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Preface

This volume is a compilation of the edited proceedings of the “Optimum Design Methods for Aerodynamics” course held at
the von Karman Institute for Fluid Dynamics in Rhode Saint Genése Belgium, 25-29 April 1994. The material assembled in
this Report was prepared and presented under the combined sponsorship of the AGARD Fluid Dynamics Panel, and the von
Karman Institute for Fluid Dynamics.

Techniques for designing modern aerospace systems which either maximize a beneficial aerodynamic performance feature,
or minimize a less desirable characteristic while recognizing other design constraints, have moved from the research lab to
the design room in recent years. This has become possible because of the integration of efficient aerodynamic and geometric
codes with optimization methods to form efficient, and powerful, design and analysis computer tools. The objective of this
course was to distribute and share fundamental information on the development and use of these tools.

Préface

Ce volume est un recueil des textes présentés lors du Cours sur ‘Les méthodes de calcul optimisées pour 1’aérodynamique»
organisé par I’Institut Von Karman de dynamique des fluides 4 Rhode Saint Genése en Belgique du 25 an 29 avril 1994,

Les cours contenus dans ce rapport ont été élaborés et présentés sous 1'égide conjointe du Panel AGARD de la dynamique
des fluides et I'Institut Von Karman de dynamique des fluides.

Des techniques de conception de systémes aérospatiaux modernes soit qui maximisent une caractéristique de performance
aérodynamique, soit qui minimisent une caractéristique moins avantageuse, tout en tenant compte des autres contraintes de
conception, sont passées du laboratoire de recherche au bureau d’étude en P’espace de quelques années. Ceci est devenu
possible grice a I’association de codes géométriques et aérodynamiques performants & des méthodes d’optimisation, ce qui a
permis de réaliser des outils informatiques d’analyse et de conception puissants et efficaces.

Ce cours a eu pour objectif de diffuser et de commenter les informations de base concernant le développement et la mise en
ceuvre de ces outils.
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SINGLE-PASS METHOD FOR THE SOLUTION OF INVERSE
POTENTIAL AND ROTATIONAL PROBLEMS.
PART I: 2-D AND QUASI 3-D THEORY AND APPLICATION

P. Chaviaropoulos, V. Dedoussis1 and K.D. Papailiou
National Technical University of Athens
Lab. of Thermal Turbomachines
P.O. Box 64069, 157 10 Athens, Greece.

SUMMARY

A methodology for the solution of the 2-D and 3-D inverse
inviscid subsonic flow problem is introduced. The proposed
methodology handles the 2-D and axisymmetric rotational
and the 3-D potential target pressure problem in a single-
pass manner. The method is based on a potential function/
stream function formulation where the physical space is
mapped onto a natural one using the potential and stream
function(s) as body-fitted coordinates. A novel procedure
based on differential geometry and generalized tensor
analysis arguments is employed to formulate the method in
a modular way. The governing equations for the inverse
problem are derived through the metrics compatibility
condition on the natural space. Geometry is determined by
integrating generalized Frenet equations along the natural
coordinate lines. Rotationality, when present, is due to
incoming (stagnation) thermodynamic quantities and/or pre-
swirl gradients. The Clebsch formulation is, then, adopted to
decompose the velocity field into a potential and a rotational
part. To validate the method inverse calculation results are
compared to results of direct "reproduction” calculations.
The design procedure of some optimized shapes is also
presented. Part I of this lecture focuses on 2-D and
axisymmetric inverse potential or rotational flow problems,
while the fully 3-D inverse potential problem is considered
in Part II.

LIST OF SYMBOLS

a,b,c,de,f velocity Eq.(31) coefficients
(_:P,c specific heats
gi’gy covariant and contravariant base vectors

. of natural (,y)coordinate system
g'! conjugate metrics tensor of natural (¢,y)
coordinate system
metrics tensor of computational (&,n)
coordinate system
enthalpy
position vector
Riemann curvature of the (S) surface
Mach number
unit base vector in the peripheral
direction

o

ZVZ R L

s entropy

T temperature

v velocity vector

x,y) (physical) Cartesian coordinate system

a drift function

0B Oy, Clebsch  decomposition  coefficients
associated with enthalpy, entropy and
swirl gradients

B angle between Vs(p,VS\u

Y specific heats ratio

T, jl Christoffel symbol of second kind

A entropy gradient coefficient

u swirl gradient coefficient

v total enthalpy gradient coefficient

&,n) computational coordinate system

p density

p(=rp) modified density

(o,¥) potential  function, stream function

N natural coordinate system

Q vorticity vector

Subscripts

i,j,1,q(=12) covariant tensor indices

o known position indicator

ref reference quantity

t total quantity

s (s) surface component

N N-wise component

En0,v partial derivatives with respect to &,n,p

or y respectively

Superscripts

i,j,1,9(=1,2) contravariant tensor indices

1. INTRODUCTION

The operation of aircrafts, propulsion and energy conversion
systems and process industry equipment relies heavily on the
performance of their aerodynamic components, such as air
intakes, nozzles, wings, cascades, etc. The development of
reliable automated methods which will reduce the human
expertise interference in the design loop and will increase

1 Also in Dept. of Industrial Management, University of Piraeus, 185 34 Piraeus, Greece.

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genése, April 1994.
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the quality and duration of the products is one of the CFD
challenges for the next decade. Although the optimum
design concept is so old as the theory of aerodynamics itself,
the maturation of analysis methods and the continuously
increasing computer power have placed it back in stage. A
comprehensive review of the evolution of optimal shape
design methods has been presented by Dulikravich (Ref.1)
and more recently by Labrujere and Sloof (Ref.2).

In designing aerodynamic components engineers aim to
minimize or prevent losses associated with wall boundary
layer separation and/or the occurence of a shock. It is
known that boundary layer behavior, as well as the
occurence of a shock, is controlled by the characteristics of
the pressure distribution along the walls of the flow field.
The need, therefore, of having accurate and efficient inverse
design methods that provide the designer with a shape that
corresponds to a prescribed wall pressure or velocity (for
inviscid flow models) distribution is evident.

First attempts to develop such target pressure methods are
traced back in mid-forties when inverse potential methods
based on conformal mapping and potential theory have been
applied to the design of airfoils. In the fifties, Stanitz (Ref.3)
developed his inverse potential method for compressible
flows. Applying a body-fitted coordinate transformation,
Stanitz derived the inverse potential flow equations on a
"natural” computational plane employing the potential
function and the stream function as independent variables.
The two-dimensional (2-D) inverse problem can then be
solved if "target” velocity (or pressure) distributions are
imposed over the complete boundaries of the domain.
Stanitz's method being more flexible than the conformal
mapping ones has been extended to axisymmetric flows
(Ref.4) as well as to turbomachinery flows including the
planar and the axisymmetric rotating or non-rotating
cascades (Refs 5-7). The 2-D potential target pressure
problem has been recently reconsidered by Barron (Ref.8),
who provided an alternative formulation using the Von-
Mises transformation by Volpe (Ref.9) who developed
iterative profile closure conditions for compressible flows
and by the present authors (Ref.10) who reformulated the
airfoil design problem using differential geometry principles.

The computational cost of all the above-mentioned "target
pressure” -inverse- methods is equivalent to that of analysis -
direct- methods. For reasons which will be explained below
we will refer to these methods as "single-pass”methods. The
"single-pass” methods are very efficient in terms of the
computational cost and provide a physical insight to the
design problem. Conceptually, however, they are restricted
to 2-D potential flows only. Some extensions to rotational
flows using the Clebsch transformation are reported by

Borges (Ref.11) and by the present authors (Refs 12,13).

Stanitz (Ref.14) extended his original 2-D potential method
to three dimensional (3-D) flows. A disadvantage of the

"single-pass” methods is related to their inability to
incorporate flow or geometrical side-constraints. Thus, the
designers expertise remains crucial for determining the
"appropriate” target pressure distribution.

In the effort to circumvent the drawbacks of "single-pass”
methods, optimization methods appeared in the design field
as an alternative. These methods solve a general
minimization problem, the cost function of which expresses
desired flow properties along with flow or geometrical
constraints. This cost function is computed using a standard
direct solver and the designer may decide upon the
complexity level of the state equations to be solved. The
solution of the optimization problem (the "target pressure”
problem being one variant) is obtained as a sequence of
direct problem solutions. Although the formulation of the
design problem seems to be straightforward, these methods
are still time consuming (some hundreds of direct problems
are sometimes solved in the optimization process, plus the
regriding overhead) while in complicated 3-D flows the grid
deformation and adaption problem may become crucial for
the convergence of the algorithm. Convergence may be
accelerated using suitable parametrization techniques
(Ref.15) or hierarchical optimization techniques (Ref.16). An
alternative approach springs from the reformulation of the
general optimization problem using optimal control theory
(Ref.17). Then the descend direction may be obtained from
the solution of an "adjoint" state equation which is usually
similar to the state equation itself. This technique reduces
the computational cost a lot, provided that the adjoint
equation exists.

Although optimization methods appear to be a remedy for
the design problem this is not completely true. There are
difficulties in specifying the appropriate cost function for a
precise problem. If, for example, the shock drag
minimization problem is to be solved for a transonic airfoil,
a hanging shock solution may be obtained if no curvature
constraints are imposed on the profile. Optimization of lift
versus drag at a specific incidence may cause, as a second
example, severe off-design problems. It seems that the
formulation of the optimization problem using global flow
measures (such as lift and drag) in an automated procedure
is a very risky policy. It seems much better to control the
flow behaviour at the local level and that explains why the
"target pressure” conditions are widely used as optimality
conditions by the optimisation methods as well. Even in this
case, however, the results may be misleading. If, for instance
the prescribed inviscid target pressure distribution is not
consistent in terms of profile closure, the minimization
algorithm will provide a solution which may be far from the
desired one in physical terms (the transition point location
may be altered or flow separation may be produced because
of local deceleration of the flow). Additionally, optimization
methods provide no information on the existence and the
uniqueness of the solution of a flow (design) problem. They
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lack, therefore, the physical insight of "single-pass"methods.

The purpose of Part I of the lecture is to present a unified
methodology for the solution of the inverse target pressure
problem in a “single-pass” manner. The proposed
methodology tackles inviscid rotational subsonic flows which
develop on arbitrary prescribed surfaces in a quasi-3D
manner and can be applied to the design of 2-D or
axisymmetric internal (ducts, nozzles, cascades) and 2-D
external (airfoils) flow configurations.

The method is based on the potential function -
streamfunction formulation and in that respect presents
some similarities with the one developed by Stanitz (Ref.3)
for irrotational flows. Clebsch formulation is employed to
decompose the velocity vector into a "potential” and a
rotational part, the latter expressed as the product of a
(scalar) drift function with the stream function gradient.
Exploiting the fact that in inviscid flows, solid boundaries are
streamlines, a body-fitted coordinate transformation is
carried out which maps the physical space (on which the
geometry of the boundaries is sought) onto the potential
function-streamfunction (p,y) space. The potential function
and the streamfunction are the independent non-orthogonal
curvilinear coordinates.

An interesting novelty of the method is that the main
second-order nonlinear elliptic partial differential equation
(PDE) for the velocity magnitude is derived using
differential geometry arguments rather than manipulating the
basic flow equations themselves. This equation results
directly from the metrics compatibility condition which is
expressed in terms of flow quantities on the natural (p,y)
space. This equation, in conjunction with a transport
equation for the drift function of the Clebsch decomposition,
provide the solution of the flow field.

The calculation procedure involves two main steps. In the
first step the discretized governing equations are solved for
the flow quantities using a fast iterative incomplete
factorization scheme. Having calculated the flow field, the
corresponding geometry is determined, by straightforward
integration of Frenet equations along potential lines and/or
streamlines. For 2-D flows the flow and geometry
calculations are completely decoupled. In axisymmetric flows,
however, the radial coordinate R appears in the expressions
of the metrics implying that the flow field and the geometry
solutions are coupled.

To validate the method several "reproduction” calculations,
including 2-D and axisymmetric nozzles and ducts, 2-D
airfoils, 2-D and quasi 3-D axisymmetric non-rotating
cascades, have been carried out. The favorable comparisons
between inverse results and those of direct, analysis, codes
indicate the reliability of the method. Results concerning the
design of optimized blades for horizontal axis wind turbines
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are also presented.

2. ASSUMPTIONS AND BASIC EQUATIONS

The design method proposed in this lecture concerns steady,
subsonic, inviscid and adiabatic flows of a perfect gas.
Rotationality, when present, is due to incoming (stagnation)
thermodynamic quantities and or pre-swirl (in axisymmetric
flows) gradients. In order to present a unified theory for 2-D
and quasi 3-D flows we consider the conservation laws which
govern the flow field developing on an arbitrary shaped
stream surface (S) with varying streamtube thickness An.
This surface may represent the plane of a 2-D flow, or the
meridional plane of an axisymmetric flow, or the (S,) -blade
to blade- surface of a peripheral cascade.

Under the above assumptions, the (unified) conservation
laws read.

Continuity equation
V. (pVs) =0 0y

Momentum_equation
(S) surface component

T x Qy=Vsh,~T Vos--2 Y (RV,) @

normal (to S-surface) component

Ve: Vs (RV,) =0 €

Energy equation
V. Voh,=0 @

Subscript S denotes properties on the (S) surface and
subscript N properties along the normal to the (S) surface
direction. V. stands for the surface gradient operator. The
defining relation for the N-wise vorticity component Qy is:

8,-v, x 7, ®)

When an axisymmetric flow is considered R is a genuine
variable representing the radial distance from the axis of
symmetry. The definition of the modified density p and the
normal velocity component V,, for the three different cases
which are considered here is given in Table 1.
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(S) surface P A

2-D plane flow p 0

axisymmetric flow pR Peripheral Vel. Vu

blade to blade flow pAn 0

Table |

Rearranging Eq. (2) and taking into account Eqs (3) and (4),
we get the entropy conservation law

V.V5=0 (6)

The above system of equations is supplemented by the
following density equation:

(_p_)’ n  A5) %

Prer

where subscript ref denotes reference conditions and v is the
ratio of specific heats cp/cv.

The perfect gas assumption implies that enthalpy changes
are proportional to those of temperature, i.e.dh=cpdT. The
stagnation enthalpy ht is defined as

ho=h+2 (V3+Vd) ®

3. THE INVERSE TARGET VELOCITY PROBLEM
For a given geometry, the solution of Egs (1) to (8)
supplemented by an appropriate set of boundary conditions,
provides the complete inviscid flow field. This solution is
called a direct solution of the flow problem. When the
inverse problem is considered, we are looking for the
geometry which exhibits on it (i.e. on the boundary of the
flow domain) certain prescribed flow qualities. Evidently, the
steady Egs (1) to (8) have to be satisfied by the inverse
solver.

In the present work, the inverse target velocity problem
which is tackled, may be defined as follows:

"For a given shape of the (S) surface, inflow conditions
hys, VN, | Vgl as well as prescribed magnitude of the
velocity Vg along the lateral boundaries -solid walls- (in
terms of their arc length), determine: (i) the flow field
which satisfies the inviscid conservation laws and (ii) the
corresponding geometry".

As it will be demonstrated below this inverse target velocity
problem is a well-posed one.

4. POTENTIAL-TYPE/STREAM FUNCTION
FORMULATION

The purpose of this section is to introduce the potential

function and the stream function which will serve as "natural

coordinates” in the formulation of the present inverse design

method.

4.1 Stream Function
A stream function on the (S) surface is introduced through

the following relation

pVs=Vsr x N ®

where N is the unit vector normal to the (S) surface. The
stream function is defined in such a way so that the
continuity Eq.(1) is satisfied identically. Note that the
definition of the stream function for the general case is
analogous to the usual two-dimensional one with the
exception that the density is replaced by the modified density
term p.

4.2 Clebsch Formulation

Clebsch formulation (Ref.18) is used to decompose the
surface velocity field into an irrotational and a rotational
part is usually expressed as a linear combination of Vch,,
Vss and VS(RVN) which are responsible for the rotational
character of the flow [see Eq.(2)]. Since the above gradients
are normal to the velocity vector VS and lie on (S) they are

“parallel to one another. Taking advantage of this property

one may express the rotational part of the velocity using
one gradient, only, and a single coefficient (e.g. Ref.12). In
order to treat all kinds of rotational flow in a unified way,a
variant of the Clebsch formulation based on the stream
function was adopted.

The Clebsch decomposition of V'S used here reads:
T,V vy (10)

where ¢ is the potential function on the (S) surface and a is
a generalized drift function. It is emphasized that in
potential flows o vanishes yielding the standard expression
for the velocity vector VS =Vs(p. Eq.(9) indicates that Vs\u,
being normal to Vg, is parallel to Vgh,, Vgs and VoRV)).
Introducing the coefficients A,u,vwe may write:

Veh,=AVal , Ves=pVeb Vo (RVp) =vVe (1D

Applying the surface curl operator on Eq.(10) and taking




into account Eq.(11) it is seen that

VA XV =V u XVl =V xV s =0 (12)

As it has been stated above Vsk, Vsp. and st being
parallel to Vs\y are normal to the surface velocity vector
(V). We can write, therefore, that:

Ve VA=V, Vou=V,. Vv=0 (13)

Transport equations (13) simply state that A,pand v are
conserved along, i.e. remain constant on, the surface
streamlines. Consequently, we may write that A=A(y),
p=p(y)and v=v(y). Eqs (3), (4) and (6) also indicate that
ht=ht(\u), s=s(y) and RVN=RVN(\;I).

Applying the surface curl operator on Eq. (10) yields the
following expression for the N-wise vorticity component

0,=VoaxVop (14)

Introducing Eq.(14) and relations (11) to the momentum
Eq.(2), we get after some manipulations that

Vex (VoaxVep) =-Vp (7. Vsa) =
v 15)
=().-uT -va”)Vstp

Noting that V.y never vanishes (with the exception of
stagnation points), Eq.(15) yields the following transport
equation for the generalized drift function a

Y?S.Vsa=—).+p.T+v%' (16)

5. NATURAL (¢,y) CURVILINEAR COORDINATE
SYSTEM

The potential function and the stream function, i.e. the
natural coordinates, on the meridional plane, are considered
to be the independent variables. The defining Eqs (9) and
(10) provide the contravariant base of the (¢,y) coordinate
system. Associating coordinate indices 1 and 2 with the ¢
and v coordinates respectively, the contravariant base reads:

G =Vep=Vs-aVyy (7
G-V y=xp 7, (8)

The dot procluct Vs‘”'vs“’ is definitely nonzero since Vs\y
is normal to VS. This indicates that, unlike irrotational flow,
in the present rotational one the (¢,w)coordinate system is
nonorthogonal.
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The conjugate (contravariant) metrics of the (o,y) system,
which actually define the body-fitted physical space to the
natural (@,y) space transformation, are evaluated via the
defining relations and Eqs (17), (18) as following:

2
git=gtgi=viea?|Vop[2=VE (14 (ef) 2] =—2 (19)
sin?p

gzzzgz.gz’: (ﬁVS) 2 (20)

~ vyl
12_21=31.532=_g5 ——aprv2=_PYs_ QD)
gH=gt=gtgt=-apV|Vsb|=-ap*Vs= 15

where B is the angle formed between Vscp and Vs\u on the
(S) surface. The following expression for the (coordinate)
angle B results from Eqs (19) and (21)

tanp=—ai5 22)

The covariant metrics g; i (i,j=1,2) may be expressed in
terms of the contravariant ones following standard tensor
relations (Ref.19):

573,783 @)

In terms of flow quantities the covariant metrics of the (¢,¥)
coordinate system are:

=1 —
911 V; + Y22 (pVsinp)? o
1
91279217~
127921 ”Vgtanﬁ

and the Jacobian of the coordinate transformation yields

J=det/2(g;;) = 25)

1
(pvd)?

6. GOVERNING EQUATIONS

The objective of this section is to present and discuss the
derivation of the equations that are actually solved by the
present method for determining the flowfield and the
geometry. Differential geometry and generalized tensor
analysis arguments are employed in order to derive the
governing equations. The present procedure, which treats the
inverse problem as a geometrical rather than a flow one,
proved to be quite modular and efficient in several inverse
design applications both in two (Refs 10,12,13)and three
dimensions (Refs 20,21,22).
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6.1 Velocity equation

An equation for the magnitude of the surface velocity
component Vg is obtained from the metrics compatibility
condition, which has to be satisfied by any parametrization
of (S), including the (@,y)natural coordinates one. In two-
dimensional spaces the curvature tensor has one independent
component Ry,., (Ref.19) which is equal to the
Riemannian curvature K of the (S) surface considered

"5"2‘ Ri212=K (26)

K is an intrinsic property of the surface and, in general, is
non-zero. Surfaces with zero Riemannian curvature are i)
the plane surface, i.e. 2-D or meridional flow case, ii) the
cylinder and iii) the cone.

For any (x1 ,xz)parametrization of the (S) surface the R1 212
term is expressed as:

Rmf% [22,1] —ﬁ‘z [21,1]+

@7
Th112,11-Th 111, 1
and
(mn, 1] =% agml + 9n1_ %n 28)
ax7 axm ox!
=g @ [mn. 1] 29)

with m,n,l,q=1,2.Eqs (28) and (29) define the Christoffel
symbols of the first and second kind, respectively.

When the (x1,x2) parametrization of (S) is an orthogonal
one, the expressions of the Christoffel symbols are simplified
considerably and Eq.(27) yields

0 1 a\/ 92
ox?t \/51: oxt
S

ax @ ox?

1
J

(30

Considering that the coordinate system describing the two-
dimensional space, i.e. the (S) surface, is the (@,y)one and
noting that its metrics are expressed as functions of the flow
quantities via Egqs (19),(20),(21) and (24), the curvature
compatibility condition (26) provides a PDE for the velocity
magnitude V¢ in terms of the modified density p and the
local coordinate angle B. Associating coordinate indices 1
and 2 with the ¢ and v coordinates, respectively, one gets,
after substitutions, the following equation:

a(anS)M"’b(ans) ¢¢+C(anS) vy <3

+d(1nVy), +e(1nVy), = F+K/ V3

where
a(ﬁ'p)=si:12l3
b/ B)= tanﬁ
c(p,p)=p*
d(ﬁ,[i)=-S,Ti;§[(ln5)¢+§ﬁ,,+a‘%§m]

e(p,P)=p*(1np) - sin?p Pe
£(5,B)=- 1ZB (ln§)¢¢-a%(ln§)¢¢
(lnp)¢ v L= 3
ﬁ [(lnp)dﬁ’PBqﬁmﬁ‘y

]
51n2[3tanB " 5in? Bpw

2p 2cos ﬁ+1 2
sin’Btanp PaPy n‘p (o)

and subscripts ¢ and v indicate corresponding partial
derivatives. The nonlinear second order PDE, Eq. (31), is
the main governing equation of the flowfield and represents
the velocity equation sought. For irrotational flows, where
B=90° (potential lines are normal to streamlines) Eq. (31)
<implifies to

(1nVy) go* (10P) go+P* (10V) gy
-(1np) o (1nV) o—(1np) 3 (32)

+p2 (1np) ¢ (10V,) g=K/ V2

For the 2-D case Eq.(32) is the same with that given by
Stanitz (Ref.3). Equation (32) can be, also, written in the
form (Ref.10):

[%(1—M2> (1nvy) 4| + [P (1nV,) 1 =K/ (VE) (33)
L]

where M is the local Mach number. Noting that the ¢-
direction coincides with the flow direction, the nature,
elliptic or hyperbolic, of the velocity equation depends on
the value of the local Mach number. In that sense, Eq. (33)
is mathematically similar to the full-potential equation.

It is emphasized that, in the present method, the velocity
PDE, Eq.(31) is derived in a novel way by considering
differential geometry arguments only and not by
manipulating the basic flow equations themselves (in Ref.12




it has been shown explicitly that the two ways of deriving the
velocity equation are equivalent). In that respect the present
methodology is quite modular in formulating inverse
problems. One has just to select an appropriate natural
coordinates system and express the metrics in terms of flow
quantities. The governing equations result, thenafter, using
a standard procedure.

The coefficients of Eq.(31) are functions of p and B. The
modified density function p, defined in Table 1, is a function
of the thermodynamic density p which is governed by Eq.(7).
With the exception of the 2-D flow case p is also a function
of the (unknown)-design-geometry sought. This implies that,
in general, the flow and geometry solution procedures
cannot be separated and carried out in an independent
manner. To close the problem one has to provide an
equation for the coordinate angle B. The latter is related to
the drift function a through Eq. (22).

6.2 Transport Equation for the Drift Function
The drift function is calculated from the transport Eq.(16).
On the (p,y)coordinate system this equation reads:

20, =- Yy 34
Vgoy ).+u.T+vR

Eq. (34) is an ODE along the streamlines of the flow field.
For a given velocity and total enthalpy field the temperature
T which appears in the RHS of Eq. (34) is computed from
Eq. (8). The normal velocity term which is present in
axisymmetric flows only, is computed from the (RV))
distribution. It is noted that the drift function is coupled to
the geometry because of this term.

The total enthalpy as well as the entropy and the swirl
(RVN) are prescribed at the inlet of the flow field as
ht=ht(‘u)’ s=s(y) and RVN=RVN(\|J), implicitly setting the
level of the rotational character of the flow considered.
Taking into account that ht,s and RVN are conserved along
the streamlines, i.e.on W=const. lines [refer to Eqs (3,5,6)],
it is concluded that h,s and RV are known, i.e.are set up
a priori, on the entire flow domain. The distributions
A=A(y)u=pn(y)and v=v(y) are determined at the inlet via
the defining Eqs (11). Since A,p and v are conserved along
the streamlines, Eqs (13), their distribution throughout the
flowfield is, also, known a priori.

6.3 Geometry Equations

The calculation of the geometry is based on the generalized
Frenet equations. Let (§1 ,E?_) be the covariant base for the
(0,v) parametrization of the (S) surface. Then, by definition,

AL S R (35)

where T is the position vector, the components of which

O
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represent the geometry sought. The variation of the
covariant base along the coordinate line directions is
expressed in terms of the Christoffel symbols as

a (§1]_ Fll.l I‘il g:LJ (36)
*\%) s, 15)\%

i (51]= P}Z I‘lz.z (5-].1] (37)
o\, I T %

Since, on the (¢,y)parametrization, Christoffel symbols are
expressions of flow field quantities the corresponding
coefficient matrices of Eqs (36) and (37) are considered to
be known.

The expressions of l"zji (i,j=1,2) are given below for
completeness

11 pVs 1
= Vesing (Vs) g+ 2tanf (ijssinﬂ)zL
(pvs)? 1
I3,=- v, 2
S A [ (i’SVSsinB)ZL
;2=-( Vs ) 1 + 1 4
sinD 5V§tanﬁ ‘ 2 (ﬁVSSiI'l.B)Z‘>

A 1

2 tanp| (pv,sinp)? R

Pg2=' ﬁvf. 3 b1 +
tanp Y| gvitanp , 2| (Pvsing)2

1 2 1
+ V. -+
v (VS [(;”)stinﬁ)z

v
(38)

The integration of Eq.(36) along a y=const. line or of
Eq.(37) along a ¢=const. line provides the covariant base.
The Cartesian components of the geometry are determined,
thenafter, by straightforward integrations of Eq.(35).

7. (¢,y) DOMAIN OF INTEGRATION AND
BOUNDARY CONDITIONS

The inverse problem has a unique solution on the (p,y)

plane provided that appropriate boundary conditions are

specified for the velocity,the drift function and the geometry

equations, Egs (31), (34), (35-37) respectively.

The drift function « is governed by the ODE (34), for which
initial boundary conditions are required along the inlet
section.a, which controls the size of tanpf, i.e. the local
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skewness of the (¢,y) coordinate system, is specified as an
arbitrary constant along the inlet section without affecting
the final flowfield solution. h,,s and RV, distributions are
also prescribed along the inlet section, implicitly specifying
the thermodynamic density.

Initial conditions are also required for the integration of the
geometry Eqs (35-37). The position vector r and the
direction of (g )g are fixed at a pre-selected Iocauon ro
serves as an mmal condition for Eq (35). The direction of
(g1) is sufficient for specifying g1 since its magnitude is
known |g1 | —./'gﬂ (l/VS) [see Eq.(24)}. The same holds
for the magnitude of g2 while its direction is related to the
g1 direction through the coordinate angle B. (g.',gz) form
the initial boundary conditions for Eq. (36) or (37).

The velocity equation, being of elliptic type, requires
boundary conditions all around the integration domain. In
practice the designer prescribes the Vg velocity magnitude as
a function of the solid walls arc lengths, i.e. VS=VS(L). In
both irrotational and rotational flows the potential ¢ is
related to the arc length L on the solid walls (streamlines)
via the relation de= V dL. Obviously, the prescribed
VS VS(L) distribution corresponds to an easily obtainable
Vs Vs((p) distribution, where @ is determined to within an
arbitrary constant.

The Vg velocity magnitude is also prescribed along the inlet
and outlet sections. On these sections the stream function
definition yields dy= pV dL and, consequently, Vo=V(V).
Usually a zero y value is assigned to one of the sohd wal]s
A (¢, w)domain of integration is, thus, constructed, for which
velocity boundary conditions of Dirichler type are prescribed
on the complete boundary while thermodynamic and
geometrical boundary conditions are fixed on the inlet
section.

The shape of the (¢,y)domain depends on the nature of the
problem considered. For internal flows, for example, the
(¢,v) domain is trapezoidal, bounded by the w=0 and
v=v, parallel lines (w xlS related to the total mass-flux).
For external flow computzmons the far field boundary and,
consequently, its image on the (¢,y)plane may be arbitrarily
shaped. The (¢,w)domain which corresponds to an isolated
airfoil design problem is shown in figure 1. One may notice
the double image of the trailing edge (TE) point (one for
the suction side and another for the pressure side), which is
due to the circulation. The boundary conditions of the
normalized velocity V=V/V, are also shown in the figure.

8. NUMERICAL METHOD

The governing equations are discretized and integrated
numerically using finite difference schemes. The standard
procedures for direct methods involving grid generation,
body-fitted coordinate transformation, discretization and

iterative solvers apply to the inverse problem solution, as
well.

InvV=0
T
Suction sideI
° gymmetry
T ¥=0 TE' onditions
z| © 3
- InV=f(g) ITE \ <

=T
Pressure s:lde

¥ l
L_, InV=0

9
Fig.1 (,y) plane and velocity boundary conditions.

The defined (@,w)domain of integration may have irregular
shape. An auxiliary numerical transformation is employed
which maps the irregular (¢,y)domain to a rectangular one
with square unit cells in a computational (§,n)plane. In most
cases an H-type grid on the (@,y) plane with the n=const.
lines corresponding to w=const.lines results from this
transformation. This kind of computational grid is very
convenient for the treatment of the transport equations.
However, in certain cases, like the design of an airfoil with
rounded leading edge, a C-type coordinate transformation
improves the quality of the results in the sensitive region
near the leading edge (see Ref.10).

8.1 Coordinate transformation

Considering the (¢,w)to (£,n) coordinate transformation all
the governing, flow and geometry, equations are expressed
on the (&,n) plane employing the following operator
transformations

L )=é[wﬁ( Yee=2WeWy () gt ¥ () 4]
Ly ()= 1030 =208y () gq 08 () go]

G=by ¥, ~b Ve
( Vea=Ly () ~Ly (W) () y=Ly () ()
() go=Le () "Ly () () g=Ly(d) ( )y

(39)

() g=2Wn ()=t ()]

( )v=%‘;[¢z( )n_¢n( )]

8.2 Numerical Integration of the Velocity Equation

The velocity equation is linearized by assuming that the p
and B distributions are known from the previous iteration
level. Discretizing partial derivatives employing central




second-order accurate differencing (in subsonic flows) a
system of algebraic equations with 9-diagonal banded
nonsymmetric characteristic matrix is obtained. This is solved
using the Modified Strongly Implicit Procedure (MSIP,
Ref.23) which employes an incomplete L-U decomposition
of the 9-diagonal matrix. For 2-D potential problems where
the velocity equation is decoupled from the geometry and
the PB-terms vanish, the convergence properties of the
velocity solver are enhanced using the linear restarting
GMRES (Ref.24) method combined with the incomplete L-
U preconditioner of the MSIP method.

8.3 Numerical Integration of the Drift Equation

Once the velocity field is determined, at each iteration level,
the transport equation for the drift function is integrated
using a second-order accurate Runge-Kutta scheme. The
newly calculated « distribution provides a better estimate for
B via Eq.(22). A better estimate for p is calculated from

Eq.(7).

8.4 Integration of the Geometry Equations

The geometry calculation is performed by integrating Egs
(35-37). Computational experience showed that inaccuracies
associated with the error accumulation of the geometry
calculation are minimized if one determines a reference-
central streamline first and then, starting from it, determines
the wall(s) by integrating along &=const. lines. In order to
enhance the accuracy of the geometry computation a
staggering discretization technique is followed where the
flow quantities are computed at the grid nodes, while the
Christoffel symbols and the covariant base (g1,§2) are
computed at mid-cells and mid-nodes respectively. The
system of Eqs. (36) or (37) is solved using a second order
accurate Runge-Kutta scheme. Similar schemes are employed
for the integration of Eq.(35).

8.5 Artificial Density

An artificial density scheme is used in the solution of the
velocity equation when the local Mach number exceeds the
critical value. Taking advantage of the resemblance of the
velocity equation to the full-potential equation, the artificial
density scheme which is employed, is identical to that
proposed by Holst (Ref.25) for the solution of the direct
transonic flow problem. In more detail, the thermodynamic
density is upwinded in the supersonic region according to the
following scheme:

P=p-udyp p=max {0 , [1-(p, /m?] } (40)

where SS( ) is the (@-wise) streamwise upwind derivative
operator and M is the cut-off Mach number. It should be
noted that this artificial density scheme, in conjunction with
the proposed flow field solver, can handle low transonic
cases only. Special care with respect to the preconditioner of
the velocity equation should be taken, if strong shock waves
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are present in the flow field.

9. RESULTS AND DISCUSSION

The inverse design method proposed in this work has been
validated for irrotational and rotational flows in several
"reproduction” calculations. The term “"reproduction” is used
in the sense that, for a given geometry, a direct -analysis-
code provides the boundary velocity distributions which are
then used by the inverse method to reproduce the original
shape. Such reproduction cases are presented for 2-D and
axisymmetric internal and external flows. The application of
the inverse method to the design of a family of laminar
airfoils with optimized suction side velocity distribution is
also discussed. An automated procedure for achieving closed
airfoil profiles is presented.

9.2 2-D Internal Flows

In this particular case the reproduction procedure has been
reversed. The inverse solver provides a geometry compatible
with a prescribed "target velocity" and the direct solver is
called upon to reproduce the prescribed boundary velocity
(pressure) distribution. The direct method used for the
comparisons employs the Clebsch formulation discussed in
the previous sections and carries out the calculation in terms
of @,a and s, while h_ is considered to be constant

t
throughout the flow field.

In all of the rotational test cases the entropy distribution is
set a priori not in an entirely arbitrary manner. Entropy
level of different streamlines at the inlet section is computed
according to the relation:

\4
5¢= ——;Vs' @n

This relation is derived by assuming that the vorticity which
corresponds to the velocity gradient at the inlet is compatible
with the one which corresponds to the entropy gradient. In
addition, it is necessary to assume that the inlet section is
straight and that the flow is evolving very slowly in the
vicinity of the inlet, i.e. that streamlines there are almost
parallel. A posteriori observations of the rotational cases
results, see Figs. 4-7 and 11-13, satisfy these conditions to a
great extent. Actually, it can be shown that specifying both
the velocity and entropy gradients along the inlet section is
equivalent to specifying the streamwise gradient of the
velocity. The solution, geometry, therefore near the inlet
adjusts itself, so that the streamwise velocity gradient is the
same as the implicitly imposed one.

Results for the symmetric convergent-divergent nozzle are
presented in Figs 2-5. Calculations were carried out with a
(51x21) grid with Aw=1,A(pl9wer ,wal.l='1 and Mref=0.15.
Imposed -target- wall velocity distribution for both the
irrotational and rotational cases is shown in Fig. 2. The non-
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constant part of this distribution is described by a sinusoidal
function with linearly increasing amplitude. For the
irrotational case uniform inlet and outlet velocity
distributions are specified. In the rotational case symmetric
parabolic velocity profiles with peak values 1.4and 2.5in the
inlet and outlet sections, respectively, are assumed.

5.0

—— TARGET
---- DIRECT

40

3.0
3
>2.0
1.0
0.0 1 i n A 4 1 " 1 1 i 4 A 1 1 1 i A
0.00 0.25 0.50 0.75 1.00
&/ max

Fig.2 Target and direct calculation wall velocity distribution
for rotational nozzle case.

Wall velocity distribution for the rotational case calculated
with the direct method is also included in Fig.2. This
distribution agrees very well with the target distribution.
Small discrepancies observed in the divergent part of the
nozzle may very well be due to the fact that the integration
of the drift transport equation in the direct method is carried
out with a first-order accurate scheme. Calculated flow field
distributions of the Mach number, which achieves values as
high as 0.72,and the potential function are shown in Figs 3-
5. Inverse and direct solver results, denoted by solid and
dashed lines, respectively, are entirely symmetric. Their
agreement is very good, indicating the reliability of the
present method.

Fig.3 Mach contours of inverse (—) and direct (---—-)
methods for irrotational nozzle case (Mmin=0'15'
AM=0.05).

Fig.4 Potential lines of inverse (—) and direct (--)
methods for rotational nozzle case (¢ ;,=0, Ap=4).

Fig.5 Mach contours of inverse (—) and direct (----)

methods for rotational nozzle case (Mmin=0'15’AM=0'05)'

For the elbow channel case calculations were performed with
a (65x17) gtid with Ay=0.5,A0 .. wallzl' Target wall
velocity distributions on the upper and lower channel walls
for both the irrotational and rotational cases are shown in
Fig.6. Their characteristic is that the flow on both walls of
the channel never decelerates.

1.25
[ —— TARGET
[ ---- DIRECT
1.00 F
5075
3
>
0.50
[
0'25 I T T W 1 i s e A 1 'y i A i 1 i A A A
0.00 0.25 0.50 0.75 1.00

Emax
Fig.6 Target and direct calculation wall velocity distributions
for rotational elbow channel case.




In the irrotational case uniform velocity distributions are
imposed at the inlet and outlet sections, the Mach number
at the outlet being M., (=0.7993.This test case corresponds
to the well-documented elbow case of Stanitz (Ref.3). The
Mach number contours calculated with the inverse and direct
methods, presented in Fig.7 are almost identical.

Fig.7 Mach contours of inverse (—) and direct (----)
methods for irrotational elbow channel case (M 0.4,
AM=0.025).

min~

In the rotational elbow case symmetric parabolic velocity
profiles with peak values of 0.58and 1.1 are imposed with
M__.=0.6. Wall velocity distributions calculated with the
direct method are compared to the target ones in Fig.6.
They exhibit very satisfactory agreement. Results for the
potential function, the Mach number and the drift function
are presented in Figs 8-10, respectively. Inverse method
results agree quite well with those of the direct method
(compare solid and dashed line contours, respectively). Small
discrepancies observed near the outlet of the channel are
possibly due to inaccuracies involved with the integration of
the thermal drift equation in the direct method.

)))

lines of inverse (—) and direct (---—-)
=0,Ap=4).

Fig.8 Potential

method for rotational elbow channel case (q)min

r-—,,
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Fig.9 Mach contours of inverse (—) and direct (----)
methods for rotational elbow channel case M_. =0.3,

)IO

min

Fig.10 Thermal drift function contours of inverse (—) and
direct (-----) methods for rotational elbow channel case
(“min =-80, Aa = 10).

9.2 Axisymmetric Flows - Meridional Plane Calculations
Reproduction results for two “real-life" geometries,
corresponding to the (nonbladed) annular duct of a two-
stage axial compressor (Ref.26) and the duct of a radial
compressor (Ref.27) are presented here. In both cases duct-
flow computations were performed for subsonic irrotational
and rotational flow conditions.