the CBS above threshold is primarily due to nonlinear scattering. 

5.   NONLINEAR SCATTERING 

The blocking of the transmission of incident light by scattering can readily be photographed as shown in 
Figure 16 These pictures were taken by looking at the side window of the cuvette perpendicular to the 
direction of incident light. For low input fluences, top picture, the bright region in the photograph 
reprints tiie input pulse which is linearly scattered (Mie scattering) by carbon black particles. However, 
to SntflSces above.200 mj/cm>, the light is nonlinearly scattered to the sides and thus blocks the 
incident light from being transmitted.  This is shown m the lower picture. 

The dynamics of the transmittance loss is studied by time resolved transmission measurements conducted 
Sng naTsecond pulses. The geometry used is shown in Figure 17. Here by delaying thegutted 
oulse with respect to the input pulse we are able to monitor both the incident and transmitted pulses. 1 his 
I showTin Hgure 5 for beiow and above threshold. Graph A shows the transmitted signal below 
tLeS. For an incident fluence above 200 mj/cm', there is a sharp cut off in the transmitted puhe» 
shown in Figure 18, Graph B. Note that the input pulse was attenuated by a factor of 10 using neutral 
density filtert. The transmitted laser pulse is most strongly attenuated during the later Pf^"e.P^ 
thus, the pulse appears advanced in time because if no attenuation had occurred the peak wou d have 
extended far off scale. This experiment again suggests that the attenuation of the laser beam is produced 
by a laser-induced-breakdown plasma. 
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Under this assumption, the attenuation is dominated by scattering losses of the laser light by the plasma as 
seen in Figures 14 and 15. Thus, we are performing a laser-induced-damage experiment, and we have 
prepared a material with an extremely low damage threshold. This is consistent with having high linear 
absorption by the very small carbon particles (^35 nm), and is also consistent with the disappearance of the 
nonlinearities after repeated laser irradiation as discussed in the next section. 

6.   REPETITION RATE DEPENDENCE 

Recently, we reported the repetition rate dependence of the CBS.[9] In that report we indicated that the 
onset of the limiting threshold for 1 and 10 Hz repetition rate laser pulses is considerably different and is 
higher for the 10 Hz repetition rate. This repetition rate dependence was removed by flowing the material 
at such a rate that virgin material was exposed to each laser pulse. 

This bleaching or reduction of limiting of the laser light in the nonflowing liquid after repeated irradiation 
on the same region of the sample can be observed by monitoring the transmitted signal and scattered signal 
at a fixed fluence above-the single shot threshold for limiting. Using the geometry shown in Figure 13 and 
setting the incident fluence at 350 mj/cm2 for 0.532 /im laser pulses and a 1 Hz repetition rate, we can 
observe that the transmitted signal increases as the number of the incident pulses irradiating the sample 
increases. Note that using a tight focusing geometry and a 1 Hz repetition rate that we do not see these 
cumulative effects. The transmittance levels off to a value that is less than the linear transmittance of the 
solvent as shown in Figure 19. The scattered signal reduces and levels off after repeated laser firings. This 
is shown as circles in Figure 19. For flowing liquid, stirred liquid or a long elapse time between the laser 
pulses irradiating the liquid, we have observed that the transmitted signal and scattered signal remain fixed 
as shown in Figure 20. The maximum limiting capability is for the first laser firing and recovery of the 
irradiated region of the sample is due to convection in the liquid at room temperature which for the spot 
size used is a slow process in comparison with the repetition rate of 1 Hz. We also observed that this 
recovery time is proportional to the radius of the laser beam in the cell, consistent with convection. 

The bleaching of CBS also can be monitored as shown in Figure 21 where we have used a very large spot 
size of more than 254 /xm. Here, we have used a HeNe laser beam expanded to illuminate the region close 
to the front surface of the cell. The scattering of the HeNe beam by the suspended microparticples is 
readily observable. We irradiated the CBS using an incident fluence of 350 mj/cm2 and photographed the 
scattered light after 10 seconds. This is shown in Figure 22a. The dark spot appearing in the middle of the 
bright screen is the irradiated region showing that the scattering centers have been "removed" by the laser 
pulse. Figure 21b shows how this excited volume is slowly replaced by fresh CBS after two minutes due to 
convection. The conjecture is that the microparticles have been considerably reduced in size or "atomized" 
so that they no longer efficiently scatter the HeNe light. 

7. NONLINEAR REFRACTION 

In order to investigate contributions of phase distortion due to a thermooptic effect, electrostriction, or other 
nonlinear refractive mechanism, we monitored the far field profile of the transmitted beam using a vidicon 
tube with an optical multichannel analyzer. For incident fluences below threshold and up to an order of 
magnitude higher than threshold, we have not observed any broadening of the spatial profile of the 
transmitted beam. Therefore, the change in index of refraction of the CBS is very small and the phase 
distortion due to this index change is less than 0.2 A which is the sensitivity of our detection system. From 
this measurement we conclude that the contribution of nonlinear refraction is small in comparison with the 
nonlinear scattering observed. In order to further validate this point we removed the aperture in the 
original limiting geometry shown in Figure 1 and observed no change in limiting threshold. 

8.   MODEL 

It appears from our experimental results that the dominant mechanism in the CBS is nonlinear scattering. 
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The natare of this nonltaear scattering is consistent with the formation of rnicropto™as * j^fJ^" 

^e^tt^CeiciL ^Za^^L*T^r^X 
few thousand *W«0*'» s^rs^S porüLTthe laser light and blocks the transmission. This 
SKIÄS** oÄnceTthe „onlinearities after repeat«, laser U, as tire carbon 

particles will have undergone vaporization. 

9.   CONCLUSION 

We have characterized the nonlinearities observed in a suspension of carbon black particles (CBS) in liquids 
We have Sid a qualitative model based on laser-induced breakdown to explain the low limiting 
AreshoW of Ae CBS From our results, we conclude that nonlinear scattering due to rapidly expanding 
mt^asmL* the dominate mechanism leading to limiting. The broad-band nature of the nonlmearity is 
pSiyX to Ae fS that carbon is black and heavily absorbing over a broad range of frequencies. We 
have demonstrated this limiting at 1 and 0.5 /mi. 
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OPTICAL BREAKDOWN IN PARTICLE SUSPENSION 
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We have characterized the nonlinearitics observed in suspensions of carbon black particles in liquids (CBS). We 
have developed a preliminary explanation of the optical limiting characteristic of the CDS that qualitatively explains the 
low limiting thresholds. We have found that the limiting depends primarily on the input optical fluence (J/cm2) rather 
than irradiance (W/cm2). We have monitored transmission, side scattered light, and the photoacoustic response of the 
CBS simultaneously. The nonlinear scattered light appears to be the dominant nonlincarity. Additionally, we have 
observed that the nonlinearitics disappear after repeated laser firings. Thus, in essense, we are performing a laser 
induced damage experiment, and we have prepared a material with a low damage threshold. These data have led us to 
the following model. The carbon first linearly absorbs the input light efficiently. The carbon is rapidly heated, 
vaporizes and ionizes to form a rapidly expanding microplasma. This plasma absorbs and scatters subsequent light, thus 
limiting the transmittance. 

Key words:    carbon  black suspension;  nonlinear absorption;  nonlinear scattering;  nonlinear transmission; nsec pulses; 
optical limiting; pscc pulses; .33 /im, 1.06 /tin. 

1. INTRODUCTION 

Recently there has been a growing interest in the use of microparticle suspensions as nonlinear media. Here, we 
demonstrate and review the dynamics of limiting in a suspension of absorbing microparticles that exhibit primarily 
nonlinear scattering and nonlinear absorption. The absorbing microparticles of interest are carbon black particles which 
are = 35 nm in diameter with agglomerates up to 500 nm in diameter. We demonstrate an optical limiting threshold as 
low as 80 watts peak power for 0.532 jiin and 160 Watts for 1.06 /im using pulses of 14 nsec and 20 nsec (FWI1M), 
respectively. 

Because of the structure of these dispersions, different mechanisms including nonlinear absorption, nonlinear 
refraction (self-focusing, scll'-defocusing), nonlinear scattering and combinations of these mechanisms could be the 
source of the optical nonlincarity leading to such a low optical limiting threshold.!I] In order to investigate the relative 
contributions of these mechanisms we perform a series of experiments. We first perform optical limiting experiments 
in the CBS and in the carbon black particles which are deposited on the surface of a glass substrate at 0.532 urn and 
1.06 mil for-nanosecond pulses. We present transmission measurements which directly show the fluence dependence of 
limiting in CBS. We also perform a mcasuicmcnt that monitors the absorptancc, transmittance and fraction of side 
scattered light simultaneously. As will be demonstrated, we ate performing a laser-induced-damage experiment on a 
material with an extremely low damage threshold. This leads us to discuss and show the repetition rate dependence of 
the CBS, and caibon black particles deposited on the glass substrate. 

2. OPTICAL LIMITING 

The optical geometry often used as a screening test, as it is sensitive to both nonlinear absorption and nonlinear 
refraction, is shown in Figure 1.(1] We used this arrangement with pulses from an Nd:YAG laser operated in the 
TCM00 mode of 14 ns (FWIIM) duration at 0.532 ;im and 20 ns at 1.064 urn. These pulses were focused by either a 
40mm (.532iim) or 50mm (1.064/im) "best form- lens, shown as I.,. This results in calculated beam radii of 3.5 /im at a 
wavelength of .532 urn and 7 ;mi at 1.064 /mi inside the I cm cuvette. The spot radii quoted in this paper are half- 
widths at the l/e2 maximum in irradiance. The transmitted pulse was then collected by a 102 mm focal length "best 
form" lens L, placed behind the sample. The laser beam then passed through a 400 urn aperture placed in front of a 
silicon photodiodc.   This system had an overall low input transmittance of 70 percent for both wavelengths. 

Using this optical geometry we have looked at optical limiting in various concentrations of CBS and a known 
standard sample, CS,. which has been previously used as an optical limiting material [2]. Optical limiting in CS2 is 
primarily due to molecular reorientation of the  molecules alhough a small contribution from electrostriction may be 



present for nanosecond pulses and light focusing geometries. The optical limiting of CDS and CS2 in a I cm thick 
cuvette is shown in Figure 2 for nanosecond laser pulses at 0.532 pin. In order to resolve the onset of limiting, the 
measurement was performed for lower input powers as shown in Figure 3. The CDS begins clamping the transmitted 
flucnce above approximately 80 watts input power and continues clamping for =5 orders of magnitude of increased 
input power It is important to note that each laser firing irradiates "new" material as discussed in Section 5. The 
limiting of the CHS at 1.064 ,.m is shown in Figures 4 and 5. As is shown, the onset of limiting for 1.064 jim laser 
pulses is approximately 160 watts. The optical limiting in a film of carbon black particles deposited on a glass substrate 
at 1.06 (jra is shown in Figure 6. The sample was moved to a new site for each laser firing. As is shown, the onset of 

limiting for 1.064 ;im laser pulses is approximately 600 watts. 

The observed optical limiting using the geometry shown in Figure 1. could be due to several mechanisms including 
nonlinear absorption, nonlinear refraction and nonlinear scattering. Dclow we describe a series of experiments 
performed to determine the dominant nonlincarity. 

3. NONLINEAR TRANSMIITANCE MEASUREMENT 

We have studied the flucnce dependence of the transmittance of CDS at 0.532 ,im and 1.064 pm. The optical 
goemetry used is shown in Figure 7. Doth a one meter ami 50 centimeter "best form" lens were used to focus the nsec 
pulsed input beams at the two wavelengths. This resulted in measured spot sizes of 108 ;im and 254 urn for 0.532 urn 
light The transmitted signal was collected by a large area uniform response Si pholodiode located very close to the cell. 
The diameter of the detector is I centimeter and the beam radius at the detector is approximately I mm in diameter. 
The difference between this geometry and the optical limiting geometry of Figure I .s that we are not using tight 
focusing and the aperture has been removed so that this experiment is insensitive to nonlinear refraction. The results of 
the transmittance measurements are plotted as a function of incident flucnce and incident power in Figures «and 9 for 
0 532 urn For incident flucnecs above 200 mj/cm» for 0.532 ;im. the transmission becomes increasingly nonlinear and 
is essentially identical for both beam radii at a given wavelength as shown in Figure 8. However, the onset of a change 
in transmittance appears at two different incident power levels for these beam radii as shown in Figure 9. Similar 
results are observed for 1.06 /im laser pulses. We also observed that the onset of limiting for both nanosecond and 
picosecond measurements occurs approximately at the same flucnce. The experiments indicate that the nonlinear 
transmittance observed is flucnce dependent. 

4. MEASUREMENT OF TRANSMITTANCE, SCATTERING AND ADSORDTANCE 

In order to understand the nature of this flucnce dependent nonlinear transmittance, we have set up an experiment 
which enables us to monitor for a single pulse , the absorptance and the fraction of side scattered light simultaneous^ 
with the transmittance measurement. This simultaneous measurement was conducted using the Q-switched Nd:YAG 
laser The laser light was focused by a I mclcr focal length "best form' lens L, into a one centimeter cuvette cell. (See 
Figure 7) The transmitted light was monitored as previously described. The absorption of the incident light was 
directly monitored by a sensitive piezoelectric transducer which was placed in contact with the bottom of the cuvette 
with silicone Ercasc. I'hotoacuustic measurements have been used to directly detect very small changes in absorpt.on.(31 
The side scattered light was collected by a two-inch diameter, 98 mm focal length lens and detected by a Si photodiode. 
The optical geometry for this measurement is shown in Figure II. 

The results of the simultaneous measurement of absorptance, transmittance, and the fraction of side scattered light 
(side scattering light divided by incident light) are plotted as a function of incident flucnce for 1.064 pm laser pulses in 
Figure II. For very low input fluences the CDS behaves linearly and there is no change in the three quantities 
monitored. However, for input fluences close to 360 mj/cm1 for 1.064 pm light, the transmittance begins to decrease 
nonlinearly as is shown by squares in Figure II. The absorptance increases nonlincarly for incident fluence close to this 
threshold value (i.e., onset of change of transmittance) and levels off at a higher value even for input fluences two 
orders of magnitude above threshold. The scattered fraction increases nonlinearly as the transmittance decreases as 
shown by circles in Figure II. This trend continues for at least two orders of magnitude above threshold. Similar 
results observed for .532 ^m light. From these results we see that blocking of the light by the CDS above threshold is 
primarily due to nonlinear scattering. 

5.   NONLINEAR SCATTERING. 

The blocking of the incident light by scattering can readily be photographed as shown in Figure 12. These 
pictures were taken by looking at the side window of the cuvette perpendicular to the direction of the incident light. 
For low input Tlucnccs, top picture, the bright region in the photograph represents the input pulse which is linearly 
scattered (Mic scattering) by carbon black particles. However, for incident fluences above 200 mj/cm», the light is 
nonlinearly scattered to the sides and thus, blocks the incident light from being transmitted. This is shown in the lower 

picture. 

The dynamics of the transmittance loss is studied by lime resolved transmission measurements conducted using 
nanosecond pulses. Uy delaying the transmitted pulse with respect to the input pulse we are able to monitor both the 
incident and transmitted pulses shown in Figure 13. For an incident flucnce above 200 mj/cm», there is a sharp cut off 
in time of the transmitted pulse (shown in graph b).   The transmitted laser puke is most strongly attenuated during the 



later portions of ihe pulse, thus. Ihc pulse appears advanced in time.   This experiment again suggests that the attenuation 
of the laser beam is produced by a laser-induccd-brcakdown plasma. 

Under this assumption, the attenuation is dominated by scattering losses of the laser light by the plasma as seen in 
Figures II Ihus we are performing a lascr-induccd-damage experiment, and we have prepared a material with an 
extremely low damage threshold. This is consistent with having high linear absorption, and .s also consistent with the 
disappearance of the nonlincaritics after repealed laser irradiation as discussed in the next section. 

6.   REPETITION RATE DEPENDENCE 

Recently we reported the repetition rate dependence of the CnS.|4) In that report we indicated that the onset of 
the linS threshold for I and 10 Hz repetition rate laser pulses is considerably different and >s higher for the 10 Hz 
repe'ulön ntc! ^repetition rate dependence was removed by flowing the material a. such a rate «ha. »,rg.n material 

was exposed to each laser pulse. 

This bleaching or reduction of limiting of the laser light in the nonflowing liquid after repeated irradiation on the 
sameTegon of the sample can be observed by monitoring the transmitted signal and scattered signal at a fixed fluence 
above" e single   hoThre«hold for limiting.   Using the geometry shown in Figure II and se.t.ng the incident fluence a, 
wZj/cm» A0532 Jn. laser pulses and a I llz repetition rate, we can observe that the transmuted signal >n=reases 
he number o? the inddeni pulses irradiating the sample increases.   The transmittance levels off to a value «ha,s    ss 
I an the linear « an mil.ance of the solvent as shown in Figure 14.   The scattered s gnal reduces and levels off after 

oeated laser f rings     This „ shown as circles in Figure 14.    For flowing liquid, stirred liquid or a long elapse ..me 
between «he  ase   pulses irradiating «he liquid, we have observed .ha, «he «ransmiUed signal and sca.tered «gnal,remain 
fixed " shown in Figure 15.   The maximum limiting capability is for the firs, laser firing and recovery of the irradiated 

g!on o  Te sample U due ,o convec.ion in «he liquid a« room temperature which for the spot size used is a slow 
process in comparison with the repetition rate of I Hz.   Note that using a «igh, focusing geometry and a 1 H:: repeu ,on 
rate «ha! we do no« see these cumulative effects.   We observed «hat «his recovery «.me is propor«,onal to (he radius of 
«he laser beam in the cell, consistent with convection. 

The bleaching of CDS can also be monitored as shown in Figure 16 where we have used a very large spot size of 
more Than 254 ,.m Here, we have used a HeNc laser beam expanded to illuminate the region close «o the front urfac 
ofLcell The ca tering of «he HeNe beam by «he suspended micropar.icles is readily observable. We irrad.a.ed «he 
CBS us n an incdem fluence of 350 mj/cm« and photographed the scattered light after .0 seconds. This is shown in 
Figure n. The dark spo. appearing in «he middle of the bright screen is «he irradiated region showing tha the 
scattering centers have been "removed" by «he laser pulse. We find «ha« this excited volume is slowly replaced by fresh 
CBS after approximately «wo minu.es due to convection. The conjecture is «ha« «he micropar.icles have been 
considerably reduced in size or "atomized" so tha. «hey no longer efficient scatter «he HeNe Ugh«. The carbon par„c.es 
deposited on glass are blown off «he surface with repetitive firings and therefore, limiting also disappears. 

7. NONLINEAR REFRACTION 

In order to investigate conlributions of phase distortion due to a «hermooptic effect, elec.rostriction or other 
nonlinear refractive mechanism, we monitored «he far field profile of «he transmitted beam using a vidicon, tube w.th an 
optical multichannel analyzer. For incident flucnces below threshold and up to an order of magn.tude higher lhan 
rsho.d te have no, observed any broadening of «he spa.ia. profile of «he .ransmiued beam. TWore, , e change 
in index of refraction of the CBS is very small and «he phase dislorlion due to this index change is less han 0.2 A wind, 

he sen i Wi yor our detection system. Fron, this measurement we conclude tha« «he contribution of nonlinear 
efc.ion is »all n comparison with the nonlinear scattering observed. In order «o further validate this point we 

«moved .he     er.ure in ...   original limiting geometry shown in Figure 1 and observed no change in limmng .hresl.old. 

8.   MODEL 

It appears from our experimental results «ha« «he dominant mechanism in the CDS is ™ftt?r™}*^.™° 
natur of'This nonlinear scattering is consistent with «he formation of microp.asrnas ^e^«^^ 
carbon particles Therefore, the dynamics of limiting in CHS can be described by a simple model. The carbon, linear y 
absorbs'." iSden, light very efficiently. The carbon is rapidly heated to -c£ . «ousanddegrees *£%££>* 
calculation of the particle temperature a« threshold gives a few thousand agrees Celciu Ihe, cart™ hen,™z«^ 
ionizes to form a rapidly expanding microplasma which absorbs and sea. ers la.e pori.on, o,h ^YJ'^^^^^^ 
«he transmission. This model is also consistent with the disappearance of «he nonl.neari.ics afler repealed laser „rings as 
Ihe carbon panicles will have undergone vaporization. 

9.   CONCLUSION 

We have characterized the nonlinearities observed in a suspension of carbon "** ^cl«^." !?*£ r^ 
have developed a qualitative model based on laser-induced breakdown «o explain the low limiting threshold   of th s CDS. 
Rom   our   re u. s.   we  conclude   tha«  nonlinear  scattering  due   to   rapidly  expanding   m.croplasmas   is  the  domina. 
,, ec anism   e cling «o limiting.   While the evidence obtained is insufficient to give de.a.ls of «his damage process,   «he 



mechanism IcailiiiR to limiting While the evidence obtained is insufficient to give details of this damage process, the 
predictions closely match our observations. We note that the broad-band nature of the nonlinearity is primarily due to 
the fact that carbon is black, i.e., it absorbs nil wavelengths. 
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Z-SCAN- A SIMPLE AND SENSITIVE TECHNIQUE FOR NONLINEAR 
REFRACTION MEASUREMENTS 

M. Sheik-bahae, A.A. Said, T.H. Wei, Y.Y. Wu, 
D.J. Hagan, MJ. Soileau, and E.W. Van Stryland 

CREOL 
Center for Research in Electro Optics and Lasers 
University of Central Florida, Orlando, FL 32826 

ABSTRACT 
We describe a sensitive technique for measuring nonlinear refraction in a variety of materials that offers 
simplicity, sensitivity and speed. The transmittance of a sample is measured through a finite aperture in the 
lor-field 'as the sample is moved along the propagation path (z) of a focused Gaussian beam. The sign and 
magnitude of the nonlinearity is easily deduced from such a transmittance curve (Z-scan). Employing this 
technique a sensitivity of better than A/300 wavefront distortion is achieved in n2 measurements of BaF2 

using picosecond frequency doubled Nd:YAG laser pulses. 

1. INTRODUCTION 

We are currently developing a single beam method, which we refer to as a Z-scan, for measuring the sign 
and magnitude of the nonlinear refractive index n2.[l] In practice we have found that this method has a 
sensitivity comparable to interferometric methods. Here we describe this method in detail and demonstrate 
how it can be applied and analyzed for a variety of materials. We also present a simple method to minimize 
parasitic effects due to the presence of linear sample inhomogeneities. 

Previous measurements of nonlinear refraction have used a variety of techniques including nonlinear 
interferometry [2], [3], degenerate four-wave mixing [4], nearly-degenerate three-wave mixing [5], ellipse 
rotation [6], beam distortion measurements [7], [8], and our recently reported Z-scan technique. The first 
three methods, namely nonlinear interferometry and wave mixing are potentially sensitive techniques but 
require a relatively complex experimental apparatus. Beam distortion measurements, on the other hand, are 
relatively insensitive and require detailed wave propagation analysis. The Z-scan technique is based on the 
principles of spatial beam distortion but offers simplicity as well as very high sensitivity. 

We will describe this simple technique in Section II. Theoretical analyses of Z-scan measurements are given 
in Section m for a "thin" nonlinear medium. It will be shown that for many practical cases, nonlinear 
refraction and its sign can be obtained from a simple linear relationship between the observed transmittance 
changes and the induced phase distortion without the need for performing detailed calculations. In Section 
IV we present measurements of nonlinear refraction in a number of materials such as CS2, and transparent 
dielectrics at wavelengths of 532 nm, 1.06 Mm and 10.6 um. In CS2 at 10 /im, for example, both thermo- 
optical and reorientational Kerr effects were identified using nanosecond and picosecond pulses respectively. 
We also describe how effects of linear sample inhomogeneities (eg. bulk index variations) can be effectively 
removed from the experimental data. 

2. THE Z-SCAN TECHNIQUE 

Using a single Gaussian laser beam in a tight focus geometry, as depicted in Fig. 1, we measure the 
transmittance of a nonlinear medium through a finite aperture in the far field as a function of the sample 
position z measured with respect to the focal plane. The following example will qualitatively elucidate how 
such a trace (Z-scan) is related to the nonlinear refraction of the sample.   Assume, for instance, a material 
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with a negative nonlinear refractive index and a thickness smaller than the diffraction length of the focused 
Si (I X medrum) This can be regarded as a thin lens of variable focal length. Starting the scan from 
TTxtTfvzZ from the focus (negative z) the beam irradiance is low and negligible nonlinear 
refraction occurs hence, the transmittance (D2/Dx in Fig. 1) remains relatively constant. As the sample * 
broSt cioser^o focus the beam irradiance increases leading to self-lensing m the sample. A negative 
S-ferlmg prior to focus wiU tend to collimate the beam, causing a beam narrowing at the aperture which 
eLrm an mcrease in the measured transmittance. As the scan in z continues and the sample parses the 
foS plL to the right (positive z), the same self-defocusing increases the beam divergence leading to beam 
SeS a° the a^rture and, thus, a decrease in transmittance. This suggests that there is a null as the 
saTple^Les the focal plane. This is analogous to placing a thin lens at or near the focus, resulting in a 
nSal change of the far field pattern of the beam. The Z-scan is completed as the sample is moved 
a^fromTocus (positive z) such that the transmittance becomes linear since the irradiance is again low. 
m?uced Sam broadening and narrowing of this type have been previously observed and explained during 
nonhnearleSaction measurements of some semiconductors.[9],[ 10] A similar technique was also previously 
used to measure thermally induced beam distortion of chemicals in solvents.fll] 

SAMPLE   '   APERTURE 

^  
\ 

D1 

Fig.l    The Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a function of the 
sample position z. 

A pre-focal transmittance maximum (peak) followed by a post-focal transmittance minimum (valley) is, 
therefore, the Z-scan signature of a negative refractive nonlinearity. Positive nonlinear refraction following 
the same analogy, gives rise to an opposite valley-peak configuration It is an extremely useful feature tf 
the Z-scan method that the sign of the nonlinear index is immediately obvious from the data, and as we 
will show in the following section the magnitude can also be easily estimated using a simple analysis For a 
thin medium. 

In the above picture describing the Z-scan, one must bear in mind that a purely ref"ctiv%n°^n;n^^ 
considered assuming that no absorptive nonlinearities (such as multiphoton or saturation <f absorpüon) are 
present. Qualitatively, multiphoton absorption suppresses the peak and f*^^^^1^^ 
produces the opposite effect. The sensitivity to nonlinear refraction is entirely due to the apeJ™. »£ 
Removal of the aperture completely eliminates the effect. However, m this <*£**£-£* ™" ^ 
sensitive to nonlinear absorption.    Nonlinear absorption coefficients could be extracted from such   open 
aperture experiments. 
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3. THEORY 

Mnch wo* has been acne instigating to=tion of intense ^^fX:^^X^ 

SiTaZS ^"StÄ'ä ZZSStoJa* modifications of existing theories. 

7(m2/W) through: 

n = nn + -^   E     =n0 + ifl 

•    u   r        •„(« nf refraction  E is the peak electric field (cgs), and I denotes the irradiance 
where n0 is the linear index of retraction, t is uw v through the conversion formula, 

Ä;Ä-.* SÄ- «^^T^ns a TBM. Canssian 
Kof beam wait radios w0 traveling in the +z direcüon, we can wnte E as: 

,,   wo f     r2       ikr2 1 --#(*,t) 
E(z,r,t) = E0(t) ^ exp[-^i^-2RwJ 

(2) 

v • , t. w,^:„c -p^wn+T z/z2"» is the radius of curvature of the wavefront at 
where w»(z)-V(l«VV> ■? *= beaf f^L^&Vfe the ™£vector and A is the laser wavelength, 
z, z0-kwoV2 is the diffract™ ength of the S^Xt ,£ fo«and contains to temporal envelope of 
all in free space. E„(t) denotes to nutationelecteefieId» ™^ ^   variations. As we are only 

^^3^ÄÄ v^nTÄ *e sloping envelope approximation 
£JSÜ) applies, and aU other phase changes that are uiuform m r are rgnored. 

„ the samp,e length is smf enoogh that ^^^^XZ^ wTw^h'caae'to 

considerably, and to amphtode vr and phase * of to electric fieid as a fnnction of z" are now governed m 

the SVEA by a pair of simple equations: 

äM=An(I)k, (3) 

dz 

and 

where „ is to propagation depth in to sample an.lo is ^^ ^A^^^T» 
A ^ tneX Ih'ift Z rreSrrrtoe ."A « simpiy — to radia, variation 
of the incident irradiance at a given position of the sample z.  Thus, 

f    2r2 1 (5-a) 
A#z,r,t) = A^0(z,t) exp|- ^yj , 
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with 

A^0(z,t) =  1+Z2/ZQ2 • 

A$0(t), the on-axis phase shift at the focus, is defined as, 

A$0(t) = kAn0(t) ^- , 

(5-b) 

(6) 

(7) 

,   i     .u   O„H An   - -YT (t) with I (t) being the on-axis irradiance at focus (ie.z=0). 
SS l^l^^S^ An" &*£XLJt« Fresnel .flection losses. 

The complex electric field after the sample, F, now contains the nonlinear phase distortion, 

F = E(z,r,t) e-°L/2 e*^.») . 

•    • , ~„ „>,*»•« thf» far field Dattern of the beam at the aperture plane 
By virtue of Huygen's principle one can °^*%.™*™J^f6aaw a more convenient treatment 

in Eq. 7.  That is, 

oo 

eiA*(«,r,t) =    y 

m=0 

[iA^0(z,t)]m 

. e-2mr2/w2(i) (8) 
m! 

resultant electric field pattern at the aperture as: 

Ea(r,t) = E(z,r=0,t) e"aL/2 y WoWm U 
m=0 

d2 

d2 

l 
2 exp 

w2 
ikr2   , •,, (9) 

wHere d is a. proton ^ce ■»*»*££&»££ ?££%£At 2Ä 

parameters in Eq. 9 are expressed as: 

w2(z) 
w mo     2m+l ' 

Rm = d 
_S  

g2+d2/d2
r 

dm-      2 
w2

m = w2
m0 8    d2

m_ 

-1 
,   and0m 

= tan-1 [d/C 
g 
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nonlinearity and a peak-valley (p-v) ior the«jw OML ^ ^ f(jr ^ apefture pl 

T(z) do not depend on the wavelengt^J*°™% impo^nT Parameter since a large aperture reduces the 
is satisfied. The aperture size S, however *™™V°™1 V ^ where team narrowing occurs and can 
variations in T(z). This reduction B ^^"ASLs to say, for very large aperture or no 
result in a peak transmittance which cannot exceed 0-S).   Needless t      y,^ ^ ^ ^ 
aperture (S-l). the effect vanishes and T(z) - ltoall^ and       o ^ d]s^ce is found t0 be 
occur at the same distance with respect to focus  and toa cumc ^ ^ ^ ^ ^ 

nfove^w^^^^^ *« ** SeParati0n remalnS 

relatively constant given by, 

AZn.Y 1.7zn 

(12) 

♦•♦,, AT      a<5 the difference between the normalized peak and 
We can define an easily measure ^ ^      -^f«   ^^ rf ^ 
valley transmittance: Tp - Tv. The ^iaüon ° ^ ^ibit some ^fiil features. First, for a given 
various aperture sizes is illustrated in Fig. 3 These <^ ^"^ ^ ^ independent of the laser 
order of nonlinearity, they can be «"f^™^ £ °* fjS sign of nonlinearity. Second, for 
wavelength, geometry (as ^ -^ far M«^ ^"epende „? on | A*0|. Particularly for on 
all aperture sizes, the variation of ATp.Y is touna w w 
axis (S=i0) we find, 

,'       . (13"a) 
ATp v a 0.405 |A*0|    for     1A*0| < * , 

„ be accuse .0 within 0, p.«-.   As shown i* * 3 ^j^^^ÄÄ 

A».| * r <13"b) 
AT.., = 0.405(1-S)«S |A*„|       for       lA*„| 

1.20 

0.80 

S 

o.-to - 

0.00 
0.0 

_i 
x/2 3*/4 

Phase  Change  (rad.) 

A.*„| 

- ^^^z?z:£^^^^^ ■ 
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The implications of Eqns. 13-a and 13-b are quite promising in that they can be used to readily estimate 
the nonlinear index (n2) with good accuracy after a Z-scan is performed. What is most intriguing about 
these expressions is that they reveal the highly sensitive nature of the Z-scan technique. For example, if 
our experimental apparatus and data acquisition systems are capable of resolving transmission changes ATp_v 

of =d%, we will be able to measure phase changes corresponding to less than A/250 wavefront distortion. 
Achieving such sensitivity, however, requires relatively good optical quality of the sample under study. We 
describe in the experimental section IV a means to minimize problems arising from poor optical quality 
samples. 

We can now easily extend the steady state cw results to include transient effects along with pulsed radiation 
by using the time averaged index change (An0(t)) where, 

An0(t) L(tjdt 
-oo 

<An0(t))=  — , (I4) 

I0(t)dt 
SO 

The time averaged (A$0(t)) is related to (An0(t)) through Eq. 6. With a nonlinearity having instantaneous 
response and decay times relative to the pulsewidth of the laser, one obtains for a temporally Gaussian 
pulse: 

(An0(t)) - An^ , (15) 

where An0 now represents the peak-on-axis index change at the focus. For a cumulative nonlinearity 
having a decay time much longer than the pulsewidth (eg. thermal), the instantaneous index change is given 
by the following integral: 

,-t 

An0(t)=A I0(t')df , 06) 

where A a constant which depends on the nature of the nonlinearity. If we substitute Eq. 16 into Eq. 14 
we obtain a fluence averaging factor of 1/2.  That is, 

(An0(t)) =[A¥, O7) 

where F is the pulse fluence at focus within the sample. Interestingly, the factor of 1/2 is independent of 
the temporal pulse shape. 

4. EXPERIMENTAL RESULTS 

We examined the nonlinear refraction of a number of materials using the Z-scan technique. Fig. 4 shows a 
Z-scan of a 1 mm thick cuvette with NaCl windows filled with CS2 using 300 ns TEA C02 laser pulses 
having an energy of 0.85 mJ. The peak-valley configuration of this Z-scan is indicative of a negative 
(self-defocusing) nonlinearity. The solid line in Fig. 4 is the calculated result using (A$o)=-0.6 which gives 
an index change of (Ano)=;-lxl0-3.   As mentioned earlier such detailed theoretical fitting is not neccessary 
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,.      •        ^     The defocusing effect shown in Fig. 4 is attributed to a 
for obtaining (An.) (only AT      * needed      The **wm ^ ^ f rf 

hennal nonlinearity ^^/^.^J^S^^S time, r=Wo/vg, where v. is the velocity of 
thermal lens in a liquid B *%*>** ^^^f^ ^ having w0^60 Mm, we obtain a nsetime 
sound in the liquid [17]. For CS with v " ^ X ^^ ^ TEA laser pulsewidth. Furthermore, the 
of =,40 ns which is almost an order ormagn^de^er^ttan rf ^ ^^  ^ 
relaxation of the thermal lens, 8°^.^^ ™^ ^ quasi-steady state, in which case, from Eq. 

Ä^ - - "ed in terms of *e thenno-opüc 

coefficient, dn/dT, as: 

(18) 
/A    \      dn lol (An,,) a ^ 2pCy 

where F( 
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1.05 
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Fig.4 ÄÄ^ 
With ultrashort pulses, nonlocal nonlinearities^such^}^^t^t: Z^To^r 
Particularly, in CS2, the molecular ™\™^s^J\rfLnce nonlinear material.[18 19] We have 
nonlinear refraction.    CS2 is frequency^used * a   ^dar« measure       in CSr   We obtain the same 
used picosecond pulses at 10.6 pm, 1.06 „m and at °-53 ^   °  u esu at f0>6 ^ (i.3±0.3)xl0-" esu at 
value of n„ within errors, at all three ^^J^rZc^s arising from the Kerr effect m CS2 
1.06 pm and (1.2±0.2)xl0- esu at 0.53 pm J^vtero**    (FWHM) pulses focused to a beam waist w 
is shown in Fig. 5, where a ^.0*?J™^^£&±  Its valley-peak configuration^indicates the 
of 26 um from a frequency doubled NdYAG laser B ^ustra .        40        ent aperture (S = 0.4)   one 
positive sign of nr    With ATp.v -™\<£*^^   rradiance of 2.6 GW/cm>, this value of (An 
readily obtains a (An0) = 5.6 x    0 »-Using ™Je**in sourCe of uncertainty in the value of n   is the 
corresponds to an n2 * (1.2 ± 0.2)x 10      esu.   The mam sou .^.^ ^ measured from 

absolute measurement of the irradiance.    A plot of ATp.v 
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various Z-scans on the same u, u* 
derived for a cubic nonüneanty. 

2S.0 

,        *v* PS   cell using 27 ps pulses at A=532 nm.   It depicts the self- 
Fig 5    Measured Z-scan of a 1mm ^ck^^lT^Lt S       focusing effect due to the reonentational Kerr effect. 

0.00 0.90 •   1-80 2.70 

Irradiance  (GW/cm2) 

3.60 

Fig.6    Tp. 

Irramance  v,«../*-*" / 

T      in percent as a iuucuuu «*— .- 
fficative of the reorientational Kerr effect indicative of the reonemauuiuu ~  ^ ^ ^ 
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2 „ i» order ,o observe rhe resohttion «1 **-***£ ^^-»-nole^uofc^ÄÜ 
Itoi corresponds «o • «75 tab»-*"<£»«£ £*p£Ärion is better than V.300. For laser 
SLSÄÄT-ÄÜ &SÄ& *?«*** sbou.d be oorrespond^y .creased. 

-26.0 
26.0 

Fig.7 

1 r    *A ^vtBaF  samole using 20 ps pulses at A=532 nm indicating the 
Measured Z-scan of a 2.4 mm thick BaF  sample imng      P ^ ^^ result with 
self-focusing due to the ^\0^ ^"^^  The error bar shown corresponds to 
A$ =0 085 corresponding to c^X/15 total phase distortion, 
approximately A/480 induced phase distortion. 

Aside from the statistical Huctuations of die ^r ^— £^^*£^ 
may lead to systematic transmittance chafes with z tto could subtracting a low irradiance 
found, however, that such "parasitic^tffecfc^ ~ ^ computer simulation of this process assuming 
background Z-scan from the high f^^^^^^'of the beam or cause any beam steering, 

SE3äSL3=Sä.- - - -— 
m *+ i tt T10-» esu for BaF, at 532 nm, which is m close 

Returning to the Z-scan of Fig.7, ™ °J^QVe£'ni and 1.0x10"" esu [3]'as measured at 1.06 ,*m using 
agreement with the reported values of °;^10J^P^^nü^ and time-resolved-nonhnear- 
more complex techniques of nearly djeneratjj^ n-0.25x10"» esu at 532 nm as compared to 
interferometry, respectively. Similarly for MgFa;JJ ""^^ M given in [21]. Dispersion in n for 
The reported value of 0.32x10"» esu at 1.06jm^for £^£ u\honld be noted that the n2 values 
these materials between 1 and 0^5 pm is expected      ^ dements.   If the beam parameters are not 

ÄE£ Ä^Äc^i^«the -em by -hga standard no 

material such as CS2. 
5. CONCLUSION 

that i« sensitive to less than A/300 nonlinearly 
We have demonstrated a simple single beam ^Jn*^J^*jS of the nonlinear refraction can be 
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OPTICAL BREAKDOWN IN PARTICLE SUSPENSION 
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We have characterized the nonlinearities observed in suspensions of carbon black particles in liquids (CBS). We 
have developed a preliminary explanation of the optical limiting characteristic of the CBS that qualitatively explains the 
low limiting thresholds. We have found that the limiting depends primarily on the input optical fluence (J/cm2) rather 
than irradiance (W/cm2). We have monitored transmission, side scattered light, and the photoacoustic response of the 
CBS simultaneously. The nonlinear scattered light appears to be the dominant nonlinearity. Additionally, we have 
observed that the nonlinearities disappear after repeated laser firings. Thus, in essense, we are performing a laser 
induced damage experiment, and we have prepared a material with a low damage threshold. These data have led us to 
the following model. The carbon first linearly absorbs the input light efficiently. The carbon is rapidly heated, 
vaporizes and ionizes to form a rapidly expanding microplasma. This plasma absorbs and scatters subsequent light thus 
limiting the transmittance. 

Key words:    carbon  black suspension; nonlinear absorption; nonlinear scattering; nonlinear transmission- nsec'pulses- 
optical limiting; psec pulses; .53 /im, J.06 ^m. 

1. INTRODUCTION 

Recently there has been a growing interest in the use of microparticle suspensions as nonlinear media. Here we 
demonstrate and review the dynamics of limiting in a suspension of absorbing microparticles that exhibit primarily 
nonlinear scattering and nonlinear absorption. The absorbing microparticles of interest are carbon black particles which 
are =: 35 nm in diameter with agglomerates up to 500 nm in diameter. We demonstrate an optical limiting threshold as 
low as 80 watts peak power for 0.532 ftm and 160 Watts for 1.06 /im using pulses of 14 nsec and 20 nsec (FWHM) 
respectively. 

Because of the structure of these dispersions, different mechanisms including nonlinear absorption, nonlinear 
refraction (self-focusing, self-defocusing), nonlinear scattering and combinations of these mechanisms could be the 
source of the optical nonlinearity leading to such a low optical limiting threshold.fi ] In order to investigate the relative 
contributions of these mechanisms we perform a series of experiments. We first perform optical limiting experiments 
in the CBS and in the carbon black particles which are deposited on the surface of a glass substrate at 0.532 /im and 
1.06 /im for nanosecond pulses. We present transmission measurements which directly show the fluence »dependence of 
limiting in CBS. We also perform a measurement that monitors the absorptance, transmittance and fraction of side 
scattered light simultaneously. As will be demonstrated, we are performing a laser-induced-damage experiment on a 
material with an extremely low damage threshold. This leads us to discuss and show the repetition rate dependence of 
the CBS, and carbon black particles deposited on the glass substrate. 

2. OPTICAL LIMITING 

The optical geometry often used as a screening test, as it is sensitive to both nonlinear absorption and nonlinear 
refraction, is shown in Figure l.[l] We used this arrangement with pulses from an Nd:YAG laser operated in the 
TEM00 mode of 14 ns (FWHM) duration at 0.532 /im and 20 ns at 1.064 /im. These pulses were focused by either a 
40mm (.532/im) or 50mm (1.064/im) "best form" lens, shown as L,. This results in calculated beam radii of 3.5 pm at a 
wavelength of .532 /im and 7 /im at 1.064 /im inside the 1 cm cuvette. The spot radii quoted in this paper are half- 
widths at the 1/e2 maximum in irradiance. The transmitted pulse was then collected by a 102 mm focal length "best 
form" lens L2 placed behind the sample. The laser beam then passed through a 400 /im aperture placed in front of a 
silicon photodiode.   This system had an overall low input transmittance of 70 percent for both wavelengths. 

Using this optical geometry we have looked at optical limiting in various concentrations of CBS and a known 
standard sample, CS2, which has been previously used as an optical limiting material (2). Optical limiting in CS2 is 
primarily due to molecular reorientation of the molecules athough a small contribution from electrostriction may be 
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present for nanosecond pulses and tight focusing geometries. The optical limiting of CBS and CS2 in a 1 cm thick 
cuvette is shown in Figure 2 for nanosecond laser pulses at 0.532 <;m. In order to resolve the onset of limiting, the 
measurement was performed for lower input powers as shown in Figure 3. The CBS begins clamping the transmitted 
fluence above approximately 80 watts input power and continues clamping for =5 orders of magnitude of increased 
input power. It is important to note that each laser firing irradiates "new" material as discussed in Section 5. The 
limiting of the CBS at 1.064 /im is shown in Figures 4 and 5. As is shown, the onset of limiting for 1.064 /im laser 
pulses is approximately 160 watts. The optical limiting in a film of carbon black particles deposited on a glass substrate 
at 1.06 /im is shown in Figure6. The sample was moved to a new site for each laser firing. As is shown, the onset of 
limiting for 1.064 p.m laser pulses is approximately 600 watts. 

The observed optical limiting using the geometry shown in Figure 1, could be due to several mechanisms including 
nonlinear absorption, nonlinear refraction and nonlinear scattering. Below we describe a series of experiments 
performed to determine the dominant nonlinearity. 

3. KONLINEAR TRANSMITTANCE MEASUREMENT 

We have studied the fluence dependence of the transmittance of CBS at 0.532 /im and 1.064 /im. The optical 
goemetry used is shown in Figure 7. Both a one meter and 50 centimeter "best form" lens were used to focus the nsec 
pulsed input beams at the two wavelengths. This resulted in measured spot sizes of 108 /im and 254 /im for 0.532 /im 
light. The transmitted signal was collected by a large area uniform response Si photodiode located very close to the cell. 
The diameter of the detector is 1 centimeter and the beam radius at the detector is approximately 1mm in diameter. 
The difference between this geometry and the optical limiting geometry of Figure 1 is that we are not using tight 
focusing and the aperture has been removed so that this experiment is insensitive to nonlinear refraction. The results of 
the transmittance measurements are plotted as a function of incident fluence and incident power in Figures 8, and 9 for 
0.532 /im. For incident fluences above 200 mj/cm2 for 0.532 /im, the transmission becomes increasingly nonlinear and 
is essentially identical for both beam radii at a given wavelength as shown in Figure 8. However, the onset of a change 
in transmittance appears at two different incident power levels for these beam radii as shown in Figure 9. Similar 
results are observed for 1.06 /im laser pulses. We also observed that the onset of limiting for both nanosecond and 
picosecond measurements occurs approximately at the same fluence. The experiments indicate that the nonlinear 
transmittance observed is fluence dependent. 

4. MEASUREMENT OF TRANSMITTANCE, SCATTERING AND ABSORBTANCE 

In order to understand the nature of this fluence dependent nonlinear transmittance, we have set up an experiment 
which enables us to monitor for a single pulse , the absorptance and the fraction of side scattered light simultaneously 
with the transmittance measurement. This simultaneous measurement was conducted using the Q-switched Nd:YAG 
laser. The laser light was focused by a 1 meter focal length "best form" lens Lj into a one centimeter cuvette cell. (See 
Figure 7) The transmitted light was monitored as previously described. The absorption of the incident light was 
directly monitored by a sensitive piezoelectric transducer which was placed in contact with the bottom of the cuvette 
with silicone erease. Photoacoustic measurements have been used to directly detect very small changes in absorption.[3] 
The side scattered light was collected by a two-inch diameter, 98 mm focal length lens and detected by a Si photodiode. 
The optical geometry for this measurement is shown in Figure 11. 

The results of the simultaneous measurement of absorptance, transmittance, and the fraction of side scattered light 
(side scattering light divided by incident light) are plotted as a function of incident fluence for 1.064 pm laser pulses in 
Figure 11. For very low input fluences the CBS behaves linearly and there is no change in the thfee quantities 
monitored. However, for input fluences close to 360 mj/cm2 for 1.064 /im light, the transmittance begins to decrease 
nonlinearly as is shown by squares in Figure 11. The absorptance increases nonlinearly for incident fluence close to this 
threshold value (i.e., onset of change of transmittance) and levels off at a higher value even for input fluences two 
orders of magnitude above threshold. The scattered fraction increases nonlinearly as the transmittance decreases as 
shown by circles in Figure 11. This trend continues for at least two orders of magnitude above threshold. Similar 
results observed for .532 /im light. From these results we see that blocking of the light by the CBS above threshold is 
primarily due to nonlinear scattering. 

5. NONLINEAR SCATTERING 

The blocking of the incident light by scattering can readily be photographed as shown in Figure 12. These 
pictures were taken by looking at the side window of the cuvette perpendicular to the direction of the incident light. 
For low input fluences, top picture, the bright region in the photograph represents the input pulse which is linearly 
scattered (Mie scattering) by carbon black particles. However, for incident fluences above 200 mj/cm2, the light is 
nonlinearly scattered to the sides and thus, blocks the incident light from being transmitted. This is shown in the lower 
picture. 

The dynamics of the transmittance loss is studied by time resolved transmission measurements conducted using 
nanosecond pulses. By delaying the transmitted pulse with respect to the input pulse we are able to monitor both the 
incident and transmitted pulses shown in Figure 13. For an incident fluence above 200 mj/cm2, there is a sharp cut off 
in time of the transmitted pulse (shown in graph b).   The transmitted laser pulse is most strongly attenuated during the 
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later portions of the pulse, thus, the pulse appears advanced in time.   This experiment again suggests that the sifenuation 
of the laser beam is produced by a laser-induced-breakdown plasma. 

Under this assumption, the attenuation is dominated by scattering losses of the laser light by the plasma as seen in 
Figures 11. Thus, we are performing a laser-induced-damage experiment, and we have prepared a material with an 
extremely low damage threshold. This is consistent with having high linear absorption, and is also consistent with the 
disappearance of the nonlinearities after repeated laser irradiation as discussed in the next section. 

6. REPETITION RATE DEPENDENCE 

Recently, we reported the repetition rate dependence of the CBS.[4] In that report we indicated that the onset of 
the limiting threshold for 1 and 10 Hz repetition rate laser pulses is considerably different and is higher for the 10 Hz 
repetition rate. This repetition rate dependence was removed by flowing the material at such a rate that virgin material 
was exposed to each laser pulse. 

This bleaching or reduction of limiting of the laser light in the nonflowing liquid after repeated irradiation on the 
same region of the sample can be observed by monitoring the transmitted signal and scattered signal at a fixed fluence 
above the single shot threshold for limiting. Using the geometry shown in Figure 11 and setting the incident fluence at 
350 mj/cm2 for 0.532 pm laser pulses and a 1 Hz repetition rate, we can observe that the transmitted signal increases as 
the number of the incident pulses irradiating the sample increases. The transmittance levels off to a value that is less 
than the linear transmittance of the solvent as shown in Figure 14. The scattered signal reduces and levels off after 
repeated laser firings. This is shown as circles in Figure 14. For flowing liquid, stirred liquid or a long elapse time 
between the laser pulses irradiating the liquid, we have observed that the transmitted signal and scattered signal remain 
fixed as shown in Figure 15. The maximum limiting capability is for the first laser firing and recovery of the irradiated 
region of the sample is due to convection in the liquid at room temperature which for the spot size used is a slow 
process in comparison with the repetition rate of 1 Hz. Note that using a tight focusing geometry and a 1 Hz repetition 
rate that we do not see these cumulative effects. We observed that this recovery time is proportional to the radius of 
the laser beam in the cell, consistent with convection. 

The bleaching of CBS can also be monitored as shown in Figure 16 where we have used a very large spot size of 
more than 254 pra. Here, we have used a HeNe laser beam expanded to illuminate the region close to the front surface 
of the cell. The scattering of the HeNe beam by the suspended microparticles is readily observable. We irradiated the 
CBS using an incident fluence of 350 mj/cm2 and photographed the scattered light after 10 seconds. This is shown in 
Figure 17. The dark spot appearing in the middle of the bright screen is the irradiated region showing that the 
scattering centers have been "removed" by the laser pulse. We find that this excited volume is slowly replaced by fresh 
CBS after approximately two minutes due to convection. The conjecture is that the microparticles have been 
considerably reduced in size or "atomized" so that they no longer efficiently scatter the HeNe light. The carbon particles 
deposited on glass are blown off the surface with repetitive firings and therefore, limiting also disappears. 

7. NONLINEAR REFRACTION 

In order to investigate contributions of phase distortion due to a thermooptic effect, electrostriction, or other 
nonlinear refractive mechanism, we monitored the far field profile of the transmitted beam using a vidicon tube with an 
optical multichannel analyzer. For incident fluences below threshold and up to an order of magnitude higher than 
threshold, we have not observed any broadening of the spatial profile of the transmitted beam. Therefore, the change 
in index of refraction of the CBS is very small and the phase distortion due to this index change is less tha"n 0.2 X which 
is the sensitivity of our detection system. From this measurement we conclude that the contribution of nonlinear 
refraction is small in comparison with the nonlinear scattering observed. In order to further validate this point we 
removed the aperture in the original limiting geometry shown in Figure 1 and observed no change in limiting threshold. 

8. MODEL 

It appears from our experimental results that the dominant mechanism in the CBS is nonlinear scattering. The 
nature of this nonlinear scattering is consistent with the formation of microplasmas by laser-induced-breakdown of the 
carbon particles. Therefore, the dynamics of limiting in CBS can be described by a simple model. The carbon linearly 
absorbs the incident light very efficiently. The carbon is rapidly heated to several thousand degrees Celcius. A simple 
calculation of the particle temperature at threshold gives a few thousand degrees Celcius. The carbon then vaporizes and 
ionizes to form a rapidly expanding microplasma which absorbs and scatters later portions of the laser light and blocks 
the transmission. This model is also consistent with the disappearance of the nonlinearities after repeated laser firings as 
the carbon particles will have undergone vaporization. 

9.  CONCLUSION 

We have characterized the nonlinearities observed in a suspension of carbon black particles (CBS) in liquid. We 
have developed a qualitative model based on laser-induced breakdown to explain the low limiting threshold of the CBS. 
From our results, we conclude that nonlinear scattering due to rapidly expanding microplasmas is the dominate 
mechanism leading to limiting.   While the evidence obtained is insufficient to give details of this damage process,   the 
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K nism leading to limiting.   While the evidence obtained is insufficient to give details of this damage process,   the 
dictions closely match our observations.   We note that the broad-band nature of the nonlineanty is primarily due to 

rile fact that carbon is black, i.e., it absorbs all wavelengths. 
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We present a simple yet highly sensitive single-beam experimental technique for the determination of both the sign 
and magnitude of n->. The sample is moved along the z direction of a focused Gaussian beam while the repetitively 
pulsed laser energy is held fixed. The resultant plot of transmittance through an aperture in the far field yields a 
dispersion-shaped curve from which n, is easily calculated. A transmittance change of 1% corresponds to a phase 
distortion of = X/250.   We demonstrate this method on several materials using both C02 and Nd:YAG laser pulses. 

Numerous techniques are known for the measurement 
of nonlinear refraction in materials. Nonlinear inter- 
ferometry,1-2 degenerate four-wave mixing,3 nearly de- 
generate three-wave mixing,4 ellipse rotation,0 and 
beam-distortion measurements6-7 are among the tech- 
niques frequently reported. The first three methods, 
interferometry and wave mixing, are potentially sensi- 
tive techniques but require a complex experimental 
apparatus. Beam-distortion measurements, on the 
other hand, require precise beam scans followed by 
detailed wave-propagation analysis. Based on the 
principles of spatial beam distortion, however, we 
present a single-beam technique for measuring the 
sign and magnitude of refractive nonlinearities that 
offers simplicity as well as high sensitivity. The tech- 
nique is based on the transformation of phase distor- 
tion to amplitude distortion during beam propagation. 
We demonstrate this technique, which we refer to as a 
Z scan, on several materials in the IR and the visible, 
with nanosecond and picosecond pulses, for thermal 
and electronic Kerr nonlinearities. The demonstrat- 
ed sensitivity to nonlinearly induced phase changes is 
better than X/100. 

The Z-scan experimental apparatus is shown in Fig. 
1. Using a Gaussian laser beam in a tight-focus limit- 
ing geometry, we measure the transmittance of a non- 
linear medium through a finite aperture placed in the 
far field as a function of the sample position (z) mea- 
sured with respect to the focal plane. The following 
example qualitatively explains how such a trace (Z 
scan) is related to the nonlinear refraction of the sam- 
ple. We place a thin material (i.e., with a thickness 
much less than the beam depth of focus) having n2 < 0 
well in front of the focus (-z in Fig. 1). As the sample 
is moved toward the focus the increased irradiance 
leads to a negative lensing effect that tends to colli- 
mate the beam, thus increasing the aperture transmit- 
tance. With the sample on the +z side of the focus, 
the negative lensing effect tends to augment diffrac- 
tion, and the aperture transmittance is reduced. The 
approximate null at z = 0 is analogous to placing a thin 
lens at the focus that results in a minimal far-field 
pattern change. For still larger +z the irradiance is 
seduced and the transmittance returns to the original 
linear value.   We normalize this value to unity.   A 

positive nonlinearity results in the opposite effect, i.e., 
lowered transmittance for the sample at negative z 
and enhanced transmittance at positive z. Induced 
beam broadening and narrowing of this type have been 
previously observed and explained for the case of band 
filling and plasma nonlinearities8 and in the presence 
of nonlinear absorption in semiconductors.9 

Not only is the sign of n% apparent from a Z scan, but 
the magnitude of n2 can also be easily calculated using 
a simple analysis for a thin medium. Considering the 
geometry given in Fig. 1, we formulate and discuss a 
simple method of analyzing the Z scan. For a fast 
cubic nonlinearity the index of refraction is expressed 
in terms of nonlinear indices n2 (esu) through 

" = ^o + "7T '^'2 = no + An> (1) 

where n0 is the linear index of refraction and E is the 
electric field. Assuming a Gaussian beam traveling in 
the +z direction, we can write the magnitude of E as 

w0 
\E{r,z,t)\ = \E0(t)\—^-exp 

w(z) ur{z) 
(2) 

where w2(z) = w0
2{l + z2/z0

2) is the beam radius at z, z0 
= kw0

2/2 is the diffraction length of the beam, k = 2-/\ 
is the wave vector, and X is the laser wavelength, all in. 
air. E0 denotes the radiation electric field at the focus 
and contains the temporal envelope of the laser pulse. 

If the sample length is small enough such that 
changes in the beam diameter within the sample due 
to either diffraction or nonlinear refraction can be 

SAMPLE       APERTURE 

D1 

Fig. 1. Simple Z-scan experimental apparatus in which the 
transmittance ratio Do/Di is recorded as a function of the 
sample position z.   BS, Beam splitter. 
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neglected, the medium is regarded as thin. Such an 
assumption simplifies the problem considerably and 
the amplitude and nonlinear phase change A<*> of the 
electric field within the sample are now governed by 

dz dz 
(3) 

where a is the linear absorption coefficient. Equa- 
tions (3) are solved to give the phase shift A* at the 
exit surface of the sample, which simply follows the 
radial variation of the incident irradiance at a given 
position of the sample z: 

&4>(r,z,t) = 
A$n 

1 + Z2/20
2 

exp 
2r2 

w2{z) 

with 

A$0(£) = ^ An0(t) —j- 

(4a) 

(4b) 

where L is the sample length and An0(t) is the instan- 
taneous on-axis index change at the focus {z - 0). The 
electric field E' at the exit surface of the sample zl now 
contains the nonlinear phase distortion, 

E'(r, zlt t) = E[r, zv r)exp(-oL/2)exp[iA<p(r, zv t)]. 
(5) 

By virtue of Huygens's principle one can obtain the 
far-field pattern of the beam at the aperture plane 
through a zeroth-order Hankel transformation of E'.10 

We use a numerically simpler Gaussian decomposition 
method given by Weaire et al.n 

Having calculated the electric-field profile, Ea, at 
the aperture, we obtain the normalized instantaneous 
Z-scan power transmittance as 

T{z, t) = 

|£o(A$0,r,z,t)l2rdr 

S r\Ea{0,r,z,t)\2rdr 

(6) 

where r0 is the aperture radius and 5 is the aperture 
transmittance in the linear regime. The laser tempo- 
ral pulse shape can be taken into account by simply 
performing a separate time integration on both the 
upper and lower terms in Eq. (6). This gives the Z- 
scan fluence transmittance T{z). We first discuss the 
general features of the Z scan using a constant input 
field such that T(z, t) = T(z). 

For a given A$0, the magnitude and shape of T(z) do 
not depend on the wavelength or geometry as long as 
the far-field condition for the aperture plane is satis- 
fied. The aperture size S is, however, an important 
parameter in that a larger aperture reduces the varia- 
tions in T{z), i.e., the sensitivity. This reduction is 
more prominent in the peak, where beam narrowing 
occurs, and results in a peak transmittance that can- 
not exceed (1 - S). The effect vanishes for a large 
aperture or no aperture, where S = 1, and T(z) = 1 for 
all z and A$0 (assuming no nonlinear absorption). 
For small |A$|, the peak and valley occur at the same 
distance with respect to the focus, and for a cubic 
nonlinearity their separation is found to be ä1.7Z0- 

This distance may be used to determine the order of 
the nonlinearity. 

We can define an easily measurable quantity Ai^ 
as the difference between the normalized peak (maxi- 
mum) and valley (minimum) transmittances, Tp — Tv. 
The variation of this quantity as a function of A$0 as 
calculated for various aperture sizes is found to be 
almost linearly dependent on A§0- Within ±3% accu- 
racy the following relationship holds: 

ATp_„ « plA$0| for |A*ol ^ *> (7a) 

with p = 0.405(1 - S)0-25.   Particularly, for on-axis 
transmission (S ^ 0) we find that 

ATp_„ ä 0.405|A$0| for |A3>0I < v. (7b) 

The linear nature of relations (7) makes it convenient 
to account for the temporal and transient effects in 
Eq. (6) by simply averaging the instantaneous phase 
distortion A$o(0 over the laser pulse shape. An aver- 
age phase distortion A$0 can be obtained as the prod- 
uct of the peak phase shift A$0(0) and an averaging 
factor that is a constant of the pulse shape for a given 
type of nonlinearity. For example, for a Gaussian 
pulse shape and a fast cubic nonlinearity, this factor is 
l/>/2. For a cumulative nonlinearity having a decay 
time much longer than the pulse width (e.g., thermal) 
a fluence averaging factor of 0.5 is to be used regardless 
of the shape of the pulse. Relations (7) can thus be 
used to calculate the nonlinear index n2 to within ±3%. 
This equation also reveals the highly sensitive nature 
of the Z-scan technique. For example, if the experi- 
mental apparatus is capable of resolving transmit- 
tance changes (&TP-V) of «1%, phase changes corre- 
sponding to A/250 wave-front distortion are detect- 
able. 

Figure 2 shows a Z scan of a 1-mm-thick CS2 cell 
using 300-nsec pulses from a single-longitudinal-mode 
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Fig. 2. Measured Z scan of a 1-mm-thick CS2 cell using 300- 
nsec pulses at X = 10.6 um indicating thermal self-defocusj 
ing. The solid curve is the calculated result with A*n - 
-0.6. 
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Fig. 3. Measured Z scan of a 2.5-mm-thick BaF2 sample 
using 27-psec (FWHM) pulses at X = 0.532 ^m indicating the 
self-focusing due to the electronic Kerr effect. The solid 
curve is the theoretical fit with A*0 = 0-085 corresponding to 
= X/75 phase distortion. 

TEA C02 laser having an energy of 0.85 mJ. The 
peak-to-valley configuration of this Z scan is indica- 
tive of a negative (self-defocusing) nonlinearity. The 
solid curve in Fig. 2 is the calculated result using A<£>0 = 
-0.6, which gives an index change of An0 = -1 X 10~3. 
This is attributed to a thermal nonlinearity resulting 
from linear absorption of CS2 (a ^ 0.22 cm"1) at 10.6 
Mm. The rise time of a thermal lens in a liquid is 
determined by the acoustic transit time, r = w0/vs, 
where vs is the velocity of sound in the liquid. For CS2 

with vs ä 1.5 X 105 cm/sec and w0 = 60 Mm, we obtain a 
rise time of =*40 nsec, which is almost an order of 
magnitude smaller than the transversely excited at- 
mosphere laser pulse width. Furthermore, the relax- 
ation of the thermal lens, governed by thermal diffu- 
sion, is of the order of 100 msec.12 Therefore we re- 
gard the nonuniform heating caused by the 300-nsec 
pulses as quasi-steady state, in which case the average 
on-axis nonlinear index change at focus can be deter- 
mined in terms of the thermo-optic coefficient, dn/dT, 
as 

An°a dr 
dn 0-5FQa 

PC, 
(8) 

where F0 is the fluence, p is the density, Cv is the 
specific heat, and 0.5 denotes the fluence averaging 
factor. With the known value of pCv =* 1.3 J/K cm3 

for CSo, we calculate that dn/dT =* -(8.3 i 1.0) X lO"4 

°C_1, which is in good agreement with the reported 
value of-8 X lO"4 °C-'.13 

Using 27-psec (FWHM), 2.0-MJ pulses from a fre- 
quency-doubled Nd:YAG laser focused to a spot size 
wo of 18 Mm, we performed a Z scan on a 2.5-mm-thick 
BaF2 crystal. The result (Fig. 3) indicates a positive 
(self-focusing) nonlinearity. The theoretical fit as- 
suming Gaussian-shaped pulses was obtained for A$0 

= 0.085, from which an nz value of =s(0.8 ± 0.15) X 
10-13 esu is calculated. This value is in agreement 
with the reported values of ^0.7 X 10~13 and ^1.0 X 
10~13 esu as measured using nearly degenerate three- 
wave mixing4 and time-resolved interferometry,2 re- 
spectively. BaF2 has a particularly small value of n2. 
In addition, the laser input energy was purposely low- 
ered to 2.0 MJ to illustrate the sensitivity of this tech- 
nique to small induced phase changes. The peak 
wave-front distortion shown in Fig. 3 corresponds to X/ 
75. 

The simplicity and sensitivity of the technique de- 
scribed here make it attractive as a screening test to 
give the sign, magnitude, and order of the nonlinear 
response of new nonlinear-optical materials. 
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