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Preface 

This volume is a compilation of the edited proceedings of the "Optimum Design Methods for Aerodynamics" course held at 
the von Karman Institute for Fluid Dynamics in Rhode Saint Genese Belgium, 25-29 April 1994. The material assembled in 
this Report was prepared and presented under the combined sponsorship of the AGARD Fluid Dynamics Panel, and the von 
Karman Institute for Fluid Dynamics. 

Techniques for designing modern aerospace systems which either maximize a beneficial aerodynamic performance feature, 
or minimize a less desirable characteristic while recognizing other design constraints, have moved from the research lab to 
the design room in recent years. This has become possible because of the integration of efficient aerodynamic and geometric 
codes with optimization methods to form efficient, and powerful, design and analysis computer tools. The objective of this 
course was to distribute and share fundamental information on the development and use of these tools. 

Preface 

Ce volume est un recueil des textes presentes lors du Cours sur 'Les methodes de calcul optimisees pour l'aerodynamique» 
organise par PInstitut Von Karman de dynamique des fluides ä Rhode Saint Genese en Belgique du 25 au 29 avril 1994. 

Les cours contenus dans ce rapport ont ete elabores et presentes sous l'egide conjointe du Panel AGARD de la dynamique 
des fluides et l'lnstitut Von Karman de dynamique des fluides. 

Des techniques de conception de systemes aerospatiaux modernes soit qui maximisent une caracteristique de performance 
aerodynamique, soit qui minimisent une caracteristique moins avantageuse, tout en tenant compte des autres contraintes de 
conception, sont passees du laboratoire de recherche au bureau d'etude en l'espace de quelques annees. Ceci est devenu 
possible grace ä l'association de codes geom&riques et aerodynamiques performants ä des möthodes d'optimisation, ce qui a 
permis de realiser des outils informatiques d'analyse et de conception puissants et efficaces. 

Ce cours a eu pour objectif de diffuser et de commenter les informations de base concernant le developpement et la mise en 
oeuvre de ces outils. 
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SINGLE-PASS METHOD FOR THE SOLUTION OF INVERSE 
POTENTIAL AND ROTATIONAL PROBLEMS. 

PART I: 2-D AND QUASI 3-D THEORY AND APPLICATION 

P. Chaviaropoulos, V. Dedoussis    and K.D. Papailiou 
National Technical University of Athens 

Lab. of Thermal Turbomachines 
P.O. Box 64069,157 10 Athens, Greece. 

SUMMARY 
A methodology for the solution of the 2-D and 3-D inverse 
inviscid subsonic flow problem is introduced. The proposed 
methodology handles the 2-D and axisymmetric rotational 
and the 3-D potential target pressure problem in a single- 
pass manner. The method is based on a potential function/ 
stream function formulation where the physical space is 
mapped onto a natural one using the potential and stream 
function(s) as body-fitted coordinates. A novel procedure 
based on differential geometry and generalized tensor 
analysis arguments is employed to formulate the method in 
a modular way. The governing equations for the inverse 
problem are derived through the metrics compatibility 
condition on the natural space. Geometry is determined by 
integrating generalized Frenet equations along the natural 
coordinate lines. Rotationality, when present, is due to 
incoming (stagnation) thermodynamic quantities and/or pre- 
swirl gradients. The Clebsch formulation is, then, adopted to 
decompose the velocity field into a potential and a rotational 
part. To validate the method inverse calculation results are 
compared to results of direct "reproduction" calculations. 
The design procedure of some optimized shapes is also 
presented. Part I of this lecture focuses on 2-D and 
axisymmetric inverse potential or rotational flow problems, 
while the fully 3-D inverse potential problem is considered 
in Part n. 

LIST OF SYMBOLS 
a,b,c,d,e,f 

grgJ 

Ti J 

ij 

h 
L 
K 
M 
N 

velocity Eq.(31) coefficients 
specific heats 
covariant and contravariant base vectors 
of natural ((p,v|/) coordinate system 
conjugate metrics tensor of natural (cp,v) 
coordinate system 
metrics   tensor   of computational   (£,T|) 
coordinate system 
enthalpy 
position vector 
Riemann curvature of the (S) surface 
Mach number 
unit   base   vector   in   the   peripheral 
direction 

s 
T 
V 
(x,y) 
a 

n   s 

I 

v 
(S,n) 
P 
p(=rp) 
((P-V) 

ß 

Subscripts 
i,j,l,q(=l,2) 
o 
ref 
t 
s 
N 
£,T|.<P>V 

Superscripts 
ij,l,q(=l,2) 

entropy 
temperature 
velocity vector 
(physical) Cartesian coordinate system 
drift function 
Clebsch     decomposition      coefficients 
associated  with  enthalpy,  entropy  and 
swirl gradients 
angle between Vj,Vf 
specific heats ratio 
Christoffel symbol of second kind 
entropy gradient coefficient 
swirl gradient coefficient 
total enthalpy gradient coefficient 
computational coordinate system 
density 
modified density 
potential     function,    stream    function 
natural coordinate system 
vorticity vector 

covariant tensor indices 
known position indicator 
reference quantity 
total quantity 
(s) surface component 
N-wise component 
partial derivatives with respect to £,r|,<p 
or v respectively 

contravariant tensor indices 

1. INTRODUCTION 
The operation of aircrafts, propulsion and energy conversion 
systems and process industry equipment relies heavily on the 
performance of their aerodynamic components, such as air 
intakes, nozzles, wings, cascades, etc. The development of 
reliable automated methods which will reduce the human 
expertise interference in the design loop and will increase 

1 Also in Dept. of Industrial Management, University of Piraeus, 185 34 Piraeus, Greece. 

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genese, April 1994. 
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the quality and duration of the products is one of the CFD 
challenges for the next decade. Although the optimum 
design concept is so old as the theory of aerodynamics itself, 
the maturation of analysis methods and the continuously 
increasing computer power have placed it back in stage. A 
comprehensive review of the evolution of optimal shape 
design methods has been presented by Dulikravich (Ref.l) 
and more recently by Labrujere and Sloof (Ref.2). 

In designing aerodynamic components engineers aim to 
minimize or prevent losses associated with wall boundary 
layer separation and/or the occurence of a shock. It is 
known that boundary layer behavior, as well as the 
occurence of a shock, is controlled by the characteristics of 
the pressure distribution along the walls of the flow field. 
The need, therefore, of having accurate and efficient inverse 
design methods that provide the designer with a shape that 
corresponds to a prescribed wall pressure or velocity (for 
inviscid flow models) distribution is evident. 

First attempts to develop such target pressure methods are 
traced back in mid-forties when inverse potential methods 
based on conformal mapping and potential theory have been 
applied to the design of airfoils. In the fifties, Stanitz (Ref.3) 
developed his inverse potential method for compressible 
flows. Applying a body-fitted coordinate transformation, 
Stanitz derived the inverse potential flow equations on a 
"natural" computational plane employing the potential 
function and the stream function as independent variables. 
The two-dimensional (2-D) inverse problem can then be 
solved if "target" velocity (or pressure) distributions are 
imposed over the complete boundaries of the domain. 
Stanitz's method being more flexible than the conformal 
mapping ones has been extended to axisymmetric flows 
(Ref.4) as well as to turbomachinery flows including the 
planar and the axisymmetric rotating or non-rotating 
cascades (Refs 5-7). The 2-D potential target pressure 
problem has been recently reconsidered by Barron (Ref. 8), 
who provided an alternative formulation using the Von- 
Mises transformation by Volpe (Ref.9) who developed 
iterative profile closure conditions for compressible flows 
and by the present authors (Ref. 10) who reformulated the 
airfoil design problem using differential geometry principles. 

The computational cost of all the above-mentioned "target 
pressure" -inverse-methods is equivalent to that of analysis- 
direct- methods. For reasons which will be explained below 
we will refer to these methods as "single-pass"methods. The 
"single-pass" methods are very efficient in terms of the 
computational cost and provide a physical insight to the 
design problem. Conceptually, however, they are restricted 
to 2-D potential flows only. Some extensions to rotational 
flows using the Clebsch transformation are reported by 
Borges (Ref.l 1) and by the present authors (Refs 12,13). 
Stanitz (Ref. 14) extended his original 2-D potential method 
to three dimensional  (3-D) flows. A disadvantage of the 

"single-pass" methods is related to their inability to 
incorporate flow or geometrical side-constraints. Thus, the 
designers expertise remains crucial for determining the 
"appropriate" target pressure distribution. 

In the effort to circumvent the drawbacks of "single-pass" 
methods, optimization methods appeared in the design field 
as an alternative. These methods solve a general 
minimization problem, the cost function of which expresses 
desired flow properties along with flow or geometrical 
constraints. This cost function is computed using a standard 
direct solver and the designer may decide upon the 
complexity level of the state equations to be solved. The 
solution of the optimization problem (the "target pressure" 
problem being one variant) is obtained as a sequence of 
direct problem solutions. Although the formulation of the 
design problem seems to be straightforward, these methods 
are still time consuming (some hundreds of direct problems 
are sometimes solved in the optimization process, plus the 
regriding overhead) while in complicated 3-D flows the grid 
deformation and adaption problem may become crucial for 
the convergence of the algorithm. Convergence may be 
accelerated using suitable parametrization techniques 
(Ref. 15) or hierarchical optimization techniques (Ref. 16). An 
alternative approach springs from the reformulation of the 
general optimization problem using optimal control theory 
(Ref. 17). Then the descend direction may be obtained from 
the solution of an "adjoint" state equation which is usually 
similar to the state equation itself. This technique reduces 
the computational cost a lot, provided that the adjoint 
equation exists. 

Although optimization methods appear to be a remedy for 
the design problem this is not completely true. There are 
difficulties in specifying the appropriate cost function for a 
precise problem. If, for example, the shock drag 
minimization problem is to be solved for a transonic airfoil, 
a hanging shock solution may be obtained if no curvature 
constraints are imposed on the profile. Optimization of lift 
versus drag at a specific incidence may cause, as a second 
example, severe off-design problems. It seems that the 
formulation of the optimization problem using global flow 
measures (such as lift and drag) in an automated procedure 
is a very risky policy. It seems much better to control the 
flow behaviour at the local level and that explains why the 
"target pressure" conditions are widely used as optimality 
conditions by the optimisation methods as well. Even in this 
case, however, the results may be misleading. If, for instance 
the prescribed inviscid target pressure distribution is not 
consistent in terms of profile closure, the minimization 
algorithm will provide a solution which may be far from the 
desired one in physical terms (the transition point location 
may be altered or flow separation may be produced because 
of local deceleration of the flow). Additionally, optimization 
methods provide no information on the existence and the 
uniqueness of the solution of a flow (design) problem. They 
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lack, therefore, the physical insight of "single-pass"methods. are also presented. 

The purpose of Part I of the lecture is to present a unified 
methodology for the solution of the inverse target pressure 
problem in a "single-pass" manner. The proposed 
methodology tackles inviscid rotational subsonic flows which 
develop on arbitrary prescribed surfaces in a quasi-3D 
manner and can be applied to the design of 2-D or 
axisymmetric internal (ducts, nozzles, cascades) and 2-D 
external (airfoils) flow configurations. 

The method is based on the potential function - 
streamfunction formulation and in that respect presents 
some similarities with the one developed by Stanitz (Ref.3) 
for irrotational flows. Clebsch formulation is employed to 
decompose the velocity vector into a "potential" and a 
rotational part, the latter expressed as the product of a 
(scalar) drift function with the stream function gradient. 
Exploiting the fact that in inviscid flows, solid boundaries are 
streamlines, a body-fitted coordinate transformation is 
carried out which maps the physical space (on which the 
geometry of the boundaries is sought) onto the potential 
function-streamfunction (<p,v) space. The potential function 
and the streamfunction are the independent non-orthogonal 
curvilinear coordinates. 

An interesting novelty of the method is that the main 
second-order nonlinear elliptic partial differential equation 
(PDE) for the velocity magnitude is derived using 
differential geometry arguments rather than manipulating the 
basic flow equations themselves. This equation results 
directly from the metrics compatibility condition which is 
expressed in terms of flow quantities on the natural ((p,v) 
space. This equation, in conjunction with a transport 
equation for the drift function of the Clebsch decomposition, 
provide the solution of the flow field. 

The calculation procedure involves two main steps. In the 
first step the discretized governing equations are solved for 
the flow quantities using a fast iterative incomplete 
factorization scheme. Having calculated the flow field, the 
corresponding geometry is determined, by straightforward 
integration of Frenet equations along potential lines and/or 
streamlines. For 2-D flows the flow and geometry 
calculations are completely decoupled. In axisymmetric flows, 
however, the radial coordinate R appears in the expressions 
of the metrics implying that the flow field and the geometry 
solutions are coupled. 

To validate the method several "reproduction" calculations, 
including 2-D and axisymmetric nozzles and ducts, 2-D 
airfoils, 2-D and quasi 3-D axisymmetric non-rotating 
cascades, have been carried out. The favorable comparisons 
between inverse results and those of direct, analysis, codes 
indicate the reliability of the method. Results concerning the 
design of optimized blades for horizontal axis wind turbines 

2. ASSUMPTIONS AND BASIC EQUATIONS 
The design method proposed in this lecture concerns steady, 
subsonic, inviscid and adiabatic flows of a perfect gas. 
Rotationality, when present, is due to incoming (stagnation) 
thermodynamic quantities and or pre-swirl (in axisymmetric 
flows) gradients. In order to present a unified theory for 2-D 
and quasi 3-D flows we consider the conservation laws which 
govern the flow field developing on an arbitrary shaped 
stream surface (S) with varying streamtube thickness An. 
This surface may represent the plane of a 2-D flow, or the 
meridional plane of an axisymmetric flow, or the (S^ -blade 
to blade- surface of a peripheral cascade. 

Under the above assumptions, the (unified)  conservation 
laws read. 

Continuity equation 

Vs. (p^)=0 

Momentum equation 
(S) surface component 

(1) 

vs x fljrVA-r VsB—2 VS(RVN) (2) 

normal (to S-surface) component 

Vs.Vs(RVN)=0 0) 

Energy equation 

(4) 

Subscript S denotes properties on the (S) surface and 
subscript N properties along the normal to the (S) surface 
direction. Vg stands for the surface gradient operator. The 
defining relation for the N-wise vorticity component flN is: 

Ö„=VS x Vs (5) 

When an axisymmetric flow is considered R is a genuine 
variable representing the radial distance from the axis of 
symmetry. The definition of the modified density p and the 
normal velocity component VN for the three different cases 
which are considered here is given in Table 1. 
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(S) surface P vN 

2-D plane flow P 0 

axisymmetric flow PR Peripheral Vel. Vu 

blade to blade flow pAn 0 

Table 1 

Rearranging Eq. (2) and taking into account Eqs (3) and (4), 
we get the entropy conservation law 

V.Vss=Q (6> 

The above system of equations   is supplemented   by the 
following density equation: 

P«/j 
.Y-l (7) 

"xaf 

where subscript ref denotes reference conditions and y is the 
ratio of specific heats c /c . 

The perfect gas assumption implies that enthalpy changes 
are proportional to those of temperature, i.e.dh=c dT.The 
stagnation enthalpy ht is defined as 

At=h+-|(v|+v|) (8) 

3. THE INVERSE TARGET VELOCITY PROBLEM 
For a given geometry, the solution of Eqs (1) to (8) 
supplemented by an appropriate set of boundary conditions, 
provides the complete inviscid flow field. This solution is 
called a direct solution of the flow problem. When the 
inverse problem is considered, we are looking for the 
geometry which exhibits on it (i.e. on the boundary of the 
flow domain) certain prescribed flow qualities. Evidently, the 
steady Eqs (1) to (8) have to be satisfied by the inverse 
solver. 

In the present work, the inverse target velocity problem 
which is tackled, may be defined as follows: 

"For a given shape of the (S) surface, inflow conditions 
ht,s,V^,\Vs\ as well as prescribed magnitude of the 
velocity VQ along the lateral boundaries -solid walls- (in 
terms of their arc length), determine: (i) the flow field 
which satisfies the inviscid conservation laws and (ii) the 
corresponding  geometry". 

As it will be demonstrated below this inverse target velocity 
problem is a well-posed one. 

4. POTENTIAL-TYPE/STREAM   FUNCTION 
FORMULATION 

The purpose of this section is to introduce the potential 
function and the stream function which will serve as "natural 
coordinates" in the formulation of the present inverse design 
method. 

4.1 Stream Function 
A stream function on the (S) surface is introduced through 
the following relation 

pvs=Vs$ XN (9) 

where N is the unit vector normal to the (S) surface. The 
stream function is defined in such a way so that the 
continuity Eq.(l) is satisfied identically. Note that the 
definition of the stream function for the general case is 
analogous to the usual two-dimensional one with the 
exception that the density is replaced by the modified density 
term p. 

4.2 Clebsch Formulation 
Clebsch formulation (Ref. 18) is used to decompose the 
surface velocity field into an irrotational and a rotational 
part is usually expressed as a linear combination of Vght> 

V.s and V.(RVN) which are responsible for the rotational 
character of the flow [see Eq.(2)]._Since the above gradients 
are normal to the velocity vector Vg and lie on (S) they are 
parallel to one another. Taking advantage of this property 
one may express the rotational part of the velocity using 
one gradient, only, and a single coefficient (e.g. Ref. 12). In 
order to treat all kinds of rotational flow in a unified way, a 
variant of the Clebsch formulation based on the stream 
function was adopted. 

The Clebsch decomposition of Vg used here reads: 

where cp is the potential function on the (S) surface and a is 
a generalized drift function. It is emphasized that in 
potential flows a vanishes yielding the standard expression 
for the velocity vector Vs=Vg(p. Eq.(9) indicates that Vs\|/, 
being normal to Vg, is parallel to Vght, Vgs and Vg(RVN). 
Introducing the coefficients X,u,vwe may write: 

V^t=AVsi|r ,    Vss=uVsiJr       VS(RVN) =vVsiJr      (11) 

Applying the surface curl operator on Eq.(10) and taking 
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into account Eq.(ll) it is seen that 

VsAxVsi|r = Vs\xxVs$ = VsvxVsi|r=0 (12) 

As it has been stated above V_X,, VgU, and V„v being 
parallel to V.y are normal to the surface velocity vector 
(V-). We can write, therefore, that: 

Vs.VsX = Vs.Vs\i = Vs.Vsv=0 (13) 

Transport equations  (13) simply state that X.nand v are 
conserved   along,   i.e.  remain   constant   on,   the   surface 
streamlines.   Consequently,   we  may  write  that   X,=X(v), 
u=n(\y)and v=v(i|/). Eqs (3), (4) and (6) also indicate that 
ht=ht(v),s=s(\|/)and RVN=RVN(ij/). 

Applying the surface curl operator on Eq. (10) yields the 
following expression for the N-wise vorticity component 

Q„=VsaxVsi|r (14) 

Introducing  Eq.(14) and relations (11) to the momentum 
Eq.(2), we get after some manipulations that 

VsX (VjOxVat) = -Vsi|» (Vs. Vsa) = 

U-uT-v-^|V5l|r 
(15) 

Noting that VgVj/ never vanishes (with the exception of 
stagnation points), Eq.(15) yields the following transport 
equation for the generalized drift function a 

vt
s.vs«=-^+urH-v-^ (16) 

The conjugate (contravariant) metrics of the (<p,M/) system, 
which actually define the body-fitted physical space to the 
natural (q>,»|/) space transformation, are evaluated via the 
defining relations and Eqs (17), (18) as following: 

Sr«=$i.£i = v2+a2|Vstl
2 = vf [l+(ap)a] 

3in2ß 
.(19) 

(20) 

Sr12=sr21^1^2 = -«P^|Vs«H=-ap2v| = ^      (?D 

where ß is the angle formed between Vg(p and Vsv on the 
(S) surface. The following expression for the (coordinate) 
angle ß results from Eqs (19) and (21) 

tanß=--^ 
ap 

(22) 

The covariant metrics g-, (i,j = l,2)may be expressed in 
terms of the contravariant ones following standard tensor 
relations (Ref. 19): 

ff-W« (23) 

In terms of flow quantities the covariant metrics of the (<p,v)/) 
coordinate system are: 

^11 = "^      -      ?22 = 

(24) 

9ri2=9r21 = 

pvjtanß 

5. NATURAL  (<p,y) CURVILINEAR COORDINATE 
SYSTEM 

The potential function and the stream function, i.e. the 
natural coordinates, on the meridional plane, are considered 
to be the independent variables. The defining Eqs (9) and 
(10) provide the contravariant base of the ((p,*e) coordinate 
system. Associating coordinate indices 1 and 2 with the q> 
and vy coordinates respectively, the contravariant base reads: 

and the Jacobian of the coordinate transformation yields 

#1=V^=t?s-oVsi|r (17) 

(18) 

The dot product Vs<p-Vg\)/ is definitely nonzero since Vg\|/ 
is normal to V This indicates that, unlike irrotational flow, 
in the present rotational one the (<p,\|/) coordinate system is 
nonorthogonal. 

J^det1'2 (g±j) 
(pvj)2 (25) 

6. GOVERNING EQUATIONS 
The objective of this section is to present and discuss the 
derivation of the equations that are actually solved by the 
present method for determining the flowfield and the 
geometry. Differential geometry and generalized tensor 
analysis arguments are employed in order to derive the 
governing equations. The present procedure, which treats the 
inverse problem as a geometrical rather than a flow one, 
proved to be quite modular and efficient in several inverse 
design applications both in two (Refs 10,12,13)and three 
dimensions (Refs 20,21,22). 
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6.1 Velocity equation 
An equation for the magnitude of the surface velocity 
component Vg is obtained from the metrics compatibility 
condition, which has to be satisfied by any parametrization 
of (S), including the ((p,v) natural coordinates one. In two- 
dimensional spaces the curvature tensor has one independent 
component Rioi? (Ref-19) which is equal to the 
Riemannian curvature K of the (S) surface considered 

rtÄ1212 = K (26) 

K is an intrinsic property of the surface and, in general, is 
non-zero. Surfaces with zero Riemannian curvature are i) 
the plane surface, i.e. 2-D or meridional flow case, ii) the 
cylinder and iii) the cone. 

For any (x1,x2) parametrization of the (S) surface the R1212 
term is expressed as: 

W-£r [22.1]-^ [21,1] ♦ 

+r^[i2,j]-r|2[ii,i] 

(27) 

and 

[mn.l] 
2\dxn    dxm    dx1 

rS,=srffI[inn,J] 

(28) 

n^ 

with m,n,l,q=l,2.Eqs (28) and (29) define the Christoffel 
symbols of the first and second kind, respectively. 

When the (x1,x2) parametrization of (S) is an orthogonal 
one, the expressions of the Christoffel symbols are simplified 
considerably and Eq.(27) yields 

K= d 
dx1 

dy/g^ 
dx1 

(30) 

dx2 dx2 

Considering that the coordinate system describing the two- 
dimensional space, i.e. the (S) surface, is the ((p,\)/)one and 
noting that its metrics are expressed as functions of the flow 
quantities via Eqs (19),(20),(21) and (24), the curvature 
compatibility condition (26) provides a PDE for the velocity 
magnitude V. in terms of the modified density p and the 
local coordinate angle ß. Associating coordinate indices 1 
and 2 with the <p and y coordinates, respectively, one gets, 
after substitutions, the following equation: 

+d(lnvs)4 +e(lnvs)v = f+K/VJ 
(3D 

where 

a(p,ß)=- 

c(p\ß)=p2 

f(ß'ß)=-7ik(lnP)**-t^ß(lnp)** 
(lnp) 

sin' f [(lnPVpß*+tlkßß* 
1        ß   _    p    ß 

sin2ßtanßH**   sin2ß K** 
+ 2| ß ß  +2cosfl+l(ß ): 

sin2ßtanß P*P*      sin'ß      K* 

and subscripts <p and y indicate corresponding partial 
derivatives. The nonlinear second order PDE, Eq. (31), is 
the main governing equation of the flowfield and represents 
the velocity equation sought. For irrotational flows, where 
ß=90° (potential lines are normal to streamlines) Eq. (31) 
EiracHfies to 

(lnVs) 44+ (Jnp) 44,+p2 (lnVs) TY 

-(lnp)lt(lnVs)^-Unp)l 

+p2(lnp)T(In^)T=iT/v| 

(32) 

For the 2-D case Eq.(32) is the same with that given by 
Stanitz (Ref.3). Equation (32) can be, also, written in the 
form (Ref. 10): 

U(l-Af2) (lnVs)J +[p(IJiV5)t]t=tf/(pvf)   (33) 

where M is the local Mach number. Noting that the (p- 
direction coincides with the flow direction, the nature, 
elliptic or hyperbolic, of the velocity equation depends on 
the value of the local Mach number. In that sense, Eq. (33) 
is mathematically similar to the full-potential equation. 

It is emphasized that, in the present method, the velocity 
PDE, Eq.(31) is derived in a novel way by considering 
differential geometry arguments only and not by 
manipulating the basic flow equations themselves (in Ref. 12 
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it has been shown explicitly that the two ways of deriving the 
velocity equation are equivalent). In that respect the present 
methodology is quite modular in formulating inverse 
problems. One has just to select an appropriate natural 
coordinates system and express the metrics in terms of flow 
quantities. The governing equations result, thenafter, using 
a standard procedure. 

represent the geometry sought. The variation of the 
covariant base along the coordinate line directions is 
expressed in terms of the Christoffel symbols as 

A \gi 11 
r1 T* 111 xii 

pi J-I2 
^l2X '■21/ 

'2  ^  '&) (36) 

The coefficients of Eq.(31) are functions of p and ß. The 
modified density function p, defined in Table 1, is a function 
of the thermodynamic density p which is governed by Eq.(7). 
With the exception of the 2-D flow case p is also a function 
of the (unknown)-design-geometry sought. This implies that, 
in general, the flow and geometry solution procedures 
cannot be separated and carried out in an independent 
manner. To close the problem one has to provide an 
equation for the coordinate angle ß. The latter is related to 
the drift function a through Eq. (22). 

6.2 Transport Equation for the Drift Function 
The drift function is calculated from the transport Eq.(16). 
On the (<p,v) coordinate system this equation reads: 

5%" VSa ^ m VN (34) 

Eq. (34) is an ODE along the streamlines of the flow field. 
For a given velocity and total enthalpy field the temperature 
T which appears in the RHS of Eq. (34) is computed from 
Eq. (8). The normal velocity term which is present in 
axisymmetric flows only, is computed from the (RVN) 
distribution. It is noted that the drift function is coupled to 
the geometry because of this term. 

The total enthalpy as well as the entropy and the swirl 
(RVN) are prescribed at the inlet of the flow field as 
ht=ht(i)/), s=s(\)/)and RVN=RVN(v|/), implicitly setting the 
level of the rotational character of the flow considered. 
Taking into account that ht,sand RVN are conserved along 
the streamlines, i.e. on 4/=const. lines [refer to Eqs (3,5,6)], 
it is concluded that lu.sand RVN are known, i.e. are set up 
a priori, on the entire flow domain. The distributions 
X=A.(>j/),u, = u(\)/)and v=v(\y)are determined at the inlet via 
the defining Eqs (11). Since X,\x and v are conserved along 
the streamlines, Eqs (13), their distribution throughout the 
flowfield is, also, known a priori. 

6.3 Geometry Equations 
The calculation of the geometry is based on the generalized 
Frenet equations. Let (g,,%) be the covariant base for the 
((p,i)/)parametrization of the (S) surface. Then, by definition, 

sr2= 
df 
3iji 

(35) 

a* \§2 

A-a      -p2 \ 
1 12        l 12 

I 22 I 2 

(37) 

Since, on the ((p,\)/)parametrization, Christoffel symbols are 
expressions of flow field quantities the corresponding 
coefficient matrices of Eqs (36) and (37) are considered to 
be known. 

The expressions of Tj:1 (i,j=l,2) are given below for 
completeness 

r1 —     i     (v) +_£ZL. 
121      Vssinß1^*   2tiEß (pV^siriß): 

^"V&EEW* 
(pvs): 

(p"Vssinß): 

r1 =- 

1   pv| 

imßj   |[pv|tanßjt   2[ (pvssinß 

2 tanß 

p2 P^ 
l22"tiEß 

+|   (W2 

(pVssinß): 

1       )+l 
ivjtanßj+   2 (pvssinß): 

(pv2sinß): 

(38) 

where r is the position vector, the components  of which 

The integration of Eq.(36) along a v = const, line or of 
Eq.(37) along a cp=const, line provides the covariant base. 
The Cartesian components of the geometry are determined, 
thenafter, by straightforward integrations of Eq.(35). 

7.  (<p,y) DOMAIN OF INTEGRATION AND 
BOUNDARY  CONDITIONS 

The inverse problem has a unique solution on the ((p,v) 
plane provided that appropriate boundary conditions are 
specified for the velocity,the drift function and the geometry 
equations, Eqs (31), (34), (35-37) respectively. 

The drift function a is governed by the ODE (34), for which 
initial boundary conditions are required along the inlet 
section.a, which controls  the size of tanß, i.e. the  local 
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skewness of the ((p,v) coordinate system, is specified as an 
arbitrary constant along the inlet section without affecting 
the final flowfield solution. ht,s and RVN distributions are 
also prescribed along the inlet section, implicitly specifying 
the thermodynamic density. 

Initial conditions are also required for the integration of the 
geometry Eqs (35-37). The position vector rQ and the 
direction of (g\)n are fixed at a pre-selected location. tQ 

serves as an initial condition for Eq.(35). The direction of 
(g.) is sufficient for specifying g*, since its magnitude is 
known If, | =,/g^=(l/Vs) [see Eq.(24)]. The same holds 
for the magnitude of g2 while its direction is related to the 
g. direction through the coordinate angle ß. (g^gg),, forrn 

the initial boundary conditions for Eq. (36) or (37). 

The velocity equation, being of elliptic type, requires 
boundary conditions all around the integration domain. In 
practice the designer prescribes the Vs velocity magnitude as 
a function of the solid walls arc lengths, i.e. Vg=Vs(L). In 
both irrotational and rotational flows the potential <p is 
related to the arc lengthy L on the solid walls (streamlines) 
via the relation d(p=V$.dL. Obviously, the prescribed 
V. = V_(L) distribution corresponds to an easily obtainable 
V =Vs((p) distribution, where <p is determined to within an 
arbitrary constant. 

The V_ velocity magnitude is also prescribed along the inlet 
and outlet sections. On these sections the stream function 
definition yields dy = pVs.dL and, consequently, Vs=Vs(v). 
Usually a zero v value is assigned to one of the solid walls. 
A ((p,vj/)domain of integration is, thus, constructed, for which 
velocity boundary conditions of Dirichler type are prescribed 
on the complete boundary while thermodynamic and 
geometrical boundary conditions are fixed on the inlet 
section. 

The shape of the (<p,v|/) domain depends on the nature of the 
problem considered. For internal flows, for example, the 
(<p,v|/) domain   is trapezoidal,   bounded   by the   v=0 and 
w = \i/     parallel lines (w   „ is related to the total mass-flux). v    TmaxF XTmax 
For external flow computations the far field boundary and, 
consequently, its image on the ((p,\)/)plane maybe arbitrarily 
shaped. The (<p,iy) domain which corresponds to an isolated 
airfoil design problem is shown in figure 1. One may notice 
the double image of the trailing edge (TE) point (one for 
the suction side and another for the pressure side), which is 
due to  the  circulation.  The boundary  conditions  of the 
normalized velocity V=VS/VC0 are also shown in the figure. 

iterative solvers apply to the inverse problem solution, as 
well. 

lnV=0 

Suction side 

i>=0     /      TE 

Symmetry 
Conditions o 

II 
> c 

Fig.l ((p,v) plane and velocity boundary conditions. 

The defined (<p,v)/) domain of integration may have irregular 
shape. An auxiliary numerical transformation is employed 
which maps the irregular (<p,y)domain to a rectangular one 
with square unit cells in a computational (£,r|)plane. In most 
cases an H-type grid on the ((p,\|/) plane with the r|=const. 
lines corresponding to H/=const, lines results from this 
transformation. This kind of computational grid is "very 
convenient for the treatment of the transport equations. 
However, in certain cases, like the design of an airfoil with 
rounded leading edge, a C-type coordinate transformation 
improves the quality of the results in the sensitive region 
near the leading edge (see Ref. 10). 

8.1  Coordinate transformation 
Considering the (<p,v)to (l;,n) coordinate transformation all 
the governing, flow and geometry, equations are expressed 
on the (1,T\) plane employing the following operator 
transformations 

V )=^c*S( >«-2+<*„( >o,+*f< )„] 
G 

& 

( )*=V )-V+)(>+-v*> ( u (39) 

( )W-V >-v*>(>*-L+(*> < u 
( >*--|[<M >r*i( M 

8. NUMERICAL METHOD 
The governing equations are discretized and integrated 
numerically using finite difference schemes. The standard 
procedures for direct methods involving grid generation, 
body-fitted   coordinate   transformation,   discretization   and 

8.2 Numerical Integration of the Velocity Equation 
The velocity equation is linearized by assuming that the p 
and ß distributions are known from the previous iteration 
level.  Discretizing   partial   derivatives   employing   central 
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second-order accurate differencing (in subsonic flows) a 
system of algebraic equations with 9-diagonal banded 
nonsymmetric characteristic matrix is obtained. This is solved 
using the Modified Strongly Implicit Procedure (MSEP, 
Ref.23) which employes an incomplete L-U decomposition 
of the 9-diagonal matrix. For 2-D potential problems where 
the velocity equation is decoupled from the geometry and 
the ß-terms vanish, the convergence properties of the 
velocity solver are enhanced using the linear restarting 
GMRES (Ref.24) method combined with the incomplete L- 
U preconditioner of the MSIP method. 

8.3 Numerical Integration of the Drift Equation 
Once the velocity field is determined, at each iteration level, 
the transport equation for the drift function is integrated 
using a second-order accurate Runge-Kutta scheme. The 
newly calculated a distribution provides a better estimate for 
ß via Eq.(22). A better estimate for p is calculated from 
Eq.(7). 

8.4 Integration of the Geometry Equations 
The geometry calculation is performed by integrating Eqs 
(35-37). Computational experience showed that inaccuracies 
associated with the error accumulation of the geometry 
calculation are minimized if one determines a reference- 
central streamline first and then, starting from it, determines 
the wall(s) by integrating along !;=const, lines. In order to 
enhance the accuracy of the geometry computation a 
staggering discretization technique is followed where the 
flow quantities are computed at the grid nodes, while the 
Christoffel symbols and the covariant base (g^gj) are 
computed at mid-cells and mid-nodes respectively. The 
system of Eqs. (36) or (37) is solved using a second order 
accurate Runge-Kutta scheme. Similar schemes are employed 
for the integration of Eq.(35). 

8.5 Artificial Density 
An artificial density scheme is used in the solution of the 
velocity equation when the local Mach number exceeds the 
critical value. Taking advantage of the resemblance of the 
velocity equation to the full-potential equation, the artificial 
density scheme which is employed, is identical to that 
proposed by Hoist (Ref.25) for the solution of the direct 
transonic flow problem. In more detail, the thermodynamic 
density is upwinded in the supersonic region according to the 
following scheme: 

P=P"H6SP |i=max { 0 ,   [1-(MC /W)2]  } (4°) 

where 5 ( ) is the (cp-wise) streamwise upwind derivative 
operator and M is the cut-off Mach number. It should be 
noted that this artificial density scheme, in conjunction with 
the proposed flow field solver, can handle low transonic 
cases only. Special care with respect to the preconditioner of 
the velocity equation should be taken, if strong shock waves 

are present in the flow field. 

9.  RESULTS AND DISCUSSION 
The inverse design method proposed in this work has been 
validated for irrotational and rotational flows in several 
"reproduction" calculations. The term "reproduction" is used 
in the sense that, for a given geometry, a direct -analysis- 
code provides the boundary velocity distributions which are 
then used by the inverse method to reproduce the original 
shape. Such reproduction cases are presented for 2-D and 
axisymmetric internal and external flows. The application of 
the inverse method to the design of a family of laminar 
airfoils with optimized suction side velocity distribution is 
also discussed. An automated procedure for achieving closed 
airfoil profiles is presented. 

9.2 2-D Internal Flows 
In this particular case the reproduction procedure has been 
reversed. The inverse solver provides a geometry compatible 
with a prescribed "target velocity" and the direct solver is 
called upon to reproduce the prescribed boundary velocity 
(pressure) distribution. The direct method used for the 
comparisons employs the Clebsch formulation discussed in 
the previous sections and carries out the calculation in terms 
of <p,a and s, while ht is considered to be constant 
throughout the flow field. 

In all of the rotational test cases the entropy distribution is 
set a priori not in an entirely arbitrary manner. Entropy 
level of different streamlines at the inlet section is computed 
according to the relation: 

(41) 

This relation is derived by assuming that the vorticity which 
corresponds to the velocity gradient at the inlet is compatible 
with the one which corresponds to the entropy gradient. In 
addition, it is necessary to assume that the inlet section is 
straight and that the flow is evolving very slowly in the 
vicinity of the inlet, i.e. that streamlines there are almost 
parallel. A posteriori observations of the rotational cases 
results, see Figs. 4-7 and 11-13,satisfy these conditions to a 
great extent. Actually, it can be shown that specifying both 
the velocity and entropy gradients along the inlet section is 
equivalent to specifying the streamwise gradient of the 
velocity. The solution, geometry, therefore near the inlet 
adjusts itself, so that the streamwise velocity gradient is the 
same as the implicitly imposed one. 

Results for the symmetric convergent-divergent nozzle are 
presented in Figs 2-5. Calculations were carried out with a 
(51x21)grid with AM/=l,A(plpwerwa|;l = l and Mref=0.15. 
Imposed -target- wall velocity distribution for both the 
irrotational and rotational cases is shown in Fig. 2. The non- 
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constant part of this distribution is described by a sinusoidal 
function with linearly increasing amplitude. For the 
irrotational case uniform inlet and outlet velocity 
distributions are specified. In the rotational case symmetric 
parabolic velocity profiles with peak values 1.4and 2.5in the 
inlet and outlet sections, respectively, are assumed. 

o.oo 0.25 0.50 
f/fmax 

0.75 1.00 

Fig.2 Target and direct calculation wall velocity distribution 
for rotational nozzle case. 

Wall velocity distribution for the rotational case calculated 
with the direct method is also included in Fig.2. This 
distribution agrees very well with the target distribution. 
Small discrepancies observed in the divergent part of the 
nozzle may very well be due to the fact that the integration 
of the drift transport equation in the direct method is carried 
out with a first-order accurate scheme. Calculated flow field 
distributions of the Mach number, which achieves values as 
high as 0.72,and the potential function are shown in Figs 3- 
5. Inverse and direct solver results, denoted by solid and 
dashed lines, respectively, are entirely symmetric. Their 
agreement is very good, indicating the reliability of the 
present method. 

Fig.3 Mach contours  of inverse (—)  and 
methods     for    irrotational     nozzle    case 
AM=0.05). 

direct  ( ) 
(Mm:  =0.15, v   mm 

Fig.4 Potential   lines of inverse (—)  and  direct  ( ) 
methods for rotational nozzle case (<Pmjn

=0, A(p=4). 

Fig.5 Mach contours  of inverse (—)  and direct  ( ) 
methods for rotational nozzle case (Mm-n=0.15,AM=0.05). 

For the elbow channel case calculations were performed with 
a (65x17) grid with A\|/=0.5,A<plower waU = l- Target wall 
velocity distributions on the upper and lower channel walls 
for both the irrotational and rotational cases are shown in 
Fig.6. Their characteristic is that the flow on both walls of 
the channel never decelerates. 

1.25 

1.00 

=0.75 

3 
0.50 

0.25 

mm„mjmmi 

flu       • ■ ' I ' ' ■ '        ■ ■ ' 

0.00 0.25 0.75 1.00 0.50 
f/fmox 

Fig.6 Target and direct calculation wall velocity distributions 
for rotational elbow channel case. 
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In the irrotational case uniform velocity distributions are 
imposed at the inlet and outlet sections, the Mach number 
at the outlet being M f =0.7993.This test case corresponds 
to the well-documented elbow case of Stanitz (Ref.3). The 
Mach number contours calculated with the inverse and direct 
methods, presented in Fig.7 are almost identical. 

Fig.9 Mach  contours  of inverse ( )  and  direct  ( ) 
methods   for rotational   elbow channel  case (Mmi-n=0.3, 
AM=0.025). 

-)  and  direct ( ) 
methods  for irrotational   elbow channel case (Mmin

=0-4- 
Fig.7 Mach contours  of inverse (- 
methods  for 
AM=0.025). 

In the rotational elbow case symmetric parabolic velocity 
profiles with peak values of 0.58 and 1.1 are imposed with 
M f =0.6. Wall velocity distributions calculated with the 
direct method are compared to the target ones in Fig.6. 
They exhibit very satisfactory agreement. Results for the 
potential function, the Mach number and the drift function 
are presented in Figs 8-10, respectively. Inverse method 
results agree quite well with those of the direct method 
(compare solid and dashed line contours, respectively). Small 
discrepancies observed near the outlet of the channel are 
possibly due to inaccuracies involved with the integration of 
the thermal drift equation in the direct method. 

Fig.8 Potential   lines  of inverse  ( )   and   direct  ( ) 
method for rotational elbow channel case (<Pmi-p=0,A<p=4). 

Fig. 10 Thermal drift function contours of inverse ( ) and 
direct ( ) methods for rotational elbow channel case 

(«min  = - 80 , Aa x mm 10). 

9.2 Axisymmetric Flows - Meridional Plane Calculations 
Reproduction results for two "real-life" geometries, 
corresponding to the (nonbladed) annular duct of a two- 
stage axial compressor (Ref.26) and the duct of a radial 
compressor (Ref.27) are presented here. In both cases duct- 
flow computations were performed for subsonic irrotational 
and rotational flow conditions. The rotationality of the flow 
is due to a linear inlet meridional velocity profile, which in 
conjunction with the assumed uniform temperature and 
pressure profiles produces a compatible nonuniform total 
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(Stagnation) enthalpy distribution. The inlet velocity variation 
was of the order of 30% and 10% for the axial and radial 
cases respectively. For flow uniformity reasons, both 
geometries have been extended upstream and downstream. 
A 126x30 grid was used for both direct and inverse 
computations in the axial compressor duct, while a 70x20 
grid was used for the radial compressor case. All inverse 
computations are initialized with a rectangular geometry, 
which is a severe test for the robustness of the numerical 
scheme, especially for the radial compressor case. 

Contrary to the 2-D case the flow field and the geometry are 
strongly coupled in the inverse axisymmetric formulation. 
Convergence of the inverse solver is established within 10" 
tolerance for the r.m.s. value of the velocity equation 
residual. Computational experiments showed that 
underelaxing the velocity solution and the geometry (In- 
coordinate) was necessary to both achieve and accelerate 
convergence. Typically 170 iterations are required for 
convergence using a 0.4 relaxation factor for the velocity 
field and a 0.1 factor for the radial coordinate field. The 
computational cost for the rotational case with the 126x30 
grid is about 225 CPU seconds in one processor of an 
Alliant FX-80 machine. The direct code employed for these 
computation is a reduced duct-flow version of a (\|/,co) 
meridional code (Ref.28). 

Direct and inverse calculation results for the Mach number 
field along with the original (dashed lines) and reproduced 
(solid lines) geometries for the axial compressor duct with 
irrotational and rotational flow conditions are presented in 
Figs 11 and 12 respectively. The agreement of the direct and 
inverse results is very good, although different grids and 
numerical schemes [(\)/,a>) formulation for the direct method 
and Clebsch formulation for the inverse one] have been 
employed. 

Fig. 11 Mach contours of inverse (—) and direct (—) 
methods for irrotational axial compressor duct (Mmjn=0.135, 
AM=0.015). 

Fig.  12 Mach contours  of inverse (—)  and  direct  (--) 
methods     for     rotational     axial     compressor     duct 
(M ■  =0.105,AM=0.015). v   min ' 

In the rotational case, part of the incoming rotationality is 
introduced via a linear inlet swirl distribution (associated 
with a constant peripheral velocity distribution). The 
distorted outflow section observed in Fig. 12 is due to the 
irregular (cp,vf)domain of integration. As it can be seen from 
Fig. 13, where the original and reproduced duct walls are 
compared in more detail, the outlfow section distortion has 
almost no effect on the quality of the reproduction of the 
lateral solid boundaries. This is expected, since in the near- 
outflow region, streamwise gradients of all flow quantities 
are almost negligible. 

 ORIGINAL 
  REPRODUCED 

0.4O 

0.20 ^^^ 

0.00 
o.c 10 0.20                0.40                O.BO 

x (m) 
0.60               1.0 

Fig. 13 Inner and outer wall geometries of axial compressor 
duct with rotational flow. 

Reproduction results for the radial compressor duct in terms 
of the Mach number field with irrotational and rotational 
flow conditions are presented in Figs 14 and 15. The 
agreement between inverse (solid lines) and direct (dashed 
lines) methods results is very good despite the facts that the 
mean curvature of the duct is quite high and that the grid 
employed is not fine enough (in the streamwise sense) so to 
describe accurately the strong curvature changes observed 
along the inner wall. 
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0.00 0.05 0.10 0.15 0.20 

Fig. 16 Inner and outer wall geometries of radial compressor 
duct with rotational flow. 

Fig. 14 Mach contours of inverse (—) and direct (—) 
methods for irrotational radial compressor duct (Mm-n=0.15, 
AM=0.015). 

Detailed comparison of the original and reproduced wall 
geometries for the radial compressor duct with rotational 
flow conditions is shown in Fig. 16.The corresponding H-type 
(S,r|) grid produced is included in Fig. 17. It is seen very 
clearly that in the inner flow region grid lines, £=const. and 
r|=const.lines are nonorthogonal, corresponding to <p=const. 
and v(/=const. lines, respectively. 

Fig. 15 Mach contours of inverse (—) and direct (—) 
methods for rotational axial compressor duct (Mm-n=0.12, 
AM=0.015). 

Fig. 17 Calculated grid of radial compressor duct with 
rotational flow. 

9.3 Plane and Axisymmetric Cascade Flows 
Several stationary cascade test cases were used in order to 
validate the accuracy and capabilities of the present inverse 
method. The cases considered were selected in such a way so 
to cover a wide range of geometric configurations and the 
complete Mach number range of application of the method. 
Complete outline of the test cases utilized for the validation 
of the method are reported in (Ref.29). Indicative 
"reproduction" results included here. 
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Fig. 18 The Gostelow cascade test case. 
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Fig. 19 The Hobson cascade test case. 
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Fig.20 Radial inflow turbine test case. 

The Gostelow (Ref.30) exact case (incompressible flow, 
compressor plane cascade) is considered in Fig. 18.The initial 
and reproduced blade section shape is shown in Fig. 18a in 
terms of its meridional and peripheral angle (m,8) 
coordinates. The corresponding normalized target velocity 
distribution is shown in Fig. 18b in terms of the profile arc 
length s. 

Results for the Hobson (Ref.31) exact case (high Mach 
number, high turning, low pitch to chord ratio plane 
cascade) are shown in Fig. 19.The meridional and peripheral 
angle coordinates of the initial and reproduced blade section 
shape are shown in Fig. 19a, while the corresponding Mach 
number distribution is presented in Fig. 19b. 

A radial inflow turbine case (Ref...), with strong variation of 
the radial coordinate R and variation of the streamtube 
thickness   An  is  considered   in   Fig.20. The   initial   and 
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reproduced blade shapes are shown in Fig.20a and the 
corresponding normalized velocity distribution in Fig. 20b. 
The streamtube thickness and radial distance variation of the 
considered case on the meridional plane is presented in 
Fig.20c. 

Typically, the number of grid points utilized for the 
calculations presented above is (80x15) and the computer 
time needed for the complete solution was 20 CPU, seconds 
in a single processor of an ALLIANT FX-80 computer. H- 
type grids on the (<p,Mi) plane have been used in all cases. 
The flow model employed was the irrotational one. 

9.4 Isolated Airfoils 
For airfoil calculations C-type grids were used on the ((p,y) 
plane. The adopted flow model is the irrotational one. The 
preconditioned GMRES solver was employed for all the test 
cases presented in this section. The validation of the inverse 
method developed was based on two "reproduction" test 
cases: an incompressible and a low transonic one. 

The NACA 63215 profile was reproduced for incompressible 
flow conditions and zero incidence. A 159x17 C-type 
computational grid was used for both the direct and the 
inverse computations. Convergence history of the inverse 
method is presented in Fig .21 as the maximum residual of 
the velocity equation versus the GMRES(4)  iterations. The 

NACA  63215 Airfoil 
 Reproduced 
  Original 

0.4        0.6 
x/c 

0.8 1.0 

Fig.22 Wall velocity distribution and calculated geometry for 
the NACA 63215 airfoil. 

The Korn profile was reproduced for low transonic (shock- 
free) flow conditions (Ma)=.75)and zero incidence. A 165x21 
C-type computational grid was used for both direct and 
inverse computations. The original and reproduced profile 
shapes and the corresponding boundary velocity distributions 
are presented in Fig. 23. 

s/c 
0.4     '    0.6 

0.0 

-2.0  - 

8-4.0 
0£ 

g>-6.0 

-8.0 
2        3        4        5        6        7 

Iter.  GMRES(4) 

Fig.21 Convergence history of the velocity equation. 

cost of each GMRES(4) iteration consists of four 
preconditioned residual computations and one approximate 
matrix factorization. The original and the reproduced profile 
shapes as well as the corresponding wall velocity 
distributions are shown in Fig.22. The accuracy of the 
reproduction procedure is evident. 

KORN  Airfoil 

  Reproduced 
  Original 

0-0 0.2 0.4 0.6 0.8 1 0 
x/c 

Fig.23 Wall velocity distributions and calculated geometry for 
the Korn airfoil. 

Having validated the proposed inverse method, it was then 
used for designing new airfoils (see Refs 32, 33). In this 
framework the inverse inviscid method is coupled to an 
inverse integral viscous method. For prescribed values of the 
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lift coefficient (C.) and Reynolds number, the latter method 
can provide an optimized suction side velocity distribution in 
terms of minimum contribution to the airfoil's drag 
coefficient (CD). 

The design procedure was applied to two different kinds of 
design. 

a) A tip blade section design for a Horizontal Axis 
Wind Turbine with Re=106 and 0.2% level of 
external turbulence suitable for wind tunnel testing, 
which took place at the Southampton University 
facilities. The corresponding optimized suction and 
pressure side velocity distributions are shown in 
Fig. 24a. The resulting profile shape, which is 18% 
thick, is shown in Fig. 24b. The above airfoil was 
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Fig.24Wind-tunnel profile a) optimized velocity distributions 
b) profile shape. 

manufactured at Southampton University (see Ref. 
34) and tested at the design Reynolds number and 
turbulence level. The calculated and measured 
characteristic CL and CD distributions versus the 
incidence angle are shown in Fig. 25. 

Fig.25 C., CD curves for the wind-tunnel profile. 

b) Three blade sections (hub, mid, tip) according to 
RISO's specifications for optimum wind turbine 
operation (Ref. 34). These designs were aimed at 
improving the performance of an existing Danwin 
Wind Turbine. The Re numbers were 1.8xl06for 
the hub and 2.35xl06for the mid and tip sections. 
The turbulence level was at Tu=2%,a value which 
was considered to be realistic for wind turbine 
operating conditions, (quite a few doubts exist as 
to the real atmospheric turbulence levels affecting 
the onset of transition in an unpredictable 
manner). The design requirements were: 
i) the maximum lift of each profile given as 
1.79, 1.38 and   1.16 for the  hub,  mid  and  tip 
sections 
ii) the desired range of linear operation of 
the three airfoils 
iii) the flatness of the drag characteristics in 
the linear region while maintaining the minimum 
drag value as low as possible 
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iv) flat post-stall behaviour of the C. curve. 
The optimized (designed) profile shapes are shown in Fig.26. 

hub  section   ,   27.6 %   thick 

i I i i i I i i i I 
0.0     0.2     0.4     0.6     0.8 1.0     1.2 
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fdR\ 

~5Q 
AC   ; 

H:I 

\Q=Qa+l--Qn 

(42) 

true  for subsonic flows, this Jacobian  can be evaluated 
analytically, see Ref. 10. 

The resulting iterative scheme reads: 
mid   section   ,   22.6 %   thick 
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Fig.26 Hub, mid and tip profile shapes. 

It is well known that for a fixed suction side velocity 
distribution, the pressure side one cannot be prescribed 
arbitrarily. In order the calculated profile shape to be closed, 
this velocity distribution should satisfy certain constraints. In 
the present work, in order to achieve closed profile 
geometries, a general procedure, similar to that of Volpe 
and Melnik (Ref.35) has been developed which updates the 
wall velocity distributions iteratively. The procedure can be 
applied over the complete Mach number regime. It uses two 
control parameters, the ratio of the arc length of the suction 
side to the pressure one (Ss) and a velocity multiplier (a). 
The procedure starts by assuming an initial pressure side 
velocity distribution, which is "nearly" compatible with the 
prescribed C, value. Then assuming that Rx

n and R" are 
the (normalized by the chord length) x- and y-wise distances 
respectively, of the suction and pressure side trailing edge 
points, at the n iteration level, the following iterative 
Newton scheme can be established: 

In general Jacobian (dR/ 9Q)n is computed numerically. It 
has been shown, however, that if the velocity logarithm and 
the flow angle gradients are linearly related, which is nearly 

Sn+1 _ c?n_ D n 
S     ~'3S    Kx /■"^=aavn=eR°Vn   (^) 

In practice, this procedure proved to be quite fast, resulting 
to closed profiles, to within 5 to 10 iterations, with tolerance 
of the order of 10 of the chord. A typical convergence 
history of the iterative profile closure scheme for a design 
test case is shown in Fig. 27. 
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Fig.27 Convergence history of the profile closure iterative 
scheme. 

10. CONCLUSIONS 
The development on an inverse method which could be 
applied to compressible, potential or rotational, 2-D, 
axisymmetric and quasi 3-D flow configurations has been 
described. The method is based on the potential function/ 
stream fuction formulation. The Clebsh formulation has 
been adopted to decompose the velocity vector into a 
potential and a rotational part, which is related to the stream 
function gradient via a drift function governed by a transport 
equation. The method is formulated in a mathematically 
formal, as well as in a modular and universal way in terms 
of a modified density, employing differential geometry and 
generalized tensor analysis arguments. The main, velocity 
magnitude,   governing   equation   is  derived   through   the 
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metrics compatibility condition on the natural coordinates 
spaces.     Computational       results      presented      concern 10. 
reproduction  test cases and optimized laminar airfoils for 
wind turbines. 
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SINGLE-PASS METHOD FOR THE SOLUTION OF INVERSE 
POTENTIAL AND ROTATIONAL PROBLEMS 

PART II:  FULLY 3-D POTENTIAL THEORY AND APPLICATIONS 

P. Chaviaropoulos, V. Dedoussis1 and K.D. Papailiou 
National Technical University of Athens 

Lab. of Thermal Turbomachines 
P.O. Box 64069, 157 10 Athens, Greece. 

SUMMARY 
A potential function/stream function formulation is intro- 
duced for the solution of the fully 3-D inverse potential 
"target pressure" problem. Potential function and two stream 
vectors are used as the independent natural coordinates, 
whilst the velocity magnitude, as well as, the aspect ratio and 
the cross-section angle of the elementary streamtubes are 
assumed to be the dependent ones. A novel procedure based 
on differential geometry is employed to formulate the 
method. The governing differential equations are derived by 
requiring the curvature tensor of the flat 3-D physical 
Eucledian space, expressed in terms of the curvilinear 
natural coordinates, to be zero. The resulting equations are 
discussed and investigated with particular emphasis to the 
existence and uniqueness of their solution. It is shown that 
the general 3-D inverse potential problem with target 
pressure boundary conditions only, is ill-posed accepting 
multiple solutions. This multiplicity is alleviated by consider- 
ing elementary streamtubes with orthogonal cross-sections. 
The assumption of orthogonal stream surfaces reduces the 
number of dependent variables by one, simplifying the 
governing equations to an elliptic PDE. for the velocity 
magnitude and to a second order ODE for the streamtube 
aspect ratio. The solution of these two equations provides 
the flow field. Geometry is determined independently by 
integrating Frenet equations along the natural coordinate 
lines, after the flow field has been calculated. The numerical 
implementation as well as validation test cases for the 
proposed inverse methodology are presented in the last part 
of the lecture. 

LIST 

gn>S 

gmn 

°mn 

^1>  2 
[mn,l] 
M 
P 
P1>P2> 
7 
Rrm 
R 

OF SYMBOLS 
covariant and contravariant base vectors 
of (i|>,\|/,r|) coordinate system 
conjugate   metrics   tensor   of   (<}>,\jr,T|) 
coordinate system 
metrics tensor of («t»^,^) coordinate sys- 
tem 
submatrices of Jacobian matrix dR/dX 
Christoffel symbol of first kind 
Mach number 
Preconditioning matrix 
submatrices of preconditioning matrix [P] 
position vector 
Ricci curvature tensor 
vector of residuals of V-,t-equations 

L3,L4 

P3>P4 

s streamline arc length 
t aspect ratio of cross-section of elemen- 

tary streamtube 
V velocity vector 

(x,y,z) physical space Cartesian coordinate sys- 
tem 

X vector   (of  logarithms)   of   dependent 
variables V,t 

Y    . specific heats ratio 
r  l 

Christoffel symbol of second kind 
AT pseudo-time step 
e angle between base vectors gp.g* 

9 density 

(iwi) potential function, stream functions natu- 
ral curvilinear coordinate system 

Subscripts 
m,n,l,p,r( = 1,2,3) covariant tensor indices 
0 known position indicator 

»,W1 

Superscripts 
m,n,l,p,r( = 1,2,3) 

reference quantity 
partial derivatives with respect to f, i|/ or 

il 

contravariant tensor indices 

1. INTRODUCTION 
The need of developing optimum design tools in the context 
of applied aero-thermodynamics has been discussed in Part 
I of this lecture (Ref.l). A brief overview of the currently 
available design methods has been also attempted there. 
Making the distinction between "single-pass" and 
optimization methods their relative merits and drawbacks 
have been presented. In the framework of the "single-pass" 
methods the present authors have developed an inverse 
target pressure solver which can handle 2-D and axisymmet- 
ric potential or rotational flow problems. The extension of 
this methodology in three dimensions is the subject of this 
lecture. 

Let us first address the question of existence and uniqueness 
of solution of the inverse "target pressure" problem using the 
simplest flow model, that is, the incompressible potential 
flow. In 2-D this problem is equivalent to the solution of a 
Laplace equation for the velocity logarithm on the trans- 
formed  plane with  Dirichlet  type  boundary  conditions 
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(Ref.2). In this case the inverse target pressure problem is 
linear and accepts a unique admissible solution in simply 
connected regions. However, this is not true for multi- 
connected regions, the isolated airfoil case for example, 
where additional constraints should be satisfied by the target 
pressure distribution in order to ensure the closure of the 
airfoil profile. A set of integral constraints has been devel- 
oped by Lighthill (Ref.3), but no explicit set of such con- 
straints is available for compressible flows. It is well known, 
on the other hand, that even if these constraints are satisfied 
the closed profile may be non-admissible (e.g. reentering 
airfoils). In 3-D the question has not been answered even for 
the simplest case of incompressible potential flows in simply 
connected geometries. Stanitz's work (Refs 4,5) indicates 
that contrary to the 2-D case the 3-D problem is nonlinear. 
He also reported convergence difficulties in several test cases 
he tried. To the authors opinion this is due to the non- 
uniqueness of the solution. 

As mentioned above, the purpose of this work is to present 
a "single-pass" inverse potential method for the solution of 
the general 3-D target pressure problem. Similar to the 
approach proposed by Stanitz (Ref.4), a potential function 
<)> and two stream functions y and n are introduced as the 
"natural" coordinates. A body-fitted coordinate transform- 
ation is employed to map the physical (x,y,z) space on which 
the boundaries of the flow field are unknown onto the 
natural (<|>,\|Mi) space. Computational boundaries on the 
latter space are fixed simply because, in inviscid flows, lateral 
boundaries are stream surfaces, i.e. \|/=const, or n = const, 
surfaces, while inflow and outflow boundaries can be 
considered to be potential ones. Thus assuming that the 
velocity distribution (prescribed pressure) is given on the 
lateral, as well as on the inflow and outflow boundaries of 
the flow field, one is faced with solving a boundary value 
problem on the (<|»,v)/,r|) space. 

The novelty of the present method is that the inverse target 
pressure problem is treated as a geometrical problem rather 
than a fluid dynamics one. A mathematically formal way, 
employing differential geometry and generalized tensor 
analysis arguments has been adopted in order to formulate 
the problem and derive a novel set of governing equations. 
Actually, the metrics of the (<t>,y,r|) natural space, which are 
expressed in terms of flow quantities, should satisfy the zero 
curvature condition of the 3-D Euclidean (flat) space. A 
closed set of three PDEs is, thus, derived in terms of the 
velocity magnitude V and the aspect ratio t and the skew 
angle 9 of the elementary streamtube cross-section. Both the 
formulation of the method and the resulting equations are 
quite different from those proposed by Stanitz (Ref.4), 
although the same set of dependent and independent 
variables has been used. 

It is seen that the 3-D inverse problem with velocity (pres- 
sure) only boundary conditions is an ill-posed problem 
accepting multiple solutions. This is due to the insufficient 
number of available boundary conditions. The extra bound- 
ary conditions required to remove the multiplicity may be 
introduced in several ways. One way, for example, is to 
prescribe desirable 6-values along the lateral boundaries 

(stream surfaces). An alternative way of removing the 
multiplicity is to decrease the degrees of freedom of the 
problem and seek for a particular solution in the resulting 
reduced space of geometries. In this work the latter 
approach has been adopted, thus, avoiding the introduction 
of extra information which is not always available. In this 
context, it has been shown that the problem accepts as a 
particular solution elementary streamtubes with orthogonal 
cross-sections. This way, the number of dependent variables 
is reduced by one and the governing equations simplify to an 
elliptic-type PDE for the velocity magnitude and to a second 
order ODE for the streamtube aspect ratio. The solution of 
these two equations provides the flow field in a single-pass 
manner without requiring any feedback from the geometry. 
In a subsequent step, geometry is determined independently 
by integrating Frenet equations along the natural coordinate 
lines. The decoupling of flow and geometry equations is 
obviously attractive from the computational point of view. 
However, the present method being a single-pass one, 
cannot inherently incorporate sophisticated flow or geometri- 
cal constraints. Some control on the geometry is effected a 
priori via the flow-field boundary conditions, e.g. Dirichlet 
velocity conditions on the boundary of the natural coordinate 
space are related to the arc length of the boundary stream- 
lines. 

The governing flow equations are discretized on the (<|>,wi) 
space using centered finite differencing. A staggered V-t 
computational stencil is employed in order to enhance the 
accuracy of the discretization in the near boundary regions. 
The resulting discrete system of equations is linearized to 
form a Newton iteration step. The explicit Jacobian inversion 
in the Newton step is avoided by employing a fast iterative 
linear system solver, based on the preconditioned restarting 
GMRES(m) algorithm (Ref.6). An imcomplete L-U precon- 
ditioner, resulting from the MSIP approximate factorization 
scheme (Ref.7), premultiplies the velocity block of the 
Jacobian matrix, while tridiagonal preconditioning is applied 
to the t-block of the Jacobian matrix. 

As it has been already stated, the geometry is calculated by 
integrating Frenet equations along the (§,y,r\) coordinate 
lines after the flow field has been determined. Frenet 
equations form coupled systems of ODEs expressing the 
variation of the covariant base (g1,g2,g3) and the position 
vector f along the natural coordinates lines. In order to 
enhance the accuracy of the discretization, a staggered 
computational stencil is also employed. A Crank-Nicolson 
type, second order accurate, space marching scheme is used 
for the numerical integration of the discrete equations. 

In the last part of this lecture, the proposed method is 
validated for several "reproduction" test cases including 
axisymmetric and fully 3-D flows. 

2. PROBLEM STATEMENT AND BASIC 
EQUATIONS 

The inverse target pressure problem can be stated as: 
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"Given a prescribed target velocity (pressure) distribution 
on the entire (lateral, inflow and outflow) boundary of a 
3-D flow field determine the corresponding boundary 
shape". 

In the present work it has been assumed that the flow is 
three-dimensional, steady, compressible, inviscid and irrotati- 
onal. It has been also assumed that the fluid is a perfect gas. 

Under the above assumptions the flow equations simplify to 

Continuity equation 

V-(pV)=0 C1) 

f z 

y 1 
V-V<{> 

/             ••'■        /\  "/■•-   ^/ 

^*) '^^^^S^k^^' 
^~^^^"v"^ 

Irrotationalitv condition 

VxV=0 (2) 

Density   equation   (energy   conservation   for   isentropic 
changes) 

p=[l + Jtzl«Je/(i-v»)] 1/(Y-1> 
(3) 

In the above equations the velocity V is normalized with a 
reference value Vrej-and the density p with the correspon- 
ding prefvalue. Mrefis the Mach number at the reference 
point, Y is the ratio of specific heats Cp/Cy. 

The irrotationality condition of the velocity field expressed 
by Eq.(2) is satisfied identically, by requiring the velocity 
vector to be the gradient of a scalar function, i.e. potential 
function. The potential function § is defined by the relation: 

?=v<t> (4) 

The continuity Eq.(l) can be identically satisfied by introduc- 
ing two stream functions y,r\ (Ref.8) defined by the relation 

pK=Vi|;xVr| (5) 

Eq.(5) indicates that the velocity vector is tangent to both 
y=const, and n = const, surfaces, which are appropriately 
termed as stream surfaces. Obviously, intersections of stream 
surfaces, which belong to a different family, are streamlines. 
Schematically potential and stream surfaces are shown in 
Fig.l. 

The potential function § and the two stream functions \]/,n 
are considered to be the independent variables. The physical 
(x,y,z) space on which the boundaries of the flow field 
sought are unknown, is mapped onto the natural (<|>,HMl) 
space via a body-fitted coordinate transformation. 

Fig.l       Natural (4»,ij/,n) coordinate system and elementary 
streamtubes 

3. THE CONCEPT 
Differential geometry and generalized tensor analysis 
arguments are employed in order to derive the governing 
equations. For the sake of completeness an overview of 
differential geometry principles has been included in Annex 
A. The line of thought is as follows: 

Consider a representation of the 3-D (x,y,z) Euclidean space 
in terms of the natural curvilinear coordinates (<|>,i|/,T|). 
Euclidean space being a flat one has zero curvature. Refer- 
ring to the Ricci curvature tensor the zero curvature condi- 
tion reads: 

Rlm = 0 with   z,m=l,2,3 (6) 

From the definition of the Ricci tensor and the Christoffel 
symbols T^ ,see Eqs (A8)-(A10), it is observed that the zero 
curvature condition is expressed in terms of the elements of 
the metrics tensor and their first and second order partial 
derivatives. In that sense, the flat space condition provides 
six metrics compatibility conditions which have to be 
satisfied for any parametrization of the physical space, 
including the (<(I,IJ/,T|) one. In the present formulation the 
(<|>,\y,r|) natural coordinates have been adopted having the 
advantage that the corresponding metrics tensor is expressed 
in terms of flow quantities only. The governing equations of 
the inverse flow problem in the (<|>,y,T|) space, therefore, are 
provided via the satisfaction of the zero curvature conditions. 

It is emphasized, however, that the six metrics compatibility 
conditions (6) are not independent, since in Riemannian 
geometry the Ricci tensor elements satisfy the following 
Bianchi identities (Ref.9). 

9 "*„, k-9 IWRzk,a-erijRlk, 3=o (7) 

with   i,j,k,z,m=l,2,3 

Bianchi identities provide three (k = 1,2,3) equations interre- 
lating the covariant derivatives (RJ; jjof the curvature tensor 
elements, thus, reducing the overall number of independent 
metrics compatibility conditions to three only. According to 
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According to the discussion in Malvern (Ref.10), satisfaction 
of either the diagonal zero curvature conditions, Eqs (6), or 
the off-diagonal ones only, is not sufficient for the flatness 
of the physical 3-D space. For a simply connected region, 
this is established if either one of the set of the three 
conditions is satisfied in the interior of the field and the 
other one on the boundaries. Evidently, this combination 
results to a boundary value problem. 

ds2 =sr11d<i>2 +g22dty2 +g^dr\2+2g23di|f dn (ID 

Introducing Eqs (9) in the defining relations of the 
Christoffel symbols [see Eqs (A8) and (A9)], expressions of 
the latter in terms of the dependent variables -V,p,t,9- are 
derived. For example: 

4. METHOD FORMULATION 
The contravariant base of the natural curvilinear (<t>,v|/,T|) 
coordinate system is: 

gi=V<|) 

§2=vt 

<?3=Vn 

(8) 

where indices 1,2,3 are associated with the <{»,\|/,T| coordinates 
respectively. 

The metrics and the conjugate (contravariant) metrics of the 
(<t>,y,r|) system are evaluated, using Eqs (4) and (5) and 
standard tensor relations. In terms of flow quantities the 
metrics and conjugate metrics of the (<MMl) coordinate 
system are: 

iV-daWf 

r2       P 
11   VtsinG 

(XnVK- 
*   Vtane * (12) 

I?i--5^U*V)t+Ä<inV) VsinÖ 

where indices <|>, y and n denote partial derivatives. 

The governing PDEs for V, t and 6 are derived by the 
following combinations of the zero conditions for the 
elements of the Ricci tensor: 

(13) 

9n = —^ 

g*2~ presine 

r,     -rr X 

92i STn   p vtan6 

rr t 

^"    pVsinS 

9ri2=9r2i=Srw=Sr3i=0 

.22-    P^t 
'      sin6 

23 32 =    -py 
'     y      tan6 

(9) 

,33=        PV 
J       tsinO 

712=a.21 = _13 = _31 = 0 

where 9 is the angle between g2 and g3 (or the angle at 
which a y=const, surface intersects a n = const, stream 
surface on a potential, | = const., surface, see Fig.l) and t is 
a variable defined as: 

J733 

^22 

(10) 

Variable t represents the aspect ratio of the cross-section 
(((> = const, section) of the elementary streamtube defined by 
the stream surfaces y, y+d\)/=const, and n, T| + dT| = const., 
with dy=dT|. 

The off-diagonal elements of the metrics and conjugate 
metrics tensor, g ■ ■ and g1'} (with i = 1 and j = 2,3) respective- 
ly, are zero since via the defining relations (4) and (5) both 
Vy and Vn are normal to Vf i.e. V<|» V^=V4»Vn=0 (note 
that in general VyVrpg23'^). 

The elementary distance ds expressed in terms of the natural 
coordinates is: 

-R22/922+R^f 9K
=0 

^/^Rii/^-^/STzi-Rii/Zii^0 

(14) 

(15) 

Eqs (13)-(15) supplemented by Eq.(3), constitute a closed set 
of PDEs for the quantities V, p, t, 9. Satisfying three only 
compatibility conditions is in accordance with the number of 
independent variables considered (V,t,8) as well as with the 
overall number of independent conditions. Strictly, Eqs (13)- 
(15) constitute necessary but not sufficient conditions for the 
flatness of the 3-D space considered. 

As it will be demonstrated in the following sections, this 
particular linear combination of the individual Ricci tensor 
elements, leads to a tractable set of governing equations, 
which can be solved for the flow quantities in a self-con- 
tained, "single-pass", manner requiring no geometry feed- 
back. The geometry is determined in a subsequent step by 
transforming the flow solution on the natural space, to the 
physical, Cartesian, one. 

5. GOVERNING EQUATIONS OF THE FLOW 
FIELD 

For the sake of simplicity, the developed form of the 
governing Eqs (13) to (15) is given for the incompressible 
case only. Respectively, these equations read: 
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(16) 

(17) 

Velocity (V) equation 

(lnV)^ + ± (l+cot26)([ (InV)^ 

+ (lnsinQ)^]2-(lnt)2) 

-^cot2Q[(lnV)^(lntan6)^]2 

+is£nä{{lnv)**-{lnV)*[{lnV)* 
+ (lnsinö)v-(Jnt)+]} 

-(inXOJdnVJ^+diJsine),, 

+ (iiJt),,]}-eS2t8{-(InV0ri 

+ (2flV)t[(i2iV)n+(lntan6)I)] 

+ (IflV) n [ (JnV) „+ (Intan6) „] }=0 

where cote = (tan9)  '. 

Aspect ratio (0 equation 

(lnt)^-2 (lnt)t(lnsin6)^ 

+ £Elnö{t(lnV)„-±UnV)^ 

-(lnv) t UnBin&)J}=0 

Skew angle (&) equation 

(Jnsine)^+cot2e{(lnt)|+(Incos6); 

-B5M(t(inV)„+-|(iflv)OT)} 

+ -2-cot6{2(JnV0Vt1+(I/iV)t(Jr!t)1 

-(InV) A(lnt)J=0 

Eqs (16) to (18) form a closed system of PDEs for the 
dependent variables V, t and G, representing therefore the 
governing equations for the general 3-D inverse potential 
(incompressible") problem. The above system of equations 
forms a boundary value problem for the three dependent 
variables. According to the definition of the "target pressure" 
inverse problem, complete boundary conditions are only 
available for the velocity magnitude, while there are no 
boundary conditions for t and 9 along the lateral boundaries. 

Following the discussion presented in the previous section it 
was investigated whether the two compatibility conditions 
which have not been taken into account could provide this 
extra information for t and 9. The development of these 
conditions revealed that it is not possible to obtain a set of 
equations which contains information intrinsic to the lateral 
boundary only. This is mainly due to the presence of second 

(18) 

order mixed derivatives, e.g. (lnV).^ in the R12 = 0 condi- 
tion, along with first order ones with respect to all three 
coordinate directions. These cannot be eliminated using the 
available information. It could be argued, therefore, that the 
3-D inverse potential "target pressure" problem, as adressed 
above, is ill-posed, accepting multiple solutions. 

The multiplicity of the solution could be removed by 
providing extra information for either t or 9 along the lateral 
boundaries (stream surfaces). An alternative way of remov- 
ing the multiplicity of the solution without introducing extra 
a priori unknown information, is by reducing the degrees of 
freedom of the problem. In this work the latter strategy has 
been adopted. Actually, the dependency of the solution on 
9 may be removed by observing that 9-equation (18) is 
satisfied identically for constant 9=99°. This implies that a 
flow with elementary streamtubes with rectangular cross- 
sections represents a particular solution of the inverse 
potential target pressure problem. Assuming that 
9 = const.=99°, 9-equation becomes redundant, while V- and 
t-equations, (16) and (17) respectively, are simplified 
considerably and a unique solution may be obtained with the 
available velocity boundary conditions. A similar analysis is 
valid for compressible flows as well. 

Hereafter, therefore, we deal with the following well-posed 
version of the general 3-D inverse target pressure problem: 

"Given a prescribed target velocity (pressure) on the 
entire boundary of a 3-D flow field made up of 
orthosonal elementary streamtubes, determine the 
corresponding boundary shape". 

With the assumption of orthogonal streamtubes the resulting 
governing equations for compressible flow are: 

Velocity (V) equation 

(InV) „+ (lap) <*+££ (InV) M 

+JL(lnV)^\[(lnV)l-(lnt)\ 

- (Inp)ll -£± (InV) il (InV) t~ (lnt) t] 

-j!yUnV) „ [ (InV) „+ (lnt) „] =0 

Aspect ratio (t) equation 

(lnt)^-(lnp)^(lnt)^^[(lnV) 

+ (lnV)i>(lnp)if]-SL[(lnV)^ 

(19) 

** 
(29) 

tv 
+ (lnV)n(lnp)n] =0 

5.1 Discussion on the Flow Equations 
Appropriate boundary conditions for the solution of the flow 
equations are discussed in this section. The analysis is 
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restricted to the compressible form of the governing equa- 
tions which have been derived with the assumption of 
orthogonal streamtubes cross-section. 

Assuming a given t-field, then Eq.(19) represents an elliptic- 
type quasi-linear PDE for (InV). In accordance with the 
standard "full potential" equations the mathematical, elliptic 
or hyperbolic, character of the velocity equation (19), in the 
streamwise sense, is controlled by the size of the local Mach 
number; i.e. subsonic or supersonic flow conditions respect- 
ively. Considering Eq.(3), it can be shown that 

Assuming that g,, = 1 and 9 = 90°, then t is implicitly defined 
via the metrics expressions (9) as 

(lnp)lt=-M2(lnV)i 
(21) 

where M is the local Mach number. Introducing Eq.(21) to 
(19) and rearranging the second order partial derivative 
terms, it is straightforward to show that the resulting 
equation is elliptic in the streamwise (-((>) direction when 
M<1, and hyperbolic when M>1. Evidently, for subsonic 
flows, velocity boundary conditions should be specified all 
round the integration domain. 

In the context of the present work, where internal configur- 
ations are considered, velocity is specified (Dirichlet type 
conditions) on the limiting lateral stream surfaces (walls), 
either as V = V(«|>,H<)ln=const or V = V(.|>,n)|^const and on 
the inlet and outlet sections, which are assumed to be 
potential surfaces, as V = Vfy/n) | ^=cons t • On the solid walls 
potential § is related to streamline arc length s via the 
relation    d<)> = Vds.     It    is    obvious,    therefore,    that 
V = V(<(>,y)| n-const, for instance, could be considered as 
V = V(s,v|/)|n=const. The distribution V = V(s) is usually 
specified rather than V = V(<j>). 

The aspect ratio Eq.(20) may be considered as a second 
order ODE along the streamlines (i.e. in the ifi-wise direc- 
tion). In that respect, Eq.(20) forms a boundary value 
problem requiring boundary conditions for t on the inflow 
and outflow boundaries only. Dirichlet type boundary 
conditions are imposed on the inlet section, the actual value 
depending on the y-n discretization (e.g. t = l for A\|/=AT|). 

Assuming that the flow on the outlet section is "non-evolv- 
ing", i.e. fully developed, a zero Neumann boundary condi- 
tion is specified there. 

It is emphasized that the closed set of Eqs (19) and (20) 
which govern the flow field without requiring any geometry 
feedback, form a strongly non-linear problem for V and t, 
even for the simplest, the potential incompressible, 3-D case. 

5.2 Reduced Forms of the Flow Equations 
In order to check the validity of the new governing equations 
proposed for the general 3-D inverse problem, some simple 
cases have been examined. 

5.2.1 2-D Compressible Case 
The 2-D form of the compressible flow equations is derived 
by considering that the flow derivatives vanish along one of 
the i|/- or n-directions and that the corresponding metric is 
constant, say equal to one. Obviously, the assumption of 
orthogonal streamtubes is valid also for the 2-D case. 

fc=py (22) 

With t given by Eq.(22) and taking into account that n-wise 
derivatives vanish, Eqs (19) and (20), governing the V- and 
t-field respectively, become identical with one another 
reducing to 

(InV) w+ (Inp) ^+p2 (InV) ^ 

-(Jnp)4(inV)#-(inp)J 

+p2(lnp)f(lnv)^=0 

(23) 

Eq.(23) is the well known equation of Stanitz (Ref.2) for 2- 
D potential compressible flows (see also Part I of the 
lecture, Ref.l). 

5.2.2 Axisymmetric Compressible Case 
Another case where the assumption of orthogonal streamtu- 
bes is self evident is the axisymmetric flow with zero periph- 
eral velocity component. Associating r| = const, surfaces with 
meridional planes and, thus, neglecting the n-wise deriva- 
tives, Eqs (19) and (20) are reduced to 

(InV) „+ (Inp) w+-^ (InV) vt 

+ ±{(lnv)%-(lnt)l-(lnp)%\ 

--££ (InV) „ [ (InV) „- (Int) ,] =0 

(lnt)^-anp)^(lnt)^-^ I (InV) 

+ (ii7V)t(Inp),]=0 

(24) 

** (25) 

Treating the axisymmetric case as a particular 3-D one, we 
get the advantage of solving V- and t-equations simulta- 
neously. This way, the need of iterating between the flow 
field and geometry solutions, required by other axisymmetric 
approaches which are extensions of standard 2-D inverse 
methods and have the local radial distance R as a principal 
variable (e.g. Refs 1, 11), is alleviated. The flow field and 
geometry calculation procedures, therefore, remain entirely 
independent. Effectively, t-equation plays the role of a 
R-equation. Note that it can be shown that t is proportional 
toR2. 

6. GEOMETRY CALCULATION 
Ultimately, the objective of an inverse method is to calculate 
the geometry which complies with the prescribed flow 
qualities -properties-. In the previous sections it has been 
shown that the flow Eqs (19) and (20) governing the 3-D 
inverse potential target pressure problem form a closed set 
of PDEs on the natural coordinates space, requiring no 
information, feedback, from the physical geometry itself. The 
purpose of this section is to demonstrate how the target 
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geometry is obtained, once the flow field has been deter- 
mined. 

According to the analysis presented in Annex A the 
Cartesian coordinates of the geometry position vector 7 can 
be evaluated in two steps by integrating Eqs (AT) and (Al) 
along any one of the natural coordinates lines. If, for 
example, a y=const., n = const, streamline is considered, 
Eq.(A7) provides the following system of ODEs 

_d_ 
' 9x ' 9t 

92 

. & 

-tv 92 

. & . 

UJ = 
Hi Hi Hi] 
Hi Hi Hi 

Hi Hi Hi) 

(26) 

where the matrix [AJ elements, being a sub-set of the 
(twenty seven) Christoffel symbols, are analytical expressions 
of the (known) flow quantities and their partial derivatives 
on the natural space. 

Eqs (26), which represent a generalized form of the Frenet 
equations, may be integrated to provide the covariant vector 
base if appropriate initial conditions are prescribed for 
(g^gj.gj). The Cartesian coordinates of the geometry can 
be evaluated then, by integrating the covariant base along 
any one of the natural coordinates. Starting, therefore, from 
a known position f , then 

H H^?,<# (27) 

Fig.2      Staggered computational stencil for the flow field 
and geometry calculations 

The advantage of this staggering practice is twofold. From 
the numerical point of view, the first order cross-flow 
derivatives of (InV) and (lnt) are tightly coupled. At mid:cell 
locations, (InV) and (lnt) cross-flow derivatives are approxi- 
mated assuming linear variation within the cells. For 
example 

[(Ii3V),]J#J+i(Jr+JL=- 
1 [(InV) 

2- 2    2Alr *.»*>..**>. (28) 

■(InV) IlJlK^(lnV) r, J+lfJC- (InV) T:J_K] 

It should be noted that the evaluation of the [AJ matrix 
elements involves inner flow information even when the 
integration of the system of Eqs (26) is performed along the 
flow field boundaries. This is the reason why the solution of 
the flow field equations precedes the geometry calculation. 

7. NUMERICAL INTEGRATION OF FLOW 
EQUATIONS 

The objective of this section is to discuss in detail the 
discretization, the linearization and the iterative solver 
employed for the numerical integration of the system of flow 
Eqs (19) and (20). 

7.1 Discretization 
(InV) and (lnt) are considered to be the dependent computa- 
tional variables. First and second order partial derivatives 
are discretized using second order accurate central differenc- 
ing on a uniform (4»,y,Tl) grid. Derivatives of (lnp) are 
directly related to the (InV) derivatives through Eq.(3). 

On the cross-flow plane the discretization of the equations 
has been effected on a staggered grid, t-nodes are off-set 
with respect to the V- and p-nodes, which are considered to 
be the actual grid nodes, by half a cell distance, both in the 
\y- and n-directions. Namely, if I, J and K indices are 
associated to the grid nodes in the i(i-, y-, n-directions 
respectively, then V and p are stored at (I,J,K) locations, 
whilst t is stored at (I,J + l/2,K+l/2) locations, see Fig.2. 

This implies that there is no need of one-sided differencing 
on the boundary cells for the discretization of (InV) and 
(InV) contained in t-equation (20). The required mid-cells 
values, Vj J+1/2 <+i/2 for tne t-ßquation and tj j K for 
the V-equ'ation (19) are approximated assuming linear 
variation of (InV) and (lnt) in the corresponding cell. The 
definition of t as the elementary streamtube aspect ratio, on 
the other hand, requires t to be stored at the centroid of the 
streamtube cross-section. In that respect, the adopted 
staggering practice is also physically sound. 

The central differencing practice for V-equation limits the 
present approach to subsonic flows only, where the equation 
is elliptic. In the case of transonic flow, upwind differencing 
in the streamwise, ij)-wise, direction should be used. 

7.2 Linearization 
The V- and t-equations are highly nonlinear and have 
different mathematical character. It has been decided, 
therefore, to solve them in a coupled iterative mode. A 
Newton procedure, where nonlinear terms are expanded in 
the iteration space using Taylor series is employed to 
linearize the discrete system of equations. This linearization 
procedure results to the following iteration: 

0=Rr- =R IJf« (29) 
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Xn+1=Xn+bX X= 
InV 
lnt 

(30) 

where superscript (n) denotes the iteration level and R is the 
residual vector of the V- and t-system of equations. 

In writing the linearization relation (29), the dependence of 
the governing equation on p is not shown explicitly. This is 
because p is frozen during the (V,t) iteration (a practice 
which is very common in subsonic flow computations). The 
density field is updated after (V,t) 
using the algebraic Eq.(3). 

.n+1 have been determined, 

7.3 Solution Algorithm 
The solution of the discrete block system of Eq.(29) is 
carried out using an iterative technique based on a precondi- 
tioned gradient method. Preconditioning is essential since 
matrix (3R/3X) is stiff. The most obvious choise for the 
preconditioning matrix [P] is 

[P] [fT (31) 

Indicating the dependence of (3R/3X) on the unknowns V 
and t this Jacobian matrix can be expressed in terms of 
corresponding submatrices as: 

(32) 

Neglecting the effect of submatrix [L2], a preconditioning 
matrix may be obtained in the form: 

(33) 
[P] = 

Pi    0 

.p3   py 

where 

[PJ-ILJ-1 

[PJ-CLJ-1 

[P31- [L4] -1 [Lj] [Lj-i-lPi] [L,] [PJ 

(34) 

In its discrete form [P^ is derived by an incomplete L-U 
decomposition of [L.,] using the MSIP technique (Ref.7). 
[P, ] is approximated by 

[^-Hg-*^]}" (35) 

Operator [P,] is related to the inversion of a tridiagonal 
matrix since [L^], which expresses the dependence of t- 
equation on (lnt), is an one-dimensional three-point discrete 
operator. The pseudo-time term ( [I] /Ax) serves as a 
relaxation parameter, while its positive sign contributes to 
the diagonal dominality of the tridiagonal matrix. Appropri- 
ate values of Ax have been determined via computational 
experimentation. 

The preconditioned form of the Newton step, i.e. Eq.(29) 
premultiplied by the [P] matrix, is solved with the linear, 
restarting GMRES (m) algorithm (Ref.6). 

8. NUMERICAL INTEGRATION OF GEOMETRY 
EQUATIONS 

The calculation of the geometry which exhibits the pre- 
scribed flow properties is the actual objective of an inverse 
method. In that sense the numerical schemes which are used 
for the integration of the geometry equations should be very 
accurate. Compared to the inner-flow region the calculation 
of the lateral boundaries is more demanding, because the 
required flow information is not completely available there. 
This effect is more pronounced on the edges (intersections 
of the limiting stream surfaces of different family) where the 
\\i- and T]-wise surface derivatives are discontinuous. To 
circumvent this difficulty stagger grid techniques have been 
employed. Details of the discretization and integration 
procedure of the geometry equations are discussed in this 
section. 

8.1 Discretization 
The covariant base (g^g^gj) is computed on the actual 
grid nodes (I,J,K) which are V- and p-nodes. Depending on 
the direction of the integration of Eq.(26), the corresponding 
Christoffel symbols appearing in its RHS are stored at 
different locations. Noting that the Christoffel symbols are 
expressed in terms of the first order derivatives of the flow 
quantities (V,t,p), the staggering to be adopted should be 
such, so that the discrete form of these derivatives use inner- 
grid information avoiding, as much as possible, variables 
extrapolation. Thus, the T-1 k Christoffel symbols, which are 
associated with the streamwise (^-wise) direction of the 
covariant base integration, are calculated at (I + 1/2.J, K) 
locations. Accordingly, the rj2

k and ri3
k symbols, associ- 

ated with the y- and n-wise integrations respectively, are 
calculated at (I,J+ 1/2,K) and (I,J,K+1/2) locations respect- 
ively (see Fig.2). It is noted that the assumptions adopted for 
the variation of the flow variables in the grid cells are also 
used in the actual evaluation of the T- ■   symbols. 

8.2 Solution Algorithm 
The numerical integration of the geometry Eqs (26) and (27) 
is performed in two steps. First, the covariant base g- is 
determined applying an implicit second order accurate 
Crank-Nikolson scheme along the natural coordinates. Along 
the streamwise coordinate, for instance, the discrete form of 
Eq.(26) reads: 

[gJ I*1,J,K~ [g] I,J,K_ 
A* (36) 

=   IAJ 1,1/2.J.^G] I.!.*** [GG j.j.r } 

or, dropping the cross-plane indices 

[G] ztl- [Gl z = |A(J) [^] r+1/a{[G] rtl+ [G] r}      (37) 

where 
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[G] 

9-L Six      9ly 9lz 

92 = 92x      92y 92z 

93 93X      9iy 93z 

(38) 

with x,y,z indices indicating the corresponding Cartesian 
components. Quantities appearing in Eqs (36) and (37) are 
compatible with the discretization strategy presented in the 
previous paragraph. Assuming that [G]. is known, 
provided through 

{[J]+4*[*W}[ö]3 

.[G]j +1 

(39) 

with [I] being the 3x3 identity matrix. Equations similar to 
Eq.(39) hold for the y- and r|-wise integrations. 

To determine the covariant base distribution on the com- 
plete grid, Eq.(39) is first applied for the center-line. The 
integration of Eq.(39) starts from the inlet section on which 
the orientation of the orthogonal covariant base is arbitrarily 
specified, its size being controlled by the corresponding 
metrics which in turn are expressions of the V and t bound- 
ary distributions. On each cross-flow plane, i.e. potential 
(! = const.) surface, [G] is determined via a combination of 
\|r- and n-wise integrations. Starting from the calculated 
covariant base on the central grid node (center-line distribu- 
tion), two y-wise integrations (in the positive and negative 
sense) are carried out in order to determine the [G] distribu- 
tion along the central n-family grid line. This latter distribu- 
tion provides the initial conditions for the -q-wise integrations 
which are carried out along all y-family grid lines. Obviously, 
the order of \j/- and n-wise integrations performed for the 
calculation of the [G] distribution on the cross-flow plane 
may be interchanged. An averaging practice has been 
adopted in this work. In duct flow applications the above 
directional integration scheme was found to be the most 
effective in terms of minimal error accumulation. 

Having calculated the [G] field, the geometry is determined 
by straightforward second order accurate numerical integra- 
tions of Eqs (27) along the (<t»,y,n) grid following a similar 
directional integration strategy. On the cross-flow plane 
(<)> = const, surfaces) for instance, the y- and n-wise integra- 
tions read respectively: 

?I.J+1.K  =   ?I.J.K  +   A*    \ ^2IiJ,1,[
+92I,JJ 

?I„ ATI    -|(^3 +^3 ) 

(40) 

(41) 

In accordance with the scheme used for the covariant base 
calculation, the sought geometry at (I,J,K) locations, i.e. the 
position vector ?j j K, is finally obtained with straightfor- 
ward averaging. 

The magnitude of the covariant base vectors is directly 
related to the metrics (note that g- g- =(g-) =g- • repeat- 
ed indices are not summed here). The metrics, on the other 
hand, are expressed in terms of the flow quantities V, t and 
p. It is evident that the covariant base vectors, calculated via 
the numerical integration of the geometry Eqs (26) and (27) 
should be compatible with (the already known) correspon- 
ding metrics. Stanitz (Ref.5) found it necessary to incorpor- 
ate a magnitude correction within the geometry calculation 
procedure, so to ensure the compatibility between the 
geometry and the flow field (a direction correction for the 
base vectors was also incorporated). The velocity equation, 
that Stanitz (Refs 4, 5) is using, has coefficients which are 
explicit functions of geometric parameters. It seems, that 
corrections are necessary so to minimize possible adverse 
(nonlinear) feedback of geometry errors, within the overall 
calculation procedure. In our method and for the design test 
cases attempted it was not necessary to cater for any 
geometry correction technique. Perhaps, this is due to the 
principal characteristic of the proposed 3-D inverse method 
that the flow and geometry calculation procedures are 
decoupled, i.e. they are entirely independent. 

9. RESULTS AND DISCUSSION 
The inverse design methodology proposed here has been 
applied to determine the geometry of several axisymmetric 
and one 3-D duct. In axisymmetric flows the reduced form 
of flow Eqs (24), (25) is used. Since these equations consist 
a special form of the 3-D set, i.e. Eqs (19), (20), the experi- 
ence gained from the numerical integration of the reduced 
set of PDEs is directly transferable to the fully 3-D one. In 
order to establish the accuracy of the method, inverse 
calculation results are compared to direct 'reproduction' 
results. Note that the term 'reproduction' is used in the 
following sense: "The boundary velocity distributions calcu- 
lated by a direct -analysis- method, which is applied to the 
geometry produced by an inverse method, should ideally be 
the same, reproduce, the velocity boundary conditions -target 
distributions- of the inverse calculation". 

9.1 Axisymmetric Duct Test Cases 
Results for an accelerating duct, with 0.2 inlet Mach number, 
are presented in Figs 3-5. Imposed -target- wall velocity 
distribution is shown in Fig.3. The non-constant part of this 
distribution is a half cycle sinusoidal function. 

The grid (i.e. potential lines and streamlines) 'generated' by 
the inverse method and calculated Mach number contours 
are presented in Figs 4 and 5 respectively. The wall velocity 
distribution calculated with a direct method (Ref. 13) is also 
included in Fig.3. This agrees very well with the target 
distribution, indicating the accuracy of the proposed method- 
ology. 
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Fig.6      Target velocity distribution for the convergent- 
divergent nozzle case 

Fig.3       Target and direct calculation wall velocity distribu- 
tions for the accelerating duct case 
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Fig.7       Inverse calculation Mach contours for the axisym- 
metric convergent-divergence nozzle case 

Fig.4       Calculated grid for the accelerating duct case 

Fig.5       Inverse calculation Mach contours for the acceler- 
ating duct case 

Fig.8       Inverse calculation Mach contours for the 2-D 
convergent-divergent nozzle case 

Calculations for designing a convergent-divergent axisymmet- 
ric nozzle, with 0.15 inlet Mach number, have been also 
carried out. The target wall velocity distribution is shown in 
Fig.6. The non-constant part of the distribution is described 
by a full cycle sinusoidal function with linearly increasing 
amplitude. Mach contour results are presented in Fig.7. It is 
interesting to compare this axisymmetric nozzle with the one 
shown in Fig.8, which is a 2-D nozzle, with almost the same 
aspect ratio, designed with the same target velocity distribu- 
tion (Ref. 12). 

9.2 3-D Double Turning Duct Test Case 
This case concerns the reproduction of a 3-D subsonic, 
double turning converging duct. The geometry of the duct, 
which is shown in Fig.9a, has been defined analytically 
(Workshop on Selected Inverse and Optimum Design 
Problems, organized by Brite Euram Project 1082 partners, 
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June 1992). Inlet Mach number is set to 0.2, leading to a 
high subsonic exit Mach number of the order of 0.75. 

A full-potential 3-D solver (Ref. 14) is employed to obtain 
the flow field and the velocity distribution on the lateral 
walls of the duct. The wall (as well as the inlet and outlet) 
velocity distributions calculated by the direct solver are used 
as input by the 3-D inverse method in order to reproduce 
the geometry of the duct. The 3-D inverse solver, however, 
requires the velocity distributions along the boundary 
(limiting) streamlines which, in general, do not coincide with 
the boundary grid lines of the direct solver. A special 
purpose post-processor has been developed "translating" the 
flow field calculated by the direct code to a form which can 
be comprehended by the inverse method. The numerical 
errors accumulated in the interpolation procedures, carried 
out by the post-processor, affect to some extend, the accu- 
racy of the "reproduction". To minimize the numerical errors 
involved, a relatively fine (30x15x15) computational grid was 
used in the direct computation. 

A 43x15x15 uniform grid was generated on the (ty,y,r\) space. 
The computational cost associated with the inverse problem 
solution is of the order of 650 CPU sees in one processor of 

Fig.9       Perspective views of (a) the original and (b) the 
reproduced 3-D double turning duct 
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Fig. 10 Projections of the center-line of the original and 
the reproduced duct on (a) the (x,z) and (b) on 
the (z,y) plane 
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Fig. 11  Mach number distributions along the center-line 
of the double turning duct 

an Affiant FX 80 computer. A representative view of the 
original and reproduced duct geometries is presented in Figs 
9a and 9b respectively, while projections of the correspon- 
ding center-lines on the (x,z) and (y,z) planes are compared 
in Figs 10a and 10b. It should be noted that the center-line 
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Fig. 12 Mach number contours of inverse (—) and direct 
(—) method on sections normal to the center-line 
of the duct at (a) s=l/3smax (b) s = l/2sfflax and 

(c) s = 2/3smax 

of the reproduced geometry is not a direct output of the 
inverse method. Its geometry is determined by averaging the 
calculated Cartesian coordinates of the four streamline 
vertices. This practice is acceptable since the duct under 
discussion has square cross section. The satisfactory compari- 

sons of both the center-line and the lateral wall geometries 
indicate the accuracy of the proposed 3-D inverse method. 
Inevitably, some discrepancies are introduced by the interpo- 
lations and the different discretization schemes which are 
used in the direct and inverse solvers. Small discrepancies of 
the geometry near the vertices of the duct are due to the 
singular behaviour of the edge-streamlines. 

Mach number distributions calculated with the inverse and 
direct solvers along the center-line of the duct are compared 
in Fig.ll. As the flow proceeds downstream, the Mach 
number is increasing, which is expected since the duct is 
converging. The agreement between direct and inverse 
calculation distributions is very good. It is believed that the 
small discrepancies observed near the exit region are partly 
due to the error accumulation of the geometry integrations 
and partly due to the inappropriate "non-evolving" zero 
Neumann boundary condition for t (actually the direct 
calculation indicates that the flow is "evolving" near the exit). 
Inverse and direct solver Mach number contours (solid and 
dashed lines respectively) on three cross sections normal to 
the center-line at the locations s = 1/3,1/2,2/3 smax, s being 
the center-line arc length, are presented in Fig. 12. In spite of 
the fact that a 3-D interpolation procedure was used to 
produce these contours the reproduction is quite accurate. 

10. CONCLUSIONS 
An inverse potential methodology is introduced for the 
solution of the fully 3-D target pressure problem. The 
method is based on a body-fitted coordinate transformation 
which maps the physical space onto a natural one. Potential 
function and two stream functions are used as the natural 
coordinates (independent variables), whilst the velocity 
magnitude, as well as, the aspect ratio and the skew angle of 
the elementary streamtube cross-section are considered to be 
the dependent ones. 

A novel set of governing equations for the inverse 3-D 
problem is proposed which is derived using differential 
geometry and generalized tensor analysis arguments. The 
general 3-D inverse problem is treated as a geometrical one 
which has to satisfy the zero-curvature metrics compatibility 
conditions of the 3-D Euclidean, flat, space. It is shown that 
in the general case the 3-D inverse "target pressure" problem 
is ill-posed, accepting multiple solutions. 

A particular solution of the 3-D inverse problem is shown to 
be the one with elementary streamtubes with orthogonal 
cross-section, i.e. orthogonal stream surfaces are assumed. 
The governing equations and their boundary conditions are 
presented and discussed for this case. Reduced forms of 
these equations for the 2-D and axisymmetric flows are also 
examined. It is shown that resulting system of governing 
equations can be solved with velocity only boundary condi- 
tions because of the special form of the aspect ratio equa- 
tion. On the natural coordinates space the flow field is 
determined in a self-contained manner without requiring any 
feedback from the actual geometry. The geometry is deter- 
mined after the flow solution has been calculated, by 
integrating the generalized Frenet equations  along the 
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natural coordinates lines. 

The inverse method is validated in several "reproduction" 
test cases. The very good agreement between direct and 
inverse solver results indicate the reliability of the proposed 
method. 
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ANNEX A 

DIFFERENTIAL GEOMETRY OVERVIEW 
In this Annex key elements of differential geometry are 
presented. More details may be found in any differential 
geometry or tensor calculus book (e.g. Ref.9). 

Let x1 (i= 1,2,3) be the Cartesian coordinates and uJ 

(j = 1,2,3) a body-fitted parametrization of the flow field 
considered. Let g- and gJ represent the covariant and 
contravariant orthonormal vector bases defined as: 

9i = 
du1 g1=Vu* äi-ä'M (Al) 

Uj.k}=± d?ik, dsrjk  a^ij 
2 l duj    du1     du' 

rii=sr*"[ij'/m] 

(A8) 

(A9) 

The space curvature tensor is expressed in terms of the 
Christoffel symbols and their derivatives. It has six indepen- 
dent entries that form the symmetric Ricci curvature tensor 
R„m, defined as rm' 

p     -       rn _-       zm ±TP P0   -VP p" (A10) 

where 

£= (x1,x2,x3) 
[dx1    dx2    dx3 

(A2) 

are the position vector and the gradient operator respective- 
ly. 6-J is the Kronecker delta. 

The covariant and contravariant metrics tensors are defined 
respectively as: 

The contravariant metrics (or conjugate metrics) g1J 

represent the cof actors of the covariant metrics satisfying the 
following identity: 

The Euclidean space being a flat space has zero curvature. 
Referring to the Ricci curvature tensor the zero curvature 
condition reads 

=0 
with   r,m=l,2,2 

(All) 

where repeated indices denote summation (Einstein conven- 
tion). 

The Jacobian J of the coordinate transformation may be 
expressed in terms of the covariant (or contravariant) 
metrics as 

J2=det(sri;f)=det-1(sfi:;) (A5) 

and the metric (infinitesimal distance) is expressed on the 
transformed domain as: 

(A6) 

The partial derivatives of the covariant (and contravariant) 
bases with respect to the curvilinear coordinates are 
expressed in terms of the Christoffel symbols of the second 
kindri--

k as: 

n -T* n 
Bu--^9* 
i^=T (A7) 

The Christoffel symbols of the first and second kind, [ij,k] 
and T- -k respectively, are defined in terms of partial 
derivatives of the metrics tensor as: 
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ABSTRACT 

These lectures describe the implementation of optimiza- 
tion techniques based on control theory lor airfoil and 
wing design. In previous studies [10, 11] it was shown 
that control theory could be used to devise an effective 
optimization procedure for two-dimensional profiles in 
which the shape is determined by a conformal transfor- 
mation from a unit circle, and the control is the mapping 
function. Recently the method has been implemented in 
an alternative formulation which does not depend on con- 
formal mapping, so that it can more easily be extended 
to treat general configurations [16]. The method has also 
been extended to treat the Euler equations, and results 
are presented for both two and three dimensional cases, 
including the optimization of a swept wing. 

1 FORMULATION OF THE DESIGN PROBLEM 
AS A CONTROL PROBLEM 

Ultimately, the designer seeks to optimize the geometric 
shape of a configuration taking into account the trade-offs 
between aerodynamic performance, structure weight, and 
the requirement for internal volume to contain fuel and 
payload. The subtlety and complexity of fluid Mow is 
such that it is unlikely that repeated trials in an interactive 
analysis and design procedure can lead to a truly opti- 
mum design. Progress toward automatic design has been 
restricted by the extreme computing costs that might be 
incurred from brute force numerical optimization. How- 
ever, useful design methods have been devised for vari- 
ous simplified cases, such as two-dimensional airfoils in 
viscous flows [17] and wings in inviscid flows. The com- 
putational costs for these methods result directly from the 
vast number of (low solutions thai arc required to obtain 
a converged design. 

Alternatively, it has been recognized that the designer 
generally has an idea of the kind of pressure distribu- 
tion that will lead to the desired performance. Thus, it is 
useful to consider the inverse problem of calculating the 
shape that will lead to a given pressure distribution. The 

method is advantageous, since only one flow solution is 
required to obtain the desired design. Unfortunately, a 
physically realizable shape may not necessarily exist, un- 
less the pressure distribution satisfies certain constraints. 
Thus the problem must be very carefully formulated. 

The problem of designing a two-dimensional profile 
to attain a desired pressure distribution was first studied 
by Lighthill, who solved it for the case of incompressible 
flow wilh a conformal mapping of the profile to a unit 
circle [13]. The speed over the profile is 

<1 = I |V0|, 
where 4> is the potential which is known for incompress- 
ible How and h is the modulus of the mapping function. 
The surface value of h can be obtained by setting q = qa, 
where qa is the desired speed, and since the mapping func- 
tion is analytic, it is uniquely determined by the value of 
h on the boundary. A solution exists for a given speed q^ 
at infinity only if 

2TT 
ulB <h 

*Lcctun:s forlhc Von Kannan Institute, Brussels, April, 1994. 

and there are additional constraints on q if the profile is 
required to be closed. 

The difficulty that the objective may be unattainable 
can be circumvented by regarding the design problem as 
a control problem in which the control is the shape of the 
boundary. A variety of alternative formulations of the 
design problem can then be treated systematically within 
the framework of the mathematical theory for control of 
systems governed by partial differential equations [14]. 
This approach to optimal aerodynamic design was intro- 
duced by Jameson [10, 11], who examined the design 
problem for compressible flow wilh shock waves, and 
devised adjoint equations to determine the gradient for 
both potential How and also Hows governed by the Euler 
equations. More recently Ta'asan, Kuruvila, and Salas, 
implemented a one shot approach in which the constraint 
represented by the How equations is only required to be 
satisfied by the final converged solution [20]. Pironncau 
has also studied the use of control theory for optimum 
shape design of systems governed by elliptic equations 

[15]. 

Presented at an AGARD-FDP-VKI Special Course at the VK1, Rhode-Saint-Genese, April 1994. 
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Suppose that the control is defined by a function T{(,) 
of some independent variable £ or in the discrete case a 
vector with components^7,. Also suppose that the desired 
objective is measured by a cost function /. This may, for 
example, measure the deviation from a desired surface 
pressure distribution, but it can also represent other mea- 
sures of performance such as lift and drag. Thus the 
design problem is recast into a numerical optimization 
procedure. This has the advantage that if the objective, 
say, of a target pressure distribution, is unattainable, it is 
still possible to find a minimum of the cost function. Now 
a variation 8T in the control produces a variation 81 in 
the cost. Following control theory, 81 can be expressed 
to first order as an inner product 

8I = (g,8T), 

where the gradient Q is independent of the particular vari- 
ation 8T, and can be determined by solving an adjoint 
equation. For a discrete system of equations 

and for an infinitely dimensional system 

(Q,8T)=  lcj{i)8Tdi. 

In either case, if one makes a shape change 

8T=-\Q, (1) 

where A is sufficiently small and positive, then 

6I = -X(G,G)<0 

assuring a reduction in /. 
For flow about an airfoil or wing, the aerodynamic 

properties which define the cost function are functions of 
the flow-field variables (w) and the physical location of 
the boundary, which may be represented by the function 
T, say. Then 

I = I(w,T), 

and a change in T results in a change 

dIT dIT 

6I=?L-6v,+ %-6T, (2) 
dw aJ- 

in the cost function. As pointed out by Baysal and Ele- 
shaky [2] each term in (2), except for 8w, can be easily 
obtained. ^ and J^= can be obtained directly without 
a flowficld evaluation since they are partial derivatives. 
8T can be determined by either working out the exact 
analytical values from a mapping, or by successive grid 
generation for each design variable, so long as this cost 
is significantly less then the cost of the flow solution. 
Brute force methods evaluate the gradient by making a 
small change in each design variable separately, and then 
recalculate both the grid and flow-field variables.   This 

requires a number of additional flow calculations equal to 
the number of design variables. Using control theory, the 
governing equations of the flowfield are introduced as a 
constraint in such a way that the final expression for the 
gradient does not require reevaluation of the flowfield. In 
order to achieve this 8w must be eliminated from (2). The 
governing equation R expresses the dependence of w and 
T within the flowfield domain D, 

R(w,T) = 0, 

Thus 8w is determined from the equation 

8R = 
dR 

dw 
8w + 

dR 

dT 
8T = 0. (3) 

Next, introducing a Lagrange Multiplier ip, we have 

61    = 
dw 

-bw +£—*([£]*-[i?M 
df__-r\8R 
dw    *'tä\\s»+\w-*'[w\>6* 

dJL-^\ dR-\ 

Choosing tp to satisfy the adjoint equation 

r dR 

dw 

81 
aw 

the first term is eliminated, and we find that 

81 = Q8T 

(4) 

(5) 

where 

0 
dl r 
 TpJ 

dT 

dR 

dT 

The advantage is that (5) is independent of 8w, with the 
result that the gradient of / with respect to an arbitrary 
number of design variables can be determined without 
the need for additional flow-field evaluations. The main 
cost is in solving the adjoint equation (4). In general, the 
adjoint problem is about as complex as a flow solution. If 
the number of design variables is large, the cost differen- 
tial between one adjoint solution and the large number of 
flowfield evaluations required to determine the gradient 
by brule force becomes compelling. Instead of introduc- 
ing a Lagrange multiplier, ip, one can solve (3) for 8w 
as 

oi/; 
dR 

di 

dR 

dT 
8T. 

and insert the result in (2). This is the implicit gradient 
approach, which is essentially equivalent to the control 
theory approach, as has been pointed out by Shubin and 
Frank [18, 19]. In any event there is an advantage in 
determining the gradient Q by the solution of the adjoint 
equation. 

After making such a modification, the gradient can be 
recalculated and the process repeated to follow a path of 
steepest descent (1) until a minimum is reached. In order 
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to avoid violating constraints, such as a minimum accept- 
able wing thickness, the gradient may be projected into 
the allowable subspace within which the constraints are 
satisfied. In this way one can devise procedures which 
must necessarily converge at least to a local minimum, 
and which can be accelerated by the use of more so- 
phisticated descent methods such as conjugate gradient or 
quasi-Newton algorithms. There is the possibility of more 
than one local minimum, but in any case the method will 
lead to an improvement over the original design. Fur- 
thermore, unlike the traditional inverse algorithms, any 
measure of performance can be used as the cost function. 

The next section presents the formulation for the case 
of airfoils in transonic flow. The governing equation is 
taken to be the transonic potential flow equation, and the 
profile is generated by conformal mapping from a unit 
circle. Thus the control is taken to be the modulus of 
the mapping function on the boundary. This leads to a 
generalization of LighthilPs method both to compressible 
flow, and to design for more general criteria. Numeri- 
cal results are presented in Section 3. The mathematical 
development resembles, in certain respects, the method 
of calculating transonic potential flow developed by Bris- 
teau, Pironneau, Glowinski, Periaux, Perrier and Poirier, 
who reformulated the solution of the (low equations as a 
least squares problem in control theory [3]. 

2    AIRFOIL DESIGN FOR POTENTIAL FLOW US- 
ING CONFORMAL MAPPING 

Consider the case of two-dimensional compressible invis- 
cid flow. In the absence of shock waves, an initially irro- 
tational flow will remain irrotational, and we can assume 
that the velocity vector q is the gradient of a potential <j>. 
In the presence of weak shock waves this remains a fairly 
good approximation. 

where the density is given by 

7- I ^=     1 + ^—M^O-g2 (i-i) 

while 

V- iMl 
c = IP 

(7) 

(8) 

Here MM is the Mach number in the free stream, and the 
units have been chosen so that p and q have a value of 
unity in the far field. 

Suppose that the domain D exterior to the profile C 
in the z-planc is conformally mapped on to the domain 
exterior to a unit circle in the a-plane as sketched in 
Figure 1. Let R and 0 be polar coordinates in the a-plane, 
and let r be the inverted radial coordinate j^. Also let h 
be the modulus of the derivative of the mapping function 

dz 

Now the potential flow equation becomes 

(9) 

-^(pM + r1-(rp(Pr) = 0 inD, (10) 
OÖ or 

where the density is given by equation (7), and the cir- 
cumferential and radial velocity components are 

while 

r<po r2(j}r 

(f = u    + V   . 

(ii) 

12) 

The condition of How tangency leads to the Neumann 
boundary condition 

„= 1^=0 onC. 
h or 

(13) 

In the far field, the potential is given by an asymptotic 
estimate, leading to a Dirichlel boundary condition at r — 
0 16]. 

Suppose that it is desired to achieve a specified veloc- 
ity distribution qd on C. Introduce the cost function 

I = (<7 - q,,)2 dO, 

1a: 2-Plane. 1b: (T-Plane. 

Figure 1: Conformal Mapping. 

Let p, p, c, and M be the pressure, density, spced-of- 
sound, and Mach number q/c. Then the potential flow 
equation is 

V.(pV0) = O, (6) 

The design problem is now treated as a control problem 
where the control function is the mapping modulus h, 
which is to be chosen to minimize / subject to the con- 
straints defined by the flow equations (6-13). 

A modification 8h, to the mapping modulus will result 
in variations 8<j>. 8u, 8v, and 8p to the potential, velocity 
components, and density. The resulting variation in the 
cost will be 

61=   /   (q-qd)8qdß, 
Je 

(14) 
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where, on C, q = u. Also, 

8d>o        8h i&$r       8h 
Su = r— u —, bv = r — v-—, 

h h h h 

while according to equation (7) 

dp pu     dp 

du c2 

It follows that 86 satisfies 

dv 

pv 
„1 ' 

8  (    rl ,  8h\        d  (  ,.,   ,  5/i 

where 

l^l1 

+r£{ 

U2 \     9 /9MU      9 

^"J 90 ~ "?"?'97 
2 ■y- ,\    9      pwu 9 

c2 /    9r       c2   90 
p[ \--)r— ~ W~™r-(15) 

Then, if ip is any periodic diflerentiable function which 
vanishes in the far field, 

I %L86dS =  I pM2V6-V^dS,        (16) 
JD 

r JD h 

where dS is the area element r dr d,9, and the right hand 
side has been integrated by parts. 

Now we can augment equation (14) by subtracting the 
constraint (16). The auxiliary function -</> then plays the 
role of a Lagrange multiplier. Thus, 

SI    =     I  (q-q^dO-jc86§-ß(
<L=^)dO 

c h 

Sh 
- f %L8ipdS + f PM2V6-ViP^dS. 

JD 
r" JD h 

Now suppose that ip satisfies the adjoint equation 

Lip = 0 in D 

with the boundary condition 

dtp       1  9   /'q- qd 

dr       pdO \     h 

Then, integrating by parts, 

on C. 

(17) 

(18) 

and 

-^L86dS = - /  pipr86d.9, 
D I" Jc 

f 6h ,„ 
61    =     -       (q-qd)q-^dO 

+ / pM2V6-Vip^dS. 
JD 'l 

(19) 

Here the first term represents the direct effect of the 
change in the metric, while the area integral represents 
a correction for the effect of compressibility.  When the 

second term is deleted the method reduces to a variation 
of'Lighthill's method [13]. 

Equation (19) can be further simplified to represent 
81 purely as a boundary integral because the mapping 
function is fully determined by the value of its modulus 
on the boundary. Set 

do- 

where 

and 

\dz 

da 
= log K 

bh 

Then T satisfies Laplace's equation 

A.F = 0  in D, 

and if there is no stretching in the far field, T —» 0. 
Also 8T satisfies the same conditions. Introduce another 
auxiliary function P which satisfies 

AP = pM2ViJ3-Vil>  in D, (20) 

and 
P = 0 on C. 

Then, the area integral in equation (19) is 

AP6fdS = 
D Jc Or 

PASTdS, 

and finally 

61= /  gSFdß, 
Jc 

where Tc is the boundary value of T, and 

dP 
G=^--(q-'lä)<l. (21) 

or 

This suggests setting 

6TC = -\Q 

so that if A is a sufficiently small positive quantity 

61 = - f XC,2 dB < 0. 
Jc 

Arbitrary variations in 7 cannot, however, be admitted. 
The condition that T —> 0 in the far field, and also the 
requirement that the profile should be closed, imply con- 
straints which must be satisfied by T on the boundary C. 
Suppose that log (j^) is expanded as a power series 

' dz \ _ Y^ c» 
°~    ~dä) ~ ^ an 

K
 / n = o 

(22) 
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where only negative powers are retained, because other- 
wise (^) would become unbounded for large a. The 
condition that T —* 0 as a —> oo implies 

co=0. 

Also, the change in z on integration around a circuit is 

dz 
Az = 

da 
■ da = 27ri c\ 

so the profile will be closed only if 

c, =0. 

In order to satisfy these constraints, we can project Q onto 
the admissible subspace for Tc by setting 

c0 = c\ = 0. (23) 

Then the projected gradient Q is orthogonal to Q - Q, and 
if we take 

8TC = -xg, 

it follows that to first order 

61    =    - xggde = - / \{Q + g-g)gdß 
c Jc 

I xg2 de < o. 

If the flow is subsonic, this procedure should converge 
toward the desired speed distribution since the solution 
will remain smooth, and no unbounded derivatives will 
appear. If, however, the flow is transonic, one must allow 
for the appearance of shock waves in the trial solutions, 
even if qa is smooth. Then q—q,i is not differentiable. This 
difficulty can be circumvented by a more sophisticated 
choice of the cost function. Consider the choice 

-u( XiZ2 + X2 
dZ 

~d~0 
dO, (24) 

where Ai and A2 are parameters, and the periodic function 
Z{6) satisfies the equation 

A.2-A, 

Then, 

61 = 

d2Z 

dZ d 

q,i, (25) 

^Z6Z + X2^dö6Z]d° 

Z[X{8Z-X2^8Z\ d0 = ZSqdO. 

Thus, Z replaces q — qa in the previous formulas, and if 
one modifies the boundary condition (18) to 

dr pdO \h 
on C, (26) 

the formula for the gradient becomes 

g = 
dr 

Zq (27) 

instead of equation (21). Smoothing can also be intro- 
duced directly in the descent procedure by choosing 6TC 

to satisfy 

8T<-§9ßT96:F' -xg, (28) 

where ß is a smoothing parameter. Then to first order 

gsT = -- ^-"^i^»" 
A l{s^+ß{ws^ de < 0. 

The smoothed correction should now be projected onto 
the admissablc subspace. 

The final design procedure is thus as follows. Choose 
an initial profile and corresponding mapping function T. 
Then: 

1. Solve the flow equations (6-13) for <j>, u, v, q, p. 

2. Solve the ordinary differential equation (25) for Z. 

3. Solve the adjoint equation (15 and 17) or ip subject 
to the boundary condition (26). 

4. Solve the auxiliary Poisson equation (20) for P. 

5. Evaluate Q by equation (27) 

6. Correct the boundary mapping function Tc by 6TC 

calculated from equation (28), projected onto the 
admissable subspace defined by (23). 

7. Return to step I. 

3 NUMERICAL TESTS OF OPTIMAL AIRFOIL 
DESIGN FOR POTENTIAL FLOW USING CON- 
FORMAL MAPPING 

The practical realization of the design procedure depends 
on the availability of sufficiently fast and accurate numer- 
ical procedures for the implementation of the essential 
steps, in particular the solution of both the How and the 
adjoint equations. If the numerical procedures are not 
accurate enough, the resulting errors in the gradient may 
impair or prevent the convergence of the descent proce- 
dure. If the procedures are too slow, the cumulative com- 
puting time may become excessive. In this case, it was 
possible to build the design procedure around the author's 
computer program FL036, which solves the transonic 
potential flow equation in conservation form in a domain 
mapped to the unit disk. The solution is obtained by a very 
rapid multigrid alternating direction method. The original 
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scheme is described in Reference [7]. The program has 
been much improved since it was originally developed, 
and well converged solutions of transonic Hows on a mesh 
with 128 cells in the circumferential direction and 32 cells 
in the radial direction are typically obtained in 5-20 multi- 
grid cycles. The scheme uses artificial dissipative terms 
to introduce upwind biasing which simulates the rotated 
difference scheme [6], while preserving the conservation 
form. The alternating direction method is a generalization 
of conventional alternating direction methods, in which 
the scalar parameters are replaced by upwind difference 
operators to produce a scheme which remains stable when 
the type changes from elliptic to hyperbolic as the flow 
becomes locally supersonic [7]. The conformal mapping 
is generated by a power scries of the form of equation (22) 
with an additional term 

1 
er 

to allow for a wedge angle e at the trailing edge. The 
coefficients are determined by an iterative process with 
the aid of fast Fourier transforms [6]. 

The adjoint equation has a form very similar to the 
flow equation. While it is linear in its dependent variable, 
it also changes type from elliptic in subsonic zones of the 
flow to hyperbolic in supersonic zones of the (low. Thus, 
it was possible to adapt exactly the same algorithm to 
solve both the adjoint and the flow equations, but with re- 
verse biasing of the difference operators in the downwind 
direction in the adjoint equation, corresponding to the re- 
versed direction of the zone of dependence. The Poisson 
equation (20) is solved by the Buneman algorithm. 

An alternative procedure would be to derive the ex- 
act adjoint equation corresponding to the discrete equa- 
tions which approximate the potential flow equation. This 
would produce the exact derivative of the discrete cost 
function with respect to the discrete control, at the ex- 
pense of very complicated formulas and a costly inversion 
procedure. The discrete adjoint equation would then be 
a particular discretization of the differential adjoint equa- 
tion corresponding precisely to the discretization used for 
the flow equation. The efficiency of the present approach, 
which uses separate discretizations of the flow and ad- 
joint equations, depends on the fact that in the limit of 
zero mesh width the discrete adjoint solution converges 
to the true adjoint solution. This allows the use of a rather 
simple discretization of the adjoint equation modeled after 
the discretization of the flow equation. Numerical exper- 
iments confirm that in practice separate discretizations of 
the flow and adjoint equations yields good convergence 
to an optimum solution. 

As an example of the application of the method, Fig- 
ure 3 presents a calculation in which an airfoil was re- 
designed to improve its transonic performance by reduc- 
ing the pressure drag induced by the appearance of a shock 
wave. The drag coefficient was therefore included in the. 

cost function so that equation (24) is replaced by 

/=2./c[
A'22 + A2(/f) ')^ + A^' 

where A3 is a parameter which may be varied to alter the 
trade-off between drag reduction and deviation from the 
desired pressure distribution. Representing the drag as 

D 
dy 

the procedure of Section 2 may be used to determine the 
gradient by solving the adjoint equation with a modified 
boundary condition. A penally on the desired pressure 
distribution is still needed to avoid a situation in which 
the optimum shape is a flat plate with no lift and no drag. 

It was also desired to preserve the subsonic charac- 
teristics of the airfoil. Therefore two design points were 
specified, Mach 0.20 and Mach 0.720, and in each case 
the lift coefficient was forced to be 0.6. The composite 
cost function was taken to be the sum of the values of the 
cost function at the two design points. The transonic drag 
coefficient was reduced from 0.0191 to 0.0001 in 8 design 
cycles. In order to achieve this reduction the airfoil had 
to be modified so that its subsonic pressure distribution 
became more peaky at the leading edge. This is consis- 
tent with the results of experimental research on transonic 
airfoils, in which it has generally been found necessary 
to have a peaky subsonic presure distribution in order to 
delay the onset of the transonic drag rise. It is also impor- 
tant to control the adverse pressure gradient on the rear 
upper surface, which can lead to premature separation of 
the viscous boundary layer. It can be seen that there is no 
steepening of this gradient due to the redesign. 

4    DESIGN FOR POTENTIAL FLOW USING A FI- 
NITE VOLUME DISCRETIZATION SCHEME 

While the use of conformal mapping, as it has been pre- 
sented in sections 2 and 3, leads to an effective design 
method for two dimensional profiles, it is not easy to treat 
more complex configurations because of the difficulty in 
devising appropriate numerical mapping methods. More- 
over, conformal mapping is limited to two dimensional 
transformations. In this section an alternative formula- 
tion using a general coordinate transformation is adopted. 
This is intended to be a precursor to the three dimensional 
problem. 

Consider the case of two-dimensional compressible 
inviscid flow. A general transformation from cartesian 
coordinates x and y to the coordinates £ and q can be 
represented by the transformation 

K = 
dx dx 
IK dr, 

Oy dy 

iK Or, 
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The potential flow equation can be written in divergence 
form as 

~ (pu) + |- (pv) = 0   in 23, (29) 
dx dy 

where u and v represent the Cartesian velocity compo- 
nents. The coordinate transformations may be defined 

{:}-{*} 
9£ dri 
dx dx 

d£ OR 
dy dy   _ 

=    K- (30) 

Also 

I  <4   J 
dx       dy 

dx      dy 
dri       di] 

= I(- 
<t>y 

Then 

— (pJU) + — (pJV) = 0   in D. 
di or) 

(3i; 

where J is the Jacobian 

J = dct(2\T) = 
dx dy      dx dy 
di di]      di] d( 

Here, U and V represent the contravariant velocities 

{"} 
dy 
07) 

_dx 
drj 

9y dx 

9i   . 

I<- = K-,K -1 r,-7- 

4>r, 

Thus, 

where 

U = An0£ + A]24>TI 

V = A\2<j>^ + A22(f>v. 

(32) 

(33) 

A = (KTK)- 
An    Al2 

A\2    An 

Consider first the case in which the cost function is 
defined such as to achieve a target speed distribution: 

I    =    9 /   (</ ~<id) ds 

= J/0<'-^(I)*   (34> 

where qa is the desired speed distribution and C is the 
airfoil surface. 

The design problem is now treated as a control prob- 
lem where the control function is the airfoil shape, which 
is to be chosen to minimize 2 subject to the constraints 

defined by the How equations (29-33). The first variation 
of the cost function is 

61    = {q-'ld)6<l[ J )df 

4 /V^(|K 
d{64>) 

(q - q,t) -fc-(lt 

(35) 

since on the wall 

_ d<t> _ dj>_dZ 
<hu~ !h ~ Ö?ö? 

In general we need to find how a modification to the airfoil 
geometry causes a variation 6<p. as well a variation in the 
grid parameters 6AU , öAn, SA22, and SJ. The variations 
in U, V and /; are 

SU = 6(An)4>i + ^n<% +ö(Ax2)<l>v + AnJ<Pr, 

SV - S(A\2)4>( + Al26<t>t; + t>(A22)4>v + Anf>4>n 

Sp P_ 
c2 

_P_ 
~2c2 

di drj 
6<j> 

[SAu<i>l + 2l)A\24>v<Pi + i>Miti] ■ 

It follows that <*)(/> satisfies 

d LH 0(6J,6An,6A]2,6A22) 

~P(6J,6Au,6Al2,6An),     (36) 
drj 

where 

d_ 

di 

d 

JA 

+pJ(An-^)§7, 

Ö7I 
+p.J(A 

(37) 

and 

Q (SJ, 6AU, SAi^SAv,) = pUSJ 

+pJ<t>v 

2c2 J 

6 A, 
c?  J 

+P
J
*>I[-

:
~T) ä-422 

P (ÖJ, 6A11,6.4,2,^22 ) = pVSJ 
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+pJ<t>n 2c2 8A2 

+pj<f>t (\ - ^i\ 6Al2 

If ip is any periodic function vanishing in ihe far field, 
equation (36) can be multiplied by tp and integrated over 
the domain. After integrating the right hand side by parts 
we arrive at 

/ ^L84>didv = [ ^Q + ^P dzdq 
JD JD 

dZ       dn 

+ f {iPpJ [SAnh + SAntr,] } di.    (38) 
Jc 

Now subtracting (38) from (35), 

d4>c (d£\  ds 

ipLS(j)d(d,r] 

+ [S4Q + 6P did, 

+ /  {i>pJ [8An4>i + 6A22<i>n] } d£- 
Jc 

Then setting up the adjoint system we have 

Li> = 0   in D, (39) 

with the boundary condition 

d 
pj (Ax2^i + A224>„) = - gz (q - q,l ) ■ (40) 

After applying the second form of Green's theorem to (39) 
we get 

i>L8<t>d,S = /  {iPpJ [SAn^ + 6A22<Pn}} d{ 

+/o<«-«0ä£H2^« 

+ /   {64>p.J [6Ai2iPz + 6A22A1] } di. 
Jc 

Finally the variation can be defined as 

61 = Uo<"-"fs(i)d( 

+ /^<?+^P<if*. (41) 
JD d£ d'l 

No general analytic grid transformation is generally 
available for the finite volume formulation. Furthermore, 
the variation with respect to the grid quantities is now 
spread into 6A\\, 8A[2, 6A22, and 6J instead of just the 
modulus of the transformation as was the case for confor- 
mal mapping. Therefore, to construct 61, an independent 
basis space of perturbation functions 6;, i = 1,2,..., n 
(n = number of design variables) is chosen that allows 
for the needed freedom of the design space. Thus, the 
shape T now becomes T{l>i), where the functions bt now 
represent the control. The variations 6A\\, 8A\2, 6A22, 
and SJ are obtained by a direct (inile difference proce- 
dure with respect to each design variable hi. Once 81 is 
obtained, any optimization procedure can be employed to 
minimize the cost with respect to the given basis hi. 

If the How is subsonic, this procedure should converge 
toward the desired speed distribution since the solution 
will remain smooth, and no unbounded derivatives will 
appear. If however, the How is transonic, one must allow 
for the appearance of shock waves in the trial solutions, 
even if q,i is smooth. In such instances q - qa is not dif- 
ferenliable. As in section 2, the cost function is redefined 
as 

'    r  (XxZ* + \2(^\    1 di, I 
di 

where A1 and A2 arc parameters, and the periodic function 
Z(i) satisfies the equation 

A,2-A-, 
d2Z 

dC- 
qa- (42) 

Then, 

61 
1 sy        J 

XlZ6Z + \,'-—^-8Z ) di 
c \ di di 

Jc 
Z ( A, 6Z - Xi-jßSZ ) di=  j  Z8qdi. 

Thus, Z replaces q — qj in the previous formula and one 
modifies the boundary condition (40) to 

pj (A^z + A2i<t>r,) 
8_ 

"el 
(Z)   onC. (43) 

For the case where the cost function is drag, (34) is 
replaced by, 

/ =  /' P%di. (44) 
Jc   di 

The first variation of the cost function is now, 

A%* (45) 
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Thus, (41) becomes 

«- - L-tmy 
+ 

+ 
JD d£       &n 

(46) 

where the boundary condition on I/J, (40) or (42), is re- 

placed with 

d   (    dy\ 
PJ(Ai2iPi + A22<t>ri)=-7rApq7r) (47) S£ V     ds 

or 
d2 Z dy 

\iZ - \2-j7Y = PQ 
da' 

(48) 

The entire procedure can be summarized for the cost func- 
tion based on target speed distribution as follows: 

1. Solve the flow equations (29-33) for </>, u, v, q, p, 
U,andV. 

2. Smooth the cost function if necessary by (42). 

3. Solve the adjoint equation (37 and 39) for ip subject 
to the boundary condition (40) or (43). 

4. For each i independently perturb the design vari- 
ables, bi, and calculate the necessary metric vari- 

ations (8AU, 8A\2, 8A22, 8.1, and 8 ^J) by re- 

calculating the perturbed grid with automatic grid 
generation. 

5. Directly evaluate 81 by equation (41). 

6. Project 81 into a feasible direction subject to any 
constraints to obtain 81. 

1. Feed 81 as the gradient with respect to bi to a quasi- 
Newton optimization procedure. 

8. Calculate the search direction with a quasi-Newton 
algorithm and perform a line search. 

9. Return to 1 if the process has not converged. 

In practice the method resembles that used by Hicks et 
al. [17] with the control theory replacing the brute force, 
finite difference based, gradient calculation. The current 
formulation has an advantage by requiring computational 
work proportional to 2 + m flow solver evaluations (rn 
being the number of calculations required per line search) 
per design cycle as opposed to I + m + n. Thus, un- 
like conventional design optimization programs, the cur- 
rent method's computational cost docs not hinge upon the 
number of design variables provided the grid regeneration 
is fast and automatic. The method also has the advantage 
of being quite general, allowing arbitrary choices for both 
the design variables and the optimization technique. 

5    NUMERICAL IMPLEMENTATION OF THE 
GENERALIZED POTENTIAL FLOW DESIGN 
METHOD 

The practical implementation of the generalized poten- 
tial flow design method, as with the conformal potential 
method, relies heavily upon last accurate solvers for both 
the state (<j>) and co-state (ip) fields. Further, to improve 
the speed and realizability of the methods, a robust choice 
of the optimization algorithm must be made. Finally, ap- 
propriate design variables must be chosen which allow 
sufficient freedom in realizable designs. In this work, the 
author's FL042 full potential computer program and the 
QNMDIF (by Gill, Murray and Wright [4]) quasi-Newton 
optimization algorithm arc employed. 

In FL042 the flow solution is obtained by a rapid 
multigrid alternating direction method [7]. The scheme 
uses artificial dissipalive terms to introduce upwind bi- 
asing which simulates the rotated difference scheme [6] 
while preserving the conservation form. The alternating 
direction method is a generalization of conventional alter- 
nating direction methods in which the scalar parameters 
are replaced by upwind difference operators to produce 
a scheme which remains stable as the equations change 
type from elliptic to hyperbolic in accordance with the 
flow becoming locally supersonic [7]. 

QNMDIF is an unconstrained quasi-Newton optimiza- 
tion algorithm that calculates updates to a Cholesky fac- 
tored Hessian matrix by the BFGS (Broyden-Fletchcr- 
Goldfarb-Shanno) rank-two procedure. Hence, informa- 
tion about the curvature of the design space feeds in 
through the successive gradient calculations. 

Since the primary computational costs arise from not 
only the How solution algorithm but also the adjoint solu- 
tion algorithm, both need to be computationally efficient. 
The adjoint equation has a form very similar to the flow 
equation. While il is linear in its dependent variable, 
it also changes type from elliptic (in subsonic zones of 
the flow) to hyperbolic (in supersonic zones of the flow). 
Thus, it was possible lo adapt exactly the same algorithm 
to solve both the adjoint and the flow equations, but with 
reverse biasing of the difference operators in the down- 
wind direction for the adjoint equation, corresponding 
to its reversed direction of the zone of dependence. A 
multigrid method is used lo accelerate the convergence 
of a generalized allerating direction scheme in a manner 
similar to the flow solver. 

Design variables are chosen with the following form, 
suggested by Hicks and Henne |5): 

b(x) = sin    7T.X- '"^ii>('i) 

/,(.%■) = 3:'" (I -x)e~h\ 

where 1i and t2 control the center and thickness of the per- 
turbation and x is the normalized chord length. When dis- 
tributed over the entire chord on both upper and lower sur- 
faces these analytic perturbation functions admit a large 
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possible design space. They have the advantage of be- 
ing space based functions, as opposed to frequency based 
functions, and thus they allow for local control of the de- 
sign. They can be chosen such that symmetry, thickness, 
or volume can be explicitly constrained. Further, particu- 
lar choices of these variables will concentrate the design 
effort in regions where refinement is needed, while leav- 
ing the rest of the airfoil section virtually undisturbed. The 
disadvantage of these functions is that they do not form a 
complete basis space, nor are they orthogonal. Thus, they 
do not guarantee that a solution, for example, of the in- 
verse problem for a realizable target pressure distribution 
will necessarily be attained. Here they arc employed due 
to their ease of use and ability to produce a wide variation 
of shapes with a limited number of design variables. 

The generalized potential flow design algorithm based 
on the finite volume scheme has been applied to a vari- 
ety of test cases, which are described in the following 
paragraphs. These include both non-lifting cases, where 
a symmetric target pressure distribution is specified and 
the optimization is started from an arbitrary symmetric 
initial guess, and lifting cases where the target pressure 
distribution is specified, and finally cases which verify the 
capability of the method to find profiles with minimum 
drag. 

The first non-lifting example shown in Figure 4, illus- 
trates that for subsonic flow, M^ = 0.2 and a = 0°, a 
given airfoil shape, in this case a NACA 64012, can be 
recovered by starting from an arbitrary shape and speci- 
fying the target pressure distribution. A close look at the 
final solution shows that a small discrepancy is evident at 
the trailing edge. This may be associated with the lack of 
completeness of our basis space. In the next example, see 
Figure 5, the design takes place at MM = 0.8, a = 0°, 
where the initial NACA 0012 airfoil is driven towards the 
subsonic pressure distribution of the NACA 64021. In 
this case the target pressure distribution exceeds Cp* for 
Moo = 0.8. Therefore, the pressure distribution repre- 
sents shock free transonic flow. Since, in general, such a 
pressure distribution may not be realizable, the program 
approaches the target with the nearest feasible pressure 
distribution. An examination of Figure 5 demonstrates 
that a very weak shock in the designed pressure distribu- 
tion replaces the smooth transition to subsonic How seen 
in the target distribution. In the final example non-lifting 
case of Figure 6, an arbitrary pressure distribution which 
docs contain a shock wave and is realizable, is used as 
the target. Here the computer program was able to obtain 
the corresponding airfoil geometry along with the correct 
shock wave location with a high degree of accuracy, as 
can be seen both in the pressure distribution and in the 
airfoils. 

The second group of test cases address the problem of 
attaining a desired pressure distribution for lifting airfoils. 
The most convenient method of obtaining such solutions 
with the present design method is to determine the lift co- 
efficient associated with the target pressure distribution, 

and match this lift with the initial airfoil. The design pro- 
gresses with the flow solver and the adjoint system being 
driven by constant circulation instead of fixed angle of 
attack. The first example using this technique, shown in 
Figure 7, drives the NACA 0012 airfoil toward the tar- 
get pressure distribution for the NACA 64A410 airfoil at 
Moo = 0.735, a = 0°, and C< = 0.75. This case requires 
a shift in the shock location and a significant change in 
the profile shape such that the target pressure distribution 
is obtained. The final solution almost exactly recovers 
the pressure distribution and the airfoil shape. In the next 
example, Figure 8, the NACA 0012 airfoil is again used 
as the starting condition to obtain the pressure distribution 
of the GAW72 airfoil operating at Moo = 0.7, a = -2°, 
and C/ = 0.57. This case is difficult since the target air- 
foil hasacusped trailing edge while the initial airfoil has a 
finite trailing edge. As was seen in some of the non-lifting 
cases, there are small discrepancies evident near the trail- 
ing edge that may be due to the incomplete basis of the 
chosen design variables. The difference in the profiles 
between the final design and actual GAW72 is partly due 
to the fact that the GAW72 coordinates place the trailing 
edge at a non-zero y ordinate while the NACA 0012 places 
the trailing edge at y = 0. Also, the redesigned airfoil is 
subject to an arbitrary rotation since the angle of attack is 
free during optimization. The last test case in which the 
design program is run in inverse mode involves driving 
the NACA 0012 airfoil at M«, = 0.75 to obtain the target 
pressure distribution of the RAE airfoil at the same Mach 
number, a = 1.0°, and C( = 0.80. Due to the steep 
favorable pressure gradient at the leading edge upper sur- 
face and the strong shock exhibited (see Figure 9) by the 
RAE airfoil at these conditions this case represents quite 
a difficult test for the program. The method recovers the 
target pressure distribution almost exactly. A comparison 
of the profiles reveals that the the designed airfoil has no 
observable differences when overlaycd with the original 
airfoil. 

The last group of results introduces drag as the cost 
function. Again the design process is carried out in the 
fixed lift mode. In Figure If), the first drag minimization 
example, a NACA 0012 is again used as a starting airfoil. 
The design takes place at M^ = 0.75 and C/ = 0.50 
where a- strong shock causes considerable wave drag in 
the initial airfoil. To make the problem interesting, the 
optimization is carried out such that symmetry of the de- 
sign is preserved. The final design is a symmetric airfoil 
with an increased maximum thickness that operates at the 
same lift coefficient, but has a reduction in drag from 
Cd = 0.0127 to Cd = 0.0016. In the final test case (see 
Figure 9) the camber distribution is optimized instead of 
thickness distribution. The design starts from a NACA 
64,4410 airfoil operating at MM = 0.75, and C, = 0.60 
which displays 42 counts of drag according to the potential 
flow calculation. By allowing only changes to the camber 
distribution, a final airfoil is produced which maintains 
Ci = 0.60 but does so with only 4 counts of drag. 
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6    DESIGN OF AIRFOILS USING THE EULER 
EQUATIONS 

This section extends the application of control theory for 
aerodynamic shape optimization to the Euler equations for 
two dimensional flow. Consider the case of compressible 
flow over an airfoil. In the absence of separation and other 
strong viscous effects, the flow is well approximated by 
the Euler equations. In contrast to the previous implemen- 
tations which relied on the isentropic potential equation, 
here strong inviscid shocks are modeled correctly with 
entropy production. Consider the flow in a domain D. 
The profile defines the inner boundary C, while the outer 
boundary B is assumed to be distant from the profile. Let 
p, p, u, v, E and H denote the pressure, density, Cartesian 
velocity components, total energy and total enthalpy. For 
a perfect gas 

with 

p=(1-\)pU-i-{u2 + v2)} (49) 

and 
PH = pE + p, (50) 

where 7 is the ratio of the specific heats.    The Euler 
equations may then be written as 

dw      df      dg . 

at      dx     ay 

where x and y are Cartesian coordinates, t is the time 
coordinate and 

(52) 

Consider a coordinate transformations to computa- 
tional coordinates £, TJ with the transformation matrix 

K = 
dx dx 
d£ or, 
dy dy 
dt, 07/ 

and the Jacobian 

J = 
dx dy      dx dy 

<9£ di]      di] di 

Introduce contravariant velocity components 

{"} = IC 
dy dx 
07/ ÖT/ 

dy dx 
"9? 0« J 

The Euler equations can be written as 

dW     dF     dG     n   .   „ 
 1 h -TT- = 0   'ii D, 
dt       3£       dri 

(53) 

W = J < 

P 

pu 

pv 

pE 

} , 

F = J < 

PU 

PUV + UP 

PUH 

>.   G = J< 

pv 

pVu + ff p 

PVv + gP 

pVH 

(54) 

Assume now that the computational coordinate system 
conforms to the airfoil section in such a way that the 
surface C is represented by r/ = 0. Then the flow is 
determined as the steady state solution of the equation 
(54) subject to the flow tangency condition 

V = 0   on C. (55) 

At the far field boundary D, conditions are specified for 
incoming waves, while outgoing waves are determined 
by the solution. 

Consider the case of the inverse problem where the 
cost function may be defined as 

/ = !£(, -„>=«■. = i jc<*-»? (I)«. 
where p,i is the desired pressure. The design problem 
is now treated as a control problem where the control 
function is the airfoil shape, which is to be chosen to 
minimize I subject to the constraints defined by the flow 
equations (53-55). A variation in the shape will cause a 
variation 6p in the pressure in addition to a variation in 
the geometry and consequently the variation in the cost 
function becomes 

61 (P-P,i)6p ( j- ) di 

? (P - P,i)~ 8 
Jo di 

di. (56) 

Since p depends on w through the equation of stale 
(51-52), the variation bp can be determined from the 
variation 6w. Define the Jacobian matrices 

df dg 
A, = %-,     A2 = ^L,     C, = £j/^%,   (57) 

dw dw z-^        J 

Then the equation for 6w in the steady state becomes 

— (6F) + — {6G) = 0, 
di orj 

(58) 
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where 

8F   =    C^w + 8{jd£)j + 8[jd£)a 

6G    =    C2Sw + s[jd£).f + s[jd^)a. 

Now, multiplying by a vector co-state variable ip and 
integrating over the domain 

f   ,T fdSF     85G\ 

and if -0 is differcntiable this may be integrated by parts 
to give 

di  "    '     0r, 

/" (n^TSF + n2ipT6G)di 
JB 

+ [ (mipT6F + n2VSG)di, 
Jc 

where n» are the components of a unit vector normal 
to the boundary. No boundary integrals appear in the 
j] direction because the mesh is assumed to be of O- 
type, with the result that the solution is periodic in the 
f coordinate thereby canceling the r/ boundary integrals. 
Thus the variation in the cost function may now be written 

Sl = fc<p-P,)6p (%)<K 

4 !„<*->*'{$)« 
+ dip 6F + ^6G) d£dri 

(rnrl>T6F + n2il>T6G)dZ 

JC 

(nl4>T8F + n2ipr6G)d!i. 

On the profile n\ 
equation (55) that 

0 and n-> = It follows from 

6G = J< 

0 

§?*P 

0 

■PS 

0 

0 

(59) 

Suppose now that tp is the steady slate solution of the 
adjoint equation 

00 

"di 
^„C7—-CT—=0   in/?. 

,5^ 

''of -    07, 
(60) 

At the outer boundary incoming characteristics for ip cor- 
respond to outgoing characteristics for Siu. Consequently, 
one can choose boundary conditions for ip such that 

Uiip  CiSw = 0. 

Thcnifthecoordinatctransformationissuchthat 6 [JK   J 
is negligible in the far field, the only remaining boundary 
term is 

tp1 8Gd£. 

Thus by letting ip satisfy the boundary condition, 

j(l»%L+ik%!)=-<P-Pd)%   onC,     (61) 
\    ox oy J «4 

we find finally that 

6I=2l   {])'Pdr6{d^)di 

If the flow is subsonic, this procedure should converge 
toward the desired pressure distribution since the solution 
will remain smooth, and no unbounded derivatives will 
appear. If, however, the flow is transonic, one must allow 
for the appearance of shock waves in the trial solutions, 
even if pd is smooth. In such instances p - pj, is not dif- 
fercntiable. As in the case of potential flow, this difficulty 
can be circumvented by a more sophisticated choice of 
the cost function. Consider the choice 

J=2 
A,Z2 + A-, 

dZ 
di 

di, 

where Ai and A2 arc parameters, and the periodic function 
Z(£) satisfies the equation 

d2Z 
A,Z - AT—T = p-pj- 

d£- 
(63) 

Then, 

,    / dZ d        \   ri.s ^ 
61    =      lc[

XlZ6Z + X2^di6Z)^ 

cz^sz-x2^sz)^ 

ds , 
ZbqTdi. 

Thus, Z replacesyj-p,/ with a corresponding modification 
to the boundary condition for the adjoint equations. 

A convenient way to treat an airfoil is to use a confor- 
mal mapping of the profile in the z plane to a near circle 
in the a plane, followed by shearing of the radial coor- 
dinate to make the system boundary conforming. Polar 
coordinates are introduced in the mapped plane a. When 
mapped back to the physical plane this gives a smooth, 
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nearly orthogonal grid. This procedure is intermediate 
between the use of a full conformal mapping as in sec- 
tion 2 and an arbitrary numerically generated grid as in 
section 4. We can now specialize our generalized design 
procedure to treat this grid system. Define the first con- 
formal mapping from z to a by letting the derivative of 

the mapping function be 

— = heiß. 
da 

Now using polar coordinates r, and 0 in the a plane, the 
first transformation matrix is 

K\ = 
ye    Vr 

= h 
rs      c 

—cs    s 

and we can define contravariant velocities 

U 
V 

s    — c 

c      s 

where 

a = sin 03-0),      c = cos(/?-0). 

The Euler equations can now be represented in the a plane 

as 

8(rh*W)      8JkF)      dJrhG)=0 

dt 39 dr 

where 

F= < 

P 

w = pu 
< 

pv 

pE 

pU pv 

pUu + sp 

pUv — cp 
,   G = 

pVu + cp 

pVv + sp 

pUH pVH 

>. 

(65) 

Now let the final computational coordinates be defined by 
a radial shearing transformation 

0 = £,     r = V + S{0 

and the transformation matrix 

1     0 
K7 = 

89 do 
dr) 

dr dr 
drj 

95 
det(/r2) = 1. 

while the duxes are 

hF    =    h(sf-cg) 

=    !Jr,f - xng 

and 

Now we can identify the complete transformation matrix 

as 
rs + S^c     c 

—rc + S{S    s K = KiK-) = h 

/i[(?j +5)0-5^] = h[(rl + S)c-Sis]f 

+    h[(ri + S)s + Sic}g 

- xi9 - Vif- 

Thus the Euler equations assume the form 

^((r, + S)h^V) 

+ 4 (hF) + |- {h (r, + S) G - hStF) = 0, 
<9£ drj 

while the surface tangency condition on the velocity be- 

comes 

x^v - y^u = h[(ri + S)V-SiU] =0. 

Now we take S(f) as the control. It is also convenient to 
represent the inverse problem by the cost function 

/ = (p - Vdf (W = I= \\ (P - Pdf d£ 

This eliminates terms in S (^f) from the gradient. The 

variations in the fluxes become 

6 (hF)    =    C\ 6w 

S [h (7j + 5) G - liSiF]    =    C26v> + h6SG - MS(F 

where C\ and C2 arc the Jacobian matrices defined in 
equation (57). Choosing tp to satisfy the adjoint equation 
(60) with the boundary condition 

X^ - V^l  =  h [('I] + S)S+ S^C] 'Ipr,  = P - Pd 

the variation in the cost reduces to 

61 = / {p-Vd)hdi 

+ l/'ik^i60)"^ 
■f (6ShG - SSthF) d{ 

,      ,   v>7'— (SS h-G + A'5{ hF) d£dv, 
Jo    or 

where F and G arc the Muxes defined in equation (65), 
and F and G are F and G with the pressure terms deleted. 

Define 

P   =   il>ThF+ I ipr-^(hF)d-n 

Q    =    ^ThG+  I ^r—(h.G)d,rh 
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Then 

61    =     f (Q6S-P6S(:) 
Je 

di 

L G6Sd£, 

where the gradient is 

« = <? + §. (66) 

The entire procedure can be summarized as follows. 

1. Solve the flow equations (51-55) for p, u, v, p, E, 
H, U, and V. 

2. Smooth the cost function if necessary by (63). 

3. Solve the adjoint equations (60) for ip subject to the 
boundary condition (61). 

4. Calculate P and Q from the variation in the control 

5. Evaluate Q by equation (66) 

6. Project Q into a feasible direction subject to any 
constraints to obtain Q. 

1. Correct the mapping in the direction of steepest 
decent 

ss(o = -xg. 
or by using Q as the gradient in a quasi-Newton or 
conjugate gradient search method. 

8. Return to 1. 

7    IMPLEMENTATION OF THE EULER BASED 
DESIGN METHOD 

The practical implementation of design method relies 
heavily upon fast accurate solvers for both the state (w) 
and co-state (iß) fields. Further, to improve the speed 
and realizability of the method, a robust choice of the 
optimization algorithm must be made. In this work, the 
author's FL082 full computer program has been used to 
solve the Euler equations. This program uses a multi 
stage time stepping scheme with multi grid acceleration 
to obtain very rapid steady state solutions, typically in 25 
steps [8, 9]. The adjoint equations are solved by a similar 
method, in which the flux calculations for the Euler equa- 
tions are replaced by the corresponding formulas for the 
adjoint equation. 

In the initial tests a simple gradient procedure has 
been used as the optimization process. To preserve the 
smoothness of the profile the gradient is smoothed at each 
step in a similar manner to that used in the method of 

section 2. Thus the change in the shape function S (£) is 
defined by solving 

6S ~ ^ß^6S = ~X6> 

where ß is a smoothing parameter.  Then, to first order, 
the variation in the cost is 

61    = g6Sd( 

X 

r         d   d   i SS-SS-ß-6S d£ 

SS2 + ß{diSS)\ d{ 

<    0. 

The option to minimize the pressure drag coefficient 

öPoofj-ooC Je     ÖZ 

where c is the chord length, has also been included. To 
prevent the procedure from trying to reduce drag by re- 
ducing the profile to a non-lifting flat plate a target pres- 
sure distribution is retained in the cost function, which 
becomes 

i = \&\ I (P - Pä)2 di + n2cd 

where Q.\ and fii arc weighting parameters. Also the 
calculations are performed at a fixed lift coefficient corre- 
sponding to that of the target pressure distribution, while 
the angle of attack is allowed to vary as needed. Three 
lest cases arc presented for the design algorithm. The 
first two address the problem of attaining a desired pres- 
sure distribution. The first example using this technique, 
shown in Figure 12, drives the Korn airfoil toward the 
target pressure distribution for the NACA 64A410 air- 
foil at Moo = 0.75, a = 0°, and C, = 0.7. This case 
requires a shift in the shock location and a significant 
change in the profile shape such that the target pressure 
distribution is obtained. The final solution almost exactly 
recovers the pressure distribution and the airfoil shape. In 
the next example, Figure 13, the Korn airfoil operating 
at Moo = 0.78 is used as the starting condition to ob- 
tain the pressure distribution of the same airfoil operating 
at Moo = 0.75, a = 0°, and C, = 0.64. This case is 
difficult since the target pressure distribution may not be 
realizable from a physical profile. Note that while the 
achieved pressure distribution is very close to the target 
pressure distribution, the drag of 77 counts is much larger 
then the zero drag experienced by the Korn airfoil at its 
design point. The third test case introduces drag as the 
cost function. Again the design process is carried out in 
the fixed lift mode. In Figure 14, a NACA 64A410 is 
again used as a starting airfoil. The design lakes place at 
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■Woo = 0.75 and C( = 0.68 where a strong shock causes 
considerable wave drag in the initial airfoil. To preserve 
a reasonable lifting airfoil shape the cost function is con- 
structed as a blend of preserving the original pressure 
distribution and reducing the drag. The final design has a 
reduction in drag from Cd = 0.0144 to Cd = 0.0018. 

8 THREE DIMENSIONAL DESIGN USING THE 
EULER EQUATIONS 

In order to illustrate further the application of control 
theory to aerodynamic design problems, sections 8 and 
9 treat the case of three-dimensional wing design, again 
using the inviscid Euler equations as the mathematical 
model for compressible How. In this case it proves con- 
venient to denote the Cartesian coordinates and velocity 
components by x\, x2, XT, and u\, u2, uy, and to use the 
convention that summation overt = 1 to 3 is implied by a 
repeated index i. The three-dimensional Euler equations 
may be written as 

dw      dfi 
 h — = 0 
dt      dxi ~E~ + 7T1 =0   inZ)> 

where 

w = < 

P 
pu\ 
pu2 

PUT, 

pE 

fi=< 

pUi 

puiUi +pSi\ 
puiU2 + pSi2 
puiU-} + pSo 

puiH 

(67) 

(68) 

and Sij is the Kronecker delta function. Also, 

P=(ri-\)P\E 

and 

(69) 

(70) pH = pE + p 

where 7 is the ratio of the specific heals.   Consider a 
transformation to coordinates £1, £2, £3 where 

Kij = 
dxi 

[dij 
J = det (K), Kl = 

dii 
dxj 

Introduce contravariant velocity components as 

The Euler equations can now be written as 

with 

W = J { 

8W     dFi 
-- 0   in D, 

> 
P 

(                          \ 
pUi 

pu\ pUiU] + §fcp 

pu2 >,Fi = J< pUiU2 + ^-j> 

PUT, pUlU, + Ifep 

PE   J pUiH 

(71) 

> ■ (72) 

Assume now that the new computational coordinate sys- 
tem conforms to the wing in such a way that the wing 
surface B\v is represented by £2 = 0. Then the flow is 
determined as the steady state solution of equation (71) 
subject to the flow tangency condition 

U2 = 0   on Bw v- (73) 

At the far field boundary Bp, conditions are specified for 
incoming waves, as in the two-dimensional case, while 
outgoing waves are determined by the solution. 

Suppose now that it is desired to control the surface 
pressure by varying the wing shape. It is convenient 
to retain a fixed computational domain. Variations in 
the shape then result in corresponding variations in the 
mapping derivatives defined by H. Introduce the cost 
function 

/= - 
2 

(p-Pdfd^d^, 

where pd is the desired pressure. The design problem is 
now treated as a control problem where the control func- 
tion is the wing shape, which is to be chosen to minimize 
/ subject to the constraints defined by the flow equations 
(71-72). A variation in the shape will cause a variation 
6p in the pressure and consequently the a variation in the 
cost function 

61= {p-pd)6p cl^db. (74) 
./ Jlhv 

Since p depends on w through the equation of state 
(69-70), the variation bp can be determined from the 
variation 6w. Define the Jacobian matrices 

Ai = ^-,     Ci = JI<r'A 
d ij        J' (75) 

Then the equation for Sw in the steady stale becomes 

d 

dd 
(SFt) = 0, (76) 

where 

SFi =d6w + 6 [J-^jfj. 
d£i 
dxj 

Now, multiplying by a vector co-state variable 'tp and 
integrating over the domain 

r fdSF, .   , 

and if V; is dilTerentiable this may be integrated by parts 
to üive 

^-6F.<)d(J= I (m^'SFi)^, 

where Ui are components of a unit vector normal to the 
boundary.   Thus the variation in the cost function may 
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now be written 

SI (p-Vd)Sp d£\d£y 
Bw 

dip1 

6Fi   dtj 

+ / (m^öFijdiB. 
JB 

(77) 

On the wing surface Bw, ™i = «3 = 0 and it follows 
from equation (73) that 

6F2 = J < 

0 0 

OX]       r *(Ji£) 
8X2 

► +p< HJit) 
%&6p 
OXT,     

l *{'%) 
0 0 

•      (78) 

Suppose now that ijj is the steady state solution of the 
adjoint equation 

^_Cf^=0   \nD. 
at     * ab 

(79) 

At the outer boundary incoming characteristics for ip cor- 
respond to outgoing characteristics for Sw. Consequently, 
as in the two-dimensional case, one can choose boundary 
conditions for tp such that 

niip  CiSw = 0. 

Then if the coordinate transformation is such that 6 (JK~]) 
is negligible in the far field, the only remaining boundary 
term is 

- f f   if 6F2 dZidii. 
J JBw 

Thus by letting ip satisfy the boundary condition, 

jf^l^+^l^+^l^) ={p-Pd)  onBw,   (80) 
\       OX J OX2 OXT.J 

we find finally that 

-fl {*g+*£+*i}'**- 
(81) 

A convenient way to treat a wing is to introduce sheared 
parabolic coordinates as shown in figure 2 through the 
transformation 

x    =    x0(O+]-a(o{e-(V + S(Z,O)2} 

y    =    J/o(0 + a(CK07 + S«,0) 
z    =    (. 

-6l Jöx- I ^D 

<3 

2a: .T,7/-Plane. 

2b: ^,77-Plane. 

Figure 2: Sheared Parabolic Mapping. 

Here a; = x\, y = x2, z = a;? are the Cartesian coordi- 
nates, and f and 77 + 5 correspond to parabolic coordinates 
generated by the mapping 

1 2 
x + iy = x0 + iya + -a (0 {£ + i (V + $)} 

at a fixed span station (. x0 (C) and y0 (0 are the coordi- 
nates of a singular line which is swept to lie just inside the 
leading edge of a swept wing, while a (0 is a scale factor 
to allow for spanwise chord variations. The surface 77 = 0 
is a shallow bump corresponding to the wing surface, with 
a height S (£, () determined by the equation 

£ + iS = y 2 (xßw + iyBw), 

where xBw (z) and yJJw (2) are coordinates of points ly- 
ing on the wing surface.   We now treat S(f,0 as the 
control. 

In this case the transformation matrix -^ becomes 

a (f - (77 + S) S£ )      -a (77 + S)     A- a (r; + S) Sc 

a(»7 + S + £S{) a£ ß + a^5c 

Ü 0 I 

X£        .T,,        .4 + XTIS( 

Vi      VTI      ß + VvSi 
0       0 I 

;< 

where 

.          x - x0   ,              p          J/ - 2/0   , 
A = ac h xoc,     ü = «< •" 2/oc • 

Now, 
J = X0JV - xvy( = £2 + (r) + S) 

and 

JK~X = 
2/T) —'Xri Xrjö        2/rj-^t 

~~ Hi Xi Vi-A — X(B — JS( 
0 0 J 

Then under a modification 6S 

Sx( = -a (SSS^ + {j} + S) 8Si) 

6xri — —a,8S 

% = a(6S + ^6Si) 

6y„ = 0. 
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Thus 

and 

6 J = 2a2 (77 + S) 6S 

6{JK-]) = 
0 aSS 

-6yz 8x(_ 
0 0 

-aBÖS 
V 
SJ 

where 

J. 
V = 8yt.A - Sx^B - ac-6S - 6JSC - J6SZ. 

Inserting these formulas in equation (81) we find that the 
volume integral in 61 is 

+ 

/// 

/// 

/// 

6Sf2 d£ dr] dQ 

{-«Jfe/i + 6x(f2 + Vfi} d£ dv d( 

6Jh d£ dV dQ, 

where S and 6S are independent of?;. Therefore, inte- 
grating over ?7, the variation in the cost function can be 
reduced to a surface integral of the form 

SI ■■ II     {Pi^ J   J Bw 

Q6S -Q(£,06S( - R&aeSc) d£ d( 

Here 

P    =    a (ip2 + S(~<Pi + C1P4) p 

-i 
-I 

^r itfi + (v + S)f2 + (M + (7, + 5) E) h] dv 

d1/JT 

drj 

Jdri 

Q a(£ip2 + (V + $) i>i) P r drj 
{Ui +(V + S)f2 + (M + (V + S) B) h} dri 

R      =      Jtp4P 

+ 

where 

07/ 
JiJMdr), 

C = 2a{r] + S)Si -A-BSi + -. 

Also the shape change will be confined to a boundary 
region of the £ — C plane, so we can integrate by parts to 
obtain 

81 = * + g + fl«««- 
Thus to reduce / we can choose 

dQ     dR\ 

where A is sufficiently small and non-negative. 
In order to impose a thickness constraint we can define 

a baseline surface 5o(f,0 below which S(£,0 is not 
allowed to fall. Now if we take A = A(£,0 as a non- 
negative function such that 

S (£,0 +SS (H,0> So (£,()■ 

Then the constraint is satisfied, while 

9    IMPLEMENTATION OF THE THREE DIMEN- 
SIONAL METHOD FOR WING DESIGN 

Since three dimensional calculations are much more ex- 
pensive than two dimensional calculations, it is extremely 
important for the practical implementation of the method 
to use fast solution algorithms for the flow and the adjoint 
equations. In this case the author's FL087 computer pro- 
gram has been used as the basis of the design method. 
FLOH7 solves the three dimensional Eulcr equations with 
a cell-centered finite volume scheme, and uses residual 
averaging and muhigrid acceleration to obtain very rapid 
steady state solutions, usually in 25 to 50 multigrid cycles 
[8, 9J. Upwind biasing is used to produce nonoscillatory 
solutions, and assure the clean capture of shock waves. 
This is introduced through the addition of carefully con- 
trolled numerical diffusion terms, with a magnitude of 
order Aar1 in smooth parts of the llow. The program 
corresponds closely to FL082, which was used to imple- 
ment the design method for the two dimensional Euler 
equations. The adjoint equations are treated in the same 
way as the llow equations. The fluxes arc first estimated 
by central differences, and then modified by downwind 
biasing through numerical diffusive terms which are sup- 
plied by the same subroutines thai were used for the llow 
equations. 

The method has been tested for the optimization of 
a swept wing. The planform was fixed while the wing 
sections were free to be changed arbitrarily by the design 
method. The wing has a unit-semi-span, with 36 degrees 
leading edge sweep. It has a compound trapezoidal plan- 
form, with straight taper from a root chord of 0.38 to a 
chord of 0.26 at the 30 percent span station, and straight 
taper from there to a chord of 0.12 at the tip, with an 
aspect ratio of 8.7. The initial wing sections were based 
on the Korn airfoil, which was designed for shock free 
llow at Mach 0.75 with a lift coefficient of 0.63, and has a 
thickness to chord ratio of I 1.5 percent [ 11. The thickness 
to chord ratio was increased by a factor of 1.2 at the root 
and decreased by a ratio of 0.8 at the tip, with a linear vari- 
ation across the span. The inboard sections were rotated 
upwards to give 3.5 degrees twist across the span. 

The two dimensional pressure distribution of the Korn 
airfoil at its design point was introduced as a target pres- 
sure distribution uniformly across the span. This target is 
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presumably not realizable, but serves to favor the estab- 
lishment of relatively benign pressure distribution. The 
total inviseid drag eoeffieicnt, due to the combination of 
vortex and shock wave drag, was also included in the cost 
function. Calculations were performed with the lift coef- 
ficient forced to approach a fixed value by adjusting the 
angle of attack every fifth iteration of the flow solution. It 
was found that the computational costs can be reduced by 
using only 15 multigrid cycles in each flow solution, and in 
each adjoint solution. Although this is not enough for full 
convergence, it proves sufficient to provide a shape mod- 
ification which leads to an improvement. Figures 15,16, 
and 17 show the result of a calculation at Mach number of 
0.82, with the lift coefficient forced to approach a value of 
0.5. This calculation was performed on a mesh with 192 
intervals in the f direction wrapping around the wing, 32 
intervals in the normal r\ direction and 48 intervals in the 
spanwise £ direction, giving a total of 294912 cells. The 
wing was specified by 33 sections, each with 128 points, 
giving a total of 4224 design variables. The plots show 
the initial wing geometry and pressure distribution, and 
the modified geometry and pressure distribution after 8 
design cycles. The total inviseid drag was reduced from 
0.0185 to 0.0118. The initial design exhibits a very strong 
shock wave in the inboard region. It can be seen that this 
is completely eliminated, leaving a very weak shock wave 
in the outboard region. The drag reduction is mainly ac- 
complished in the first four design cycles but the pressure 
distribution continues to be adjusted to become more like 
the Korn pressure distribution. 

To verify the solution, the final geometry, after 8 de- 
sign cycles, was analyzed with another method using the 
computer program FL067. This program uses a cell- 
vertex formulation, and has recently been modified to 
incorporate a local cxtremum diminishing algorithm with 
a very low level of numerical diffusion [12]. When run 
to full convergence it was found that the redesigned wing 
has a drag coefficient of 0.0107 at Mach 0.82 at a lift 
coefficient of 0.5, with a corresponding lift to drag ratio 
of 47. The result is illustrated in Figure 18. A calcu- 
lation at Mach 0.500 shows a drag coefficient of 0.0100 
for a lift coefficient of 0.5. Since in this case the How is 
entirely subsonic, this provides an estimate of the vortex 
drag for this planform and lift distribution. Thus the de- 
sign method has reduced the shock wave drag coefficient 
to about 0.0007. For a representative transport aircraft the 
parasite drag coefficient of the wing due to skin friction is 
about 0.0050. Also the fuselage drag coefficient is about 
0.0050, the nacelle drag coefficient is about 0.0015, the 
empennage drag coefficient is about 0.0015, and excres- 
cence drag coefficient is about 0.0006. This would give 
a total drag coefficient CD = 0.0243 for a lift coefficient 
of 0.5, corresponding to a lift to drag ratio L/D = 20.5. 
This would be a substantial improvement over the values 
obtained by currently (lying transport aircraft. 

As a further test the redesign was also performed at 
a higher Mach number of 0.85.    The initial geometry 

and pressure distributions, and the result of the redesign 
after 10 design cycles are displayed in Figures 19, 20 and 
21. In this case the total inviseid drag was reduced from 
0.0261 to0.0132. Again this result has been checked with 
FL067, and when the flow calculation is fully converged, 
it is found that the total inviseid drag coefficient is 0.0118 
at a lift coefficient of 0.5, indicating a shock wave drag 
coefficient of 0.0018. Allowing for the other sources of 
drag for the complete aircraft, it is likely that the best 
operating point for maximum lift to drag ratio would be 
at a somewhat higher lift coefficient. 

10 CONCLUSION 

In the period since this approach to optimal shape design 
was first proposed by the author [10], the method has been 
verified by numerical implementation for both potential 
How and Hows modeled by the Euler equations. It has 
been demonstrated that it can be successfully used with a 
finite volume formulation to perform calculations with ar- 
bitrary numerically generated grids [16]. The first results 
which have been obtained for swept wings with the three 
dimensional Euler equations suggest that the method has 
now matured to the point where it can be a very useful 
tool for the design of new airplanes. Even in the case of 
three dimensional Hows, the computational requirements 
are so moderate that the calculations can be performed 
with workstations such as the IBM RISC 6000 series. A 
design cycle on a 192x32x48 mesh takes about I \ hours 
on an IBM model 530 workstation, allowing overnight 
completion of a design calculation for a swept wing. 
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3a: Cp after Zero Design Cycles. 
Design Mach 0.72, Q = 0.5982, Cd = 0.0191. 

3b: Cp after Zero Design Cycles. 
Design Mach 0.2, C, = 0.5998, Cd = -0.0001. 
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/" 
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3c: Cp after Eight Design Cycles. 
Design Mach 0.72, C, = 0.5999, Cd = 0.0001. 

3d: Cp after Eight Design Cycles. 
Design Mach 0.2, Q = 0.5998, Cd = -0.0001. 

Figure 3: Optimization of an Airfoil at Two Design Points. 
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4a: Initial Condition 
C, = 0.0000, Cd = 0.0001 

'*"••« 
\ 
^ *«»«. 

^ 

C.  ~;:::: 

4b: 7 Design Iterations 
Ci = 0.0000, Cd = 0.0000 

Figure 4: Subsonic Non-Lifting Design Case, M = 0.2, a = 0°. 
—, x Initial Airfoil: NACA0012. 

- - -, + Target Cp: NACA 64012, M = 0.2. 
Inverse Design 

5a: Initial Condition 
C, = 0.0000, Cd = 0.0063 

H 

i * 

"Vq 

5b: 7 Design Iterations 
C/ = 0.0000, Cd = 0.0003 

Figure 5: Transonic Non-Lifting Design Case, M = 0.8 a = 0°. 
—, x Initial Airfoil: NACA 0012. 

- - -, + Target Cp: NACA 64021, M = 0.2. 
Inverse Design 
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6a: Initial Condition 
Ci = 0.0000, Cd = 0.0063 

r\^. 
"V 

C _.. 3—: 

6b: 8 Design Iterations 
Ci = 0.0000, Cd = 0.0015 

Figure 6: Transonic Non-Lifting Design Case, M = 0.8, a = 0°. 
—, x Initial Airfoil: NACA0012. 

- - -, + Target Cp: NACA 64X, M = 0.8. 
Inverse Design 

7a: Initial Condition 
Ci = 0.7315, Cd = 0.0252, a = 2.664° 

B 4 

7b: 20 Design Iterations 
Ci = 0.7334, Cd = 0.0086, a = 0.032° 

Figure 7: Transonic Lifting Design Case, M = 0.735 Fixed Lift. 
—, x Initial Airfoil: NACA 0012. 

...j + Target Cp: NACA 64A410, M = 0.735, C, = 0.73. 
Inverse Design 
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8a: Initial Condition 
C, = 0.5492, Cd = 0.0047, a = 2.709° 

8b: 30 Design Iterations 
Ci = 0.5496, Cd = 0.0045, a = -1.508° 

Figure 8: Transonic Lifting Design Case, M = 0.70, Fixed Lift. 
—, x Initial Airfoil: NACA0012. 

- - -, + Target Cp: GAW72, M = 0.70. 
Inverse Design 

•f~ ++ """""«Jin   t********, 
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9a: Initial Condition 
Ci = 0.7946, Cd = 0.0358, a = 2.364° 

9b: 27 Design Iterations 
C, = 0.7971, Cd = 0.0108, a = 1.053° 

Figure 9: Transonic Lifting Design Case, M = 0.75 Fixed Lift. 
—, x Initial Airfoil: NACA0012. 

- - -, + Target Cp: RAE, M = 0.75. 
Inverse Design 
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10a: Initial Condition 
d = 0.5037, Cd = 0.0127, a = 1.856° 

i j 

r\ 

10b: 2 Design Iterations 
C, = 0.5042, Cd = 0.0016, a = 1.990° 

Figure 10: Transonic Lifting Design Case, M - 0.75, Fixed Lift. 
—, x Initial Airfoil: NACA0012. 

Symetric Drag Minimization. 

5 J 

11a: Initial Condition 
Ci = 0.5964, Cd = 0.0042, a = -0.464° 

11b: 2 Design Iterations 
Ci = 0.5966, Cd = 0.0004, a = 0.175° 

Figure 11: Transonic Lifting Design Case, M = 0.735 Fixed Lift. 
—, x Initial Airfoil: NACA64A410. 
Camber Only Drag Minimization. 
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12a: Initial Condition 
Ci = 0.7019, Cd = 0.0015, a = 0.266° 

12b: 40 Design Iterations 
Ci = 0.6612, Cd = 0.0136, a = -0.037° 

Figure 12: Lifting Design Case, M = 0.75, Fixed Lift Mode. 
—, x Initial Airfoil: Korn. 

- - -, + Target Cp: NACA 64012, M = 0.75. 
Inverse Design 

13a: Initial Condition 
Ci = 0.6432, Cd - 0.0155, a = -0.229° 

* H 

" »,»,..»■»* 

13b: 20 Design Iterations 
Ci = 0.6297, Cd = 0.0077, a = 0.033° 

Figure 13: Lifting Design Case, M = 0.78 Fixed Lift Mode 
Initial Airfoil: Korn. 

Target Cp: Korn, M = 0.75. 
Inverse Design 
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14a: Initial Condition 
C[ = 0.6778, Cd = 0.0144, a = -0.096° 

14b: 25 Design Iterations 
Ci = 0.6855, Cd = 0.0010, a = -0.722° 

Figure 14: Lifting Design Case, M - 0.75, Fixed Lift Mode. 
Initial Airfoil: NACA64A410. 

Drag Reduction 
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15a: Initial Wing 
Ci = 0.5001, Cd = 0.0185, a = -0.958° 

15b: 8 Design Iterations 
C, = 0.4929, Cd = 0.0118, a = 0.172° 

Figure 15: Lifting Design Case, M - 0.82, Fixed Lift Mode. 
Drag Reduction 
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE 

Figure 16: Lifting Design Case, M = 0.82, Fixed Lift Mode. 
Initial Wing: Modfied Korn. 

CL = 0.5001, CD = 0.0185, a = -0.958° 
Drag Reduction 
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE 

Figure 17: Lifting Design Case, M = 0.82, Fixed Lift Mode. 
Design after 8 cycles 

CL = 0.4929, CD = 0.0118, a = 0.172° 
Drag Reduction 
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18a: span station z = 0.00 

++++++ 

c 
18b: span station z — 0.25 

-("•""♦"«H*«. 
"***++♦♦*♦ 

18c: span station z — 0.50 18d: span station z = 0.75 

Figure 18: FL067 check on redesigned wing. 
M = 0.82, CL = 0.4975, CD = 0.0107, a = 0.200° 
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19a: Initial Wing 
Ci = 0.5033, Cd = 0.0261, a = -1.236° 

19b: 10 Design Iterations 
d = 0.4956, Cd = 0.0132, a = -0.028° 

Figure 19: Lifting Design Case, M = 0.85, Fixed Lift Mode. 
Drag Reduction 
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE 

Figure 20: Lifting Design Case, M — 0.85, Fixed Lift Mode. 
Initial Airfoil: Modified Kom. 

CL = 0.5033, CD = 0.0261, a = -1.236° 
Drag Reduction 
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE 

Figure 21: Lifting Design Case, M = 0.85, Fixed Lift Mode. 
Design after 10 cycles 

CL = 0.4956, CD = 0.0132, a = -0.028° 
Drag Reduction 
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RESIDUAL-CORRECTION TYPE AND RELATED COMPUTATIONAL METHODS FOR 
AERODYNAMIC DESIGN PART I AIRFOIL AND WING DESIGN 

Th.E.Labrujere 
Theoretical Aerodynamics Department 

National Aerospace Laboratory 
A.Fokkerweg 2 

1059 CM AMSTERDAM 
The Netherlands 

SUMMARY 
The present paper discusses the Ma, 
problem of inverse shape design, where n 
the geometry of a wing should be p 
determined such that it will have a q 
prescribed surface pressure dis- t: 
tribution at the design condition       u 
considered. A survey is given of so- 
called decoupled-solution methods for    u*,^ 
this problem. With this type of 
methods the flow field around a 
current estimate of the wing and a       Vn 
subsequent new estimate of the wing      Vt 
are determined by two separate compu-    w 
tational steps in an iterative pro-      x,z 
cess. A global description is given of 
the main features of the underlying 
theories and some examples of applica- 
tion are given. A detailed description 
is given of the NLR method for inverse 
shape design based on the residual- 
correction approach. 

design problem (see Eq.(l)) 
free stream Mach number 
unit normal vector 
pressure 
total velocity 
unit tangent vector 
disturbance velocity 
component in x-direction 

disturbance velocities 
associated with C* and C 
respectively 
normal velocity 
tangential velocity 
weight factor 
Cartesian coordinates of 
airfoil contour 

Pta 

subscripts 
c 
1 

to camber 
to airfoil lower 

le 

LIST 
a 

1 
r 
ö 
<5z 
e 

OF SYMBOLS 
angle of attack 

= Ji-K 
ratio of specific heats 
boundary of flow domain 
velocity or pressure defect 
geometry correction 
relaxation factor (see 
Eq.(12)) 
co-state variable 
independent coordinate 
parameter 
density 
velocity potential 
flow domain 

0.5 paq% 
pressure 

Ptar 

coefficient 
pressure coefficient at 
sonic speed 
target value of pressure 
coefficient 
functional associated with 

refers 
refers 
side 
refers to airfoil leading 
edge 

sub    refers to subsonic part 
sup    refers to supersonic part 
t      refers to thickness 
te     refers to airfoil trailing 

edge 
u      refers to airfoil upper 

side 
<»      refers to free stream 

conditions 

superscripts 
t      refers to target velocity 

or pressure 

1. INTRODUCTION 
The present paper considers methods to 
solve the problem of inverse wing 
design, i.e. to determine the shape of 
a wing such that on its surface an a 
priori prescribed (target) pressure 
distribution exists at the flow condi- 
tion considered. The formulation of a 
well-posed inverse problem is not at 
all trivial, as has already been 
demonstrated by Betz (Ref.l) and by 
Mangier (Ref.2) for incompressible 

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genese, April 1994. 
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flow. Incorporation of inverse methods 
in the practical design process has 
led to additional user requirements 
with respect to control over the 
geometry. As a consequence, the 
problem is often complicated by the 
introduction of constraints with 
respect to the geometry. Furthermore, 
in attempts to extend the range of 
applicability of inverse methods, 
increasingly complicated flow equa- 
tions ( full potential, Euler, Navier- 
Stokes) are being used. Both factors 
have led to a considerable increase in 
effort for the development of inverse 
design methods. 

The paper will focus on iterative 
methods in which the flow variables 
and geometric variables are decoupled 
in the solution process. There are 
three major types of such methods: 
Dirichlet type methods, Neumann or 
residual-correction type methods, and 
variational type methods. All methods 
start with an initial guess of the 
geometry to be determined. Firstly, in 
each subsequent iteration step, a 
boundary value problem is solved for a 
given estimate of the geometry. With 
the Dirichlet type method this 
boundary value problem is of Dirichlet 
type. With the Neumann or residual- 
correction type methods, and with the 
variational type methods, this bound- 
ary value problem is of Neumann type. 
Secondly, a correction to the geometry 
is derived from the solution of this 
boundary value problem. With most 
methods it is tried to reduce the 
computational effort for the geometry 
correction as much as possible. 

The idea to decouple the flow and 
geometry solution in inverse design is 
in most cases inspired by the desire 
to take maximum advantage of the fact 
that analysis methods have been devel- 
oped for many applications, in 
different flow regimes, and in some 
cases with complex geometry.  Another 
advantage of the decoupled-solution 
methods is the fact that, in general, 
geometric constraints can be 
implemented much easier in a separate 
geometry update procedure than in a 

complete system of equations for flow 
as well as geometric variables. 

In the last decade a large variety of 
the type of methods considered here 
has been developed. Nearly all 3-D 
design methods are of the Dirichlet or 
Neumann type. The least developed 
approach to the inverse design problem 
is that of optimal control (calculus 
of variations). Pironneau (Ref.3) gave 
an extensive survey of possible 
applications to optimum shape design 
for systems described by elliptic flow 
equations. Jameson (Ref.4) has also 
drawn attention to possible advantages 
of applying this approach. But up to 
now there seem to be few practical 
applications.  However, because it 
seems to offer some perspective with 
respect to robustness and flexibility, 
attention may be paid to this type of 
approach. 

The formulation of the aerodynamic 
wing design problem will be discussed, 
paying attention to the specification 
of design requirements, aspects of 
well-posedness, and the need for 
geometric constraints. A global 
description will be given of all three 
types of solution methods mentioned 
above, emphasizing the essential 
features. Some details will be given 
of methods which may be considered as 
representative of different approaches 
and of methods illustrating the latest 
developments.  The paper addresses in 
particular the residual-correction 
approach. Developments at NLR are 
described in detail and computational 
results are shown for 2D as well as 3D 
applications. 

2. THE AERODYNAMIC WING DESIGN PROBLEM 

2.1 Design requirements 
The aerodynamic wing design problem 
pertains to the determination of the 
shape of a wing such that it will ful- 
fil requirements, which comprise both 
design goals and constraints in terms 
of aerodynamic characteristics and 
geometry. 
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The formulation of the aerodynamic 
design goals is in most cases done by 
defining an objective function or cost 
function, the minimum of which repre- 
sents the solution to the design 
requirements. However, the actual form 
of the objective function, or rather 
the type of aerodynamic 
characteristics to be specified, is 
not at all obvious. Both specification 
of design goals in terms of force 
coefficients and specification in 
terms of target pressure distributions 
have their supporters. 

According to Hicks (Ref.5): "The 
objective function can be any quantity 
which can be calculated by an aerody- 
namics code, e.g. drag, lift/drag 
ratio,etc. However, experience has 
shown that the choice of force coeffi- 
cients as the objective function can 
lead to unacceptable pressure dis- 
tributions" . 

With respect to target pressure 
distributions, Lores and Hinson (Ref. 
6) remark: "Even with experienced 
designers, there is no assurance that 
the specified pressures will minimize 
drag, or weight, or whatever the 
aircraft design objective may be. 
Moreover, the need to specify design 
pressures implies a point design, and 
optimum aircraft efficiency might not 
be produced by an optimum point 
design". But, they also state : 
"Because of the inaccuracies in drag 
calculations, most successful three- 
dimensional transonic designs done by 
numerical optimization involve the use 
of a design objective based on 
pressure distributions". 

And, finally, Volpe (Refs.7, 8) may be 
cited : " An obvious advantage of 
inverse methods is the control the 
designer has over the force character- 
istics of the airfoil profile and over 
the boundary layer development on its 
surface, a control gained through the 
pressure (speed) distribution that is 
specified". 

terms of force coefficients is its 
directness. But as mentioned above, it 
may lead to unacceptable pressure dis- 
tributions associated with undesirable 
flow phenomena. On the other hand, the 
specification of pressure 
distributions to satisfy the design 
requirements provides more direct 
control over the flow quality, e.g. 
over the boundary layer development. 
At NLR, those considerations have led 
to the conviction that design 
requirements should be formulated in 
terms of prescribed pressure 
distributions, notwithstanding the 
fact that the specification of 
pressure distributions relies to a 
large extent on the experience of the 
designer. 

Typically, the residual-correction 
type and related approaches consider 
the design problem formulated in terms 
of target pressure distributions. This 
implies the minimization of a cost 
function of the form 

i< CP - CP. 
;dS (3) 

where the integration is over that 
part of the surface where the pressure 
has a prescribed value. This type of 
design problem is usually indicated as 
inverse shape design. 

2.2 Well-posedness 
The first method, applicable to the 
inverse design of 2D airfoils in 
incompressible flow, devised by Betz 
(Ref.l) and reconsidered by Mangier 
(Ref.2), was based on conformal map- 
ping of the airfoil onto a circle. It 
was shown that three conditions had to 
be satisfied by the prescribed pres- 
sure distribution in order to ensure 
the existence of a closed airfoil gen- 
erating that pressure distribution at 
a prescribed free stream condition. 
These constraints are given by the 
integral relations : 

Of course, the main advantage of 
defining the design requirements in 
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where q0(w) is the tangential velocity 
on the airfoil surface derived from 
the prescribed pressure distribution, 
qa, is the freestream speed and w is the 
angular coordinate in the circle 
plane. 

The first constraint expresses the 
regularity condition establishing a 
unique relation between the prescribed 
velocity and the freestream speed. The 
other two constraints are derived from 
the requirement of a closed airfoil 
contour. 

Later, attention was again drawn to 
these constraints,  amongst others by 
Lighthill (Ref.9, 9). Since then, the 
necessity to take these "Betz-Mangier 
constraints" into account in order to 
formulate a well-posed problem for 
inverse airfoil design has been the 
subject of discussion. The possible 
existence of similar consistency 
constraints for other types of flow 
has also been studied. Woods (Ref.10) 
was able to formulate such constraints 
for compressible 2D subcritical flow 
as described by the Von Karman-Tsien 
gas model. But, so far, no explicit 
formulation of similar constraints for 
more general types of flow has 
appeared. Nevertheless, it is commonly 
assumed that similar constraints exist 
for all inverse 2D (and probably 3D) 
airfoil design problems. 

2.3 Geometric constraints 
The early 2D conformal mapping methods 
demonstrated yet another consequence 
of arbitrarily prescribing the pres- 
sure distribution, viz. the appearance 
of self-intersecting geometries 
("cross-over","fish tail" airfoils) as 
a solution to the problem. So, even if 
all consistency constraints are sat- 
isfied by the target pressure dis- 
tribution so that the inverse design 
problem is well-posed in the sense 

indicated in the previous section, the 
result might still not have practical 
value. 

Some authors have drawn the conclusion 
that in this case the design problem 
has to be reformulated by modifying 
the target pressure distribution. 
This, however, leads to a trial and 
error process of which the success 
strongly depends on the expertise of 
the designer. 

Other authors have devised methods 
that allow the incorporation of 
geometric constraints in an attempt to 
reduce the class of admissible sol- 
utions to "realistic" airfoils.  In 
this way uncertainty with respect to 
correct pressure distribution behav- 
iour near the leading edge stagnation 
point can be removed by prescribing 
part of the leading edge geometry. In 
this way the inverse problem may be 
recast in a mixed direct-inverse prob- 
lem, where one part of the geometry is 
prescribed whereas the other part is 
designed. Alternatively, the inverse 
problem may be formulated as a least 
squares minimization problem such that 
the prescribed pressure distribution 
as well as the geometric constraints 
are satisfied approximately in a least 
squares sense. Then, also such 
constraints as trailing edge thickness 
can be handeld. Unfortunately, the 
existence of a (unique) solution of 
the minimization problem has never 
been proven. 

Apart from the above described need 
for constraints related to the well- 
posedness of the inverse problem and 
constraints to prevent non-physical 
solutions, geometric constraints may 
be required for a more practical rea- 
son, e.g. from the point of view of 
the structural engineer. This may lead 
to constraints on airfoil thickness, 
leading edge radius, trailing edge 
angle, wing twist, wing-body junction 
etc. The development of computational 
design methods reflects the search for 
methods offering well-posedness (i.e. 
to take into account the Betz-Mangier 
type constraints) as well as options 
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for additional geometric and also 
aerodynamic constraints, such as a 
prescribed lift coefficient. 

2.4 Free parameters 
The problem of formulating a well- 
posed inverse design problem can be 
partly solved by introducing auxiliary 
functions containing free parameters 
in the prescribed pressure 
distribution CL  . The values of the 

tar t~ parameters are determined as part of 
the solution so that by means of the 
auxiliary functions the prescribed 
pressure distribution is modified such 
that the (unknown) consistency 
requirements will be (automatically) 
satisfied to the best possible extent. 
Of course, the specific choice for the 
type of adjustable free parameters and 
auxiliary functions determines 
implicitly the class of admissible 
solutions. 

Some guidance with respect to the 
choice of the free parameters has been 
presented by Volpe & Melnik (Ref.7) 
They have shown that for 2D airfoil 
flow the regularity condition 
associated with the relation between 
the free stream speed and the 
prescribed pressure distribution may 
be satisfied by introducing the free 
stream speed as a free parameter while 
maintaining a specified location of 
the leading edge stagnation point. 
Drela (Ref.11) chose to fix the free 
stream speed, but left the location of 
the leading edge stagnation point in 
physical space unspecified. 

The consistency constraints associated 
with trailing edge closure are some- 
times neglected and it is hoped that 
these will be implicitly fulfilled. 

The introduction of auxiliary 
functions with free parameters has 
been extensively investigated by 
Soemarwoto (Ref. 12) for inverse 2D 
airfoil design in incompressible flow. 
He introduced functions allowing 
displacement of the leading edge 
stagnation point and adjustment of the 
pressure distribution behaviour near 
the trailing edge for avoiding the 

occurence of "fish tails" and allowing 
trailing edge closure. Three free 
parameters were introduced for control 
of the modifications. 

3. DIRICHLET TYPE METHODS 

3.1 Global description 
The idea underlying the Dirichlet type 
methods is similar to the idea of 
simulating boundary layer displacement 
effects by means of a normal velocity 
prescribed at the boundary. Firstly, 
it is assumed that a sufficiently 
close estimate of the geometry to be 
determined is given so that only small 
modifications are required for 
computation of the new geometry. 
Considering the flow fields about both 
geometries, it may be assumed that the 
streamlines around the new geometry 
can be generated from the streamlines 
around the given geometry by 
superimposing a flow normal to the 
given streamlines. This implies, of 
course, the assumption of a 
transpiration (outflow as well as 
inflow) at the boundary of the initial 
geometry as illustrated in Fig.l. 

/■ 

in- and outflow (transpiration ) 

initial geometry 

new geometry 

Fig.l  Surface displacement  simulation 
by  transpiration. 

The iterative process of the Dirichlet 
type methods (see Fig.2) is based on 
this concept. The first computational 
step comprises the solution of a 
Dirichlet boundary value problem in 
which the boundary condition is 



4-6 

derived from the target pressure 
distribution. 

c BEGIN J> 
(STARTING) 
GEOMETRY, 
TARGET Cp's 

Moo, a 

DIRICHLET BOUNDARY 
VALUE PROBLEM 

(^ STOP ~^) 

UPDATE 
GEOMETRY 

Fig.2 Flow chart of Dirichlet  type 
method 

In the case of 2D airfoil design for 
potential flow the derivation of such 
a boundary condition is 
straightforward. In potential flow 
there is a unique relation between the 
value of the pressure coefficient at a 
point on an airfoil contour and the 
magnitude of the tangential velocity 
at that point. Based on the assumption 
of small modifications for the 
determination of the new airfoil 
contour, and the consequently small 
values of the transpiration velocity, 
the tangential velocity distribution 
along the given airfoil contour in the 
new flow field may be approximated by 
the specified velocity distribution 
along the new (unknown) airfoil 
contour. Then, by integrating along 
the given airfoil contour, the value 
of the potential along the airfoil 
contour may be determined apart from 
an arbitrary constant. This determines 
the Dirichlet boundary condition. 

In more complex cases, such as 3D wing 
design, the derivation of the 
Dirichlet boundary condition is no 
longer obvious. 

transpiration model 

streamline model 

Fig.3 Geometry correction based on transpiration model and on streamline model 
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For instance, assuming again potential 
flow and the availability of an 
approximation of the tangential 
velocity components in chordwise and 
spanwise direction, the conversion, by 
integration, into values of the 
potential at the wing surface leads to 
an additional unknown function of the 
spanwise coordinate. 

Detailed discussion of this problem is 
considered to be out of the scope of 
the present paper and the reader is 
referred to the relevant literature. 

x,-  = x. 

+ ÖXi.! + 

=  Z; 

(7a) 

V        V <5t 
~"2~ n* 

+ ÖZi.j. + 
V       V 

(7b) 

The second computational step in the 
iterative process comprises the 
determination of geometry 
modifications. Solving the Dirichlet 
boundary value problem leads to a flow 
field around the given geometry with a 
non-zero normal velocity 
("transpiration") distribution at the 
surface. The geometry modifications, 
determined according to either the 
transpiration model or the streamline 
model, aim to remove this transpira- 
tion. Fig.3 illustrates these concepts 
for 2D airfoil design. 
The transpiration model is based on 
mass flux conservation. Considering 
the cell formed by the points i-1 and 
i on the old and on the new airfoil 
contour, application of the mass 
balance results in 

A(pVt5n) = pVn<5t, 

which may be  discretized as 

Pivt,5ni  - Pi-lVtl,
öni-l  = 

(5) 

p.  nV  + o.V "i-l n. .   ri vn. 

(6) 

<5t 

From Eq. (6) the successive 8nL  values 
can be solved. 

The streamline model is based on 
alignment of the airfoil contour with 
the streamlines. This implies that the 
tangent to the contour is directed 
along the local velocity V = Vt + Vn. 

In discretized form this results in 

In the majority of Dirichlet type 
methods, existing flow solvers have 
been modified in order to accept 
Dirichlet type boundary conditions 
(derived from the prescribed pressure 
distribution), usually in addition to 
the common Neumann type boundary con- 
dition (zero normal velocity). In this 
way, methods have been developed for 
solving purely inverse as well as 
mixed direct-inverse problems. 

3.2 Survey of developments 
A typical example of a Dirichlet type 
method is that of Henne (Ref.13) for 
transonic wing design, where the tran- 
spiration model is used for determina- 
tion of the geometry update. The 
computational process utilizes the 
transonic full potential code FL022 of 
Jameson and Caughey (Ref.14) with a 
specified velocity potential as 
Dirichlet boundary condition. In Ref. 
1 some examples are presented showing 
the capability of the method for 
redesign of existing wings. 
Application of constraints is not 
discussed. 

Another typical example is the 
conformal mapping method of Volpe 
(Refs.7, 8) for inverse design of 
airfoils in transonic flow. Here, the 
geometry corrections are calculated 
utilizing the streamline model. 
Being a purely inverse method, the 
Betz-Mangier constraints are taken 
into account, but there is no 
possibility for applying additional 

constraints. 
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In 1987 Gaily and Carlson (Ref.15) 
presented an extension of an earlier 
Dirichlet type method developed for 
orthogonal grids (Ref.16) to a body- 
fitted non-orthogonal curvilinear grid 
for the mixed direct-inverse transonic 
wing design problem. The method 
utilizes the finite volume full 
potential code FL030 of Jameson and 
Caughey (Ref.17) in which the boundary 
condition of zero normal velocity, 
applied in analysis, is replaced by 
specification of the perturbation 
potential in the inverse design 
regions. During the iteration pro- 
cedure the actually used geometry is 
periodically updated by aligning it 
with the streamlines. By excluding the 
wing leading edge region from the 
inverse design regions, the problem of 
how to apply the regularity condition 
at the leading edge is circumvented. 
But this implies, of course, that the 
possibility for modification of the 
leading edge region is limited. 
Prescription of the trailing edge 
thickness is made possible by means of 
a relofting process in which a 
deviation of the calculated trailing 
edge thickness from the desired 
trailing edge thickness is removed by 
distributing it along the entire wing 
section contour. See Fig.4. As a 
direct consequence of this procedure, 
deviations from the target pressure 
distribution have to be accepted as a 
result; there is no further means of 
control. 

Original Design Surface 

5r(x)  = (At - A) 4 

Fig.4 Relofting  to force  trailing edge 
closure   (Ref.16) 

Dirichlet type methods based on panel 
methodology have been developed by 
Fornasier (Ref.18) and Kubrynski 
(Ref.19). Despite the limitation with 
respect to the description of real 
flow, panel methods are still widely 
applied because of their capability to 
treat complex configurations. 

Fornasier (Ref.18) has developed a 
panel method for direct/inverse shape 
design of general 3D configurations in 
subsonic and supersonic flow. Surface 
distributions of sources as well as of 
doublets are utilized. This offers the 
opportunity to relate the local source 
strength to the normal component of 
the free stream velocity and to relate 
the tangential derivative of the 
doublet strength to the tangential 
velocity. As such, the source dis- 
tribution provides direct information 
on the geometry, and the doublet 
distribution provides direct 
information on the flow field. Direct 
and inverse problems lead to the same 
type of equations, and as a conse- 
quence mixed direct-inverse problems 
can be treated equally well. In the 
regions with given geometry the source 
strength is pre-determined, whereas in 
regions with prescribed velocity the 
doublet strength is pre-determined 
using the current guess of the 
geometry. Application of the boundary 
condition of zero internal pertur- 
bation potential leads to a linear 
system of equations from which the 
remaining unknown singularity 
strengths are determined. The new 
source distribution is then used to 
update the geometry. 

The panel method of Kubrynski (Ref.19) 
has features similar to that of 
Fornasier. Here, also, source as well 
as doublet distributions are used, 
although the definition of the 
singularity strengths is different. 
The source strengths are related to 
the mass flow through the body surface 
(zero in the analysis case) and the 
doublet strengths are related to the 
velocity potential at the body 
surface. The boundary condition of 
zero internal potential is applied to 
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derive an integral equation for the 
doublet strengths. An inverse or mixed 
direct-inverse problem is solved by 
the following iteration process. For a 
given guess of the geometry, the 
doublet distribution is determined for 
a source distribution of zero 
strength. Then a geometry correction 
is determined aiming at minimizing the 
difference between the approximated 
actual pressure and the target pres- 
sure. The geometry is not actually 
updated, but using the transpiration 
concept the required geometry 
correction is related to a mass flow 

Maoo 

a. 2.25 

starting 

_ result 
_ start 

target 

Fig.5 Wing and fuselage,   before  (top) 
and after  (bottom)   design process 
(Ref.19) 

through the body surface and thus 
determines a new value of the local 
source strength. The source 
distribution thus determined gives 
rise to an incremental doublet dis- 
tribution associated with a change in 
the approximated actual pressure 
distribution. After minimizing the 
differences between the approximated 
actual pressure and the target pres- 
sure , the shape of the configuration 
is updated and the whole process is 
repeated until satisfactory conver- 
gence has been obtained. 
An interesting feature of this method 
is the fact that the pressure dis- 
tribution may be prescribed on one 
part of the configuration and that a 
different part of the configuration 
may be reshaped in an attempt to 
realize that pressure distribution. 
This is of particular interest for 
e.g. fuselage-wing, pylon-wing, pylon- 
nacelle interference problems. Fig. 5 
shows an example of wing-body design, 
where the shape of the fuselage has 
been redesigned such that a straight 
isobar pattern on the wing is 
obtained. 

4. NEUMANN OR RESIDUAL-CORRECTION TYPE 
METHODS 

4.1 Global description 
Solving the Neumann problem for a 
given estimate of the geometry to be 
determined leads to a pressure dis- 
tribution along the contour, which 
deviates from the target pressure dis- 
tribution. In the methods based on the 
residual- correction approach, the key 
problem is to relate the calculated 
differences between the actual pres- 
sure distribution on the current esti- 
mate of the geometry and the target 
pressure distribution (the "resid- 
uals") to proper corrections of the 
geometry. The iterative process 
obtained when following this approach 
is illustrated in Fig.6. 

Obviously, the art in developing a 
residual-correction method is to find 
an optimum between the computational 
effort for determining the proper 
geometry corrections and the number of 
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iterations needed to obtain a con- 
verged solution. In order to solve 
this problem two different approaches 
may be followed. In one approach the 
geometry corrections are estimated by 
means of simple correction rules, 
based on relations between local 
geometry corrections and pressure dif- 
ferences known from linearized flow 
theory. In the other approach the 
geometry correction is determined by 
solving an approximate inverse prob- 
lem, which is derived from the actual 
inverse problem e.g. by applying 
similarity rules or by linearizing the 
flow equations. In the latter case, 
the gain in computational effort is 
due to the reduced complexity of the 

approximate inverse problem as 
compared with the actual inverse 
problem. The Neumann type methods try 
to utilize the analysis methods for 
the solution of the Neumann problem as 
a "black-box". 

4.2 Survey of developments 
Since Barger and Brooks (Ref.20) pres- 
ented their streamline curvature 
method for invers design of 
supercritical and subcritical airfoils 
in which they utilized the possibility 
to relate a local change in surface 
curvature to a change in local 
velocity, quite a number of methods 
has been developed following that 
concept. Subsequent refinements and 

/(STARTING), 
/GEOMETRY, 

MQO, a 

TARGET 
Cp's 

NEUMANN 
BOUNDARY VALUE 

PROBLEM 

/ACTUAL Cp 
CL etc. 

DETERMINE 
RESIDUAL 

5Cp 

DETERMINE 
GEOMETRY CORREC. 

APPR. INVERSE 

Fig.6 Flow chart of  the Neumann  type methods 
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modifications made the concept 
applicable to design problems based on 
the full potential equation (e.g. 
Campbell and Smith (Ref.21)), the 
Euler equations (e.g. Bell and Cedar 
(Ref.22)) and the Navier-Stokes 
equations (e.g. Malone et al 
(Ref.23)). Greff et al (Ref.24) 
described a 2-D airfoil design code 
for viscous-transonic flow. They 
followed the approach of formulating 
an approximate inverse problem for 
subsonic flow. This problem is defined 
using a modified Von Karman-Tsien rule 
for the derivation of an equivalent 
subsonic target from the calculated 
differences between the transonic 
pressure distribution on the current 
estimate of the geometry and the 
transonic target pressure distribu- 
tion. The approximate inverse problem 
is solved by means of an inverse panel 
method. 

Takanashi (Ref.25) presented a method 
for transonic wing design using for 
the geometry correction an integral 
equation method that solves an 
approximate inverse problem on the 
basis of transonic small disturbance 
theory. 

So far, the method of Takanashi 
(Ref.25) seems to be the most widely 
applied residual-correction method. It 
has been coupled with analysis methods 
on the basis of Euler equations as 
well as Navier-Stokes equations. It 
has been applied to 2D as well as 3D 
transonic and supersonic design prob- 
lems (Fujii & Takanashi (Ref.26)). Hua 
& Zhang (Ref.27) have modified this 
method by replacing the numerical 
integrations applied in the integral 
equation method by analytical integra- 
tions, thus reducing computing time. 
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Fig.7 Flow chart of  the variational   type methods 
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They also added a smoothing technique 
in order to smooth the curvature of 
the designed geometry. The approach of 
Takanashi (Ref.25) has also been 
followed by Zhu et al (Ref.28) for 
transonic airfoil design; they 
introduced a modification for taking 
into account the regularity condition 
at the leading edge stagnation point. 
Also the method developed at NLR for 
transonic wing design (Ref.31) follows 
the approach of defining an 
approximate inverse problem, utilizing 
linearized compressible flow theory. 
Constraints on the geometry are intro- 
duced, leading to a least squares 
minimization problem which is solved 
with the aid of linearized panel 
methodology. The method will be 
described in some detail in section 6. 

5. VARIATIONAL TYPE METHODS 

5.1 Global description 
Application of the calculus of 
variations ("optimal control theory") 
to the solution of the inverse design 
problem leads an iterative process as 
depicted in Fig.7. In each subsequent 
iteration step two strongly related 
flow problems have to be solved. One 
is the Neumann problem of flow 
analysis for a given geometry, the 
other is the so-called adjoint problem 
in which the residual differences 
between current and target pressure 
distribution determine the boundary 
condition. Usually this adjoint 
problem is of the same type as the 
corresponding analysis problem, which 
implies that a solution method may be 
readily derived from an available 
analysis method. It is attempted to 
determine the geometry correction as 
accurately as possible using the sol- 
ution to the adjoint problem for the 
determination of a search direction 
for the geometry update. Application 
of this type of geometry correction 
method leads to an increase of compu- 
tational effort as compared with 
simpler types of geometry correction 
methods. It might, however, be more 
robust and the speed of convergence of 
the whole process might be increased. 

The concept of the variational 
approach may be best explained with 
the aid of a simple inverse airfoil 
design problem. To this end, consider 
the non-lifting incompressible 
potential flow around a symmetric 
airfoil so that the leading and 
trailing edge stagnation points are 
fixed. Assume the tangential velocity 
on the airfoil contour to be 
prescribed as a function of the 
chordwise coordinate x and the airfoil 
contour to be represented by z(x). 
Then the inverse design problem may be 
formulated as the minimization of the 
functional : 

F(z) =/ [0t(z) - Vt]
2dt. (8) 

Here t is the arclength of the 
contour, <f>t  is the actual tangential 
velocity and Vt is the target velocity. 

Considering incompressible potential 
flow around a given airfoil the 
equations 

(9) A<f> = 0 

M. = 0 
an 

d<b      -    - 
3n 

in fi, 

on r, 

on rff 

(10) 

(11) 

determine the velocity potential <j>  in 
the flow domain 0 apart from a 
constant which may be determined by 
prescribing the potential at some 
point. The flow domain fi is bounded on 
the inner side by the airfoil contour 
T and on the outer side at infinity by 
r«,. For a given airfoil contour and 
given velocity potential <j>  in the flow 
domain, the adjoint problem amounts to 
the determination of the co-state 
variable A, apart from a constant, 
from the following equations: 
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AA = 0 infl,  (12a) 

onr,  (12b) 

onr„. (12c) 

With the aid of the solution to this 
problem, the variation of the 
functional F can be determined from: 

<5F = ^h(x)<5z(x)dx,     (13) 

with 

h(x)= -VAV^ + JL[0t-Vt] 
dz 
dt 

(14) 

For two successive estimates of the 
airfoil contour z1 and z i+l the 
difference between the associated 
values of the functional F is to first 
order approximated by 

,i+i F1 = OF. (15) 

Thus, applying a geometry correction 
by choosing z1+1 = zx+8z  with 
<5z(x)—eh(x) and £>0, such that 
<5F <  0, a reduction of F is ensured. 

5.2 Survey of developments 
Pironneau (Ref.3) gave an extensive 
survey of the possibilities for appli- 
cation to optimum shape design for 
systems described by elliptic flow 
equations. 

An application of the variational 
approach to the inverse design of air- 
foils in subsonic potential flow is 
the pioneering work of Angrand 
(Ref.32). Beux and Dervieux 
(Refs.33, 34) treated the case of 
inverse design for internal subsonic 
flow governed by the Euler equations. 
Cabuk et al (Ref.35) applied the 
variational approach to the problem of 
optimizing a diffuser such that a 
maximum pressure rise is provided. 

6. THE NLR RESIDUAL CORRECTION METHOD 

6.1 Basic principle 
The NLR residual correction method is 
based on the assumption that it is 
possible to split the design process 
into two major steps, which can be 
iterated until satisfactory results 
have been obtained. In the first step, 
the flow about the current estimate of 
the geometry is calculated by means of 
an analysis code for the flow regime 
under consideration, thus giving the 
deviation from the specified target 
(the residual). 

(  START    ) 

'Ptar 
initial 

geometry 

transonic 
analysis 

code 

calculate 
eq.inc.vel. 

defect 

(    STOP    ) /current 5 u 

incompr. 
inverse 

method 

improved 
geometry 

z -"-z + 5zy 

Fig.8 NLR Residual  correction method, 
outer loop 
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In the second step, a geometry cor- 
rection is calculated from the current 
residual by means of an approximative 
procedure involving the specification 
of an equivalent incompressible 
inverse flow problem which is more 
amenable to fast computational 
methods. For simplicity the method 
will be described in more detail for 
two-dimensional airfoil design.The 
computational process is initiated by 
specifying : 

- the design condition in terms of 
angle of attack, Mach number and 
Reynolds number, 

- a target pressure distribution, 
- a starting airfoil at a starting 
angle of attack, 

- geometric constraints, 
- weight factors for the design con- 
ditions, for the geometric 
constraints and for the upper and 
lower surface target pressure 
distributions. 

The computation proceeds by utilizing 
the following loop in an iterative 
fashion (see Fig.8): 

1. Calculate the flow about the cur- 
rent estimate of the airfoil geometry 
z=z[x] for the operating condition (or 
design point) considered and obtain 
the current pressure distribution Cp[x] 
on the airfoil surface. 

2. Decide whether or not the current 
airfoil geometry z=z[x] needs further 
improvement, by comparing the current 
pressure distribution Cp[x] with the 
target pressure distribution Cp  [x] 
and by considering the convergence 
history. 

3. If further improvement of the cur- 
rent airfoil geometry z=z[x] is con- 
sidered necessary, calculate the 
equivalent incompressible perturbation 
velocity defect 5u on the airfoil con- 
tour from the target pressure dis- 
tributions CL  [x] and the current PtarL ' 
pressure distributions Cp[x]. 

4. Calculate the airfoil geometry cor- 
rection <5z=<5z[x] as will be described 

below, obtain a new estimate for the 
airfoil geometry from 

z[x] =» z[x] + <5z[x] . (16) 

5.Iterate the whole process until 
satisfactory results in terms of 
approximations of the pressure 
distributions and geometric 
requirements are obtained. 

/ current     / 

/      CP     / /pressure^ 
>H   defect    r=C! 

\ split y 

/ target / 

/    Sar   / 

/supersonic  / 

/   6supcp/ 

/ subsonic / 

/   5subcp / 

Fig.9 Calculation of incompressible 
perturbation velocity defect 
(NLR method) 

During the process, the weight factors 
mentioned above may be used to balance 
the different design requirements. 
The inverse calculation consists of 
two major steps as indicated in 
Fig.9.In the first step the transonic 
pressure-defect distribution is 
replaced by an equivalent subsonic 
perturbation velocity defect dis- 
tribution by applying a so-called 
pressure defect splitting technique. 
In the second step this equivalent 
velocity distribution is used for the 
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determination of the geometry correc- 
tions . 

6.2 Equivalent subsonic velocity 
The pressure defect splitting tech- 
nique, which is used to distinguish 
between a subsonic and supersonic part 
of the pressure defect, is illustrated 
in Fig.10. The split made is based 
primarily on the assumption that sub- 
sonic thin-airfoil theory is 
applicable if the local actual pres- 
sure and the local target pressure are 
both subsonic, and that supersonic 
wavy-wall theory is applicable if both 
pressure coefficients are supersonic. 
In case one pressure coefficient is 
subsonic and the other supersonic the 
critical pressure coefficient is used 
as upper or lower limit. In Ref.30 a 
detailed description of the deriva- 
tions is given. 

The subsonic and supersonic parts of 
the pressure defect <5Cp are defined as 

where Cp is the actual pressure 
coefficient, Cp   is the target 
pressure coefficient, and C* is the 
critical pressure coefficient.The 
subsonic and supersonic parts of the 
pressure-defect distribution are each 
converted into incompressible 
perturbation velocity defects <5subu and 
<5supu, from which the equivalent incom- 
pressible perturbation velocity 
defect is obtained as 

öu  = e(<5subu + <5supu) , (18) 

where e is a relaxation parameter. 

6.3 Geometry corrections 
Utilizing thin-airfoil theory and 
consequently splitting the velocity 
defect in a symmetrical and an anti- 
symmetrical part, the determination of 
the geometric corrections is formu- 
lated as a least squares problem. 

sup Cp =min(CP|u,c;)-min(Cp,c;) ,   (17a) 

<5sub Cp = max (Cp, Cp*) -max (Cp, Cp*)   , (17b) 

8supcp TARGET Cr 

Fig.10 Pressure  defect splitting  (NLR method) 
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The solution to this problem is 
obtained by solving a system of linear 
algebraic equations for camber and 
thickness corrections, which are 
derived from the minimization of a 
functional of the form 

Q(zc.
zt) = 

wu ^ (equiv.vel.def.res.)u + 

+ wL 52 (equiv.vel.def.res.)1  + 

+ J2 wt(thickness constr.res.)
2 + 

+ \^ wc(camber constr.res.)
2  (19) 

Constraints on the geometry have been 
limited to the requirement that the 
airfoil thickness and/or the camber 
will approximately satisfy prescribed 
values. Weight factors are given by w; 
the subscripts u,l,t,c refer to upper 
and lower side, to thickness and 
camber respectively. 

6.4 Computational results 

Test  case  1. 

The translation of the transonic 
design problem into an equivalent 
incompressible design problem raises 
the question of feasibility. The 
results obtained by running a recon- 
struction test case may demonstrate 
the feasibility. The NACA64A410 
airfoil has been specified as initial 
geometry. 
Both the inviscid and the viscous 
transonic pressure distributions were 
calculated for the Korn airfoil at 
zero angle of attack and Mach number 
0.75. Hence, in fact two test cases 
were defined by prescribing each of 
these pressure distributions as a 
target for the design process with the 
NACA airfoil as a start. 

NLR 

TEST CASE T4 

INVISCID FULL POTENTIAL 

TARGET 

25 ITERATIONS 

NLR 

TEST CASE T4 

VISCOUS FULL POTENTIAL 

TARGET 

50 ITERATIONS 

-1.5 

CP 

0.000 0.200 0.400 0.600 0.800 1.000 0.000 0.200 0.400 0.600 0.800 1.000 

Fig.11 Reconstruction of Korn airfoil   ;  pressure distributions 
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In the inviscid case, application of 
the design method led to recovery of 
the Korn airfoil in about 25 iter- 
ations , each iteration involving one 
flow analysis calculation and one 
geometry update.  For the viscous case 
about 50 iterations were needed for 
recovery of the Korn airfoil. 
In Fig.11 the pressure distributions 
on the reconstructed airfoils 
(inviscid and viscous) are compared 
with the target pressure 
distributions. The pressure 
distributions on the reconstructed 
airfoils deviate only slightly from 
the target, which reflects the almost 
complete recovery of the original air- 
foil. The convergence history of the 
process is presented in Fig. 12, where 
the value of the cost function defined 
by: 

■-/(C 

and the value of the L2 norm defined 
by: 

L2(z)= f      (za-zt)
2dx + 

Jupperside 

+ f     (za-zt)
2dx 

Jlowerside 

(21) 

Pa CPt>/dS (20) 

are given as a function of the number 
of iterations. The integration is 
along the airfoil contour, subscript 
"a" refers to the actual and subscript 
"t" to the target pressure 
distribution or airfoil contour. 

Test  case 2. 

This test case is a  3D wing design 
problem, which is used to demonstrate 
the applicability of the 
residual-correction approach. 

NLB 
TEST  CASE  T4 

INVISCID 
VISCOUS 

NUMBER   OF   ITERATIONS NUMBER  OF   ITERATIONS 

10.0 20.0 30.0 40.0 50.0 30.0 

Fig.12 Reconstruction of Korn airfoil   ;   convergence history 
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This design aims to improve the 
inviscid low speed high lift pressure 
distribution for a known wing-body 
configuration. 
Starting point is the DLR-F4 wing-body 
configuration for which a target pres- 
sure distribution is specified in a 
number of chordwise wing sections. The 
target has been obtained by modifying 
a calculated pressure distribution, 
such that, at a certain lift coeffi- 
cient, the supersonic pressure peaks 
were reduced to subsonic values, 
retaining approximately the original 
spanwise lift distribution. 

This design problem requires modifica- 
tions at the wing nose region mainly. 
It is known to represent a difficult 
case for the NLR approach, which 
relies on a linearized approximation 
of the inverse problem. The resulting 
wing geometry is shown for five compu- 
tational sections in Fig.13 in com- 
parison with the initial geometry. 
Comparison of the pressure distribu- 
tion on the designed wing with the 
target pressure distribution at the 
same sections (see Fig.14) shows that 
it appears to be possible to design a 
wing geometry with the desired 
characteristics along almost the full 
span. Fig.15 shows the resulting 
isobars. The leading edge region shows 
acceptable reasonably smooth contours. 

Fig.16 gives the values of the L^ and 
L2 norms for the differences between 
actual and target pressure 
distribution defined by: 

MV -^K-Cp1,. 

L2(Cp) 

(22) 
N 

£ (CP.-CP,): 

i = l 

as a function of the number of iter- 
ations (analysis computations). These 
figures, showing a sizeable reduction 
of the norms in iteration 0 to 13, are 

typical for straightforward applica- 
tion of the residual-correction 
approach starting with a given mate of 
the wing geometry. However, at that 
point of computation, the design 
process was continued with 
refinedestiadjustments of the geometry 
and geometry constraints in order to 
improve geometry regularity (both 
chordwise and spanwise). This "fine 
tuning" requires a relatively large 
effort, but is quite effective in 
terms of geometry, and results in an 
improved approximation of the target 
pressure distribution. The obtained 
reduction of the norms is about 1 to 2 
orders of magnitude. 

7. CONCLUDING REMARKS 
A survey has been given of strongly 
related inverse aerodynamic wing 
design methods. The main feature that 
the methods considered have in common 
is the fact that the flow field around 
a current estimate of the wing and the 
subsequent new estimate of the wing 
shape are determined in two separate 
computational steps. The basic 
principles of these methods have been 
discussed and some examples of 
application have been given. Some 
attention has been paid to the 
question of well-posedness of the 
design problem. In the case of 2D 
airfoil design plausible strategies to 
address this aspect have been 
indicated in the literature. Though 
successful applications for 3D wing 
design have been reported, an answer 
to the question of well-posedness of 
the 3D inverse wing design problem has 
yet not been found. 

The majority of methods for inverse 
design of 3D wings seems to be of the 
residual-correction type. The main 
reasons for this include: the possi- 
bility to take full advantage of the 
existence and improvement of analysis 
methods, which are implemented as 
"black boxes", and the possibility to 
combine different analysis methods 
with the same correction procedure in 
order to solve the inverse problem for 
flows of different complexity. 
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Fig.13 Wing design   :   initial  and resulting geometry 
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Fig.24 Wing design  :   chordwise pressure distributions 
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Also at NLR, these considerations have 
led to the development of residual- 
correction methods for 2D airfoil as 
well as 3D wing design. 

For real practical applications there 
is a need for further development of 
the inverse methods, even in 2D, due 
to the lack of methods that take 
geometric constraints (apart from 
trailing edge thickness) into account. 

In this respect the application of the 
variational approach seems to offer a 
perspective, especially for problems 
where the design requirements are 
formulated in terms of prescribed 
pressure distributions. The approach 

does not particularly lead to 
limitations in geometry representation 
and allows for the implementation of 
geometric and other constraints. 
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Fig.15 Wing design   :   isobar pattern 
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Fig.16 Wing design   :   convergence 
history of wing pressure distribution 
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RESIDUAL-CORRECTION TYPE AND RELATED COMPUTATIONAL METHODS FOR AERODYNAMIC 
DESIGN 

Part II : MULTI-POINT AIRFOIL DESIGN 

Th.E.Labrujere 
National Aerospace Laboratory Theoretical Aerodynamics Department 

A.Fokkerweg 2 1059 CM Amsterdam The Netherlands 
SUMMARY 
The present paper considers the 
problem of multi-point airfoil design, 
where the geometry of an airfoil is to 
be determined such that it will 
approximate simultaneously, at 
different design points, a priori 
specified aerodynamic requirements. 
Some attention is paid to approaches 
published in the open literature. The 
main part of the paper concerns work 
in progress at NLR. 
results are shown. 

Some preliminary 
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rm 
5 
5z 
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A* 
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MAD 
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SYMBOLS 
angle of attack 
inner boundary of flow domain 
discontinuity line 
outer boundary of flow domain 
velocity or pressure defect 
geometry correction 
co-state variable 
doublet strength 
doublet strength on slit TT 
independent coordinate 
parameter 
source strength 
parameter used as independent 
variable for airfoil contour 
specification 
density 
velocity potential 
flow domain 
drag coefficient 
lift coefficient 

P-P* 

0 ~K Z J Palm 
pressure 

coefficient 
functional associated with 
design problem (see Eq.(l)) 
augmented functional 
associated with variational 
approach (see Eq.(28)) 
aerodynamic influence 
coefficient for a doublet of 
unit strength 
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coefficient for a source of 
unit strength 
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unit normal vector 
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velocity distribution 
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least squares functional (see 
Eq.(26)) 
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unit tangent vector 
total arclength of airfoil 
contour 
disturbance velocity 
component in x direction 
normal velocity 
tangential velocity 
weight factors 
weight on first and second 
target respectively 
Cartesian coordinates of 
airfoil contour 
vector of design variables 

subscripts 
c refers to camber 
d refers to doublet 
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side 
to airfoil lower 

le refers 
edge 

to airfoil leading 

s refers to source 
t refers to thickness 
tar refers to target 
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edge 
to airfoil trailing 

u refers to airfoil upper 
side 

00 refers to free stream 
conditions 

superscripts 
i refers 1 to aperating condition 
- refers 1 

airfoil 
to the inner side of the 

+ refers 1 
airfoil 

to the outer side of the 
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1. INTRODUCTION 

Aircraft have to operate under a 
number of quite different conditions, 
which in general implies that for the 
aerodynamic design process different 
requirements will be formulated for 
different flow conditions. 

Ideally, aerodynamic design aims at 
the fulfilment of all requirements. 
Mostly, this is attempted by initially 
optimizing the aerodynamic shape for 
the cruise condition, for instance 
with respect to lift, drag and 
pitching moment. Possible optimization 
with respect to requirements for other 
(off-design) operating conditions is 
then a matter of painful trial and 
error. 

Nowadays, computational design 
algorithms are available from the 
literature which can help the designer 
to determine the shape of a wing such 
that it meets a priori specified 
requirements for one single flow 
condition. Surveys of these methods 
can be found in Refs.1-7. 

The present paper discusses the 
problem of designing an airfoil such 
that it will meet, to the best 
possible extent, a priori specified 
requirements for a number of flow 
conditions. Solving this problem 
should lead to one single airfoil 
shape, optimized with respect to all 
specified requirements and satisfying 
a number of constraints on aerodynamic 
and geometric characteristics. Methods 
for solving this problem are only in 
the early stages of development. It is 
emphasized, that the present paper 
does not present a ready to hand 
method for the solution of the multi- 
point design problem, but rather tries 
to indicate key problems yet to be 
solved. 

Most methods based on the direct 
numerical optimization approach, and 
originally developed for single-point 
design, are equally well applicable to 
the multi-point design problem. So, 
not surprisingly, up to now, most 

applications to multi-point design use 
direct optimization (Refs.8-12). Some 
other applications show the use of 
inverse shape design methods (Refs.13- 
15). At NLR work is in progress to 
explore the possibilities to solve the 
multi-point design problem for 
subsonic/transonic flow, by applying 
the residual correction approach 
(Refs.16-18). 

The paper discusses the formulation of 
the multi-point design problem. A 
global survey of the above mentioned 
approaches is given by reviewing some 
examples of application. A more 
detailed description of the NLR 
residual-correction approach is given 
and preliminary results are shown. 

The approach applied at NLR is based 
on the assumption that it is possible 
to split the design process into two 
major steps, which can be iterated 
until satisfactory results have been 
obtained. In the first step, the flow 
about the current estimate of the 
geometry to be determined is 
calculated by means of an analysis 
code for the flow regime under 
consideration, thus giving the 
deviation from the specified target 
(the residual). In the second step, a 
geometry correction is calculated from 
the current residual by means of an 
approximative procedure involving the 
specification of an equivalent incom- 
pressible inverse flow problem which 
is more amenable to fast computational 
methods. When this approach is applied 
to multi-point design, the second step 
leads to the specification of an 
equivalent incompressible multi-point 
design problem. 

The feasibility of the residual- 
correction approach for multi-point 
design, in particular the replacement 
of the actual problem by an equivalent 
incompressible multi-point design 
problem, is addressed by presenting 
results of a two-point reconstruction 
test case and results of a two-point 
viscous subsonic/transonic airfoil 
design problem. The latter example 
concerns the design of an airfoil 
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which combines favourable high speed 
and low speed performance. The design 
requirements are formulated by 
specifying a target pressure 
distribution for each of the two 
operating conditions, defined by angle 
of attack and free stream Mach number. 

aerodynamic characteristics. For 
instance, improvement of overall 
airfoil performance may be attempted 
by considering the minimization of 

F = ^W^c^M^X] , 
i=l 

(2) 

Preliminary results are shown of 
developments for obtaining a robust 
and fast geometry correction method, 
involving the solution of the 
equivalent incompressible multi-point 
design problem. 

2. THE MULTI-POINT AIRFOIL DESIGN 
PROBLEM 

2.1 Design requirements 
The multi-point airfoil design problem 
involves the optimization of a single 
airfoil shape such that a priori 
specified requirements with respect to 
a number of operating (design) 
conditions will be met to the best 
possible extent. Thus, the design 
problem considered here can be defined 
as the minimization of an objective 
function of the form 

£ w1 F^X), 
i=l 

(1) 

where the summation is over the n 
operating conditions and the vector X 
is the set of design variables. The 
function F* will attain its minimum 
when the design requirements for the 
corresponding operating condition i 
are fulfilled. The W1 are weight 
factors that balance the requirements 
for the different operating 
conditions. 

With respect to the specific form of 
the objective function, i.e. the 
formulation of the design requirements 
in terms of aerodynamic 
characteristics, the same type of 
discussion may take place as with 
single-point design. When considering 
direct numerical optimization for 
solving the present problem, an 
objective function is easily 
formulated in terms of global 

possibly subject to constraints on 
e.g. lift- and moment coefficients and 
constraints due to geometric 
requirements. 

Just like in single-point design, led 
by the wish to have more direct 
control over the load distribution and 
over e.g. boundary layer development, 
the designer may prefer specification 
of the design requirements in terms of 
target pressure distributions. In 
airfoil design for e.g. full potential 
flow this implies specification of 
target tangential velocity 
distributions, and thus the objective 
function may assume the form 

EWir[Vt
i(s)-vitar(s)]

2ds. 
i=l   Jr 

(3) 

Here, the aerodynamic designer has the 
difficult task to specify each target 
pressure distribution as the balanced 
result of desired (sometimes 
conflicting) aerodynamic 
characteristics and of aerodynamic 
constraints that are better not 
violated. 
The form (3) of the objective function 
is a necessity when considering the 
application of inverse shape design 
methods or residual-correction type 
methods. 

2.2 tfell-posedness 
In contrast with the single- point 
inverse design problem, the multi- 
point design problem as stated above 
has never been investigated with 
respect to well-posedness, at least 
not to the present author's knowledge. 

Moreover, assuming the existence of 
solutions to the multi-point design 
problem formulated in terms of global 
aerodynamic characteristics, as in 
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Eq.(2), it seems questionable whether 
the solution would be unique. For 
instance, given the fact that there 
may be designed many airfoils with the 
same value of the drag coefficient, it 
seems obvious that multi-point drag 
minimization might easily lead to more 
than one solution even if the same 
minimum value of the objective 
function is attained. 

These doubts about the existence of 
unique solutions seem to be enforced 
by the investigations reported in 
Ref.10. Here, a procedure is described 
for transonic airfoil design based on 
wave drag minimization. This procedure 
is directed such that certain 
aerodynamic constraints are 
deliberately violated, at least 
initially, in order to speed up 
convergence. This is motivated by the 
observation that violated constraints 
have a large influence on the 
definition of the search direction for 
the optimization. Also, it is observed 
that the value of either term in the 
objective function does not 
necessarily decrease during 
minimization. It is concluded that 
constraints have to be formulated in 
addition to the objective function in 
order to obtain a more completely 
defined design problem. 

The above considerations suggest that 
the multi-point design problem will be 
"more completely" defined, if the 
problem is formulated in terms of 
target velocity distributions for all 
operating conditions, like in Eq.(3). 
Moreover, when considering single- 
point design for any specified 
operating condition, the existence of 
a unique solution seems plausible 
(Ref.7) for target velocity 
distributions satisfying the 
consistency constraints, formulated by 
Betz (Ref.19) and Mangier (Ref.20). 
So, when the multi-point design 
problem is formulated with the aid of 
this type of targets, the problem 
seems, at least, to be better posed 
than when considering problems that 
have the form of Eq.(2). 

In the case of single-point inverse 
shape design, the question of well- 
posedness has led to the introduction 
of auxiliary functions with free 
parameters, enabling modification of 
the target velocity distribution. 
During the solution of the design 
problem, these functions are 
determined such that the modified 
velocity distribution satisfies the 
Betz-Mangier constraints. In fact, the 
parameter values are obtained as part 
of the solution, and an airfoil shape 
is obtained that produces the modified 
target. The introduction of a set of 
such auxiliary functions with free 
parameters for each of the specified 
velocity distributions in the case of 
multi-point design is an obvious 
consequence of that approach. 

2.3 Geometric constraints 
In general, the role of geometric 
constraints in the multi-point design 
process is not different from the role 
in single-point design. Typically, 
they control the shape of the airfoil 
and must be satisfied irrespective of 
the operating conditions. 

However, in some approaches to the 
multi-point design problem, especially 
those where purely inverse single- 
point design methods are extended, 
different parts of the geometry are 
used to satisfy different design 
requirements (Refs. 13-15). In such 
cases, particular geometric 
constraints are associated with 
particular operating conditions. 

2.4 Design variables 
With respect to direct numerical 
optimization, it is commonly 
acknowledged that this approach is 
feasible only if the number of design 
variables is small enough to keep the 
computing cost within limits. This is 
attained via a careful selection of 
shape functions and associated 
parameters for modification of the 
geometry. Of course, this will be even 
more true for multi-point 
optimization, because of the fact that 
each objective function evaluation 
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then involves the computation of a 
number of analysis problems instead of 
only one. 

Most inverse shape design methods and 
residual-correction methods, based on 
completely different geometry 
correction procedures when compared 
with direct numerical optimization, do 
not lead to such a strong demand for 
limitation of the design variables. In 
most cases, airfoil contour 
coordinates or coefficients of some 
parametric representation of the 
contour are introduced as design 
variables. Extension to the multi- 
point design problem does not 
substantially change this situation. 

3. SURVEY OF DEVELOPMENTS 

Though little has been published so 
far on the development of multi-point 
design methods, a few examples of 
application, found in the literature, 
may be used to illustrate the 
usefulness of computational multi- 
point design. The methods presented in 
Refs.8-12 are based on direct 
numerical optimization involving 
minimization of objective functions 
formulated in terms of global 
aerodynamic characteristics. Refs.13- 
15 present inverse shape design 
methods adapted to multi-point design. 

Renaux and Thibert (Ref.8) have shown 
that two-point design can be used 
effectively to improve the design of 
helicopter blade airfoils. They 
considered as objective function the 
sum of the drag coefficients for two 
design points corresponding to the 
advancing (low drag, high Mach number) 
and the retreating (high lift, low 
Mach number) blade conditions in 
forward flight. As initial geometry a 
single-point optimized airfoil OA213 
was chosen and a new blade airfoil 
OA312 was designed. Fig.l and 2 
demonstrate the improvement obtained 
in comparison with the starting 
airfoil. Fig.l shows that the new 
airfoil has lower drag under 
advancing-blade conditions. This will 
be due to the reduction of the average 

velocity level, which has a favourable 
effect on the boundary layer 
development leading to a reduction of 
the viscous drag, and also the 
strengths of the shocks are reduced. 
As a consequence, there is also a 
decrease of the nose-down pitching 
moment coefficient. 

Fig.l Measured aerodynamic 
characteristics of  the 0A213  and 0A312 
airfoils  in advancing-blade conditions 
(Ref.8). 

M - 0.40 

Re = 3.2x1 C 

■ OA312 

■ OA213 

Fig.2 Measured aerodynamic 
characteristics of  the 0A213  and 0A312 
airfoils in retreating-blade 
conditions   (Ref.8). 

Fig. 2 shows that the new airfoil also 
has a lower drag under retreating- 
blade conditions at the high lift 
level. Furthermore, Fig.3 gives a 
comparison of airfoil shapes and total 
performance, showing that improvement 
of the performance at high speed has 
been obtained without loss of Cj^^ at 
low Mach numbers. 
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1.0 
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Cl max 

Re = 8xMx106 

r^ 

Fig.3 Performances of OA213  and OA312 
airfoils.   Experimental  data.   (Ref.8). 

Another two-point design application 
aiming at drag reduction, is presented 
by Drela in Ref.11. Here, the 
objective function is a weighted sum 
of the drag coefficients at two 
operating conditions with different 
lift coefficients but at the same Mach 
number (^=0.1) and relatively low 
Reynolds number (Re=250.000). The 
purpose of the computations was to 
improve an existing airfoil LA203A. 
The effectiveness of the two-point 
design is demonstrated by comparing 
the result with that of the single- 
point designs at each of the two 
operating conditions.Fig.4 shows the 
calculated polars for the three 
airfoils thus obtained in comparison 
with that of the original airfoil. It 
appears that the single-point designed 
airfoils (at c^l.08 and cx=1.5)  have a 
considerably reduced drag coefficient 
at the design points. However, with 
the cL=1.5 optimized airfoil such a 
drag reduction is realized only at the 
design point, whereas with the cL=1.08 
optimized airfoil the reduction in 
drag is paid for by a large negative 
effect on the high lift behaviour. The 
latter observation was the motive to 
place a larger weight on the drag 
coefficient at C]_=1.5 than on the other 
drag coefficient in the objective 
function. The two-point optimization 
polar shows a far more attractive 
overall behaviour of the airfoil with 
a considerable overall reduction of 
the drag at the cost of a significant, 
but perhaps acceptable deterioration 

AIRFOIL 
LR203H 

CL=1.08 OPT 

CL-1.50 OPT 

2 POINT OPT 

2.0 

cL 

1.5 

1.0 

0.5 

0.0 

10"-CD 

Fig.4 Calculated polars for original 
LA203A,   single-point,   and  two-point 
optimized airfoils.   (Ref.11) 

of the high lift performance. Fig.5 
shows the new airfoil shapes in 
comparison with the original airfoil. 

■LA203A 

Fig.5 Geometry comparison between 
optimized airfoils and original  LA203A 
airfoil.(Ref.11). 

Close examination of the shapes learns 
that rather small changes in the 
geometry are responsible for the 
rather large differences in overall 
behaviour. It should be remarked, 
however, that this is typical for the 
low Reynolds number flows considered 
here. It could be expected that a 
similar design exercise for high 
Reynolds number flow should show far 
smaller discrepancies between the 
respective polars, especially in the 
lower drag region, implying a less 
explicit optimum than in the present 
example. 
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  RAE 2822   Singl B-point design.   Case   6 
_ Two- -point   d esign 

/£' 
^^ 

y^^^ 

\ 

I i 

RAE   2Ö22 
Single-point   design,   Case 
Two-poinI   design 

Fig.6 RAE 2822 alpha/Mach design, 
airfoil geometry comparisons. 
(Ref.12). 

As a last example of numerical 
optimization, results presented in 
Ref.12 by Hager et al may be 
mentioned. These results have been 
obtained by two-point optimization for 
inviscid transonic flow, considering 
also a weighted sum of drag 
coefficients. In contrast with the 
previous examples the design points 
considered were rather close, viz. 
M«,=0.726 at angle of attack a=2.44° and 
Maj= 0.730 at angle of attack a=2.78°. 
So, not surprisingly, the two-point 
optimization result closely 
resembles the result obtained with 
single-point optimization for the 
first operating condition. See Fig.6. 
As a consequence, also the cd-Mach 
curves presented in Fig. 7 show a close 
agreement between the single-point and 
the two-point optimized airfoils. The 
design goal of drag reduction in the 
operating region considered has been 
attained, apparently. This is paid 
for, however, by an increase of the 
drag in the lower Mach region up to 
about Mach=.7 and an unattractive 
behaviour of the drag rise curve from 
a flight dynamics point of view. 

Mach 

a) Mach number evaluation, a = 2.44 

    RAE   2822 

1 J 
1  e' 

    Single-point   design,   Case   6 /  f' 
-     Two-point   de&ign 

/     <; 

- 
/ i 

/  i 

/1 

- 

^.*~~ •*! 

P 

- 
,.....-^^vll_----— 

i                        i 

Mach 

b) Mach number evaluation, a = 2.78° 

Fig.7 RAE 2822 alpha/Mach design,   drag 
rise curves for the angles of attack 
of the operating conditions 
considered.   (Ref.12) 

In the above described examples, the 
multi-point design problem has been 
formulated such that the resulting 
solution represents a compromise 
between, in general, conflicting 
requirements associated with different 

operating conditions. In some cases, 
however, in particular when designing 
airfoils for the low Reynolds number 
regime (e.g. for sailplane wings), the 
requirements for different operating 
conditions can be associated with 
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different parts of the geometry. In 
such cases it is possible, in 
principle, to satisfy the requirements 
to the same level of accuracy as in 
single point design for that 
particular part of the airfoil. 
Selig and Maughmer (Refs.13,14) have 
presented a method for multi-point 
inverse shape design based on 
conformal mapping. The method is based 
on the assumption that the airfoil 
contour can be divided into a number 
of segments, each of which should be 
designed such that a prescribed 
velocity distribution is generated on 
that particular segment at a certain 
angle of attack. If the thus specified 
targets satisfy the Betz-Mangier 
constraints it is possible to fulfil 
the different requirements exactly. In 
order to demonstrate the capabilities 
of the method an example of such a 
two-point airfoil design is presented 
in Ref.13. The resulting airfoil shape 
together with the velocity 
distributions for both design angles 
of attack is shown in Fig.8. 

Fig.8 Airfoil  and velocity 
distributions at a=1.19°  and ct=11.81°. 
(Ref.13). 

The linear velocity distribution for 
a=11.81c on the upper surface has been 
prescribed along the upper surface 
forward part of the contour and the 
linear velocity distribution for 
a=1.19° on the lower surface has been 
prescribed along the lower surface 
forward part of the contour. 

4. NLR RESIDUAL-CORRECTION APPROACH 

4.1 Introduction 
At NLR, the applicability of the 
residual-correction approach to multi- 
point subsonic/transonic design is 
investigated. In algorithms based on 
this approach, analysis calculations 
with a current estimate of the 
geometry are used to determine the 
subsonic/transonic residuals for each 
of the specified design conditions. 
According to the technique described 
in Part I (Ref.7), each of these 
residuals is subsequently used for the 
specification of an equivalent target 
velocity distribution for a 
corresponding incompressible design 
condition. In this way, an equivalent 
incompressible multi-point design 
problem is obtained, the solution of 
which leads to a correction of the 
geometry. 

The success of the residual-correction 
approach highly depends on the 
flexibility of the correction 
procedure with respect to application 
of geometric constraints, its 
robustness with respect to large 
geometry modifications and the 
computing time needed for the solution 
of the equivalent incompressible 
design problem. Therefore, at NLR a 
few alternatives for the geometry 
correction procedure have been con- 
sidered. 

In the current NLR methods for single- 
point airfoil and wing design 
linearized thin airfoil theory is 
utilized to reduce the equivalent 
incompressible design problem, defined 
in the inner iteration loop as 
described in part I (Ref.7), to a 
linearized inverse flow problem. In 
that approach the flow disturbance, 
caused by the airfoil, is split into 
an anti-symmetric disturbance 
attributed to the camber of the 
airfoil and a symmetric disturbance 
attributed to the thickness of the 
airfoil. Reversely, by splitting a 
required disturbance velocity into an 
anti-symmetric and a symmetric part, 
corrections to camber and thickness 
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can be determined. This linearized 
inverse problem can be solved by means 
of a least squares approach utilizing 
a planar panel method with singularity 
distributions along the airfoil chord 
(Refs.21,22). The extension of this 
approach for the solution of a multi- 
point design problem has been 
considered. An apparent disadvantage 
of the thin airfoil linearization is 
that it deteriorates near the leading 
edge of the airfoil. Therefore, the 
least squares approach without this 
linearization is considered as an 
alternative. Furthermore, the 
application of the calculus of vari- 
ations , involving the formulation of 
the design problem as a minimization 
problem, has been considered in 
particular with respect to its 
flexibility to handle geometric 
constraints. All three algorithms 
developed in this way are based on 
panel methodology for simulation of 
the incompressible flow around an 
airfoil. 

With regard to the geometric shape of 
the airfoil it is assumed that the 
contour is a closed curve of which the 
coordinates are given by x and z (see 
Fig.9) as functions of a parameter r. 

x =x(r) with x(0)=x(l)=l , 

z =z(r) with z(0)=z(l)=0. 
(4) 

Furthermore, the arclength, measured 
along the airfoil contour is given by 
t=t(r), with 

t(0) = 0, 

t(r) I dr' 

t(D = T, 

dt dr' (5) 

where 

dt 
"3? 

(dx)2+ (dz)2 
dr     dr 

(6) 

By considering two points with the 
same x-coordinate on the upper and the 
lower side of the airfoil, camber and 
thickness can be defined as 

zc = -j(zu + 2i) 

zt = ^(Zu"Zl) 

(7) 

z 

2. 

/ V^           ^***^"N X 
al^q„ -                       ^o 

Fig.9 Airfoil axis system 

4.2 Geometry correction by means of a 
linearized panel method 
As indicated in the previous section, 
the correction procedure in the 
current NLR residual-correction method 
for single-point airfoil design is 
based on (linearized) thin-airfoil 
theory. And consequently, the velocity 
defect is split in a symmetrical and 
an anti-symmetrical part. The 
determination of the geometric 
corrections is formulated as a least 
squares problem in terms of camber and 
thickness corrections. 

The parameter r is chosen such that 
r=0 denotes the trailing edge lower 
side and r=l denotes the trailing edge 
upper side, so that 

Using the equivalent incompressible 
velocity distribution, symmetrical and 
anti-symmetrical perturbation 
velocities 5ut and 5uc are defined for 
each design condition. 
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According to thin airfoil theory there 
exists an integral relation between 
changes in thickness and symmetric 
perturbation velocities. This leads to 
the definition of the following 
residual 

R^x) = Su^Cx) + 

xte 

-IN*«) d£ 
(8) 

(x-O' 

A similar relation exists between 
changes in camber and anti-symmetric 
perturbation velocities. This leads to 
the definition of the residual 

R^x) = 5uc(x) + 

(9) 
Xte Jt Xte-x    r  dSzc 

x-x. 
£-£i.  d^ 

By setting Rj (x)=-0 the symmetric 
velocity defect 5ut is related to the 
required correction of the thickness 
distribution, and by setting RJ (x)=0 
the anti-symmetrical velocity defect 
Suc  is related to the required 
correction of the camber distribution. 

Constraints on the geometry are 
limited to the requirement that the 
airfoil thickness and/or camber will 
approximately satisfy prescribed 
values. Accordingly, the camber and 
thickness corrections are determined 
such that the following functional is 
minimized, 

F(zt.
zc)  = 
xte 

1 *le 
(x)[Rt

i(x)+Rc
i(x)]2dx + 

xte 

+   Jw1
i(x)[Rt

i 

Xle 

(x)-Rc
i(x)]2dx> + 

♦Ew^Sz^xp-Sz^Xj)]2* 
j 

+  EWck[{5zc(Xk)-5zc(xik)
} + 

-fezc
t(xk)-fizc

t(xlk}]2 

(10) 

The first summation is over the 
different operating conditions, indi- 
cated by the superscript i. 
The second summation is over the 
points j where the value of the 
thickness is prescribed. The third 
summation over k concerns the pairs of 
points (k,ik) where the camber is 
prescribed by means of the difference 
between the values in these points. 
The weight factors are given by w1; the 
subscripts u,l,t,c refer to upper and 
lower side, and to thickness and 
camber respectively. 
Utilizing a planar panel method with 
constant singularity strengths on the 
panels, the above functional is 
discretized. By setting the 
derivatives with respect to the 
unknown parameters of the discretized 
functional thus obtained equal to 
zero, a linear system of algebraic 
equations is obtained. Its solution 
leads to corrections for the design 
variables thickness and camber. No 
attempt has been made to take the 
Betz/Mangler constraints into account. 
Undesirable geometric shapes are 
avoided by making use of the options 
for geometric constraints as described 
above. 

4.3 Computational results 

Two-point reconstruction 
The translation of the transonic 
multi-point design problem into a 
sequence of equivalent incompressible 
multi-point design problems raises the 
question of feasibility.In order to 
demonstrate the feasibility, a two- 
point reconstruction test case has 
been run. To this end, inviscid 
pressure distributions were calculated 
on the Korn airfoil for an angle of 
attack a=0° and Mach number M^O.75, 
and for an angle of attack Q=5° and 
Mach number Ma,=0.3. These pressure 
distributions were prescribed as 
targets for a two-point design problem 
with the NACA64A410 airfoil as 
starting geometry. 

Application of the design method led 
to an almost complete recovery of the 
original Korn airfoil in 10 iterations 
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(see Fig.10), each iteration involving 
two flow analysis calculations and one 
geometry update. 

 START 

CONDITION 1 ALPHA-5.0 HACH-0.3 10 ITERATIONS 

CONDITION a ALPHA-0.0 MACH-0.75   KORN 

0.500- 

7/C 

0.400 - 

OPERATING CONDITION I 

ALPW=5.D   MACH=D.3 

TARGET 
10 ITERATIONS 

Fig.11a Two-point reconstruction of 
Korn airfoil; pressure distribution 
for operating condition  1. 

Fig.10 Two-point reconstruction of 
Korn airfoil   ;  geometry 

In Figs.11a and lib the pressure 
distributions on the reconstructed 
airfoil are compared with the target 
pressure distributions. The pressure 
distributions on the reconstructed 
airfoil deviate only slightly from the 
targets. 

Two-point design 
An example two-point design case has 
been run to investigate the 
possibility to determine the geometry 
of an airfoil such that it combines 
favourable characteristics at two 
different operating conditions. 
Similar design problems may be 
encountered e.g. at the design of a 
transport aircraft outer wing section 
(no flap, no slat) or at the design of 
a helicopter rotor blade section such 
as described in chapter 3 when 
discussing the results presented in 
Ref.8. 

The present design problem was defined 
by prescribing two viscous target 
pressure distributions, one for Mach 
number ^=0.2 (Re=0.5*107) associated 

OPERATING CONDITION 2 

ALPHA=D.D   MHCH=0.75 

  TARGET 

O   10 ITERATIONS 

h 

Fig.lib Two-point reconstruction of 
Korn airfoil; pressure distribution 
for operating condition 2. 

with a high lift capacity, and another 
for Mach number Ma,=0.77 (Re=107) chosen 
for its favourable high speed perform- 
ance. Two weight factors were 
introduced to balance the require- 
ments. Dealing with viscous target 
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pressure distributions presents no 
special problem if a viscous full- 
potential interaction code is used in 
the computational outer loop of the 
residual correction method. 

The target pressure distributions have 
been obtained by means of a separate 
computational process (Ref.23) in 
which the pressure distributions 
themselves were optimized with respect 
to desirable aerodynamic charac- 
teristics (one for high lift, and one 
for low drag) without making an 

a priori connection with the airfoil 
that should produce these pressure 
distributions. Such an a priori 
connection could be, for instance, 
that the two-point design problem was 
in fact a redesign problem, where the 
targets were expertly changed in some 
small detail with respect to the 
velocity distribution of the original 
airfoil. Therefore, it may be expected 
that the present two-point design will 
in general involve substantial 
discrepancies between targets and 
realized pressure distributions. 

0.500- 

z/c 

0.000- 

-0.500- 
0.500- 

z/c 

Wl-1  W2-0 

TWO-POINT DESIGN 

VISCOUS FULL-POTENTIAL 

- GEOMETRY | 

0.500- 

Z/C 
Wl-1  W2-1 | 

0.000- 

0.000- 

-0.500- 

-0.500- 
0.500- 

Z/C 
Wl-1   W2-4 

0.000- 

-0.500 -L- 

Wl-0  W2-1 

x/c x/c 

0.000 0.500 1.000 0.000 0.500 1.000 

Fig.12 Two-point airfoil design with different weight factor combinations 
geometry 
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Calculations have been performed for 
four choices of the weight factors 
showing the transition of a high lift 
airfoil (weight factor W2 set equal to 
zero) into a high speed airfoil 
(weight factor W1 set equal to zero). 

The NACA4412 airfoil has been used as 
starting geometry. Fig.12 shows the 
different airfoil shapes obtained in 
this way and Fig.13 shows the 
corresponding pressure distributions. 

TNO-POINT DESIGN «1-1  «-0 

VISCOUS FULL-POTENTIAL 

ACTUAL CP 

TAUGET CP 

MAOfO.77 HE-1O.0OO.OO0 

Transonic  code 
failed 

I 1 -H ¥ 
0.000 0.200 0.400 0.600 0.800 1.000 

1.000 0.000 

Fig.13 Two-point airfoil design with different weight factor combinations  ; 
pressure distributions. 
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TNO-POINT DESIGN Nl-1 HS-4 

VISCOUS FULL POTENTIAL 

ACTUAL CP 

TARGET CP I 

-!.5 

CP 
| MACH-0.77 B6-10.000.000    | 

X/C 

0.500 1.000       0.000 

Fig.13   (contd)  Two-point airfoil  design 
combinations   ;  pressure distributions. 

As such, the results demonstrate that 
the design process in itself works. 
However, it does indeed not directly 
lead to the determination of a new 
airfoil fulfilling the design 
requirements, as was already expected 

with different weight factor 

above. The reason is that the present 
two-point design involves two 
completely incompatible targets, in 
the sense that there does not exist 
one single airfoil which will produce 
both specified pressure distributions 
at the specified operating conditions. 
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The question of how to deal with such 
incompatibility is one of the subjects 
of current investigations at NLR with 
respect to multi-point design. 

But even for the single-point designs, 
there are discrepancies from the 
targets. There are two obvious reasons 
for this. Firstly, the geometry 
correction procedure, based on a 
linearized panel method, frequently 
gives rise to distortion of the 
leading edge airfoil shape, as 
illustrated in Fig.14. Usually, this 
leads eventually to a breakdown of the 
iteration process. The consequent 
discrepancies from the target are 
evident in the upper left result in 
Fig.13. 

i   i    i    i    i    r 
-0.003 0.014      0.031        0.040        0.066        0.083      0.100 

Fig.   14 Distorted airfoil  shape 
leading  to breakdown of iteration 
process. 

Secondly, it will in general not be 
possible to specify a pressure 
distribution with a (weak) shock such 
that it is fully consistent with the 
shock-capturing properties implied by 
the analysis code. This is probably 
one of the causes of the discrepancies 
between target and realized pressure 
distribution appearing in the lower 
right result in Fig.13 (contd). But 
these discrepancies will also be due 
to the premature end of the iteration 
process caused by the limitations of 
the geometry correction procedure, as 
illustrated in Fig.14. 

For the present example no attempts 
have been made to overcome the 
problems discussed above. The results 
presented, were considered 
satisfactory for the present 
demonstration. 

4.4 Conclusion 
With the computational results 
presented above it has been shown that 
the NLR residual-correction method 
with its replacement of the actual 
design problem by an equivalent 
incompressible design problem, is a 
feasible approach to the multi-point 
design problem. Application to the 
reconstruction test case indeed led to 
an almost complete recovery of the 
target geometry, and application to 
the design problem resulted in an 
apparent compromise between two 
incompatible requirements. The 
shortcomings of the present method are 
to be found in the correction 
procedure, especially at the airfoil 
leading edge. 

A major difficulty with the present 
formulation of the multi-point design 
problem has been indicated, viz. the 
question of how to deal with 
incompatibility in the design goals. 
The two-point design example presented 
here illustrates this problem very 
clearly. On the other hand it may be 
expected that in practice, multi-point 
design will indeed appear in the form 
of a redesign problem, where the 
targets will be specified by expertly 
modifying existing velocity 
distributions for a number of 
operating conditions. The 
incompatibility will then possibly be 
not so extreme. 

As is remarked above, the feasibility 
of translating the actual design 
problem into an equivalent 
incompressible flow problem has been 
demonstrated. Therefore, the remainder 
of the present paper will focus on 
attempts to improve the solution of 
the equivalent multi-point design 
problem. 
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5. NON-LINEARIZED APPROACHES TO THE 
EQUIVALENT INCOMPRESSIBLE MULTI-POINT 
DESIGN PROBLEM 

5.1 Redefinition of the problem 
The equivalent incompressible multi- 
point design problem is defined such 
that for each design condition i a 
desired velocity distribution is 
specified as a function of the 
fractional arclength 

<■$■ 
(ID 

The requirements according to the 
Betz-Mangler constraints, associated 
with trailing edge closure and 
compatibility of target velocity and 
free stream velocity, are addressed by 
introducing a certain amount of 
freedom in the target velocity 
distributions. To this end, the 
specified target velocity distribution 
is augmented with auxiliary functions, 
containing three parameters which may 
be utilized to modify the target, 
simultaneously with solving the design 
problem such that the Betz-Mangler 
constraints will be fulfilled. Such a 
set of three parameters is associated 
with each operating condition and 
their values will be determined as 
part of the solution. 

Thus, following Ref.24, the target 
velocity is considered to have the 
form 

Vt'ar gi[t, Pi, p|, P3] • (12) 

Here, pj scales the tangential 
velocity level such that compatibility 
of the target velocity and the free 
stream velocity is established. As has 
been remarked in part I of the present 
paper (Ref.7), the forward stagnation 
point location can be used as a second 
degree of freedom in the target. One 
of the auxiliary functions chosen in 
Ref.24 achieves a coordinate 
transformation correlating the 
stagnation point location with the 
parameter P3 . A third degree of 
freedom (with a parameter p|) is used 
to adjust the velocity level near the 

trailing edge for compliance with 
trailing edge closure (or a prescribed 
trailing edge thickness). If the 
target is specified such that all 
consistency constraints are implicitly 
fulfilled, the parameters assume the 
values pi =1, P2 =0, and P31 =0, and the 
original target is not modified. 

Both alternative algorithms considered 
here for solving the present 
equivalent incompressible multi-point 
design problem are based on 
application of a first order panel 
method for the determination of the 
flow around an airfoil, utilizing 
piecewise constant doublet and source 
distributions on the airfoil contour. 
A description of this method is given 
in appendix A. 

According to this flow simulation, the 
total velocity potential is determined 
by 

^ = ti+foii (13) 

where the velocity potential  of the 
undisturbed flow fä    is given by 

<f>a  = q« • x, 

with 

q«. 
:os(a1) 

3in(a1) 

(14) 

(15) 

and where the magnitude of the onset 
flow velocity has been set equal to 
one. 

The velocity potential  due  to  the 
doublet distribution <j>^    is  determined 
by 

ti ££*<[ an-lZ(t)-z(s)|ds 

x(t)-x(s) 

(16) 

+ jijtan x z-z te 
x   Xte 

and the velocity potential due to the 
source distribution is determined by 
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ti- -£-  fV(s)ln[{x(t)-x(s) 
Zn  Jo 

}2 + ßj   ~  MN /*2 • 
(24) 

(17) 

+ {z(t)-z(s)}2]1/2ds 

Applying the panel method, the design 
problem may be defined as the 
minimization of the functional 

F = £ W1 F1 , (18) 

with 

F' ■ J^Vi'-V^dr 

under the condition 

^ + <^ = 0 , 

(19) 

(20) 

which is equivalent to the Neumann 
condition of zero normal velocity on 
the airfoil contour, and the condition 

ri = nHi)-i*H0), (21) 

which takes account of the Kutta 
condition at the trailing edge. 

A discretized form of Eq.(13) is 
obtained by evaluating the integrand 
at the midpoints of the panels and 
taking it constant along the panels. 
Solution of the design problem then 
involves the minimization of the 
discretized functional 

F = £ W1 F1 

k=N 
8^ wiZ(|f -Vt1«)^ 

k=2 

under the conditions 

for k=2(l)N, and 

(22) 

(23) 

Here, the indices k refer to the panel 
midpoints; k=2 denotes the first 
midpoint near the trailing edge on the 
airfoil lower side, k=N denotes the 
last midpoint near the trailing edge 
on the airfoil upper side. 

Considering the minimization of the 
functional, obvious design variables 
are the angles of attack a1 and the 
velocity parameters p£ . With respect 
to the representation of the airfoil 
contour, x as well as z may be 
considered as unknown functions, that 
are to be determined during the design 
process. Above, it has been assumed 
that the velocity distribution is 
specified as a function of the 
fractional arclength. The prescribed 
velocity will be attained on the 
airfoil contour at given values of the 
arclength. So, because of the fact 
that the contour coordinates x and z 
are connected through the arclength, 
only one of these functions is 
actually required as design variable. 
However, it has appeared that a 
greater flexibility for modification 
of the airfoil contour is obtained 
when both x and z are considered as 
design variables while prescribing the 
arclength. Thus, the functional will 
be minimized with respect to the 
design variables a1, x, z and the 
parameters p£. 

5.2 Least squares approach 
The design problem as formulated in 
the previous section may be solved in 
the least squares sense by considering 
the minimization of the augmented 
functional 

Q = F + H = 

= £ [WFL +  H1] = 

^[Wij^i-V^d,* 
(25) 
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This functional will attain its 
minimum (zero) when the design 
requirements for all operating 
conditions are fulfilled ( the first 
term then vanishes) and when for all 
operating conditions the Neumann 
condition of zero normal velocity on 
the airfoil contour is satisfied (the 
second term then vanishes). 

During the investigations based on 
this approach to the solution of the 
design problem it appeared to be 
necessary to have some control over 
the values of the parameters p£ . 
Furthermore, the designer obviously 
wishes to keep the deviations from his 
specified targets as small as 
possible. Therefore, the functional 
(25) is augmented further (in 
discretized form) to 

k=N at1 
Q = £[W*£(-Sf- -Vt

l
M)£Ark + 

k=2 

k=N 
(26) 

+ E  U<*Ws)kl2Ark + 
k=2 

^[(pi-D2^2^2)] 

The weight factor in the last term 
enables the designer to control the 
deviation of the free parameters from 
their ideal values (1,0,0) if no 
modification is needed to satisfy the 
Betz-Mangier constraints. 

The functional Q has essentially the 
form 

Q= E [fn(z)]2, 
n=l 

(27) 

where z is the vector of design 
variables a1, Xj, Zj, /4 and p£ , and 
where the fn form together a vector ?. 
This type of minimization problem can 
efficiently be solved by means of the 
method described in Ref.25. The 
computational algorithm proceeds as 
follows : 
1. Given z=z(i), compute the vector of 

residuals f(i> and the Jacobian 
J(i);the Jacobian is derived by 

differentiating the residuals fn 
with respect to the design 
variables. 

2. Determine the search direction by 
computing s(i)=-J(i)+.?(i), where 
JCi) is the generalized inverse of 
J(i). 

3. Set z(i+1)=z(i)+As(i), and 
determine A>0 such that 

Q[z(i+1)]<Q[z(i)]- 
4. If preset conditions with respect 

to the variation of z, or with 
respect to the residuals fn, are 
fulfilled, convergence is 
considered to be attained; then 
terminate the iteration process, 
otherwise repeat from 1. 

5.3 Variational approach 
As an alternative to the least squares 
approach for solving the equivalent 
incompressible multi-point design 
problem as defined in section 5.1 the 
variational approach may be 
considered. To that end consider the 
augmented functional 

L = F + G = 

(28) 

= Y, [wiF± + Gi] = 
i 

^[^pl^-V^dr. 

+ fo
1Ai(r)(^^s)-dr] , 

where A1(T) is a differentiable 
function. By minimizing the functional 
L with respect to the functions x(r), 
z(r), Ai(r) and /^(r) , and the 
parameters p-^, P21, P31 and a1, the 
solution of the multi-point design 
problem will be obtained. To that end, 
the variation of L is considered. 

Variation of the functional with 
respect to A1 leads to the observation 
that 

5LA = £ 8GL
X 

E I"1 5Ai(r)(^ + ^)- 
i J 

(29) 

AT 

will be identically zero if /z1 is 
varied within the class of functions 
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satisfying Eqs.(20) and (21), i.e. 
potential flow with zero normal 
velocity at the airfoil contour and 
satisfying the Kutta condition. 

Similarly, it may be observed that the 
variation of L with respect to p1  will 
vanish identically if the co-state 
variable A1 is varied within the class 
of solutions of the adjoint state 
equations 

^FJo     ^7|   x(r)-x(r')J TR 

dr 

vtar 

~dt~ 
"a? 

o, 
(30) 

Just like in the previous section a 
discretized form of the functional is 
obtained. 

L = £ [W1 F1 + G1] = 
i 

=  E[WiE<#-Vtar)k
2Ark 

(32) 

i>£(*d+tfi)iArk] 
k=2 

[^d^s]k 
(33) 

for k=2(l)N, and 

A»i = MN-^2- 
(34) 

By solving this system of linear 
equations, the doublet strength is 
determined. Then the velocity 
distribution along the airfoil contour 
is calculated by means of a finite 
difference approximation of 

Vt1 
d/i1       d(f>m 

"dt" + ~d~t" 
(35) 

2. For each operating condition, solve 
the adjoint problem which in its 
continuous formulation is defined by 
Eqs.(26) and (27). Its discrete form, 
associated with Eqs(29) and (30) is 
given by 

Y. MAWm,kAkArk + 
k=2 

(36) 
k=N aVtk ^Wi^^-V^)      -Ark = 0, 
k=2 3fJ.m 

for m=2(l)N,   where 

MAW. 2,k MADk2-MADkl, 

MAW, m,k MAD k,m ' for m = 3(l)N-l,    (37) 

Here, the adjoint state variable A is 
assumed to be piecewise constant on 
each panel. Then, the computational 
procedure for calculating the design 
variables a1, n\  ,   Ak , Xj 
proceeds as follows : 

Zj and pk 

1. Solve the analysis problem for each 
design condition for an estimate of 
the airfoil shape. Application of the 
panel method, described in appendix A, 
involves the solution of a system of 
algebraic equations of the form 

MAWNk =MADk(N +MADkjl. 

Here, the right hand side is 
calculated from the current velocity 
distribution determined in step 1. 
From this system of equations the 
discrete values of the adjoint state 
variable Ak are calculated for a given 
airfoil contour at the operating 
condition considered. 

3. Determine the gradient of the 
discretized functional as defined by 
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Eq.(28). The gradient is calculated 
using the derivatives of the 
functional L with respect to the 

design variables. Determine a new 
estimate of the design variables by 
applying a suitable optimization 
procedure, using the above gradient 
information. Thus, obtain a modified 

airfoil shape, defined by x(r) and 

z(r), new angles of attack a1 and new 

values for the velocity parameters p] 

4. Iterate 1 through 3 until 

convergence has been achieved. 

In the third step of the latter 
minimization procedure any appropriate 
optimization method can be applied, in 
principle. However, because of its 
flexibility with respect to applying 

geometric constraints, at NLR the 

optimization method available as 

subroutine E04UCF in the NAG Fortran 

Library (See Ref.26) has been chosen. 

This subroutine is based on a 
sequential quadratic programming (SQP) 

algorithm in which the search 

direction is the solution of a 

quadratic programming problem. The 

algorithm treats bounds, linear 
constraints and nonlinear constraints 

separately. 

5.4 Computational results 

Auxiliary velocity functions 

Prior to presenting results obtained 
using the algorithms described in 

sections 5.2 and 5.3, some remarks may 

be made on the role of the auxiliary 
functions and free parameters 

introduced in the target velocity 
distribution as indicated in section 

5.1. For the time being, the auxiliary 

functions and their parameters have 

been chosen according to Ref.24, where 

an inverse airfoil design method is 
described following essentially the 
same algorithm as described in section 

5.3. 

Results for a design exercise 

presented in Ref.24 are reproduced in 

Figs. 15 and 16. The target velocity 

distribution specified in this 

exercise violates the Betz-Mangier 

trailing edge 
lower side 

         trailing edge 
f \    upper side 

^.—-^ t/r 
  originally specified target 
O      O modified target 

  actually obtained distribution 

Fig.15 Velocity distributions of a 
design exercise presented in Ref.24 

0.50 

0.25 

0.00 

02l 1 ,    1    , ,    1    ■ I    1 
0 0.2 0.4 

X 
0.6 0.8 1.0 

0.50 

Fig.16 Airfoil producing the velocity 
distribution depicted in Fig.15 

constraints in a rather extreme 
way,such that large modifications were 
needed in order to obtain a consistent 
velocity distribution. This is 
illustrated in Fig.15 where the 
originally specified target is 
compared with the modified target and 
the eventually obtained velocity 
distribution on the designed airfoil. 
The degrees of freedom introduced in 
the target velocity distribution, as 
described in section 5.1 are turned to 
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full account, as appears from the 
large displacement of the forward 
stagnation point and the modification 
of the behaviour near the trailing 
edge on the lower as well as on the 
upper side of the airfoil. The 
NACA0012 airfoil was chosen as 
starting geometry for the design 
process. Attempts to apply the design 
procedure without modifying the 
original target led to divergence of 
the minimization process, indicating 
that the problem was ill-posed. 
Application of the design procedure 
with simultaneous modification of the 
target showed convergence to an 
optimal solution represented by the 
airfoil of Fig.16 and the actual 
velocity distribution depicted in 
Fig.15. The airfoil that resulted from 
this design exercise is not attractive 
from the aerodynamic wing designer's 
point of view. It illustrates, 
however, the flexibility and 
robustness obtained for single-point 
design by introducing the auxiliary 
functions to obtain some degree of 
freedom in the prescribed target 
velocity distribution. 

Feasibility 
The feasibility of the algorithms is 
examined by considering a single-point 
test case, which involves the 
reconstruction of the NACA4418 airfoil 
starting with the NACA0012 airfoil. 
Fig.17a shows the 
recovery of the airfoil contour and 
Fig.17b shows the recovery of the 
velocity distribution. 
The same result is obtained with 
either of the alternative algorithms. 
However, there is a large difference 
between both algorithms with respect 
to the computing time involved. This 
is illustrated in Fig.18 where the 
value of both objective functions 
divided by their starting value is 
plotted against the number of function 
evaluations. During the larger part of 
the computational process, the rate of 
convergence of the variational 
approach, involving the actual 
minimization of the objective function 
defined by Eq.(20), is much smaller 

TEST CASE 1 - INITIAL 

VARIATIONAL APPR. X FINAL 

- TARGET 

*"-*.—x- - - x -*- 

Fig.17a Reconstruction of NACA4418 
starting with NACA0012 

Fig.17b Recovery of velocity 
distribution,   for  the reconstructed 
NACA4418 airfoil 

than the rate of convergence of the 
least squares approach, involving the 
solution of the set of non-linear 
equations following from the 
optimality conditions for the 
objective function of Eq.(18). 
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Fig.18 Convergence history at 
reconstruction of NACA4418 

Design variables 
In section 5.1 it has been remarked 
that it would be beneficial to obtain 
more flexibility in the contour 
representation by introducing the x- 
coordinates as additional design 
variables. This may be demonstrated by 
means of a second single-point design 
test case. This test case  involves 
the determination of an airfoil shape 
which, in the incompressible inviscid 
flow considered here, will produce the 
pressure distribution specified as 
target for subsonic viscous flow (Mach 
number M«,=0.2 and Reynolds number 
Re=5.106) in the two-point design 
problem defined in section 4.3. 
Approximation of a viscous velocity 
distribution near the trailing edge of 
an airfoil in inviscid flow will 
inevitably lead to a cusped contour. 
Moreover, it is likely that a cross- 
over of upper and lower side of the 
contour will be encountered. Hence, it 
may be expected that the target cannot 
be fully realized in incompressible 
inviscid flow, so that the auxiliary 
functions should take care of an 
appropriate modification of the 
target. 

Both algorithms described in section 
5.2 and in section 5.3, were applied 
to this test case. And either 

algorithm was applied with two 
different sets of design variables; 
one set composed of the z-coordinates 
of the airfoil contour and the free 
parameters of the auxiliary velocity 
functions, and a second set obtained 
by adding the x-coordinates. The 
NACA0012 airfoil was used as starting 
geometry. 

0.600 

0.000 

-0.600 

RESIDUAL-CORRECTION LINEARIZED LSQ 
LEAST SQUARES ALGORITHM 
VARIATIONAL ALGORITHM 

-0.200 0.200 0.600 X/C 1.000 

Fig.19 Single-point design   (fixed x) 
for the subsonic  target defined in 
section  4.3 (resulting airfoil 
shapes). 

The results obtained with the first 
set of design variables (fixed x) are 
shown in Figs.19 and 20. There is a 
rather large discrepancy between the 
results of the two alternative 
algorithms. This will be due to the 
fact that a converged result could not 
be obtained by means of the 
variational algorithm because of 
cross-over near the trailing edge; the 
larger part of the discrepancy between 
both results is caused by violating 
the Kutta condition. This could have 
been avoided by applying a constraint 
on the trailing edge angle. But with 
respect to the present investigation 
the result in the leading edge region 
is of more importance. Both algorithms 
produced a solution with a 
qualitatively wrong behaviour in that 
region (see also Fig.21). 
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LEAST SQUARES ALGORITHM 
VARIATIONAL ALGORITHM 
TARGET 

0.00 

-1.30 

S/STOT 

0.000 0.500 1.000 

Fig.20 Single-point design   (fixed x) 
for the subsonic   target defined in 
section 4.3   (resulting velocity- 
distributions) . 

LEAST SQUARES ALGORITHM 
VARIATIONAL ALGORITHM 
TARGET 

0.00 

■1.30 

S/STOT 

0.400 0.500 0.600 

Fig.21  Single-point design   (fixed x) 
for  the subsonic  target  defined in 
section 4.3   (resulting velocity 
distribution  in  the  leading edge 
region). 

A far more  satisfactory result has 
been obtained by applying the two 
algorithms with the second set of 
design variables   (variable x). 

Discrepancies between the  results  of 
the   two  alternative  algorithms  are 
hardly noticeable  as   illustrated by 
Figs.22   through  24. 

0.600 

0.000 

-0.600 

  RESIDUAL-CORRECTION LINEARIZED LSQ 
o       LEAST SQUARES ALGORITHM 
x       VARIATIONAL ALGORITHM 

-0.200 0.200 0.600 1.000 

Fig.22 Single-point design   (variable 
x)  for  the subsonic   target defined in 
section 4.3   (resulting airfoil 
shapes). 
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LEAST SQUARES ALGORITHM 
VARIATIONAL ALGORITHM 
MODIFIED TARGET 

S/STOT 

0.000 0.500 1.000 

Fig.23  Single-point design   (variable 
x)  for  the subsonic  target defined in 
section 4.3   (resulting velocity 
distributions). 
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In Figs. 23 and 24 the high degree of 
convergence of the computations is 
reflected in the close agreement 
between the realized velocity 
distribution and the modified target. 
From these results the conclusion can 
be drawn that the introduction of the 
x-coordinates as extra design 
variables leads indeed to a greater 
flexibility, and as a consequence to a 
better result. 

2.60 
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1.30 

0.00 

■1.30- 

LEAST SQUARES ALGORITHM 
VARIATIONAL ALGORITHM 
MODIFIED TARGET 

S/ST0T 

0.400 0.500 0.600 

Fig.24 Single-point design   (variable 
x)  for the subsonic  target defined in 
section 4.3   (resulting velocity 
distribution  in  the  leading edge 
region). 

Two-point design test case 
As a final example of application, 
preliminary results for a two-point 
design test case are presented. The 
test case closely resembles the test 
case discussed in section 4.3, but it 
has been defined in a different way: 

- First of all two airfoils were 
defined. One airfoil is very similar 
to that discussed in the previous 
single-point example, i.e. an airfoil 
with a favourable high lift capacity 
in subsonic operating conditions. The 
other airfoil has low drag under 
transonic operating conditions (see 
Fig.25). 

HIGH LIFT 
LOW DRAG 

0.600- 

0.000- 

-0.600 

-0.200 0.200 0.600 1.000 

Fig.25 Two-point design  test case, 
basic airfoils. 

- For these airfoils the velocity 
distributions in incompressible 
potential flow were subsequently 
calculated for an angle of attack 
a=10.8° with the first airfoil (high 
lift) and for an angle of attack 
a=1.0° on the second airfoil (low 
drag). These calculated velocity 
distributions define the target 
velocity distributions for the two- 
point design test case. 
- As a starting geometry for the 
design process the NACA0012 airfoil 
was chosen again. 

The computations have been performed 
by means of the least squares 
algorithm, using as design variables 
x, z, P1.P2.P3 and the angle of attack 
associated with the second operating 
condition. The values of the weight 
factors in the functional defined by 
Eq.(26) were chosen to be W1=W2=0.5 and 
Wp=Wp=0.3. It may be noted that for 
W5=0 and for W2=0 the design problem is 
reduced to a single-point problem, 
and, because of the way in which the 
targets have been defined, in fact 
into a reconstruction problem. 
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The results are presented in Figs.26 
through 28. It appears from Fig.26 
that, just like with the result of 
section 4.3, the designed airfoil has 
characteristics of both basic 
airfoils. 0.600 

Due to the incompatibility of the 
targets, neither of the targets has 
been realized completely. The velocity 
distributions at the lower side of the 
airfoil are closely approximated (see 
Fig.27), but in the region near the      0.000 
leading edge at the upper side of the 
airfoil rather large discrepancies 
remain. Apparently, this region in 
particular, determines the specific 
characteristics of the basic airfoils 
used for the definition of the present 
test case. -0.600 

W1= 
W1 = 
W1 = 

=1.0 W2=0.0 
=0.5 W2=0.5 
=0.0 W2=1.0 

The auxiliary functions in the target 
velocity that enable modification of 
the specified target, such that the 
Betz-Mangier constraints will be 
satisfied do not play a significant 
role in the computational process. 

-0.200 0.200 0.600 1.000 

Fig.26 Two-point design  test case; 
airfoil  shape compared with both basic 
airfoils. 

0.00 

-l.SO-L 

  REQUIRED 
 MODIFIED TARGET 
o       OBTAINED 

S/ST0T 

0.000 0.500 

a) Operating condition 1 

1.000 

2.60- 

VT 

1.30 

0.00 

-1.30 

 REQUIRED 
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o       OBTAINED 
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b) Operating condition 2 

1.000 

Fig.27 Two-point design  test  case;   velocity distributions. 
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Because of the fact that velocity 
distributions computed for the basic 
airfoils have been assigned as 
targets, the auxiliary functions are 
not needed to fulfil the Betz-Mangier 
constraints. On the other hand, 
modification of the specified targets 
could possibly have removed their 
mutual incompatibility. Although 
thetargets are slightly modified (see 
Fig.27), the freedom introduced by the 
auxiliary functions is apparently not 
adequate for that purpose. As a 
consequence of the incompatibility the 
minimum of the functional will not be 
zero. This is shown in Fig.28, where 
the convergence history of the 
iteration process is illustrated by 
presenting the subsequent values of 
the functional versus the number of 
its evaluations. Though a significant 
reduction of the value of the 
functional is obtained, the minimum is 
still rather large when compared with 
the minimum obtained in the case of a 
reconstruction problem (compare 
Fig.18). 

F/Fl 

10 

10 

NUMBER OF FUNCT.EVALS 

0.0 10.0 20.0 

Fig.28 Two-point design  test case; 
convergence history. 

6. CONCLUSIONS 

The feasibility of multi-point airfoil 
design has been demonstrated with the 

aid of some examples. Its benefit is 
most obvious in situations where 
requirements for completely different 
operating conditions, such as with 
helicopter blades under advancing and 
retreating conditions, must be ful- 
filled. But it appears also possible 
to improve e.g. the drag polar of an 
airfoil by applying multi-point 
instead of single-point design. The 
existence of a unique solution to the 
multi-point design problem seems 
questionable, in particular if the 
design requirements are formulated in 
terms of global aerodynamic character- 
istics. From this point of view, it 
seems likely that formulation of 
design requirements in terms of 
prescribed pressure distributions is 
to be preferred. On the other hand, 
when operating conditions are 
considered that lead to the 
specification of conflicting require- 
ments, the prescribed pressure 
distributions will in general be 
incompatible, in the sense that there 
does not exist one single airfoil that 
will produce the specified pressure 
distributions at each specified 
operational condition. 

Most applications found in the 
literature concern redesign of 
airfoils aiming at drag reduction. 
Direct numerical optimization 
techniques are applied to a cost 
function that is the weighted sum of 
drag coefficients. Alternatively, the 
cost function may be a weighted sum of 
the squared differences between the 
prescribed target pressure 
distributions and the actually real- 
ized pressure distributions for a 
number of operating conditions. Such a 
cost function is considered when 
applying a residual-correction method 
for inverse shape design. By taking 
one of the weights equal to one, and 
the other weights equal to zero, the 
thus formulated design problem reduces 
to a single-point design problem. If 
each of these single-point problems 
can be formulated such that it is 
well-posed, in the sense that there 
exists of a unique solution, the 
corresponding multi-point design 
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problem can be expected to be at least 
"better-posed" than without such 
premise. 

At NLR research is in progress on a 
residual-correction method. This 
method assumes the availability of a 
computer program for the calculation 
of the pressure distribution on an 
airfoil in full-potential flow, 
possibly taking boundary layer effects 
into account. Deviations from the 
specified target pressure 
distributions (the residuals) are 
translated into airfoil geometry 
corrections, using an approximate 
inverse method. This approximate 
inverse method is formulated as an 
equivalent incompressible multi-point 
airfoil design problem. The feasibil- 
ity of this approach has been demon- 
strated for a two-point reconstruction 
test case. An example two-point design 
case has also illustrated the applic- 
ability of the approach to reach a 
solution, even if there are 
conflicting requirements. 

The requirements for the above 
introduced equivalent incompressible 
multi-point design problem are 
specified in terms of prescribed 
target velocity distributions. 
Auxiliary functions with free 
parameters are introduced for each 
design point in order to allow the 
adjustment of each target to fulfil 
the Betz-Mangier constraints. The 
efficiency of this procedure to ensure 
the existence of a solution for 
single-point design is illustrated. 
Indeed, the introduction of such func- 
tions allows the prescription of 
highly arbitrary velocity distribu- 
tions. In the case of multi-point 
design the auxiliary functions with 
free parameters have, of course, 
exactly the same role. However, it was 
found that he freedom introduced by 
the functions considered here is not 
adequate for solving the incompati- 
bility problem. 

The equivalent incompressible multi- 
point design problem is formulated as 
a minimization problem. Two 

alternative approaches for the 
solution of this problem have been 
considered. One approach is based on a 
least squares approximation and 
involves the solution of a set of non- 
linear equations. The other approach 
is based on a gradient search 
technique, derived using the calculus 
of variations, and involves the 
solution of an adjoint problem. The 
algorithm based on the least squares 
approach uses much less computer time 
than the algorithm based on the 
gradient search approach. Otherwise, 
results obtained by the two algorithms 
are in perfect agreement with each 
other. A converged result has been 
shown for a two-point design test 
case, demonstrating the still existing 
incompatibility problem. 

The equivalent incompressible multi- 
point design problem is solved, 
utilizing the method of singularity 
distributions for simulation of the 
flow around the airfoil. Numerical 
calculations are performed by means of 
panel methods. A fast computational 
method is obtained by using a planar 
panel method to calculate corrections 
to camber and thickness separately. 
However, the geometry corrections thus 
obtained frequently give rise to 
distortions of the leading edge 
geometry. Completely satisfactory 
results are obtained only when a non- 
planar panel method is applied for the 
calculation of corrections to x- as 
well as z-coordinates of the points 
representing the airfoil geometry. 

Further investigations at NLR will 
concern the incompatibility problem 
and, with a view to practical 
application, the implementation of 
geometric constraints in the least 
squares algorithm. Possibilities to 
accelerate the algorithm based on the 
variational approach will be examined. 
Moreover, although the present NLR 
residual-correction method is formally 
based on transonic full-potential 
flow, its applicability is not 
strictly limited to such flow. Because 
the residual-correction approach only 
requires geometry corrections in the 
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right direction, extension to inviscid 
flow governed by the Euler equations, 
or even to viscous flow, is 
straightforward, as long as a computer 
program for the analysis of such flow 
is available and the flow conditions 
considered are such that transonic 
full potential flow is a reasonable 
approximation of the inviscid outer 
flow. 
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Fig.A.l  Two-dimensional flow domain 

In order to allow the existence of a 
discontinuous velocity potential, as 
in the case of a lifting airfoil, 
assume a discontinuity line TT ( upper 
side of the slit in Fig.A.l ) which 
extends from the trailing edge to 
infinity downstream, but of which the 
precise location is otherwise 
irrelevant. 

In fl the flow is governed by the 
Laplace equation 

A^
1
 = 0 (A.2) 

Appendix A : FIRST ORDER PANEL METHOD 

Consider the incompressible potential 
flow in a domain ft, bounded on the 
inner side by the airfoil contour T 
and on the outer side at infinity by a 
contour T«, (see Fig.A.l), where the 
undisturbed velocity is given by 

q« 
(A.l) 

while the flow around a given airfoil 
satisfies the following conditions: 

-2- = q<o • n 
on 

4£i = o 

a*L I  + W I   - 0 
"3t1 

on r„ 

(A.3) 
on r, 

on r , 

(Kutta condition). 
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<»£>.. <«!,-.„ 

dn     dn 

on rT , 
(A.4) 

on TT , 

(Continuity). 

This system of equations determines 
the velocity potential apart from a 
constant which may be chosen 
arbitrarily. 

The flow may be simulated by means of 
a distribution of sources and doublets 
on the airfoil contour T  and a doublet 
distribution of constant strength p7  on 
the slit TT. The Kutta condition is 
fulfilled by taking the doublet 
strength on the slit equal to the jump 
in doublet strength at the trailing 
edge: 

A»T = M(l) -/*(0) (A.5) 

The doublet distribution gives rise to 
a velocity potential 

--£- r>i(s) 
2n Jo 

o tan' iz(t)-z(s) 
x(t)-x(s) 

ds 

(A.6) 

+ /ijtan -l 
X    2vr 

where 

q« 
^osCa1) 

sinCa1) 

(A.9) 

and the magnitude of the onset flow 
velocity has been set equal to one. 

The total velocity potential is given 
by 

P = *i+*Wi (A.10) 

The doublet distribution gives rise to 
a jump in potential across the airfoil 
contour 

(^r - <^)- (A.ll) 

The source distribution gives rise to 
a jump in normal velocity across the 
airfoil contour 

^  j 11 i j y i ■   j 

dn      on 
(A.12) 

Zero normal velocity at the outer side 
of the airfoil surface will be ensured 
by choosing the strength of the source 
distribution equal to 

Hi 
Jn~ 

(A.13) 

The source distribution gives rise to 
a velocity potential 

4\  = J- fV(s)ln[{x(t)-x(s)}2 + 
^ J° (A.7) 

+ {z(t)-z(s)}2]1''2ds . 

The undisturbed flow has a velocity 
potential 

4>i = q« ■ x, (A.8) 

and determining the strength of the 
doublet distribution such that 

which implies that 

[ 3-<^ + ^)]- = 0. (A.15) 
on 

and thus 

zAi 86i        a       ■      ■ (A.16) 

on     on   on 
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On the inner side of the airfoil 
contour there holds UWili 

itä+tiv 

¥ TTTJo ^  Ts x(t)-x(s) 

1    i_     _iz(t)-z. 
+ ^_uTtan A—,—. : 

■   l x(t)-x, 2?r 

+ -i-[Vln[(x(t)-x(s))2 + 
27TJ0 

+ (z(t)-z(s))2]1/2]ds/.   (A.17) 

Upon application of condition (A.14), 
this expression produces an integral 
equation for the doublet strength fj,1. 
And, by virtue of Eq.(A.lO) and 
Eq.(A.14), the tangential velocity at 
the outer side of the airfoil contour 
is determined from 

Vt1 L at J 
d/i1   +   dfö 
dt~       W 

(A.18) 

j=N j-N-1 (A. 19) 

= E   MADk,^ +    E   MASk>j+1ajl
+1 = 0 

for k=2(l)N, 

where fi\    denotes the constant doublet 
strength on the slit rT, which is 
related to the doublet strength on the 
airfoil contour by means of the 
approximated Kutta condition 

Mi = MN-^2- 
(A.20) 

Solving this system of linear 
equations, the doublet strength is 
determined and subsequently, the 
velocity distribution along the 
airfoil contour is calculated by means 
of a finite difference approximation 
of Eq.(A.18). 

A straightforward solution of the 
integral equation can be obtained by 
applying a panel method. A simple and 
cheap panel method can be derived if 
it is assumed that the airfoil contour 
will be given by N discrete points 
(upper and lower trailing edge point 
included)  and that an approximation 
of the contour may be obtained by 
connecting these points by straight 
line segments (the panels), and 
furthermore taking the source and 
doublet strengths constant on each 
line segment. 

Taking as collocation points the 
midpoints of the panels, the integral 
equation is reduced to a system of 
linear equations for the unknown 
doublet strengths /ij  , j=l(l)N 
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Abstract 
After a brief recall on the history of the field of optimal shape design, we 
shall present a few applications to aerodynamics, then recall the variational 
approach, the numerical methods and the recent developments both in applied 
mathematics and in computer sciences 

Plan 

1. Introduction 

2. Industrial examples. 

3. Existence results. 

4. Principle of resolution 

5.Numerical implementation 

6. New approaches. 

1. INTRODUCTION 

Among applied mathematicians, optimal shape design is an old problem. How- 
ever very few cases could be solved analytically until recently, especially when 
the physical system involves a Partial Differential Equation (PDE). 
Hadamard (1910) is credited with the first formula for the sensitivity of a PDE 
with respect to the shape of the domain. However the field as we know it now, 

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genese, April 1994. 
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really began with Cea et al (1973) as an off spring of optimal control theory 
(Lions (1968)) and the calcul of variation developped by the Chicago school 
in the nineties. 
In France the author (1973), Murat-Simon (1976), Cea (in Haug et al (1978) 
gave methods to derive optimality conditions for the continuous problem and 
Begis et al (1976) Morice (1976) and Marrocco et al (1978) for the discretized 
problem with their numerical solutions. 
There are now at least four books on the field: 
- Two which are proceedings of summer schools (Haug et al (1981) and Delfour 

(1992)) 
- One by the author (Pironneau (1984)) 
- One with analytical solutions (Banichuck (1980)) 
- A recent one by Haslager et al (1989) 
Theoretical results on the existence of solutions were obtained by Chenais 
(1975) and counter examples produced by Tartar (1975) in a key paper which 
linked optimal shape design with homogenization theory, though this concerns 
structures more than fluids. 
For fluids, numerical results were few. Several reasons but mostly because these 
computations are quite costly and very delicate, particularly in 3D. The situation 
is changing. The design of wave riders and optimal supersonic transporters are 
sufficiently important to invest in the field. In Europe there is a Brite program 
on optimal shape design. 

These lectures will begin with a few applications of Optimal Shape Design 
to aerospace engineering. Then we will spend a good deal of time on the 
numerical procedure by gradient methods. 
Most design engineers do their optimization by hand. But it is generally be- 
lieved that intuitive optimization is not possible beyond 8 degrees of freedom. 
Thus if it is ever shown that 3D wings can be optimized with respect to shape, 
it will be done by computer. 
A numerical fluid solver can be vewed as a black box with an input, the wing 
shape, and an output, the drag. There are commercial packages which find 
the minimum of a functional with respect to parameters and require only a 
subroutine to evaluate the functional for a given design. These packages are 
usally based on local variation methods (Powell(1970)), involving polynomial 
fits of the functional from point evaluations. They are expensive here because 
they require O (P2) solutions of the flow solver when P is the number of design 
variables. 
Whenever possible, i.e. when the problem is differentiable it is much cheaper 
to use a gradient or a Newton method. The drawback is that one must do a 
sensitivity analysis to find the gradient of the functional with respect to the 
design variables. 
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There are interesting developments in computer sciences around what is known 
as "differentiation by program". It has been shown on aproblem of meteorology 
that these derivatives could be found automatically. We will end the lectures 
with an introduction to this new field. 

2. INDUSTRIAL EXAMPLES. 

2.1 Wing design 
The best example is the optimization of a wing with respect to drag or lift. To 
reduce the drag by a few percents means a great cost saving on commercial 
planes. 
For viscous drag the Navier-Stokes equations must be used. For wave drag the 
Euler system is sufficient. 

For a wing S moving at constant speed «oo the drag is 

F = f[fi(yu + VwT) - -^V.M]« - / pn (1) 
Js 3 Js 

As usual u is the fluid velocity, /x the viscosity and p the pressure. The Navier- 
Stokes equations should be used {9 is the temperature): 

d,p + V.(pu) = 0 (2) 

d,(pu) + V.(pu <g> u) + Vp - /ZAM - -/iV(V.u) = 0, (3) 

2 
dl[pE] + V.[upE] + V.(pu) = V.[KV9 + [HC7U + VU

T
)--II)IV.U]U} (4) 

The definition of energy 

u2 

E = -+d (5) 

and the law of perfect gas p = (y - \)p6 closes the system. 

The problem is to minimize F.Uoo with respect to the shape of 5. 
There are several constraints: 

A geometrical constraint: the volume of S greater than a given value or the 
solution will be a point. 
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An aerodynamic constraint: the lift must be greater than a given value or the 
wing will not fly. 

The problem is difficult because it involves the compressible Navier-Stokes 
equations at high Reynolds number. It can be simplified by conserving only 
the wave drag ie the pressure term only in the definition of F (Jameson (1987)). 
Then the viscous terms can be dropped in the Navier-Stokes equations (/x = 
K=0). 
Assuming irrotational flow an even greater simplication replaces the Euler 
equations by the compressible potential equation or even the incompressible 
potential flow: 

u = V(p,  p = (\-\V(p\2)1/iy-l\  p = py,   V.p« = 0. (6) 

Or even, if at low Mach number, by the imcompressible potential flow equation: 

u = V<t>,     -A(f> = 0. (7) 

But then the full expression for F must be kept. 

Constraints on admissible shapes are numerous: 

- Minimal thickness, given length. 
- Minimum admissible curvature 
- Minimal angle at the trailing edge... 

Another problem arises due to instability of optimal shapes with respect to 
data. It will be seen that the leading edge of the solution is a wedge. Thus 
if the incidence angle for Uoo is changed the solution becomes very bad. A 
multi-point functional must be used in the optimization, J2 u'^F' at given 
lift F^ where F' is computed from a Navier-Stokes equations with boundary 
conditions u = u'^. 

2.2 Ribblets 
Consider a flat plate with groves dug on the surface parallel to the mean flow. 
It has been shown that such configurations have less drag than the flat plate per 
unit surface area. 

The phenomenon may actually be turbulent in its principle (Moin (1993)) 
because these groves or ribblets trap the large vortices and prevent horse shoe 
formations. It is beyond the limit of present computers to hope to solve such 
problems by optimal design methods. However even the laminar case leads to 
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an optimization and it is not true that the flat plate is the best surface for drag 
per unit surface area for a Poiseuille flow. 

Ribblets are well within the logarithmic layer and near the viscous sublayer. 
Thus Poiseuille flow is a rough but sensible approximation. Then the problem 
is: 

iMoo- / [v(Va 

with (u, p) solution of 

minuoo- / [V(VM + VuT) - pn] (8) 

Ü = ( 0     j   and p = p(z) (9) 

Vp-vAu=( 0 )=0 (10) 
V    §f-vAXi,w/ 

Let, with p = kz, 

-vAu+k = 0 (11) 

With a preiodic distribution of groves E and a Neumann condition on the upper 
artificial boundary which simulates the matching with the boundary layer S the 
problem becomes: 

with (u, k) solution of: 

s      ys dn 

— vAu + k = 0    in Q 

u = 0   on    E 

9M — = 0    on    5 
3« 

(12) 

(13) 

M = x — periodic 

A constraint on the flux needs to be added to fix k: 

[ u = d, (14) 
Ja 

2.4 Shock wave sound reduction 
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Some supersonic carrier are considered too noisy. An optimization of the 
shock wave jump and / or the jets can be performed with respect to the far 
field noise. Again the full problem involves the Navier-Stokes equations but 
simpler approximations like Lighthill's can be used and in the far field it is the 
wave equation which is solved. 

2.5 Stealth airplanes. 
In this line of problems a simpler one is the optimization of the far-field energy 
of a radar wave reflected by an airplane in flight. 
The equations are Maxwell's but the constraints may be aerodynamical (lift 
above a given lower limit) and thus requires the solution of the fluid part. The 
design variables are: 

The shape of the wing 
The thickness of the paint 
The material characteristics (e, /x) of the absorbing paint. 

A simple representative in this class is the case of T.M. polarization for the 
incoming radar wave and a 2D design: 

\{[   \V<p\2:     co2(p + A<p = 0,   <p\S = g,   ico<p + -^\roo=0}     (15) 
d<p 

min) 
Seo 

The class of admissible forms 0 may include a constraint on the lift given by 

(6). 

Here again, the theoretical complexity of the problem can be appreciated from 
the following question: 
Would ribblets of the size of the radar wave improve the design? 
Actually homogenization can answser the question as in Achdou (1991) (see 
also Artola (1991) and Achdou et al (1991)) It shows that indeed ribblets 
improve the design. 
But then boundary condition on S in (15) can be replaced by an averaged 
condition on a surface without ribblets: 
acp + bdcp/dn given with a and b depending on the ribblet shape. 

2.6 Academic test cases 
To illustrate the technics the best is to consider a simple problem such an 
optimization for potential flow 

min{/" \Vcp-ud\2:     -Acp = 0 in ß,   ^|3Q = g} (16) 
a   JD dn 
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or with a stream function in 2D 

min{ /   \Vf - vd\2 :     -Aifr = 0 in ft,   Vlao = /) (17) nin{ / 
n   JD 

This is in fact an "inverse problem" because one seeks a shape which produces 
a velocity as near to uj as possible in the region D of ft. 

3. EXISTENCE OF SOLUTIONS 

Let vd e L2(ft), f e //-1(ft) and f(Q) be the solution of 

-AV = / /« ß,   ^lan = 0 (18) 

Given O, D non empty and bounded with O D D we seek 

■/. 
min/(ft) = /   |VV(ft)-t^|2 (19) 
fieo 

with 0 a subset in the the class of open sets ft of R" such that O D ft D £> , 
wies (ft) = 1. 

Chenais (1975) showed that there exists a solution provided that the class 0 is 
restricted to ft locally on one side of their boundaries and verifying the Cone 
Property: 

For every x e 3ft it is possible to place the vertex of a cone C( (x) with angle e 
such that ft D Ce (JC) n Be (x) where Bc (x) is the sphere of radius e and centre 
x. 

This condition rules out oscillating boundaries. We also know (Pironneau 
(1984), see also Crouzeix (1991))that if J(\fr) is the energy of the PDE 

then there exists a solution with the single hypothesis that ft be an open set 
included in O because (1)(2) is equivalent to 

minireHl(0),mes(suppf)>lJ(O, VO (20) 

In 2D an interesting result has been obtained by Sverak (1992): 

Theorem . 
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I/O = 0 N is the set of open sets containing D (possibly with a constraint on 
the area such as area > 1) and whose connected components are bounded by 
N then (1)(2) has a solution. 

In other words, if a numerical algorithm generates a sequence of shapes which 
have each a small criteria, then two things can happen: 
- Either the accumulation points will be solutions 
- Or there will be more and more holes. 
This result is false in 3D as it is possible to make shapes with spikes such that 
the 2D approximation will look like a surface with holes and yet the 3D surface 
remains singly connected. 

Proof. The proof will not be given in the lecture. It is sketched here for the 
reader to see the kind of tools which are used in such studies. 
The proof relies on a compactness result for the Haudorff topology and on a 
result of potential theory which is valid only in 2D. 

The Hausdorff distance between 2 closed sets A, B is 8(A,B) = 
max{d(B, A), d(A, B)} where d(A, B) = supxgA d(x, B). For this distance 
we have the following : 
if Fn is a uniformly bounded sequence , then there is a closed bounded set F 
and a subsequence converging in the sense of Hausdorff to F. 
Equivalently let Q„ be a sequence of open sets in Rd with Qn d O. Then 
one can extract a subsequence, also denoted by £2« converging in the sense of 
Hausdorff to a £2, that is, verifying: 

VC c Q, 3m : C c fi„Vn > m and Vx e O - Q, 3xn e O - Qn : x„ -> x. 
(21) 

So a minimizing subsequence for (2) will have the following properties 

J(Qn) -> inf/(«) (22) 

—A^„ = / in Q„,   ir e Hl(S2n) and T//„ -> V in Hl(0) weak with , 

-A^ = / in ß,     inf/(ß) = /   |V^ - vd\2. (23) 
JD 

But we do not know how to show that 
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f = 0 in O -Q (24) 

For this an information on the characteristic function Xn of O - Qn is needed 
because 

0 = Xnfn -> Xif,  =>   f(x) = 0pp si x(x) + 0. (25) 

Sverak uses another argument to replace(25). First he shows that it is sufficient 
to study the case f=l. If ß" denotes the solution in H^(Q„) of -Aß" = 1 
then the convergence of Q" towards its weak limit is almost uniform (this is 
the difficult point) when the number of connected components is finite. This 
results from the theory of sub-harmonic functions is not true in 3D. 

Corollary 
With the Navier-Stokes equations for incompressible flows there exists an op- 
timal wing profile with given area in 2D 

Proof 
Let Qn be a minimizing sequence. Let un be the corresponding solution of the 
Navier-Stokes equations : 

-vAu» + V.(un <g> un) + Vpn = 0,   V.u" = 0 in Qn (26) 

Let £2" be bounded with two connected components, the wing profile S" where 
un = 0 and the boundary which approximates infinity 3£2" - S on which 

un = Moo- 
As un is bounded in HQ(O)

2
 there exists a subsequence which converges 

weakly; let u be the limit. As V.(w" <g>«") -> V.(u ® u) in W~1'p(0) for all 
p we must show that {£2", un] is a solution of the Stokes problem 

-Aun + Vpn = f"    V.M"=0   M"|s»=0, 

Then /" -» / in W~hP(0), O - ß" -> O - Q Hausdorff,, un -> « in 7/1 

weak inmplies that 

-Au + S7p = f    V.« = 0    w"|s = 0. 

A similar result is also shown in Sverak(1992). 

4 SOLUTION BY GRADIENT METHODS 

4.1 Optimal shape design problem in Stokes flow 
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Energy conservation allows to reframe the minimum drag problem as: 
Find 

minE(ß) = min v f |V2| 
JQ. 

subject to: 

(27) 

- vAw + V/? = 0infi 

V • ü = 0 in Q 

u\s = 0 

I «In» = "oo 

An example of 0 is : 

0 ={Q: volume S = l,dQ = SU T^}, 

where S = the domain denned by the closed boundary S. 
For deriving the optimality conditions, we need to do some calculus of variation 
on E(Q). So, we consider that Q is the optimum solution and Q' e 0 is a 
domain "near" Q (see figure 3) defined by its boundary V = dQ', with 

r' = {x + a(x)n(x), s.t. a = regular, small, Vx e F] 

For every a admissible, we have : 

E(Q') > E(Q) 

Define 

SQ = Q u Q' - n n ß7, 

and associate a convention to it, that 

J''-/     f-f     f Jssi Ja'-ana        Ja-ana' 

Define also 

Su = u(Q') - u(ß) 

extending u smoothly in S. Then 

(28) 

(29) 

(30) 
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SE = E(Q') - E(Q) = vS( I   |Vw|2) = 

vf   |V«|2+2v / V<5H- Vü + o(Sn,Sü). 
(31) 

When SQ is smooth and V« is continuous, then 

v f   |VM|2 = v f a\Vu\2dy + o(\\a\\c2) = v [ aA2dy +o((||a||c0 
Jsn Jr Jr    °n 

(32) 
(cf.[9]). 
In order to complete the computation of 8E, we need the following lemma : 

Lemma 1.  Equations(7) imply 

-vASu + VSp = 0 in Q (33) 

V • Su = 0 in ß (34) 

8u\roo = 0 (35) 

du 
Su\s = -a— (36) 

on 

Proof: We have the relations : 

8(-vAu + Vp) = 0^-vA8u + V8p = 0 (37) 

5(V-«) = 0=> V..ÄM = Oinnnn/ (38) 

Su\r„=0 (39) 

if «oo is constant and Too the same in £2 and Q'. Finally 

*  ,       *  , f +"(ß')ls. ifa>0 
ÄMls^ÄMla(nnQ') = { ,-..      ..        _ (40) 

I  — M(L2)|S', if a < 0 

Using Taylor's expansion, we obtain : 
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u(£i')\s = u(Q'Xx' - an) = u(Q')(x') - o-^(ß')ls' + o(\a\)       (41) 
on 

= -a — (Q')\s/ + o(\a\), since u(Q')(x') = 0 
dn 

and 

u(Q) \s= 0. (42) 

So, 

Su\s = -a^\s. (43) 
dn 

Finally, if all equalities are up to higher order terms, we have : 

v f   |V«|2 = v f a\^\2dy (44) 
Jsa Js     dn 

a 
Remark : A lot of regularity is needed to perform the previous calculation, but 
it can be justified by other methods also such a in Murat-Simon (1976). and 

v / VSuVu = v / (-Au)Su + v     -^Budy = (45) 
Ja Ja JT 3" 

/ pV ■ Su — I pSu ■ ndy + vl —Sudy = 
JQ Jr Jr dn 

f    du f       3« l2, 
= / 0~ pn)-Sudy = - / va| —| dy, 

Jr    3« Js       dn 

because, if? denotes the tangent component, 

du du _   du _       ,A^ 
8u\r   = 0,    Su\s = -a — and n ■ — = -s ■ —r = 0   on    I\      (46) 

dn dn ds 

Hence, 

v / V8u ■ V« = -v / or | —S- I2 dy 
JQ JS       dn 

and 
8E--V I a\~\2dy. (47) 

Js     dn 

We have proved the 
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Proposition 3 : The variation of E with respect to Q is : 

8E = -v f a\^\2dy+o(a) (48) 
Js     3" 

D 

Consequences 

1) Supposing that 0 = {S : S D C}, since ||f |2 > 0, C is the solution. Indeed 
any a < 0 will give BE > 0. In other words, any fairing around C will increase 
the drag in Stokes flow. 

2) If 0 = {S : Vol S = 1}, then SE > 0 for every a with 

fady = o(\a\). (49) 

Hence, if u is smooth, (47) and (49) imply 

| — 11   = constant. (50) 
dn 

Lighthill (cf. Pironneaau (1986)) showed that near the leading and the trailing 
edge the only possible axisymmetric flow which can give iff I = constant on 
S is an S conical of half angle equal to 60". 

To compute an axisymmetric surface S which satisfies (7) and (50) we could 
try one iteration of gradient method starting from the ellipsoid with minimum 
drag to which is added a conical front and rear end near the leading and trailing 
stagnation point. 

The result is shown on figure 1. A decrease of drag of 5% was found with 
respect to the optimum ellipsoid. 



6-14 

4.2 Optimal shape design in laminar flow 

We consider the minimum drag energy problem where the state equation is the 
Navier-Stokes equations. 
The mathematical formulation of such a problem is : 
Find 

min £(£2) = v I   |W|2 

with u subject to 

-vAu + Vp + uVu = 0,     in    £2 (51) 

V • u = 0,     in    Q (52) 

u\s = 0 (53) 

u\rx = «00 = constant (54) 

and 0 =[S: volS = 1}, V = BQ = S^ U V smooth. 

We shall derive the optimality condition for this problem. In order to do this 
we must express the variation of E(Q) in terms of the variation of Q. 

We consider that £2 is the optimal solution and that £2' is a domain obtained by 
a small perturbation of Q defined as before : Q' has the boundary 

3Q' = S' U ^ where-S" = {x + an : x e S}. 

We call u! the solution of (51)-(54) on Q' and we define : 

&E = E(tt') - E(Q) = v I    \Vu\2 + 2v I S/uVSu + o(8u, a).      (55) 
JSQ iß 

We can prove the following in the same way we proved Lemma 1 : 

Lemma 2 : Equations (31)-(34) imply that 

-vMu + VSp + uVSu + 8uVu = 0 (56) 

V ■ «5M = 0 (57) 
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Su\reo=0 (58) 

A« Is = -*-£■ (59) 
on 

□ 
Lemma 2 is not sufficient to get rid of the second term in the right side of (55). 
So, we introduce the adjoint equation : 
Let (P, q) be the solution of: 

-vAP + V<? -HVP -(VP)U = -2VAU    in    £2 (60) 

V-P = 0   in    ß (61) 

P\r=0 (62) 

In order to compute SE we use Lemma 2 and equations (60)-(62). 
Multiplying (60) by Su and integrating on £2, we obtain : 

—2v I  Au ■ Su — —v I  AP ■ Su— 
Ja JSl 

I  VPu   Su- I uVP ■ Sudx + / V<? ■ Su (63) 
Jn JQ Ja 

We use Green's formula and integrations by parts in (63) : 

- I VPuSu= I uVSu-P- j (P-Su)(u-n)dy =      uVSu-Pdx (64) 
Ja Jo. Jr JQ 

because V • u = 0 in Q and P|r = 0. Now 

/ uVP -Su=      SuVu ■ P + / P -uV -Su 
Ja Ja Ja 

/ (P ■ u)(Su ■ n)dy = / SuVu ■ P. 
Jr Ja 

(65) 

as V • Su = 0 in Q and P\r = 0. 
The last integral in (63) is zero, because : 

/  Vq ■ Su = — I qV ■ Su + I qSu ■ ndy = 0 
Ja Ja Jr 
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as V • Su = 0 in fi and 

Su • n = 
0   on    Too 

— a— • n = 0   on    5. 
dn 

Using these results in (63), we obtain : 

-2v I Au-Su = v [ VP -V8u-v / — ■ Sudy 
Ja Ja Jr dn 

+ / uVSu ■ P + / SuVu ■ P 
Ja Jo. 

= -v /  A5« ■ P + v I 
Ja Jr 

(66) 

AS« ■ P + v     P ■    n 
a Jr dn 

r dß r 
v I — • Sudy + I  uVSu ■ P 

Jr dn Ju 

dy 

/ Ja 
+ / Su-Vu- P. 

la 

If we multiply (36) by P, integrate on Q and use Green's formula, we obtain : 

-v I ASu- P + J uVSu ■ P + I SuVu ■ P (67) 
Jn Jo. Jo. 

I VSp   P = - j SpP ■ ndy = 0, 
Ja Jr 

-t -» -+   d(8u) 
since V • P = 0    in Q and P |r= 0. In addition, v L P ■ dy = 0, 1 dn 
so (66) gives 

BP f    dP    du 
Au ■ Su = — v I  —— • Sudy = v I a—— • —dy        (68) 

a Jr dn Js    dn    dn 
—2v I  Au ■ Su = — v I 

Ja Jr 

because of (58) and (59). 

Using Green's formula in the left side of (68), we find : 

-2v / A« • Su = 2v / Vw • VSu -2v     -^-Sudy. 
Ja Ja Jr dn 

The equality of (68) and (69) gives : 

(69) 
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r r    dp   du    „,9M,,, , ,„„, 
2v / Vu ■ V<5w = v / «(—- • — - 2| —|2)rfy. (70) 

From equation (44) we know that: 

v [   |Vw|2 = v [aA2dy. 
JSQ Js    °n 

Using (44) and (70) in (55), we find that: 

f     dP      3u     du , 
SE = v / a(— - —) • — dy. (71) 

Js     dn      an     an 

We have proved the 

Proposition 4 : The variation of E with respect to ft is : 

f     dP     3MS    3«, 
SE = v     a(— - —) ■ — dy + o(a) 

Js     an      an     an 

a 
Forthe chosen admissible set 0 wehavethat<5E > Oforeveryawith/rady = 
0. 

du    ,dP      dus 
So, the optimality condition for this problem is : — • (- —) = constant 

dn     dn      dn 
on S. 

We remark at the equations (60)-(62) and (51)-(54) that when v ->■ oo, the 
solution P -> 2«, SO the previous result on the optimality condition for the 
Stokes problem is recovered.   This is how far we can go without using a 
computer. 
If we wish to use a computer in order to solve this problem, we must use a 
gradient method. 
A gradient method is based on the following observation : 
Suppose we have to find min   ^NJ(Z). Taylor's expansion of this function 
gives: 

J(z + Sz) = J(z) + grad2J ■ Sz + o(\Sz\), (72) 

so taking Sz = — XgradJ(z), X > 0 we find : 

J(z + Sz) - J(z) = -X\gradJ{z)\2 + o(\Sz\), (73) 

that is if \gradJ(z)\ ^ 0 and A. << 1 we have 
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X\gradJ(z)\2 » o(X\gradJ(z)\) 

and we obtain 

J(z — XgradJ(z)) < J(z). 

In other words, the sequence defined by : 

(74) 

„n+l        „n 
Z = Z 

z  given 

XgradJ(zn), n = 0, 1,2, 

is such that 7(z") converges to a local minimum of J(z). 
An improvement of the method is, with every computation of zn, to compute 

X" = solution of min J(zn — XgradJ{zn)) 
XeR 

(75) 

and to use Xn instead of X to compute z"+1 according to (74). 
We have to remark, however, that minimizing a one parameter function is not 
simple and is usually done by trial-and-error methods. 
An application of a gradient method to the optimum design problem in laminar 
flow would be: 
Start with S°, n = 0 
loop 

1. Solve (51)-(54) for (u, p) around Sn 

2. Solve (60)-(62) for (P, q) around Sn 

3. Choose a 

and take 

du     dP      du 

dn     on      on 

1     f 
a' = a — —— I   ady 

\sn\ A» 
4. Set 5n+1 = Sn + oc'n 

if a is too small, stop 

Notice that this algorithm achieves 

r   ,du   dp    du 
I   a — • ( — )dy < 0. 

Js»    on     on      on 
(76) 

This method also has certain difficulties. 
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First of all, we have to solve the Navier-Stokes equations and this is not simple 
because of the presence of the boundary layer where |u| has a large gradient 

A boundary layer E develops around C when the Reynolds number is large. 
In order to solve (51)-(54) we observe that: 

so taking: 

-A« = Vx VXK-V(V-u) 

uVu = -w x V x w + V(—) 

Poo - 

V x u = 0 

(77) 

(78) 

Vw = 0 

will satisfy (51)-(52) but not the boundary conditions (33)-(34). 
We can use however this observation to derive the following numerical method: 
a) In C = SI - E find <p such that: 

A<£ = 0 (79) 

d6 

dn 
=  Ur 

dn 

(80) 

(81) 

b) Solve Navier-Stokes equations in E only with T^ replaced by 3 E and 
M|3£ = V</>|gS. It can be shown that this step can be carried out by one 
relaxation sweep in the direction of the flow only (Prandtl's boundary layer 
approximation). The same method can be used for the adjoint system 
Another disadvantage is that the convergence of the method has the form of 
figure 2 : 

1      Israel | 

iterations n 
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Figure 2 

The functional £(f2") oscillates near the minimum. This is due to numerical 
noise, e, that is the error on the computation of j^\s and |£|s. These errors 
depend merely on the discretization errors of the numerical methods we used 
to solve Navier-Stokes and the adjoint state equations. 
These errors can prevent the computation of the optimal solution below a certain 
precision, sometimes not so low (Figure 6). 
Since we use a discretization to solve equations (51)-(54) and (60)-(62), we 
should change the problem and try to compute the optimality condition for the 
discrete problem. 
More precisely, if we discretize £2 by the points {<?'}, i = 1,..., N, we have 
that E(Q) is approximated by Eh(Q) = Ef,(q') and we have to compute the 
derivatives 

^,i = \,...,N,j = l,2 (82) 
dq'j 

in order to compute the variation of Eh with respect to Q. 

An alternative to this computation is to use Newton's method in order to find 
S such that 
(u, p) is solution of Navier-Stokes equations 
(P, q) is solution of adjoint state equations 

£ ■ (ff - £>»constant 

and |J- > 0, (because this algorithm could find a maximum instead of a 
minimum). 

In order to introduce the discretized optimization methods, we consider a sim- 
pler problem. 

4.3. Nozzle optimization problem 

Find S such that 

lin / 
e° JD 

min /   \V<p-u\2 

Seo 

subject to : 

-A</> = 0   in    ß (85) 

T-\r=g (86) 
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where g is a function with /r gdy = 0, g\s = 0 and T = d£2. 
The geometry and the function g are shown in the figure 3 : 

I" l/ 

Figure 3 

Figure 3 shows half of the nozzle, where the horizontal boundary is a symmetry 
line. 
We shall derive the optimality condition using the adjoint state equation for 
the continuous problem first and we will give an idea of what happens in the 
discrete case. 
Consider the variational formulation of (85): 

Find <p e Hl(£2)/*R such that 

/ V</> • Viu = / gwdy, Vw e Hl(Q). 

We have also : 

8E = 2 f (V0 - u) ■ V8<pdx. 
JD 

We differentiate (77) and we obtain : 

/ V<5</> -Vw+       V(/> • Viü = 0, 
Jsi Jsa 

because g \s = 0 and the rest of the boundary is supposed fixed. 
When the perturbation of S to S' is "small", so we can write : 

and we obtain: 

S' = [x + an : x e S] 

/   V0-Vui=  I aV(j)-Vwdy. 
Jsn Js 

(87) 

(88) 

(89) 

(90) 

We introduce the adjoint state equation : 
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Find p € Hl(Q) such that: 

f V/7 • Vw = 2 f (V</> - u) ■ Vwdx, Vw e Hl(Q). 
Jo. JD 

Taking w = 8<f> in (91) we find (see (88)): 

SE = I  Vp- VS(p 
JQ 

Taking w = p in (89) we find (using (90) too): 

/  Vp ■ V8<t> = - j aV(f> ■ Wpdy 
JQ. JS 

and therefore : 

SE = - J aV<p • Vpdy + o(o). 

(91) 

(92) 

(93) 

(94) 

We have to find an expression similar to (94) for the discrete case. 
For discretization we use the Finite Element Method of degree 1 on triangles. 
More precisely, we divide Q in triangles and approximate Q by Qh = U/T*, 
where the Tk are triangles. 
The division of ft is such that the vertices of dQh belong to dQ and for the 
intersection of 2 triangles we allow only one of the three possibilities : 

Ti n Tj = 

An admissible triangulation would be one like in figure 4. 

or 1 edge, i # j 

or 1 vertex 

Figure 4 

We consider the function space : 

Hh = {wh eC°{Qh):wh\Tk ePl 
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The dimension of///, equals the number of vertices q' of the discretization and 
every function <£/, belonging to Hh is completely determined by (ph(q1)- Q 
We define the hat functions : 

wl e Hh 

In one dimension these functions are as shown in figure 5 

i 

.A N, 
qH        q1           q»1 

Figure 5 

We have: Hh — span{w'}. 

We define the discrete form of the variational formulation (87) 
Find <f>h e Hh such that: 

f V<ph ■ Vuji = f gwidy, V/ (95) 
Ja Jr 

So, the discretized optimization problem is : 
Find 

min /   \V<f>h —u\2 = minE(Qh) 
JD $k  J n Sk 

with <f>h subject to (95), Sh discrete approximation of S. 
Since we want to find S/,, the optimization parameters are the vertices q1 e Sh. 
But, if we change an internal vertex q' £ Sh, then E(Qh) changes. 
Thus, in fact, E(S2h) is a function of all vertices ql,... ,qN. 
If we note E(Qh) = E(qx,..., qN), we have to find the derivatives 

|^,i = l,...,^,y = 1,2. (96) 
dqj 

Let us show how the calculus of variation of E(Qh) works in the discrete case. 

Calculus of variations ofE(Qh) 
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We suppose that qk is an internal or boundary node of the triangulation and 
that qk & D (the case qk e D is uselessly complicated but contains no major 
additional difficulties). 
We move qk to the position qk + 8qk. 
We write formally: 

8E = 2 f (V(ph - u) ■ VSfadx (97) 
JD 

and from (95), we obtain by differentiation : 

f  V8<ph ■ Vwj + f    Vfa- Vwj + f  Vfa- V8wJ = 0       (98) 

because g\s — 0 and wj varies if we change the triangulation (this variation 
gives the last integral in (78)). 
We observe also that 8(j)h i Hh, because the two solutions which give the 
variation 8<j>h are not obtained in the same triangulation. 
Since by definition fa e Hh, we have : 

N 

so 

We call 

8<t>h(x) = ^HVCO + J2<t>i8wiw- (100) 

i=i i=i 

8fa = Yj84>iw
i{x)eHh. 

i=i 

But the second sum in(100) doesn't belong to Hh. 
In order to use the equation (98), we have to state the following lemmas : 

Lemma 3 : When qk moves to qk + 8qk, then the function w' (x) changes to 
wl (x) + 8w' (x) with 

8wi{x) = -wk(x)Vwl ■ 8qk + o(8qk) (101) 

D 

We can explain better Lemma 3 by refering to figure 6 : 
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if   q k      moves, then  w ' 

associated to    qi   doesn't 

change, since    qk   doesn't 

belong to supp w ' 

b) 

in that case we change the 

/   \x     / 
supp W '    if we move 

q k    , so yy i    changes by 

the 8 W '    given by 
qk 

Lemma 2 

qk +8q k 

Lemma 4 : If f\Tk e C1, then 

Figure 6 

Sqk-V(fwk) + o(8qk), (102) 

n where /o* / = Et /rt / by definition. 

For the proof of these two lemmas, see O. Pironneau (1984) 

The previous lemmas allow to compute all the integrals in (98) and to obtain 
an expression for 8E(Qh), if we define the (discrete) adjoint state equation : 
Find ph e Hh such that 

[ S/ph ■ VwJ = 2 I (Vfa - u) ■ Vwj,    Vj. 
JQ JD 

(103) 

We can prove that the discrete variation of E{Qh) is given by the following 

Theorem When qk moves to qk + Sqk, the E(Qh) varies by 
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8E{Üh) = f (V4>h ■ Vwk)(VPh ■ 8qk) (84) 
Jo. 

+ [ (Vwk ■ Vph)(V4>h ■ 8qk)dx- 

f (V<t>h ■ Vph)(Vwk ■ Sqk)dx + o(8qk). 

D 

According to the theorem, we can write 

8E = X
k-Sqk (105) 

and therefore a gradient method is : 
Change qk to qk - Xxk, with A. ~ optimum step size. S top when x* - 0, V^. 

5. PROBLEMS CONNECTED WITH THE NUMERICAL IMPLEMEN- 
TATION. 

5.1 Independence from E 

Note that the adjoint state p depends on the criterion t. On the other hand if 
the software is to be provided as a black box to the industry it must be such 
that it is easy to : 
- change the design criterion 
- add geometrical contraints. 
Suppose that we minimize a functional of the general form : 

E(4>, Q)= f fOf>)dx,    <t> = {4>>}, j = l,...,r. (106) 
JD 

Since the second member of the adjoint state equation(103) is 8E, we must be 
able to compute J^- independently of £(</>, Q). 
This computation can be done by finite differences because : 

9£ _ E(<l>h+8(f>huJ,nh)-E(<ph>nh) 

Hi ~ Hi 
This computation is not expensive. The number of elementary computations 
is of order N. Indeed, if /V is the number of the mesh nodes, the calculation 
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cost is of the order N, which is the same cost as the solution of a laplacian (cf. 
Arumugam(1989)). 

5.2 Add geometrical constraints 
To add geometrical constraints is easy if we give a parametrized description of 
the domain and its triangulation. 
If the boundary to optimize is described by r parameters a-}, we can define it 
by a curve (ex. spline) defined by a} and then generate the triangulation with 
vertices {q1}, i = 1,..., N on the curve. 
Since in this case only the parameters a3 move independently, we must compute 
the variation of E with respect to a,. But 

dE      ^ dE    dq* 
— = y"T-T--r^,i = l,...,tf,* = l,2. (108) 

Therefore, we must be able to compute j£ and this is done also by finite 
differences : 

dqf      qHa, + 8a;) — qHct;) 

daj daj 

which is not computationaly expensive. 

Remark : One could think that we can compute everything by finite differ- 
ences, even 

3E       E(qf +Sqh-E(qh 
rr-——ri ^ (no) dqf Sqf 

but this is far too expensive, since we have to solve the state equation every time 
wecompute£(<7f). So,mecomputationalcostof(lOO)is2N*0(AO ~ 0(N2) 
which is the cost of solution of N partial differential equations. 

5.3 Other discretization methods 
We have shown above that the finite element method is well suited to Optimal 
Shape Design because the same principles can be used on the discrete sys- 
tem. In Brackman (1987) and Makinen (1990) an extension to Iso-parametric 
elements can be found. Chenais (1993) shows also that with Cea's artificial 
domain velocity it is possible to have the discrete derivatives equal to the con- 
tinuous derivatives discretized. Finally Finite Volume methods computations 
of derivatives can be found in Dervieux (1993). 

5.4 Automation of the computations. 
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Computation of derivatives of functional is, as we have seen a lengthy and 
crafty work. Further very often it is found in practice that the criteria must be 
changed and adapted to the problem because the solution found do not satisfy a 
forgotten constraint or because of instabilities with respect to data. Each time 
the computation must be done again! 

One way out, as we have said is to work with Quasi-Newton methods on the 
optimality conditions rather than on gradient algorithm for the minimization 
problem. Then it is no longer important that the derivative of the discrete 
problem be exact. It suffices to discretize the derivative of the continuous 

problem. 
With the GMRES algorithm ( Saad (1986), our experience is that this second 
method works well when the problem is not too stiff like inverse problem (Vossi- 
nis (1992)). For the minimum drag problem on the Navier-Stokes equations it 
failed. 

We have also explained above that it is possible to use a finite difference formula 
for the terms which change often, i.e; the cost function and some part of the 
constraints. It is not possible to use it to find the adjoint equation. There the 
only hope is automatic differentiation as shown below. 

5.5 Remeshing. 
Working in the physical domain with changing shapes requires remeshing. The 
possible approaches. 

1. A Delaunay-Voronoi automatic mesh generator is used at each step. Though 
the motion of inner vertices affects the derivatives (it can be computed by finite 
differences) these effects are small usually. 

2. The inner vertices are linked to the outer vertices. From the programming 
point of view this is usually hard. It means that the mesh generator is fully 
parametrized. 

3. The motion of the inner vertices is linked to the motion of the outer ones 
(Marrocco et al (1978)): 

i^k W^Ü_. (in) 

where qk is a boundary vertex and <?' is an inner vertex. 
It is wise also to test that no triangle area becomes negative in the motion. This 
is the easiest and also best method in most cases (even in 3D). 
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5.6 Computation of the adjoint equation by differetiation by program. 
Usually the computer program for the flow solver is written before hand and 
the optimal shape design analysis comes after. 
The idea is to say that the PDE is known from a long sequence of equalities 
each of which is easy to differentiate. If each program line is thus differentiated 
a linearized flow solver is found. Then an adjoint equation is easier to found. 
A review article on these methods can be found in (Gilbert et al (1991) for 
example). 
Consider the equation 

d2  2 

 -+sinK = l,    Vjce]0,l[,    u(0) = w(l) = 0, (112) 

discretized by the finite difference method : 

UN = 0 

do i = l.JV - 1 

Vi = sin«, 

N2(2Ui — Ui+i — M;_i) + sinw; = 1 

(113) 

end-do. 

As is often the case, while programming, the intermediate variable u; is intro- 
duced. 
A DO loop being in fact identical to a long sequence of program statement let 
us introduced a lagrange multiplyier for each line and construct the Lagrangian: 

N-l 

L = PoUQ-\-p2UN-\-'Y^Pi+\{Vi -smUi) + N2pN+i(2ui -w,+i -M,-_I + U,- -1) 

(114) 
This Lagrangian contains only simple function so it can be differentiated with 
respect to u and v by any formal computation program (Maple, Mathematica...) 
Thus the adjoint program is obtained: 

dL 
7— = Po- PN+\ 
3«o 
dL j 
— = ~Pi+l COS Ui + N£(2pN+i - PN+i-l ~ PN+i+\) 

Pi — PN+i-l 
dllN 

dL 
T— = Pi+1 + PN+i 
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This way the left hand side of the adjoint equation can be computed and all can 
be automatized. The limit of the method is the memory of the computer 
Branching instructions are no problem, consider the case where sin u is replace 
by sin \u\ and programmed as 

// Ui  > 0 then u, = sin«, 
(116) 

else vi = sin(—«,) 

Then there will be two lagrangian and after differentiation one will obtain 

r\ F 
if Ui  > 0 then —— = -pi+\ cos M, + N2(2pN+i - PN+i-i - PN+I+\) 

öUi 

r) / 
else -— = -Pi+\ COS(-M,) + N2(2pN+i - PN+I-I - PN+I+I) 

öUi 
(117) 
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Figure . / 0. - Cp recovery inverse problem, incompressible flow, angle of attack=0, 
initial airfoil NACA64A410, final Korn's airfoil. Functional and gradient norm con- 
vergence vs nb of functional calls 
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SUMMARY 

An efficient numerical approach for the design of op- 
timal aerodynamic shapes is presented in this paper. The 
objective of any optimization problem is to find the optimum 
of a cost function subject to a certain state equation (Gov- 
erning equation of the flow field) and certain side constraints. 
As in classical optimal control methods, the present approach 
introduces a costate variable (Lagrange multiplier) to evaluate 
the gradient of the cost function. High efficiency in reach- 
ing the optimum solution is achieved by using a multigrid 
technique and updating the shape in a hierarchical manner 
such that smooth (low-frequency) changes are done separately 
from high-frequency changes. Thus, the design variables are 
changed on a grid where their changes produce nonsmooth 
(high-frequency) perturbations that can be damped efficiently 
by the multigrid. The cost of solving the optimization problem 
is approximately two to three times the cost of the equivalent 
analysis problem. 

LIST OF SYMBOLS 

cp pressure coefficient 
F cost function 

fk fcth shape function 
i unit vector in z-direction 

3 unit vector in «/-direction 
Moo free stream Mach number 
n unit normal 
t unit tangent 
ux free stream velocity 

3/U'L ^-coordinate of the upper and lower surface of the 
airfoil 

a amplitude of shape functions (design variables) 
ä direction of change of a 

U,L components of a (upper and lower surface 
amplitudes of the fcth shape function) 

r circulation 

7 ratio of specific heats 
£ magnitude of change of a 

c angle of attack 

* Research Engineer 
t Senior Scientist 
* Chief Scientist, Fluid Mechanics and Acoustics Division 

6 9 corrected for Mach number 
9 angular position of a far-field location 
A Lagrange multiplier 
lik fcth component of the gradient of F 
p density 
6 full velocity potential 
6$ target potential 
T coefficient of the delta function 

1.     INTRODUCTION 

Analysis of flow fields using computational fluid dy- 
namics (CFD) has come a long way. Today, accurate com- 
putation of the flow field around realistic aircraft configura- 
tions using the Navier Stokes equations with turbulence mod- 
eling can be done at affordable cost and reasonable turnaround 
time. Design and optimization of aircraft configurations, on 
the other hand, is far from this level of maturity. In the 
last two decades, many different techniques have been devel- 
oped to design aerodynamically better aircraft. These tech- 
niques can be classified into three broad categories, namely 
inverse design methods, loosely coupled optimization (LCO), 
and tightly coupled optimization (TCO). 

The inverse design method,1"6 pioneered by Lighthill, 
requires a priori knowledge of a desirable pressure or velocity 
distribution and some strategy for obtaining a shape that 
produces this distribution. The quality of the shape obtained 
from the inverse design method is strictly a function of the 
distribution it is required to match. Therefore, a weakness 
of this approach is its dependence on the experience and 
knowledge of the designer to establish desirable velocity or 
pressure distributions. In addition, the method does not lend 
itself to the imposition of constraints. 

In the LCO approach, an analysis code interacts with a 
numerical optimization code to find a shape that meets some 
design objective (i.e., minimizes some cost function). To 
achieve this goal, the analysis problem is solved many times 
to find the best combination of perturbations to the design 
variables that both minimizes the cost function and satisfies 
the constraints. This process is repeated until the cost function 
cannot be further reduced. Examples of this approach are 
found in Refs. 7-10. The approach can be viewed as a two 
part process: an inner loop that finds both a direction and 
a step size to update the design variables and an outer loop 
that repeats the inner loop until the cost function reaches a 
minimum.   If each inner-loop pass requires N solutions of 

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genese, April 1994. 
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the analysis problem (where N is proportional to the number 
of design variables) and the outer loop requires C iterations 
(where C depends on how far the initial conditions are from a 
minimum), then the cost of this approach is approximately N 
x C times the cost of the analysis problem. The LCO method 
can be improved by analytically evaluating the sensitivity 
derivatives needed to update the design variables." Usually 
this requires the inversion of a very large matrix. For three- 
dimensional problems, the size of this matrix can render the 
method impractical with current computer technology. 

Even greater efficiency can be achieved through a TCO 
method. With this method, the optimization and analysis 
problems are attacked simultaneously. The TCO problem 
requires the solution of an adjoint problem equivalent in 
complexity to the analysis problem. This results in an overall 
cost that is proportional to 2C. The factor of 2 results from 
doubling the number of equations that govern the problem. 
This approach has been discussed in Ref. 12. Even this 
procedure can become prohibitively expensive for practical 
aerodynamic design and optimization problems. 

The One-Shot method13,14 overcomes the unacceptable 
cost of the existing design and optimization procedures. It 
brings the cost of design and optimization to the same order 
as that of a single analysis. High performance is achieved by 
exploiting the property of the partial differential equations (as- 
sociated with the scales (frequency) of the errors) which gov- 
ern the physics of the flow and by the efficient damping out 
of high-frequency error components with multigrid. Consider 
the subsonic flow over an airfoil profile. The change in the 
shape of the profile of a given wavelength produces changes of 
the same wavelength in the solution. These changes penetrate 
into the flow field only up to a distance that is proportional 
to the wavelength of the perturbation. Thus, while the high- 
frequency changes in the shape of the airfoil produce changes 
in the solution that are of high frequency and remain local to 
the neighborhood of the airfoil, the smooth (low-frequency) 
changes in the shape produce smooth changes to the solution 
and are global in nature. Typically, any relaxation scheme 
quickly damps the high-frequency components of the error 
on a grid. Multigrid efficiently damps the whole spectrum of 
error components by relaxing the governing equations on a 
sequence of grids of varying resolution. 

Therefore, the basic idea of the One-Shot method is to 
change the shape of the airfoil profile in a hierarchical man- 
ner such that smooth changes are made separately from high- 
frequency changes. Because each of these changes involves a 
different scale, the governing equation of the flow field can be 
solved efficiently on grids of appropriate resolution. Thus, the 
flow field due to smooth changes in the shape of the airfoil is 
solved on coarse grids, and the flow field due to increasingly 
high-frequency shape changes is solved on increasingly fine 
grids. This breaks the optimization procedure into a sequence 
of suboptimization problems, each of a given scale; therefore, 
the problem is well conditioned. The resulting optimization 
procedure is very efficient because the work on a particular 
scale is done on the appropriate grid. (Ill conditioning results 
from working on many scales simultaneously.) The One-Shot 
method is implemented within a full approximation scheme 
(FAS) full multigrid (FMG) algorithm. The solution process 
starts on the coarsest grid, where only the smooth component 
of the shape function is updated. This solution is interpolated 
to the next finest grid, where it serves as an initial approxi- 
mation of the solution on that grid. This process is continued 
until the finest grid is reached. Thus, smooth (low-frequency) 
shapes are updated on coarse grids; high-frequency shapes 

are updated on finer grids. The fine- to coarse-grid transfers 
are designed such that the optimization problem at each grid 
level is driven by the fine-grid residual. The resulting algo- 
rithm has an estimated overall cost that ranges from two to 
three times the cost of the analysis problem. 

The successful application of the One-Shot method to 
the aerodynamic shape design problem was first reported in 
Ref. 14. The capability of the method was demonstrated by 
using the small-disturbance potential equation as the govern- 
ing equation of the flow field. However, in that study, the 
issue of updating the grid was avoided. In the present study, 
the full potential equation is used as the governing equation; 
hence, the grid must be updated as the shape changes. In this 
work, the adjoint equation and the corresponding gradient of 
the cost function are derived. The solution procedure and 
some typical results are also presented. 

2.     CONSTRAINED MINIMIZATION PROBLEM 

A general constrained minimization problem can be 
stated as 

subject to 

and 

min F[b, Q(b)] 
h,Q 

R[b, Q(b)] = 0 

C„[b,Q(b)]<0    (n = l,2,...,N) 

(2.1) 

(2.2) 

(2.3) 

where F is the cost function; b the design variables; and Q, 
the state variables. The set of state equations is denoted by R 
and the side constraints are denoted by C'„; Cn is referred to 
as a side constraint because the state equation is considered 
to be the primary constraint of the problem. 

In aerodynamic minimization problems, the cost func- 
tion is, for example, the drag coefficient Cd or the ratio of 
drag to lift Cd/Ci. The design variables are, typically, the 
shape parameters that define the shape of the body in the 
flow field. The state equations are the governing equations 
of the flow field and their boundary conditions. Depending 
on the level of fidelity of the mathematical model, the gov- 
erning equations are the Navier-Stokes equations, the Euler 
equations, or the potential equations. The side constraints are 
either geometric constraints like the maximum thickness of 
the airfoil section, the volume of the wing, or aerodynamic 
constraints like maximum lift (max Ci). 

2.1  The Necessary Conditions 

The objective of the minimization problem is to find b* 
and the corresponding Q* such that F(b*, Q") is a minimum 
and the state equations and the side constraints are satisfied. 
A necessary condition for b* to be at a minimum is 

VfcjF(b*,Q*) = ü 

where 

VhF 
3F_ 

db 
+ dQ 

db 

dF 

dQ 

(2.4) 

(2.5) 

(VfcFwill be referred to as the gradient of F). This necessary 
condition can be proved by contradiction as follows.   The 
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Taylor-series expansion of F in the neighborhood of b' and 
Q* can be written as 

p(b* + e~b,Q' + £<?) = F(b',Q*) + ebTVhF(b',Q*) 

+ 0(e2) 

where e is a positive scalar and b is a vector; eb is the change 
in 6*, and eQ is the corresponding change in Q* that satisfies 
the state equations and the side constraints. If Vi,F(b*, Q') 
is nonzero, then a vector b must exist for which 

fcrVfcF(b*,Q*)<0 (2.7) 

(e.g., b = -X>hF(b*, Q*)). A vector b that satisfies (2.7) is 
called a descent direction at b*. Given any descent direction 
b, a positive scalar e exists such that for all positive e that 
satisfy e < e, 

ebTVhF(b',Q') + 0(e2) <U (2.8) 

If we substitute (2.8) into (2.6), then 

F(b* + eb,Q* +eQ) < F(b',Q*) (2.9) 

for all such e. Hence, unless V),F(b*, Q*) = U, the neigh- 
borhood of b* contains points with a lower function value 
than F{b*, Q*). The other necessary conditions that must be 
satisfied at the minimum are the state equations and the side 
constraints. 

2.2 The Minimization Process 

At some initial b, any minimization process seeks to find 
a descent direction b and a step size s in which to change b 
such that 

F(b+eb,Q + eQ)<F{b,Q) (2.10) 

where eQ is the corresponding change in Q that satisfies 
the state equations and the side constraints. This process is 
repeated several times until a minimum is reached. 

The Descent Direction 

A descent direction b can be determined as follows. The 
Taylor series expansion of F about b and Q can be written as 

F(b + eb, Q + eQ) = F(b, Q) + ebTVhF(b, Q) 

+ 0(e2) 
(2.11) 

where VhF is given by (2.5). Equation (2.11) clearly shows 
that if 

6 = - VfcF(b,Q) 
|V6F(b,Q)| 

(2.12) 

then (2.10) is satisfied. Equality occurs in (2.10) at the 
minimum when Vi,F(b*, Q*) = 0, where b" is the optimum 
value of the design variables and Q* is the corresponding 
value of the state variables that satisfies the state equations. 
Therefore, to obtain the descent direction, the gradient of F 
must be evaluated. The efficient and accurate evaluation of 
this gradient is one of the important but difficult steps in any 
minimization scheme. The formula for the gradient of F, 
given by (2.5), is not a very useful one because, in general, 
dQ/db is difficult to determine . However, by using the 
adjoint method, this difficulty can be easily overcome. This 
method is outlined in section 2.3. 

The Step size 

Once the descent direction has been determined, the next 
step is to evaluate the step size e. One approach is to do a 
line search. The objective of the line search is to find e such 

that   VfcF (b + eb,Q + sQ)     is a minimum. That is, 

d\\VhF(b + eb,Q + e 4)1' 
de 

= 0 (2.13) 

If we use a Taylor series expansion, then we can write 

jvhF(b+eb,Q + eQ^2 

= IVhF(b, Q) + eV2
hF(b, Q)b + e2C + 0(e3) |2 

=[VfcF(b, Q)]TVhF(b, Q) +2e[VhF(b, Q)]TV2
hF(b, Q)b 

+ £' ■■[bT[vlF(b,Q)}TV2
hF(b,Q)b+2[VhF(b,Q)]Tc} 

+ 0(e3) 
(2.14) 

where C denotes the 0(e2) term of the expansion. Note that 
VJ;F includes the variation with respect to Q. If we set the 
derivative with respect to e on the right-hand side of (2.14) 
equal to 0 and solve for e, then 

e = [VhF(b,Q)YvlF(b,Q)b  

~bT[VlF(b,Q)]TVlFlb,Q)b + 2[VhF(b,Q)]TC 

+ 0(e2) 
(2.15) 

Near the minimum, because Vi,F is small, the second term 
in the denominator is negligible in comparison with the first 
term; hence, it is dropped. Therefore, if we also neglect the 
0(e2) terms in (2.15), then the step size becomes 

[VhF(b,Q)]'VlF{b,Q)b 

'lr[VlF(b,Q)]TVlF(b,Q)b 
(2.16) 

where V^F is a symmetric matrix and is often referred to 
as the Hessian. Computation of the Hessian is expensive; 
the cost is proportional to the number of design variables. 
However, V^Fb can be evaluated relatively easily with finite 
differences as follows: 

V£F(6,Q)6: 
VfcF (b + eb, Q + eQ) - X>hF(b, Q) 

(2.17) 
where £ is a trial perturbation. To find the step size, the 
design variables are perturbed with an arbitrarily small e, and 
the new values of the state variables that satisfy the state 
equations and the side constraints are determined. Next, the 

new gradientVJ,JF (6 + eb, Q + eQj is evaluated, followed 

by VfcFfb, Q)b.    Then, the step size is determined with 
(2.16). 
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2.3  The Adjoint Method 

As stated earlier, the efficient and accurate evaluation 
the gradient of F is one of the important but difficult steps 
in any minimization scheme. The most elegant way of deter- 
mining this gradient is to use the adjoint method. The adjoint 
equations, also referred to as the costate equations, can be 
derived as follows. In the following derivation and in the rest 
of the paper, we assume that no side constraints exist. For a 
small change sb in b and a corresponding change eQ in Q 
that satisfies the state equations (2.2), we can show that 

eb 
fdR>T 

vdb. +.*'(; + O(e2)=0        (2.18) 

With (2.5), we can write 

where 

^F = ei,r- + eQ'dQ 

Q = lbb 

(2.19) 

(2.20) 

If we add a term, which is the product of (2.18) and an 
arbitrary multiplier A, to (2.19), then we get 

;r„  „        :TdF        ^rdF 
£b^hF = eb-- + SQ-- 

+ £ b   l-db)    +Q   [dQ 
\ + 0(e2) 

(2.21) 
The arbitrary multiplier A is often referred to as either the La- 
grange multiplier, the costate variable, or the adjoint variable. 
If we rearrange (2.21), then we get 

ebTVhF = sbT 

+ eQ2 

'(£)'"£ 
dR\Tx     dF 

9QJ dQ 

(2.22) 

+ o(£
2) 

If we choose A such that 

dR\\      dF 

3Q) 
A + äg=° 

(2.23) 

adjoint equations form an additional set of necessary condi- 
tions that must be satisfied at the minimum. In summary, the 
necessary conditions that must be satisfied at the minimum are 

R[b, Q(b)] = 0 

(2.26) 

"-•£ *+£-• 
The derivation presented above is for a general con- 

strained minimization problem. In the following section, the 
adjoint equations and the gradient of the cost function are de- 
rived for a specific set of state equations and a cost function. 

3.     DESIGN OF OPTIMAL AIRFOIL SHAPES 

The design of optimal airfoil shapes is a constrained 
minimization problem. The objective is to find the optimal 
shape of the airfoil that will minimize a cost function F sub- 
ject to the state equation of the flow field and side constraints. 

3.1  The State Equations 

The analysis problem, defined by the state equation, con- 
sists of finding the flow over a specified shape for a given 
free-stream Mach number and angle of attack. In order to fo- 
cus on the optimization procedure, the flow model considered 
is the subsonic potential flow over an airfoil profile. 

Consider the steady irrotational flow past a two- 
dimensional airfoil.15,16 The governing equation of the flow 
field, known as the full potential equation, is 

div(pVd>) = 0 

The boundary condition on the airfoil is 

Vd>-n = ti 

At infinity the boundary condition is 

V<* = LT 

(3.1) 

(3.2) 

(3.3) 

then (2.22) becomes 

For the Kutta condition, the circulation T around the airfoil 
is such that 

ebTVhF = e~bT dR\T        dF 
lb)  x + ~db 

+ 0(e2)      (2.24) 

Equation (2.23) is the set adjoint equations or the costate 
equations. The adjoint equations are similar to the linearized 
form of the state equations. They include the adjoint boundary 
conditions that correspond to the boundary conditions of the 
state equations. If we neglect the 0(e2) terms of (2.24), then 
the gradient of F can be written as 

VfcF = 
dR 

db 
A + 

dF_ 

db 
(2.25) 

The gradient of F given by (2.25) is much easier to evaluate 
than the one given by (2.5). By introducing the Lagrange 
multiplier, the need to evaluate Q has been eliminated. The 

the velocity at the trailing edge is finite and continuous 
(3.4) 

In these equations, 6 = <t>(x,y) is the full velocity potential, 
p = p{&) is the density, n is the unit normal, and [/<*, is the 
free-stream velocity. The density p is given by 

1 - -Ml(\VS\2 (3.5) 

where Moc. is the free-stream Mach number and y is the ratio 
of specific heats. If C is the angle of attack of the airfoil, then 
the free-stream velocity is given by 

Ux. = [/«[cosfOi + sinfOi] (3.6) 

where i and j are the unit vectors in the x and y directions, 
respectively. 
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Figure 1. Computational domain. 

3.2 The Computational Domain 

The computational domain is shown in Figure 1. The 
interior of the flow field is denoted by fi; the upper and lower 
surfaces of the airfoil are denoted by U and L, respectively. 
The far-field boundary, located at a finite distance from the 
airfoil (30 to 50 airfoil chord lengths) is denoted by O. To 
impose the Kutta condition around the airfoil, an artificial 
boundary or cut that begins at the airfoil and extends to the 
far field is introduced. A jump in potential that is equal to T 
is allowed across the cut. For convenience, this cut is chosen 
to emanate from the trailing edge of the airfoil. The top and 
bottom sides of the cut are denoted by T and B, respectively. 
The jump across the cut can be written as 

<bl -. = r (3.7) 

The value of the F is determined by requiring that the velocity 
perpendicular to the trailing edge bisector be equal to 0 at the 
trailing edge. A good approximation for T is given by 

r = »I.e. (3.8) 

where i.e. refers to the trailing edge of the airfoil (refer to 
Appendix C for details). To satisfy mass conservation across 
the cut, derivatives of the potential normal to the cut are 
required to be continuous. 

At the far-field boundary, the circulation modifies the 
velocity as follows: 

V6-n = Ux-n+—V0 ■ n (3.9) 
2T 

where 

0 = 2x - tan-1 U/l - ML tan 9\ (3.10) 

and 8 is the angular position of a far-field point. For conve- 
nience, »i is the unit normal on the boundary. The far-field 
boundary condition given by (3.9) is consistent with the in- 
finity condition stated by (3.3). 

3.3  The Design Variables 

The airfoil is represented as follows: 

yu = ]T]tt]fe/*(z) 

£«*/*(a 

(0 < x < 1) (3.11) 

where a" and a\ are the amplitudes of the shape functions fk 
on the upper and lower surfaces of the airfoil, respectively. 
The design variables ak must be determined to obtain the 
optimal shape of the airfoil. Let a denote a vector whose 
elements are the design variables. That is, 

a =   a,,a, U        L       L 
•.*A-!«1 >*2, •,«A- (3.12) 

The functionality of the shape functions will be presented 
later. 

3.4 The Optimization Problem 

The model problem chosen is the design of an airfoil 
shape that can match a given target potential. Given a target 
potential distribution d>o around an airfoil, the objective is to 
find a that will minimize 

F[a,6(a)]=    I (6 - 60)
2da (3.13) 

U+L 

subject to the state equations, where da, which is an element 
of the airfoil, can be written as 

d<r   = d x   + dy (3.14) 

Note that the choice of this particular cost function does not 
make it an inverse-design problem. Unlike inverse-design 
problems, the minimization is done over a finite number of 
design variables. This approach also can be used, for ex- 
ample, to find the optimal shape of an airfoil that has the 
minimum D/L (Drag/Lift) subject to geometric and aerody- 
namic constraints. 

To make the presentation of the derivation of the adjoint 
equations simple and easy to understand, the flow is assumed 
to be incompressible (i.e., M^. = 0); therefore, p = 1. In 
this case, the full potential equation reduces to the Laplace 
equation. Also, no side constraints are considered in this 
derivation. Therefore, the specific optimization problem con- 
sidered here is 

min   / 
«,•*   J 

(6 — (bo) da (3.15) 

U + L 

subject to 

div(V^) = 0 

V<i ■ n = 0 

in Q (3.16a) 

on the airfoil      (3.16b) 

V6-n = Uoc. -n +— V0-n   in the far field    (3.16c) 

along the cut    (3.16d) 

where T is given by (3.8). 
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Figure 2.  Domain after perturbation. 

3.5  The Adjoint Equations 

As stated earlier, the objective of the optimization pro- 
cedure is to seek a descent direction and a step size in which 
the design variables can be changed so that the cost func- 
tion is decreased. To determine the descent direction and the 
step size, the gradient of the cost function with respect to 
the design variables V„F must be evaluated (refer to section 
2.2). As shown in section 2.3 the adjoint method offers an 
elegant means of evaluating the gradient. The derivation of 
the adjoint equations is presented below. 

Let the design variables be perturbed such that 

a —► a + ea (3-17) 

where ea is the change in a; e and ä are the step size 
(magnitude) and direction, respectively, of the change in a. 
Figure 2 shows the domain after the perturbation, where 0 
and L denote the upper and lower surfaces, respectively, of the 
new airfoil and Q denotes the new domain. The shape of the 
resulting airfoil j/u,L and the corresponding potential 6 that 
satisfies the governing equation and its boundary conditions 
in the new domain can be written as 

-Ü,L U,L    .      ~U,L ,o lo\ y     = y     +ey (3.1s) 

6 = 6 + e6 (3.19) 

where ey represents the change in the airfoil shape and ed> 
represents the corresponding change in the potential. We can 
show from (3.13) that 

y*y aVnF -I 
u 

L 

+   / (4 
U + L 

h 

2(6-. 
\A+~!/I 

l   y*y 

X76 ■ tda 

ZVCä ■ tda 

Vxyx 
(3.20) 

l + »l 
■da 

6o)6dcr +    I    2(« 

U+L 

where yx = dy/dx and t is the unit tangent (refer to Appendix 
A for details). The objective of this derivation is to eliminate 
6, where 

da 
(3.21) 

From the governing equation and its boundary conditions 
(3.16), we can show that 

div iv hi) = 0 infl (3.22a) 

VS-n = V(yV6-t)-i on the airfoil (3.22b) 

V<£-n = —Ve-n at the far field (3.22c) 
2-x 

,T _ iB = f along the cut (3.22d) 

where 

T = d>t.c. - 6t.e (3.23) 

If we introduce a Lagrange multiplier A and use (3.22a), 

then (3.20) can be written as 

Z.TTT IP- i.ux   A \   y*y zv6-td<r VnF=  / 2(6-So] 

u 

/ 

VT+yl 

2(6-60) 
y*y 

\/TT: 
= V<Ä ■ td<T 

+    I   (6-60f-^d<r 
1 + 2/1 

U+L 

-f    /   2(6 - 60)6d<T 

U+L 

+ // div(v6\\dCl 

(3.24) 

If we integrate by parts, the last integral can be written as 

// div(v6\\dn =  ff dW(VX)6dQ 

n n 

-  / A(V6 ■ n)dr+      (VA • n)6dr 

(3.25) 
where the unit normal n points into the flow field Q; dr is 
an element on r, which is the path of integration around the 
domain Q and can be expressed as 

r=L+U+T+0+B (3.26) 

If the integrals are split along r into different components and 
substituted into (3.24), then we can write 

aTVnF=  [2(6-60)—0=V6-tdcr 

- l2(6-6o)    fxV     V6-tda- 
I VTTyl 

+    I (6 - 60)
2 V^x

0 da + I 2(6 - 60)6da 
J 1 + 2/2 J 

U+L U+L 

+  ff div(V\)6dn 

n 

- /   \(v<i> ■ n)da+    /   (VX-n)6da 

U+L U+L 

- /   \(j76-n)dr+    /   (VX-n)6dT 

T+B T+B 

- I \Cv<i>-n\dT    +      (V\-n)6dr 
o o 

(3.27) 
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Because V^ is continuous across the cut and JI points in 
opposite directions along the top and bottom boundaries of 
the cut, we can write 

/  Ahi ■ n\dr=   I (A
T
 - AB) (v^ • n)dr   (3.28) 

T+B Cut 

If we assume that VA is continuous across the cut, then we 

can write 

where 

/  (VA • n)6dr = f  / VA • ndr (3. 29) 

T+B 

If we use (3.28), (3.29), and (3.22b-d), then equation (3.27) 
can be written as 

aTV„F=  [2(6-60)    Jx^     V6tda 
J v l + yl 
u v 

- [2(6-60)     VxV     V6-tda 
J v 1 + yl 
L V 

+    /   (6-60f  Vx^\d<r+    I   2(6-60)6da 
J 1 + yl J 

U+L U+L 

+ // dW(V\)6dÜ 

n 

- / AV(j/V<£ -t) -ida +     (VA ■ n)6da 

U+L U+L 

- / (AT - AB) (v6 • n) dr + f   / VA - ndr 

Cut Cut 

_ _L   f A( V0 • n)dr + j (VA • n)6dr 

o o 
(3.30) 

If we substitute for f from (3.23) and rearrange, then (3.30) 
becomes 

aTVnF =  [2(6-60)    /^     V6-tda 
J    ■    ■   xA+if 

-  [2(6-60)    t
Vx^     V6-tda 

I '  'y/T+yi 

+    [ (6 - 60 f-M^dtr - [\V(yV6 ■ t) ■ ida 
J 1 + yl      J 

U+L U+L 

+ if div(VX) 6dQ 

n 

+    /   [VA -n + 2(6- 60)]6da 

U+L 

• ndr + (iL. ~ #.e.) I  J VA • ndr - -L J AV0 
Viut o 

+  / (VA • n)6dr -   I (A
T
 - AB) (V6 • n) dr 

O Cut 
(3.31) 

We choose A such that 

div(VA) =0 in fl 

VA • n + 2(6 — 60) — TS(x — xt.c.) = 0 on L 

VA ■ n + 2(6 - 60) + T6(x - xt.c.) = 0 on U 

VA ■ n = 0 in the far field 

A    — A    =0      along the cut 
(3.32) 

T =   / VA ■ ndr - r~  I AV0 • ndr (3.33) 

and i denotes the Dirac delta function (t.e. stands for trailing 
edge of the airfoil). Equations (3.32) are the adjoint equation 
and its boundary conditions (also called the costate equations). 
These equations are similar to the linearized state equations. 
The size of the system is the same as the size of the state 
equations and can be solved with the same technique used to 
solve the state equations. 

Because div( VA) = U in f2, we obtain the following 
from the divergence theorem: 

/ 
VA■ndr =0 (3.34) 

Therefore, for (3.32) to have a solution, we can show that 

(6-60)da = 0 (3.35) 
/ 

U+L 

liquation (3.16) clearly shows that a constant can be added to 
6. We can choose this constant 6C such that 

/ 
U + L 

Therefore, 

(6 + 6C — 6o)da = Ü 

/ (6 — 6o)da 
U+L 

j da 
U + L 

(3.36) 

(3.37) 

3.6 The Gradient of F 

If (3.32) is substituted into (3.31), then it reduces to 

aTVnF=  [2(6-60)    f^     V6- 
J Vl + vl   ' 

tda 

y*y -   I -lU-ihe)      "-"      \J6.iA* 
I VT+yl   ' 

+ J  (6 ~ <!>o)2 j y*yx 

+ yl 

(3.38) 
■da 

U + L 

-    /   XV(yV6-t)   ida 

U + L 

If we integrate the last integral by parts, then we get 

-    /   W(yV6 ■ t) - ida 

U + L 

=    /  (yV6-t)V\-ida +    [   y*Vxxl XV6   tda 
J J    i + yl 

U+L U + L 

/ —=L=('-yjrVA • n + VA • t)V<* • tda 
J v/l + yl 

f yxyxxy 

J    1 + 2/2 

VA ■n-\>\-t)'V6-tda 

+    I    ".""."" AV(f» • tda 

U+L 
(3.39) 
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If (3.39) is substituted into (3.38) and rearranged, then we 
can write 

äTVnF 

=   / [(6 - 60)
2yx + W6 • tyxxy]      * 2 da 

J ±  ~T  Vx 
u 

+ / [2(6 - d>0)yx - VA • nyx + VA • t]    ,    '   V da 
%AT 

/ [(6 - <t>ofyx + AV<£ ■ tyxxy\ _| "^^ da 
Vx 

i + y'i 

J , X76 ■ til   , 
[2(6 - 60)yx - VA • nyx + VA ■ t]   r "-da 

V1 + yl 
(3.40) 

If we substitute for y from (3.11), then (3.40) can be written as 

«TV„.F = £<« + ][>^ (3.41) 

where 

/** =  / [(* - ^o)2(A), + AV^ ■ tyMfk] -^-jda 
J -t ~r yx 
u 
/■ ,V6-tfk 

+  / [2(> - ^o)^ - VA • nyx + VA • t]    , . rftr 

u 
'^ + yi 

(3.42) 
and 

^ = y [(> - ^o)2(/0. + AV<A ■ tyxxfk}-^da 

f , V<6-tft 
-  / [2(<6 - ^0)ys - VA ■ nyx + VA • *]-==L=d<7 

L (3.43) 
Equations (3.42) and (3.43) are the components of the gradient 
of F. When 6 satisfies the state equations (3.16) and A 
satisfies the costate equations (3.32), then the components 
of the gradient of F can be evaluated with (3.42) and (3.43). 
Because V„F = 0 at the minimum, we can clearly see that 

''I-!    )        for k = l,2,...K (3.44) 

3.7 A Design Strategy 

Figure 3 shows a typical design strategy. In this process, 
at some initial conditions the state and adjoint equations are 
solved, and the gradient of F is computed. If the gradient is 
equal to 0, then a minimum has been reached and the iteration 
is terminated; otherwise, the new descent direction ä and the 
step size e are computed, and the design variables are updated. 
The iteration is repeated until the gradient vanishes. The cost 
of this strategy can be estimated as follows. Let the cost of 
solving the state equations be equal to K. The cost of solving 
the adjoint equation is at most equal to K. Let the number 
of design iterations required be N. Therefore, the total cost 
of doing the optimal design is approximately 2KN with N, 
at best, equal to the number of design variables. In practice, 
especially for nonlinear problems, N is many times the number 
of design variables. A factor of 100 is not unrealistic. One 
way to bring the total design cost down is to reduce the 
magnitude of K. One of the most practical and proven ways of 
achieving this is by using multigrid. Here, a multigrid scheme 

is used to relax the state and adjoint equations. At the end 
of one or several multigrid cycles, the optimizer is called and 
the design variables are updated. In this process, the design 
variables are updated only on the finest grid. A schematic of 
this strategy is shown in Figure 4. 

ft*.*; t^\ 

( 
Relax state equation 

Relax adjoint equat Znß 

Optimizer 

Compute 

© Yes 

c 
Quit 

Compute a, e J 
f     an+1=a\eä      J 

i  

Figure 3. A design strategy flowchart. 

Figure 4. A multigrid strategy. 

4.     THE ONE-SHOT METHOD 

The One-Shot method goes one step further by embed- 
ding the design process within the multigrid cycles. This 
method essentially makes N = 1. Thus, the cost of optimal 
design is approximately equal to 2K. In this method, high ef- 
ficiency is obtained by exploiting two key phenomena. The 
first one is the ability of multigrid to efficiently reduce high- 
frequency components of the error due to a perturbation, and 
the second one is the nature of propagation of perturbations 
in a flow field. These phenomena are explained below. 
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4.1   Multigrid Efficiency 

In any relaxation (smoothing) process, the high- 
frequency error components of the space discretization op- 
erator of the differential equation under consideration are 
generally damped in a few iterations. The low-frequency 
components are the slowest to be damped. Consider a one- 
dimensional domain of length L discretized into Ar cells of 
uniform grid spacing h — L/N, where the grid index ranges 
from 0 to N. This grid will be referred to as the h grid. If 
we assume periodic boundary conditions, then the error at the 
nth grid point can be written in Fourier series as 

j N 
(4.1) 

where A j is the amplitude of the y'th harmonic and ! = \/—\. 
The phase angle 0 can be written as 

Consider the small-disturbance potential equation in the 
half-space U < y < oo, —oo < x < oo. If the flow is 
incompressible, the governing equation is 

V2<A = 0 

and the boundary condition applied at y = U is 

d£_dj_ 
dy       dx 

(4.3) 

(4.4) 

where f(x) is the shape of the boundary over which the flow 
must be determined. If 6+6 is the potential due to a change in 
shape to / + /, the governing equation for change in potential 

and the boundary condition at y = Ü is 

(4.5) 

jx 

Ar (4.2) 

The phase angle covers the domain (—x, x) in increments 
of x/Ar. The value \9\ = x corresponds to the highest 
frequency that is visible on this grid, namely the frequency 
of wavelength 2h. If a coarse grid (H grid) is constructed by 
removing every other grid point of the h grid, then the highest 
frequency that is visible on this grid corresponds to \0\ = x/2 
(i.e., the frequency of wavelength \h — 2H). Therefore, the 
frequencies that correspond to x/'2 < \9\ < x and are visible 
on the h grid cannot be represented on the H grid. These 
frequencies are considered to be high frequencies on the h grid 
and the relaxation scheme can damp these frequencies in a few 
iterations. The remaining frequencies in the spectrum, which 
correspond to 0 < \9\ < x/'2 and are well represented on the 
H grid, are referred to as low frequencies on the h grid. The 
frequencies that are visible on the H grid can also be separated 
into high and low frequencies, based on how well they are 
represented by the next coarsest grid. The high frequencies 
that correspond to the H grid can be damped quickly by a few 
iterations of the relaxation scheme on this grid. 

In the multigrid method,17,16 high efficiency is obtained 
by relaxing the discretized equation on successively coarser 
grids, where the high-frequency error components that cor- 
respond to each grid are damped efficiently. In the design 
process, high efficiency is obtained by changing only those 
design variables that produce high-frequency perturbations in 
the flow field on any grid. Therefore, the basic premise of 
the One Shot method, on any grid, is to make changes in the 
design variables that produce high-frequency perturbations in 
the flow field. 

Let 

36 _ 

dy dx 

3£ = 
dx 

- e 

(4.6) 

(4.7) 

where ui is the frequency of the perturbation. A solution to the 
governing equation (4.5) that satisfies the boundary condition 
is 

6 = e~Myeiux (4.8) 

The magnitude of 6 is 

(4.9) 

Figure 5, which is the plot of (4.9) for a few select frequencies, 

191 
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4.2 The Effect of Airfoil Perturbation on the Flow Field 

The other phenomenon that is exploited by the One- 
Shot method has to do with the way in which a disturbance is 
propagated in a flow field. In a subsonic flow, for example, 
a smooth perturbation is propagated through the entire flow 
field and a high-frequency perturbation is felt only in a small 
neighborhood around the source of the perturbation. That is, 
high-frequency components of the perturbation decay rapidly 
away from the source. This phenomenon is illustrated in the 
following analysis. 

Figure 5.   \6\ versus y. 

shows that the region where 6 is large becomes thinner as the 
frequency increases. Let y" be a location where 6 is less 
than some small e.  That is, 

\6(OJ, y*)\ < e = e 

If we substitute for 6, then 

(4.10) 

(4.11) 



7-10 

Therefore, 
■ln(e) (4.12) 

Equation (4.12) clearly shows that as the frequency of the 
perturbation u> increases y* decreases. Table 1 shows y* for 
a few select frequencies when e = 10-4.  For the discrete 

4.3 The Shape Functions 

As presented earlier (section 3.3), the airfoil is repre- 
sented as follows: 

u.L      V*   U>L f t~\ (4.14) 

Table 1. y* versus w 

u 1/4 1/2 1 2 4 

* 
y 27.6 13.8 6.9 3.5 1.7 

problem, (4.9) can be written as 

-(k|fc)(»/fe) -M(j-i) 0 = 1,'2,...J + 1) 

(4.13) 
where x/ J < 9 < x is the frequency scaled to the grid spac- 
ing h. Figure 6 shows the response to different frequencies 
for the discrete problem. Table 2 shows the grid location j* 

beyond which U < 10-4. It shows that the high frequency 

perturbations are significantly damped by about the fifth grid 
point (j' = Ü is the first grid point). 

1.0 i  i   i   i  i   ■   i   ■   i   ■   ;  ■   i   ■   i   ■  i   ■   I 

n 
3ff/4    - 
n/2 
*/4 

'-'-■   ■ T~—* — ^   ■   ' -L-i. 

0123456789     10 

j 

where a]! and a\ are the design variables and /* are the shape 
functions. As explained in the previous two sections, to ob- 
tain high design efficiency, the changes in the design variables 
on a grid should produce nonsmooth (high-frequency) pertur- 
bations in the flow field. This is achieved by using a set of 
orthonormal functions as shape functions. Orthonormal func- 
tions are increasingly oscillatory. Each of them is assigned 
to a grid where a change in the amplitudes causes nonsmooth 
perturbations in the flow field. Often, basis functions that cor- 
respond to some known airfoil shape must be used. If these 
functions are not orthonormal, the corresponding orthonor- 
mal functions can then be determined by a Gram-Schmidt 
process.18 A Gram-Schmidt procedure for orthonormalization 
can be developed with the property of orthonormal functions, 

namely, 

[ fm(x)fjx)dx = 0      (m±n) 

o 
l 

j f2
m(x)dx = l 

(4.15) 

Let gu(x) be the functions that are not orthonormal. First, the 
orthogonal set fk(x) is found from the following relations: 

h(x) = g2(x) + a2ifi(x) 

(4.16) 

fk(x) = gk(x) +   ^2  akmfm(x) 

Figure 6.  U\ versus j. 

Table 2. j* versus 9 

9 x/4 x/2 3x/4 X 

J* 8.8 4.4 2.9 2.2 

In the One-Shot method, a shape function is perturbed on 
a grid where it produces high-frequency error components. As 
described above, these errors penetrate only a small distance 
into the flow field. Hence, they can be quickly damped 
by a few relaxations of the discrete equations in a small 
neighborhood around the airfoil. 

where 

dkm   — 

j 9k(x)fm(x)dx 
0  

/ fl(x)dx 

(4.17) 

Finally, the orthonormal functions are found by normalizing 
fk(x) as follows: 

/* 
fk(x) 

}ft(z)dx 

(4.18) 

The Gram-Schmidt process described above can be pro- 
grammed in symbolic language to find the expressions for /*, 
or it can be implemented by numerical integration, in which 
case the shape functions are defined as an array of numbers. 
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by 
As an example, consider the NACA 0012 airfoil, defined 

y
u = Y^ßkgk(x) (0<*<1) 

*=i (4-19) 
L U 

y  = -y 

where ßk and gk are given in Table 3. The NACA 0012 
shape has been slightly modified to ensure that it closes at the 
trailing edge. The same shape can be expressed in terms of 
the orthonormal functions as 

yU = ]T <**/*(*;) (U<x<l) 
(4.20) 

L U 
y  = -y 

where the orthonormal functions fk of the basis functions and 
their corresponding amplitudes ak are given in Table 4. The 
orthonormal shape functions are shown in Fig. 7. Note that 
the number of zeros of fk is equal to k + 1. 

Table 3. Shape Functions and 
Amplitudes of NACA 0012 

k Ä 9k 

1 0.17814 y/x — X 

2 0.10128 x(l — x) 

3 -0.10968 x2(l - x) 

4 0.U6090 x3(l - x) 

Table 4. Orthonormal shape functions 
and amplitudes of NACA 0012 

k ak x 1Ü4 /* 

1 439.471 5.477230] 

2 28.2339 14.7573(02 - .92857101) 

3 -5.85699 54.7884(03 - .90123602 

+ .43209901) 

4 2.85283 
213.472(04 - 1.274060, 

+ .50401102 - .1644390]) 

2 

1 

/*     0 

-1 

-2 

-3 

■   i i   '   i   ' 

y\7^ ^—/.— 
?»<3^'S<C^\- 

I   ^ '     u 

V-/l 
^-/j-^^ 

■ 

■ i i.i, 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 7. Orthonormal shape 
functions of NACA 0012 airfoil. 

4.4  The One-Shot Design Strategy 

In the One-Shot method, the optimizer is embedded 
within the multigrid cycle as shown in Figure 8. The de- 
sign variables are updated on a level where the correspond- 
ing shape functions produce high-frequency error compo- 
nents. In general, the low-frequency shape functions are 
updated on coarse levels, and higher frequency functions 
are updated on finer grids. For example, the design vari- 
ables ai and Q^ are updated on the coarsest grid Hh; 

0^,0^! a3> Q,4,> <*I'J
Q

'2! 
tt3. and a\ are updated on the 

next finest grid \h. Some overlap of the design variables is 
permitted. Thus, oj , and ot\ are updated on grid \h also. 
None of the design variables are updated on the finest grid 
h. The cost of solving the state or the adjoint equations on a 
coarse grid is only one-fourth of the cost of solving them on 
the next finest grid. Because the shape functions are perturbed 
only on levels where they generate high-frequency errors, a 
local relaxation around the airfoil is sufficient to damp out the 
errors, which reduces computing costs. Therefore, the overall 
cost of the design is dominated by the cost required to solve 
the state and adjoint equations on the finest grid. The total 
cost of the design process is approximately two to three times 
that of one analysis. 

Rel.i ♦, A. |—(Upj.lt off,^ j*) 

Rd»»t,X|—(^Upd.ua?'1-) 

Figure 8. The One-Shot strategy. 
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4.5  The Discretization and Solution Procedure THE RESULTS 

The State Equations 

The computational domain is discretized with an O type 
of grid. The governing equation and its boundary conditions 
cast in curvilinear coordinates are discretized with the finite- 
volume approach. The Gauss-Seidel line-relaxation scheme 
is used to form the tridiagonal systems of equations in both 
curvilinear coordinate directions. These systems are solved 
with the Thomas algorithm. Note that the tridiagonal system 
is periodic in the direction that is around the airfoil. A FAS 
multigrid scheme is used to accelerate the convergence rate of 
the solution. The FMG process is used to obtain a good initial 
solution on the finest grid. The details of the discretization, 
the relaxation, and the multigrid acceleration are given in 
Appendix B. 

The Adjoint Equations 

The adjoint equations are discretized and solved in the 
same manner as the state equations. As in the case of the state 
equations, a FAS multigrid scheme and the FMG process are 
used to accelerate the convergence rate of the solution. 

The Gradient of F 

The gradient of the cost function involves only quantities 
on the airfoil. These quantities are discretized in a manner 
that is consistent with the discretization of the state and adjoint 
equations. The gradient is transferred to the coarse grid in a 
FAS manner. 

Updating the Grid 

During the design process, the grid is updated by moving 
only the grid points close to the airfoil and linearly decaying 
the change at the airfoil in this neighborhood. The outer 
boundary of this region is determined as follows. Let 

3/max = nma,x(£y) (4.23) 

where i] is an arbitrary constant; 7? = 10 in this study. Among 
the grid lines that go around the airfoil, the one that is nearest 
to the 2/max location is taken to be the outer boundary of the 
region within which the grids are changed. The entire grid is 
regenerated at the beginning of each FMG stage also. With 
this approach, by the time the FMG process reaches the finest 
grid, only a few lines around the airfoil must be moved. 

Test Case 1 

As our first test problem, we recover the NACA 0012 
airfoil shape using the potential distribution obtained from 
the analysis of NACA 0012 at an angle of attack of 0° and 
Moo = U as the target potential So. Figure 9 shows the 
computed Cp distribution obtained from the analysis run. 
A five-level W-cycle multigrid with 128 x 64 cells on the 
finest grid was used. The FMG process was used to obtain 
a good initial approximation for the finest grid. The analysis 
converged to machine zero (< 10-10) in 10 multigrid cycles. 

-0.5 

c 
Figure 9. Computed Cp distribution for NACA 0012. 

The design run was similar to the analysis run. During 
the design process, both the state and costate equations were 
relaxed at any multigrid level. The shape functions used were 
the orthonormal functions based on the NACA 0012 shape 
functions. The design variables were distributed such that on 
the coarsest level (8 x 4) only a? and a\ were updated. On 
the next finest level (16 x 8), all the design variables (a1 '2 3 4) 
were updated. None of the design variables were updated on 
the next three levels, including the finest level. Thus, most of 
the design overhead was limited to the two coarsest grids. The 
FMG process was used to obtain a good initial approximation 
of the shape for the finest grid. Figure 10 shows the results 
of this run. The residuals of the state and costate equations 
and the gradient of the cost function reached machine zero 
in 12 multigrid cycles. The cost function at convergence was 
equal to 3 x 10~13, which indicates that NACA 0012 was 
indeed recovered. 

Initial shape 
Final shape 

Target shape 
Final shape 

Figure 10. Test case 1. 
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Test Case 2 

For test case 2, we selected the airfoil FX 60-126/1, 
a cambered airfoil whose coordinates are tabulated in Ref. 
19. Figure 11 shows the Cp distribution for this airfoil at 
an angle of attack of 0° and Moo = 0. This airfoil is not 
smooth, which is reflected in the computed Cp distribution. 
Using this solution as the target, we tried to recover the shape 
with the NACA 0012 shape functions. Figure 12 shows the 
resulting shape.   Although the designed shape did not fall 

obtained from the shape fitting is not clear, one reason may be 
the poor quality of the grid because the airfoil is not smooth. 

FX60-126/1 
Fitted with NACA 0012 shape functions 

-1.0 

-0.5 

Figure 11. Computed Cp distribution for FX 60-126/1. 

right on top of the target shape, the residuals of the state and 
costate equations and the gradient of the cost function reached 
machine zero, which indicates that a minimum was reached. 
The cost function reached a value of 6 x 10"'. 

Initial shape 
Final shape 

Figure 13. Shape fitting with 
NACA 0012 shape functions. 

Test Case 3 

A third test was done; this time the fitted airfoil was 
used to generate the target potential. This shape is very close 
to the FX 60-126/1 airfoil and is smooth because it is based 
on smooth shape functions. The result of the design is shown 
in figure 14. As expected, the final shape fell on top of the 
target shape. The residuals of the state and costate equations 
and the gradient of the cost function are shown in figure 15. 

n.mi- 
  Initial shape 

0.05 

  «^__^  Final shape 

0.00 -      r                                              ^___^——^     ::::::::::::::=nnä»k. 
_____^—-~ 

1         ,         1   
0.0 0.2 0.4 0.6 o.a l.o 

0 10 

  Target shape (Based on NACA 0012 shape functions) 
  Final shape 

0.05 "    (^           ^1^^ 0.00 : C      ___-—--—"         ~~^ 
i     .     r—~,     i  

0.2 0.4 0.6 0.B 

Figure 14. Test case 3. 

1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

0.2 0.4 

Target shape 
Final shape 

0.8 1.0 

Figure 12. Test case 2. 

Next, an experiment was done to see how well the FX 

60-126/1 airfoil can be represented with the NACA 0012 

shape function. Figure 13 shows the result. The NACA 

0012 shape functions clearly do a good job everywhere except 

near the trailing edge. The reason why the optimum shape 

in the previous experiment does not correspond to the shape 

<rt 
3 -S •rt 
«l 
0) 
u 

0 

on 
o -10 
_l 

■15 

Slate 
Adjoint 
Gradient 

5 10 

Multigrid cycles 

15 

Figure 15. Convergence history. 
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The Efficiency of One-Shot Method 

Finally, the performance of the One-Shot method with 
respect to pure analysis is presented. The efficiency of a 
design method is defined as the ratio of the central processing 
unit (CPU) time that is required for the complete design 
process to to the CPU time that is required to do one analysis 
tA. Figure 16 shows this ratio 1-D/IA plotted against the 
number of grid cells for the last test case. The figure shows 
that as the grid becomes finer the cost of design drops in 
comparison with the cost of one analysis. For the finest grid 
considered here, this ratio dropped below 4. The efficiencies 

for the other cases were similar. 

20 i- 

n 
• 16 x 8 
■   32 x 16 
▲   64 x 32 
♦ 128 x 64 

I    .    I    .    I    .    I    .    I xlO4 

0.0    0.2    0.4    0.6    0.8    1.0 
n 

Figure 16.  Efficiency of the One-Shot Method. 

6.     CONCLUDING REMARKS 

An efficient method for the design of optimal airfoil 
shapes has been presented in this paper. This method brings 
the cost of the design process to the same order as that of the 
analysis problem. It offers great potential in designing optimal 
aircraft configurations efficiently at a reasonable computer 
cost. However, much work is still required before practical 
use can be made of this method. 
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Appendix A 

The Normal and the Tangent 

Let the upper surface of the airfoil be 

y - fix) = 0 (A.1) 

If the unit normal n and the unit tangent t are chosen such 
that the normal points into the flow field and t x n points 
out of the paper, then 

-fxi + j 

t = 

y/TTH 
i + fxj 

(A.2) 
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where t and j are the unit vectors in the x- and ^-directions, 
respectively, and fx = df/dx. From (A.2) the following 
inverse relations can be written 

i = (_/,» + t)/y/l + ß 

j = (     „ + fxt)/y/1 + ß 
(A.3) 

Let the upper surface be perturbed in the ^-direction such 
that the new shape is 

y = f(x) + ef(x) (A.4) 

The new normal n and the new tangent i can be expressed as 

y =yw+f/M 

Figure 17.  Perturbation of upper surface. 

1 + (fz + eß)2 

i+(ß + efx)j 
(A.5) 

t = 

With some algebraic manipulation we can show that 

n = n - "    , 'x      *- + 0(e2) 
y/l + fl 

t = t + s- fx -.n + 0(e2) 

If the lower surface of the airfoil is given by 

y - fix) = U 

(A.6) 

(A.7) 

and the normal and the tangent are such that n points into the 
flow and t x n points out of the paper, then 

fx* - j 

t 
(A.8) 

>/(! + /!) 
From (A.8), the inverse relation can be written as 

y =M 

Figure 18.  Normal and tangent on lower surface. 

i = (     fxn - t)ly/\ + ß 

j = i-n - fxt)/y/l + ß 
(A.9) 

The new normal and the tangent on the lower surface (per- 
turbed in the «/-direction) are also given by (A.6). 

The Infinitesimal Segment der 

The infinitesimal segment da on the original airfoil can 
be written as 

der   = dx   + dy 

= dx2 + (j-)  dx2 + h.o.t 

= dx2 (l + fx) + h.o.t 

(A. 10) 

The corresponding infinitesimal segment da on the new airfoil 
can be expressed as 

da2 = dx2 + dy2 

= dx 1 + {h+efxy + h.o.t. 
(A.11) 

From (A. 11) we can show that 

fxfx 
da = dcri 1 -f e 

1 + /J 
+ Ole' (A. 12) 

A.l  The Gradient of the Cost Function 

Let the change in the design variable be such that 

a —► a + £tt (A. 13) 

The resulting airfoil shape yv,h (Fig. 19) and the correspond- 
ing potential i that satisfies the governing equation and its 
boundary conditions in the new domain n can be written as 

f'Lix) = yv'hix) + eyV-hix) (A.14) 

i = 6 + ei (A.15) 

The cost function on the original airfoil is 

F[a,Sia)]=    f  i<b - So)2 da (A.16) 

U+L 

On the new airfoil, the cost function can be written as 

F{a + ea,i)=    l   {i - <b0)
2da (A.17) 

Ü + L 

If we use a Taylor series expansion, the potential on the new 
airfoil can be shifted to the original airfoil as follows: 

Z0,L_  JU,L   ,   ^(?6\ ,   /-./-2A +e*U»   +0(£ 
(A.18) 

,U,L    ,       7U,L ■•- +ed>u'L +eyiV<t>-j)v'L + 0(e2) 

Figure 19.  Perturbed airfoil shape. 
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If we substitute for dtr from (A. 12) and for 6 from (A. 18) 
and use (A.3) and (A.9), (A. 17) can be written as 

F(a + sä,6) = F(a,6) 

+ e 12(6-60)   ,Vx* yi-Ua- 

u y/l + vl 

-el 2(6 - 6o)—ß£=V6 ■ td<r 
J    ■    ' VTTW 
L 

+ s   f (6-S0f^hrd<r 
1 + 3/1 

U+L 

+ £     2(6-60)6d<r + O(e2 

U+L 
(A. 19) 

The left-hand side of (A. 19) can be expressed as 

F(a + e&,d>) = F(a,6) + eaTVnF + 0(e2)    (A.20) 

where 

da       \da J    86 

and V„F are the components of the gradient of the cost 
function. If we compare (A. 19) and (A.20), we obtain 

äTV„F= j'l(t 
u 

y*y 

>/i + yi 
:V6 ■ td(T 

,0)     VxV     V6.*A« - 12(6     „u;     . 

+    J (6-6of-^da 
U+L 

+    /   2(6-60)6d<r 

U+L 

(A.22) 

A.2  The State Equations 

The Governing Equation 

For incompressible flow, the governing equation in the 
domain f2 is 

div(V^) = 0 (A.23) 

After the airfoil is perturbed, the governing equation in the 
new domain f2 is 

where 

div(Vf) = 0 

= 6 + eä 

(A.24) 

(A.25) 

In the region that is the intersection of both domains, we can 
write 

div(Vf) - div(V^) = 0 (A.26) 

From (A.26) we can show that 

div(v^)=0 in nnn (A.27) 

Therefore, in the limit as e —► 0, we can write 

div(v^) = Ü       in Q (A.28) 

The Airfoil Boundary Condition 

The boundary condition on the airfoil is 

V6-n = 0 (A.29) 

where n is the unit normal on the airfoil. If n is the unit 
normal on the new airfoil, then the boundary condition on the 
new airfoil can be written as 

vU + si) • n = ü (A.30) 

With (A.6) and (A. 18), the boundary condition on the new 
airfoil, shifted to the original airfoil, can be written as 

V(d + s6 + syV6  j)(n- e      *x      t I + 0(e2) = 0 
V '   V        vi + yl / 

(A.31) 
If we expand (A.31), substitute (A.29), and neglect the high- 
order terms, we can write 

V^i • n = — V( yV<b ■ j) ■ n + 
Vx 

--V6 ■ t      (A.32) 

Note that (A.32) is true on the original airfoil. 

With (A.2), (A.3), (A.8), (A.9) and the boundary condi- 
tion (A.29) we can show that 

V6 ■ n = V(yV6 ■ t) ■ i — 
y/lTy: 

:V 6 on U 

V6-n = V(yV6-t) -i-i , V       V26 on L 

(A.33) 
Because V26 — 0 (the governing equation), we can write 

Vi • n = V(yV6 -1) ■ i       on the airfoil (A.34) 

The Far-Field Boundary Condition 

At the far field, 

V6-n = Ux-n + —Ve-n (A.35) 
2x 

where 11 is the unit normal on the far-field boundary. After 
the perturbation, we can write 

vU + ei\ ■ n = U^. ■ n +     + £   V6 • n       (A.36) 

If we subtract (A.35) from (A.36), we obtain 

V6 ■ n = —V0 • n 
2x 

(A.37) 

The Cut 

Along the cut 

where 

T = 6t.c. - <i>t.e. 

After the perturbation, 

U + si)    - U + ei)    = T + ef 

From (A.38) through (A.40), we obtain 

7T        7B 

where 

= r 

r = 6t,c, - 6t,c, 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 
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A.3  Summary 

From the cost function, we get 

rt.F-J 2(6-6o) 
y*y V6 ■ td.tr 

u 

- f 2(6-6o)—pd=V6-td, 
L 

/   2(6 — <bo)6dcr 

(A.43) 

U+L 

U+L 

where e a are the changes in the design variables and V„JP 

are the components of the gradient of the cost function. 

From the state equations, we obtain 

div(v<2!>) =0 infi 

V<# • H. = V(y"V6 ■ t) ■ i on the airfoil 

f 
\?6 ■ n = —V0 • n at the far field 

6   —6    = f along the cut 

(A.44) 

where 

r = <Pt.c.  - <Pt.C. 

Because 

div( V 6 b\ =0 in n 

then 

(A.45) 

(A.46) 

(A.47) // div(v<A)<LQ = 0 

If we use the divergence theorem, then we can write 

ff divfvAdn =  fv6- ndr = U (A.48) 

where r denotes the boundary of f2. Equation (A.48) implies 
that in order for (A.44) to have a solution 

7^-  / V0 ■ ndr +   j   V(yV6 ■ t) ■ id<r = 0      (A.49) 

O U + L 

These integrals can be easily shown to be equal to 0. 

Appendix B 

Presented here is the discretization and the solution pro- 
cedure for the governing equations and the boundary condi- 
tions. Note that the compressible full potential equations are 
considered here. 

B.l   The Grid 

An O type of grid is used to discretize the computational 
domain. The grid lines form a set of curvilinear coordinates 
('£, j]), where 

v = v(x,y) 
(B.l) 

The ^-direction is clockwise around the airfoil, and the 7- 
direction is radial away from the airfoil. Figure. 20 shows 
a coarse schematic of an O type of grid. The cells in the £- 
direction run from 1 to /, and cells in the ^-direction run from 
1 to J. The grid-line j = 1/2 from i = 1/2 to J = / + 1/2 
represents the airfoil. Not shown are the ghost cells around 
the boundaries of the domain, where the boundary conditions 
are applied. 

Figure 20. The grid. 

B.2  The Governing Equation 

The governing equation is discretized with the finite- 
volume approach. The velocity potential 6 is a cell-average 
value and is located at the cell center (»', j). The fluxes at the 
cell faces are evaluated with central differences. Hence, this 
discretization is effective only for subsonic flows. In the gen- 
eralized curvilinear coordinate system (£,57), the compressible 
full potential equation (3.1) can be written as 

U d ( v 

where 

1 - ■Ml(62
x + 62

y-l) 

is the density and 

U    =   £x6x    +   £y6y 

V   =   T)X6X   +  rjySy 

(B.2) 

(B.3) 

(B.4) 

are the contravariant velocity components; £x, £y, r/x, and 
J/J, are the metric coefficients; and J is the Jacobian of 
the transformation.   Note that J is also used to denote the 
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outermost cell in the »/-direction.   The velocity components 
Sx and <by can be expressed as 

i>x = 6^x + <t>,jVx 

<t>y = <t>tZy + ^nVy 
(B.5) 

If the inverse of the transformation x = x(£, 7?) and y = 
y(£, r/) is known, the metric coefficients and the Jacobian can 
be expressed as 

(B.6) 

Zx = Jyr, 

£y = —Jxn 

i\x = -Jy( 

Vy = Jxs; 

J= l/(x(yv - x,,«/<) (B.7) 

Figure 21 shows a typical cell in the flow field.  The coor- 

To ensure that the numerical discretization satisfies a uniform 
flow field identically, (B.12) is discretized as 

(<!>() i+ij = <f>'+hj ~ <f>i,} 

~ 2 >J f\ 

(B.13) 
and 

(B.14) 
where 

(B.15) 
Evaluation of i/^ and ?/,, are similar.  J is evaluated as 

Similarly, we can write 

(B.16) 

J 
) = Pij+x(-y(^x +xi<by)i  +i       (B.17) 

where 

Figure 21. A cell in flow field. 

dinates of the vertices of the cell are known from the grid 
generation.   That is, 

x = x{i±-,j±- 
(B.8) 

By choosing ££ = 8rj = 1, a finite-volume discretization of 
the governing equation (B.2) for the cell (»', j) can be written 
as 

pV 
J 

= o 
',J + i       ^   "    ' i,j-k 

(B.9) 
Equation (B.9) is a consistent approximation to the integral 
form of the full potential equation. 

Consider the first term in (B.9).  If we substitute from 
(B.4) and (B.6), then we can write 

Pi+ij(yv<!>x - x ivy'i+i.j 
•+*.J 

where 

W+ir^+ij+r^^ +*,i- 

(B.10) 

(B.ll) 

The evaluation of y7] is similar.   If we use (B.6), then the 
velocity components given by (B.5) can be written as 

=   Jy^t - Jy<<f>t, 

= — Jx^S^  + Jx.(<f>ri 
(B.12) 

The bars over the metric coefficients and the Jacobian indicate 
that they are evaluated with some mean values of x and y. 

(z<),,J + l =*i+lj+i-*i-i,i+ 
(B.18) 

and y^ is evaluated similarly.    The various pieces of the 
velocity components given by (B.12) are discretized as 

and 
(B.19) 

(x^)ij+i = -{xi+i,j + i — x,-_i,j+i + Xi+ij -x.'-ij) 

{Xr))i j+i  = x'-j + t   ~ Xi>3 
(B.20) 

where xij is given by (B.15). Similarly, y$ and y^ are 
evaluated. 

B.3  The Boundary Conditions 

The boundary conditions are imposed with one set of 
ghost cells around the computational domain. For the cells 
adjacent to the airfoil (», 1), the metric coefficients except 
(x^)1+1 ,2 j are computed as 

linV, i, = x-, i  a — x-, i  i 

(*<); X = xl+i i - x,-_i i 
> 2 T 2 » 2 2 ' 2 

(B.21) 
Similarly, the corresponding metric coefficients that are func- 
tions of y are also evaluated. 
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The Airfoil 

If we use (3.2), (B.4), and (B.6), then we can write that 
(on the airfoil) 

(V6 ■ n)y/(x\ + y») =j = 0 (B.22) 

Figure 22 shows a ghost cell adjacent to the airfoil.   The 

Figure 22. Ghost cell adjacent to airfoil, 

value of 6if is set such that 

•■i 
(B.23) 

The Far Field 

Figure 23 shows a ghost cell adjacent to the far-field 
boundary. Similar to (B.22), we can show from (3.9) that at 
the far-field boundary 

j = (lie, -n+^VO- n) y/{x\ + y*)        (B.24) 

The value of i>i,j+\ is set such that 

V 

•-•>+* 

Ux.n+-Ve-n)        ^H+y?), 
i,J+-, ■J+i 

(B.25) 
The value of the circulation T is given by (refer to Appendix 
C for details) 

r = . (B.26) 

Figure 24.  Ghost cells along cut. 

The Cut 

Figure 24 shows the ghost cells along the top and bottom 
sides of the cut. The potential along the cut has a jump 
prescribed by (B.26). However, because the gradient of the 
potential normal to the cut must be continuous, the potential 
in these ghost cells is set as follows: 

^o,j = d>ij — r 
(B.27) 

B.4  The Solution Procedure 

The discrete equations are solved with a Gauss-Seidel 
line-relaxation scheme. The nonlinearity introduced by the 
density p is handled by lagging its value by one iteration. 
Two systems of tridiagonal equations, one implicit in the £- 
direction and the other implicit in the ^-direction, are solved 
sequentially with the Thomas algorithm. Note that the tridi- 
agonal system implicit in the ^-direction is periodic. A full 
approximation scheme (FAS) multigrid is used to accelerate 
the rate of convergence. Line relaxation is used to avoid the 
degradation in the performance of the multigrid scheme be- 
cause of the presence of grid cells with large aspect ratios. 

11 f Ghost cett \ 

Figure 23.  Ghost cell adjacent to far-field boundary. 

B.5 The Multigrid Acceleration 

A multigrid scheme is used to accelerate the conver- 
gence rate of the governing equations. In the multigrid 
process, starting with the fine grid, the problem is solved on 
a succession of increasingly coarser grids, and the corrections 
id> from the coarser grids are successively transferred back to 
the fine grid to obtain a new approximation to the solution. In 
this process, the component of the error that appears as a high 
frequency on a grid is damped very quickly by the iteration 
on that grid. Thus, low-frequency components of the error 
are damped on coarser grids, and the high-frequency compo- 
nents are damped on finer grids. This property of the multi- 
grid is exploited by the One-Shot method during the design 
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Figure 25. Location of 6 in fine and coarse grids. 

process. Because the full potential equations are nonlinear, a 
FAS multigrid is used. 

A two grid FAS multigrid algorithm is presented below. 
Let the fine grid on which solution is sought be represented 
by h and the coarse grid be represented by H. Also, let h 
and H represent grid sizes, where H > h. A coarse grid 
can be built by removing every second grid point from a fine 
grid. This makes H = 2h. For the cell-centered scheme, this 
method of coarsening combines four fine grid cells to form a 
coarse grid cell. Figure 25 shows the location of <bh and 6 
on a fine and a coarse grid, respectively. Now, consider the 
following problem on grid h: 

Ch(ih) ■Jl" (B.28) 

where Ch{6h) is a nonlinear equation and "Hh is its right- 
hand side. Equation (B.28) represents the discretized full 
potential equation or any of the boundary conditions. After 
a few relaxations of (B.28) on grid h, if we assume that 
the remaining error is smooth enough to be approximated 
on a coarse grid, then 6 and its residuals are transferred to 
the coarse grid H and an equivalent coarse grid problem is 
solved on this grid. The equivalent coarse grid problem can 
be written as 

C 
"(*") 

■RJ (B.29) 

where 

nH = if [jih - ch (d>h) ] + cH (\Uh)      (B.30) 

and if and if are the restriction operators that transfer <bh 

and its residuals to the coarse grid. Equation (B.29) is solved 
on the coarse grid, and the corrections 56H are transferred 
back to the fine grid h to update <bh as follows: 

*New = ^Old + I» ^ 

where 

(B.31) 

(B.32) 

and ijf is the interpolation operator that transfers the cor- 
rections to the fine grid. This process is repeated until the 
residual of (B.28) reaches machine zero. 

In the two-grid algorithm described above, we assume 
that the solution to (B.29) is accurate. In the multigrid 
algorithm, the solution on grid H is obtained by another two- 
grid iteration, where H is the fine grid and 'IE = \h is the 
coarse grid. If this process is repeated this process on grid 2H 
and so on, the "exact" solution is obtained on a very coarse 
grid. The sequence in which the transfer and relaxation are 

performed between successive grids is done in various ways. 
Two of the more popular methods, V cycle and W cycle, 
are shown in Fig. 26. The V cycle consists of a sequence 
of relaxation and transfer to coarser grids with the "exact" 
resolution on the coarsest grid, followed by a sequence of 
relaxation and transfer back to the finest grid. In the Coarser 
levels are visited more often in the W cycle than in the V 
cycle. The W cycle, although 50 percent more expensive 
than V cycle, is more robust. 

V cycle W cycle 

O Relaxation 
□ Exact resolution 

Figure 26.  Multigrid cycling strategies. 

Appendix C 

The Kutta condition states that the circulation T around 
the airfoil should be such that 

the velocity is finite and continuous at the trailing edge. 

The value of T is determined by requiring that the velocity 
that is perpendicular to the trailing edge bisector be equal 
to 0 at the trailing edge.  In Fig.   27, let ut and un be the 

"---^Aacftfr 

Figure 27. Velocity at trailing edge. 

velocity components along the cut and perpendicular to the 
cut, respectively. Let the unit vectors in the corresponding 
directions be t and n, respectively. Let S be the angle 
between the trailing edge bisector and the cut. The velocity V 
perpendicular to the trailing-edge bisector, can be written as 

where 

V = un cos 8 + ut sin 6 

un = (u, v) ■ n 

ut = [u,v) ■ t 

(C.1) 

(C.2) 

As shown in Appendix B, the Cartesian velocity components 
u and v can be expressed as 

V = <t>y  =  —J(Xq<!>( — X^S-q) 

and the unit vectors can be expressed as 

'i = (yvlr, -x,,fr) 

t= (xn/r,yr,/r) 

(C.3) 

(C.4) 
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where 
T = y/x* + y% (C.5) 

If we substitute (C.2) through (C.5) into (C.l), it can be 
written as 

cos 8 
V = [J(x* + yX)4>i - J(x(x„ + y^Ar,] —— 

sin 8 
(C.6) 

To satisfy the Kutta condition, we require that V = 0. That is, 

4>( + 
-J(x(xn + y(yr,) + tan 8 

J(x% + y2
n) 

6„ = i) (C.7) 

If the cut is aligned with the trailing edge bisector, then 8 = 0. 
If the grid is orthogonal, then xix7,+yiy^ = 0. Therefore, if 

the grid is orthogonal and the trailing-edge bisector is aligned 
with the cut, then (C.7) reduces to 

= Ü 

^., (*?«. +r) 

(C.8) 

(C9) 

where T and B refer to the top and bottom sides of the cut, 
respectively (see Fig. 1) and t.e. stands for the trailing edge. 
The value of T is easily obtained from (C.9). 

In practice, particularly while designing.an airfoil, the 
grid is not orthogonal nor is the trailing edge bisector aligned 
with the cut. However, numerical experiments have shown 
that the effect of the second term in (C.7) is of high order. 
Hence, a good approximation for the value of T can be 
obtained from (C.9). 
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1     Abstract 

This paper is an introduction to applied optimiza- 
tion of engineering problems, with an emphasis on 
aircraft design. First, the optimization problem is 
described—namely, the objective function and the 
problems often involved in its optimization, the vari- 
ables or parameters over which the objective function 
is optimized, and the constraints upon the objective 
function. Formulation of the optimization problem 
to ensure rapid and accurate convergence is discussed 
and illustrated with specific examples. Three classes 
of optimization methods: evolution, downhill sim- 
plex and gradient optimization, are discussed. The 
robustness and speed of these optimization methods 
are evaluated and compared. Finally, a number of 
practical implementation issues related to optimiza- 
tion are highlighted. 

tions. Because of this immense cost, industry has 
been limited to investigating a tiny fraction of the 
design space. A possible solution to this problem is 
to reduce the design problem to an objective func- 
tion topography that has as many dimensions as de- 
sign parameters and then to find the global minimum 
using optimization algorithms. Constraints are en- 
forced by locally increasing the objective function to 
values higher than the global minimum. The devel- 
opment of robust nonlinear optimization algorithms 
which can rapidly solve hyperdimensional optimiza- 
tion problems with current computer technology is 
therefore essential if we wish to evaluate the entire 
design space and thereby restore flexibility to the air- 
craft design process. 

3    The Objective Function 

2    Introduction 

Over the last twenty years, many methods have been 
developed for optimizing aircraft solutions for vari- 
ous objectives {e.g. minimum cost or weight). In- 
dustry has traditionally optimized aircraft by vary- 
ing parameters with respect to each other, and then 
comparing the respective cost or objective functions. 
Even though the variation of parameters is useful for 
optimization over a few parameters, it is impractical 
for the hyperdimensional (N > 20) problems encoun- 
tered in the design of aircraft. 

If we consider, for example, a simple problem with 
ten possible discrete values for five parameters, we 
will have to calculate and compare 105 discrete so- 
lutions. For a typical objective function evaluation 
time of five minutes, a year of CPU time would be 
required to merely calculate the various configura- 

* Aerospace Specialist, Deutsche Aerospace Airbus GmbH, 
Hünefeldstrasse 1-5, D-28183 Bremen, Germany. ©1994 by 
A. Van der Velden. 

The objective function is the function which will be 
minimized—i.e. its value will determine whether the 
parameter or variable values are "optimal." 

3.1     The objective function topography 

The objective function will often have a complex to- 
pography. All optimization methods have at least 
some difficulty with topographical features such as: 
narrow valleys where the function is low for a nar- 
row range of one or more parameters; large relatively 
flat plains where the function does not vary signif- 
icantly, and multiple valleys, or local minima. An 
objective function / which illustrates these complex 
topographical features can be described by the fol- 
lowing system of nonlinear transcendent equations 
(Fig. 1): 

f=l + YJ(A1-Bl)
2 

(1) 
i=l 

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genese, April 1994. 
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Figure 1: Objective function topography. 

where 

A{    =    Y^ (a;j sin aj + bitj cos a,), 

n 

Bi    =    ^2 (ai,j sin ßj + bi,j cosßj), (2) 
3=1 

and 

a = [ 1.0   2.0 ] , 

0.5 1.0 " 
1.5 2.0 

2.0 -1.5 ' 
1.0 -0.5 (3) 

The vector ß represents the free parameters. The 
minimum value of / is reached when ß = a. The 
topography of this function is relatively smooth, but 
all the parameters are strongly coupled, and this ob- 
jective function is difficult to optimize because of its 
numerous local minima and saddle points. This func- 
tion will be used later in this paper to illustrate and 
evaluate various optimization methods. In the rest of 
this section we will describe the types of topographi- 
cal features which complicate optimization problems. 

3.2 Minima and saddle points 

A minimum is a point where varying each parame- 
ter results in a higher objective function value. If a 
function has more than one minimum, the smallest is 
described as a global minimum and the others as lo- 
cal minima. Although the optimum we want to find 
is the global minimum, every optimization strategy 
can mistake a local for a global minimum. 

A saddle point is a point where all the partial 
derivatives with respect to the parameters of the ob- 
jective function are zero (i.e. a critical point), but 
a variation in at least one parameter will result in a 
better (more optimal) objective function value. 

3.3 Narrow  valleys  or  gorges  and   large 
plains 

Narrow valleys or gorges occur when there exist pa- 
rameters) with a very narrow range over which the 
objective function value is small. Since the existence 
of gorges implies that the objective function param- 
eters are strongly coupled, improvements in the ob- 
jective function value are possible only when several 
parameters are varied simultaneously. In this case, 
the optimization can converge only slowly, especially 
for curved gorges. 

Only strategies with a good selection of step sizes 
and direction have a chance of finding the minimum 
of such a narrow valley. This type of topography is 
typically encountered in the optimization of a highly 
constrained system; we have in practice observed up 
to fifteen coupled constraints in such cases. Even if 
we develop an optimization strategy which is success- 
ful in narrow valleys, the design corresponding to the 
minimum may be difficult if not impossible to imple- 
ment. 

Large flat plains, although the inverse topography 
of gorges, also pose problems. Over large parameter 
variations, little changes. In this topography, it is 
difficult to decide in what direction to search for the 
minimum. 

3.4 Holes or singularities and poles 

Holes or singularities are the extreme case of narrow 
valleys—minima which occupy a vanishingly small 
volume in space, which often occur in the middle 
of large plains. Again, we have strong coupling be- 
tween the parameters. Holes are often due to numeri- 
cal error in the optimization, and should therefore be 
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considered inherent features of the objective function 
only when they are greater in extent than the error 
associated with the numerical method. Although a 
hole may correspond to an interesting design, usu- 
ally the design parameter range is so limited that it 
is impossible to manufacture. 

A pole is a point where the optimization program 
generates an infinite objective function magnitude. 
This can be, for example, due to a divide by zero 
inside the analysis or to the choice of an an unsuitable 
objective function, e.g. choosing to maximize CL/CD 

by minimizing CD/CL while allowing - 0 values of C/,. 

be conditioned to exclude them. The roughness of 
the objective function can usually be improved by 
increasing the numerical accuracy of the iterations. 
Note however that this conditioning may corrupt the 
optimization, and in certain cases it may be simpler 
and cheaper to use an appropriate method to opti- 
mize the unconditioned objective function. 

The   Choice   of Variables   and 
Constraints 

3.5 Steps 

Steps (steep cliffs) occur in both analytically and nu- 
merically defined objective functions. If we then con- 
sider such a "steplike" objective function at the edge 
of the step, we find that the derivative of the param- 
eter is infinite. Similarly, in the middle of a step, the 
derivative will be zero. 

3.6 Roughness and noise 

Roughness in the objective function is defined as 
stochastic (over the parameter being varied) variation 
in the objective function value around a mean value 
when the parameters are varied slightly. It is distin- 
guished from noise, which is defined to be the nonre- 
producible random variation in the objective function 
value, in that roughness remains constant over suc- 
cessive evaluations of the objective function for iden- 
tical parameter values. Practically, however, these 
two fine-scale features cause similar optimization dif- 
ficulties and are usually not considered parts of the 
solution. 

3.7 Topographical improvement 

A great deal of time and effort can usually be saved by 
preconditioning the objective function and its param- 
eter space before we even begin to optimize the ob- 
jective function. Since the convergence criteria or op- 
timization tolerances are fixed during the optimiza- 
tion, the objective function should be normalized by 
an estimate of its global minimum, to ensure that 
the objective function does not vary too slowly with 
respect to the convergence criteria. The objective 
code should also be searched extensively for singular- 
ities and poles [8]. If possible, poles and singularities 
should be removed, or the parameter range(s) should 

4.1     Variables 

We should select the set of design variables (param- 
eters) which result in an objective function topogra- 
phy which best avoids the topographical difficulties 
described in the previous section. The number of 
parameters should be minimized, to speed up con- 
vergence and to simplify the objective function to- 
pography. 

The variables should also be decoupled as much as 
possible, to minimize the number of gorges. For ex- 
ample, if we are interested in optimizing the length / 
and the diameter D of a fuselage with respect to su- 
personic (wave+friction) drag for a given minimum 
volume, and define / and D as the two variables, the 
drag topography will show a diagonal valley in the 
/ — D plane, and therefore for every improvement in 
drag, both / and D will have to be varied. If we 
select / and l/D as the variables, however, the drag 
topography will be much simpler: the optimizer will 
find the optimum value for l/D, and keep it rela- 
tively constant as it reduces / until the volume hits 
its minimum constraint. Decoupling design variables 
is, unfortunately, more an art than a science, since 
it is very difficult to predict or visualize hyperdimen- 
sional interactions. 

Finally, we should select a set of variables which 
minimizes the number of local minima in the ob- 
jective function topography. A common mistake 
which is made in airfoil optimization is the choice 
of Fourier series as shape functions for airfoils. Al- 
though Fourier series are a convenient decomposition 
from both a mathematical and computational point 
of view, the resulting objective function will be in- 
herently periodic, with many local minima, making 
it difficult to find a global minimum with any opti- 
mization method. 
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4.2    Constraints 

Constraints here are constraints on either individual 
parameters or upon functions of the design param- 
eters. They can be applied by imposing a penalty 
upon the objective function that is quadratic in the 
extent of constraint violation. In our case a fixed 
penalty to the normalized objective is added for a 
predefined constraint violation (tolerance). In gen- 
eral, there is still a sizable negative objective func- 
tion gradient in the direction of an active constraint 

(Fig. 2). An improvement in the objective will then 
result in a constraint violation. This problem can be 
solved by making the constraint more severe. How- 
ever it is not very smart to make the constraints too 
severe, since severe penalties create gorges in the to- 
pography. The author only classifies constraints as 
violated when they exceed their limits by an allowed 
tolerance. If the constraint lies in between his con- 
straint boundary and its tolerance a constraint is ac- 

tive but not violated. 
The selection of constraints is always tricky. For 

every active constraint imposed, a variable has to ex- 
ist that can be varied to improve the constraint vio- 
lation. Although this may result in a larger number 
of variables, it is generally better to optimize over 
a large flexible set than a small rigid set of param- 
eters. An "optimal" selection of variables and con- 
straints will depend greatly upon the intuition of the 

designer. 

1.0 

constraint 

objective 

Design parameter 

Figure 2: An active constraint. 

In our study [4], a number of optimization meth- 
ods were investigated wit h respect to these crite- 
ria. In general these methods can be divided into 
three groups: evolution, downhill simplex, and gra- 
dient methods. These methods will be described in 
the rest of this section. 

5    A Comparison of Optimization 
Tools 

5.1     Criteria 

Although optimizers promise a faster and more ex- 
tensive investigation of design space, to be useful in 
aircraft design, they must meet these criteria: 

• The optimizer should be robust. Robustness 
here means that the optimizer finds the global 
minimum for a given objective function. 

• The optimizer should be able to cope with hy- 
perdimensional parameter spaces. 

• The optimizer should be practical in terms of 
computational time and cost. In our evaluations, 
the computation time did not exceed 16 hours 
(overnight) on workstations. 

5.2    Evolution methods 

The most advanced evolution methods use mutation 
or recombination and selection to minimize the ob- 
jective function. We start out with a large number 
of points randomly distributed over the design space, 
if possible with at least one point for every dimen- 
sion of the problem. In mutation, each of the points 
produces a number of new points that are normally 
distributed around the original point. The best point 
out of this next generation of points is selected. In 
recombination, a random number of points exchange 
parameter values. Again, the best points are selected 
for the next iteration. This recombination mecha- 
nism allows points to move towards a point with a 
low objective function value. A standard deviation 
represents the average step size. This standard devi- 
ation adds one dimension to every parameter in each 
point in our algorithm [4]. In this way those points 
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Figure 3: Evolution method. 

with the best standard deviation have the highest 
chance of finding the global minimum. 

Initially, the evolution method converges very 
rapidly, but it has trouble converging to the exact 
solution. It does however deal well with complex to- 
pographies. Fig 3 illustrates this method on the ex- 
ample of Figure 1. Only the best point for every new 
iteration (generation) is shown. Initially, the strategy 
goes down the slope in the direction of the left cen- 
tral plain. After this plain is reached, it "escapes" to 
the local minimum in the corner with the second low- 
est objective function value of the topography. More 
than 1200 function calls were required to reach this 
local minimum. 

5.3    Downhill simplex methods. 

A simplex, a geometrical body with n+ 1 vertices [3], 
is in two-dimensions a triangle, and in three dimen- 
sions, a tetrahedron. The downhill simplex method 
calculates and compares the objective function for 
the vertices of a simplex in the variable space, se- 
lects the worst one, and moves this point through 
the opposite face of the simplex to a lower point. If 
this new vertex is better, the old one is deleted. If 
there is no improvement after a number of steps, the 

method "shrinks" the simplex by reducing the length 
of each side. Figure 4 shows this method applied to 
the Figure 1 example. Initially, the method cannot 
decide whether to go right or left. It then jumps to 
the right, bounces agains the constraints and finds 
the global minimum, after only 48 function calls. 

Contrary to popular belief, this method has the 
highest probability of finding the global minimum 
when it is started with very big initial steps (up to 
10% of expected range). The initial simplex will then 
span a greater fraction of the design space and the 
chances of getting trapped in a local minimum are 
lessened. However, for complex hyperdimensional to- 
pographies, the method can easily break down inside 
the simplex. This can be avoided at some cost by 
often restarting the optimization. 

This kick-start method [6] is based on the premise 
that since it is impossible to know whether one has 
reached a global or a local minimum, large step sizes 
should always be allowed unless one is certain that 
the global minimum has been found. This modified 
simplex method is a systematic repetition of the regu- 
lar simplex method with a minimum number of large 
steps. The number of steps in the inside loop should 
be sufficient to allow the simplex to converge if the 
start vector is optimal (~ 6JV). This way the step 
sizes remain large until the optimum is reached. Con- 
vergence is achieved when convergence is achieved 
both in the inside as well as in the outside loop. 

5.4    Gradient methods 

Gradient methods follow the path of the steepest gra- 
dient to the local minimum. The partial derivatives 
of the objective function with respect to the design 
parameters are calculated, the search direction is de- 
termined from these derivatives, and pursued until a 
local minimum is found. The whole procedure is re- 
peated until the objective function shows no further 
improvement. 

Fig 5 shows a gradient method applied to the ex- 
ample of Figure 1. At the starting point, the gra- 
dients are calculated, and encouraged by the initial 
downward slope, the algorithm immediately jumps to 
the opposite side of the design space, hitting the do- 
main constraints. The algorithm then travels along 
the domain constraint in the direction of the negative 
gradient. This leads it to a saddle point where it gets 
stuck. More than 120 function calls were required to 
find an objective function value that was more than 
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Figure 4: Downhill simplex method. Figure 5: Gradient method. 

nine times the one found by the simplex strategy. 

The various gradient methods are distinguished by 
how the derivatives are determined. Some require 
explicit mathematical derivatives, while others use 
a finite difference approach like the variable metric 
method [7] used here. They are further distinguished 
by differences in the step sizes and the number of 
steps per iteration. The selection of the algorithm 
is often of lesser importance than the choice of min- 
imum and maximum allowed step sizes. The min- 
imum step size must be greater than the objective 
function roughness, or else the method will break 
down immediately. The maximum step size, on the 
other hand, should be small enough to properly in- 
vestigate the objective function topography, and to 
avoid optimizer failure when an erroneous search dire 
ction is chosen. 

Gradient methods converge very rapidly for simple 
objective function topographies. They are usually 
not appropriate for complex topographies, since their 
speed is greatly reduced and they seldom find the 
global minimum—usually, the strategy will become 
stuck in the first local minimum found. 

5.5     Optimizer performance 

These methods were investigated and calibrated in 
terms of speed and robustness. Speed was defined 
here as the number of function calls required to find 
the global minimum plus the time spent and lost 
by the designer restarting the algorithm when it be- 
comes trapped in a local minimum. Typically half a 
day is spent simply interpreting the result of an opti- 
mization over several hours. This interpretation cost 
usually exceeds the function call cost. 

Robustness R was defined as the mean harmonic 
error of the best optimized objective gbest normalized 
by the local optimum gi,opt for a set of 24 randomly 
chosen start vectors: 

* = -£ dbest 

m •_j 9i,opt 
(4) 

The start vectors were identical for every optimizer 
test. 

This criterion was chosen based upon the experi- 
ence of the author, who was interested in the opti- 
mization of aircraft configurations. It is very sensitive 
when the local minimum that was found during run 

i, 9i,opt, is near the global minimum gbest, and quite 
insensitive when the optimization completely fails. If 



8-7 

# evaluations 
# variables 

3000. 

2000. 

1000. 

# variables 
# 
variables 

Figure 6: Robustness of optimizers for the trigono- 
metric problem. 

a design is terrible, it is thrown away immediately. If 
a design is close to the value expected for the opti- 
mum, it could easily be confused with the optimum. 
Since in aircraft designs we are usually interested in 
improvements of even a few percent, such mistakes 
should be heavily penalized. Other advantages of this 
criterion are its simplicity and its general applicabil- 
ity. Finally, this criterion has the advantage that all 
the optimization results are considered. 

Figure 6 shows the robustness of the optimizers for 
the example problem of Figure 1. For this problem 
every optimizer started at the same random point; 
the problem was evaluated for identical randomly 
generated arrays a and b, as well as vector a. Fig- 
ure 7 shows the corresponding relative computational 
cost. 

In Figure 8, the robustness R of the problem of 
minimizing the weight of a multi-bar truss system 
with a varying number of trusses of standard dimen- 
sions is shown. The standardization of the trusses 
further complicates this highly non-linear problem; it 
introduces steps in the objective function. Figure 9 
shows the corresponding relative computational cost. 

Although one could argue that for this problem 
the gradient method is more robust for a given corn- 

Figure 7:  Computational cost for the trigonometric 
problem. 
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Figure 8:    Robustness of optimizers for multi-bar 
truss system. 
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putational cost, note that computational cost is not 
organization (corporate) cost. For example, if the 
workstation is used overnight, it is irrelevant whether 
the machine takes one or sixteen hours. However, it 
does matter whether the machine comes up with the 
right answer in the morning, since one more workday 
could be lost. We also found that the only reason 
the gradient optimizer found any right answers at 
all was related to the fact that the optimizer started 
near the optimum by chance. For the higher dimen- 
sional problems with a complicated topographies this 
chance diminishes rapidly. 

In view of the very different behavior of the opti- 
mization methods it is not possible to select a single 
"optimum optimizer." Only the genetic algorithm 
and kick-simplex methods were reliable enough to 
even be considered for application to the multidis- 
ciplinary aircraft design problem described in refer- 
ence [6]. The kick-simplex method has better perfor- 
mance for the rough objective functions created by 
the calculation of drag in our CFD codes. For the 
relatively smooth drag objective function calculated 
with panel codes, gradient methods had performance 
comparable to the kick-simplex method. Cocktails— 
combinations of optimizers—are even more robust 

than simple restarts of one scheme. Given the huge 
number of possible combinations, we were unable to 
include this possibility in our evaluations. An esti- 
mate of the optimal sequence of optimizers, and num- 
ber of steps per optimizer, can be obtained by run- 
ning the problem for each individual optimizer and 
determining the sequence by finding the optimizer 
with the most rapid convergence for a given optimiza- 
tion phase. One robust rapidly converging cocktail 
would then be to start with the evolution strategy, 
then switch near the end to the kick-simplex method. 
Similarly, a good cocktail for smooth topographies 
would be the combination of a Monte Carlo (ran- 
dom) method with a gradient method. The gradient 
method is started from numerous randomly gener- 
ated points in space, and the best resultant point is 
retained. 

6    Implementation Aspects 

In this section we will discuss some aspects perti- 
nent to the practical implementation of optimization 
methods in the industry. 

6.1     Objective 

If at all possible, one should use the same objective 
functions (codes) that will later be used to deter- 
mine the final performance of the design. Keeping 
the I/O format of an existing industrial code is also 
highly recommended, to take advantage of the expe- 
rience of other engineers with these analyses. In ad- 
dition, optimization, at least in aerodynamic design, 
improves the design by only a few percent; therefore, 
the difference (error) between the objective optimum 
and the objective used to determine the final perfor- 
mance must be significantly less than the incremental 
improvement due to the optimization. The indus- 
trial organization will then be less skeptical about 
the improvement claimed. In industry, where a large 
group of engineers must agree upon the validity of the 
claimed improvement, this acceptance issue is criti- 

cal. 
Figure 10 maps out the organizational implemen- 

tation of these recommendations. The optimiza- 
tion program is independent of the objective function 
analysis code, which keeps its I/O format. An inter- 
face program between the optimizer and the analysis 
code creates a new input file based upon the recom- 
mendations of the optimizer. The interface program 
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Figure 10: Optimizer analysis code organization. 

then calls the analysis code, reads its output, and 
converts the output into a value for the objective. 
On a workstation network, the analysis code does not 
need to run on the same machine as the optimizer 
and interface. If the analysis code or the workstation 
executing the analysis routine crashes, the interface 
will interpret this as a bad design result and pass 
a large (nonoptimal) objective function value to the 
optimization algorithm. This approach allows easy 
parallelization of the problem. 

6.2    Sensible objective functions, variables 
and constraints 

Apart from the obvious requirements for a sensible 
objective function, we need at least as many active 
degrees of freedom to improve the design as there are 
active constraints. In industry, many engineers have 
a tendency to put too many constraints into the de- 
sign, effectively freezing the design in its previous 
form. In academia, many researchers use too few 
constraints, and therefore work with oversimplified 
topographies. These topographies are of course easy 
to optimize, but seldom yield useful results. 

6.3 Time 

The fewer problematic topgrahical features the ob- 
jective function has the more rapidly convergence is 
achieved with an appropriate optimizer. For very 
smooth objective functions without many local min- 
ima it is even possible to use gradient methods. In 
practical cases, we rarely have a smooth design space; 
such rapidily converging algorithms are therefore sel- 
dom useful. We are therefore practically limited to 
evolution and simplex methods, which despite recent 
developments are still much more computationally in- 
tensive than classic gradient methods. Since for most 
complicated topographies the optimizer almost never 
finds the global minimum, and instead wastes a lot 
of computational time meeting convergence criteria, 
it is usually better to roughly determine the location 
of local minima and restart the optimizer as often as 
possible. 

6.4 Post-optimality processing 

It is probably a wise policy to be sceptical towards 
any optimization results. Try to understand what the 
optimizer has found. A good approach is to make a 1- 
D parameter scan of the design space for every design 
variable while monitoring the constraint violations. 
Such a parameter scan is show in Figure 11. The 
bypass ratio of a supersonic transport is constrained 
by noise regulations at values below 1.2. Above 1.6 
the aircraft is no longer able to meet its range. The 
unconstrained objective function has an optimum be- 
low 1.0. With this approach one can easily illustrate 
the active constraints. These active constraints to- 
gether with the objective function can also suggest 
design improvements by applying technologies that 
change the constraints. If the result is identical to 
that before optimization, the solution was probably 
not allowed enough flexibility. If the solution is too 
good to be true, most likely the analysis is no longer 
valid, and the design variables should then be limited 
to the range of analysis validity. 
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8    Conclusion 

In this paper we have discussed strategies for min- 
imizing various complex engineering objective func- 
tion topographies. The concept of robustness is de- 
fined, and used to compare various optimizer types. 
In general it is not possible to recommend a single op- 
timizer as the best. However the use of many restarts, 
large step sizes and combinations of different optimiz- 
ers significantly improves the chance for success. Us- 
ing a single optimizer and tight convergence criteria 
does not help to find the global minimum. In addi- 
tion we discussed a number of practical issues related 
to optimization. 
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1     Abstract 
This work describes the methodology used to com- 
pare supersonic design concepts and its use in indus- 
try. The design concepts are analyzed with a modular 
synthesis model and compared on the basis of operat- 
ing economy with specified performance and environ- 
mental impact. The analysis routines of the synthe- 
sis model are mainly configuration independent and 
represent fixed levels of structural, aerodynamic and 
propulsion technology. The specialist departments 
are responsible for the content of the routines, and 
later verify the design with more refined methods. 
At present more than two hundred variables describe 
the aircraft geometry, engine characteristics and mis- 
sion. More than twenty of those variables represent- 
ing the aircraft and its flight-profile are optimized 
simultaneously as a function of Mach number, pay- 
load and range. Because the various designs are an- 
alyzed with the same routines and optimization pro- 
cedures they can be easily compared. This aircraft 
pre-optimization results in a significant reduction of 
the number of follow-on detail-design cycles, espe- 
cially for non-conventional designs. 

2    List of Principal Symbols 

1 
L /D 
h 

length 
lift-to-drag ratio 
altitude 

BPR 
DEM 
DA 

engine bypass ratio 
design empty mass 
Deutsche Airbus 

DASA 
M 

Deutsche Aerospace 
Mach number 

MTO 
OFW 
S 

maximum takeoff weight 
oblique flying wing 
reference wing area 

SMC 
SCT 

seat mile cost per passenger 
Supersonic Civil Transport 

'Aerospace Specialist Deutsche Aerospace Airbus GmbH, 
Hünefeld strasse 1-5 P.O. Box 107845 D-28183 Bremen 1 Ger- 
many Copyright: 1994 by A. Van der Velden. 

s.f.c. specific fuel Consumption (N/hr/N) 
SLS sea level static 
SWB symmetric wing body 
- thickness to chord ratio c 
Tt,4,max maximum turbine entry temperature 
w width 

Greek Letters 

£c,max maximum engine pressure ratio 
A sweep angle 
AO3 ozone depletion 
AP sonic boom sea-level overpressure 

3     Introduction 
In the early days of aviation, the technology to design 
aircraft was less complex and the requirements on 
product safety minimal. As a consequence, aircraft 
could be designed by small groups of people. Such 
small groups can communicate directly and therefore 
work very efficiently. For instance: In 1936 it took 
Kurt Tank exactly one year to conceive and produce 
the Focke Wulf Condor, the first transatlantic air- 
liner. However as the technology became more com- 
plex, aircraft designers had to specialize to cope with 
the increased flow of information. In addition, the 
growing market required improved safety and accu- 
rate performance guarantees. Such performance and 
safety guarantees could only be made by extensive 
analysis and testing of the aircraft design. Due to this 
increased work-load an aircraft is no longer designed 
by a single group, but by hundreds of specialists in 
many departments. This subdivision of work further 
increased productivity and enabled the development 
of the complicated but safe transport aircraft we have 
today. 

Although the specialists can fit the aircraft with 
the best technology available in their field, it is un- 
clear whether this will always lead to the best air- 
craft. The best aircraft can only be designed with a 
truly interdisciplinary effort. The number of people 
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and independent locations increases the design cycle 
time and decreases the amount of interaction between 
the disciplinary groups. Progress is thereby limited 
to incremental improvements making it difficult if not 
virtually impossible to achieve the breakthroughs in 
aircraft design still common thirty years ago. This 
paper will present a possible solution to this prob- 
lem that was developed at Stanford University and 
Deutsche Airbus. This paper is similar to a previous 
paper presented at the AIAA Aircraft Design Con- 
ference in Monterey [12]. 

4    Overview 

We will first discuss a design strategy which given 
a mission finds the optimum aircraft design in the 
analysis parameter space. This parameter space is 
determined by the various disciplinary groups. Based 
upon this input robust physically correct analysis 
modules are developed. Finally improved non-linear 
optimization techniques are used to find the best de- 
sign using these modules in this parameter space. 
This strategy reduces the number of design cycles 
and allows us to evaluate more configurations. 

As an example we will describe how this strategy 
is applied to the design of an SCT configuration. The 
main assumptions of the analysis routines will be de- 
scribed as well as the objective function. Finally we 
will compare several near-term technology supersonic 
configurations as a function of mission specifications. 

5    MIDAS: A Design Process 

How doe we best achieve flexibility and efficiency 
in our design process while effectively using the tal- 
ent available to the organization? Figure 1 shows 
our solution called Multi-Disciplinary Intergration of 
Deutsche Airbus Specialists. 

On the highest level there exists a global model of 
aircraft performance and economy as a function of its 
specification and a set of design variables. The anal- 
ysis routines in the global model are supplied by the 
departments who have final responsibility. In about 
an hour numerical optimization of these design vari- 
ables will provide an estimate of the aircraft's main 
characteristics and geometric dimensions. Figure 2 
shows the convergence history of a global optimiza- 
tion. 

After the optimized design is finished it is criti- 
cally evaluated by the specialists. Once the decision 
is made to develop a design further, the departments 
verify the pertinent results of the global optimiza- 
tion in greater detail. This verification includes the 
design of a more detailed geometry on the basis of 
the global optimization output, much like putting 
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Figure 1: Overview of the MIDAS Design Process 
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the flesh on a skeleton. The values predicted by 
this intermediate model are compared to those for 
the global model and if necessary the global model 
is corrected and the process is repeated. Typically, 
no more than three iterations are required. In some 
cases the intermediate design level is also automated 
resulting in a closed global-intermediate loop. In this 
case only computational limitations prevent further 
integration. Note that at the intermediate design 
level, within each department a new group of param- 
eters must be optimized which justify the simplifying 
assumptions made at the global level. For instance 
in the global aerodynamic model, the assumption is 
made that there exists a wing camber distribution 
that has near minimum potential drag for a given 
planform. The wing planform is optimized during 
the global optimization cycle. At the intermediate 
level, the camber (represented by shape functions) is 
then optimized to achieve minimum lift dependent 
wave drag for this planform and lift. Finally the re- 
sultant ratios of the achieved minimum lift depen- 
dent wave drag to the global theoretical minimum is 
used as a correction factor in the next global opti- 
mization. Figure 3 shows the convergence history of 
the intermediate aerodynamic optimization for sev- 
eral optimizers. 

If this ratio exceeds an allowed percentage, the 
model itself should be corrected. The intermediate 
model should not introduce parameters that conflict 

with the global model variables. Given the extent 
of this subject we will not present the intermediate 
models in this paper. To date we have used this 
method to obtain two SCT configurations. The con- 
figurations presented here have many of the features 
of these proprietary designs. 

5.1    Analysis Method Requirements 

For successful optimization of a parameter space we 
also have to make the analysis routines suitable for 
this purpose. A number of points have to be con- 
sidered in addition to the ones mentioned in part I 
[11]: 

• Coordination of input and output. This 
requirement forces the development to be co- 
ordinated by only a few people and therefore 
presents the most significant "bottleneck" for 
industrial application. 

• Modelling: What to model? In principle 
we are always modelling cost and benefit. Clear 
paths should be established between the ma- 
jor design parameters and the cost equations. 
The benefits of a noise suppressor are easily de- 
fined, the number of dB suppressed at a refer- 
ence condition can simply be used as an input 
parameter. But at what cost? Here is where 
the specialist is invaluable. He will calculate 
how much benefit to the aircraft he can guaran- 
tee as a function of various physical quantities 
(jet exhaust velocity...) for what cost (thrust- 
loss and suppresser complexity..). An accurate 
prediction of these relations is of course to his 
professional advantage since that will indirectly 
determine his task in the intermediate detailed 
design. 

t Modelling:   Generality versus accuracy. 
In many cases design optimization has consisted 
out of coding up hand book methods and run- 
ning an optimizer on top of this. Unfortunately 
handbook methods require common sense which 
computers don't have. Computers are bad with 
rules of thumb since they do not know what 
is behind them. But computers are fast and 
can solve the general equations upon which the 
rules of thumb are based. In general good pro- 
gramming practices are: 

Handbook methods have been developed for hu- 
mans, not machines. The handbook methods 
tend to categorize each problem into a narrow 
group and provide the solution for the narrower 
problem. It can be easily understood that this 
will lead to physical inconsistencies in the for- 
mulation of the problem which prohibit the use 
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of an optimizer. After coding up ten thou- 
sand lines of code with inconsistent physics the 
chances that any useful information would be 
generated are very small indeed. Good pro- 
gramming practices are: 

— Use only one equation to describe one vari- 
able (e.g. one equation for wing weight). 
If this is not possible make sure that each 
equation representing the same variable con- 
tains the identical set of parameters and 
that the derivatives at the cross-over points 
are continuous if possible. Boundary con- 
dition discontinuities between the equa- 
tions representing the same parameter are 
definitely unwanted. 

— Base the equations on physical realities, 
do not fudge the model beyond reason- 
able levels to fit one existing data set. In 
my thesis [2] the structural model for the 
wing was (almost) the same as for the fuse- 
lage. Wing and fuselage were both ana- 
lyzed with shell theory. In general such 
generalizations are less accurate for indi- 
vidual cases, but globally more correct. 
Accuracy is not a problem since the er- 
rors caused by these generalizations can 
be ironed out at the more detailed levels 
and fed back to the global optimization in 
the form of a correction factor. 

— Keep the number of variables to an ab- 
solute minimum. Ask yourself whether a 
variable is really necessary. 

— Be careful with iterations inside the objec- 
tive function and evaluate their effect on 
objective function smoothness. 

6    Present Method Advantages 

The present method as a number of advantages over 
more traditional design methods. This method: 

• clarifies the goals of a design project and pro- 
vide a means of communication between the 
disciplines. Most of the time it is not very clear 
what the objective of an aircraft design is. By 
agreeing on an objective function (for instance 
SMC) and a number of constraints it is possible 
to settle interdisciplinary differences. 

• automatically debugs the analysis routines. 
Small model inconsistencies are usually not no- 
ticed by the expert user because he only trusts 
his model in a limited range. The optimizer will 
exploit any weakness in the model and there- 
fore make it clear. 

• cleanly compares between competing config- 
urations. To compare aircraft they have to be 
analyzed with the same technologies and mis- 
sions. In addition they have to be preferably 
analyzed with the same set of equations. 

• reduces the number of detail-design cy- 
cles. As the experiences at DA have shown, 
a good baseline design will cut the number of 
follow-on detail cycles, thus significantly reduc- 
ing the time required to design an aircraft. 

• shortens the design cycles. Project man- 
agement will get a fast first estimate of influ- 
ence of the specification or technology on the 
aircraft performance and economy. 

• allows post optimality analysis. Assum- 
ing that the objective function can be linearized 
with respect to the design variables at the (lo- 
cal) minimum we can verify whether we found 
a (local) minimum by determining the partial 
derivative of the objective function with respect 
to the design variables. They all should be zero. 
A good impression whether a minimum is local 
or global can be found by plotting each design 
variable with respect to the objective function 
over a range including the (local) minimum. 

• reduces the amount of data produced. No 
more complicated biased thumbprint plots are 
necessary to understand a single design point. 
Simple graphs can be used to scan the entire 
design space of best configurations. Active and 
nearly active constrains can be monitored to 
indicate important performance criteria or im- 
portant technologies. 

• allows the progress that is made in the anal- 
ysis routines to be directly translated into an 
improved design . 

7    Application  of the  Method to 
Supersonic Civil Transports 

7.1     Introduction and Basic Assumptions 
of the Comparison 

In this study the synthesis model is used to make 
a comparison between conventional1 supersonic and 
subsonic transport configurations and the oblique fly- 
ing wing transport based on operating economy and 
other figures of merit for a range of missions with 
specified performance and acceptable environmental 
impact. 

1 Delta wing or swept wing type 
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We will consider two types of aircraft: the OFW's 
or oblique flying wings and the SWB's or symmetric 
wing bodies. The symmetric wing bodies include air- 
craft geometries as varied as those of the A340 and 
Concorde. The OFW was described in detail in pre- 
vious references by the author [2] [7] [8] [9] and by 
Waters, Ardema and Kroo [6]. The passenger com- 
fort level was held as constant as possible to allow ob- 
jective comparison between the configurations. The 
seat layout is 10 % first class (40" pitch), 30 % busi- 
ness (36" pitch) and the rest economy (32" pitch). 

All aircraft are evaluated with the same analy- 
sis routines. All aircraft are designed with the same 
level of structural, aerodynamic and propulsion tech- 
nology. This level is based on that achieved by the 
next generation of transports. Features are: 

• Aerodynamics: Skin friction is based on fully 
turbulent flow with characteristic sand grain 
roughness. The 'potential' flow drag is based on 
the theoretical minimum drag for a given distri- 
bution of lift and volume. This drag is then cor- 
rected based on the actual achieved drag levels 
in the detailed design. This correction factor 
therefore reflects the potential drag improve- 
ment that is still achievable. Factors of 1.1 for 
the volume dependent wave drag and 1.2 for the 
lift dependent wave drag are typical. Ref. [2] 
describes the 1992 status of the aerodynamic 
global model. 

• Structure: Structural calculations are based on 
a mix of composite materials and metallic al- 
loys. DA experience shows that intermediate 
carbon fibers with BMI resins achieve strain 
levels in excess of 0.5 % resulting in weight sav- 
ings over conventional primary structures in ex- 
cess of 25 %. The airframe life was specified 
to be over 75,000 hours with 50,000 supersonic 
flying hours and 25,000 pressure cycles. A min- 
imum skin thickness of 2 mm was specified to 
minimize foreign object damage. Weight is cal- 
culated with shell-theory. An overview of re- 
cent developments in structural technology in 
Germany can be found in prof. Arendts publi- 
cation [5]. 

• Propulsion: A turbofan engine with mixing and 
a variable throat area was used. Polytropic 
component efficiencies are typical of the cur- 
rent generation: between 88 and 93% for the 
compressor, fan and turbine. Noise suppres- 
sion of up to 9 dB is allowed. A more detailed 
discussion of powerplant optimization at DASA 
(intermediate level) can be found in reference 

In addition the supersonic aircraft will have some 

technology that is not yet available for subsonic air- 
craft : 

• An active gear to reduce the taxi and landing 
loads by 16 % on supersonic aircraft. 

• Flutter mode control load alleviation, which 
would allow increased sweep with thin wings. 

t Active stability and control for the unstable 
oblique flying wing. A commercially safe active 
stability and control system for the oblique fly- 
ing wing has not yet been demonstrated. With- 
out such a system the oblique flying wing is not 
possible. 

• Powerplant variable geometry inlet and nozzle 
design. 

• Improved navigational and environmental con- 
trol systems. 

• Noise suppression up to 9 dB versus 6 dB for 
subsonic aircraft. 

The costs of these additional technologies are in- 
cluded in the cost model. This level of technology is 
based on the current DA-SCT development program. 
The objective function that is used throughout this 
study is operating cost relative to a subsonic refer- 
ence. The influence of the cost of development on 
sales price is included. The objective is calculated by 
the algorithm shown in Figure 4. This study com- 
pares the relative operating cost of various aircraft 
for the same mission, permitting comparisons of one 
concept with respect to the other. 

7.2    Variables and Constraints 

Input requires more than 200 variables for a full def- 
inition of the aircraft. Roughly one third of these 
variables are technology constants and are assumed 
to remain constant. 

All designs were optimized with respect to 19 of 
the following 24 engine cycle, mission and geometry 
variables. The variables marked with a star (*) were 
used on all designs. The other variables were used 
only when their best value could not be determined 
in advance (For instance, in the case of the flying 
wing the length of the fuselage is set to zero.). For 
these variables the default best value is given. 

1. * Maximum takeoff mass Mt0 

2. -k Bypass ratio BPR. 

3. * Maximum turbine entry temperature sea- 
level static Tti4iTef 

4. * The corresponding total pressure ratio 
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Figure 4: Objective Function Algorithm 

5. * Combustor temperature cutback during 
takeoff AT4,to- 

6. * Combustor temperature cutback at take- 
off noise control point and start climb &T4,Cutback 

7. * Initial cruise altitude hCTUise. 

8. * End of first climb segment Mach number 
Mciimb, or the altitude at the end of the 
first climb segment /ic/;m& for fixed Mcumb. 

9. * Holding Mach number M^u for given 
altitude; M/^is also the Mach number at 
the start of climb. 

10. * Diversion Mach number M,nv or alti- 
tude. 

11. Ratioof stalling speed to lift-off speed VLOF/VS 

Only used as a design variable for wing- 
body configurations. In particular, the delta- 
wing configurations tend to take off at lift- 
off speeds greater than this value because 
of high take-off drag. For flying wings the 
value of VLOF/VS 

1S set to 1.2, the lower 
bound. 

12. * Wing Area S. 

13. Wing Aspect ratio AR. It is only a de- 
sign variable for wing-body configurations. 
For flying wings, the aspect ratio is deter- 
mined by the wing area S and the wing 
thickness-to-chord ratio and the heuristic 

design rule that the payload should fit in- 
side the structure without excess (vertical) 
space. 

14. Fuselage length If. This is only a design 
variable for wing-body configurations. 

15. • Cabin diameter.   Determines the fuse- 
structures record läge diameter of SWB's wings and the max- 

' imum absolute thickness of OFW's. 

16. * Spanwise location of two powerplants on 
half wing: yprop\ and yvrop2 

17. Spanwise location of two fuel tanks on half 
M    Mission record  ' wing: ytankl and ytank2 and the spanwise 

width of the tanks. For most long range 
wing-body configurations a large fraction 
of the available wing volume for fuel was 
actually used, so rearranging fuel tanks 
does not affect the wing bending weight 
greatly. For flying wings this did turn out 
to be an important design variable since 
only about half of the available wing vol- 
ume for fuel was used by the fuel tanks. 

18. * Spanwise location of the main gear legs 
ygear 

19. Wing Root thickness-to-chord ratio [£]rooi- 
This is an important variable for wing- 
body configurations, but flying wing con- 
figurations all converged to the maximum 
allowed thickness of 16.3 %, so it was fixed 
at this value. 

20. Climb sweep Ac/,-mj. This is only of signif- 
icance for variable sweep configurations. 

21. Take-off sweep Ato. This is only of signifi- 
cance for variable sweep configurations. 

22. • Cruise sweep Acr. This is the same as 
the sweep for fixed sweep configurations. 

The variables are constrained by the following 
considerations: 

Geometry (22 Constraints); location of up to 
4 powerplants, 3 gear legs and 4 fuel tanks, as 
well as the structural box. The x-location of the 
centroids of these items is determined by bal- 
ance considerations. The y-location of the pow- 
erplant, fuel tanks and gear legs are determined 
by the optimization of these variables with re- 
spect to the objective function. These vari- 
ables are constrained to not interfere with each 
other's location. The powerplant is placed out- 
side the direct vicinity of the passenger cabin 
to protect passengers from engine explosion de- 
bris. The relative location of these items is es- 
pecially important for the oblique flying wing 
in order to achieve the benefits of span loading. 
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The gear track was limited to 35 m to enable op- 
eration from runways that are at least 150 feet 
wide. The maximum thickness-to-chord ratio 
could not exceed 16.3%. The volume of the fuel 
tanks was sufficient to accommodate all the re- 
quired fuel as well as a fuel volume equivalent 
to half the payload. The mean trailing edge 
sweepback angle was limited to 30° for arrow 
wings due to the expected aero-elastic and con- 
trol problems of more highly swept thin wings 
[10]. The maximum aircraft width is limited 
to 65 m. (B747-400) and the length to 102 m. 
This leads to a maximum structural span of 120 
m for OFW's. 

Engine Cycle (3 Constraints). The engine is 
constrained by the required top of climb thrust 
margin of 10 % and the required climb gradi- 
ents. There was no upper limit to the engine 
size. The turbine entry temperature was not 
allowed to exceed 1800K. The bypass ratio was 
between 0 and 6. 

Flight Profile Settings (7 Constraints). The 
flight profile is shown in fig. 5. Thrust, sweep, 
altitude and Mach number can be set at takeoff, 
takeoff thrust-cutback, midpoint climb, start 
cruise and end cruise. For a specific mission 
segment definition point either the Mach num- 
ber or the altitude was fixed during the opti- 
mization. The turbine entry temperatures and 
pressure ratios were always kept smaller than 
the maximum reference numbers selected for 
the cycle. The variable mission thrust settings 
make it possible to meet the noise regulations 
with thrust-cutback. Since the design loads are 
calculated based on the prescribed mission it is 
possible to minimize the aircraft loads in con- 
junction with the geometry. The lift-off speed is 
not less than 1.2 times the trimmed stall speed. 

Performance constraints (4 Constraints). The 
range was constrained to a value not smaller 
than the design range and not more than 200km 
greater than the design range. The takeoff field 
length was constrained to 3300 m (11000ft) to 
allow operations from most international run- 
ways.  The one-engine out screen height climb 

end cruise 
6 

2 % cruisefuel 
manoeuver 

start cruise 

sub segment Ay 
U / segment 

6 min. manoeuver 

thrust-cutback 

engine-out 

Figure 5: Flight Profile 

suming conventional combustors. This level of 
predicted depletion is consistent with the cur- 
rent HSCT program goal described in reference 
[3] assuming that low emission combustors are 
used. The mean sonic boom overpressures are 
not allowed to exceed 144 N 

7.3 Comparison of Optimized Configura- 
tions 

In this section we will compare optimized configura- 
tions. The comparisons are made for designs with 
fixed mission parameters, such as constant range, 
payload, and Mach number. 

Reference Aircraft 
The baseline mission is 250 passengers over a 9000 km 
range. Figure 6 shows the top views of the optimized 
conventional configuration and the optimized OFW. 

For a cruise Mach number of 0.8 table 1 shows a 
typical cruise lift-to drag ratio of 20.4 for the OFW 

requirement was set in accordance with the FAR252 as compared to 19.8 for the conventional configu 
regulations. A minimum all engine climb gra 
dient of 4% must be maintained at the takeoff 
FAR-36 cutback thrust level. 

Environmental constraints (4 Constraints). All 
the designs in the study meet the FAR 36 stage 
3 levels. In addition the total ozone depletion is 
not to exceed 5.0% for a fleet replacing the cur- 
rent B747 (capacity: 1.25 X 1012 skm/year) as- 

ration. The SMC of the oblique flying wing is also 
5 % lower than that of the conventional configura- 
tion. Another salient difference between the two is 
the cruising altitude. The start cruising altitude of 
the OFW about a kilometer higher than for the SWB. 
This is due to the lower wing loading of the OFW. 

2The results are very similar for symmetric flying wings. 
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Figure 6:  Optimized Configurations that Transport 
250 Passengers Over a 9000 km Range 

The required thrust is about the same for both config- 
urations. For payloads of 250 passengers and higher 
the flying wing seems to be economically competi- 
tive with subsonic aircraft. Both configurations will 
be able to meet more strict noise regulations with- 
out excessive weight penalties. The 5 % advantage 
in SMC probably does not outweigh the development 
risk and the lower cabin volume per passenger in an 
OFW as compared to a wide body subsonic airliner. 

Table 2 compares a 250 passenger OFW and an 
SWB for a cruise Mach number of 1.6 and a range 
of 9000 km. The Mach number of 1.6 is chosen for 
easy comparison with the OFW as well as to easily 
meet the proposed ozone layer depletion constraint. 
At this Mach number the OFW is clearly superior 
to the SWB. Interestingly enough, the cruise lift-to- 
drag ratio of the OFW is only 10 % better than that 
of the SWB. The optimizer chose to improve the lift- 
to-drag of the SWB up to the level of the OFW at 
the expense of the structure. The structure of the 
SWB is almost 40 % heavier than for the OFW. In 
the case of the OFW lift-to-drag ratios of around 11 
during cruise were achieved without a large structural 
penalty because of span loading and the fact that the 
OFW wing is much thicker. Even though the OFW is 
much better than the SWB its SMC is still not close 
to those of the subsonic transports. Though both 
configurations are not constrained by sonic boom or 

Item OFW SWB 
Cruise Speed M 0.8 M 0.8 
passengers 250 250 
Range 9200 km 9200 km 
Geometry: 
Wing Area {m') 965 357 
Root,Tip t/c 0.163,0.12 0.145,0.104 
cabin 1 x w (m) 32.5 x 5.9 42 x 4.8 
total 1 x w (m) 92 x 13.5 60 x 60 
Weights: 
DEM (kg) 62544 70101 
MTO (kg) 134623 146554 
Powerplant: 

SLS Thrust (kN) 4 x 78 4 x 72.5 
BPR 5.0 5.0 

€c,max 50 50 
TT4max (K) 1795 1737 
Operation: Initial Cruise 
L/ D 20.4 19.9 
s.f.c. 0.59 0.59 
h 13300 m 12173 
Rel. SMC 0.95 1. 
Environment: 
Mean AP (-^) 0 0 
Side. Noise (dB) 86 90 
T.O Noise (dB) 101 102 

A03 
0 0 

Table 1: Comparision of Subsonic Aircraft 

ozone layer depletion, they are both constrained by 
takeoff noise. Because of its better takeofflift-to-drag 
ratio and lower wing loading the OFW cuts back the 
engine at takeoff to meet the noise requirement. Since 
the SWB is more constrained by performance require- 
ments it has to be designed with an increased bypass 
ratio. The bypass ratio for the SWB is more than 
twice the BPR of the OFW. The OFW is close to vi- 
olating the ozone depletion requirement because it is 
flying higher. Its maximum sonic boom overpressure 
is only half of that of the SWB. 

Effect of range 
Figure 7 shows that this OFW is able to achieve ranges of 
up to 6500 nm (12000 km) without excessive cost. Span- 
loading enables the OFW to improve both range and SMC. 
From a range of 7000 km on the OFW is constrained by the 
maximum span of 120 m. The SWB seems to be most at- 
tractive for the transatlantic range. Beyond 11000 km its 
maximum takeoff weight snowballs, even with our agres- 
sive technology assumptions. 

Effect of cruise Mach number 
At Mach 2.0 the SWB's performance stays about the same 
while the OFW's performance worsens. Even though the 
cruise lift-to-drag of the OFW is less than that of the 
SWB at Mach 2.0, their difference in SMC is about the 
same as the Mach 1.6 case.   Beyond Mach 1.8 the OFW 
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Item OFW SWB 
Cruise Speed M 1.6 M 1.6 

passengers 250 250 

Range 9125 km 9010 km 

Geometry: 

Wing Area (m*) 1193 720 

Root,Tip t/c 0.163,0.12 0.042,0.030 

cabin 1 x w (m) 32.5 x 5.9 62 x 3.7 

total 1 x w (m) 120 x 13.5 93 x 45 

Weights: 
DEM (kg) 96675 133784 

MTO (kg) 222805 297542 

Powerplant: 
SLS Thrust (kN) 4 x 214 4 x 261 

BPR 1.0 2.41 

£c,max 31.4 29.3 

TTirna*  (K) 1780 1780 

Operation: Initial Cruise 

L / D 11.5 10.4 

s.f.c. 0.95 0.93 

h 15790 13650 

Rel. SMC 1.36 1.81 

Environment: 
Mean AP (£j) 40 92 

Side. Noise (dB) 102 102 

T.O Noise (dB) 104 105 

A03 -4.11 % -1.5 

Table 2: Comparison of Supersonic Aircraft 

3.0 

SMC 
SMCref 

2.5 

1.5 

1.0 

10. 16. 

Range (Mm) 

Figure 7: Relative SMC as a Function of Range 

Figure 8: Relative SMC as a function of Mach num- 

ber 

has to be swept too reduce volume dependent drag. The 
constraint on its maximum size prohibits the increase in 
the span to offset the corresponding higher lift dependent 
drag. Figure 8 shows the influence of the increase in speed 
from Mach 0.8 to 2.0 on SMC for the SWB's and the 
OFW's. The dominant influence is the price of wave drag 
added to supersonic configurations. At supersonic speeds 
there is still an increase in SMC with increasing Mach 
number due to the increased specific airframe complexity. 
Mach numbers in excess of 2.0 where not considered due to 
thermal stability problems with conventional fuels for trips 
in excess of 3 hours. In addition we found that the SWB 
designs were constrained by as many as a dozen constraints 
at the same time. This is caused by incompatibility of 
low-speed and high-speed flight that does not exist by the 
OFW aircraft. 

Effect of payload size: 
Because of the poor volume efficiency of the OFW con- 
figurations, the optimum SWB payload of 250 passengers 
may not be large enough. For the OFW a payload of 400 
passengers is better. It is not possible at this time to de- 
sign a 400 passenger SWB SCT configuration since such 
an aircraft would have an excessive mtow. But in the case 
of the OFW the increment in performance is such that it 
outweighs the reduced market size. Figure 9 shows the 
effect of increased payload on the SMC of the OFW. If we 
compare the 250 and 400 passenger OFW's we find that 
the maximum takeoff weight has increased 35% while the 
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Figure 9: Relative SMC as a function of Payload Size 

payload has increased 60%. Increasing the payload further 
decreases the SMC to values close to those of competitive 
subsonic transports. A more detailed explanation of the 
improved economy of the oblique flying wing transport 
over the symmetric wing body can be found in ref [2]. 
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9 Conclusion 

In this paper we discussed a design strategy which given a 
mission finds the optimum aircraft design in the analysis 
parameter space. This parameter space is determined by 
the various disciplinary groups. Based upon this input 
robust physically correct analysis modules were developed. 
Improved non-linear optimization techniques were used to 
find the best design using these modules in this parameter 
space. This strategy reduced the number of design cycles 
and allowed us to evaluate more configurations. 

This method was used to study the relative perfor- 
mance of symmetric wing body (SWB) and oblique fly- 
ing wing (OFW) supersonic transports over a wide range 

of missions. The best OFW in terms of SMC, are large 
(400 passengers) and long range (12000 km) with cruising 
speeds around Mach 1.7. The best SWB's have around 
250 passengers and fly transatlantic with a cruising speeds 
around Mach 1.8. In terms of operating cost per passen- 
ger, the best OFW is 73 % better than the best SWB. 
Even though the symmetric wing body design presents a 
lower risk solution due to the extensive database that is 
available for such a design, this configuration is only viable 
with high ticket surcharges. The oblique flying wing does 
promise this economic viability but the unavailability of 
an extensive database prohibit near-term launch. 
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1 Abstract 

This paper will discuss examples of aerodynamic 
shape optimization at Deutsche Airbus in Bremen. 
First, we will introduce a general approach to aerody- 
namic shape design based on minimization of aircraft 
life energy cost. Realistic constraints are introduced 
on lift, pitching moments and thickness. This method 
is applied to the quasi-3D design of multipoint tran- 
sonic wings which are analyzed by a full potential 
code with a coupled boundary layer calculation. Fi- 
nally, this method is applied to the wing-body design 
of a Supersonic Civil Transport that is analyzed with 
a linear potential code with real flow corrections and 
a decoupled boundary layer calculation. 

2 Introduction 

Since the early days of aviation history, engineers 
have sought to improve wing design methods. The 
first successful attempts at designing an airfoil were 
made around 1900 by Kutta and Joukowski. The 
next major development was the use of simple geo- 
metric shape functions to characterize airfoil shapes; 
the NACA airfoil classification system using this 
method is described in reference [1]. Unfortunately 
these NACA airfoils had high drag at transonic 
speeds, and therefore more refined shapes with re- 
duced (or no) transonic shocks were required. More 
recently, successful transonic airfoils have been de- 
signed by defining a (nearly) shock-free transonic 
pressure distribution and using an inverse solver to 
find the corresponding airfoil geometry. At DA the 
SUPDES method developed by Greff and Mantel [8] 
[7]—a decoupled solution solver which uses residual 
correction—has been used for several years. This 
method starts with an initial guess for the geome- 

* Aerospace Specialist, Deutsche Aerospace Airbus GmbH, 
Hünefeldstrasse 1-5 P.O. Box 107845, D-28183 Bremen Ger- 
many. ©1994 by A. Van der Velden. 

try and calculates the pressure distribution for this 
geometry. Then the geometry is revised based on 
the difference in pressure between the calculated and 
desired pressure distributions. Although this full po- 
tential code has a viscous analysis option, the analysis 
is inviscid in the initial design phase. 

Although this method is presently used, it suffers 
from a number of weaknesses: 

• The method can cope with only one pressure 
distribution per design, and it is therefore dif- 
ficult to develop a design for more than one de- 
sign point. Multipoint designs are possible only 
through the intuition and experience of the aero- 
dynamic designer. This experience is not always 
pertinent for designs with significantly different 
missions. 

• It is sometimes physically impossible to derive a 
geometry for a given pressure distribution. One 
is therefore limited to small modifications to ex- 
isting pressure distributions in the leading and 
trailing edge regions. Unfortunately, the lead- 
ing and trailing edge geometries greatly influ- 
ence the lift and drag of the airfoil. Further- 
more, even small pressure distribution modifica- 
tions often result in a wavy geometry that must 
be smoothed. 

• This method is able to design airfoils for a given 
pressure distribution, but it is not always clear 
whether these airfoils have the lowest drag. Fig- 
ure 1 [2] shows an example of a "shock-free" 
transonic airfoil with a wave drag of more than 
200 counts (CD = 0.02). This result clearly 
demonstrates that the wave drag of an airfoil de- 
pends on the entire flow field and is not directly 
related to a smooth pressure distribution. 

• It is difficult to analyze the effects of complex 
airfoil geometry constraints such as spar depths 
and pitching moments. 

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genese, April 1994. 
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Figure 1: Design of a shock-free high wave drag airfoil   Figure 2: Design of a single point airfoil using direct 
by Volpe (1989) using an inverse method. optimization by Lee [5]). 

• The inverse airfoil design method can be com- 
putationally quite expensive. This is especially 
true if the airfoils are evaluated based on over- 
all performance, instead of at a single design 
point. In a recent case, it took skilled engi- 
neers more than half a year to design a single 
high-performance wing for the next generation 
of transports. 

A solution to these problems was proposed by Van- 
derPlaats and Hicks [4]. They used the numerical op- 
timization techniques to modify a geometrical shape 
such that an arbitrary objective function representing 
the design goals could be minimized. Even though 
this breakthrough took place almost twenty years 
ago, computer speeds have not increased sufficiently 
to make this method practical with the shape func- 
tions they proposed. Even now, recent literature re- 
views such as Labrujere and Slooff [6] note that prac- 
tical direct numerical optimization of wings is not 
possible due to the great computational expense. 

Despite its drawbacks, some authors, for exam- 
ple Lee [5], have applied direct numerical optimiza- 
tion, minimizing the drag of a single point airfoils 
(Fig. 2). Unfortunately, the designs produced with 
these methods are inferior to designs from experi- 
enced engineers using inverse methods. 

In this report we will show that it is possible to 
produce true viscous multipoint designs that com- 
pare favorably with designs made by experienced en- 

gineers. 

3    General Methodology 

Multipoint aerodynamic optimization can in general 
be described using the form of the general engineering 

optimization described in [15]: 

• Select objective function. 

• Select variables and constraints. 

• Select optimizer(s). 

• Optimize and analyze the results. 

3.1     Drag as an objective function 

Consider the objective function O described by the 
total energy loss due to aircraft drag during the op- 
eration of the aircraft over n missions: 

n .ri 

0 = Y]pi /       cdqSdx. (1) 

In this expression, pi is the the probability of mission 
i, and r; is the block range for that mission. This ex- 
pression can be simplified by weighing the drag over 
a number of representative design points: 

o - J2 WiCd- (2) 
i=i 

In our experience, five design points are enough to 
adequately describe a good multipoint design. 
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3.2     Variables 

The variables of our problem describe the aerody- 
namic shape of the aircraft. Over the last two 
decades, many engineers have tried to accurately de- 
scribe the shape of a wing with only a few parameters 
while still keeping flexibility. There are three general 
classes of aerodynamic shape functions: 

• Linear combination of existing airfoils. This geo- 
metric approach to the airfoil design problem is 
a derivative of the original NACA method [1]. 
Although this method is computationally effi- 
cient, at DA this method has often given only 
trivial solutions (e.g. the old airfoil) due to the 
low flexibility inherent to this geometrical rep- 
resentation. In addition, there is little physical 
foundation for the implicit assumption that the 
drag (objective) of a linear combination of air- 
foils is linearly or at all related to the drag of the 
individual airfoils. 

• Analytical shape functions are linearly superim- 
posed to define an wing geometry. Examples 
of these include Hicks-Henne functions, Wagner 
functions and the patched polynomials discussed 
in reference [5], as well as the Legendre polyno- 
mials used by Reneaux [18] and the splines used 
by Cosentino [19]. Unfortunately, the number 
of parameters required for these shape functions 
is usually too great to allow multipoint three- 
dimensional design. In every case a minimum 
of 30-40 points are required to accurately de- 
fine each airfoil. Even if only five airfoils are 
sufficient for defining a wing, about 200 parame- 
ters will be necessary. This number of variables 
is simply too great for practical optimization at 
present. Cosentino optimizes a 3D wing, by al- 
lowing variations over only a small portion of 
the wing. Lee has proposed patched polynomi- 
als as a way of flexibly modeling an airfoil sec- 
tion with only sixteen parameters. Although this 
approach does produce a flexible geometry, the 
performance of the sections designed with this 
method cannot compete with those produced by 
experienced engineers using inverse methods. 

• Special aero-functions were proposed by Re- 
neaux [18] as a means of designing airfoils with 
a minimum number of parameters. This ap- 
proach automates the steps which an experi- 
enced designer follows when using an inverse 

method. 'Good' pressure distribution types are 
defined, along with the shape or special aero- 
functions which produce these pressure distribu- 
tions. Unfortunately, for a given pressure dis- 
tribution type, these aero-functions vary with 
Mach number, and this method is then imprac- 
tical for multipoint designs. This method there- 
fore has all the disadvantages of inverse methods 
discussed in the Introduction. 

At DA [14] the author has introduced another type 
of function, a highly nonlinear special aero-function, 
which could optimize the shape of a 3D transonic 
wing with adequate flexibility using current computer 
technology. It is currently in the validation phase at 
DA. Its application will be demonstrated in the next 

section. 

3.3     Constraints 

The type and number of constraints are highly 
problem-dependent. Typical constraints for commer- 
cial wing designs are: 

• Lift and angle of attack. Either the lift CL or 
angle of attack a are constrained or defined as 
input values. For the horizontal tail plane, both 
can be simultaneously constrained. 

• Minimum and maximum lift. Maximum lift 
at low speed (« 50m/s) CL,max for a given 
Reynolds number influences takeoff and landing 
performance and is therefore an important is- 
sue. For horizontal tails, the minimum lift at 
low speed Ci,,mtn is an important constraint. 

• Buffet onset at 1.3g relative to lg cruise. Even 
though buffet onset is difficult to predict exactly, 
a conservative estimate can be made using the 
trailing edge separation criterion [17] based on 
trailing edge pressure coefficients. 

• Pitching moment Cm. This is usually not par- 
ticularly important for subsonic transports but 
is a major issue for supersonic transports. The 
hinge moment Cmth is an important constraint 
in the design of control surfaces. 

• The aircraft thrust must be at least equal to the 
drag also at off-design points, of which the most 
critical are usually at the high lift and high Mach 
number corner of the envelope. The allowed drag 
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creep as a function of Mach number or lift is also 
often constrained. 

Geometry. The airfoil thickness and thickness 
distribution are usually subject to structural and 
geometric constraints. 

Engine installation. The airfoil pressure distri- 
bution should take into account the disturbances 
due to engine installation. This can result in lim- 
itations to the lower leading edge suction. 

3.4     Optimization and testing 

The objective function space for our shape function 
was wavy (i.e. had several local minima) and had 
surface roughness, which was due to the iterations in 
the CFD analysis. The existence of local minima is 
clearly illustrated in Figure 3. Each solution here is 
at least a local minimum drag solution for the tran- 
sonic airfoil problem. 

In case 1, transition strips were simulated at 0.05c 
at the upper surface and 0.07c at the lower surface. 
The design converges to a drag of 115.0 counts with 
a weak shock at 0.3c. The design parameters were 
then randomized and the transition on the upper sur- 
face was changed to 0.15c. The optimizer now takes 
advantage of the laminar flow on the upper surface, 
resulting in a negative pressure gradient up to the 
0.15c point. This, however, results in a much stronger 
shock at 0.4c. The optimizer now finds a local min- 
imum drag value of 115.2 counts, 0.2 counts higher 
than the first case. After repeated restarts, the de- 
sign finally reconverges to the first solution, implying 
that the possibility of laminar flow on the upper sur- 
face does not help to lower the overall drag. To avoid 
getting stuck in such local minima, the kick-simplex 
method was used in every case. 

When the objective function is evaluated with 
the code used to do the performance prediction— 
as in the previous example—little additional testing 
is required. After the optimization has converged, 
the complete set of polars is calculated to search 
for anomalies between the points where the objec- 
tive function was evaluated. At the design point, 
additional calculations are done with 3D Navier- 
Stokes/Euler codes to verify the simplifying assump- 
tions made in the objective function analysis. 
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Figure 3: Two (locally) optimal pressure distribu- 
tions. 

4    Quasi    3D    Transonic    Multi- 
point Design 

4.1     Optimization and analysis methods 

At DA the production codes VICWA, XLS and Ep- 
pler are used. To calculate the drag polar of the entire 
wing, the quasi-3D polars created with these methods 
are used in combination with a Truckenbrodt vortex 
lattice method that calculates induced drag. Quasi- 
3D assumes the absence of spanwise pressure gradi- 
ents along the iso-chord points. A Navier-Stokes cal- 
culation verifies the absence of these gradients. The 
Navier-Stokes method is not yet accurate enough to 
be used for performance calculations, and is therefore 
at this time not used for objective function analysis. 

The Eppler code [12] couples a conformal mapping 
incompressible flow calculation with a semi-empirical 
boundary layer method. It is used to calculate the 
incompressible maximum and minimum lift and cor- 
responding angles of attack. 

XLS is a nonconservative full potential code with 
a momentum integral boundary layer and a nonisen- 
tropic shock-point operator which includes the effect 
of sweep and taper [11].   Comparisons of an early 
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Figure 4: VICWA conical transonic analysis. Figure 5: Transonic wing design points. 

version of this code with other codes can be found in 
reference [10]. 

VICWA, the successor of XLS described in refer- 
ence [13], analyzes a viscous conical transonic flow. 
The boundary layer is calculated using a finite dif- 
ference numerical method. For an isobaric transonic 
wing, this method predicts the drag and the pressure 
distribution quite well, even with fairly strong shock- 
boundary layer interactions. Figure 4 shows mea- 
sured and calculated pressure distributions as well as 
the 3D boundary layer development for the DLR F4 
configuration. One flow analysis takes about 3 min 
on an 80 Mflops HP workstation. 

In our optimization code, the user is free to select 
any of these methods for any of the points where the 
analysis is performed. The methods all have flexi- 
ble constraints on thickness, pitching moment, lift, 
drag, buffet and maximum and minimum lifts. From 
a "good" starting solution the code requires about 
50 flow field calculations per design point to find the 
global minimum. If started from other points, the 
code will still find the global minimum, but at least 
one restart is typically required. 

4.2     A multipoint wave drag-bucket wing 
section 

The objective of this study was to design a wing with 
a large envelope of low wave drag to achieve superior 
operational flexibility. The wing, which had moder- 
ate sweep and was operated between Mach numbers 
0.7 and 0.8, had been previously been designed using 
inverse methods. Figure 5 shows the design points of 
this wing section. Since the quasi-3D method treats 
the wing as a number of sections we will limit our- 
selves to the description of the 38% semi-span section 
design. Figure 6 shows the optimization convergence 
history for the most important parameters describing 
this airfoil. The highly nonlinear interaction of the 
design parameters can be observed. To illustrate the 
flexibility of the method the engineer responsible for 
the inverse design was allowed to select the design 
starting point shown in Figure 6 

This starting point was a 16% thick reflexed air- 
foil that was totally unsuitable for transonic speeds. 
The code was only barely able to analyze the de- 
sign points for the starting airfoil. The thickness was 
constrained to be at least 12.5%. The drag rise be- 
tween points 1 and 2 and points 1 and 3 was limited 
to 10 and 25 counts respectively.   Nevertheless, the 



10-6 

Dmln 

optimizer flow 
calculations 1 

Tmax 

J 
Inverse 

0.002 

1 Design - 
' ^    range 

// 
direct 

/ 

1            1 i      l 1 1           1           1 

Figure 6: Design convergence history. 

direct numerical optimization algorithm was able to 
find a good solution to the problem. Figure 7 com- 
pares the performance of the multipoint inverse de- 
sign, which incorporates departmental transonic de- 
sign experience, with the optimizer design. 

At the primary cruise Mach number both designs 
perform equally well, but outside the normal opera- 
tional lift range the inverse design is slightly better. 
However, the higher drag values during buffet onset 
for the direct numerical design are not necessarily 
bad, since we do not want to operate the aircraft 
here. At the extreme end of the envelope the direct 
numerical design is clearly superior to the inverse de- 
sign. At point 3 in the cruise envelope, a difference 
of 20 counts in drag exists between the inverse and 
direct numerical designs. To operate the aircraft at 
this point a larger engine would be required for the 
inverse design. 

To investigate the influence of tradeoffs we modi- 
fied the objective function to include thickness. Ev- 
ery 0.01 increment in aircraft thickness-to-chord-ratio 
was weighted as 10 counts in drag. The design con- 
verged to a thickness of 15.3%. Figure 8 shows its 
drag polars. 

The maximum thrust required is the same for both 
wings, even though one wing is much thicker. The di- 

Figure 7: Comparison of the 12.5% inverse and direct 
designs. 

Figure 8:   Comparison of 12.5% inverse design and 
15.3% direct designs. 
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Figure 9: Pressure distributions at point 3 for 12.5% 
(top) 15.3% (bottom) thick direct designs. 

rect design seems to have a completely flat wave drag 
topography over the design range. The drag is equal 
at both the low and the high lift coefficients. The 
drag creep constraint of 15 counts between points 
2 and 3 was active. The author has never before 
observed such a wave drag behavior for a wing sec- 
tion. The physical explanation of this phenomenon 
is shown in Figure 9, which shows the pressure dis- 
tribution at point 3 for the 12.5% and 15.3% direct 
designs. For the 15.3% thick airfoil, we see a flat 
rooftop pressure distribution with a normal shock re- 
compression and a Stratford-type recovery at CL,3- 

At CL,A, we see an even stronger shock on the lower 
surface. The optimization procedure has balanced 
both shock systems to produce an quasi-constant to- 
tal wave drag. This design was later rejected because 
of its high wing-nacelle interference. 

4.3     A multipoint horizontal tail design 

Figure 10 shows the horizontal tail plane design 
points of a current large transonic passenger trans- 
port. Our objective function is the weighted sum of 
the drag at four design points. The design opera- 
tional range of the horizontal tail is between M 0.8 

Figure 10: Horizontal tail plane design points. 

and 0.9+. The wing was rather highly swept. 
The design had the following constraints: 

• Thickness: 8.8% < t/c < 9.2%. 

• Minimum lift: Cj_,%min < —1.4. 

• Minimum angle of attack: a < —12°. 

• Hinge moment: -0.0015 < Cm>h < 0.0015. 

Surprisingly enough, the optimized design was very 
similar to the inverse design. It showed only slight 
improvement in terms of drag and displayed the same 
solution type. Figure 11 shows the inverse and the 
direct design pressure distributions at point 4. Even 
though there are some obvious differences, it is sur- 
prising to see that the pressure distributions are so 
similar. One can even observe the slight reflex in the 
trailing edge pressure distribution which relieves the 
hinge moment. 

The optimization of this horizontal tail was much 
harder than that of the transonic wing design due to 
problems in the calculation of the minimum lift and 
angle of attack. During the optimization there is a 
continuous struggle between the constraints on min- 
imum lift and the demands on low high-speed drag, 
which was why a double sided thickness constraint 



10-8 

- cP A 
' x 

X   inverse 

: 1 ? 

\ 
■:.\ 

■ '■ 

U- —  
C.I C.[ 

Figure 11: Comparison of the inverse and the direct 
design design horizontal tail pressure distributions at 
point 4. 

was used. Thicker airfoils allowed good minimum lift 
performance but had bad high speed performance. 

5     Supersonic Civil Transport De- 
sign 

5.1    Optimization and analysis methods 

A linear panel code with real flow corrections was 
used to analyze drag for 3D supersonic wing body 
configurations. This analysis code was developed by 
the author from Woodward's wing-body code [21], 
and solves the linear Prandtl-Glauert equation for 
a thin panel geometry. The power plants are mod- 
eled as stream tubes which displace ambient fluid 
and hence cause wave drag. Friction is calculated 
stripwise over the curved geometry assuming a fully 
turbulent boundary layer. No effort was made to 
couple the boundary layer equation to the potential 
flow pressure distribution. Potential drag is calcu- 
lated with surface integration and a calculated value 
of the leading edge thrust. The correct leading edge 
thrust is found by combining the far-field drag as cal- 
culated by the Lomax supersonic area rule [24] and 

linear potential solution 

linear potential flow code 
Prandtl-Glauert 

velocity perturbations u,v,w 
second order corrections 

surface integration 
Jones le-suction limit 

farfield 
Lomax.Prandtl 

le - suction adjustment n 
t 

non-linear corrections 

■forces - moments: 

Figure 12: A coarse panel method with empirical flow 
corrections to evaluate forces and moments. 

Treffz-plane integration. The leading edge suction is 
then corrected for real flow effects using the method 
of Carlson [23]. The Torenbeek quasi-empiric method 
[28] is used to model the effect of flap deflection. An 
overview of this method is given in Figure 12. A more 
detailed description can be found in the author's the- 

sis [3]. 
The forces and moments calculated with this 

method compare well with values measured from the 
NASA Ames Oblique Wing development program, a 
generic SCT, a generic fighter and the Munroe NASA 
arrow wing tests. Figure 13 shows the calculated and 
measured forces and moments for a generic SCT with 
12 degrees leading and 3 degrees trailing edge flap 
deflection at Mach 1.05—a difficult case for panel 
calculations. Our method, which was applied to a 
panel half-model with a resolution of no more than 
120 panels, took one second per flow point on our 
workstations. The Euler method EUFLEX [27] with 
a decoupled boundary layer calculation took about 
an hour on a Cray. 

5.2     3D   supersonic   thickness,    area   and 
camber distribution 

The design presented here is part of a MIDAS design 
cycle described previously in ref. [16]. The global 
design was optimized for a Mach number of 1.8 and 
therefore had a fixed wing area, leading edge sweep, 
taper ratio and thickness distribution. The fuselage 
was defined by its mean diameter and its length. 
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Figure 13: Forces and moments of a generic SCT. 

In the global model a preliminary area distribution 
was determined, and the assumption was made that 
there existed a thickness, area and camber distribu- 
tion which would produce a lift-to-drag ratio of 10.4 
at Mach 1.8 with a lift coefficient of 0.135. The ob- 
jective of the aerodynamic shape optimization is to 
find the best aerodynamic shape for this condition 
and compare it with the value that was projected by 
the global model. In this detailed geometric shape 
optimization we must therefore derive a shape that 
does not interfere with and enables the assumptions 
of the multidisciplinary global optimum. 

The design is defined with with analytical functions 
that are similar to the NACA four series definition. 
Because pressures at supersonic speeds are related to 
the local gradients of the geometry dz/dx, it is not 
necessary to have shape functions which model the 
second derivative well. The camber is represented by 
a linear combination of a NACA four digit mean line 
[1] to model parabolic camber p and a transformed 
sine function to model reflex r. 

Forward of the maximum ordinate pp the camber 
yp is described by: 

mp /_ 2\ 
yp = — \2ppX -x j . (3) 

Behind of the maximum ordinate pp the camber yp is 
described by: 

yp = mp 
(1 - 2pp) + 2ppx - x: 

(1-PP)
2 

(4) 

To this parabolic camber a transformed reflexed 
camber distribution is added. Forward of the maxi- 
mum ordinate pr the camber yr is described by: 

7TX 
yr = mT sin I — 

\Pr 
(5) 

Behind of the maximum ordinate pr the camber yr is 
described by: 

'ir(x — pr) 
yr = mr sin I —  + 7r 

1-Pr 
(6) 

The reflexed camber has a discontinuity in the 
derivative around pr, which is smoothed by the coarse 
panel resolution. The shape functions mentioned in 
this section are superceded by the proprietary shape 
functions mentioned in the previous section and only 
serve to illustrate the method. The wing thickness 
is modeled on the basis of the transformed parabolic 
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camber equations. Equation 3 is transformed so that 
it touches a circle with radius r at the leading edge. 
The nose radius r is used explicitly by the analysis 
method to calculate the leading edge suction. Since 
for a single supersonic design point a sharp leading 
edge parallel to to local flow direction is always bet- 
ter than a rounded nose, a value for the leading edge 
radius of 0.005c was selected to improve off-design 
performance. The wing thickness t, area S and the 
leading and trailing edge sweeps were previous de- 
termined in the global optimization; modifying their 
values would invalidate the global aircraft weight cal- 
culations. The wing shape is was defined by four air- 
foil sections. Six design variables are used for each 
section: 

• Angle of attack a and twist angles at, 

• Parabolic camber amplitude mp, location pp, 

• Reflex camber amplitude yr and location pr, 

• Parabolic thickness location pt. 

The fuselage is defined by 22 fuselage crossections, 
which bring the total number of variables to 46. The 
analysis method assumes that a geometry of mini- 
mum drag exists between these discrete crossections. 
The time required to reach a fully converged design 
was about an hour. 

The following constraints were used: 

• CL < 0.135, 

Gj, 0, 

• Cruise floor angle < 3°, 

Minimum dimensions fo 
and fuselage diameter (3.5 m) 

Entwicklung der Flügelschnitte 

optimized 

^start 

-20 -10 10 [m] 20 

Figure 14: Optimization of the wing shape. 

shown in Figure 17. This geometry was in turn used 
by other departments to make more accurate struc- 
tural calculations and systems integrations studies, 
and is also suitable for Euler or Navier-Stokes flow 
calculations. 

• Minimum dimensions for cockpit, landing gear   "      v^onclUSlon 

• Bank, pitch wing and nacelle clearance, 

• Acceptable wing-body fairing, 

• Twist angles limited to ±5°. 

Figure 14 shows the initial and final wing shape. 
The coarse panels do not resolve the 0.005c leading 
edge radius. Figure 15 shows the convergence of the 
lift-to-drag objective function versus the number of 
function calls for various optimization methods. All 
methods converged to the same solution. The opti- 
mized panel geometry is shown in Figure 16. The Ca- 
tia 3D model based on this coarse panel geometry is 

In this paper we present a general method for aero- 
dynamic shape design, based on direct numerical op- 
timization of aero-shape functions. The method was 
applied to the multipoint design of a transonic wing 
and a horizontal tail, and also with simpler shape 
functions to the design of a 3D supersonic wing body 
configuration. This method is computationally ef- 
ficient and competitive with designs obtained using 
current industrial methods, resulting in overall orga- 
nizational time savings of approximately a factor of 
three and producing designs of comparable to better 
quality than those produced by inverse methods. It 
is therefore practical for industrial application. 
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Optimization of 46 SCT shape parameters @ M 1.8 
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# objective function 
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Figure 15: Optimization of the wing shape. 
Figure 17: Catia 3D View. 
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1. Introduction 

Despite progress toward automated shape design in Industry has been 
penalized until now by excessive computing costs, useful innovative design 
methodologies have been recently proposed (cf. Dervieux /9/ and Jameson /10/, 
Young /15/, Salas /16/) for computing different academic and industrial designs of 
nozzles, airfoils and wing-body combinations operating in inviscid flows modelled 
by the potential and Euler equations. 

Since the designer has a precise idea of the pressure distribution that will 
produce the desired performance, not only optimization problems but also inverse 
problems have to be considered in current design. 

The goal of this lecture is to describe the major ingredients of new 
algorithms developped by european partners of the AERO 89-0026 project which 
allow accurate and cost effective numerical solutions of optimizations problems 
and also to illustrate the capabilities of design sofwares on test cases proposed in 
a Workshop for validation purpose. Industrial applications illustrating these 
methodologies are also presented. 

Finally a new emergent search method for non linear optimization 
problems provided by simple Genetic Algorithms (GAs) is briefly described and 
illustrated by a few examples related to inverse problems and applied to reduction 
of viscous drag. 

2. Choice of criteria and constraints 

Shape design problems in Aeronautics require that aircrafts operate under 
a number of quite different conditions. Different criteria or objective functions are 
defined such as the linear combination of aerodynamic coefficients (Cd, Cm, Cl, 
Cp) or the distance between the pressure on a current airfoil and a targeted 
pressure distribution at one (single-point) or several (multi-point) operating 
conditions of the shape in order to compute one solution of the constrained 
minimization problems. 

Another important part of the design problem is the specification of 
constraints that should be applied during the optimization process: feasibility of 
industrial shapes including physical acceptability (wing thickness, trailing edge 
thickness and pressure gradient, base drag), redesign (translation, rotation and 
contour of wing section), structural limitation (local thickness, trailing edge 
thickness, angle and radius) require the satisfaction of equality and/or inequality 
constraints attached to a design problem. 

It has been shown in the project that a careful numerical implementation 
of constraints is essential in order not to deteriorate the efficiency of an optimizer. 
Moreover satisfaction of constraints drive severe limits on the class of admissible 
solutions. 

Presented at an AGARD-FDP-VKI Special Course at the VKI, Rhode-Saint-Genese, April 1994. 
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3.Development of methodologies for solving inverse and optimization 
problems. 

Most of partners have proposed from existing softwares the 
extension or development of novel optimizers based on exact or estimated 
gradient for solving reconstruction, inverse and optimization problems. 

Some of them which have been used intensively to compute 
proposed test cases of a Workshop and also applications are described 
thereafter: 

i) a 3-D panel method using a potential flow analysis solver ( Deutsche 
Airbus). 

A panel code capable of treating complete configurations has been 
extended by an inverse option.Two types of patches are considered: "design 
patches", whose surface is derived from given pressures and "analysis 
patches", whose pressures are given from given surface. To solve such 
mixed problems the panel code is embedded in an iterative loop, which 
minimizes the sum of squared pressure deviation by a cost effective 
variant of the Levenberg-Marquardt strategy. 

ii) a 2-D finite difference BFGS Newton method using a full potential flow 
analysis solver (Alenia). 

The integrated optimization procedure is composed of three 
modules: an optimization module, an aerodynamic module and an interface 
module that handles the geometric modifications of the airfoil. The 
optimization routines are coming from the ADS package /1/: for 
unconstrained problems a quasi- Newton method like the BFGS variable 
metric method is used while for constrained problems a method based on 
the feasible direction algorithm 121 has been selected. 

iii) a 2-D finite element (resp. finite volume) GMRES ( resp. GRAD-GMRES) 
method without adjoint operator evaluation (resp. on optimality 
conditions) using a full potential (resp.Euler) flow analysis solver 
(Dassault Aviation). 

For the potential flow solver reconstruction and inverse problems 
are solved by gradient methods and by the GMRES algorithm 131 with an 
estimated gradient computation using a Krylov parameter equal to 
five.These methods are used and compared for airfoil reconstruction 
problems. In the case of optimization problems, a penalization method is 
applied to take into account the constraints and the associated 
unconstrained minimization algorithm is a descent method based on an 
estimated gradient. 
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For the Euler flow solver, the optimization is based on gradient 
algorithm combined with hierarchical techniques developped by INRIA 
Sophia Antipolis. 

iv) a 2-D finite element GMRES method via an adjoint equation using a 
transonic potential flow analysis solver (INRIA Rocquencourt). 

The nonlinear version of the GMRES algorithm is used in order to 
solve the optimality conditions in unconstrained optimization problems; 
the exact computation of the gradient of the cost function is done by the 
use of an adjoint state using the theory of control. /4/,/5/ 

v) a 2-D finite element hierarchical parametrization method using an Euler 
flow analysis solver (INRIA Sophia Antipolis). 

A hierarchy of levels is introduced in a gradient-based 
optimization process and applied to a shape optimization problem with 
subsonic and transonic Euler flow analysis solver in which a smooth 
parametrization of the iterated shapes is a severe prerequisite. A large 
number of parameters is handled progressively and the convergence is not 
deteriorated by increasing the nodes number.ln the case of approximate 
gradients computed by divided differences, the hierarchical approach is 
still more favourable. I SI 

vi) a linearized panel residual correction method applied to multi point 
airfoil design and single point wing design for subsonic and transonic 
conditions (NLR). 

The method is based on full potential theory and minimizes a cost 
function weighting the deviations from specified target pressure 
distribution for each design condition in a least square sense. Deviations 
from specified target pressure distributions (residuals) are translated 
into airfoil geometry corrections, by means of an approximate inverse 
calculation using a linearized panel method./77 

vii) a single pass finite difference method for the solution of the inverse 
potential problem (NTU A). 

Potential and streamfunction variables originating from a Clebsch 
formulation are introduced in order to map the physical space onto a 
computational one via a body-fitted coordinate transformation. A fast 
novel procedure based on differential geometry and generalized tensor 
analysis arguments is employed to formulate the method.The assumption of 
orthogonal streamsurfaces reduces the number of dependent variables by 
one, simplifying the governing equations to an elliptic partial differential 
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equation for the velocity magnitude and a second order ordinary 
differential equation for the streamtube aspect ratio. 

4. Geometry representation and mesh regeneration. 

In most cases the airfoil or wing geometry is done with spline 
approximation The general basis function which have been investigated 
are the so called Bezier-splines curve segment approximation or the 
B-spline functions.In many optimization procedures developped by partners 
the use of Bezier splines has been favoured (Dassault Aviation, Deutsche 
Airbus, Alenia.lNRIA, UPC) because changes in the position of a control 
vertex often maintain a smooth curve.This approach has been also 
intensively used by Deutsche Airbius with local parameters in section 
definition of 3-D inverse designs. 

In the context of shape optimization problems analyzed by finite 
element methods the sensitivities of the different ingredients (B-spline, 
finite element mesh, flow behaviour and error estimator) have been 
studied in details by UPC They provide informations to build up a finite 
element mesh from one design to the next with a specified and controlled 
level of error.The robustness and reliability of the methodology has been 
checked out via several 2-D applications. 

The extension to 3-D problems remains the most critical step 
which requires the control of the mesh deformation during the iterative 
design procedure. 

5. Workshop. 

A workshop has been organized within the AERO-0026C contract to 
validate optimum design methodologies developped within a two year 
period. During the kick off meeting partners agreed to define a set of test 
cases to compare in terms of accuracy and efficiency optimum shape 
design computations issued from their respective methodologies.The 
selected cases included three types of problems: 

Type 1: Reconstruction test cases where pressure distribution for 
a given configuration serves as target criterion to rebuild this 
configuration from an initial guess; 

Type 2: Inverse test cases where a pressure distribution serves 
as design criterion to calculate an optimal configuration corresponding to 

the target; 
Type 3: Optimization problems with possible constraints to design 

shapes (not unique !) that correspond to a minimum of the criteria. 

The flow analysis solvers used in this Workshop are solutionsof 
the full/potential (resp.Euler) equations for a given shape. These solvers 
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correspond to the simulation of compressible/incompressible irrotational 
flows (resp. compressible rotational flows). Among the test cases 
described in the sequel two of them involve the coupling of the full 
potential equation with a boundary layer model in order to simulate the 
viscous effects of the flows. 

5.1 Definition of nine test cases. 

The following nine mandatory test cases including various 
parameters of the design - criteria, possible constraints, type of equation 
of the flow analysis solver, values of Mach numbers, angles of attack and 
possible Reynolds numbers- and output formats have been defined by 
partners: 

Test case 1 : 
2-D half nozzle reconstruction problem : subsonic case; Mach=.2; 

Test case 2 : 
2-D half nozzle optimization problem: subsonic case; Mach=.2 ; 

Test case 3 : 
2-D half nozzle optimization problem: subsonic case; Mach=.5 ; 

Test case 4 : 
Korn airfoil reconstruction problem: shockless transonic case; 

Mach=.75, alfa= 0°; 

Test case 6 : 
Single point RAE2822 airfoil drag minimization problem: shocked 

transonic case; Mach=.73, alfa= 2°; 

Test case 8 : 
two point NACA4412 airfoil inverse design with viscous 

corrections : subsonic target (Mach= .2; alfa=7.8°, Re=.5*10**7) and 
transonic target (Mach=.77; alfa=0°, Re= 10**7); constraints: chord=1; 
trailing edge angle >10°, thickness t/c=11%; weight factors: (.5 ;.5); 

Test case 10: 
Williams two element configuration reconstruction problem: 

subsonic case (Mach=0; chord angles of the design profiles: teta1=1.67, 
teta2= 10.13); 

Test case 14: single point DLR -F4 wing : subsonic case; Mach=.3, alfa = 6°; 

Test case 17: 3-D double turning nozzle reconstruction problem: 
incompressible case (Mach= O )and subsonic compressible case (Mach=.2). 
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Other optional test cases can be found in the available report 
entitled "Workshop on selected inverse and optimum design problems". 

The nine test problems were defined with the following features: 

i) they should be on simple 2-D or 3-D analytical or well 
referenced geometries well suited for a wide range of solution and 
optimization methods (finite differences.finite volumes, finite elements; 

ii) accurate flow analysis solvers and efficient optimizers should 
be used simultaneously to compute efficiently feasible shapes; 

iii) they should not include at this stage laminar Navier Stokes 
flow solvers too much costly for shape optimization problems. 

Test cases T4 and T10 and T14 were chosen because of existing 

well documented results. 

The main challenge was the search of shapes - reconstruction or 
optimization- with subsonic and/or transonic inviscid flows including 
possible viscous corrections. 

5.2 Contributors 

Participation to the workshop was based on a final assessment 
task for partners having developped optimization softwares during the 
contract. After two years most of partners or teams contributed to this 
event and their involvement is described on Table 1. Very few people run 
multi point or 3-D test cases with viscous corrections which still require 
large and costly computer facilities. Different approaches for the flow 
analysis solvers and optimizers have been used by authors as shown on 

Tables 2, 3. 

5.3 Results and comments. 

Some of the most significant results obtained by contributors are 
shown on the following list of figures: 

Fig. 1: Use of adaptive mesh refinement techniques and sensitivity 
analysis : initial shape and initial mesh- final shape and final mesh 

(T1-UPC); 

Fig. 2: Distribution in the final nozzle shape and convergence 

history (T3-INRIA); 
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solver: mesh of the initial profile, initial and final Cp distribution, shape 
and cost function convergences (T4-Dassault Aviation); 

Fig. 4: Optimized RAE 2822 airfoil with BFGS variable metric 
optimizer using an augmented objective function : Cp distribution and 
convergence history; drag and total cost function convergence (T6-Alenia 
and Dassault Aviation); 

Fig. 5: Optimized RAE 2822 airfoil with drag minimization using 
the non linear GMRES solver for the optimality conditions : initial and final 
Cp - initial and final airfoil (T6-INRIA); 

Fig. 6: Two point airfoil design with different weight factor 
combination; geometry (T8-NLR); 

Fig. 7: Comparison of final and target pressure distribution with 
the Marquardt method (T10-Deutsche Airbus); 

Fig. 8: Wing design: initial and resulting geometry with the 
residual correction approach (T14-NLR); 

Fig. 9: Comparison of initial .target and converged pressure 
distributions at inner four stations with the modified Levenberg Marquardt 
strategy (T14- Deutsche Airbus); 

Fig. 10: Perspective view of the reproduced 3-D nozzle ; mach 
number from direct and inverse calculations with the one pass method 
along the center line and on three sections normal to the center line 
s=1/3,1/2 and 2/3 smax (T17-NTUA). 

Among the various methodologies used by partners some 
associated algorithms have shown good potentiality for further industrial 
applications: 

A1. The extended inverse option of the panel code capable of 
treating complete wing-pylon -nacelle- fuselage configurations (Deutsche 
Airbus /9/); 

A2. Exact gradient optimizers with Euler and Navier Stokes solvers 
if further extension to second order approximation of the advection terms 
can be obtained via automatic symbolic differentiation requiring 
reasonable programming efforts (INRIA /10/ and Dassault); 

A3. Hierarchical methods providing undoubtedly a significant 
increment in efficiency when combined with different methods of 
optimization and mathematical parametrization (INRIA); 
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A4. Optimality conditions and a hierarchy of parametrization 
allowing the use of fast" one shot" methods relying on simultaneous and 
hierarchical solution of the optimality system (INRIA); 

A5. Extension of the inverse inviscid potential-streamfunctions 
method introduced by Stanitz to rotational flows, a very fast method 
needing only one equivalent "direct" problem solution (NTUA /11/); 

A6. A residual correction method for single and multi-point 
transonic inverse design formulated as an equivalent incompressible 
design problem using a fast integral equation methodology (NLR /12/); 

A7. Sensitivity analysis and automatic adapting meshes for 
complex flows (UPC); 

From a first comparison of the results it appears that the 
discrepancy of computed solutions is much larger for optimization or 
inverse design problems than for usual direct problems solved by flow 
analysis solvers. 

At the present time the difficulties encountered by several 
existing design methods can be explained by the following remarks: 

R1 .Existence and uniqueness of the discretized design solution is 
still an open problem; 

R2. Concerning nozzle reconstruction problems without constraints 
the results look quite similar and significant CPU time differences occur 
only in the choice of the methodology (two examples : a 2-D reconstruction 
nozzle obtained in18 mn of CPU on a Personal Iris 35TG workstation 
(UPC) and a 3-D reconstruction nozzle obtained in 100 sc for 20 GMRES 
iterations on a Alliant FX 80 (NTUA); 

R3. Airfoil inverse problems solved with specified pressure 
distribution and constraints both on the geometry and the aerodynamics 
characteristics to prevent nonphysical solutions suffer from a lack of well 
posedness.ln multi point design the optimization of the aerodynamic shape 
still remain highly dependent of the a priori weighted compromise between 
the required characteristics for different design conditions 713/; 

R4. Direct optimization methods seems much more flexible and do 
not rely on the designer's knowledge by the minimization of any 
aerodynamic cost function; but a designed solution seems highly dependent 
of the initial guess and the choice of the optimizer which should operate 
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with non linear constraints. Moreover a major role is played by the 
number of control variables and the concept of hierarchical 
parametrization seems a very interesting concept to reduce the 
computational effort (two examples: a 2-D transonic potential 
optimization of an airfoil obtained after 40mn of CPU on a CDC 910/600 
workstation(Alenia) and a 2-D transonic Euler optimization of a nozzle 
obtained after 4000 sc on a Convex C210(INRIA). 

R5. Until now no accurate design with complex viscous flows on 
complicated industrial geometries has been achieved. The computation of 
3-D accurate design with complex flows using adapted meshes remains a 
great challenge in a near future. 

For some progress on these problems some lines of research are 
suggested thereafter: 

L1. improvement of the accuracy of the design by 3-D automatic 
adaptive remeshing and appropriate choice of control variables; 

L2. acceleration of the convergence by fast one shot methods and 
hierarchical parametrization with appropriate preconditionners; 

L3. systematic use of new parallelizable algorihms on new MIMD 
parallel architectures; 

It is noticeable that the best designs were provided by optimizers 
exhibiting a part of the above properties. 

6. Applications to industrial design. 

After two years research activities several industrial examples 
solved with a 3-D subsonic inverse panel method at Deutsche Airbus have 
demonstrated the power and usefulness of automated tools to actual 
aircraft design problems. One selected example described on Figure 11 
deals with an airplane configuration with propfan engines at the tail. The 
rear part of the panel model with fuselage-tail.fin, pylone and nacelle is 
depicted .For such a configuration the flow on the pylon has to be 
controlled accurately since a too high velocity level should permit shock 
induced separation on the pylon ,a situation which cannot be accepted 
aerodynamically.The problem which has been solved by the inverse method 
is to design a part of the fuselage tail geometry controlled by a pressure 
distribution on the pylon. Figure 12 shows the resulting fuselage surface, 
the solid lines corresponding to the initial geometry and the dotted lines 
to the designed one.The target pressure distribution is achieved three 
iterations. 
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A preliminary investigation of the behaviour of riblets under 
laminar viscous flows conditions for drag reduction has been proposed by 
Tritech. The numerical results obtained demonstrate that flows for 
Reynolds numbers up to 10**8 can be stabilized with a suitably designed 
riblet. A further development in design procedure using Navier Stokes or 
turbulent viscous flow analysis solvers /14/ is the next step to allow a 
better understanding of the mechanism of the riblets. 

7. Genetic Algorithms (GAs): a robust search procedure for optimization 
problems. 

"The real world of search contains discontiniuties and multimodal 
search spaces.Traditional optimization methods suffer from restrictive 
requirements of continuity and derivative existence and are insufficiently 
robust in unintended domains" (Goldberg, /17/). 

This section introduces briefly the main ingredients for 
understanding genetic algorithms and present two applications in shape 
optimization. 

7.1 Introduction. 

Details of the introductory material described in this section can 
be found in Goldberg (ret IM I), Davis (ref /18/), Poloni (ref /19/), Galante 
(ref/20/). 

Genetic Algorithms (GAs) are search procedures based on the 
mechanics of natural selection (Darwin); they have been introduced by J. 
Holland , Univ. of Michigan , the field's inventor in the early 70' who 
explained the adaptive process of natural systems and designed artificial 
systems softwares based on mechanisms of natural systems. He laid down 
the two main principles for GAs: the ability of simple representations (bit 
strings) to encode complicated structures and the power of simple 
transformations to improve such structures (schemata theory). 

More recently D. Goldberg brought GAs in optimization theory for 
quantitative study of optima and introduced a major thrust in the 80' in 
research into the GAs 

7.2 Why GAs are attractive ? 

A major line of research for GAs has been robustness .GAs are 
computationally simple yet powerful in their search for improvement; they 
are not limited by restrictive asumptions about the search space 
(continuity, existence of derivatives, unimodality). 
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discontinuous environments : a classical example in structural 
optimisation described in Galante (ref 1201) is the minimisation of the 
weight of trusses where multiple peak functions are unsuitable for search 
by traditional methods. 

GAs are search procedures which use semi-random choice; 
randomized search which does not imply directionless search allow a 
wider exploration of the search space compared to conventional methods 
which are not so robust but work well in a narrow problem domain; 

7.3 How GAs are different from conventional numerical optimization tools 
? 

Genetic Algorithms are different from traditional methods of search and 
optimizations in the following way: 

(a) GAs are blind  or indifferent to problem specifics and treat 
them as a black box : an example in shape optimization is the value of the 
drag on an airfoil; 

(b) GAs use codings of decision variables by adapting artificial 
chromosomes or individuals rather than adapting the parameters 
themselves.In practice the GA user codes the possible solutions as finite 
length strings; 

(c) GAs process successive populations in successive generation 
compared to point by point conventional methods which use only local 
information and can be trapped on a false optimum; 

(d) GAs use randomized operators instead of strictly 
deterministic rules. 

Items (a) to (d) contribute to the robustness of GAs. 

7.4. Mechanics of GAs 

GAs as search procedure to optimize airfoil shape in Aerodynamics use the 
following tools with the correspondence terminology: 

(i) gene = design parameter 
(ii) individual design configuration 
(iii)population= group of configurations 
(iv) generation= population evolution 
(v) fitness function = quality of the design 
(vi) social success= optimality of the design 

As in the natural process of reproduction the genetic informations stored 
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individuals. An airfoil defined by cubic spline coefficients (i) is 
represented by a bit string.The optimization process will start from 
multiple points of the configuration space (iii) created randomly; the 
quality of individuals of the population are evaluated through a fitness 
function (v) and the search process is repeated with new generation of 
individuals until optimality of the design (vi). 
The process of evaluating the fitness and the reproduction process are 
inherently parallel making the implementation of GAs on parallel 
computers very attractive. 

The following transformation operators {reproduction, cross over 
and mutation) are applied to get a new population until the best individual 
is reached : 

(R) reproduction :  parents with highest fitness have the highest 
probability of selection (roulette wheel); 

(C) crossover:   a randomized yet structured recombination 
operator. Simple crossover proceeds in 3 steps: two strings are selected 
using reproduction ; then a cross site along the string is chosen uniformly 
at random; finally position values are swapped between the two strings 
following the cross site. 

One example of crossover: if A=11111 and B= 00000 and a random 
selection of a cross site turns up a 3, we obtain the two strings A'=11100 
and B'=0001 land these strings will be placed in the new population. 

(M) mutation : in a binary -coded GA, mutation is the occasional 
alteration of a bit position (the changing of a 1 to a 0 or vice versa); it is a 
protection against the loss of important genetic material at a particular 
position. 

One example of mutation: if pm= 0.001 is the probability of 
mutation and a ramdom routine provides the successive random values 
(.760,.473,.894,.001) then the 4-bit old Chromosom (0010) will be replaced 
by the new chromosome (0011) 

The combined action of reproduction and cross over provide most 
of the innovation of genetic search; the low level of mutation in artificial 
genetic search is secondary importance of the operator when compared to 
reproduction and crossover. 

7.5 Two examples in optimum shape design with GAs: 

The GAs strategy is used two optimisation problems in current 
aerodynamics design: the first one (EX1) deals with the symmetric airfoil 
reconstruction which realizes a target pressure distribution on its surface 
for a given potential flow condition (ref. /21/). The second example (EX2) 
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presented is the optimization for minimum drag of a symmetric profile 
cascade (ref. /19/) for a given laminar Navier Stokes flow condition. 

Innovative solutions of other critical non convex optimization 
problems such as multi-point transonic design  can be investigated with 
GAs. 

EX1: (from Periaux et al, ref /21/). 

The control points representing the symmetric airfoil are coded in 
both binary or real value strings.(10 control points ). For the sake of 
comparison, we have constructed the target pressure from a NACA0012 
airfoil by solving the full potential flow equation using a finite difference 
flow solver. As a reconstruction problem we expect to find an optimal 
shape to be the given shape.A L2-deviation from the target pressure for 
each individual is calculated for any shape via the solution of the non 
linear full potential equation which results in that the computing cost is 
directly proportional to CFD evaluations. 

With the GA approach we have tested different flow cases.The 
parameters Pc=0.75, Pm=0.01 are not carefully selected but fixed for most 
test flow cases.The present method uses a population of 50 strings each of 
length 80 bits for the binary coding. Each string represents one possible 
configuration to the problem. 

Figures GA 1-3 show the fitness function for all the examined 
configuration with three different Mach numbers 0.01, 0.3 and 0.6. It can be 
noted that the method presented can realize near optimal shapes after 20 
generations which indicates that GAs seem to be slightly independent of 
the Mach number.Figure GA 4 shows the shape convergence for the Mach 
number=0.3. The minimum shapes for Generations (dash line) and 
Generation#20 are presented in comparison with a standard NACA0012 
(solid line). 

Based on the above tested cases, the fitness function can quickly 
approach near optimal value, thus a hybrid technique   ( Davis, ref. /18/) 
can be considered in practical applications, particularly in the case of 
costly CFD evaluations. 

EX2( from G. Mosetti and C. Poloni ( Ref./19/). 
The design problem is the minimisation of the viscous drag of 

symmetrical bodies with geometrical constraints. The shape of the body is 
parametrized by Bezier polynomial (3rd and 4th order) key points.Five 
parameters are used to define the position of the key points in the 
optimization procedure. Figure GA 5 shows the position and the constraints 
imposed to the key points.Eight possible values for each variable are 
considered and therefore the size of the search space to be explored is 
8**5. 
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extensive use of a full Navier Stokes finite element solver (FIDAP 6.04) 
at Re=400 with a chord =1 and a profile thickness of 10% and 21%. The 
initial population of 20 individuals has been created randomly and evolve 
for 10 generations.Figure GA 6 gives an idea of the configuration space 
explored and Figure GA 7 shows the computed drag coefficient for all the 
examined cases. Finally Figure GA 8 shows the typical mesh used in this 
computation and the shape of the optimum profile found for the two 
thicknesses considered and the evolution of the generation is depicted on 
Figure GA 9 where the drag of the best individual at each generation is 

plotted. 

It has been found that the parameters that have the largest 
influence on the drag are the value of the first (curvature of the leading 
edge) and last gene (inflexion in the rear part of the airfoil). The total drag 
of the optimized profile is equal to the 80% of the mean drag found for the 
profiles computed in the first population. 

7.6. Conclusion on GAs and future directions 

GAs are described as simple methods for solving complex problems 
with good parallelization properties. 

The classical numerical optimization methods start from a 
guessed point and from it the search is performed until the nearest 
minimum is reached. On the contrary using GAs the search starts from a 
set of points which forms the initial population and explore the space 
using semi random reproduction,crossover and mutation operators. 

The two examples presented have shown the method robust and 
efficient and a new tool in shape optimum design now works. 

Its discrete formulation in encoding and ability in searching 
make the GA a powerful tool in Engineering. 

The application of GAs to fluid optimization suggest the 
possibility to solve other great challenge problems {transition among 
others Challenges) in modern Aerodynamics requiring in a near future 
active control methodologies. 

8. Conclusion. 

Subsonic and transonic airfoil and wing optimization procedures 
have been developped to treat optimization problems namely drag 
minimization, lift maximization or target pressure recovery with possible 
non linear constraints to satisfy geometrical requirements and control 
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aerodynamic characteristics in off-design conditions. The most 
significant outcomes of this project concerns progress accomplished in 
design with Euler solvers, fast one pass inverse methods for rotational 
flows, parametrization of non linear surfaces, hierarchical multi level 
method for control variables and automatic adaptive remeshing. 

Results obtained from a workshop indicate quite large 
discrepancies both in design due to the quality of the flow analysis solver 
and the parametrization of the shape and in efficiency with the choice of 
the optimizer. These comparisons can provide useful guidelines for 
choosing optimization or inverse methods with inviscid potential or Euler 
flows. 

It is clear that for practical 3-D applications including viscous 
effects much effort remains to be done.In particular achievement of cost 
effective and accurate designs with the above available novel 
methodologies and associated algorithms will have to be implemented in a 
near future on massively parallel computers. 
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Partner Dassault Deutsche 
Airbus 

Alcnia NLR INRIA NTUA UPC 

Test Case 

Tl X X X 

T2 X X 

T3 X 

T4 X X X X X X 

T6 X X X 

T8 X 

T10 X X 

T14 X X 

T17 X 

Table 1 

Approximation 

Panels X X 

Finite Difference X X 

Finite Volume X X X 

Finite Elements X X X 

Table 2 

Optimizer or 
Inverse-Method. 

One Pass Method. X 

Hierarchical X 

Steepest Descent X 

Residual Correction X 

Levenberg Marquardt X 
Conjugate Gradient X X 

Feasible Direction X 

BFGS X 
Non Linear GMRES X X X 

Table 3 

Table 1 : Involvement of the Partners in the Test Cases 
Table 2 : Approximations of the Flow Analysis Solvers 
Table 3 : Optimization or Inverse Methods 
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Figure GA-5 Parametric definition of the geometry in the 
case of the symmetric cascade 

(Courtesy of Univ. of Trieste) 

F±gure GA-6  profile shape for the maximum and 
minimum value of the optimization variables. 



11-41 

c 3 Dr? =tg   Coefficient Thickness 21% 

o O i 
 p.  

o o   i 
U.UUO   ~ 

95 o 

o 

1 TSP- 00 i    c 
U.Voti   i £f*c r°":  

 A  0 

Tb O   -O0 

U. UÖÖ   - 
o °?   o p...« 

c 
S.a.. 

a o 0 0 
U. UÖ4 

p 
i-O-i-O—• 
D      6 O 

:     i- r~ r 0.08   -  i  
°6>c 
[-- - 1  

40 80 120 160 200 
Examined configurations 

o Drag   Coefficient 
0.065 

0.0632   - 

0.0614 

0.0596 

0.0578   -3--Ö 

0.056 

O  ; .......r 

<£> ex 

: O   : 

«fi 

t^F4 l l l ' 

fo 

o 

...9i. 
o I o 0 
.....A........ . 

I 3 

Thickness 10% 
-I 1 1 L 

...->.. 
£0     • 

Vj Q..W^jWW[JJ^.itJW.....l^.. 

-| 1 1 1- -I r 

40 80 120 160 

Examined Configurations 
200 

(Courtesy of Univ. of Trieste) 

Figure GA-7 Computed drag coefficient for all the 
geometry tested. 
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Figure GA-8 snows the typical mesh used in this 
computation and the shape of the optimum profile 
found for the two thickness considered. 
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