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ABSTRACT 

Recently, most large corporations, including the Department of Defense and the 

Department of the Navy, have seen a dramatic proliferation of incompatible databases and 

their associated database management systems. Sooner or later, these organizations 

discover the need to integrate the data in these incompatible databases. One solution to 

this problem is the use of markup languages like Abstract Syntax Notation One (ASN.l) 

as a standard format for representing these databases and output reports and thus 

facilitating their integration. A main requirement of this integration approach is the ability 

to correctly identify and resolve the semantic conflicts that arise in the marked-up 

databases and outputs of software tools before any integration can take place. This thesis 

addresses this issue by introducing a systematic approach for identifying and resolving 

semantic conflicts for these databases and developing a prototype tool that aids in this 

resolution . We hope that this tool will greatly aid in the efforts of integration and 

manipulation of ASN. 1 databases. 
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I. INTRODUCTION 

A. BACKGROUND 

During the past three decades, most medium and large organizations have seen a 

dramatic proliferation of databases and their associated database management systems 

(DBMS's). While these databases proved to be useful in supporting their different 

activities, organizations soon discover the need to access and share data across 

independent systems. Unfortunately, such systems are often developed on vastly different, 

and incompatible, hardware and software environments. Until now, users wishing to 

integrate data from two or more systems found themselves tied to the original DBMS 

hardware and software constraints, with many of the integration efforts performed 

manually or not at all. 

A new approach was proposed recently that advocates the use of markup languages as 

the basis for building integrated information resources that allow the users to access 

remote databases and software tools having heterogeneous formats in a uniform way 

(Kamel, 1994). The integration approach is based on modeling the input and output files 

for each database or software tool using a markup language having the power of a 

context-free grammar. The markup language chosen for this project is Abstract Syntax 

Notation One (ASN. 1) for reasons discussed later in this thesis. ASN. 1 acts as a Data 



Definition Language (DDL) for the integrated databases and is used to define the formats 

of each input file and generated output report. 

B. OBJECTIVES 

A main requirement of this integration approach is the ability to identify and resolve 

the semantic conflicts that arise in the marked-up databases and outputs of software tools 

before any integration can take place. This thesis addresses the issue by introducing a 

systematic approach for identifying and resolving semantic conflicts for these databases 

and developing a prototype tool that aids in this resolution. 

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

The scope of this project is limited to the factors affecting the conflict resolution 

problems of ASN. 1 database integration. While conflict resolution is only a small part of 

the entire integration process, separate research addresses many of the other factors 

individually. While some of these other areas are discussed briefly here, they are presented 

only to the extent that they are necessary to provide a proper background discussion. The 

combination of this thesis with other ongoing work will help build a full-scale application 

encompassing the necessary characteristics for effective database integration. 

This thesis assumes the reader is familiar with general database description terms and 

design considerations. A working knowledge of ASN. 1 or other markup languages is not 

necessary, and a brief description of ASN. 1 is included. 



D. DEFINITIONS AND ABBREVIATIONS 

The following are acronyms used in this thesis: 

ASN.l - Abstract Syntax Notation One (ISO 8824 and 8825) 

DDL - Data Definition Language 

DML - Data Manipulation Language 

NDH - National Institutes of Health 

NCBI - National Center for Biotechnical Information 

FDB - Federated Database 

CDB - Component Database 

SQL - Structured Query Language 

BNF - Backus-Naur Form 

E. ORGANIZATION 

This thesis is organized as follows. Chapter II presents an overview of ASN. 1 as it 

relates to database integration and introduces the DDL and DML. Chapter III describes 

the sample databases designed to illustrate the various conflicts addressed in the thesis. 

Chapters IV and V present the conflict classification framework and resolution strategies, 

respectively. Chapter VI discusses the implementation of the tool, and acts as a User's 

Guide to the software. Chapter VII suggests possible areas for future research along with 

a discussion of lessons learned. The Appendix contains a full listing of all source code 

files related to the implementation. 



II. OVERVIEW OF ASN.l AND ITS USE FOR DATABASE 
INTEGRATION 

This chapter presents an overview of the Abstract Syntax Notation One language and 

its use as a basis for integrating heterogeneous databases. 

A. BACKGROUND 

ASN. 1 was originally developed as a data structure description language for use in 

data transfer across networks with different hardware/software configurations (NCBI, 

1993). Later, ASN. 1 gained popularity as a generic data transfer markup language for use 

in transferring data across heterogeneous networks and databases (Kamel, N, 1993). It 

was adopted by the National Institutes of Health (NUT) as the format for dissemination of 

its biological databases to users throughout the world. NIH's National Center for 

Biotechnology Information (NCBI) manages the periodic distribution of these databases. 

This recent interest in ASN. 1 has led to the development of several software tools which 

aid in the manipulation, parsing, and transfer of ASN.l documents and specifications. 

This interest has also prompted the development of applications which utilize ASN. 1 

documents. 

As originally developed, ASN. 1 is strictly a data description or data definition 

language. ASN. 1 provides a method of tagging data fields with descriptive labels and 

organizing these fields into a distinct hierarchy. In this matter, complex data structures are 



built by arranging simple data types (e.g., INTEGER, VisibleString, real, etc.) into 

complex tree-like structures. Its ability to describe complex data structures in a simple, 

text-based manner makes ASN. 1 a prime candidate for use as a database description and 

transfer language among multiple heterogeneous databases. ASN.l, however, is strictly a 

data description language; it does not provide a means for data manipulation. In order to 

use ASN. 1 as a database transfer language, some capability for basic database query and 

manipulation is needed. To answer this need, the ASN. 1 Data Manipulation Language 

(ASN. 1 DML) was recently proposed and is currently being implemented (Kamel, N., 

1993). Together the DDL and DML provide a package for the effective representation 

and manipulation of heterogeneous data across multiple platforms. 

The remainder of this chapter is arranged as follows. Section B describes the 

approach of using markup languages as database integration tools. Section C gives a 

detailed description of the DDL, while Section D describes the DML and how its used for 

the manipulation of ASN. 1 databases. 

B. ASN.l AS A DATABASE INTEGRATION TOOL 

In examining tools that aid in the integration of remote heterogeneous databases, two 

approaches have been generally accepted and developed, the tightly-coupled (federated 

database) and loosely-coupled (multidatabase) approaches (Sheth & Larson, 1990). In the 

tightly-coupled approach, a unified global schema is constructed from the underlying 

individual Schemas of the component databases to be integrated. In the loosely-coupled 

approach, the component database Schemas are not integrated into a global schema. 



Rather, a method of performing queries on multiple databases is defined and developed to 

allow access to several or all the component databases simultaneously in a uniform way. 

The major difference between the two approaches can best be demonstrated by how a 

user views the component databases under the two approaches. In the tightly-coupled 

approach, the user would be presented with a single super-schema or federated schema 

that represent the integration of all the underlying sub-schemas. The user need not be 

concerned with the component database Schemas or the integration process; he treats the 

FDB as a single database and poses all query and data manipulation operations on that 

schema. 

In the loosely-coupled approach, the user would be presented with each of the 

sub-schemas and a powerful data manipulation language or set of tools that allow him to 

perform queries on several or all the component databases. In this approach, the user 

needs to be knowledgeable about the structure of the sub-schemas in order to successfully 

perform queries and data manipulation. 

While conceptually appealing and potentially useful, both approaches suffer from 

several drawbacks. In the federated database approach, the primary difficulty is in 

developing and maintaining the global schema. Additionally, this global schema becomes 

very sensitive to changes in the sub-schemas. Any change in the component database 

Schemas requires re-integration of the local Schemas into a new global schema. Also, a 

complex mapping between the federated and component Schemas needs to be developed 



and maintained in order to provide the necessary transparency to the user of the federated 

system. 

While the multidatabase approach avoids this problem, its main difficulty is the 

development of a data manipulation language capable of operating on the component 

databases simultaneously. This language will also be very sensitive to sub-schema 

changes, and these changes may require modification or redesign of the data manipulation 

language. Additionally, in both approaches, only the Schemas of the local databases are 

the components of the integration. A more powerful approach would integrate not only 

the Schemas, but any output reports generated by the local DBMS's, as these are less 

subject to change over time. 

Recently, a new approach was proposed to integrate not only the Schemas of the 

component databases, but also their individual tools (application programs) and output 

reports (Kamel, 1994). Research has shown that while the individual schemas of the 

component databases are subject to fairly frequent change, the heavy public dependence 

on their related tools and reports puts pressure on administrators not to change these 

items frequently.   The proposed approach is based on using a markup language to 

perform the integration of the component database schemas, tools, and/or output reports 

to provide either a tightly-coupled or loosely-coupled multidatabase system that is less 

sensitive to changes in the underlying sub-schemas than any system previously developed. 

To accomplish integration using either approach, the issues of identifying and 

resolving semantic conflicts needs to be addressed. The primary goal of this thesis is to 



address the schema and data conflict resolution strategies for integrating these ASN. 1 

documents. 

C. ASN.l DATA DEFINITION LANGUAGE (DDL) 

Standard ASN. 1 is a notation for defining abstract data types and their values. These 

data types can be broadly classified into simple types, structured types, and other types. 

Simple types are atomic types with no components, and include Boolean, integer, real, 

enumerated, and a variety of character string types. Structured types, also known as 

constructors, consist of four types for building complex data types from simple data types. 

Other types include the CHOICE and ANY data types. 

ASN. 1 is used to both describe the complex data structure and specify the data values. 

An ASN. 1 document that describes the data structure is referred to as an ASN. 1 

specification, while a document that contains the data is known as an ASN. 1 printfile. 

ASN. 1 documents (both specifications and printfiles) follow a strict format of sequences 

of identifier, value> pairs. Identifiers are tags that are user-defined and usually help 

describe the value object. In an ASN.l specification, values are the type of the identifier, 

whereas in a printfile, values are the actual data values. In either case, the value may be a 

complex data type known as a type reference, which is described in a separate ASN. 1 

specification. A sample specification and part of its associated printfile are given in 

Figures 1 and 2. A detailed description of this database is given in Chapter III. 



Holding ::= SEQUENCE { 
b-num INTEGER, — local key 
titl« i  VisibleString, 
author-name VisibleString, — last, first 
subj VisibleString OPTIONAL, 
type CHOICE { 

book Book-type, 
music Music-type, 
movie Movie-type }, 

language VisibleString DEFAULT "Engli sh", 
lc-num SEQUENCE { 

c-letter VisibleString, — one+ CAP ltrs 
f-digit VisibleString, — one or more digits 
s-digit VisibleString OPTIONAL, — one or more digits 
cuttering VisibleString }, — auth cutter number 

publisher-name VisibleString, 
publisher-addr VisibleString, — num, str, city, st 
checked-out BOOLEAN, — TRUE if in library 
cost INTEGER } — cost(whole dollars) 

Figure 1. Sample ASN.l Specification 

Holding ::= { 
b-num 10 , 
title "Joint Military Operations: A Short History" , 
author-name "Beaumont, Roger A." , 
subj "Military Science" , 
type 
book { 
binding hardcover , 
num-pgs 245 } , 

language "English" , 
lc-num { 

c-letter "U" , 
f-digit "2 60" , 
cuttering "B43" } , 

publisher-name "Greenwood Press" , 
publisher-addr "Westport, Connecticut" , 
checked-out TRUE , 
cost 60 } 

Figure 2. Sample ASN.l Printfile 

In the above sample specification, a complex data structure is defined to describe the 

holdings of a library's database. In the printfile, a specific instance of a holding is shown 

with the values of appropriate data fields specified. Note that this specification is for a 



single holding only—if a group of holdings were to be represented, a new specification for 

a holding-set must be included. This specification would allow for a printfile that 

contained a SET or SEQUENCE of many holdings. 

Since ASN. 1 was originally developed for data transfer across networks (which also 

includes binary transfer), several data types would be redundant or unnecessary when 

applied to a text-based database description. For this reason, and for the sake of 

simplicity, we have Umited the constructs and data types used in this project to the subset 

shown in Table 1. The sample databases developed in the following chapter are encoded 

using these constructs and data types. However, it may become necessary later to expand 

the data types and constructs chosen to include a wider variety. 

TABLE 1 
ASN.l BASE TYPES AND DEFINITIONS 

Type Description Specification Printfile Notation 

BOOLEAN Any TRUE or FALSE value. 
May have a DEFAULT 

Truth:-BOOLEAN Truth ::= FALSE 

INTEGER Any integer value. 
May be given named values but 
range not limited to names. 
May have a DEFAULT. 

Number ::= INTEGER 
or 
Number ::= INTEGER { 

red(l), 
blue(2) } 

Number:~ 42 
or 
Number ::= red 

OCTET 
STRING 

Any string of bytes. 
May not have DEFAULT. 

Hstring ::= OCTET 
STRING 

Hstring ::= '0A01FH 

NULL null is only allowed value Nothing:—NULL Nothing ::= null 

REAL Floating point number in base 2 
or 10. 
REAL value notation is 3 
integers for { matissa, base, 
exponent} 
May have a DEFAULT. 

Pi:-REAL Pi ::={314159, 10, -5} 

10 



ENUMERATED A named set of integer values. Sex ::= ENUMERATED{ Sex ::=male 
Only named values allowed. male (1), 
May have a DEFAULT. female (2)} 

SEQUENCE A series of other named types, Yuppie ::= SEQUENCE { Yuppie ::= { 
in order. income INTEGER, income 100000, 
All elements must be present name VisibleString } name "John Doe"} 
unless OPTIONAL or 
DEFAULT. 

SEQUENCE OF A repeating series of a single Stooges ::= Stooges ::= { 
type in order. SEQUENCE OF "Larry", 

VisibleString "Curly", 
"Moe" } 

SET A series of other named types, Yuppie ::= SET { Yuppie ::= { 
order does not matter. income INTEGER, income 100000, 
All elements must be present name VisibleString } name "John Doe" } 
unless OPTIONAL or 
DEFAULT. 

SET OF A repeating series of a single Stooges:-SET OF Stooges ::= { 
type. Order does not matter. VisibleString "Larry", 

"Curly", 
"Moe" } 

CHOICE A way to select one from a set of Person:- CHOICE { Person ::= name "Joe" 
alternate types. ssn INTEGER, 
NOTE: Intheprintfile name VisibleString, 
notation, you are indicating one badge-id INTEGER } 
choice, so {} are not allowed but 
the identifier for the selected 
CHOICE must be given before 
the value 

VisibleString A string of printable ASCII 
characters. 
NOTE: The double quote 
character (") may be included in 
a VisibleString by doubling it. 

Text:—VisibleString Text::= "Hi Mom!" 

StringStore Defines a VisibleString which is 
read into a ByteStore instead of 
aCharPtr. Used for very long 
strings. 

Dna ::= StringStore Dna ::= "AGGAGG" 

As indicated by the ASN. 1 specification and printfile of Figures 1 and 2, ASN.l 

structures (specifications and printfiles) are hierarchical in nature. By adopting a simple 

graphical notation, ASN. 1 structures can be represented in a tree or hierarchical format. 

11 



With this format, a user can easily manipulate the on-screen structures using normal tree 

manipulation functions (pruning, combining, etc.) as well as standard database 

manipulation operators. Figure 3 shows the graphical representation of selected ASN. 1 

constructs . The graphical tree representation of the sample specification and printfile 

given in Figures 1 and 2 is shown as Database 1 in Figure 4. 

SEQUENCE (OF) SET (OF) 

[ ] 
OPTIONAL 

CHOICE 

Figure 3. Graphical Representation of Supported ASN.l Constructs 
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holding 

b-num    title   author-name    [subj]       type   language   1 c - n u m publisher-name publisher-addr checked-out     cost 

INTEGER VisibleString VisibleString VisibleString , VisibleString VisibleString    VisibleString      BOOLEAN INTEGER 

bookmusic   movie c-letter    f-digit      [s-digit]     cuttering 

Book-typt       Music-type    Movit-typt   ViribUString   ViribltStrttig VitibUSiring       VitibUSiring 

Figure 4. Sample ASN.l Tree Structure 

D. ASN.l DATA MANIPULATION LANGUAGE (DML) 

In anticipation of the data manipulation facilities required for applying ASN. 1 to 

heterogeneous database data sharing, an SQL-like data manipulation language was 

developed (Kamel, N., 1993). This DML provides functions that allow normal database 

query and manipulation on ASN.l printfiles. Some of these functions include subtree 

extraction, assignment, comparison, joining, importing/exporting, and rearranging 

subtrees. Since the DML is not part of the ASN. 1 standard, it has not yet gained 

widespread use. Additionally, research is still ongoing to refine and redefine certain 

aspects of the DML. While the goal of this thesis is the resolution of schema and data 

conflicts and not data manipulation, conflict resolution should be seen as a necessary first 

step in developing database views (either loosely or tightly coupled) with all types of 

conflicts resolved and on which the user will perform DML processes. Some DML 

functionality is provided in the software developed in this thesis for demonstration 

13 



purposes and to complement the conflict resolution capabilities developed. The BNF 

syntax for the DML functions is shown in Table 2 (Kamel, 1994). It should be 

emphasized that DML functions are provided explicitly for the manipulation of the data in 

an ASN. 1 database, much like SQL manipulates data in relational databases. These are 

not to be confused with the tools provided by this thesis which allow the user to 

manipulate the schema and data definitions in order to resolve integration conflicts. These 

tools will be discussed in more depth in Chapters IV and V. 

14 



TABLE 2 
BNF SYNTAX FOR ASN.l DATA MANIPULATION LANGUAGE 

BNF syntax description of ASN.l DML 

<ASN.l_program> ::= BEGIN {<statemenf>;}...END 

<statement> ::= {<assignment_statemenf> \ <GET_statement> | <IMPORT_statemenf> \ 
<REIMPORT_statement> \ <SHOW_statement> | <SET_statement>} \ <ALTER_statement> 

<assignment_statement> ::= <external_tree_name> = <externaljree_name> 

<GETjstatement> ::= GET { FIRST | ALL [UNIQUE] } [<subtree>] {[, [<subtree>]]}...[INTO 
<tree_name>] 
FROM {<tree_name> [INCLUDE PATH]}... 
[WHERE <condition>] 

<condition> ::= [( {<term> \ <term> { AND | OR } <conditiori> } ) ] 

<term> ::= { (<comparison>) | NOT <comparison>} 

<comparison> ::= { T | F | <factor> <op> <factor>} 

<factor> ::= {<variable> | <constant> } 

<op>::={ = \o\>\<\>=\<=} 

<IMPORTjstatement> ::= IMPORT <textjile> USING <abstract_specification> INTO 
<printJorm> 

<REIMPORTjstatement> ::= REIMPORT <textjile> USING <abstract_specifwation> [INTO 
</V/"H/_/Ö/7K>] 

<EXPORT_statement> ::= EXPORT <print-form> TO <textjile> 

<SHOW_statement> ::= SHOW { ENVflRONMENT] <textjile> | <abstract_specification> \ 
<print-form> } 

<SET_statement> ::= SET <system_yariable> [ = <value> ] 

<ALTER_statement> ::= ALTER <print-form> BY <abstract_specification> [INTO <print-form>] 

<textjile> ::= identifier 

<abstract_specification> ::= identifier 

<print-form> ::= identifier 

<variable> ::= identifier 

<system_vahable> ::= {PAUSE | LINE_WIDTH |PAGE_SIZE | SPOOLJETLE | 
DISPLAY_RESULTS } 

<value> ::= { integer | real | boolean | string } 

<constanf> ::= { integer | real | boolean | string } 

15 



III. SAMPLE DATABASES 

A. SELECTION CRITERIA 

In selecting sample databases to demonstrate semantic conflict identification and 

resolution for this thesis, several factors were taken into consideration. Initially, we 

intended to utilize some of the biological databases publicly distributed by the National 

Center for Biotechnical Information (NCBI). However, upon close examination it was 

determined that these databases would not yield enough conflicts to demonstrate our 

approach of conflict identification and resolution. Rather than modify the NCBI databases 

to meet our needs, we adapted two sample relational databases from Kim and Seo's paper 

on classifying conflicts in multidatabase systems (1991) and presented them in ASN. 1 

formats. These databases, with some modification, had the benefit of containing a 

majority of the conflicts we needed to illustrate our approach. 

B. COMPONENT DATABASES 

The component databases represent two independent library DBMS's, each in a 

different location, and implemented with different hardware and software. The following 

sections describe each database in the ASN. 1 specification format, the ASN. 1 printfile 

format, and graphically. 

16 



1. Database l~Main Library 

The first sample database represents the holdings of the Main Library and is shown 

as an ASN. 1 specification in Figure 5. 

 ***************************************** 

CDB-1 data definitions 
—  Gino Celia, 1994 

 ***************************************** 

Component-one-module DEFINITIONS ::= 
BEGIN 

Holding-set ::= SEQUENCE OF Book —collection of books 

Holding ::= SEQUENCE { 
b-num INTEGER, — local key 
title VisibleString, 
author-name VisibleString, — last, first 
subj VisibleString OPTIONAL, 
type CHOICE { 

book SEQUENCE { 
binding ENUMERATED { 

hardcover(1), 
paperback(2) }, 

num-pgs INTEGER }, 
music SEQUENCE { 

medium ENUMERATED { 
record(1), 
cd(2), 
tape(3) }, 

length INTEGER }, — in minutes 
movie SEQUENCE { 

format ENUMERATED { 
beta(l), 
vhs(2), 
reel(3) }, 

length INTEGER }}, — in minutes 
language VisibleString DEFAULT "Engli sh", 
lc-num SEQUENCE { 

c-letter VisibleString, — one or more CAPS 
f-digit VisibleString, — one or more digits 
s-digit VisibleString OPTIONAL, — one or more digits 
cuttering VisibleString }, — auth cutter number 

publisher-name VisibleString, 
publisher-addr VisibleString, — num, str, city, st 
checked-out BOOLEAN, — TRUE if in library 
cost INTEGER } — cost(whole dollars) 

Figure 5. ASN.l Specification for Database One 

17 



The database contains a group of holdings known as & Holding-set. Each holding 

consists of a unique identifier called the b-num. The b-num uniquely identifies each 

holding and is similar to the primary key of a relational database. Most of the remaining 

fields are self-explanatory. The title represents the holding's title. Author-name is the 

author's last and first names in that order. Subj is an OPTIONAL field containing the 

subject of the holding. 

Type is a CHOICE field between three types of holdings: book, music, and movie. 

This means that the value for Type will depend on which of the choices is selected. Each 

choice is defined separately. If the value of the type choice is book, type will be defined as 

an ENUMERATED binding of either hardcover or paperback, and num-pgs, the number 

of pages in the book. If the value of the choice is music, type will be defined as an 

ENUMERATED medium of either record, cd, or tape, and length, the length of the music 

holding in minutes. Finally, if the value of the choice is movie, type will be defined as an 

ENUMERATED format of either beta, vhs, or reel, and length, the length of the movie. 

Language is the language in which the holding was published. Lc-num is the 

Library of Congress number and is defined as a SEQUENCE of c-letter,f-digit, 

OPTIONAL s-digit, and cuttering. These are alphanumeric or numeric fields which 

compose a standard Library of Congress holding number of the form: 

U2 60 
B43 

The publisher-name is the name of the holding's publisher. The publisher-addr is 

the number, street, city, and state of the publisher. Checked-out is a BOOLEAN value 
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which is TRUE if the holding is currently in the library, FALSE if the holding is checked 

out of the library. Finally, cost is the original cost of the holding in whole dollars. 

A sample printfile conforming to the above specification is given in Figure 6. 

Holding ::= { 
b-num 10 , 
title "Joint Military Operations: A Short 

History" , 
author-name "Beaumont, Roger A." , 
subj "Military Science" , 
type 
book { 

binding hardcover , 
num-pgs 245 } , 

language "English" , 
lc-num { 

c-letter "U" , 
f-digit "260" , 
cuttering "B43" } , 

publisher-name "Greenwood Press" , 
publisher-addr "Westport, Connecticut" , 
checked-out TRUE , 
cost 60 } 

Figure 6. Sample ASN.l Printfile for Database One 

2. Database 2~Engineering Library 

The second sample database is very similar to the first in that it contains 

information about a library's holdings. The ASN. 1 specification for this database is given 

in Figure 7. 
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-_***************************************** 

CDB-2 data definitions 
Gino Celia, 1994 

_***************************************** 

Component-two-module DEFINITIONS 
BEGIN 

Item-set ::= SEQUENCE OF Item collection of items 

Item ::= SEQUENCE { 
i-num INTEGER, 
i-title VisibleString, 
a-name SEQUENCE { 

last VisibleString, 
first VisibleString, 
middle VisibleString OPTIONAL }, 

subject VisibleString, 
type ENUMERATED { 

book(l) , 
movi e(2) }, 

c-letter VisibleString, 
f-digit VisibleString, 
s-digit VisibleString OPTIONAL, 
cuttering VisibleString, 
publisher SEQUENCE { 

p-name VisibleString, 
str-num VisibleString, 
str-name VisibleString, 
city VisibleString, 
state VisibleString, 
zip VisibleString }, 

cost REAL, 
checked-out BOOLEAN } 

local key 

- one or more CAP LTRS 
- one or more digits 
- one or more digits 
- author cutter number 

- price in dollars and cents 
- true if checked out 

END 

Figure 7. ASN.l specification for Database Two 
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In this case it is the Engineering Library and the holdings are referred to as items. 

Similar to Database 1, an Item-set is a group of individual items. I-num is the unique 

identifier of each item in the database. I-title is the item title. A-name the author name 

and is defined as a SEQUENCE of the last, first and OPTIONAL middle names.   Subject 

is the item's subject. Type is the item type and is an ENUMERATION of either book or 

movie. C-letter,f-digit, OPTIONAL s-digit, and cuttering are all fields which represent 

the different portions of the Library of Congress number. The publisher field contains 

information about the item's publisher in six sub-fields. P-name is the publisher's name. 

Str-num, str-name, city, state, and zip are the publisher's street number, street name, city, 

state, and zip code, respectively. Cost is the original purchase price in dollars and cents, 

and checked-out is a BOOLEAN value which is TRUE if the book is checked-out and 

FALSE if the book is in the library. 

A sample printfile conforming to the above specification is given in Figure 8. 
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Item ::= { 
i-num 21 , 
title "A Breakfast for Bonaparte" , 
a-name { 

last "Rostow" , 
first "Eugene" , 
middle "V" } , 

subject "History" , 
type book , 
c-letter "E" , 
f-digit "183" , 
s-digit "7" , 
cuttering "R749" , 
publisher { 
p-name "National Defense University Press" , 
str-num "1600" , 
str-name "Pennsylvania Ave." , 
city "Washington" , 
state "DC" , 
zip "20319" } , 

value { 4199, 10, -2 } , 
checked-out FALSE } 

Figure 8. Sample ASN.l Printfile for Database Two 

Once the ASN. 1 specifications have been developed along with conforming 

printfiles, a graphical tree representation can be created which shows the structure of the 

database pictorially. In Figures 9 and 10, tree depiction's for one item in each of the 

sample databases are presented using the graphical representations given in Chapter II. 
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The next chapter introduces the framework for classification of the semantic 

conflicts contained in these two sample databases. Many of these conflicts were contrived 

to better illustrate the framework and resolution strategies presented later in the thesis, but 

most integration attempts will contain several of the conflicts given in the framework. 

Throughout the thesis, we will utilize these sample databases to provide examples and test 

the implementation for correctness and completeness. 
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IV. FRAMEWORK OF SEMANTIC CONFLICTS IN ASN.l 
DATABASES 

The goal of this thesis is to develop a tool for assisting users in resolving the semantic 

conflicts which almost certainly arise when attempting to integrate two or more 

ASN. 1-described databases. To accomplish this goal, we follow a three step approach. 

The first step is to determine the scope and functionality of the end-system. This 

functionality is determined by the type of integration desired. Second, all possible 

schematic and data conflicts in ASN. 1 databases must be identified and classified into a 

framework. Once this framework is established, the third step is to develop, test, and 

implement an algorithm for the resolution of all conflicts identified in the framework. This 

chapter addresses the first two steps of our approach. It discusses the two approaches of 

integration: tightly vs. loosely coupled. It then presents a classification scheme for 

organizing the types of conflicts into a logical framework. Chapters V and VI address the 

conflict resolution strategy and the implementation of the tool. 

A. TYPES OF INTEGRATION 

The approach supports two modes of integration: a loosely-coupled mode, and a 

tightly-coupled mode (Sheth and Larson, 1990). The modes differ in their use of the data 

dictionary and the presentations to the user as well as in the prerequisite knowledge 

requirements of the user regarding the schema of the component databases. 
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In the loosely-coupled mode, the dictionary is used merely as a look-up device for data 

descriptions. A set of common operators is presented to the users that include: 1) all 

supplied software tools, 2) all supplied canned database transactions, and 3) special 

interoperability operators, directly based on the ASN.l DML, which allow the described 

I/O files to be queried, merged, and manipulated. No global schema integrating all the 

stored descriptions is attempted. The dictionary in this mode of operation may contain 

conflicts, such as synonyms, homonyms, and structural conflicts. The tool developed for 

this thesis helps the user in identifying and resolving these conflicts through a set of 

commands invoked in a graphical environment. The user bears the responsibility of 

understanding the semantics of each data file he wishes to use and resolving the conflicts 

that occur. The system hides all the networking details and provides a uniform set of 

operators for interoperability. 

In the tightly-coupled mode, the dictionary assumes a more powerful role than simply 

being a lookup device—it acts as a global schema. The global schema is defined using the 

markup language as the Data Definition Language (DDL) and represents the integration of 

one or more component databases. To accomplish this integration, all semantic conflicts 

and inconsistencies must be resolved, and appropriate mappings to/from component 

databases should be defined. While the tool developed for this thesis does not perform the 

mapping for the federated schema, it supports conflict identification and resolution 

required as a prerequisite for this mapping. Again, the user is supplied with a uniform 

interface that will present a unified view of the databases, the software tools, and the 
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interoperability operators. The tightly-coupled approach requires more maintenance and 

attention from the users than the loosely-coupled approach, but offers greater consistency 

and demands less prior user knowledge about the structure of the underlying databases. 

B. CLASSIFICATION OF SEMANTIC CONFLICTS 

Regardless of which method of utilization is chosen, semantic conflict identification 

and resolution is a crucial step for facilitating the integration of databases. Semantic 

conflict in ASN. 1 databases can be classified into two broad categories: schema conflicts 

and data conflicts (Kim and Seo, 1991). Schema conflicts are conflicts that occur at the 

level of the conceptual organization and definition of the database, while data conflicts 

occur as a result of differences in the actual data values returned from the different 

component databases. For our classification scheme, we utilized a model similar to that 

presented by Kim and Seo (1991). The anticipated schema and data conflicts are 

summarized in Figure 11, and addressed in detail in the remainder of this chapter. The 

semantic conflicts identified in this chapter apply to both tightly and loosely coupled 

integration approaches. 
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Schematic Conflicts 
Name Conflicts 

Synonyms ~ same object named differently in different databases 
Homonyms — different objects named the same in different databases 

Type Conflicts — same objects have different types in different databases 
Structural Conflicts 

Grouping Conflicts — horizontal or vertical grouping differences in different 
databases 

Sequence Conflicts — sequences defined differently in different databases 
Optional Item Conflicts ~ optionality defined differently in different databases 
Choice Conflicts ~ choices defined differently in different databases 

Data Conflicts 
Precision Conflicts — different precision utilized in different databases for the same 

object 
Unit Conflicts — different units utilized in different databases for the same object 
Expression Conflicts ~ different expressions utilized in different databases for the 

same object 

Figure 11. Summary of ASN.l Semantic Integration Conflicts 

1. ASN.l Schematic Conflicts 

Conflicts which occur due to differences in the structure of the database are known 

as schematic conflicts. In ASN. 1 tree structures, these conflicts can occur at the 

individual nodes of the ASN. 1 trees, and are sometimes referred to as node conflicts. For 

our purposes, schematic node conflicts can be one of three basic types: 

Name Conflicts 

Synonyms—the same object is named differently in different component databases, 

(e.g., the title of each holding is referred to as "title" in CDB1 and "i-title" in CDB2.) 
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Homonyms—different objects are named the same in different component 

databases, (e.g., the value for "checked-out" has the same name, but different meanings in 

each database. A TRUE value for this field in CDB1 indicates that the item is in the 

library while it indicates the item is checked-out of the library in CDB2.) 

Type Conflicts 

Type Conflicts—the same object is defined using different base types in different 

component databases, (e.g., item "cost" is defined as an INTEGER [whole dollars] in 

CDB1 and a REAL [dollars and cents] in CDB2.) 

Structural Conflicts 

Grouping Conflicts—objects grouped differently either vertically, horizontally, or 

both in two different component databases, (e.g., "author-name" is defined as a 

VisibleString in CDB1, and the equivalent field "a-name" is defined as a SEQUENCE OF 

VisibleStrings in CDB2. This is a combination of both a vertical and horizontal grouping 

conflict since the VisibleStrings in CDB2 must be combined horizontally into a new field 

and then moved vertically one level up to be equivalent to the author-name field in 

CDB1.) 

Sequence Conflicts-SEOUENCES defined differently in each component database, 

(e.g., a name field may be a SEQUENCE of first-name->last-name fields in one database, 

but last-name->first-name in the other.) Note that this is a potential conflict for 

SEQUENCE structures only, since SET structures are not ordered. 
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Optional Item Conflicts—an object is optional in one component database, but not 

the other, (e.g., "subj" is OPTIONAL in CDB1, but "subject" is mandatory in CDB2.) 

Choice Conflicts—an object or group of objects is defined as a choice in one 

component database, but not the other, (e.g., "type" is a CHOICE in CDB1, but 

ENUMERATED in CDB2.) 

2. ASN.l Data Conflicts 

Data conflicts occur when two like objects in different component databases are 

stored in compatible formats, but the data itself is incompatible or the data is incorrect. 

Data conflicts include: 

Precision Conflicts—data for the same object in two different component databases 

are stored with different precision or granularity, (e.g., Item values are rounded to the 

nearest dollar in CDB1, but recorded as dollars and cents in CDB2) 

Unit Conflicts—data for the same object in two different component databases are 

stored with different units, making their comparison incompatible,   (e.g., Item values 

might be stored in US Dollars (US$) in one component database, but stored in Japanese 

Yen (¥) in the other.) 

Expression Conflicts—similar data in two different component databases is 

represented by different expressions in each database, (e.g., Book names could be 

abbreviated in one component database, but not the other.) 

Note that several other types of data conflicts such as missing or incorrect data can 

(and usually do) exist. Since these conflicts are not detectable through examination of the 
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individual component database Schemas, the user has few options available to correct 

these conflicts at schema definition time. Even if these types of conflicts could be 

detected, the only way to resolve them is to add to or modify the data entries in the 

original databases themselves. There is no filter, algorithm, or operator available to 

resolve these types of conflicts at the virtual level during schema generation. For this 

reason, those conflicts which cannot be identified at schema generation time are not 

addressed in this thesis. 
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V. CONFLICT RESOLUTION 

The purpose of this chapter is to discuss techniques for resolving the conflicts 

described in the previous chapter. These techniques are implemented using graphical 

commands that the user can utilize to resolve these conflicts. The chapter presents a 

technique for the resolution of each conflict previously identified, including a discussion of 

the tools presented to the user to implement these resolution methods. 

Once the framework for conflict resolution is established, a means for resolving each 

conflict identified in the framework must be identified. Although the ideal system would 

include algorithms which automatically detect the conflicts identified in the previous 

chapter and resolve them heuristically, this is not likely to be feasible for several reasons. 

First, any automation of conflict resolution would require each component database to 

maintain strict standardized data dictionaries—a practice which is currently far from the 

norm. Additionally, some assumptions about the data to be merged must be made which 

would not necessarily apply universally to all sample databases. Future research, 

especially in artificial inteligence, may lead to further automation of the process. For this 

thesis we provide tools for the user to aid in schema/data adjustment and conflict 

resolution. Additionally, we assume the user or system integrator is knowledgable enough 

about the structrue and semantics of the component databases. 
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The success of the Data Manipulation Language (DML) is dependent on the removal 

of all possible semantic conflicts. The following sections discuss the means for the 

removal of these conflicts. 

A. SCHEMA LEVEL RESOLUTION 

Name Conflicts 

Synonyms and Homonyms: Naming conflicts occur due to either synonym or 

homonym conflicts. In order to resolve this conflict, a command for renaming fields in the 

virtual Schemas must be provided. This command can be used for synonyms to change a 

synonym node name in one database to match the node name of the equivalent field in the 

other component database. Similarly for homonyms, the command can be used to change 

one of the node names to a different, unique name. 

Type Conflicts 

Type conflicts occur when the like objects are defined using different base types. To 

resolve this type of conflict, a command must be provided to dynamically change the type 

of one of the objects. Since not all types are interchangable, a table of allowed 

conversions must be specified. For instance, almost all types can be converted to the 

VisibleString type, however, the reverse is not true. Alphanumeric characters which make 

up a VisibleString cannnot meaningfully be converted to INTEGERS or REALs. For our 

purposes, the allowed type conversions will conform to ANSI C type casting rules since 

the program is implemented in that language. These rules, as they apply to this thesis, are 

presented in detail in Chapter VI. 
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Structural Conflicts 

Grouping conflicts: Vertical and horizontal grouping conflicts usually occur due to 

differing levels of detail or different information requirements in the component databases. 

For horizontal grouping conflicts, two operations are required for successful conflict 

resolution: concatenate and subset. Concatenate allows two horizontal nodes at the same 

level to be combined into one. Subset allows one node to be divided into two new nodes 

at the same level in the ASN. 1 tree diagram. The subset operator requires specification 

from the user in order to determine how to divide the node (e.g., dividing "author-name" 

in CDB1 into two separate nodes, "last-name" and "first-name"). 

Vertical grouping conflicts resolution also require two operations: collapse and 

expand. Collapse causes a child node to be merged with its parent into a single node. 

Expand divides a parent node into a new parent-child node combination. Like the 

horizontal subset operator, the expand operation requires the user to specify how the data 

is distributed between the two nodes to perform the node division. 

Sequence Conflicts: Occur when SEQUENCES are defined differently in each 

database. To resolve this type of conflict, the user must be able to rearrange the items in a 

SEQUENCE strucutre in one component database so that they coincide with the defined 

SEQUENCE structure in the other database. 

Optional Item Conflicts: Occur due to a difference in optionality. To resolve this type 

of conflict, the user must be given a command which removes the optionality of a given 
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node. If a node becomes mandatory and there is no data value for a given instance, a 

NULL value is inserted in the data item ofthat node. 

Choice Conflicts: Occur when an object is defined as a CHOICE in one database, but 

not the other. To resolve this conflict, the user must have the ability to redefine the 

CHOICE node as a required one which matches the type of the corresponding node in the 

other component database. 

B. DATA LEVEL RESOLUTION 

Precision Conflicts: Occur when data in two different databases are stored with 

different precision or granularity. Resolution of this type of conflict requires 

transformation of the values of one of the data sets to the other's precision. For example, 

if books were rated on a scale of 1-10 in one database and A-F in the other, rating of the 

data items in one database would need to be mathmetically converted to the other's. In 

this case, a numeric value might be assigned for each of the A-F grades in order to allow a 

proper comparison between the two databases. The conversion process may require 

information from the designers of the databases. 

Unit Conflicts: Occur when data in two different databases are stored with different 

units. This conflict, much like the precision conflict, requires transformation of one data 

set to the other's units. For instance, if the value of the books were stored in dollars in one 

database and yen in the other, the user would have to supply either a dollar-to-yen or 

yen-to-dollar conversion formula in order to unify the units in each database. 
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Expression conflicts: This is perhaps the most difficult data conflict to resolve, and in 

fact some expression conflicts may not be correctable at schema generation time. These 

conflicts occur when different expressions are used to store the same data object. If the 

expression conflict occurs consistently throughout the database, it may be correctable by 

mapping the data from one expression to another with the help of user input. However, if 

the expression conflict occurs randomly or sporadically across the data set, there is 

probably no easy algorithm for conflict resolution, and some data inconsistencies may 

remain. 
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VI. IMPLEMENTATION OF CONFLICT RESOLUTION 

The culmination of the research presented in the previous chapters is a working 

prototype of a database integration system designed to aid in the resolution of schema and 

data conflicts resulting from that integration. This chapter discusses platform, language, 

and implementation decisions and serves as a user's guide to the software. A full source 

code listing is provided in the Appendix. 

A. PLATFORM AND LANGUAGE CONSIDERATIONS 

This software is primarily designed for end-users who access multiple databases on the 

internet or through other local and wide area networks. With that in mind, we chose to 

develop the prototype in the UNIX/X Window environment in order to support the 

majority of the target audience. While some end-users will undoubtedly access their data 

from other environments, it is generally believed that most users will utilize a UNIX 

workstation running X Windows. 

X Windows is a platform-independent graphical environment originally designed for 

the UNIX operating system and now being ported to other operating systems. However, 

most graphical software built for X Windows is not designed and implemented at the 

lower levels of the X libraries. Instead, several vendors have developed toolkits of library 

routines designed to ease programming in X Windows and provide a uniform 

look-and-feel to software developed using these toolkits. Sun Microsystems' 
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OpenWindows™ and Open Software Foundation's Motif™ are two examples of such 

toolkits based on the X Windows routines. Since Sun has recently announced that it was 

discontinuing OpenWindows™ and bundling Motif™ with Solaris™, its version of the 

UNIX operating system, we decided to build the system in Motif™. Unfortunately, the 

existing computer resources at the Naval Postgraduate School do not include Sun 

workstations with Motif. However, the Silicon Graphics workstations available in the 

Visualization Lab at the school do include the Motif development libraries, and were 

therefore chosen as the hardware platform of choice to develop the prototype. 

Specifically, the prototype system was developed on Silicon Graphics workstations 

running IRIX 5.2 (SGI's UNIX) and Motif 1.2.3/X11R5. 

B. IMPLEMENTATION DECISIONS AND TOOLS 

The first step of the implementation was determining the software design and 

functionality. Since the final system will include additional functionality, the design allows 

for functionality which is not implemented in the current version. For example, the 

command window has an area dedicated for the DML commands, but no DML commands 

are implemented in this version. The user is provided with a multi-window environment 

consisting of a window for each ASN. 1 tree and a central control window which provides 

the conflict-resolution commands. The user loads two or more graphical ASN.l database 

specifications/printfile pairs in separate windows, identifies and resolves the conflicts, and 

then performs DML functions to manipulate the data of the various databases. 
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It is important to note that any changes the user makes to any ASN. 1 specification or 

printfile are virtual and do not affect the original files. The program automatically 

generates output files which contain the new trees with semantic conflicts resolved. Later, 

the user can load the updated specifications and printfiles and thus skip the conflict 

resolution step and start utilizing the DML immediately. 

1. NCBI Toolkit 

The implementation of the prototype was aided greatly by the use of a series of C 

programs and libraries called the NCBI Toolkit which was developed at the National 

Center for Biotechnical Information (NCBI, 1993). These libraries include extensive 

routines for the handling and manipulation of ASN. 1 encoded specifications and printfiles. 

The complete software toolkit needs to be installed on the end user's system in order to 

perform the initial parsing of the ASN. 1 specifications and printfiles into a format readable 

by a tree generation program that displays them in a graphical format in preparation for 

conflict identification and resolution. The toolkit is available through anonymous FTP to 

ncbi. nlm. nih.gov. 

2. OSF/Motif™ 

Motif is a standard user interface toolkit developed and supported by the Open 

Software Foundation (OSF) and its member companies. Motif includes the Motif widget 

set, which is based on the Xt Intrinsics and include graphical user interface components 

such as buttons, sliders, menus, etc. Motif has a distinctive three-dimensional beveled 

appearance which is described more fully by the Motif Style Guide. While Motif is not 
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available for free in the public domain, it is bundled with many major operating systems. 

Figure 12 shows a typical architecture of a Motif/Xt application (Young, 1994). 

Application 

\ioi!i"\\u!_e' >t* 
I 

Xt Intrinsics 

Xlib C Language Interface 

■tHBMHHBili 
fife'i 

Network Connection 

X Server 

Figure 12. Architecture of a Motif/Xt Application 

The following sections describes the procedures for utilizing the software and 

provides samples of the screen output at various points in the execution. There is 

currently no on-line or context-sensitive help provided by the system. 

C. PROTOTYPE DESIGN 

1. Data Flow 

Before discussing the actual operation of the program, it is important to 

understand the flow of data in the system. Operation of the application actually requires 

the use of two programs. Refer to Figure 13 during the discussion of data flow. 
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specl.asn 

printl.ent 

spec2.asn   . 

print2.ent 

PARSER.C 
►treel.dat ^ 

A 
'tree2.dat—>. 

A 

PROJ.C 
, treelout.dat.. 

-►tree2out.dat. 

Figure 13. Data Flow Model 

As the figure shows, processing ASN. 1 databases is a two-stage procedure. First, 

the ASN. 1 specification and its associated printfile are processed through the parser. c 

program. This utility is a modification of routines in the NCBI toolkit which validates the 

specification, then checks the printfile against the valid specification and finally outputs an 

ASCII text file for use in the second stage of the application. This text file consists of sets 

of parent-child node numbers and labels formatted for use in the pro j . c program. This 

program makes use of a Motif-based tree widget written by Douglas Young of SGI 

(1994). After manipulation of the trees by this program, new ASCII output files are 

automatically generated with conflicts resolved for future use. There is currently no 

facility to parse the ASCII files back into ASN. 1 specifications and printfiles; this task is 

left for future research. 

2. Main Programs 

Following is a list of all the program files associated with the implementation: 

parser 
parser.c 

— executable parser program 
— source code for parser 
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ginoprint. c — replacement of NCBI asnprint.c routines (produces 
ASCII tree files) 

p r o j — executable integration program 
pro j . h — header file for proj 
pro j . c -- source code for proj 
Tree — Motif resource file for proj 
T r e e P. h — public header file for tree widget 
Tree. h — private header file for tree widget 
Tree.c —tree widget 
* • asn —an ASN. 1 specification 
* . ent ~ an ASN. 1 printfile 
* . out —an ASN. 1 specification or printfile which has been 

processed by the parser (validated and output) 
* . dat - ASCH tree file 

3. Initial Screen 

Figure 14 shows the initial screen of the prototype. It consists of a command 

window at the top that contains the conflict resolution commands and the DML 

commands, and two or more database windows that display the graphical ASN.l 

databases to be manipulated. The user should ensure that the proper tree is selected using 

the Active Tree radio buttons before selecting any Resolution Commands. The Record 

arrow buttons select the first, previous, next, and last record of the active tree, 

respectively. 

4. Using the Prototype 

The conflicts presented in the previous two chapters will now be discussed in the 

context of the implementation. Each type of conflict will again be presented and the 

solution given in terms of program operation. For each conflict, an example dialog box 

and the resulting ASN. 1 tree diagram will be given. All examples assume the initial 

graphical ASN. 1 trees given in Figure 14. 
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SCHEMA LEVEL RESOLUTION 

Name Conflicts 

Synonyms and Homonyms: Naming conflicts occur due to either synonym or 

homonym conflicts. To correct these types of conflicts, the user selects the Change Node 

NAME button. The dialog box shown in Figure 15 is displayed. The user enters the 

name of the node to be changed and a new name. 

»   change name_ .popup 

Old   Haue 

Hew   Name 

language 

lang 

Cancel1 Help    | OK 

Figure 15. Change Node NAME Dialog 

After pressing OK, the node name is changed for each record in the active tree as 

shown in Figure 16. 
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Figure 16. Tree Diagram with New Node Name 

Type Conflicts 

Type conflicts occur when the like objects are defined using different base types. To 

correct type conflicts, the user selects the Change Node TYPE button. The dialog box 

given in Figure 17 is displayed. The user then enters the node name whose type is to be 

changed and a new type, and presses OK. 

<                                 ■■■-■- ' •■•■■■■'■'■-'■■■■■ 1—j 
■=a   change typejpopup 

Node   Name 

Hew   Type 

cost: 

BE AL 

Cancel1 Help    | OK       | 

Figure 17. Change Node TYPE Dialog 
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If the user attempts a type change which is not allowed, an error message appears and 

the type is not changed. Legal type changes are those which conform to normal C 

typecasting rules. If the type change is legal, the type of the selected node is changed as 

shown in Figure 18. 

Figure 18. Tree Diagram with New Node Type 

Structural Conflicts 

Grouping conflicts: Vertical and horizontal grouping conflicts usually occur due to 

differing levels of detail or different information requirements in the component databases. 

For horizontal grouping conflicts, two operations are required for successful conflict 

resolution: concatenate and subset. To perform a horizontal concatenation, the user clicks 

the Horiz CONCAT button. The dialog shown in Figure 19 is displayed. 
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=> horiz concat_popup 

Old   Label   1 

Old   Label   2 

Mew   Label 

c-letter 

f-digit 

loc-prefix 

Cancel1 Help    | OK       | 

Figure 19. Horizontal CONCAT Dialog 

After entering the names of the two nodes to merge together, a new label, and clicking 

OK, the resultant tree diagram given in Figure 20 is produced. 

Figure 20. Tree Diagram After Horiz CONCAT 
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Horizontal subsets are produced in much the same manner. By selecting the Horiz 

SUBSET button, a dialog is generated which asks for the node to divide and the character 

separating the data to be divided. This dialog is given in Figure 21. 

lea horiz subset_popup 

I   Old   Name 

Hew   Label   1 

New   Label   2 

Char   to   divide 

author-name 

auth-first 

auth-last 

9 

Cancel1 Help    J OK       1 

Figure 21. Horiz SUBSET Dialog 

A tree diagram with a horizontal subset is shown in Figure 22. 
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Figure 22. Tree Diagram After Horiz SUBSET 

Vertical grouping conflicts are resolved with the Vert COLLAPSE/Vert EXPAND 

buttons, whose operation is identical to the Horiz CONCAT and SUBSET buttons. 

Sequence Conflicts: Occur when SEQUENCES are defined differently in each 

database. To resolve this type of conflict, the user selects the Change SEQUENCE 

button. The dialog box shown in Figure 23 is displayed. 

c=j change sequence_popup 

Sequence   Node   Label s-digit 

Offset -1 

:el| Help    | OK       |                                Cane 

Figure 23. Change SEQUENCE Dialog 
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The user then enters a node label from a SEQUENCE in the active tree, and an offset 

for the number of places to move the node. A negative offset moves the node up, a 

positive offset moves it down. For example, the entries in Figure 23 will move the node 

labeled s-digit UP 1 place. Figure 24 shows the modified tree after executing the above 

command. 

Figure 24. Tree Diagram After Change SEQUENCE 

Optional Item Conflicts: Occur due to a difference in optionality. When the 

OPTIONALITY button is selected, the user is prompted for the label of an optional node 

in the active tree, as shown in Figure 25. 
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=   optionafity_popup 

Optional   Kode   Label 

Help    1 OK       1                               Cancel] 

Figure 25. Optionality Dialog 

If a valid node label is entered, the optionality ofthat node is removed. Any instance 

of the tree for which the optional node was not included is automatically filled with a 

NULL value. 

Choice Conflicts: Occur due to a difference in choice definitions. Like the optionality 

operation above, selecting the CHOICE button prompts the user to enter the label of a 

choice node as shown in Figure 26. If a valid node label is entered, the CHOICE node is 

transformed into a SEQUENCE node whose children correspond to the different choice 

values. Each item in the sequence will have a NULL data value except the original choice 

node. 

■ ■  --"-■■■■                              ■  ■■ ■» ■■ 

»   choice_popup 

Choice   Node 

Hew   Type 

L abel 

Cane el1 Help    | OK      | 

Figure 26. Choice Dialog 
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B. DATA LEVEL RESOLUTION 

Precision Conflicts: Occur when data in two different databases are stored with 

different precision or granularity. In order to correct this conflict, the user selects the 

Change PRECISION button. He is then prompted for a node label from each tree. The 

program automatically maps the values from Tree 2 to corresponding values in Tree 1. 

Unit Conflicts: Occur when data in two different databases are stored with different 

units. To correct this conflict the user selects the Change UNITS button. After entering 

a node label from the active tree, the user enters a multiplier value in the dialog box shown 

in Figure 27. 

j-- J - - —   - -  1—j 
<=\  change units_popup 

Old   Label 

Multiplier 

New   Label 

cost 

2 

yr-2000-value 

Cancel1 Help    | OK       j 

Figure 27. Change UNITS Dialog 

All data values for the selected node are multiplied by this value to scale them to the 

new unit, resulting in the tree diagram given in Figure 28. 

53 



1=1 treet ja 

t'li.L'.'g.1.'.,1.!     mnjiiwi 

E3S3-CEH 

-BBS B»'*jijW|—h£ZM 

CSEH—EB5HS!- 

MJ-l'li'MJ 

- I.'l ■ ■ J,1 S. „' f—U» fMüffli—L-!. „",.,..1., „U! 

Figure 28. Tree Diagram After Change UNITS 

Expression conflicts: These conflicts occur when different expressions are used to 

store the same data object. The Change EXPRESSION button is the only button which 

allows a user to actually manipulate a single data value for a single instance only. When 

the user clicks this button, he is prompted for the old and new data values with the dialog 

box shown in Figure 29. 

a   change expresskm_popup 

Old   Data   Value "Military_Science" 

New   Data   Value "Hilitary_History" 

OK       |                                Can< :el|                                   Help    | 

Figure 29. Change EXPRESSION Dialog 
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Figure 30 shows the tree diagram after the data value has been modified. 

Figure 30. Tree Diagram After Change EXPRESSION 
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VII. CONCLUSION 

In this effort, we have attempted to show how ASN. 1 can be successfully utilized as 

both a Data Definition and Data Manipulation Language for the integration of 

heterogeneous databases. This successful integration depends on the resolution of all 

possible schema and data conflicts before the user manipulates the databases using an 

appropriate DML. While others have studied these conflicts as they apply to more 

conventional database styles like the relational and object-oriented models, we have 

presented a classification and resolution strategy designed around the unique requirements 

of ASN. 1-described databases and documents. The resolution of these conflicts will 

hopefully allow users to access and integrate data in databases having heterogeneous 

formats in a uniform manner utilizing an easy to use graphical user environment. 

The ideas addressed in this thesis are particularly applicable to issues of the 

Department of Defense and the Department of the Navy. As with most modern large 

organizations, DoD and DoN are discovering a myriad of incompatible stovepiped 

databases that evolved over a period of time without careful guidance or planning. This 

situation resulted in data duplication, data inconsistencies, inflexibility, limited data 

sharing, and maintenance problems. As part of the DoD Corporate Information 

Management (CJM) Initiative, examination of various database integration strategies and 

the development of data warehouses is being intensively pursued. Although ASN. 1 
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integration has not yet encountered widespread use, future research using ASN. 1 or other 

markup languages, like SGML, should yield workable systems which may indeed play a 

role in the Department of Defense's progression toward a uniform, federated database 

environment. 

A. LESSONS LEARNED 

Although this thesis originally intended to produce a full-scale application which 

implemented all the aspects of the classification and resolution schemes presented herein, 

the program had to be scaled down to a working prototype with the look-and-feel of the 

füll system, but with limited functionality. Unfortunately, it is difficult to accurately 

predict the amount of time required to produce a piece of software and in this case, some 

aspects of the system will require follow-on work for its completion. Some of this 

shortcoming is explained by the author's limited programming experience in the C 

language, the dependence on source code libraries obtained from external sources which 

required a significant amount of time for familiarization. 

B. FUTURE WORK 

While this thesis serves as good start toward the development of a full-scale conflict 

resolution and database integration system, some areas require future research. First, this 

thesis focuses on the loosely-coupled approach to data integration. The tightly-coupled 

approach discussed in Chapter IV simplifies the user interaction with component databases 

by providing a single unified schema, but is much more difficult to implement due to the 

57 



generation of a federated schema. However, this approach should be included in the final 

product. 

Additionally, there has been demand throughout the distributed database community 

for integration tools which act on the generated output reports of the component 

databases rather than the local Schemas and data. Integration of these reports would allow 

the local database administrators to change various aspects of their individual Schemas 

without affecting the integration as long as the output reports remained constant. Since 

this is usually the case, development of a system which allows output report integration is 

the logical answer to this issue. Future thesis efforts should look specifically in this type 

of integration. 
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APPENDIX 
PROGRAM LISTING 

PARSER.C 

/* Thesis project 
* 

* Parser which converts ASN.l specs and printfiles to 
* ASCII tree files 

* by: LT Gino Celia, Jr., USN 

*/ 

#include <asnbuild.h> 

#define NUMARGS 4 
Args myargs[NUMARGS] = { 

{ "Input spec", "specl.asn", "Book", NULL, FALSE, 'i', ARG_FILE_IN, 
0.0, 0, NULL}, 

{ "Output file", "result.out", NULL, NULL, FALSE, 'o', ARG_FILE_OUT, 0.0, 
0, NULL}, 

{ "Output data", "strm.out", "Book", NULL, FALSE, 'd', ARG_DATA_OUT, 0.0, 
0, NULL}, 

{ "Input data", "printl.ent", "Book", NULL, FALSE, 'p', ARG_FILE_IN, 
0.0, 0, NULL},}; 

extern void AsnTxtReadValFile PROTO((AsnModulePtr amp, AsnloPtr aip, AsnloPtr 
aipout /* , 
AsnloPtr encode */)); 

Int2 Main () 

{ 
AsnloPtr      aip = NULL, 

aipprint = NULL, 
aipout = NULL; 

AsnModulePtr amp = NULL; 
AsnTypePtr    atp; 
FILE     *fp; 
DataVal  value; 

/* 
GetArgs("Parser 1.0", NUMARGS, myargs); 

aip = AsnloOpen(myargs[0].strvalue, "r") ; 
aipprint = AsnloOpen(myargs[3].strvalue, "r"); 
aipout = AsnloOpen(myargs[2].strvalue, "w"); 
fp = FileOpen(myargs[1].strvalue, "w"); 

*/ 
aip = AsnloOpen("spec!.asn", "r"); 
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aipprint = AsnIoOpen("printl.ent", "r"); 
aipout = AsnloOpen("strm.out", "w") ; 
fp = FileOpenf"result.out", "w"); 

amp=AsnLexTReadModule(aip); 
AsnTxtReadValFile(amp, aipprint, aipout); 

aip = AsnloClose(aip); 
aipout = AsnloClose(aipout); 
aipprint = AsnloClose(aipprint); 
FileClose(fp); 
system("cat strm.out"); 
return 0; 

* 

* void AsnTxtReadValFile(amp, aip, aipout) 
* reads a file ofv values 
* prints to aipout if aipout != NULL 
* 

void AsnTxtReadValFile (AsnModulePtr amp, AsnloPtr aip, AsnloPtr aipout) 

{ 
AsnTypePtr atp; 
DataVal value; 
Boolean read_value, print_value, restart; 
Int4 baseCtr=0; 
AsnTypePtr last_atp = NULL; 
AsnTypePtr parent_atp = NULL; 
Int2 last_indent = -1; 
AsnTypePtr stack[50]; 
Int2 i; 

for (i = 0; i < sizeof(stack)/sizeof(stack[0]); i++) 
stack[i] = NULL; 

if (aipout != NULL) 
print_value = TRUE; 

else 
print_value = FALSE; 

if (print_value) 
read_value = TRUE; 

else 
read_value = FALSE; 

atp = NULL; 
restart = FALSE; 

while ((atp = AsnTxtReadld(aip, amp, atp)) != NULL) 
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if (restart == TRUE) 
{ 

if (print value) /* new line */ 

GAsnPrintNewLine(aipout) ; 
GAsnPrintNewLine(aipout); 

} 
restart = FALSE; 

&baseCtr) 

if (read value) 

if (! AsnTxtReadVal(aip, atp, Svalue)) 
{ 
return; 

} 
if (print_value) 
{ 

if (! GinoAsnTxtWrite(aipout, atp, &value, parent_atp, 

{ 
return; 

else 

AsnKillValue(atp, &value); 

if (! AsnTxtReadVal(aip, atp, NULL)) 
return; 

if ( ! aip->type_indent) 

atp = NULL; 
restart = TRUE; 

/* finished reading an object */ 

/* restart */ 

stack[aip->type_indent] = atp; 
parent_atp = aip->type_indent <= 0 ? NULL : 

stack[aip->type_indent-l]; 

last_indent = aip->type_indent; 
} 
return; 
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GINOPRINT.C 

/*  ginoprint.c 

PUBLIC DOMAIN NOTICE 
National Center for Biotechnology Information 

This software/database is a "United States Government Work" under the 
terms of the United States Copyright Act.  It was written as part of 
the author's official duties as a United States Government employee and 
thus cannot be copyrighted.  This software/database is freely available 
to the public for use. The National Library of Medicine and the U.S. 
Government have not placed any restriction on its use or reproduction. 

Although all reasonable efforts have been taken to ensure the accuracy 
and reliability of the software and data, the NLM and the U.S. 
Government do not and cannot warrant the performance or results that 
may be obtained by using this software or data. The NLM and the U.S. 
Government disclaim all warranties, express or implied, including 
warranties of performance, merchantability or fitness for any particular 
purpose. 

Please cite the author in any work or product based on this material. 

* File Name:  asnprint.c 
* 

* Author:  James Ostell 

* Version Creation Date: 3/4/91 
* 

* $Revision: 2.13 $ 

* 
File Description: 

Routines for printing ASN.l value notation (text) messages and 
ASN.l module specifications 

* Modifications: 
*  

* Date    Name       Description of modification 
*        

* 3/4/91   Kans       Stricter typecasting for GNU C and C++ 
* 
* 

*/ 
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* ginoprint.c 
* print routines for asnl objects 
* 
************************************************************** 

#include "asnbuild.h" 

Boolean GAsnPrintStrStore PROTO((ByteStorePtr bsp, AsnloPtr aip)); 
void GAsnPrintReal PROTO((FloatHi realvalue, AsnloPtr aip)); 
void GAsnPrintlnteger PROTO((Int4 thelnt, AsnloPtr aip)); 
Boolean GAsnPrintStrStore (ByteStorePtr bsp, AsnloPtr aip); 
void GAsnPrintChar (char theChar, AsnloPtr aip); 
void GAsnPrintBoolean (Boolean value, AsnloPtr aip); 
void GAsnPrintOctets (ByteStorePtr ssp, AsnloPtr aip); 
void GAsnPrintlndent (Boolean increase, AsnloPtr aip); 
void GAsnPrintType (AsnTypePtr atp, AsnloPtr aip); 
Boolean GAsnPrintString (CharPtr the_string, AsnloPtr aip); 
void GAsnPrintOpenStruct (AsnloPtr aip, AsnTypePtr atp); 
void GAsnPrintCloseStruct (AsnloPtr aip, AsnTypePtr atp); 
void GAsnPrintNewLine (AsnloPtr aip); 

typedef struct IndexManagement { 
AsnTypePtr atp; 
Int2 idType; 
Int4 value; 
struct IndexManagement PNTR next; 

} IndexManager, PNTR IndexManagerPtr; 

IndexManagerPtr masterlndex = NULL; 
Int4 baseCount = 0; 

#define ID_ID 0 
#define ID_PRIMITIVE 1 
#define ID_VALUE    2 

/* return an ID if one has already been created, else create a new one */ 
static Int4 GetUniquelD(AsnTypePtr atp, Int2 idType) 
{ 

IndexManagerPtr index; 

/* search for pre-existing index */ 
for (index = masterlndex; index != NULL; index = index->next) 
{ 

if (atp == index->atp && idType == index->idType) 
{ 

return index->value; 
} 

} 

index = (IndexManagerPtr) MemNew(sizeof(IndexManager)); 
index->atp = atp; 
index->idType = idType; 
index->value = baseCount++; 
index->next = masterlndex; 
masterlndex = index; 
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return index->value; 
} 

static void GAsnPrintNodelD(AsnTypePtr parent_atp, AsnTypePtr atp, Int2 
idType, AsnloPtr aip) 
{ 

/* 

*/ 

Char str[50]; 

sprintf (str, "%ld ", (long) atp + isPrimitive); 

switch (idType) { 
case ID_ID: 

if (! (parent_atp==NULL)) 
{ 
sprintf (str, "%ld x ", GetUniquelD(parent_atp, idType)); 
GAsnPrintString(str, aip); 

} 
break; 

case ID_PRIMITIVE: 
sprintf (str, "«Id x ", GetUniquelD(atp, ID_ID)); 
GAsnPrintString(str, aip); 
break; 

case ID_VALUE: 
sprintf (str, "»Id x ", GetUniquelD(atp, ID_PRIMITIVE)) ; 
GAsnPrintString(str, aip); 

} 

sprintf (str, "%ld ", GetUniquelD(atp, idType)); 
GAsnPrintString(str, aip); 

} 

*   void GinoAsnTxtWrite(aip, atp, valueptr, parent_atp, base) 

Boolean LIBCALL  GinoAsnTxtWrite (AsnloPtr aip, AsnTypePtr atp, DataValPtr 
dvp, AsnTypePtr 
parent_atp, Int4Ptr base) 
{ 

Int2 isa, i; 
AsnTypePtr atp2; 
AsnValxNodePtr avnp; 
Boolean done, terminalvalue, firstvalue; 
Char str[50], temp[50]; 

terminalvalue = TRUE;   /* most are terminal values */ 
if ((! aip->indent_level) && (aip->typestack[0].type == NULL)) 

firstvalue = TRUE;    /* first call to this routine */ 
else 

firstvalue = FALSE; 

if (! AsnTypeValidateOut(aip, atp, dvp)) 
return FALSE; 
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atp2 = AsnFindBaseType(atp) ; 
isa = atp2->type->isa; 
if (ISA_STRINGTYPE(isa) ) 

isa = GENERALSTRINGJTYPE; 

if (((isa == SEQ_TYPE) || (isa == SET_TYPE) || 
(isa == SEQOFJTYPE) || (isa == SETOF_TYPE)) 
&& (dvp->intvalue == END_STRUCT)) 

{ 
GAsnPrintCloseStruct(aip, atp); 
return TRUE; 

if (! aip->first[aip->indent_level]) 
GAsnPrintNewLine(aip); 

else 
aip->first[aip->indent_level] = FALSE; 

atp2 = atp; 
if (firstvalue)       /* first item, need ::= */ 
{ 

while ((atp2->name == NULL) || (IS_L0WER(*atp2->name))) 
atp2 = atp2->type;    /* find a Type Reference */ 

} 

if (atp2->name != NULL) 
{ 

GAsnPrintNodelD(parent_atp, atp /* atp2 */, ID_ID, aip); 
GAsnPrintString(atp2->name, aip);    /* put the element name */ 
if (IS_L0WER(*atp2->name)) 
{ 

GAsnPrintChar('\n', aip); 
} 
else 
{ 

GAsnPrintChar(' ', aip); 

if (IS_L0WER(*atp2->name)) 
GAsnPrintChar(' ', aip); 

else 
GAsnPrintString(" ::= ", aip); 

if (isa == CHOICE_TYPE)     /* show nothing but name on same line */ 
{ 

GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("CHOICE", aip); 
if ((aip->type_indent)) 
{ 

isa = AsnFindBaselsa(aip->typestack[aip->type_indent - 
1]-type); 

if ((isa != SEQOF TYPE) && (isa != SETOF TYPE)) 
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{ 
GAsnPrintIndent(TRUE, aip); 
AsnTypeSetIndent(TRUE, aip, atp); 
GAsnPrintNewLine(aip); 

} 
else 

AsnTypeSetlndent(TRUE, aip, atp); 

} 
else 

AsnTypeSetlndent(TRUE, aip, atp); 
aip->first[aip->indent_level] = TRUE; 
return TRUE; 

switch (isa) 
{ 

case SEQJTYPE: 
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("SEQUENCE", aip); 
GAsnPrintNewLine(aip); 
if (dvp->intvalue == START_STRUCT)   /* open brace */ 

GAsnPrintOpenStruct(aip, atp); 
else 
{ 

AsnloErrorMsgfaip, 18 ); 
return FALSE; 

} 
terminalvalue = FALSE; 
break; 

case SET_TYPE: 
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("SET", aip); 
GAsnPrintNewLine(aip); 
if (dvp->intvalue == START_STRUCT)   /* open brace */ 

GAsnPrintOpenStruct(aip, atp); 
else 
{ 

AsnIoErrorMsg(aip, 18 ); 
return FALSE; 

} 
terminalvalue = FALSE; 
break; 

case SEQOF_TYPE: 
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("SEQUENCE OF", aip); 
GAsnPrintNewLine(aip) ; 
if (dvp->intvalue == START_STRUCT)   /* open brace */ 

GAsnPrintOpenStruct(aip, atp); 
else 
{ 

AsnIoErrorMsg(aip, 18 ); 
return FALSE; 

} 
terminalvalue = FALSE; 
break; 

case SETOF TYPE: 
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GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintStringC'SET OF", aip); 
GAsnPrintNewLine(aip); 
if (dvp->intvalue == START_STRUCT)   /* open brace */ 

GAsnPrintOpenStruct(aip, atp); 
else 
{ 

AsnloErrorMsg(aip, 18 ); 
return FALSE; 

} 
terminalvalue = FALSE; 
break; 

case BOOLEANJTYPE: 
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("BOOLEAN", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNodeID(NULL, atp, ID_VALUE, aip); 
GAsnPrintBoolean(dvp->boolvalue, aip); 
break; 

case INTEGERJTYPE: 
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("INTEGER", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip); 
atp2 = AsnFindBaseType(atp);  /* check for names */ 
avnp = (AsnValxNodePtr) atp2->branch; 
done = FALSE; 
while (avnp != NULL) 
{ 

if (dvp->intvalue == avnp->intvalue) 
{ 

GAsnPrintString(avnp->name, aip); 
done = TRUE; 
avnp = NULL; 

} 
else 

avnp = avnp->next; 
} 
if (! done)    /* no name */ 

GAsnPrintlnteger(dvp->intvalue, aip); 
break; 

case ENUM_TYPE: 
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("ENUMERATED", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip); 
atp2 = AsnFindBaseType(atp);  /* check for names */ 
avnp = (AsnValxNodePtr) atp2->branch; 
done = FALSE; 
while (avnp != NULL) 
{ 

if (dvp->intvalue == avnp->intvalue) 
{ 

GAsnPrintString(avnp->name, aip); 
done = TRUE; 
avnp = NULL; 
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else 
avnp = avnp->next; 

} 
if (! done)    /* no name */ 

GAsnPrintlnteger(dvp->intvalue, aip); 
break; 

case REAL_TYPE: 
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintStringC'REAL", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNodeID(NULL, atp, ID_VALUE, aip); 
GAsnPrintReal(dvp->realvalue, aip); 
break; 

case GENERALSTRING_TYPE: 
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("VisibleString", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNodeID(NULL, atp, ID_VALUE, aip); 
GAsnPrintChar('\"', aip); 

/* if (! GAsnPrintString((CharPtr) dvp->ptrvalue, aip) 
return FALSE; 

* / 
sprintf(temp,((CharPtr) dvp->ptrvalue)); 
for (i=0; i<=strlen(temp); i++) 
{ 

if (temp[i]==' ') 
temp [i] = '_'; 

} 
GAsnPrintString(temp, aip); 
GAsnPrintCharCV", aip); 
break; 

case NULL_TYPE: 
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("NULL", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip); 
GAsnPrintString("NULL", aip); 
break; 

case OCTETSJTYPE: 
GAsnPrintNodelD(NULL, atp, ID_PRIMITTVE, aip); 
GAsnPrintString("OCTET", aip); 
GAsnPrintNewLine(aip) ; 
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip); 
GAsnPrintOctets((ByteStorePtr) dvp->ptrvalue, aip); 
break; 

case STRSTORE_TYPE: 
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip); 
GAsnPrintString("StringStore", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip); 
if (! GAsnPrintStrStore((ByteStorePtr) dvp->ptrvalue, aip)) 

return FALSE; 
break; 

default: 
AsnloErrorMsg(aip, 19, AsnErrGetTypeName(atp->name) ) ; 
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*/ return FALSE; 
} 

if ((terminalvalue) && (aip->type indent))   /* pop out of choice nests 
*/ 

{ 
if   (AsnFindBaseIsa{aip->typestack[aip->type_indent -  l].type)   == 

CHOICE_TYPE) 
{ 

if   (aip->type_indent  >= 2) 
isa = AsnFindBaselsa(aip->typestack[aip->type_indent  - 

2].type); 
else 

isa = NULL_TYPE;    /* just fake it */ 
if ((isa != SETOF_TYPE) && (isa != SEQOFJTYPE)) 

GAsnPrintlndent(FALSE, aip); 
AsnTypeSetlndent(FALSE, aip, atp); 

} 
} 
return TRUE; 

} 

*       void GAsnPrintModule(amp, aip) 
* 
+ ******** + ****** + ********************** + + ********** + + * + + + + + * + + + **********■):***/ 

void GAsnPrintModule (AsnModulePtr amp, AsnloPtr aip) 

{ 
AsnTypePtr atp; 
Boolean firstone; 
CharPtr from; 

GAsnPrintString(amp->modulename, aip); 
GAsnPrintStringf" DEFINITIONS ::=", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintString("BEGIN", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNewLine(aip); 

atp = amp->types; /* check for EXPORTS */ 
firstone = TRUE; 
while (atp != NULL) 
{ 

if (atp->exported == TRUE) 
{ 

if (firstone) 
GAsnPrintString("EXPORTS ", aip); 

else 
{ 

GAsnPrintString(" ,", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintString("        ", aip); 

} 
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FROM */ 

GAsnPrintString(atp->name, aip); 
firstone = FALSE; 

} 
atp = atp->next; 

} 
if (! firstone) /* got at least one */ 
{ 

GAsnPrintString(" ;", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNewLine(aip); 

} 

atp = amp->types; /* check for IMPORTS */ 
firstone = TRUE; 
from = NULL; 
while (atp != NULL) 
{ 

if (atp->imported == TRUE) 
{ 

if (firstone) 
GAsnPrintString("IMPORTS ", aip); 

else 
{ 

if (StringCmp((CharPtr) atp->branch, from))    /* new 

GAsnPrintString(" FROM ", aip); 
GAsnPrintString(from, aip); 

} 
else 

GAsnPrintString(" ,", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintString("        ", aip); 

} 
GAsnPrintString(atp->name, aip); 
firstone = FALSE; 
from = (CharPtr) atp->branch; 

} 
atp = atp->next; 

} 
if (! firstone) /* got at least one */ 
{ 

GAsnPrintString(" FROM ", aip); 
GAsnPrintString(from, aip); 
GAsnPrintString(" ;", aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNewLine(aip); 

} 

atp = amp->types; 
while (atp != NULL) 
{ 

if (! atp->imported) 
{ 

GAsnPrintString(atp->name, aip); 
GAsnPrintString(" ::= ", aip); 
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GAsnPrintType(atp, aip); 
GAsnPrintNewLine(aip); 
GAsnPrintNewLine(aip) ; 

} 
atp = atp->next; 

} 
GAsnPrintString("END", aip); 
GAsnPrintNewLine(aip); 
return; 

} 

/ ***************************************************************************** 

* void GAsnPrintType(atp, aip) 
* prints a type starting at current line position 
* (assumes name already printed) 
* 
**************************************************************** 

void GAsnPrintType (AsnTypePtr atp, AsnloPtr aip) 

{ 
AsnValxNodePtr avnp; 
AsnTypePtr atp2; 
Boolean first; 

if (atp->tagclass != TAG_NONE)     /* print tag, if any */ 
{ 

GAsnPrintChar('[', aip); 
GAsnPrintChar(' ', aip); 
switch (atp->tagclass) 
{ 

case TAGJJNIVERSAL: 
GAsnPrintString("UNIVERSAL ", aip); 
break; 

case TAG_APPLICATION: 
GAsnPrintString("APPLICATION ", aip); 
break; 

case TAG_PRIVATE: 
GAsnPrintString("PRIVATE ", aip); 
break; 

default:      /* context dependent, do nothing */ 
break; 

} 
GAsnPrintlnteger((Int4)atp->tagnumber, aip); 
GAsnPrintChar(' ', aip); 
GAsnPrintChar(']',   aip); 
GAsnPrintChar(' ', aip); 

if (atp->implicit) 
GAsnPrintString("IMPLICIT ", aip); 

} 

GAsnPrintString(atp->type->name, aip);   /* print the type name */ 

if (atp->branch != NULL)      /* sub types ? */ 
{ 
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switch (atp->type->isa) 
{ 

case SETOF_TYPE: 
case SEQOFJTYPE: 

GAsnPrintChar(' ', aip); 
GAsnPrintType((AsnTypePtr) atp->branch, aip); 
break; 

case INTEGERJTYPE: 
case ENUM_TYPE: 

GAsnPrintChar(' ', aip); 
GAsnPrintOpenStruct(aip, atp); 
avnp = (AsnValxNodePtr)atp->branch; 
first = TRUE; 
aip->first[aip->indent_level] = FALSE; 
while (avnp != NULL) 
{ 

if (! first) 
GAsnPrintNewLine(aip); 

else 
first = FALSE; 

GAsnPrintString(avnp->name, aip); 
GAsnPrintChar(' ', aip); 
GAsnPrintChar('(', aip); 
GAsnPrintlnteger(avnp->intvalue, aip); 
GAsnPrintChar(')', aip); 
avnp = avnp->next; 

} 
GAsnPrintCloseStruct(aip, atp); 
break; 

case SEQ_TYPE: 
case SET_TYPE: 
case CHOICE_TYPE: 

GAsnPrintChar(' ', aip); 
GAsnPrintOpenStruct(aip, atp); 
atp2 = (AsnTypePtr) atp->branch; 
first = TRUE; 
aip->first[aip->indent_level] = FALSE; 
while (atp2 != NULL) 
{ 

if (! first) 
GAsnPrintNewLine(aip); 

else 
first = FALSE; 

if (atp2->name != NULL) 
{ 

GAsnPrintString(atp2->name, aip); 
GAsnPrintChar(' ', aip); 

} 
GAsnPrintType(atp2, aip); 
atp2 = atp2->next; 

} 
GAsnPrintCloseStruct(aip, atp); 
break; 

default: /* everything else */ 
break; /* do nothing */ 
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/ 

} 

if (atp->optional) 
GAsnPrintStringC OPTIONAL", aip) ; 

if (atp->hasdefault) 
{ 

GAsnPrintStringC DEFAULT ", aip) ; 
avnp = atp->defaultvalue; 
while (! (VALUE_ISA_DEFAULT(avnp->valueisa))) 

avnp = avnp->next; 
switch (avnp->valueisa) 
{ 

case VALUE_ISA_PTR: 
GAsnPrintChar('\"', aip); 
GAsnPrintString(avnp->name, aip); 
GAsnPrintChar('\"', aip); 
break; 

case VALUE_ISA_BOOL: 
GAsnPrintBoolean((Boolean)avnp->intvalue, aip); 
break; 

case VALUE_ISA_INT: 
GAsnPrintlnteger(avnp->intvalue, aip); 
break; 

case VALUE_ISA_REAL: 
GAsnPrintReal(avnp->realvalue, aip); 
break; 

default: 
GAsnPrintString("Error", aip); 
break; 

} 
) 

************************************************************ 

*  Boolean GAsnPrintStrStore(bsp, aip) 
* 
*****************************************************************************/ 

Boolean GAsnPrintStrStore (ByteStorePtr bsp, AsnloPtr aip) 

{ 
Char buf[101]; 
Uint4 len, tlen; 

if (aip->type & ASNIO_CARRIER) /* pure iterator */ 
return TRUE; 

BSSeek(bsp, 0, SEEK_SET);      /* seek to start */ 
len = BSLen(bsp); 
GAsnPrintChar('\"', aip); 
while (len) 
{ 

if (len < 100) 
tlen = len; 
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else 
tlen = 100; 

BSReadfbsp, buf, tlen); 
buf[tlen] = '\0'; 
if (! GAsnPrintString(buf, aip)) 

return FALSE; 
len -= tlen; 

} 
GAsnPrintChar('\"', aip); 
return TRUE; 

} 

* 

*   void GAsnPrintReal(realvalue, aip) 

* + ******** + **** + ** + ************ + ******* + ********* + ******* + ******* + + + + + + + + **■);■*;/ 

void GAsnPrintReal (FloatHi realvalue, AsnloPtr aip) 

{ 
FloatHi thelog, mantissa; 
int characteristic; 
int  ic; 
long im; 
char tbuf[30]; 
Boolean minus; 

if (aip->type & ASNIO_CARRIER) /* pure iterator */ 
return; 

if ( realva lue == 0.0) 
{ 

ic = 0; 
im = 0; 

} 
else 
{ 

if ( realvalue < 0.0) 
{ 

minus = TRUE; 
realvalue = -realvalue; 

} 
else 

minus = FALSE; 

digits */ 

thelog = loglO((double)realvalue); 
if (thelog >= 0.0) 

characteristic = 8 - (int)thelog;/* give it 9 significant 

else 
characteristic = 8 + (int)ceil(-thelog); 

mantissa = realvalue * Nlm_Powi((double)10., characteristic); 
ic = -characteristic; /* reverse direction */ 
im = (long) mantissa; 

/* strip trailing 0 */ 
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while ((im % lOL) == OL) 
{ 

im /= lOL; 
ic++; 

} 

if (minus) 
im = -im; 

} 
sprintf(tbuf, "{ %ld, 10, %d }", im, ic) ; 
GAsnPrintString(tbuf, aip); 
return; 

} 

* 

* void GAsnPrintlnteger(thelnt, aip) 
* 

void GAsnPrintlnteger (Int4 thelnt, AsnloPtr aip) 

{ 
char tbuf[10]; 

if (aip->type & ASNIO_CARRIER) /* pure iterator */ 
return; 

sprintf(tbuf, "%ld", (long)thelnt); 
GAsnPrintString(tbuf, aip); 
return; 

} 

* void GAsnPrintChar(theChar, aip) 
* print a single character 
■*• 

void GAsnPrintChar (char theChar, AsnloPtr aip) 

{ 
if (aip->type & ASNIO_CARRIER) /* pure iterator */ 

return; 

*(aip->linebuf + aip->linepos) = theChar; 
aip->linepos++; 
aip->offset++; 
return; 

} 

* void GAsnPrintBoolean(value, aip) 

void GAsnPrintBoolean (Boolean value, AsnloPtr aip) 
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if (aip->type & ASNIO_CARRIER) /* pure iterator */ 
return; 

if (value) 
GAsnPrintString("TRUE", aip); 

else 
GAsnPrintString("FALSE", aip); 

return; 
} 

/***************************************************************************** 
* 

*   void GAsnPrintOctets(ssp, aip) 
* 
**************************************************************************** 
void GAsnPrintOctets (ByteStorePtr ssp, AsnloPtr aip) 

{ 
Int2 value, tval, ctr; 
Char buf[101]; 

if (aip->type & ASNIO_CARRIER) /* pure iterator */ 
return; 

GAsnPrintChar('\'', aip); 

BSSeek(ssp, 0, SEEK_SET);   /* go to start of bytestore */ 
ctr = 0; 
buf[100] = '\0'; 

/* break it up into lines if necessary */ 
while ((value = BSGetByte(ssp)) != -1) 
{ 

tval = value / 16; 
if (tval < 10) 

buf[ctr] = (Char)(tval + '0'); 
else 

buf[ctr] = (Char)(tval - 10 + 'A'); 
ctr++; 
tval = value - (tval * 16); 
if (tval < 10) 

buf[ctr] = (Char)(tval + '0'); 
else 

buf[ctr] = (Char)(tval - 10 + 'A'); 
ctr++; 
if (ctr == 100) 
{ 

GAsnPrintString(buf, aip); 
ctr = 0; 

} 
} 
if (ctr) 
{ 

buf[ctr] = '\0'; 
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GAsnPrintString (buf, aip) ; 
} 

GAsnPrintChar('\'', aip); 
GAsnPrintChar('H', aip); 
return; 

/***************************************************************************** 
* 

* void GAsnPrintlndent(increase, aip) 
* increase or decrease indent level 
* 
********************************************************* 

void GAsnPrintlndent (Boolean increase, AsnloPtr aip) 

{ 
Intl offset, 

curr_indent; 
BoolPtr tmp; 
int deer, isa; 

if (increase) 
{ 

aip->indent_level++; 
curr_indent = aip->indent_level; 
if (curr_indent == aip->max_indent)   /* expand indent levels */ 
{ 

tmp = aip->first; 
aip->first = (BoolPtr) MemNew((sizeof(Boolean) * 

(aip->max_indent + 
10))); 

MemCopy(aip->first, tmp, (size_t)(sizeof(Boolean) * 
aip->max_indent)); 

MemFree(tmp); 
aip->max_indent += 10; 

} 
aip->first[curr_indentj = TRUE;     /* set to first time */ 
offset = curr_indent * aip->tabsize; 

if (! (aip->type & ASNIO_CARRIER)) 
{ 

while (aip->linepos < offset) 
{ 

*(aip->linebuf + aip->linepos) = ' '; 
aip->linepos++; 

} 
aip->offset = aip->linepos + (aip->linebuf - 

(CharPtr)aip->buf); 
} 

} 
else 
{ 

offset = aip->indent__level * aip->tabsize; 
curr indent = aip->type_indent; 

77 



1].type); 

elements */ 

*/ 

deer =1;   /* always backup indent for named element */ 
do 
{ 

if (aip->indent_level) 
aip->indent_level -= deer; 

if (curr_indent) 
curr_indent—; 

isa = NULL_TYPE;       /* fake key */ 
if ((aip->indent_level) && (curr_indent)) 
{ 

isa = AsnFindBaselsa(aip->typestack[curr_indent - 

if (aip->typestack[curr_indent-l].type->name != NULL) 
deer =1;    /* indent for named choices as 

else 
deer =0;    /* not referenced choice objects 

} 
} while (isa == CHOICE TYPE) ; 

')) 

if (aip->linepos == offset)    /* nothing written yet */ 
{ 

curr_indent = aip->indent_level * aip->tabsize; 
while (offset >= curr_indent) 
{ 

offset—; 
if (! (aip->type & ASNIO_CARRIER)) 
{ 

if ((offset >= 0) && (aip->linebuf[offset] != ' 

curr indent = 127; 

} 
offset++; 
aip->linepos = offset; 
aip->offset = aip->linepos + (aip->linebuf - 

(CharPtr)aip->buf); 
} 
if (! aip->indent_level)   /* level 0 - no commas */ 

aip->first[0] = TRUE; 
} 
return; 

} 

■k 

* void GAsnPrintNewLine(aip) 
* end a line in the print buffer 
* indent to the proper level on the next line 

void GAsnPrintNewLine (AsnloPtr aip) 

{ 
Intl tpos, indent; 
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CharPtr tmp; 
Boolean do_print = TRUE; 

if (aip->linepos ==0)    /* nothing in buffer yet */ 
return; 

if (! (aip->type & ASNIO_CARRIER)) /* really printing */ 
{ 

tpos = aip->indent_level * aip->tabsize; 
if (tpos == aip->linepos)   /* just an empty indent? */ 
{ 

do_print = FALSE;   /* assume that's the case */ 
for (tmp = aip->linebuf; tpos != 0; tpos—, tmp++) 
{ 

if (*tmp != ' ') 
{ 

do_print = TRUE;  /* set sentinel */ 
break; 

} 
} 

} 

if (do_print)   /* not an empty indent */ 
{ 

tmp = aip->linebuf + aip->linepos; 
if (aip->first[aip->indent_level] == FALSE)    /* not first 

line of struct */ 
{ 

/* add 
commas */ 
#ifdef JAE_NOWAY 

*tmp = ' '; tmp++; 
*tmp = ','; tmp++; 

#endif /* JAE_NOWAY */ 
} 
else if (aip->linepos)        /* is first line, remove 

trailing blanks */ 
{ /* if just 

indented */ 
tmp— ; 
while ((*tmp == ' ') && (tmp > aip->linebuf)) 

tmp— ; 
tmp++; 

} 
*tmp = *\0'; 
aip->linepos = tmp - aip->linebuf; 
aip->offset = tmp - (CharPtr)aip->buf; 
AsnloPuts(aip); 

} 
} 

if ((do_print) && (aip->indent_level))    /* level 0 never has commas */ 
aip->first[aip->indent_level] = FALSE; 

if (! (aip->type & ASNIO_CARRIER))     /* really printing */ 
{ 
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tmp = aip->linebuf; 
indent = aip->indent_level * aip->tabsize; 
indent =0; 
for (tpos = 0; tpos < indent; tpos++, tmp++) 

*tmp = ' '; 
aip->linepos = tpos; 
aip->offset += tpos; 

} 
return; 

} 
/***************************************************************************** 
* 

*   Boolean GAsnPrintString(str, aip) 
* 
**************************************************** 

Boolean GAsnPrintString (CharPtr the_string, AsnloPtr aip) 

{ 
Uint4 stringlen; 
register int templen; 
Intl first = 1; 
register CharPtr current, str; 
Boolean indent_state; 
int bad_char, bad_char__ctr = 0; 

fprintf (stderr, "%s", the_string); 

if (aip->type & ASNIO_CARRIER) /* pure iterator */ 
return TRUE; 

str = the_string; 
stringlen = StringLen(str); 
indent_state = aip->first[aip->indent_level]; 

/* break it up into lines if necessary */ 
while (stringlen) 
{ 

if (! first) /* into multiple lines */ 
{ 

aip->first[aip->indent_level] = TRUE;   /* no commas */ 
GAsnPrintNewLine(aip); 
aip->offset -= aip->linepos; 
aip->linepos =0; 

} 
first = 0; 

templen = (int)(aip->linelength - aip->linepos); 

if (stringlen <= (Uint4)templen)     /* it fits in remaining space 
*/ 

templen = (int) stringlen; 
else 

templen = GAsnPrintGetWordBreak(str, templen); 

current = aip->linebuf + aip->linepos; 
stringlen -= (Uint4)templen; 
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))) 

aip->linepos += templen; 
aip->offset += templen; 
while (templen) 
{ 

if ((aip->fix_non_print < 2) && ((*str < ' ') || (*str > 

{ 
if (! bad_char_ctr) 

bad_char = (int)(*str); 
bad_char_ctr++; 

*str = '#';   /* replace with # */ 
} 
^current = *str; 
if (*str == '\'")     /* must double quotes */ 
{ 

current++; aip->linepos++; aip->offset++; 
*current = *\"'; 

} 
current++; str++; templen—; 

} 
} 
aip->first[aip->indent_level] = indent_state;   /* reset indent state */ 
if ((bad_char_ctr) && (aip->fix_non_print == 0)) 
{ 

AsnloErrorMsg(aip, 106, bad_char, the_string); 
} 
return TRUE; 

} 

/***************************************************************************** 
* 

* void GAsnPrintCharBlock(str, aip) 
* prints string on line if there is room 
* if not prints on next line with no indent. 

********************************************************** 

void GAsnPrintCharBlock (CharPtr str, AsnloPtr aip) 

{ 
Uint4 stringlen; 
Boolean indent_state; 
Intl templen; 
CharPtr current; 

if (aip->type & ASNIO_CARRIER) /* pure iterator */ 
return; 

stringlen = StringLen(str); 
templen = (Intl)(aip->linelength - aip->linepos); 
indent_state = aip->first[aip->indent_level]; 

if (stringlen > (Uint4)templen)     /* won't fit on line */ 
{ 

aip->first[aip->indent_level] = TRUE;   /* no commas */ 
GAsnPrintNewLine(aip) ; 
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/ 

aip->linepos =0;     /* no indent on broken string */ 
} 

current = aip->linebuf + aip->linepos; 
MemCopy(current, str, (size_t)stringlen); 
aip->linepos += (Int2) stringlen; 
aip->offset += (Int2) stringlen; 
aip->first[aip->indent_level] = indent_state;   /* reset indent state */ 
return; 

**************************************************************** 

* int GAsnPrintGetWordBreak(str, maxien) 
* return length (<= maxien) of str to next white space 
* 
*****************************************************************************/ 

int GAsnPrintGetWordBreak (CharPtr str, int maxien) 

{ 
CharPtr tmp; 
int len; 
Uint4 stringlen; 

stringlen = StringLen(str); 
if (stringlen <= (Uint4)maxien) 

return (int) stringlen; 

tmp = str + maxien;    /* point just PAST the end of region */ 
len = maxien +1; 
while ((len) && (! IS_WHITESP(*tmp))) 

{ 
len—; tmp—; 

} 
while ((len) && (IS_WHITESP(*tmp))) 
{ 

len—; /* move past white space */ 
tmp—; 

} 
if (len < 1) /* never found any whitespace or only 1 space */ 

len = maxien;    /* have to break a word */ 

return len; 

} 

/***************************************************************************** 
* 

* GAsnPrintOpenStruct(aip, atp) 
* 
*****************************************************************************/ 

void GAsnPrintOpenStruct (AsnloPtr aip, AsnTypePtr atp) 

{ 
#ifdef NOWAY_JAE 

GAsnPrintChar('{ ', aip); 
#endif /* NOWAY JAE */ 
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GAsnPrintlndent(TRUE, aip); 
AsnTypeSetlndent(TRUE, aip, atp); 
GAsnPrintNewLine(aip); 
aip->first[aip->indent_level] = TRUE; 
return; 

} 

/ ***************************************************************************** 

*  GAsnPrintCloseStruct(aip, atp) 
* 
*****************************************************************************/ 

void GAsnPrintCloseStruct (AsnloPtr aip, AsnTypePtr atp) 

{ 
/* 

* / 

) 

GAsnPrintChar(' ', aip); 
GAsnPrintChar ('}'/• aip) ; 

GAsnPrintlndent(FALSE, aip); 
AsnTypeSetlndent(FALSE, aip, atp); 
return; 
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PROJ.H 

* 

* Header for Proj 
* 

* by: Gino Celia, Jr 

******************************** / 

void buildTree(Widget w, char* infilename); 

void ButtonCallback (Widget w, XtPointer clientData, XtPointer callData); 
void ButtonlCallback (Widget w, XtPointer clientData, XtPointer callData); 
void DIOKCallback (Widget w, XtPointer clientData, XtPointer callData); 
void Button2Callback (Widget w, XtPointer clientData, XtPointer callData); 
void D20KCallback (Widget w, XtPointer clientData, XtPointer callData); 
void Button3Callback (Widget w, XtPointer clientData, XtPointer callData); 
void D30KCallback (Widget w, XtPointer clientData, XtPointer callData); 
void ButtonllCallback (Widget w, XtPointer clientData, XtPointer callData), 
void DllOKCallback (Widget w, XtPointer clientData, XtPointer callData); 
void Buttonl3Callback (Widget w, XtPointer clientData, XtPointer callData) , 
void Buttonl4Callback (Widget w, XtPointer clientData, XtPointer callData) , 
void Buttonl5Callback (Widget w, XtPointer clientData, XtPointer callData) , 
void Buttonl6Callback (Widget w, XtPointer clientData, XtPointer callData), 

void ShowSelectedWidget (Widget w, XtPointer clientData, XEvent *event, 
Boolean *flag); 
void ValueChangedCallback (Widget w, XtPointer clientData, XtPointer 
callData); 
void makeButtons(Widget w); 

void createTreeCas cadeL (Widget w); 
void createTreeCascadeS (Widget w); 

void ExitCallback (Widget w, XtPointer clientData, XtPointer callData) ; 
void LoadCallback (Widget w, XtPointer clientData, XtPointer callData); 
void SaveCallback (Widget w, XtPointer clientData, XtPointer callData); 
void OKCallback (Widget w, XtPointer clientData, XtPointer callData); 
void CancelCallback (Widget w, XtPointer clientData, XtPointer callData); 

Widget createMenu (Widget w); 

void createFilePane (Widget w); 
void createHelpPane (Widget w); 

void copyFiles (char* infilename, char* outfilename); 
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PROJ.C 

/**************************************************************************** 
* 

* proj.c 
* 

* Final thesis project by : LT Gino Celia, Jr., US Navy 
* 

* Graphical ASN.l database integration and conflict resolution tool 
* 

* September, 1994 
* 
*************************************************************** 

/**************************************************************************** 

* Portions of this code are from the book: 
* 

* The X Window System: Programming and Applications with Xt 
* Second OSF/Motif Edition 
* by 
* Douglas Young 
* Prentice Hall, 1994 
* 

* Copyright 1994 by Prentice Hall 
* All Rights Reserved 
* 
********************************************************.*******************/ 

#include <ncbi.h> 
#include <ncbiwin.h> 

/* this stuff covered in ncbi.h and ncbiwin.h */ 
/* 
#include <stdio.h> 
#include <Xm/Xm.h> 
#include <Xm/MainW.h> 
#include <Xm/Form.h> 
#include <Xm/RowColumn.h> 
#include <Xm/Label.h> 
#include <Xm/CascadeB.h> 
#include <Xm/PushB.h> 
#include <Xm/ScrolledW.h> 
*/ 

#include <Xm/MessageB.h> 
#include <Xm/DrawnB.h> 
#include <Xm/FileSB.h> 
#include <Xm/ArrowB.h> 
#include "proj.h" 
#include "Tree.h" 

typedef struct { 
Widget old, new; 
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} DialoglWidgets; 

typedef struct { 
Widget oldLabel, newType; 

} Dialog2Widgets; 

typedef struct { 
Widget oldl, old2, new; 

} Dialog3Widgets; 

typedef struct { 
Widget old, mult, new; 

} DialogllWidgets; 

Widget      treel, 
tree2, 
forml, 
form2; 

int   activeTree =1, 
tlRecNum  = 0, 
t2RecNum  = 0, 
tlLastRec  = 0, 
t2LastRec   = 0; 

char  *tl_infile = "treel.dat"; 
char   *t2_infile = "tree2.dat"; 
char   *tl_tempfile = "treeltemp.dat"; 
char  *t2_tempfile = "tree2temp.dat"; 
char  *tl_outfile = "treelout.dat"; 
char   *t2 outfile = "tree2out.dat"; 

void main ( int arge, char **argv ) 
{ 

Arg wargs[15]; 
int n=0; 
Widget       shell, 

mainwindow, 
menu, 
shelll, 
shell2, 
form; 

XtAppContext  app; 

/* initialize Xt */ 

shell = XtVaAppInitialize (&app, "Tree", NULL, 0, 
Sargc, argv, NULL, 

XmNgeometry, "900x340+200+25", 
NULL); 

/* create two popup shells */ 
shelll= XtVaCreatePopupShell ("shelll", topLevelShellWidgetClass, 

shell, 
NULL); 

shell2= XtVaCreatePopupShell ("shell2", topLevelShellWidgetClass, 
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shell, 
NULL); 

/* Create a manager window for the main shell */ 
mainwindow = XtVaCreateManagedWidget ("mainwindow", 

xmMainWindowWidgetClass, 
shell, NULL); 

/* Create the menu bar */ 
menu = createMenu (mainwindow); 

/* Create a form for each popup and the mainwindow*/ 
n = 0; 
form = XtCreateManagedWidget ("form", xmFormWidgetClass, mainwindow, wargs, 

n) 

n) 

n) 

forml = XtCreateManagedWidget ("forml", xmFormWidgetClass, shelll, wargs, 
r 

form2 = XtCreateManagedWidget ("form2", xmFormWidgetClass, shell2, wargs, 

/*  Specify the widgets for the mainwindow */ 
XtVaSetValues (mainwindow, 

XmNmenuBar, menu, 
XmNworkWindow, form, 
NULL); 

copyFiles (tl_infile, tl_tempfile); 
copyFiles (t2_infile, t2_tempfile); 

treel = XsCreateScrolledTree (forml, "treel", NULL, 0); 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 

buildTree (treel, tl_infile) ; 
buildTree (tree2, t2_infile); 

XtManageChild (treel); 
XtManageChild (tree2); 

/* Create the buttons */ 
makeButtons (form); 

/* Popup the popups */ 
XtPopup (shelll, XtGrabNone); 
XtPopup (shell2, XtGrabNone); 

/* Realize everything */ 
XtRealizeWidget (shell); 
XtAppMainLoop (app); 

} 

/*  buildTree creates the nodes for the tree widget */ 

void buildTree(Widget w, char* infilename) 
{ 

char       parent[500], 
parentLabel[500] , 
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child[500], 
childLabel[500] ; 

int recNum = 0, 
success = 0, 
lastrec = 0; 

FILE*      infile; 

infile = fopen (infilename, "r"); 
fseek (infile, 0, 0); 

/* get the right record number */ 
if (strcmp(XtName(w) , "treel") == 0) 
recNum = tlRecNum; 

else 
recNum = t2RecNum; 

while (fscanf (infile, "%s %s %s %s", &parent, &parentLabel, Schild, 
&childLabel) != EOF) 

{ 
/* check to see if we're on the right record */ 
if (strcmp(parent, "0") == 0) 
{ 
lastrec = atoi(childLabel); 
if (atoi(childLabel) == recNum) 
{ 

success = 1; 
} 
else 

success = 0; 
} 

/* build the tree */ 
if (success) 
{ 

Widget p, 
c; 

/* 
* If a parent identifier was read, check to see if this name 
* has already been used as a widget. If so, use the existing 
* widget as the supernode of the given child. 
*/ 

if (parent) 
p = XtNameToWidget (w, parent); 

if dp) 
{ 

/* 
* Otherwise, create a new widget for this node. 
*/ 

p = XtVaCreateManagedWidget (parent, 
xmDrawnButtonWidgetClass, 
w. 
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XtVaTypedArg, XmNlabelString, 
XmRString,    parentLabel, 
strlen(parentLabel)+1, 
NULL); 

} 

/* 
* If a child identifier was read, check to see if this name 
* has already been used as a widget. If so, use the existing 
* widget as the subnode of the given parent. 
*/ 

if (child) 
c = XtNameToWidget (w, child); 

if (!c) 
{ 

/* 
* Otherwise, create a new widget for this node. 
*/ 

c = XtVaCreateManagedWidget (child, 
xmDrawnButtonWidgetClas s, 
w, 
XmNsuperNode, p, 
XtVaTypedArg, XmNlabelString, 
XmRString,    childLabel, 
strlen(childLabel)+1, 
NULL ); 

fclose (infile); 

if (strcmp(XtName(w), "treel") == 0) 
tlLastRec = lastrec; 

else 
t2LastRec = lastrec; 

/* the button callbacks */ 
/* default callback */ 
void ButtonCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

static Widget  dialog = NULL; 
char temp [30] = " "; 

dialog = XmCreatelnformationDialog (w, "dialog", NULL, 0); 
sprintf (temp, "%s selected", XtName (w)); 
XtVaSetValues (dialog, 

XmNmessagestring, XmStringCreateSimple(temp), 
XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL, 
NULL); 
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XtManageChild (dialog); 
} 

/* change name */ 
void ButtonlCallback (Widget w, XtPointer clientData, XtPointer callData) 

{ 
Widget    dialogl = NULL; 
Widget    re; 
DialoglWidgets  *widgets; 

widgets = (DialoglWidgets *) XtMalloc (sizeof (DialoglWidgets)); 
dialogl = XmCreateMessageDialog (w, "dialogl", NULL, 0); 
XtUnmanageChild (XmMessageBoxGetChild (dialogl, XmDIALOG_SYMBOL_LABEL)); 
XtUnmanageChild (XmMessageBoxGetChild (dialogl, XmDIALOG_MESSAGE_LABEL)); 
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialogl, 

XmNnumColumns, 2, 
XmNpacking, XmPACK_COLUMN, 
XmNorientation, XmVERTICAL, 
NULL); 

XtCreateManagedWidget ("Old Name", xmLabelWidgetClass, re, NULL, 0); 
XtCreateManagedWidget ("New Name", xmLabelWidgetClass, re, NULL, 0); 
widgets->old = XtCreateManagedWidget ("old", xmTextFieldWidgetClass, re, 

NULL, 0); 
widgets->new = XtCreateManagedWidget ("new", xmTextFieldWidgetClass, re, 

NULL, 0); 
XtVaSetValues (dialogl, 

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL, 
NULL); 

XtAddCallback (dialogl, XmNokCallback, DIOKCallback, (XtPointer) widgets); 
XtManageChild (dialogl); 

} 

void DIOKCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

DialoglWidgets  *widgets; 
char       parent[500], 

parentLabel[500], 
child[500], 

childLabel[500], 
tempold [500], 
tempnew [500]; 

FILE*      tempfile; 
FILE*      outfile; 

widgets = (DialoglWidgets *) clientData; 
strcpy (tempold, XmTextFieldGetString(widgets->old)); 
strcpy (tempnew, XmTextFieldGetString(widgets->new)); 
if (activeTree == 1) 
{ 

tempfile = fopen (tl_tempfile, "r"); 
outfile = fopen (tl_outfile, "w"); 
while (fscanf (tempfile, "%s %s %s %s", Sparent, SparentLabel, Schild, 

&childLabel) != EOF) 
{ 
if (stremp (parentLabel, tempold) == 0) 
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strcpy (parentLabel, tempnew); 
if (strcmp (childLabel, tempold) == 

strcpy (childLabel, tempnew); 
fprintf (outfile, "%s %s %s %s \n", 

childLabel); 
} 
fclose (outfile) ; 
fclose (tempfile); 
copyFiles (tl_outfile, tl_tempfile); 
treel = XsCreateScrolledTree (forml, 
buildTree(treel, tl_tempfile); 
XtManageChild(treel) ; 

} 
else 
{ 

tempfile = fopen (t2_tempfile, "r"); 
outfile = fopen (t2_outfile, "w"); 
while (fscanf (tempfile, "%s %s %s %s 

SchildLabel) != EOF) 
{ 

0) 

parent, parentLabel, child, 

"treel", NULL, 0); 

Sparent, &parentLabel, Schild, 

== 0) if (strcmp (parentLabel, tempold) 
strcpy (parentLabel, tempnew); 

if (strcmp (childLabel, tempold) == 
strcpy (childLabel, tempnew); 

fprintf (outfile, "%s %s %s %s \n", parent, parentLabel, child, 
childLabel); 

0) 

fclose (outfile); 
fclose (tempfile); 
copyFiles (t2_outfile, t2_tempfile); 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0) 
buildTree(tree2, t2_tempfile); 
XtManageChild(tree2); 

) 

/* change type */ 
void Button2Callback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

Widget    dialog2 = NULL; 
Widget    re; 
Dialog2Widgets  *widgets; 

widgets = (Dialog2Widgets *) XtMalloc (sizeof (Dialog2Widgets)); 
dialog2 = XmCreateMessageDialog (w, "dialog2", NULL, 0); 
XtUnmanageChild (XmMessageBoxGetChild (dialog2, XmDIALOG_SYMBOL_LABEL)); 
XtUnmanageChild (XmMessageBoxGetChild (dialog2, XmDIALOG_MESSAGE_LABEL)); 
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialog2, 

XmNnumColumns, 2, 
XmNpaeking, XmPACK_COLUMN, 
XmNorientation, XmVERTICAL, 
NULL); 

XtCreateManagedWidget ("Node Name", xmLabelWidgetClass, re, NULL, 0); 
XtCreateManagedWidget ("New Type", xmLabelWidgetClass, re, NULL, 0); 
widgets->oldLabel = XtCreateManagedWidget ("oldLabel", 

xmTextFieldWidgetClass, re, NULL, 
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0); 
widgets->newType = XtCreateManagedWidget ("newType", 

xmTextFieldWidgetClass, re, 
NULL, 0); 

XtVaSetValues (dialog2, 
XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL, 
NULL); 

XtAddCallback (dialog2, XmNokCallback, D20KCallback, (XtPointer) widgets); 
XtManageChild (dialog2); 

} 

void D20KCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

Dialog2Widgets  *widgets; 
char       parentl[500], 

parentLabell[500], 
childl[500], 

childLabell[500], 
parent2[500], 
parentLabel2[500], 

child2[500], 
childLabel2[500], 
tempold [500], 
tempnew [500], 
templabel [500]; 

FILE*       tempfile; 
FILE*      outfile; 

widgets = (Dialog2Widgets *) clientData; 
strcpy (tempold, XmTextFieldGetString(widgets->oldLabel)); 
strcpy (tempnew, XmTextFieldGetString(widgets->newType)); 
if (activeTree == 1) 
{ 

tempfile = fopen (tl_tempfile, "r"); 
outfile = fopen (tl_outfile, "w"); 
while (fscanf (tempfile, "%s %s %s %s", &parentl, SparentLabell, 

&childl, &childLabell) != 
EOF) 

{ 
if (stremp (childLabell, tempold) == 0) 
{ 

strcpy (templabel, childl); 
fseek (tempfile, 0, 0); 
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2, 

&child2, 
SchildLabel2) != EOF) 

{ 
if (stremp (parent2, templabel) == 0) 
{ 

strcpy (childLabel2, tempnew); 
} 
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2, 

child2, childLabel2); 
} 

} 
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} 
fclose (outfile); 
fclose (tempfile); 
copyFiles (tl_outfile, tl_tempfile); 
treel = XsCreateScrolledTree (forml, "treel", NULL, 0) 
buildTree(treel, tl_tempfile); 
XtManageChild(treel); 

else 
{ 

tempfile = fopen (t2_tempfile, "r") ; 
outfile = fopen (t2_outfile, "w"); 
while (fscanf (tempfile, "%s %s %s %s' 

schildl, &childLabell) != 
EOF) 

sparentl, &parentLabell, 

{ 
0) if (strcmp (childLabell, tempold) 

{ 
strcpy (templabel, childl); 
fseek (tempfile, 0, 0) ; 
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2, 

&child2, 
&childLabel2) != EOF) 

{ 
if (strcmp (parent2, templabel) == 0) 
{ 

strcpy (childLabel2, tempnew); 
} 
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2, 

child2, childLabel2); 
} 

} 
} 
fclose (outfile); 
fclose (tempfile); 
copyFiles (t2_outfile, t2_tempfile); 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 
buildTree(tree2, t2_tempfile) ; 
XtManageChild(tree2) ; 

} 

/* horiz concat */ 
void Button3Callback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

Widget    dialog3 = NULL; 
Widget    re; 
Dialog3Widgets  *widgets; 

widgets = (Dialog3Widgets *) XtMalloc (sizeof (Dialog3Widgets)); 
dialog3 = XmCreateMessageDialog (w, "dialog3", NULL, 0); 
XtUnmanageChild (XmMessageBoxGetChild (dialog3, XmDIALOG_SYMBOL_LABEL)); 
XtUnmanageChild (XmMessageBoxGetChild (dialog3, XmDIALOG_MESSAGE_LABEL)); 
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialog3, 

XmNnumColumns, 2, 
XmNpacking, XmPACK COLUMN, 
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XmNorientation, XmVERTICAL, 
NULL); 

XtCreateManagedWidget ("Old Label 1", xmLabelWidgetClass, re, NULL, 0); 
XtCreateManagedWidget ("Old Label 2", xmLabelWidgetClass, re, NULL, 0); 
XtCreateManagedWidget ("New Label", xmLabelWidgetClass, re, NULL, 0); 
widgets->oldl = XtCreateManagedWidget ("oldl", xmTextFieldWidgetClass, re, 

NULL, 0); 
widgets->old2 = XtCreateManagedWidget ("old2", xmTextFieldWidgetClass, re, 

NULL, 0); 
widgets->new = XtCreateManagedWidget ("new", xmTextFieldWidgetClass, re, 

NULL, 0); 
XtVaSetValues (dialog3, 

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL, 
NULL); 

XtAddCallback (dialog3, XmNokCallback, D30KCallback, (XtPointer) widgets); 
XtManageChild (dialog3); 

} 

void D30KCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

Dialog3Widgets  *widgets; 
int success = 0; 
char       parentl[500], 

parentLabell[500], 
childl[500], 

childLabell[500], 
parent2[500], 
parentLabel2[500], 

child2[500], 
childLabel2[500], 
tempoldl [500], 
tempold2 [500], 
tempnew [500]; 

FILE*      tempfile; 
FILE*       outfile; 

widgets = (Dialog3Widgets *) clientData; 
printf ("%s %s %s \n", XmTextFieldGetString(widgets->oldl) , 

XmTextFieldGetString(widgets->old2), 
XmTextFieldGetString(widgets->new)); 

strcpy (tempoldl, XmTextFieldGetString(widgets->oldl)) ; 
strcpy (tempold2, XmTextFieldGetString(widgets->old2)); 
strcpy (tempnew, XmTextFieldGetString(widgets->new)); 

if (activeTree == 1) 
{ 

tempfile = fopen (tl_tempfile, "r"); 
outfile = fopen (tl_outfile, "w"); 
success = 0; 
while (fscanf (tempfile, "%s %s %s %s", &parentl, SparentLabell, 

Schildl, &childLabell) != 
EOF) 

{ 
if (stremp (childLabell, tempoldl) == 0) 
{ 
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fseek (tempfile, 0, 0); 
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2, 

&child2, 
&childLabel2) != EOF) 

{ 
if (strcmp (childLabel2, tempold2) == 0) 
{ 

success = 1; 
} 

if (success) 
{ 
printf ("Both items found!!! \n") ; 

} 
else 
printf ("One or both item(s) not found \n"); 
fclose (outfile); 
fclose (tempfile); 

/*     copyFiles (tl_outfile, tl_tempfile); 
treel = XsCreateScrolledTree (forml, "treel", NULL, 0); 
buildTree(treel, tl_tempfile); 
XtManageChild(treel) ; 

*/   } 
/*   else 

{ 
tempfile = fopen (t2_tempfile, "r"); 
outfile = fopen (t2_outfile, "w"); 
while (fscanf (tempfile, "%s %s %s %s", &parentl, SparentLabell, 

&childl, &childLabell) != 
EOF) 

{ 
if (strcmp (childLabell, tempold) == 0) 
{ 

strcpy (templabel, childl); 
fseek (tempfile, 0, 0); 
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2, 

&child2, 
&childLabel2) != EOF) 

{ 
if (strcmp (parent2, templabel) == 0) 
{ 

strcpy (childLabel2, tempnew); 
} 
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2, 

child2, childLabel2); 
} 

} 
} 
fclose (outfile); 
fclose (tempfile); 
copyFiles (t2_outfile, t2_tempfile); 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 
buildTree(tree2, t2_tempfile); 
XtManageChild(tree2) ; 
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*/} 

/* change units */ 
void ButtonllCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

Widget    dialogll = NULL; 
Widget    re; 
DialogllWidgets  *widgets; 

widgets = (DialogllWidgets *) XtMalloc (sizeof (DialogllWidgets)); 
dialogll = XmCreateMessageDialog (w, "dialogll", NULL, 0); 
XtUnmanageChild (XmMessageBoxGetChild (dialogll, XmDIALOG_SYMBOL_LABEL)); 
XtUnmanageChild (XmMessageBoxGetChild (dialogll, XmDIALOG_MESSAGE_LABEL)); 
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialogll, 

XmNnumColumns, 2, 
XmNpacking, XmPACK_COLUMN, 
XmNorientation, XmVERTICAL, 
NULL); 

XtCreateManagedWidget ("Old Label", xmLabelWidgetClass, re, NULL, 0); 
XtCreateManagedWidget ("Multiplier", xmLabelWidgetClass, re, NULL, 0); 
XtCreateManagedWidget ("New Label", xmLabelWidgetClass, re, NULL, 0); 
widgets->old = XtCreateManagedWidget ("old", xmTextFieldWidgetClass, re, 

NULL, 0); 
widgets->mult = XtCreateManagedWidget ("mult", xmTextFieldWidgetClass, re, 

NULL, 0); 
widgets->new = XtCreateManagedWidget ("new", xmTextFieldWidgetClass, re, 

NULL, 0); 
XtVaSetValues (dialogll, 

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL, 
NULL); 

XtAddCallback (dialogll, XmNokCallback, DllOKCallback, (XtPointer) 
widgets); 

XtManageChild (dialogll); 
} 

void DllOKCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

DialogllWidgets  *widgets; 
char       parentl[500], 

parentLabell[500], 
childl[500], 

childLabell[500], 
parent2[500], 
parentLabel2[500], 

child2[500], 
childLabel2[500], 
templabell[500], 
templabel2[500], 
tempold [500], 
tempnew [500]; 

float      tempmult; 
FILE*       tempfile; 
FILE*       outfile; 
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widgets = (DialogllWidgets *) clientData; 
printf ("%s %s %s %.2f \n", XmTextFieldGetString(widgets->old), 

XmTextFieldGetString(widgets->mult), 
XmTextFieldGetString(widgets->new), 
atof(XmTextFieldGetString(widgets->mult))); 

strcpy (tempold, XmTextFieldGetString(widgets->old)); 
tempmult = atof (XmTextFieldGetString(widgets->mult)); 
strcpy (tempnew, XmTextFieldGetString(widgets->new)); 

/* if (activeTree == 1) 
{ 

tempfile = fopen (tl_tempfile, "r"); 
outfile = fopen (tl_outfile, "w"); 
strcpy (templabell," "); 
strcpy (templabel2," "); 
while (fscanf (tempfile, "%s %s %s %s", &parentl, &parentLabell, 

&childl, SchildLabell) != 
EOF) 

{ 
if (strcmp (childLabell, tempold) == 0) 
{ 

strcpy (templabell, childl); 
strcpy (childLabell, tempnew); 

} 
else 

if (strcmp (parentl, templabell) == 0) 
strcpy (templabel2, childl); 

else 
if (strcmp (parentl, templabel2) == 0) 
strcpy (childLabell, ecvt ((atof (childLabell) * tempmult), 2, 

NULL, NULL)); 
fprintf (outfile, "%s %s %s %s \n", parentl, parentLabell, childl, 

childLabell); 
} 
fclose (outfile); 
fclose (tempfile); 
copyFiles (tl_outfile, tl_tempfile); 
treel = XsCreateScrolledTree (forml, "treel", NULL, 0); 
buildTree(treel, tl_tempfile); 
XtManageChild(treel); 

} 
else 
{ 

tempfile = fopen (t2_tempfile, "r"); 
outfile = fopen (t2_outfile, "w"); 
while (fscanf (tempfile, "%s %s %s %s", Sparentl, SparentLabell, 

&childl, SchildLabell) != 
EOF) 

{ 
if (strcmp (childLabell, tempold) == 0) 
{ 

strcpy (templabel, childl); 
fseek (tempfile, 0, 0); 
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2, 

&child2, 
&childLabel2) != EOF) 

{ 
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if (strcmp (parent2, templabel) == 0) 
{ 

strcpy (childLabel2, tempnew); 
} 
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2, 

child2, childLabel2); 
} 

} 
} 
fclose (outfile); 
fclose (tempfile); 
copyFiles (t2_outfile, t2_tempfile); 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 
buildTree(tree2, t2_tempfile); 
XtManageChild(tree2); 

} */ 

/* go to first record */ 
void Buttonl3Callback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

if (activeTree == 1) 
{ 

if (tlRecNum != 0) 
{ 
tlRecNum = 0; 
treel = XsCreateScrolledTree {forml, "treel", NULL, 0); 
buildTree(treel, tl_tempfile); 
XtManageChild(treel); 

} 
} 
else 
{ 

if (t2RecNum != 0) 
{ 
t2RecNum = 0; 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 
buildTree(tree2, t2_tempfile); 
XtManageChild(tree2); 

} 

} 

/* go to previous record */ 
void Buttonl4Callback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

if (activeTree == 1) 
{ 

tlRecNum—; 
if (tlRecNum < 0) 
tlRecNum = 0; 

else 
{ 
treel = XsCreateScrolledTree (forml, "treel", NULL, 0); 
buildTree(treel, tl tempfile); 
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XtManageChild(treel) ; 
} 

} 
else 
{ 

t2RecNum—; 
if (t2RecNum < 0) 
t2RecNum = 0; 

else 
{ 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 
buildTree(tree2, t2_tempfile); 
XtManageChild(tree2) ; 

} 

/* go to next record */ 
void Buttonl5Callback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

if (activeTree == 1) 
{ 

tlRecNum++; 
if (tlRecNum > tlLastRec) 
tlRecNum = tlLastRec; 

else 
{ 
treel = XsCreateScrolledTree (forml, "treel", NULL, 0); 
buildTree(treel, tl_tempfile); 
XtManageChild(treel) ; 

} 
else 
{ 

t2RecNum++; 
if (t2RecNum > t2LastRec) 
t2RecNum = t2LastRec; 

else 
{ 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 
buildTree(tree2, t2_tempfile); 
XtManageChild(tree2); 

} 

} 

/* go to last record */ 
void Buttonl6Callback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

if (activeTree == 1) 
{ 

if (tlRecNum != tlLastRec) 
{ 
tlRecNum = tlLastRec; 
treel = XsCreateScrolledTree (forml, "treel", NULL, 0); 
buildTree(treel, tl tempfile); 
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XtManageChild(treel) ; 
} 

} 
else 
{ 

if (t2RecNum != t2LastRec) 
{ 
t2RecNum = t2LastRec; 
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0); 
buildTree(tree2, t2_tempfile); 
XtManageChild(tree2); 

} 

void ShowSelectedWidget (Widget w, XtPointer clientData, 
XEvent *event, Boolean *flag) 

{ 
printf ("button pressed\n"); 
printf ("%s selected \n", XtName(w)); 

} 

void ValueChangedCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

XmToggleButtonCallbackStruct *cbs = 
( XmToggleButtonCallbackStruct * ) callData; 

if ((strcmp ("togglel", XtName(w)) == 0) && (cbs->set)) 
activeTree =1; 

else 
if ((strcmp ("toggle2", XtName(w)) == 0) && (cbs->set)) 
activeTree = 2; 

} 

/* makeButtons creates the control buttons */ 
void makeButtons (Widget w) 
{ 

Widget   labell, 
label2, 
rowcoll, 
rowcol2, 
sep, 
buttonl, 
button2, 
button3, 
button4, 
button5, 
button6, 
button7, 
button8, 
button9, 
buttonlO, 
buttonll, 
buttonl2, 
radio, 
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Iabel3, 
togglel, 
toggle2, 
recordBox, 
label4, 
buttonl3, 
buttonl4, 
buttonl5, 
buttonl6; 

labell = XtVaCreateManagedWidget ("labell", xmLabelWidgetClass, 
w, 
XmNtopAttachment, XmATTACH_WIDGET, 

XmNtopWidget, w, 
XraNleftAttachment, XmATTACH_WIDGET, 
XmNleftWidget, w, 

NULL); 

label2 = XtVaCreateManagedWidget ("label2", xmLabelWidgetClass, 
w, 
XmNtopAttachment, XmATTACH_WIDGET, 
XmNtopWidget, w, 
XmNrightAttachment, XmATTACH_WIDGET, 
XmNrightWidget, w, 
NULL); 

rowcoll = XtVaCreateManagedWidget ("rowcoll", xmRowColumnWidgetClass, 
w, 
XmNtopAttachment, XmATTACH_WIDGET, 
XmNtopWidget, labell, 

XmNbottomAttachment, XmATTACH_POSITION, 
XmNbottomPosition, 84, 
XmNleftAttachment, XmATTACH_WIDGET, 
XmNleftWidget, w, 

XmNrightAttachment, XmATTACH_NONE, 
XmNorientation, XmVERTICAL, 
XmNisAligned, TRUE, 
XmNentryAlignment, XmALIGNMENT_CENTER, 
XmNnumColumns, 2, 
XmNpacking, XmPACK_COLUMN, 

NULL); 

rowcol2 = XtVaCreateManagedWidget ("rowcol2", xmRowColumnWidgetClass, 
w, 
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET, 

XmNtopWidget, rowcoll, 
XmNbottomAttachment, XmATTACH_OPPOSITE_WIDGET, 
XmNbottomWidget, rowcoll, 
XmNrightAttachment, XmATTACH_WIDGET, 
XmNrightWidget, w, 

XmNorientation, XmVERTICAL, 
XmNisAligned, TRUE, 
XmNentryAlignment, XmALIGNMENT_CENTER, 
XmNnumColumns, 2, 
XmNpacking, XmPACK_COLUMN, 
NULL); 
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sep = XtVaCreateManagedWidget ("sep", xmSeparatorWidgetClass, 
w, 
XmNleftAttachment, XmATTACH_WIDGET, 

XmNleftWidget, rowcoll, 
XmNrightAttachment, XmATTACH_WIDGET, 
XmNrightWidget, rowcol2, 
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET, 
XmNtopWidget, rowcoll, 

XmNbottomAttachment, XmATTACH_OPPOSITE_WIDGET, 
XmNbottomWidget, rowcoll, 
NULL); 

buttonl = XtVaCreateManagedWidget ("buttonl", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (buttonl, XmNactivateCallback, ButtonlCallback, NULL); 

button2 = XtVaCreateManagedWidget ("button2", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (button2, XmNactivateCallback, Button2Callback, NULL); 

button3 = XtVaCreateManagedWidget ("button3", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (button3, XmNactivateCallback, Button3Callback, NULL); 

button4 = XtVaCreateManagedWidget ("button4", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (button4, XmNactivateCallback, ButtonCallback, NULL); 

button5 = XtVaCreateManagedWidget {"button5", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (button5, XmNactivateCallback, ButtonCallback, NULL); 

button6 = XtVaCreateManagedWidget ("button6", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (button6, XmNactivateCallback, ButtonCallback, NULL); 

button7 = XtVaCreateManagedWidget ("button7", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (button7, XmNactivateCallback, ButtonCallback, NULL); 

button8 = XtVaCreateManagedWidget ("button8", xmPushButtonWidgetClass, 
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rowcoll, 
NULL); 

XtAddCallback (button8, XmNactivateCallback, ButtonCallback, NULL); 

button9 = XtVaCreateManagedWidget ("button9", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (button9, XmNactivateCallback, ButtonCallback, NULL); 

buttonlO = XtVaCreateManagedWidget ("buttonlO", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (buttonlO, XmNactivateCallback, ButtonCallback, NULL); 

buttonll = XtVaCreateManagedWidget ("buttonll", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (buttonll, XmNactivateCallback, ButtonllCallback, NULL); 

buttonl2 = XtVaCreateManagedWidget ("buttonl2", xmPushButtonWidgetClass, 
rowcoll, 
NULL); 

XtAddCallback (buttonl2, XmNactivateCallback, ButtonCallback, NULL); 

radio = XtVaCreateManagedWidget ("rowcol2", xmRowColumnWidgetClass, 
w, 
XmNtopAttachment, XmATTACH_POSITION, 

XmNtopPosition, 85, 
XmNbottomAttachment, XmATTACH_WIDGET, 
XmNbottomWidget, w, 

XmNrightAttachment, XmATTACH_NONE, 
XmNleftAttachment, XmATTACH_WIDGET, 
XmNleftWidget, w, 

XmNradioBehavior, TRUE, 
XmNorientation, XmHORIZONTAL, 
NULL); 

label3 = XtVaCreateManagedWidget ("label3", xmLabelWidgetClass, 
radio, 
XmNhighlightOnEnter, FALSE, 
NULL); 

togglel = XtVaCreateManagedWidget ("togglel", xmToggleButtonWidgetClass, 
radio, 
XmNset, TRUE, 
NULL); 

XtAddCallback (togglel, XmNvalueChangedCallback, ValueChangedCallback, 
NULL); 
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toggle2 = XtVaCreateManagedWidget ("toggle2", xmToggleButtonWidgetClass, 
radio, 
NULL); 

XtAddCallback (toggle2, XmNvalueChangedCallback, ValueChangedCallback, 
NULL); 

recordBox = XtVaCreateManagedWidget ("rowcol3", xmRowColumnWidgetClass, 
w, 
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET, 

XinNtopWidget, radio, 
XmNbottomAttachment, XmATTACH_OPPOSITE_WIDGET, 
XmNbottomWidget, radio, 

XmNrightAttachment, XmATTACH_WIDGET, 
XmNrightWidget, w, 

XmNleftAttachment, XmATTACH_WIDGET, 
XmNleftWidget, radio, 

XmNorientation, XmHORIZONTAL, 

NULL); 

label4 = XtVaCreateManagedWidget ("label4", xmLabelWidgetClass, 
recordBox, 
XmNhighlightOnEnter, FALSE, 
NULL); 

buttonl3 = XtVaCreateManagedWidget ("buttonl3", xmArrowButtonWidgetClass, 
recordBox, 
XmNarrowDirection, XmARROW_LEFT, 
NULL); 

XtAddCallback (buttonl3, XmNactivateCallback, Buttonl3Callback, NULL); 

buttonl4 = XtVaCreateManagedWidget ("buttonl4", xmArrowButtonWidgetClass, 
recordBox, 
XmNarrowDirection, XmARROW_LEFT, 
NULL); 

XtAddCallback (buttonl4, XmNactivateCallback, Buttonl4Callback, NULL); 

buttonl5 = XtVaCreateManagedWidget ("buttonl5", xmArrowButtonWidgetClass, 
recordBox, 
XmNarrowDirection, XmARROW_RIGHT, 
NULL); 

XtAddCallback (buttonl5, XmNactivateCallback, Buttonl5Callback, NULL); 

buttonl6 = XtVaCreateManagedWidget ("buttonl6", xmArrowButtonWidgetClass, 
recordBox, 
XmNarrowDirection, XmARROW_RIGHT, 
NULL); 

XtAddCallback (buttonl6, XmNactivateCallback, Buttonl6Callback, NULL); 
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/* the menu callbacks */ 
/* exit */ 
void ExitCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

copyFiles (tl_tempfile, tl_outfile); 
copyFiles (t2_tempfile, t2_outfile); 
exit{0);   /* outta here */ 

} 

/* load */ 
void LoadCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 
/* 

static Widget fileDialog = NULL; 
Arg wargs[10]; 
int n; 

n=0; 
XtSetArg (wargs[n], XmNpattern, "*.dat"); n++; 
fileDialog = XmCreateFileSelectionDialog (w, "openFileDialog", NULL, 0); 

XtAddCallback (fileDialog, XmNokCallback, OKCallback, NULL); 
XtAddCallback (fileDialog, XmNcancelCallback, CancelCallback, NULL); 

XtManageChild (fileDialog); 
*/ 
} 

void OKCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

/* 
XmFileSelectionBoxCallbackStruct *cbs = 

(XmFileSelectionBoxCallbackStruct *) callData; 

XtUnmanageChild (w); 

XmStringGetLtoR (cbs->value, XmFONTLIST_DEFAULT_TAG, SfileName); 

printf ("%s is the parent of %s\n", XtName(XtParent(XtParent(w))), 
XtName(w)); 

if (strcmp(XtName (XtParent(XtParent(w))), "Tree 1") == 0) 
{ 

printf ("Loading tree 1 !!!! with file %s \n", fileName); 
if (XtlsRealized (treel)) 
XtUnmanageChild (treel); 
tl_infile = fopen (fileName, "r"); 
buildTree (treel, tl_infile); 
XtManageChild (treel); 

} 
else 
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printf ("Loading tree 2 !!!! with file %s \n", fileName); 
if (XtlsRealized (tree2)) 
XtUnmanageChild (tree2); 
t2_infile = fopen (fileName, "r"); 
buildTree (tree2, t2_infile); 
XtManageChild (tree2); 

} 
*/ 
} 

void CancelCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

XtUnmanageChild (w); 
} 

/* save */ 
void SaveCallback (Widget w, XtPointer clientData, XtPointer callData) 
{ 

/*save tree here*/ 
if (strcmp(XtName (w), "Tree 1") == 0) 

printf ("Saving tree 1 !!!!\n"); 
else 

printf ("Saving tree 2 !!!!\n"); 
} 

/* create the menu bar */ 
Widget createMenu (Widget w) 
{ 

Widget menu; 

menu = XmCreateMenuBar (w, "menu", NULL, 0); 

createFilePane (menu); 
createHelpPane (menu); 

XtManageChild (menu); 

return (menu); 

/* create the file pane */ 
void createFilePane (Widget w) 
{ 

Widget   cascade, 
cascadel, 
cascade2, 
submenu, 
submenul, 
submenu2, 
buttonl, 
button2, 
button3; 

submenu = XmCreatePulldownMenu (w, "fileSubmenu", NULL, 0); 
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cascade = XtVaCreateManagedWidget {"File", xmCascadeButtonWidgetClass, 
w, 
XmNsubMenuId, submenu, 
NULL); 

submenul = XmCreatePulldowiiMenu (submenu, "loadSubmenu", NULL, 0); 
cascadel = XtVaCreateManagedWidget ("Load", xmCascadeButtonWidgetClass, 

submenu, 
XmNsubMenuId, submenul, 
NULL); 

createTreeCascadeL (submenul); 

submenu2 = XmCreatePulldownMenu (submenu, "saveSubmenu", NULL, 0); 
cascade2 = XtVaCreateManagedWidget ("Save", xmCascadeButtonWidgetClass, 

submenu, 
XmNsubMenuId, submenu2, 
NULL); 

createTreeCascadeS (submenu2); 

button3 = XtCreateManagedWidget ("Exit", xmPushButtonWidgetClass, 
submenu, NULL, 0); 

XtAddCallback (button3, XmNactivateCallback, ExitCallback, NULL); 
} 

/* create tree cascade for load menu*/ 
void createTreeCascadeL (Widget w) 
{ 

Widget buttonl, 
button2; 

buttonl = XtCreateManagedWidget ("Tree 1", xmPushButtonWidgetClass, 
w, NULL, 0); 

button2 = XtCreateManagedWidget ("Tree 2", xmPushButtonWidgetClass, 
w, NULL, 0); 

/* 
XtAddCallback (buttonl, XmNactivateCallback, LoadCallback, NULL); 
XtAddCallback (button2, XmNactivateCallback, LoadCallback, NULL); 

*/ 
} 

/* create tree cascade for save menu*/ 
void createTreeCascadeS (Widget w) 
{ 

Widget buttonl, 
button2; 

buttonl = XtCreateManagedWidget ("Tree 1", xmPushButtonWidgetClass, 
w, NULL, 0); 
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button2 = XtCreateManagedWidget ("Tree 2", xmPushButtonWidgetClass, 
w, NULL, 0); 

XtAddCallback (buttonl, XmNactivateCallback, SaveCallback, NULL); 
XtAddCallback (button2, XmNactivateCallback, SaveCallback, NULL); 

/* create the help pane */ 
void createHelpPane (Widget w) 
{ 

Widget  cascade, 
submenu, 
buttonl, 
button2; 

submenu = XmCreatePulldownMenu (w, "helpSubmenu", NULL, 0); 
cascade = XtVaCreateManagedWidget ("Help", xmCascadeButtonWidgetClass, 

w, 
XmNsubMenuId, submenu, 
NULL); 

XtVaSetValues (w, XmNmenuHelpWidget, cascade, NULL); 
} 

/* write the output files */ 
void copyFiles (char* infilename, char* outfilename) 
{ 

char       parent[500], 
parentLabel[500], 

child[500], 
childLabel[500]; 

FILE*      infile; 
FILE*       outfile; 

infile = fopen (infilename, "r"); 
outfile = fopen (outfilename, "w") ; 
while (fscanf (infile, "%s %s %s %s", Sparent, SparentLabel, Schild, 

SchildLabel) != EOF) 
{ 

fprintf (outfile, "%s %s %s %s \n", parent, parentLabel, child, 
childLabel); 

} 
fclose (infile); 
fclose (outfile); 

} 
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TREE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!! AppDefaults file for Proj 
i I j | i | | I i i i I j i | i I i | i t i j j i i I i i i i i i i | ] i i | | ! i i i i i 

!! Tree widget colors 
!*Tree.Background: midnight blue 
!*Tree.Foreground: white 

*XmForm*Background: dark slate grey 
*XmForm*XmScrollBar*background: grey 
*XmForm*XmDrawnButton*background: grey 
*XmForm*XmDrawnButton* foreground: black 

*XmMainWindow*Background: light blue 
*XmMainWindow*Foreground: black 

!! Tree fonts 
*treel*fontList: -*-helvetica-medium-r-normal-*-10-*-*-*-*-*-iso8859-l 
*tree2*fontList: -*-helvetica-medium-r-normal-*-10-*-*-*-*-*-iso8859-l 

!! Tree attachments 
*forml*bottomAttachment: attach_form 
*forml*topAttachment: attach_form 
*forml*leftAttachment: attach_form 
*forml*rightAttachment: attach_form 
*form2*bottomAttachment: attach_form 
*form2*topAttachment: attach_form 
*form2*leftAttachment: attach_form 
*form2*rightAttachment: attach_form 

!! Popup shell geometry 
*shell1.geometry: 600x600+25+500 
*shell2.geometry: 600x600+660+500 

! ! Dialog default position 
*XmMessageBox.defaultPosition: FALSE 
*XmMessageBox.x: 500 
*XmMessageBox.y: 500 

! ! Label strings 
*labell.labelString: Resolution Commands 
*label2.1abelString: DML Commands 
*label3.1abelString: Active Tree: 
*label4.1abelString: Record: 

! ! Separator 
*sep.separatorType: DOUBLE_LINE 
*sep.orientation: VERTICAL 

!! Button label strings 
*rowcoll.buttonl.labelString: Change Node NAME 
*rowcoll.button2.1abelString: Change Node TYPE 
*rowcoll.button3.1abelString: Horiz CONCAT 
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*rowcoll.button4.1abelString: Horiz SUBSET 
*rowcoll.button5.1abelString: Vert COLLAPSE 
*rowcoll.button6.1abelString: Vert EXPAND 
*rowcoll.button7.1abelString: Change SEQUENCE 
*rowcoll.button8.1abelString: OPTIONALITY 
*rowcoll.button9.1abelString: CHOICE 
*rowcoll.buttonl0.1abelString: Change PRECISION 
*rowcoll.buttonll.labelString: Change UNITS 
*rowcoll.buttonl2.1abelString: Change EXPRESSION 

!! Toggle label strings 
*togglel.labelString: Tree 1 
*toggle2.1abelString: Tree 2 
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SPEC1.ASN 

.****■*■***********•******•********■*■*•*****•*•*** 

CDB-1 data definitions 
Gino Celia, 1994 

__*****************************•*****■*■****** 

Component-one-module DEFINITIONS 
BEGIN 

Book-set ::= SEQUENCE OF Book collection of books 

local key 

— last, first 

}, 

Book ::= SEQUENCE { 
b-num INTEGER, 
title VisibleString, 
author-name VisibleString, 
subj VisibleString OPTIONAL, 
type CHOICE { 

book SEQUENCE { 
binding ENUMERATED { 

hardcover(1), 
paperback(2) 

num-pgs INTEGER }, 
music SEQUENCE { 
medium ENUMERATED { 

record(1), 
cd(2), 
tape(3) }, 

length INTEGER }, 
movie SEQUENCE { 
format ENUMERATED { 

beta(l), 
vhs(2), 
reel(3) }, 

length INTEGER }}, 
language VisibleString DEFAULT "English", 
lc-num SEQUENCE { 

c-letter VisibleString,       — one or more CAP LTRS 
f-digit VisibleString,        — one or more digits 
s-digit VisibleString OPTIONAL,    — one or more digits 

in minutes 

— in minutes 

cuttering VisibleString }, 
publisher-name VisibleString, 
publisher-addr VisibleString, 
checked-out BOOLEAN, 
cost INTEGER } 

— author cutter number 

— num, str, city, state 
— TRUE if in library 
— orig cost in whole dollars 

END 
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PRINTl.ENT 

Holding ::= { 
b-num 10, 
title "Joint Military Operations: A Short History", 
author-name "Beaumont, Roger A.", 
subj "Military Science", 
type book { 
binding hardcover, 
num-pgs 245 
}, 
language "English", 
lc-num { 
c-letter "U", 
f-digit "260", 
cuttering "B43" 
}, 
publisher-name "Greenwood Press", 
publisher-addr "Westport, Connecticut", 
checked-out TRUE, 
cost 60 
} 
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PRINT1.OUT 

Book ::= { 
b-num 10 , 
title "Joint Military Operations: A Short History" , 
author-name "Beaumont, Roger A. " , 
subj "Military Science" , 
type 
book { 

binding hardcover , 
num-pgs 245 } , 

language "English" , 
lc-num { 

c-letter "U" , 
f-digit "260" , 
cuttering "B43" } , 

publisher-name "Greenwood Press" , 
publisher-addr "Westport, Connecticut" , 
checked-out TRUE , 
cost 60 } 
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TREE1.DAT 

0 0 0 0 
1 Holding 2a SEQUENCE 
2a x 2 b-num 
2a x 3 title 
2a x 4 author-name 
2a x 5 subj 
2a x 6 type 
2a x 7 language 
2a x 8 lc-num 
2a x 9 publisher-name 
2a x 10 publisher-addr 
2a x 11 checked-out 
2a x 12 cost 
2 x 13 INTEGER 
13 x 14 10 
3 x 15 VisibleString 
15 x 16 "Joint Military Operations :A Short History 
4 x 17 VisibleString 
17 x 18 "Beaumont,_Roger_A." 
5 x 19 VisibleString 
19 x 20 "Military Science" 
6 x 21 CHOICE 
21 x 22 book 
22 x 23 SEQUENCE 
23 x 24 binding 
23 x 25 num-pgs 
24 x 26 ENUMERATED 
26 x 27 hardcover 
25 x 28 INTEGER 
28 x 29 245 
7 x 30 VisibleString 
30 x 31 "English" 
8 x 32 SEQUENCE 
32 x 33 c-letter 
32 x 34 f-digit 
32 x 35 s-digit 
32 x 36 cuttering 
33 x 37 VisibleString 
37 x 38 "U" 
34 x 39 VisibleString 
39 x 40 "260" 
35 x 41 VisibleString 
36 x 42 VisibleString 
42 x 43 "B43" 
9 x 44 VisibleString 
44 x 45 "Greenwood Press" 
10 x 46 VisibleString 
46 x 47 "Westport, Connecticut" 
11 x 48 BOOLEAN 
48 x 49 TRUE 
12 x 50 INTEGER 
50 x 51 60 
0 10 1 
52 Holding 53 SEQUENCE 
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53 x 54 b-num 
53 x 55 title 
53 x 56 author-name 
53 x 57 subj 
53 x 58 type 
53 x 59 language 
53 x 60 lc-num 
53 x 61 publisher-name 
53 x 62 publisher-addr 
53 x 63 checked-out 
53 x 64 cost 
54 x 65 INTEGER 
65 x 66 11 
55 x 67 VisibleString 
67 x 68 "X_Window_System" 
56 x 69 VisibleString 
69 x 70 "Scheifler,_Robert_W." 
57 x 71 VisibleString 
71 x 72 "Computers" 
58 x 73 CHOICE 
73 x 74 book 
74 x 75 SEQUENCE 
75 x 76 binding 
75 x 77 num-pgs 
76 x 78 ENUMERATED 
78 x 79 hardcover 
77 X 78 INTEGER 
78 X 79 701 
59 X 80 VisibleString 
80 X 81 "English" 
60 X 82 SEQUENCE 
82 X 83 c-letter 
82 X 84 f-digit 
82 X 85 s-digit 
82 X 86 cuttering 
83 X 87 VisibleString 
87 X 88 "QA" 
84 X 89 VisibleString 
89 X 90 "76" 
85 X 91 VisibleString 
91 X 91a ".76" 
86 X 92 VisibleString 
92 X 93 "W56" 
61 X 94 VisibleString 
94 X 95 "Digital_Press" 
62 X 96 VisibleString 
96 X 97 "Massachusetts" 
63 X 98 BOOLEAN 
98 X 99 FALSE 
64 X 100 INTEGER 
100 x 101 65 
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