
NAVAL POSTGRADUATE SCHOOL
Monterey, California

E?S

JEC 2 8 1994

mrjyt L ^

THESIS

SCHEMA AND DATA CONFLICT RESOLUTION
ACROSS DISTRIBUTED GRAPHICAL ASN.l

DATABASES

by

Gino Celia, Jr.

September, 1994

Thesis Advisor: Magdi Kamel

Approved for public release; distribution is unlimited.

19941223 004
V?. "im

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and mamtaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September, 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE Schema and Data Conflict Resolution Across Distributed
Graphical ASN.l Databases (U)

6. AUTHOR Celia, Gino Jr.

5. FUNDING NUMBERS

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMG/MONTTORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release;
distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words) Recently, most large corporations, including the Department of Defense and the Department of
the Navy have seen a dramatic proliferation of incompatible databases and their associated database management systems. Sooner or
later, these organizations discover the need to integrate the data in these incompatible databases. One solution to this problem is the
use of markup languages like Abstract Syntax Notation One (ASN. 1) as a standard format for representing these daatabases and output
reports and thus facilitating their integration. A main requirement of this integration approach is the ability to correctly identify and
resolve the semantic conflicts that arise in the marked-up databases and outputs of software tools before any integration can take place.
This thesis addresses this issue by introducing a systematic approach for identifying and resolving semantic conflicts for these
databases and developing a prototype tool which aids in this resolution. We hope that this tool will greatly aid in the efforts of
integration and manipulation of ASN.l databases.

14. SUBJECT TERMS Distributed Databases, Conflict Resolution, ASN.l, Integration 15. NUMBER OF PAGES
126

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

Schema and Data Conflict Resolution Across Distributed Graphical ASN. 1 Databases

by

Gino Celia, Jr.
Lieutenant, United States Navy

B.S. (Computer Science), United States Naval Academy, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
September

MagdisK&mel, Primary Advisor

a

James Emery, Associate Advisor

David R Wftipple, Chatfmari
Department of Systems Management

ABSTRACT

Recently, most large corporations, including the Department of Defense and the

Department of the Navy, have seen a dramatic proliferation of incompatible databases and

their associated database management systems. Sooner or later, these organizations

discover the need to integrate the data in these incompatible databases. One solution to

this problem is the use of markup languages like Abstract Syntax Notation One (ASN.l)

as a standard format for representing these databases and output reports and thus

facilitating their integration. A main requirement of this integration approach is the ability

to correctly identify and resolve the semantic conflicts that arise in the marked-up

databases and outputs of software tools before any integration can take place. This thesis

addresses this issue by introducing a systematic approach for identifying and resolving

semantic conflicts for these databases and developing a prototype tool that aids in this

resolution . We hope that this tool will greatly aid in the efforts of integration and

manipulation of ASN. 1 databases.
ioi'i For

\

d
D

-oui.ced D
■•.:.. v;i>n

.-.. „ ,

:-.■::■-■.}

ft-/

111

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVES 2

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS 2

D. DEFINITIONS AND ABBREVIATIONS 3

E. ORGANIZATION 3

II. OVERVIEW OF ASN. 1 AND ITS USE FOR DATABASE INTEGRATION .. 4

A. BACKGROUND 4

B. ASN.l AS ADATABASE INTEGRATION TOOL 5

C. ASN.l DATA DEFINITION LANGUAGE 8

D. ASN.l DATA MANIPULATION LANGUAGE 13

m. SAMPLE DATABASES 16

A. SELECTION CRITERIA 16

B. COMPONENT DATABASES 16

1. Database 1 17

2. Database 2 19

IV. FRAMEWORK OF SEMANTIC CONFLICTS IN ASN. 1 DATABASES 26

A. TYPES OF INTEGRATION 26

B. CLASSIFICATION OF SEMANTIC CONFLICTS 28

1. ASN. 1 Schematic Conflicts 29

IV

2. ASN.l Data Conflicts 31

V. RESOLVING CONFLICTS 33

A. SCHEMA LEVEL RESOLUTION 34

B. DATA LEVEL RESOLUTION 36

VI. IMPLEMENTATION OF CONFLICT RESOLUTION 38

A. PLATFORM AND LANGUAGE CONSIDERATIONS 38

B. IMPLEMENTATION TOOLS 39

1. NCBI Toolkit 40

2. OSF/Motif 40

C. USER'S GUIDE 41

1. DataFlow 41

2. Main Programs 42

3. Initial Screen 43

4. Using the Prototype 43

VII. CONCLUSION 56

A. LESSONS LEARNED 57

B. FUTURE WORK 57

APPENDIX 59

LIST OF REFERENCES 116

INITIAL DISTRIBUTION LIST 118

ACKNOWLEDGMENTS

The author would like to express his thanks and gratitude to Professor Magdi

Kamel, US Naval Postgraduate School, for his patience, guidance and understanding

throughout the development and preparation of this thesis. His insight and expertise

contributed enormously to the quality and merit of this work.

However, the successful completion of this thesis would not have been possible

without the unwavering love and support from my wife, Kimberley, and the sacrifices she

and my children made during a sometimes trying period of deadlines, travel, and very long

hours.

VI

I. INTRODUCTION

A. BACKGROUND

During the past three decades, most medium and large organizations have seen a

dramatic proliferation of databases and their associated database management systems

(DBMS's). While these databases proved to be useful in supporting their different

activities, organizations soon discover the need to access and share data across

independent systems. Unfortunately, such systems are often developed on vastly different,

and incompatible, hardware and software environments. Until now, users wishing to

integrate data from two or more systems found themselves tied to the original DBMS

hardware and software constraints, with many of the integration efforts performed

manually or not at all.

A new approach was proposed recently that advocates the use of markup languages as

the basis for building integrated information resources that allow the users to access

remote databases and software tools having heterogeneous formats in a uniform way

(Kamel, 1994). The integration approach is based on modeling the input and output files

for each database or software tool using a markup language having the power of a

context-free grammar. The markup language chosen for this project is Abstract Syntax

Notation One (ASN. 1) for reasons discussed later in this thesis. ASN. 1 acts as a Data

Definition Language (DDL) for the integrated databases and is used to define the formats

of each input file and generated output report.

B. OBJECTIVES

A main requirement of this integration approach is the ability to identify and resolve

the semantic conflicts that arise in the marked-up databases and outputs of software tools

before any integration can take place. This thesis addresses the issue by introducing a

systematic approach for identifying and resolving semantic conflicts for these databases

and developing a prototype tool that aids in this resolution.

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS

The scope of this project is limited to the factors affecting the conflict resolution

problems of ASN. 1 database integration. While conflict resolution is only a small part of

the entire integration process, separate research addresses many of the other factors

individually. While some of these other areas are discussed briefly here, they are presented

only to the extent that they are necessary to provide a proper background discussion. The

combination of this thesis with other ongoing work will help build a full-scale application

encompassing the necessary characteristics for effective database integration.

This thesis assumes the reader is familiar with general database description terms and

design considerations. A working knowledge of ASN. 1 or other markup languages is not

necessary, and a brief description of ASN. 1 is included.

D. DEFINITIONS AND ABBREVIATIONS

The following are acronyms used in this thesis:

ASN.l - Abstract Syntax Notation One (ISO 8824 and 8825)

DDL - Data Definition Language

DML - Data Manipulation Language

NDH - National Institutes of Health

NCBI - National Center for Biotechnical Information

FDB - Federated Database

CDB - Component Database

SQL - Structured Query Language

BNF - Backus-Naur Form

E. ORGANIZATION

This thesis is organized as follows. Chapter II presents an overview of ASN. 1 as it

relates to database integration and introduces the DDL and DML. Chapter III describes

the sample databases designed to illustrate the various conflicts addressed in the thesis.

Chapters IV and V present the conflict classification framework and resolution strategies,

respectively. Chapter VI discusses the implementation of the tool, and acts as a User's

Guide to the software. Chapter VII suggests possible areas for future research along with

a discussion of lessons learned. The Appendix contains a full listing of all source code

files related to the implementation.

II. OVERVIEW OF ASN.l AND ITS USE FOR DATABASE
INTEGRATION

This chapter presents an overview of the Abstract Syntax Notation One language and

its use as a basis for integrating heterogeneous databases.

A. BACKGROUND

ASN. 1 was originally developed as a data structure description language for use in

data transfer across networks with different hardware/software configurations (NCBI,

1993). Later, ASN. 1 gained popularity as a generic data transfer markup language for use

in transferring data across heterogeneous networks and databases (Kamel, N, 1993). It

was adopted by the National Institutes of Health (NUT) as the format for dissemination of

its biological databases to users throughout the world. NIH's National Center for

Biotechnology Information (NCBI) manages the periodic distribution of these databases.

This recent interest in ASN. 1 has led to the development of several software tools which

aid in the manipulation, parsing, and transfer of ASN.l documents and specifications.

This interest has also prompted the development of applications which utilize ASN. 1

documents.

As originally developed, ASN. 1 is strictly a data description or data definition

language. ASN. 1 provides a method of tagging data fields with descriptive labels and

organizing these fields into a distinct hierarchy. In this matter, complex data structures are

built by arranging simple data types (e.g., INTEGER, VisibleString, real, etc.) into

complex tree-like structures. Its ability to describe complex data structures in a simple,

text-based manner makes ASN. 1 a prime candidate for use as a database description and

transfer language among multiple heterogeneous databases. ASN.l, however, is strictly a

data description language; it does not provide a means for data manipulation. In order to

use ASN. 1 as a database transfer language, some capability for basic database query and

manipulation is needed. To answer this need, the ASN. 1 Data Manipulation Language

(ASN. 1 DML) was recently proposed and is currently being implemented (Kamel, N.,

1993). Together the DDL and DML provide a package for the effective representation

and manipulation of heterogeneous data across multiple platforms.

The remainder of this chapter is arranged as follows. Section B describes the

approach of using markup languages as database integration tools. Section C gives a

detailed description of the DDL, while Section D describes the DML and how its used for

the manipulation of ASN. 1 databases.

B. ASN.l AS A DATABASE INTEGRATION TOOL

In examining tools that aid in the integration of remote heterogeneous databases, two

approaches have been generally accepted and developed, the tightly-coupled (federated

database) and loosely-coupled (multidatabase) approaches (Sheth & Larson, 1990). In the

tightly-coupled approach, a unified global schema is constructed from the underlying

individual Schemas of the component databases to be integrated. In the loosely-coupled

approach, the component database Schemas are not integrated into a global schema.

Rather, a method of performing queries on multiple databases is defined and developed to

allow access to several or all the component databases simultaneously in a uniform way.

The major difference between the two approaches can best be demonstrated by how a

user views the component databases under the two approaches. In the tightly-coupled

approach, the user would be presented with a single super-schema or federated schema

that represent the integration of all the underlying sub-schemas. The user need not be

concerned with the component database Schemas or the integration process; he treats the

FDB as a single database and poses all query and data manipulation operations on that

schema.

In the loosely-coupled approach, the user would be presented with each of the

sub-schemas and a powerful data manipulation language or set of tools that allow him to

perform queries on several or all the component databases. In this approach, the user

needs to be knowledgeable about the structure of the sub-schemas in order to successfully

perform queries and data manipulation.

While conceptually appealing and potentially useful, both approaches suffer from

several drawbacks. In the federated database approach, the primary difficulty is in

developing and maintaining the global schema. Additionally, this global schema becomes

very sensitive to changes in the sub-schemas. Any change in the component database

Schemas requires re-integration of the local Schemas into a new global schema. Also, a

complex mapping between the federated and component Schemas needs to be developed

and maintained in order to provide the necessary transparency to the user of the federated

system.

While the multidatabase approach avoids this problem, its main difficulty is the

development of a data manipulation language capable of operating on the component

databases simultaneously. This language will also be very sensitive to sub-schema

changes, and these changes may require modification or redesign of the data manipulation

language. Additionally, in both approaches, only the Schemas of the local databases are

the components of the integration. A more powerful approach would integrate not only

the Schemas, but any output reports generated by the local DBMS's, as these are less

subject to change over time.

Recently, a new approach was proposed to integrate not only the Schemas of the

component databases, but also their individual tools (application programs) and output

reports (Kamel, 1994). Research has shown that while the individual schemas of the

component databases are subject to fairly frequent change, the heavy public dependence

on their related tools and reports puts pressure on administrators not to change these

items frequently. The proposed approach is based on using a markup language to

perform the integration of the component database schemas, tools, and/or output reports

to provide either a tightly-coupled or loosely-coupled multidatabase system that is less

sensitive to changes in the underlying sub-schemas than any system previously developed.

To accomplish integration using either approach, the issues of identifying and

resolving semantic conflicts needs to be addressed. The primary goal of this thesis is to

address the schema and data conflict resolution strategies for integrating these ASN. 1

documents.

C. ASN.l DATA DEFINITION LANGUAGE (DDL)

Standard ASN. 1 is a notation for defining abstract data types and their values. These

data types can be broadly classified into simple types, structured types, and other types.

Simple types are atomic types with no components, and include Boolean, integer, real,

enumerated, and a variety of character string types. Structured types, also known as

constructors, consist of four types for building complex data types from simple data types.

Other types include the CHOICE and ANY data types.

ASN. 1 is used to both describe the complex data structure and specify the data values.

An ASN. 1 document that describes the data structure is referred to as an ASN. 1

specification, while a document that contains the data is known as an ASN. 1 printfile.

ASN. 1 documents (both specifications and printfiles) follow a strict format of sequences

of identifier, value> pairs. Identifiers are tags that are user-defined and usually help

describe the value object. In an ASN.l specification, values are the type of the identifier,

whereas in a printfile, values are the actual data values. In either case, the value may be a

complex data type known as a type reference, which is described in a separate ASN. 1

specification. A sample specification and part of its associated printfile are given in

Figures 1 and 2. A detailed description of this database is given in Chapter III.

Holding ::= SEQUENCE {
b-num INTEGER, — local key
titl« i VisibleString,
author-name VisibleString, — last, first
subj VisibleString OPTIONAL,
type CHOICE {

book Book-type,
music Music-type,
movie Movie-type },

language VisibleString DEFAULT "Engli sh",
lc-num SEQUENCE {

c-letter VisibleString, — one+ CAP ltrs
f-digit VisibleString, — one or more digits
s-digit VisibleString OPTIONAL, — one or more digits
cuttering VisibleString }, — auth cutter number

publisher-name VisibleString,
publisher-addr VisibleString, — num, str, city, st
checked-out BOOLEAN, — TRUE if in library
cost INTEGER } — cost(whole dollars)

Figure 1. Sample ASN.l Specification

Holding ::= {
b-num 10 ,
title "Joint Military Operations: A Short History" ,
author-name "Beaumont, Roger A." ,
subj "Military Science" ,
type
book {
binding hardcover ,
num-pgs 245 } ,

language "English" ,
lc-num {

c-letter "U" ,
f-digit "2 60" ,
cuttering "B43" } ,

publisher-name "Greenwood Press" ,
publisher-addr "Westport, Connecticut" ,
checked-out TRUE ,
cost 60 }

Figure 2. Sample ASN.l Printfile

In the above sample specification, a complex data structure is defined to describe the

holdings of a library's database. In the printfile, a specific instance of a holding is shown

with the values of appropriate data fields specified. Note that this specification is for a

single holding only—if a group of holdings were to be represented, a new specification for

a holding-set must be included. This specification would allow for a printfile that

contained a SET or SEQUENCE of many holdings.

Since ASN. 1 was originally developed for data transfer across networks (which also

includes binary transfer), several data types would be redundant or unnecessary when

applied to a text-based database description. For this reason, and for the sake of

simplicity, we have Umited the constructs and data types used in this project to the subset

shown in Table 1. The sample databases developed in the following chapter are encoded

using these constructs and data types. However, it may become necessary later to expand

the data types and constructs chosen to include a wider variety.

TABLE 1
ASN.l BASE TYPES AND DEFINITIONS

Type Description Specification Printfile Notation

BOOLEAN Any TRUE or FALSE value.
May have a DEFAULT

Truth:-BOOLEAN Truth ::= FALSE

INTEGER Any integer value.
May be given named values but
range not limited to names.
May have a DEFAULT.

Number ::= INTEGER
or
Number ::= INTEGER {

red(l),
blue(2) }

Number:~ 42
or
Number ::= red

OCTET
STRING

Any string of bytes.
May not have DEFAULT.

Hstring ::= OCTET
STRING

Hstring ::= '0A01FH

NULL null is only allowed value Nothing:—NULL Nothing ::= null

REAL Floating point number in base 2
or 10.
REAL value notation is 3
integers for { matissa, base,
exponent}
May have a DEFAULT.

Pi:-REAL Pi ::={314159, 10, -5}

10

ENUMERATED A named set of integer values. Sex ::= ENUMERATED{ Sex ::=male
Only named values allowed. male (1),
May have a DEFAULT. female (2)}

SEQUENCE A series of other named types, Yuppie ::= SEQUENCE { Yuppie ::= {
in order. income INTEGER, income 100000,
All elements must be present name VisibleString } name "John Doe"}
unless OPTIONAL or
DEFAULT.

SEQUENCE OF A repeating series of a single Stooges ::= Stooges ::= {
type in order. SEQUENCE OF "Larry",

VisibleString "Curly",
"Moe" }

SET A series of other named types, Yuppie ::= SET { Yuppie ::= {
order does not matter. income INTEGER, income 100000,
All elements must be present name VisibleString } name "John Doe" }
unless OPTIONAL or
DEFAULT.

SET OF A repeating series of a single Stooges:-SET OF Stooges ::= {
type. Order does not matter. VisibleString "Larry",

"Curly",
"Moe" }

CHOICE A way to select one from a set of Person:- CHOICE { Person ::= name "Joe"
alternate types. ssn INTEGER,
NOTE: Intheprintfile name VisibleString,
notation, you are indicating one badge-id INTEGER }
choice, so {} are not allowed but
the identifier for the selected
CHOICE must be given before
the value

VisibleString A string of printable ASCII
characters.
NOTE: The double quote
character (") may be included in
a VisibleString by doubling it.

Text:—VisibleString Text::= "Hi Mom!"

StringStore Defines a VisibleString which is
read into a ByteStore instead of
aCharPtr. Used for very long
strings.

Dna ::= StringStore Dna ::= "AGGAGG"

As indicated by the ASN. 1 specification and printfile of Figures 1 and 2, ASN.l

structures (specifications and printfiles) are hierarchical in nature. By adopting a simple

graphical notation, ASN. 1 structures can be represented in a tree or hierarchical format.

11

With this format, a user can easily manipulate the on-screen structures using normal tree

manipulation functions (pruning, combining, etc.) as well as standard database

manipulation operators. Figure 3 shows the graphical representation of selected ASN. 1

constructs . The graphical tree representation of the sample specification and printfile

given in Figures 1 and 2 is shown as Database 1 in Figure 4.

SEQUENCE (OF) SET (OF)

[]
OPTIONAL

CHOICE

Figure 3. Graphical Representation of Supported ASN.l Constructs

12

holding

b-num title author-name [subj] type language 1 c - n u m publisher-name publisher-addr checked-out cost

INTEGER VisibleString VisibleString VisibleString , VisibleString VisibleString VisibleString BOOLEAN INTEGER

bookmusic movie c-letter f-digit [s-digit] cuttering

Book-typt Music-type Movit-typt ViribUString ViribltStrttig VitibUSiring VitibUSiring

Figure 4. Sample ASN.l Tree Structure

D. ASN.l DATA MANIPULATION LANGUAGE (DML)

In anticipation of the data manipulation facilities required for applying ASN. 1 to

heterogeneous database data sharing, an SQL-like data manipulation language was

developed (Kamel, N., 1993). This DML provides functions that allow normal database

query and manipulation on ASN.l printfiles. Some of these functions include subtree

extraction, assignment, comparison, joining, importing/exporting, and rearranging

subtrees. Since the DML is not part of the ASN. 1 standard, it has not yet gained

widespread use. Additionally, research is still ongoing to refine and redefine certain

aspects of the DML. While the goal of this thesis is the resolution of schema and data

conflicts and not data manipulation, conflict resolution should be seen as a necessary first

step in developing database views (either loosely or tightly coupled) with all types of

conflicts resolved and on which the user will perform DML processes. Some DML

functionality is provided in the software developed in this thesis for demonstration

13

purposes and to complement the conflict resolution capabilities developed. The BNF

syntax for the DML functions is shown in Table 2 (Kamel, 1994). It should be

emphasized that DML functions are provided explicitly for the manipulation of the data in

an ASN. 1 database, much like SQL manipulates data in relational databases. These are

not to be confused with the tools provided by this thesis which allow the user to

manipulate the schema and data definitions in order to resolve integration conflicts. These

tools will be discussed in more depth in Chapters IV and V.

14

TABLE 2
BNF SYNTAX FOR ASN.l DATA MANIPULATION LANGUAGE

BNF syntax description of ASN.l DML

<ASN.l_program> ::= BEGIN {<statemenf>;}...END

<statement> ::= {<assignment_statemenf> \ <GET_statement> | <IMPORT_statemenf> \
<REIMPORT_statement> \ <SHOW_statement> | <SET_statement>} \ <ALTER_statement>

<assignment_statement> ::= <external_tree_name> = <externaljree_name>

<GETjstatement> ::= GET { FIRST | ALL [UNIQUE] } [<subtree>] {[, [<subtree>]]}...[INTO
<tree_name>]
FROM {<tree_name> [INCLUDE PATH]}...
[WHERE <condition>]

<condition> ::= [({<term> \ <term> { AND | OR } <conditiori> })]

<term> ::= { (<comparison>) | NOT <comparison>}

<comparison> ::= { T | F | <factor> <op> <factor>}

<factor> ::= {<variable> | <constant> }

<op>::={ = \o\>\<\>=\<=}

<IMPORTjstatement> ::= IMPORT <textjile> USING <abstract_specification> INTO
<printJorm>

<REIMPORTjstatement> ::= REIMPORT <textjile> USING <abstract_specifwation> [INTO
</V/"H/_/Ö/7K>]

<EXPORT_statement> ::= EXPORT <print-form> TO <textjile>

<SHOW_statement> ::= SHOW { ENVflRONMENT] <textjile> | <abstract_specification> \
<print-form> }

<SET_statement> ::= SET <system_yariable> [= <value>]

<ALTER_statement> ::= ALTER <print-form> BY <abstract_specification> [INTO <print-form>]

<textjile> ::= identifier

<abstract_specification> ::= identifier

<print-form> ::= identifier

<variable> ::= identifier

<system_vahable> ::= {PAUSE | LINE_WIDTH |PAGE_SIZE | SPOOLJETLE |
DISPLAY_RESULTS }

<value> ::= { integer | real | boolean | string }

<constanf> ::= { integer | real | boolean | string }

15

III. SAMPLE DATABASES

A. SELECTION CRITERIA

In selecting sample databases to demonstrate semantic conflict identification and

resolution for this thesis, several factors were taken into consideration. Initially, we

intended to utilize some of the biological databases publicly distributed by the National

Center for Biotechnical Information (NCBI). However, upon close examination it was

determined that these databases would not yield enough conflicts to demonstrate our

approach of conflict identification and resolution. Rather than modify the NCBI databases

to meet our needs, we adapted two sample relational databases from Kim and Seo's paper

on classifying conflicts in multidatabase systems (1991) and presented them in ASN. 1

formats. These databases, with some modification, had the benefit of containing a

majority of the conflicts we needed to illustrate our approach.

B. COMPONENT DATABASES

The component databases represent two independent library DBMS's, each in a

different location, and implemented with different hardware and software. The following

sections describe each database in the ASN. 1 specification format, the ASN. 1 printfile

format, and graphically.

16

1. Database l~Main Library

The first sample database represents the holdings of the Main Library and is shown

as an ASN. 1 specification in Figure 5.

CDB-1 data definitions
— Gino Celia, 1994

Component-one-module DEFINITIONS ::=
BEGIN

Holding-set ::= SEQUENCE OF Book —collection of books

Holding ::= SEQUENCE {
b-num INTEGER, — local key
title VisibleString,
author-name VisibleString, — last, first
subj VisibleString OPTIONAL,
type CHOICE {

book SEQUENCE {
binding ENUMERATED {

hardcover(1),
paperback(2) },

num-pgs INTEGER },
music SEQUENCE {

medium ENUMERATED {
record(1),
cd(2),
tape(3) },

length INTEGER }, — in minutes
movie SEQUENCE {

format ENUMERATED {
beta(l),
vhs(2),
reel(3) },

length INTEGER }}, — in minutes
language VisibleString DEFAULT "Engli sh",
lc-num SEQUENCE {

c-letter VisibleString, — one or more CAPS
f-digit VisibleString, — one or more digits
s-digit VisibleString OPTIONAL, — one or more digits
cuttering VisibleString }, — auth cutter number

publisher-name VisibleString,
publisher-addr VisibleString, — num, str, city, st
checked-out BOOLEAN, — TRUE if in library
cost INTEGER } — cost(whole dollars)

Figure 5. ASN.l Specification for Database One

17

The database contains a group of holdings known as & Holding-set. Each holding

consists of a unique identifier called the b-num. The b-num uniquely identifies each

holding and is similar to the primary key of a relational database. Most of the remaining

fields are self-explanatory. The title represents the holding's title. Author-name is the

author's last and first names in that order. Subj is an OPTIONAL field containing the

subject of the holding.

Type is a CHOICE field between three types of holdings: book, music, and movie.

This means that the value for Type will depend on which of the choices is selected. Each

choice is defined separately. If the value of the type choice is book, type will be defined as

an ENUMERATED binding of either hardcover or paperback, and num-pgs, the number

of pages in the book. If the value of the choice is music, type will be defined as an

ENUMERATED medium of either record, cd, or tape, and length, the length of the music

holding in minutes. Finally, if the value of the choice is movie, type will be defined as an

ENUMERATED format of either beta, vhs, or reel, and length, the length of the movie.

Language is the language in which the holding was published. Lc-num is the

Library of Congress number and is defined as a SEQUENCE of c-letter,f-digit,

OPTIONAL s-digit, and cuttering. These are alphanumeric or numeric fields which

compose a standard Library of Congress holding number of the form:

U2 60
B43

The publisher-name is the name of the holding's publisher. The publisher-addr is

the number, street, city, and state of the publisher. Checked-out is a BOOLEAN value

18

which is TRUE if the holding is currently in the library, FALSE if the holding is checked

out of the library. Finally, cost is the original cost of the holding in whole dollars.

A sample printfile conforming to the above specification is given in Figure 6.

Holding ::= {
b-num 10 ,
title "Joint Military Operations: A Short

History" ,
author-name "Beaumont, Roger A." ,
subj "Military Science" ,
type
book {

binding hardcover ,
num-pgs 245 } ,

language "English" ,
lc-num {

c-letter "U" ,
f-digit "260" ,
cuttering "B43" } ,

publisher-name "Greenwood Press" ,
publisher-addr "Westport, Connecticut" ,
checked-out TRUE ,
cost 60 }

Figure 6. Sample ASN.l Printfile for Database One

2. Database 2~Engineering Library

The second sample database is very similar to the first in that it contains

information about a library's holdings. The ASN. 1 specification for this database is given

in Figure 7.

19

-_***

CDB-2 data definitions
Gino Celia, 1994

_***

Component-two-module DEFINITIONS
BEGIN

Item-set ::= SEQUENCE OF Item collection of items

Item ::= SEQUENCE {
i-num INTEGER,
i-title VisibleString,
a-name SEQUENCE {

last VisibleString,
first VisibleString,
middle VisibleString OPTIONAL },

subject VisibleString,
type ENUMERATED {

book(l) ,
movi e(2) },

c-letter VisibleString,
f-digit VisibleString,
s-digit VisibleString OPTIONAL,
cuttering VisibleString,
publisher SEQUENCE {

p-name VisibleString,
str-num VisibleString,
str-name VisibleString,
city VisibleString,
state VisibleString,
zip VisibleString },

cost REAL,
checked-out BOOLEAN }

local key

- one or more CAP LTRS
- one or more digits
- one or more digits
- author cutter number

- price in dollars and cents
- true if checked out

END

Figure 7. ASN.l specification for Database Two

20

In this case it is the Engineering Library and the holdings are referred to as items.

Similar to Database 1, an Item-set is a group of individual items. I-num is the unique

identifier of each item in the database. I-title is the item title. A-name the author name

and is defined as a SEQUENCE of the last, first and OPTIONAL middle names. Subject

is the item's subject. Type is the item type and is an ENUMERATION of either book or

movie. C-letter,f-digit, OPTIONAL s-digit, and cuttering are all fields which represent

the different portions of the Library of Congress number. The publisher field contains

information about the item's publisher in six sub-fields. P-name is the publisher's name.

Str-num, str-name, city, state, and zip are the publisher's street number, street name, city,

state, and zip code, respectively. Cost is the original purchase price in dollars and cents,

and checked-out is a BOOLEAN value which is TRUE if the book is checked-out and

FALSE if the book is in the library.

A sample printfile conforming to the above specification is given in Figure 8.

21

Item ::= {
i-num 21 ,
title "A Breakfast for Bonaparte" ,
a-name {

last "Rostow" ,
first "Eugene" ,
middle "V" } ,

subject "History" ,
type book ,
c-letter "E" ,
f-digit "183" ,
s-digit "7" ,
cuttering "R749" ,
publisher {
p-name "National Defense University Press" ,
str-num "1600" ,
str-name "Pennsylvania Ave." ,
city "Washington" ,
state "DC" ,
zip "20319" } ,

value { 4199, 10, -2 } ,
checked-out FALSE }

Figure 8. Sample ASN.l Printfile for Database Two

Once the ASN. 1 specifications have been developed along with conforming

printfiles, a graphical tree representation can be created which shows the structure of the

database pictorially. In Figures 9 and 10, tree depiction's for one item in each of the

sample databases are presented using the graphical representations given in Chapter II.

22

o o

OS

1
3
O
I

T3

■8
■s

■s .1? c
S3 -Si «1
n s

■e r
£ fS C
a 'S P. u

.«?

B '?
kH <<n C3 «)
3 ■c
3 ■H
OS t-

o
V
5«
es
es
es
Q

e
^o
'■**

es
*J
s a
V

a«

a
es
s-
Ü

:-
s

fi
U

3
S P

1

23

■

O

TO £
a 2

tai r
e

GO

Ä>

■s >

00

C« c

o

H
u
en
93

ea

Q
o
s

e
D
en
V
S- a

"3 u

a
cs

s-
s
Ml

24

The next chapter introduces the framework for classification of the semantic

conflicts contained in these two sample databases. Many of these conflicts were contrived

to better illustrate the framework and resolution strategies presented later in the thesis, but

most integration attempts will contain several of the conflicts given in the framework.

Throughout the thesis, we will utilize these sample databases to provide examples and test

the implementation for correctness and completeness.

25

IV. FRAMEWORK OF SEMANTIC CONFLICTS IN ASN.l
DATABASES

The goal of this thesis is to develop a tool for assisting users in resolving the semantic

conflicts which almost certainly arise when attempting to integrate two or more

ASN. 1-described databases. To accomplish this goal, we follow a three step approach.

The first step is to determine the scope and functionality of the end-system. This

functionality is determined by the type of integration desired. Second, all possible

schematic and data conflicts in ASN. 1 databases must be identified and classified into a

framework. Once this framework is established, the third step is to develop, test, and

implement an algorithm for the resolution of all conflicts identified in the framework. This

chapter addresses the first two steps of our approach. It discusses the two approaches of

integration: tightly vs. loosely coupled. It then presents a classification scheme for

organizing the types of conflicts into a logical framework. Chapters V and VI address the

conflict resolution strategy and the implementation of the tool.

A. TYPES OF INTEGRATION

The approach supports two modes of integration: a loosely-coupled mode, and a

tightly-coupled mode (Sheth and Larson, 1990). The modes differ in their use of the data

dictionary and the presentations to the user as well as in the prerequisite knowledge

requirements of the user regarding the schema of the component databases.

26

In the loosely-coupled mode, the dictionary is used merely as a look-up device for data

descriptions. A set of common operators is presented to the users that include: 1) all

supplied software tools, 2) all supplied canned database transactions, and 3) special

interoperability operators, directly based on the ASN.l DML, which allow the described

I/O files to be queried, merged, and manipulated. No global schema integrating all the

stored descriptions is attempted. The dictionary in this mode of operation may contain

conflicts, such as synonyms, homonyms, and structural conflicts. The tool developed for

this thesis helps the user in identifying and resolving these conflicts through a set of

commands invoked in a graphical environment. The user bears the responsibility of

understanding the semantics of each data file he wishes to use and resolving the conflicts

that occur. The system hides all the networking details and provides a uniform set of

operators for interoperability.

In the tightly-coupled mode, the dictionary assumes a more powerful role than simply

being a lookup device—it acts as a global schema. The global schema is defined using the

markup language as the Data Definition Language (DDL) and represents the integration of

one or more component databases. To accomplish this integration, all semantic conflicts

and inconsistencies must be resolved, and appropriate mappings to/from component

databases should be defined. While the tool developed for this thesis does not perform the

mapping for the federated schema, it supports conflict identification and resolution

required as a prerequisite for this mapping. Again, the user is supplied with a uniform

interface that will present a unified view of the databases, the software tools, and the

27

interoperability operators. The tightly-coupled approach requires more maintenance and

attention from the users than the loosely-coupled approach, but offers greater consistency

and demands less prior user knowledge about the structure of the underlying databases.

B. CLASSIFICATION OF SEMANTIC CONFLICTS

Regardless of which method of utilization is chosen, semantic conflict identification

and resolution is a crucial step for facilitating the integration of databases. Semantic

conflict in ASN. 1 databases can be classified into two broad categories: schema conflicts

and data conflicts (Kim and Seo, 1991). Schema conflicts are conflicts that occur at the

level of the conceptual organization and definition of the database, while data conflicts

occur as a result of differences in the actual data values returned from the different

component databases. For our classification scheme, we utilized a model similar to that

presented by Kim and Seo (1991). The anticipated schema and data conflicts are

summarized in Figure 11, and addressed in detail in the remainder of this chapter. The

semantic conflicts identified in this chapter apply to both tightly and loosely coupled

integration approaches.

28

Schematic Conflicts
Name Conflicts

Synonyms ~ same object named differently in different databases
Homonyms — different objects named the same in different databases

Type Conflicts — same objects have different types in different databases
Structural Conflicts

Grouping Conflicts — horizontal or vertical grouping differences in different
databases

Sequence Conflicts — sequences defined differently in different databases
Optional Item Conflicts ~ optionality defined differently in different databases
Choice Conflicts ~ choices defined differently in different databases

Data Conflicts
Precision Conflicts — different precision utilized in different databases for the same

object
Unit Conflicts — different units utilized in different databases for the same object
Expression Conflicts ~ different expressions utilized in different databases for the

same object

Figure 11. Summary of ASN.l Semantic Integration Conflicts

1. ASN.l Schematic Conflicts

Conflicts which occur due to differences in the structure of the database are known

as schematic conflicts. In ASN. 1 tree structures, these conflicts can occur at the

individual nodes of the ASN. 1 trees, and are sometimes referred to as node conflicts. For

our purposes, schematic node conflicts can be one of three basic types:

Name Conflicts

Synonyms—the same object is named differently in different component databases,

(e.g., the title of each holding is referred to as "title" in CDB1 and "i-title" in CDB2.)

29

Homonyms—different objects are named the same in different component

databases, (e.g., the value for "checked-out" has the same name, but different meanings in

each database. A TRUE value for this field in CDB1 indicates that the item is in the

library while it indicates the item is checked-out of the library in CDB2.)

Type Conflicts

Type Conflicts—the same object is defined using different base types in different

component databases, (e.g., item "cost" is defined as an INTEGER [whole dollars] in

CDB1 and a REAL [dollars and cents] in CDB2.)

Structural Conflicts

Grouping Conflicts—objects grouped differently either vertically, horizontally, or

both in two different component databases, (e.g., "author-name" is defined as a

VisibleString in CDB1, and the equivalent field "a-name" is defined as a SEQUENCE OF

VisibleStrings in CDB2. This is a combination of both a vertical and horizontal grouping

conflict since the VisibleStrings in CDB2 must be combined horizontally into a new field

and then moved vertically one level up to be equivalent to the author-name field in

CDB1.)

Sequence Conflicts-SEOUENCES defined differently in each component database,

(e.g., a name field may be a SEQUENCE of first-name->last-name fields in one database,

but last-name->first-name in the other.) Note that this is a potential conflict for

SEQUENCE structures only, since SET structures are not ordered.

30

Optional Item Conflicts—an object is optional in one component database, but not

the other, (e.g., "subj" is OPTIONAL in CDB1, but "subject" is mandatory in CDB2.)

Choice Conflicts—an object or group of objects is defined as a choice in one

component database, but not the other, (e.g., "type" is a CHOICE in CDB1, but

ENUMERATED in CDB2.)

2. ASN.l Data Conflicts

Data conflicts occur when two like objects in different component databases are

stored in compatible formats, but the data itself is incompatible or the data is incorrect.

Data conflicts include:

Precision Conflicts—data for the same object in two different component databases

are stored with different precision or granularity, (e.g., Item values are rounded to the

nearest dollar in CDB1, but recorded as dollars and cents in CDB2)

Unit Conflicts—data for the same object in two different component databases are

stored with different units, making their comparison incompatible, (e.g., Item values

might be stored in US Dollars (US$) in one component database, but stored in Japanese

Yen (¥) in the other.)

Expression Conflicts—similar data in two different component databases is

represented by different expressions in each database, (e.g., Book names could be

abbreviated in one component database, but not the other.)

Note that several other types of data conflicts such as missing or incorrect data can

(and usually do) exist. Since these conflicts are not detectable through examination of the

31

individual component database Schemas, the user has few options available to correct

these conflicts at schema definition time. Even if these types of conflicts could be

detected, the only way to resolve them is to add to or modify the data entries in the

original databases themselves. There is no filter, algorithm, or operator available to

resolve these types of conflicts at the virtual level during schema generation. For this

reason, those conflicts which cannot be identified at schema generation time are not

addressed in this thesis.

32

V. CONFLICT RESOLUTION

The purpose of this chapter is to discuss techniques for resolving the conflicts

described in the previous chapter. These techniques are implemented using graphical

commands that the user can utilize to resolve these conflicts. The chapter presents a

technique for the resolution of each conflict previously identified, including a discussion of

the tools presented to the user to implement these resolution methods.

Once the framework for conflict resolution is established, a means for resolving each

conflict identified in the framework must be identified. Although the ideal system would

include algorithms which automatically detect the conflicts identified in the previous

chapter and resolve them heuristically, this is not likely to be feasible for several reasons.

First, any automation of conflict resolution would require each component database to

maintain strict standardized data dictionaries—a practice which is currently far from the

norm. Additionally, some assumptions about the data to be merged must be made which

would not necessarily apply universally to all sample databases. Future research,

especially in artificial inteligence, may lead to further automation of the process. For this

thesis we provide tools for the user to aid in schema/data adjustment and conflict

resolution. Additionally, we assume the user or system integrator is knowledgable enough

about the structrue and semantics of the component databases.

33

The success of the Data Manipulation Language (DML) is dependent on the removal

of all possible semantic conflicts. The following sections discuss the means for the

removal of these conflicts.

A. SCHEMA LEVEL RESOLUTION

Name Conflicts

Synonyms and Homonyms: Naming conflicts occur due to either synonym or

homonym conflicts. In order to resolve this conflict, a command for renaming fields in the

virtual Schemas must be provided. This command can be used for synonyms to change a

synonym node name in one database to match the node name of the equivalent field in the

other component database. Similarly for homonyms, the command can be used to change

one of the node names to a different, unique name.

Type Conflicts

Type conflicts occur when the like objects are defined using different base types. To

resolve this type of conflict, a command must be provided to dynamically change the type

of one of the objects. Since not all types are interchangable, a table of allowed

conversions must be specified. For instance, almost all types can be converted to the

VisibleString type, however, the reverse is not true. Alphanumeric characters which make

up a VisibleString cannnot meaningfully be converted to INTEGERS or REALs. For our

purposes, the allowed type conversions will conform to ANSI C type casting rules since

the program is implemented in that language. These rules, as they apply to this thesis, are

presented in detail in Chapter VI.

34

Structural Conflicts

Grouping conflicts: Vertical and horizontal grouping conflicts usually occur due to

differing levels of detail or different information requirements in the component databases.

For horizontal grouping conflicts, two operations are required for successful conflict

resolution: concatenate and subset. Concatenate allows two horizontal nodes at the same

level to be combined into one. Subset allows one node to be divided into two new nodes

at the same level in the ASN. 1 tree diagram. The subset operator requires specification

from the user in order to determine how to divide the node (e.g., dividing "author-name"

in CDB1 into two separate nodes, "last-name" and "first-name").

Vertical grouping conflicts resolution also require two operations: collapse and

expand. Collapse causes a child node to be merged with its parent into a single node.

Expand divides a parent node into a new parent-child node combination. Like the

horizontal subset operator, the expand operation requires the user to specify how the data

is distributed between the two nodes to perform the node division.

Sequence Conflicts: Occur when SEQUENCES are defined differently in each

database. To resolve this type of conflict, the user must be able to rearrange the items in a

SEQUENCE strucutre in one component database so that they coincide with the defined

SEQUENCE structure in the other database.

Optional Item Conflicts: Occur due to a difference in optionality. To resolve this type

of conflict, the user must be given a command which removes the optionality of a given

35

node. If a node becomes mandatory and there is no data value for a given instance, a

NULL value is inserted in the data item ofthat node.

Choice Conflicts: Occur when an object is defined as a CHOICE in one database, but

not the other. To resolve this conflict, the user must have the ability to redefine the

CHOICE node as a required one which matches the type of the corresponding node in the

other component database.

B. DATA LEVEL RESOLUTION

Precision Conflicts: Occur when data in two different databases are stored with

different precision or granularity. Resolution of this type of conflict requires

transformation of the values of one of the data sets to the other's precision. For example,

if books were rated on a scale of 1-10 in one database and A-F in the other, rating of the

data items in one database would need to be mathmetically converted to the other's. In

this case, a numeric value might be assigned for each of the A-F grades in order to allow a

proper comparison between the two databases. The conversion process may require

information from the designers of the databases.

Unit Conflicts: Occur when data in two different databases are stored with different

units. This conflict, much like the precision conflict, requires transformation of one data

set to the other's units. For instance, if the value of the books were stored in dollars in one

database and yen in the other, the user would have to supply either a dollar-to-yen or

yen-to-dollar conversion formula in order to unify the units in each database.

36

Expression conflicts: This is perhaps the most difficult data conflict to resolve, and in

fact some expression conflicts may not be correctable at schema generation time. These

conflicts occur when different expressions are used to store the same data object. If the

expression conflict occurs consistently throughout the database, it may be correctable by

mapping the data from one expression to another with the help of user input. However, if

the expression conflict occurs randomly or sporadically across the data set, there is

probably no easy algorithm for conflict resolution, and some data inconsistencies may

remain.

37

VI. IMPLEMENTATION OF CONFLICT RESOLUTION

The culmination of the research presented in the previous chapters is a working

prototype of a database integration system designed to aid in the resolution of schema and

data conflicts resulting from that integration. This chapter discusses platform, language,

and implementation decisions and serves as a user's guide to the software. A full source

code listing is provided in the Appendix.

A. PLATFORM AND LANGUAGE CONSIDERATIONS

This software is primarily designed for end-users who access multiple databases on the

internet or through other local and wide area networks. With that in mind, we chose to

develop the prototype in the UNIX/X Window environment in order to support the

majority of the target audience. While some end-users will undoubtedly access their data

from other environments, it is generally believed that most users will utilize a UNIX

workstation running X Windows.

X Windows is a platform-independent graphical environment originally designed for

the UNIX operating system and now being ported to other operating systems. However,

most graphical software built for X Windows is not designed and implemented at the

lower levels of the X libraries. Instead, several vendors have developed toolkits of library

routines designed to ease programming in X Windows and provide a uniform

look-and-feel to software developed using these toolkits. Sun Microsystems'

38

OpenWindows™ and Open Software Foundation's Motif™ are two examples of such

toolkits based on the X Windows routines. Since Sun has recently announced that it was

discontinuing OpenWindows™ and bundling Motif™ with Solaris™, its version of the

UNIX operating system, we decided to build the system in Motif™. Unfortunately, the

existing computer resources at the Naval Postgraduate School do not include Sun

workstations with Motif. However, the Silicon Graphics workstations available in the

Visualization Lab at the school do include the Motif development libraries, and were

therefore chosen as the hardware platform of choice to develop the prototype.

Specifically, the prototype system was developed on Silicon Graphics workstations

running IRIX 5.2 (SGI's UNIX) and Motif 1.2.3/X11R5.

B. IMPLEMENTATION DECISIONS AND TOOLS

The first step of the implementation was determining the software design and

functionality. Since the final system will include additional functionality, the design allows

for functionality which is not implemented in the current version. For example, the

command window has an area dedicated for the DML commands, but no DML commands

are implemented in this version. The user is provided with a multi-window environment

consisting of a window for each ASN. 1 tree and a central control window which provides

the conflict-resolution commands. The user loads two or more graphical ASN.l database

specifications/printfile pairs in separate windows, identifies and resolves the conflicts, and

then performs DML functions to manipulate the data of the various databases.

39

It is important to note that any changes the user makes to any ASN. 1 specification or

printfile are virtual and do not affect the original files. The program automatically

generates output files which contain the new trees with semantic conflicts resolved. Later,

the user can load the updated specifications and printfiles and thus skip the conflict

resolution step and start utilizing the DML immediately.

1. NCBI Toolkit

The implementation of the prototype was aided greatly by the use of a series of C

programs and libraries called the NCBI Toolkit which was developed at the National

Center for Biotechnical Information (NCBI, 1993). These libraries include extensive

routines for the handling and manipulation of ASN. 1 encoded specifications and printfiles.

The complete software toolkit needs to be installed on the end user's system in order to

perform the initial parsing of the ASN. 1 specifications and printfiles into a format readable

by a tree generation program that displays them in a graphical format in preparation for

conflict identification and resolution. The toolkit is available through anonymous FTP to

ncbi. nlm. nih.gov.

2. OSF/Motif™

Motif is a standard user interface toolkit developed and supported by the Open

Software Foundation (OSF) and its member companies. Motif includes the Motif widget

set, which is based on the Xt Intrinsics and include graphical user interface components

such as buttons, sliders, menus, etc. Motif has a distinctive three-dimensional beveled

appearance which is described more fully by the Motif Style Guide. While Motif is not

40

available for free in the public domain, it is bundled with many major operating systems.

Figure 12 shows a typical architecture of a Motif/Xt application (Young, 1994).

Application

\ioi!i"\\u!_e' >t*
I

Xt Intrinsics

Xlib C Language Interface

■tHBMHHBili
fife'i

Network Connection

X Server

Figure 12. Architecture of a Motif/Xt Application

The following sections describes the procedures for utilizing the software and

provides samples of the screen output at various points in the execution. There is

currently no on-line or context-sensitive help provided by the system.

C. PROTOTYPE DESIGN

1. Data Flow

Before discussing the actual operation of the program, it is important to

understand the flow of data in the system. Operation of the application actually requires

the use of two programs. Refer to Figure 13 during the discussion of data flow.

41

specl.asn

printl.ent

spec2.asn .

print2.ent

PARSER.C
►treel.dat ^

A
'tree2.dat—>.

A

PROJ.C
, treelout.dat..

-►tree2out.dat.

Figure 13. Data Flow Model

As the figure shows, processing ASN. 1 databases is a two-stage procedure. First,

the ASN. 1 specification and its associated printfile are processed through the parser. c

program. This utility is a modification of routines in the NCBI toolkit which validates the

specification, then checks the printfile against the valid specification and finally outputs an

ASCII text file for use in the second stage of the application. This text file consists of sets

of parent-child node numbers and labels formatted for use in the pro j . c program. This

program makes use of a Motif-based tree widget written by Douglas Young of SGI

(1994). After manipulation of the trees by this program, new ASCII output files are

automatically generated with conflicts resolved for future use. There is currently no

facility to parse the ASCII files back into ASN. 1 specifications and printfiles; this task is

left for future research.

2. Main Programs

Following is a list of all the program files associated with the implementation:

parser
parser.c

— executable parser program
— source code for parser

42

ginoprint. c — replacement of NCBI asnprint.c routines (produces
ASCII tree files)

p r o j — executable integration program
pro j . h — header file for proj
pro j . c -- source code for proj
Tree — Motif resource file for proj
T r e e P. h — public header file for tree widget
Tree. h — private header file for tree widget
Tree.c —tree widget
* • asn —an ASN. 1 specification
* . ent ~ an ASN. 1 printfile
* . out —an ASN. 1 specification or printfile which has been

processed by the parser (validated and output)
* . dat - ASCH tree file

3. Initial Screen

Figure 14 shows the initial screen of the prototype. It consists of a command

window at the top that contains the conflict resolution commands and the DML

commands, and two or more database windows that display the graphical ASN.l

databases to be manipulated. The user should ensure that the proper tree is selected using

the Active Tree radio buttons before selecting any Resolution Commands. The Record

arrow buttons select the first, previous, next, and last record of the active tree,

respectively.

4. Using the Prototype

The conflicts presented in the previous two chapters will now be discussed in the

context of the implementation. Each type of conflict will again be presented and the

solution given in terms of program operation. For each conflict, an example dialog box

and the resulting ASN. 1 tree diagram will be given. All examples assume the initial

graphical ASN. 1 trees given in Figure 14.

43

e
QJ
U u

"n

0)
i»
s
BJD

44

SCHEMA LEVEL RESOLUTION

Name Conflicts

Synonyms and Homonyms: Naming conflicts occur due to either synonym or

homonym conflicts. To correct these types of conflicts, the user selects the Change Node

NAME button. The dialog box shown in Figure 15 is displayed. The user enters the

name of the node to be changed and a new name.

» change name_ .popup

Old Haue

Hew Name

language

lang

Cancel1 Help | OK

Figure 15. Change Node NAME Dialog

After pressing OK, the node name is changed for each record in the active tree as

shown in Figure 16.

45

-EEE29—crs^ff^!

BTBH3 PW

Br'^'PI ESS

ITTI- E3Mfi-

-EfflUSiJ-

-r.'I'.'i'.'Jg.'.'^l—KWMWI — Lr.'JJ.'J'J.'.'.liWBl

ui ji'.ua-'.'. j ESS

-ESSES—I'NMIJJ!!—EH

Figure 16. Tree Diagram with New Node Name

Type Conflicts

Type conflicts occur when the like objects are defined using different base types. To

correct type conflicts, the user selects the Change Node TYPE button. The dialog box

given in Figure 17 is displayed. The user then enters the node name whose type is to be

changed and a new type, and presses OK.

< ■■■-■- ' •■•■■■■'■'■-'■■■■■ 1—j
■=a change typejpopup

Node Name

Hew Type

cost:

BE AL

Cancel1 Help | OK |

Figure 17. Change Node TYPE Dialog

46

If the user attempts a type change which is not allowed, an error message appears and

the type is not changed. Legal type changes are those which conform to normal C

typecasting rules. If the type change is legal, the type of the selected node is changed as

shown in Figure 18.

Figure 18. Tree Diagram with New Node Type

Structural Conflicts

Grouping conflicts: Vertical and horizontal grouping conflicts usually occur due to

differing levels of detail or different information requirements in the component databases.

For horizontal grouping conflicts, two operations are required for successful conflict

resolution: concatenate and subset. To perform a horizontal concatenation, the user clicks

the Horiz CONCAT button. The dialog shown in Figure 19 is displayed.

47

=> horiz concat_popup

Old Label 1

Old Label 2

Mew Label

c-letter

f-digit

loc-prefix

Cancel1 Help | OK |

Figure 19. Horizontal CONCAT Dialog

After entering the names of the two nodes to merge together, a new label, and clicking

OK, the resultant tree diagram given in Figure 20 is produced.

Figure 20. Tree Diagram After Horiz CONCAT

48

Horizontal subsets are produced in much the same manner. By selecting the Horiz

SUBSET button, a dialog is generated which asks for the node to divide and the character

separating the data to be divided. This dialog is given in Figure 21.

lea horiz subset_popup

I Old Name

Hew Label 1

New Label 2

Char to divide

author-name

auth-first

auth-last

9

Cancel1 Help J OK 1

Figure 21. Horiz SUBSET Dialog

A tree diagram with a horizontal subset is shown in Figure 22.

49

-WüBrBi' LI»H.-J;WI—EJ25J

H!MI*IJ| l^f

E3J —EEMif-

-ESffl—L jff ??u|

-B33EE1-

l-'l-'-'.'J^jjl WWECTI BS^

-l.il.Ji.'.'g.'.lJj—BMSJiBIl-

Figure 22. Tree Diagram After Horiz SUBSET

Vertical grouping conflicts are resolved with the Vert COLLAPSE/Vert EXPAND

buttons, whose operation is identical to the Horiz CONCAT and SUBSET buttons.

Sequence Conflicts: Occur when SEQUENCES are defined differently in each

database. To resolve this type of conflict, the user selects the Change SEQUENCE

button. The dialog box shown in Figure 23 is displayed.

c=j change sequence_popup

Sequence Node Label s-digit

Offset -1

:el| Help | OK | Cane

Figure 23. Change SEQUENCE Dialog

50

The user then enters a node label from a SEQUENCE in the active tree, and an offset

for the number of places to move the node. A negative offset moves the node up, a

positive offset moves it down. For example, the entries in Figure 23 will move the node

labeled s-digit UP 1 place. Figure 24 shows the modified tree after executing the above

command.

Figure 24. Tree Diagram After Change SEQUENCE

Optional Item Conflicts: Occur due to a difference in optionality. When the

OPTIONALITY button is selected, the user is prompted for the label of an optional node

in the active tree, as shown in Figure 25.

51

= optionafity_popup

Optional Kode Label

Help 1 OK 1 Cancel]

Figure 25. Optionality Dialog

If a valid node label is entered, the optionality ofthat node is removed. Any instance

of the tree for which the optional node was not included is automatically filled with a

NULL value.

Choice Conflicts: Occur due to a difference in choice definitions. Like the optionality

operation above, selecting the CHOICE button prompts the user to enter the label of a

choice node as shown in Figure 26. If a valid node label is entered, the CHOICE node is

transformed into a SEQUENCE node whose children correspond to the different choice

values. Each item in the sequence will have a NULL data value except the original choice

node.

■ ■ --"-■■■■ ■ ■■ ■» ■■

» choice_popup

Choice Node

Hew Type

L abel

Cane el1 Help | OK |

Figure 26. Choice Dialog

52

B. DATA LEVEL RESOLUTION

Precision Conflicts: Occur when data in two different databases are stored with

different precision or granularity. In order to correct this conflict, the user selects the

Change PRECISION button. He is then prompted for a node label from each tree. The

program automatically maps the values from Tree 2 to corresponding values in Tree 1.

Unit Conflicts: Occur when data in two different databases are stored with different

units. To correct this conflict the user selects the Change UNITS button. After entering

a node label from the active tree, the user enters a multiplier value in the dialog box shown

in Figure 27.

j-- J - - — - - 1—j
<=\ change units_popup

Old Label

Multiplier

New Label

cost

2

yr-2000-value

Cancel1 Help | OK j

Figure 27. Change UNITS Dialog

All data values for the selected node are multiplied by this value to scale them to the

new unit, resulting in the tree diagram given in Figure 28.

53

1=1 treet ja

t'li.L'.'g.1.'.,1.! mnjiiwi

E3S3-CEH

-BBS B»'*jijW|—h£ZM

CSEH—EB5HS!-

MJ-l'li'MJ

- I.'l ■ ■ J,1 S. „' f—U» fMüffli—L-!. „",.,..1., „U!

Figure 28. Tree Diagram After Change UNITS

Expression conflicts: These conflicts occur when different expressions are used to

store the same data object. The Change EXPRESSION button is the only button which

allows a user to actually manipulate a single data value for a single instance only. When

the user clicks this button, he is prompted for the old and new data values with the dialog

box shown in Figure 29.

a change expresskm_popup

Old Data Value "Military_Science"

New Data Value "Hilitary_History"

OK | Can< :el| Help |

Figure 29. Change EXPRESSION Dialog

54

Figure 30 shows the tree diagram after the data value has been modified.

Figure 30. Tree Diagram After Change EXPRESSION

55

VII. CONCLUSION

In this effort, we have attempted to show how ASN. 1 can be successfully utilized as

both a Data Definition and Data Manipulation Language for the integration of

heterogeneous databases. This successful integration depends on the resolution of all

possible schema and data conflicts before the user manipulates the databases using an

appropriate DML. While others have studied these conflicts as they apply to more

conventional database styles like the relational and object-oriented models, we have

presented a classification and resolution strategy designed around the unique requirements

of ASN. 1-described databases and documents. The resolution of these conflicts will

hopefully allow users to access and integrate data in databases having heterogeneous

formats in a uniform manner utilizing an easy to use graphical user environment.

The ideas addressed in this thesis are particularly applicable to issues of the

Department of Defense and the Department of the Navy. As with most modern large

organizations, DoD and DoN are discovering a myriad of incompatible stovepiped

databases that evolved over a period of time without careful guidance or planning. This

situation resulted in data duplication, data inconsistencies, inflexibility, limited data

sharing, and maintenance problems. As part of the DoD Corporate Information

Management (CJM) Initiative, examination of various database integration strategies and

the development of data warehouses is being intensively pursued. Although ASN. 1

56

integration has not yet encountered widespread use, future research using ASN. 1 or other

markup languages, like SGML, should yield workable systems which may indeed play a

role in the Department of Defense's progression toward a uniform, federated database

environment.

A. LESSONS LEARNED

Although this thesis originally intended to produce a full-scale application which

implemented all the aspects of the classification and resolution schemes presented herein,

the program had to be scaled down to a working prototype with the look-and-feel of the

füll system, but with limited functionality. Unfortunately, it is difficult to accurately

predict the amount of time required to produce a piece of software and in this case, some

aspects of the system will require follow-on work for its completion. Some of this

shortcoming is explained by the author's limited programming experience in the C

language, the dependence on source code libraries obtained from external sources which

required a significant amount of time for familiarization.

B. FUTURE WORK

While this thesis serves as good start toward the development of a full-scale conflict

resolution and database integration system, some areas require future research. First, this

thesis focuses on the loosely-coupled approach to data integration. The tightly-coupled

approach discussed in Chapter IV simplifies the user interaction with component databases

by providing a single unified schema, but is much more difficult to implement due to the

57

generation of a federated schema. However, this approach should be included in the final

product.

Additionally, there has been demand throughout the distributed database community

for integration tools which act on the generated output reports of the component

databases rather than the local Schemas and data. Integration of these reports would allow

the local database administrators to change various aspects of their individual Schemas

without affecting the integration as long as the output reports remained constant. Since

this is usually the case, development of a system which allows output report integration is

the logical answer to this issue. Future thesis efforts should look specifically in this type

of integration.

58

APPENDIX
PROGRAM LISTING

PARSER.C

/* Thesis project
*

* Parser which converts ASN.l specs and printfiles to
* ASCII tree files

* by: LT Gino Celia, Jr., USN

*/

#include <asnbuild.h>

#define NUMARGS 4
Args myargs[NUMARGS] = {

{ "Input spec", "specl.asn", "Book", NULL, FALSE, 'i', ARG_FILE_IN,
0.0, 0, NULL},

{ "Output file", "result.out", NULL, NULL, FALSE, 'o', ARG_FILE_OUT, 0.0,
0, NULL},

{ "Output data", "strm.out", "Book", NULL, FALSE, 'd', ARG_DATA_OUT, 0.0,
0, NULL},

{ "Input data", "printl.ent", "Book", NULL, FALSE, 'p', ARG_FILE_IN,
0.0, 0, NULL},};

extern void AsnTxtReadValFile PROTO((AsnModulePtr amp, AsnloPtr aip, AsnloPtr
aipout /* ,
AsnloPtr encode */));

Int2 Main ()

{
AsnloPtr aip = NULL,

aipprint = NULL,
aipout = NULL;

AsnModulePtr amp = NULL;
AsnTypePtr atp;
FILE *fp;
DataVal value;

/*
GetArgs("Parser 1.0", NUMARGS, myargs);

aip = AsnloOpen(myargs[0].strvalue, "r") ;
aipprint = AsnloOpen(myargs[3].strvalue, "r");
aipout = AsnloOpen(myargs[2].strvalue, "w");
fp = FileOpen(myargs[1].strvalue, "w");

*/
aip = AsnloOpen("spec!.asn", "r");

59

aipprint = AsnIoOpen("printl.ent", "r");
aipout = AsnloOpen("strm.out", "w") ;
fp = FileOpenf"result.out", "w");

amp=AsnLexTReadModule(aip);
AsnTxtReadValFile(amp, aipprint, aipout);

aip = AsnloClose(aip);
aipout = AsnloClose(aipout);
aipprint = AsnloClose(aipprint);
FileClose(fp);
system("cat strm.out");
return 0;

*

* void AsnTxtReadValFile(amp, aip, aipout)
* reads a file ofv values
* prints to aipout if aipout != NULL
*

void AsnTxtReadValFile (AsnModulePtr amp, AsnloPtr aip, AsnloPtr aipout)

{
AsnTypePtr atp;
DataVal value;
Boolean read_value, print_value, restart;
Int4 baseCtr=0;
AsnTypePtr last_atp = NULL;
AsnTypePtr parent_atp = NULL;
Int2 last_indent = -1;
AsnTypePtr stack[50];
Int2 i;

for (i = 0; i < sizeof(stack)/sizeof(stack[0]); i++)
stack[i] = NULL;

if (aipout != NULL)
print_value = TRUE;

else
print_value = FALSE;

if (print_value)
read_value = TRUE;

else
read_value = FALSE;

atp = NULL;
restart = FALSE;

while ((atp = AsnTxtReadld(aip, amp, atp)) != NULL)

60

if (restart == TRUE)
{

if (print value) /* new line */

GAsnPrintNewLine(aipout) ;
GAsnPrintNewLine(aipout);

}
restart = FALSE;

&baseCtr)

if (read value)

if (! AsnTxtReadVal(aip, atp, Svalue))
{
return;

}
if (print_value)
{

if (! GinoAsnTxtWrite(aipout, atp, &value, parent_atp,

{
return;

else

AsnKillValue(atp, &value);

if (! AsnTxtReadVal(aip, atp, NULL))
return;

if (! aip->type_indent)

atp = NULL;
restart = TRUE;

/* finished reading an object */

/* restart */

stack[aip->type_indent] = atp;
parent_atp = aip->type_indent <= 0 ? NULL :

stack[aip->type_indent-l];

last_indent = aip->type_indent;
}
return;

61

GINOPRINT.C

/* ginoprint.c

PUBLIC DOMAIN NOTICE
National Center for Biotechnology Information

This software/database is a "United States Government Work" under the
terms of the United States Copyright Act. It was written as part of
the author's official duties as a United States Government employee and
thus cannot be copyrighted. This software/database is freely available
to the public for use. The National Library of Medicine and the U.S.
Government have not placed any restriction on its use or reproduction.

Although all reasonable efforts have been taken to ensure the accuracy
and reliability of the software and data, the NLM and the U.S.
Government do not and cannot warrant the performance or results that
may be obtained by using this software or data. The NLM and the U.S.
Government disclaim all warranties, express or implied, including
warranties of performance, merchantability or fitness for any particular
purpose.

Please cite the author in any work or product based on this material.

* File Name: asnprint.c
*

* Author: James Ostell

* Version Creation Date: 3/4/91
*

* $Revision: 2.13 $

*
File Description:

Routines for printing ASN.l value notation (text) messages and
ASN.l module specifications

* Modifications:
*

* Date Name Description of modification
*

* 3/4/91 Kans Stricter typecasting for GNU C and C++
*
*

*/

62

* ginoprint.c
* print routines for asnl objects
*
**

#include "asnbuild.h"

Boolean GAsnPrintStrStore PROTO((ByteStorePtr bsp, AsnloPtr aip));
void GAsnPrintReal PROTO((FloatHi realvalue, AsnloPtr aip));
void GAsnPrintlnteger PROTO((Int4 thelnt, AsnloPtr aip));
Boolean GAsnPrintStrStore (ByteStorePtr bsp, AsnloPtr aip);
void GAsnPrintChar (char theChar, AsnloPtr aip);
void GAsnPrintBoolean (Boolean value, AsnloPtr aip);
void GAsnPrintOctets (ByteStorePtr ssp, AsnloPtr aip);
void GAsnPrintlndent (Boolean increase, AsnloPtr aip);
void GAsnPrintType (AsnTypePtr atp, AsnloPtr aip);
Boolean GAsnPrintString (CharPtr the_string, AsnloPtr aip);
void GAsnPrintOpenStruct (AsnloPtr aip, AsnTypePtr atp);
void GAsnPrintCloseStruct (AsnloPtr aip, AsnTypePtr atp);
void GAsnPrintNewLine (AsnloPtr aip);

typedef struct IndexManagement {
AsnTypePtr atp;
Int2 idType;
Int4 value;
struct IndexManagement PNTR next;

} IndexManager, PNTR IndexManagerPtr;

IndexManagerPtr masterlndex = NULL;
Int4 baseCount = 0;

#define ID_ID 0
#define ID_PRIMITIVE 1
#define ID_VALUE 2

/* return an ID if one has already been created, else create a new one */
static Int4 GetUniquelD(AsnTypePtr atp, Int2 idType)
{

IndexManagerPtr index;

/* search for pre-existing index */
for (index = masterlndex; index != NULL; index = index->next)
{

if (atp == index->atp && idType == index->idType)
{

return index->value;
}

}

index = (IndexManagerPtr) MemNew(sizeof(IndexManager));
index->atp = atp;
index->idType = idType;
index->value = baseCount++;
index->next = masterlndex;
masterlndex = index;

63

return index->value;
}

static void GAsnPrintNodelD(AsnTypePtr parent_atp, AsnTypePtr atp, Int2
idType, AsnloPtr aip)
{

/*

*/

Char str[50];

sprintf (str, "%ld ", (long) atp + isPrimitive);

switch (idType) {
case ID_ID:

if (! (parent_atp==NULL))
{
sprintf (str, "%ld x ", GetUniquelD(parent_atp, idType));
GAsnPrintString(str, aip);

}
break;

case ID_PRIMITIVE:
sprintf (str, "«Id x ", GetUniquelD(atp, ID_ID));
GAsnPrintString(str, aip);
break;

case ID_VALUE:
sprintf (str, "»Id x ", GetUniquelD(atp, ID_PRIMITIVE)) ;
GAsnPrintString(str, aip);

}

sprintf (str, "%ld ", GetUniquelD(atp, idType));
GAsnPrintString(str, aip);

}

* void GinoAsnTxtWrite(aip, atp, valueptr, parent_atp, base)

Boolean LIBCALL GinoAsnTxtWrite (AsnloPtr aip, AsnTypePtr atp, DataValPtr
dvp, AsnTypePtr
parent_atp, Int4Ptr base)
{

Int2 isa, i;
AsnTypePtr atp2;
AsnValxNodePtr avnp;
Boolean done, terminalvalue, firstvalue;
Char str[50], temp[50];

terminalvalue = TRUE; /* most are terminal values */
if ((! aip->indent_level) && (aip->typestack[0].type == NULL))

firstvalue = TRUE; /* first call to this routine */
else

firstvalue = FALSE;

if (! AsnTypeValidateOut(aip, atp, dvp))
return FALSE;

64

atp2 = AsnFindBaseType(atp) ;
isa = atp2->type->isa;
if (ISA_STRINGTYPE(isa))

isa = GENERALSTRINGJTYPE;

if (((isa == SEQ_TYPE) || (isa == SET_TYPE) ||
(isa == SEQOFJTYPE) || (isa == SETOF_TYPE))
&& (dvp->intvalue == END_STRUCT))

{
GAsnPrintCloseStruct(aip, atp);
return TRUE;

if (! aip->first[aip->indent_level])
GAsnPrintNewLine(aip);

else
aip->first[aip->indent_level] = FALSE;

atp2 = atp;
if (firstvalue) /* first item, need ::= */
{

while ((atp2->name == NULL) || (IS_L0WER(*atp2->name)))
atp2 = atp2->type; /* find a Type Reference */

}

if (atp2->name != NULL)
{

GAsnPrintNodelD(parent_atp, atp /* atp2 */, ID_ID, aip);
GAsnPrintString(atp2->name, aip); /* put the element name */
if (IS_L0WER(*atp2->name))
{

GAsnPrintChar('\n', aip);
}
else
{

GAsnPrintChar(' ', aip);

if (IS_L0WER(*atp2->name))
GAsnPrintChar(' ', aip);

else
GAsnPrintString(" ::= ", aip);

if (isa == CHOICE_TYPE) /* show nothing but name on same line */
{

GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("CHOICE", aip);
if ((aip->type_indent))
{

isa = AsnFindBaselsa(aip->typestack[aip->type_indent -
1]-type);

if ((isa != SEQOF TYPE) && (isa != SETOF TYPE))

65

{
GAsnPrintIndent(TRUE, aip);
AsnTypeSetIndent(TRUE, aip, atp);
GAsnPrintNewLine(aip);

}
else

AsnTypeSetlndent(TRUE, aip, atp);

}
else

AsnTypeSetlndent(TRUE, aip, atp);
aip->first[aip->indent_level] = TRUE;
return TRUE;

switch (isa)
{

case SEQJTYPE:
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("SEQUENCE", aip);
GAsnPrintNewLine(aip);
if (dvp->intvalue == START_STRUCT) /* open brace */

GAsnPrintOpenStruct(aip, atp);
else
{

AsnloErrorMsgfaip, 18);
return FALSE;

}
terminalvalue = FALSE;
break;

case SET_TYPE:
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("SET", aip);
GAsnPrintNewLine(aip);
if (dvp->intvalue == START_STRUCT) /* open brace */

GAsnPrintOpenStruct(aip, atp);
else
{

AsnIoErrorMsg(aip, 18);
return FALSE;

}
terminalvalue = FALSE;
break;

case SEQOF_TYPE:
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("SEQUENCE OF", aip);
GAsnPrintNewLine(aip) ;
if (dvp->intvalue == START_STRUCT) /* open brace */

GAsnPrintOpenStruct(aip, atp);
else
{

AsnIoErrorMsg(aip, 18);
return FALSE;

}
terminalvalue = FALSE;
break;

case SETOF TYPE:

66

GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintStringC'SET OF", aip);
GAsnPrintNewLine(aip);
if (dvp->intvalue == START_STRUCT) /* open brace */

GAsnPrintOpenStruct(aip, atp);
else
{

AsnloErrorMsg(aip, 18);
return FALSE;

}
terminalvalue = FALSE;
break;

case BOOLEANJTYPE:
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("BOOLEAN", aip);
GAsnPrintNewLine(aip);
GAsnPrintNodeID(NULL, atp, ID_VALUE, aip);
GAsnPrintBoolean(dvp->boolvalue, aip);
break;

case INTEGERJTYPE:
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("INTEGER", aip);
GAsnPrintNewLine(aip);
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip);
atp2 = AsnFindBaseType(atp); /* check for names */
avnp = (AsnValxNodePtr) atp2->branch;
done = FALSE;
while (avnp != NULL)
{

if (dvp->intvalue == avnp->intvalue)
{

GAsnPrintString(avnp->name, aip);
done = TRUE;
avnp = NULL;

}
else

avnp = avnp->next;
}
if (! done) /* no name */

GAsnPrintlnteger(dvp->intvalue, aip);
break;

case ENUM_TYPE:
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("ENUMERATED", aip);
GAsnPrintNewLine(aip);
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip);
atp2 = AsnFindBaseType(atp); /* check for names */
avnp = (AsnValxNodePtr) atp2->branch;
done = FALSE;
while (avnp != NULL)
{

if (dvp->intvalue == avnp->intvalue)
{

GAsnPrintString(avnp->name, aip);
done = TRUE;
avnp = NULL;

67

else
avnp = avnp->next;

}
if (! done) /* no name */

GAsnPrintlnteger(dvp->intvalue, aip);
break;

case REAL_TYPE:
GAsnPrintNodeID(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintStringC'REAL", aip);
GAsnPrintNewLine(aip);
GAsnPrintNodeID(NULL, atp, ID_VALUE, aip);
GAsnPrintReal(dvp->realvalue, aip);
break;

case GENERALSTRING_TYPE:
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("VisibleString", aip);
GAsnPrintNewLine(aip);
GAsnPrintNodeID(NULL, atp, ID_VALUE, aip);
GAsnPrintChar('\"', aip);

/* if (! GAsnPrintString((CharPtr) dvp->ptrvalue, aip)
return FALSE;

* /
sprintf(temp,((CharPtr) dvp->ptrvalue));
for (i=0; i<=strlen(temp); i++)
{

if (temp[i]==' ')
temp [i] = '_';

}
GAsnPrintString(temp, aip);
GAsnPrintCharCV", aip);
break;

case NULL_TYPE:
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("NULL", aip);
GAsnPrintNewLine(aip);
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip);
GAsnPrintString("NULL", aip);
break;

case OCTETSJTYPE:
GAsnPrintNodelD(NULL, atp, ID_PRIMITTVE, aip);
GAsnPrintString("OCTET", aip);
GAsnPrintNewLine(aip) ;
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip);
GAsnPrintOctets((ByteStorePtr) dvp->ptrvalue, aip);
break;

case STRSTORE_TYPE:
GAsnPrintNodelD(NULL, atp, ID_PRIMITIVE, aip);
GAsnPrintString("StringStore", aip);
GAsnPrintNewLine(aip);
GAsnPrintNodelD(NULL, atp, ID_VALUE, aip);
if (! GAsnPrintStrStore((ByteStorePtr) dvp->ptrvalue, aip))

return FALSE;
break;

default:
AsnloErrorMsg(aip, 19, AsnErrGetTypeName(atp->name)) ;

68

*/ return FALSE;
}

if ((terminalvalue) && (aip->type indent)) /* pop out of choice nests
*/

{
if (AsnFindBaseIsa{aip->typestack[aip->type_indent - l].type) ==

CHOICE_TYPE)
{

if (aip->type_indent >= 2)
isa = AsnFindBaselsa(aip->typestack[aip->type_indent -

2].type);
else

isa = NULL_TYPE; /* just fake it */
if ((isa != SETOF_TYPE) && (isa != SEQOFJTYPE))

GAsnPrintlndent(FALSE, aip);
AsnTypeSetlndent(FALSE, aip, atp);

}
}
return TRUE;

}

* void GAsnPrintModule(amp, aip)
*
+ ******** + ****** + ********************** + + ********** + + * + + + + + * + + + **********■):***/

void GAsnPrintModule (AsnModulePtr amp, AsnloPtr aip)

{
AsnTypePtr atp;
Boolean firstone;
CharPtr from;

GAsnPrintString(amp->modulename, aip);
GAsnPrintStringf" DEFINITIONS ::=", aip);
GAsnPrintNewLine(aip);
GAsnPrintString("BEGIN", aip);
GAsnPrintNewLine(aip);
GAsnPrintNewLine(aip);

atp = amp->types; /* check for EXPORTS */
firstone = TRUE;
while (atp != NULL)
{

if (atp->exported == TRUE)
{

if (firstone)
GAsnPrintString("EXPORTS ", aip);

else
{

GAsnPrintString(" ,", aip);
GAsnPrintNewLine(aip);
GAsnPrintString(" ", aip);

}

69

FROM */

GAsnPrintString(atp->name, aip);
firstone = FALSE;

}
atp = atp->next;

}
if (! firstone) /* got at least one */
{

GAsnPrintString(" ;", aip);
GAsnPrintNewLine(aip);
GAsnPrintNewLine(aip);

}

atp = amp->types; /* check for IMPORTS */
firstone = TRUE;
from = NULL;
while (atp != NULL)
{

if (atp->imported == TRUE)
{

if (firstone)
GAsnPrintString("IMPORTS ", aip);

else
{

if (StringCmp((CharPtr) atp->branch, from)) /* new

GAsnPrintString(" FROM ", aip);
GAsnPrintString(from, aip);

}
else

GAsnPrintString(" ,", aip);
GAsnPrintNewLine(aip);
GAsnPrintString(" ", aip);

}
GAsnPrintString(atp->name, aip);
firstone = FALSE;
from = (CharPtr) atp->branch;

}
atp = atp->next;

}
if (! firstone) /* got at least one */
{

GAsnPrintString(" FROM ", aip);
GAsnPrintString(from, aip);
GAsnPrintString(" ;", aip);
GAsnPrintNewLine(aip);
GAsnPrintNewLine(aip);

}

atp = amp->types;
while (atp != NULL)
{

if (! atp->imported)
{

GAsnPrintString(atp->name, aip);
GAsnPrintString(" ::= ", aip);

70

GAsnPrintType(atp, aip);
GAsnPrintNewLine(aip);
GAsnPrintNewLine(aip) ;

}
atp = atp->next;

}
GAsnPrintString("END", aip);
GAsnPrintNewLine(aip);
return;

}

/ ***

* void GAsnPrintType(atp, aip)
* prints a type starting at current line position
* (assumes name already printed)
*
**

void GAsnPrintType (AsnTypePtr atp, AsnloPtr aip)

{
AsnValxNodePtr avnp;
AsnTypePtr atp2;
Boolean first;

if (atp->tagclass != TAG_NONE) /* print tag, if any */
{

GAsnPrintChar('[', aip);
GAsnPrintChar(' ', aip);
switch (atp->tagclass)
{

case TAGJJNIVERSAL:
GAsnPrintString("UNIVERSAL ", aip);
break;

case TAG_APPLICATION:
GAsnPrintString("APPLICATION ", aip);
break;

case TAG_PRIVATE:
GAsnPrintString("PRIVATE ", aip);
break;

default: /* context dependent, do nothing */
break;

}
GAsnPrintlnteger((Int4)atp->tagnumber, aip);
GAsnPrintChar(' ', aip);
GAsnPrintChar(']', aip);
GAsnPrintChar(' ', aip);

if (atp->implicit)
GAsnPrintString("IMPLICIT ", aip);

}

GAsnPrintString(atp->type->name, aip); /* print the type name */

if (atp->branch != NULL) /* sub types ? */
{

71

switch (atp->type->isa)
{

case SETOF_TYPE:
case SEQOFJTYPE:

GAsnPrintChar(' ', aip);
GAsnPrintType((AsnTypePtr) atp->branch, aip);
break;

case INTEGERJTYPE:
case ENUM_TYPE:

GAsnPrintChar(' ', aip);
GAsnPrintOpenStruct(aip, atp);
avnp = (AsnValxNodePtr)atp->branch;
first = TRUE;
aip->first[aip->indent_level] = FALSE;
while (avnp != NULL)
{

if (! first)
GAsnPrintNewLine(aip);

else
first = FALSE;

GAsnPrintString(avnp->name, aip);
GAsnPrintChar(' ', aip);
GAsnPrintChar('(', aip);
GAsnPrintlnteger(avnp->intvalue, aip);
GAsnPrintChar(')', aip);
avnp = avnp->next;

}
GAsnPrintCloseStruct(aip, atp);
break;

case SEQ_TYPE:
case SET_TYPE:
case CHOICE_TYPE:

GAsnPrintChar(' ', aip);
GAsnPrintOpenStruct(aip, atp);
atp2 = (AsnTypePtr) atp->branch;
first = TRUE;
aip->first[aip->indent_level] = FALSE;
while (atp2 != NULL)
{

if (! first)
GAsnPrintNewLine(aip);

else
first = FALSE;

if (atp2->name != NULL)
{

GAsnPrintString(atp2->name, aip);
GAsnPrintChar(' ', aip);

}
GAsnPrintType(atp2, aip);
atp2 = atp2->next;

}
GAsnPrintCloseStruct(aip, atp);
break;

default: /* everything else */
break; /* do nothing */

72

/

}

if (atp->optional)
GAsnPrintStringC OPTIONAL", aip) ;

if (atp->hasdefault)
{

GAsnPrintStringC DEFAULT ", aip) ;
avnp = atp->defaultvalue;
while (! (VALUE_ISA_DEFAULT(avnp->valueisa)))

avnp = avnp->next;
switch (avnp->valueisa)
{

case VALUE_ISA_PTR:
GAsnPrintChar('\"', aip);
GAsnPrintString(avnp->name, aip);
GAsnPrintChar('\"', aip);
break;

case VALUE_ISA_BOOL:
GAsnPrintBoolean((Boolean)avnp->intvalue, aip);
break;

case VALUE_ISA_INT:
GAsnPrintlnteger(avnp->intvalue, aip);
break;

case VALUE_ISA_REAL:
GAsnPrintReal(avnp->realvalue, aip);
break;

default:
GAsnPrintString("Error", aip);
break;

}
)

**

* Boolean GAsnPrintStrStore(bsp, aip)
*
***/

Boolean GAsnPrintStrStore (ByteStorePtr bsp, AsnloPtr aip)

{
Char buf[101];
Uint4 len, tlen;

if (aip->type & ASNIO_CARRIER) /* pure iterator */
return TRUE;

BSSeek(bsp, 0, SEEK_SET); /* seek to start */
len = BSLen(bsp);
GAsnPrintChar('\"', aip);
while (len)
{

if (len < 100)
tlen = len;

73

else
tlen = 100;

BSReadfbsp, buf, tlen);
buf[tlen] = '\0';
if (! GAsnPrintString(buf, aip))

return FALSE;
len -= tlen;

}
GAsnPrintChar('\"', aip);
return TRUE;

}

*

* void GAsnPrintReal(realvalue, aip)

* + ******** + **** + ** + ************ + ******* + ********* + ******* + ******* + + + + + + + + **■);■*;/

void GAsnPrintReal (FloatHi realvalue, AsnloPtr aip)

{
FloatHi thelog, mantissa;
int characteristic;
int ic;
long im;
char tbuf[30];
Boolean minus;

if (aip->type & ASNIO_CARRIER) /* pure iterator */
return;

if (realva lue == 0.0)
{

ic = 0;
im = 0;

}
else
{

if (realvalue < 0.0)
{

minus = TRUE;
realvalue = -realvalue;

}
else

minus = FALSE;

digits */

thelog = loglO((double)realvalue);
if (thelog >= 0.0)

characteristic = 8 - (int)thelog;/* give it 9 significant

else
characteristic = 8 + (int)ceil(-thelog);

mantissa = realvalue * Nlm_Powi((double)10., characteristic);
ic = -characteristic; /* reverse direction */
im = (long) mantissa;

/* strip trailing 0 */

74

while ((im % lOL) == OL)
{

im /= lOL;
ic++;

}

if (minus)
im = -im;

}
sprintf(tbuf, "{ %ld, 10, %d }", im, ic) ;
GAsnPrintString(tbuf, aip);
return;

}

*

* void GAsnPrintlnteger(thelnt, aip)
*

void GAsnPrintlnteger (Int4 thelnt, AsnloPtr aip)

{
char tbuf[10];

if (aip->type & ASNIO_CARRIER) /* pure iterator */
return;

sprintf(tbuf, "%ld", (long)thelnt);
GAsnPrintString(tbuf, aip);
return;

}

* void GAsnPrintChar(theChar, aip)
* print a single character
■*•

void GAsnPrintChar (char theChar, AsnloPtr aip)

{
if (aip->type & ASNIO_CARRIER) /* pure iterator */

return;

*(aip->linebuf + aip->linepos) = theChar;
aip->linepos++;
aip->offset++;
return;

}

* void GAsnPrintBoolean(value, aip)

void GAsnPrintBoolean (Boolean value, AsnloPtr aip)

75

if (aip->type & ASNIO_CARRIER) /* pure iterator */
return;

if (value)
GAsnPrintString("TRUE", aip);

else
GAsnPrintString("FALSE", aip);

return;
}

/***
*

* void GAsnPrintOctets(ssp, aip)
*
**
void GAsnPrintOctets (ByteStorePtr ssp, AsnloPtr aip)

{
Int2 value, tval, ctr;
Char buf[101];

if (aip->type & ASNIO_CARRIER) /* pure iterator */
return;

GAsnPrintChar('\'', aip);

BSSeek(ssp, 0, SEEK_SET); /* go to start of bytestore */
ctr = 0;
buf[100] = '\0';

/* break it up into lines if necessary */
while ((value = BSGetByte(ssp)) != -1)
{

tval = value / 16;
if (tval < 10)

buf[ctr] = (Char)(tval + '0');
else

buf[ctr] = (Char)(tval - 10 + 'A');
ctr++;
tval = value - (tval * 16);
if (tval < 10)

buf[ctr] = (Char)(tval + '0');
else

buf[ctr] = (Char)(tval - 10 + 'A');
ctr++;
if (ctr == 100)
{

GAsnPrintString(buf, aip);
ctr = 0;

}
}
if (ctr)
{

buf[ctr] = '\0';

76

GAsnPrintString (buf, aip) ;
}

GAsnPrintChar('\'', aip);
GAsnPrintChar('H', aip);
return;

/***
*

* void GAsnPrintlndent(increase, aip)
* increase or decrease indent level
*

void GAsnPrintlndent (Boolean increase, AsnloPtr aip)

{
Intl offset,

curr_indent;
BoolPtr tmp;
int deer, isa;

if (increase)
{

aip->indent_level++;
curr_indent = aip->indent_level;
if (curr_indent == aip->max_indent) /* expand indent levels */
{

tmp = aip->first;
aip->first = (BoolPtr) MemNew((sizeof(Boolean) *

(aip->max_indent +
10)));

MemCopy(aip->first, tmp, (size_t)(sizeof(Boolean) *
aip->max_indent));

MemFree(tmp);
aip->max_indent += 10;

}
aip->first[curr_indentj = TRUE; /* set to first time */
offset = curr_indent * aip->tabsize;

if (! (aip->type & ASNIO_CARRIER))
{

while (aip->linepos < offset)
{

*(aip->linebuf + aip->linepos) = ' ';
aip->linepos++;

}
aip->offset = aip->linepos + (aip->linebuf -

(CharPtr)aip->buf);
}

}
else
{

offset = aip->indent__level * aip->tabsize;
curr indent = aip->type_indent;

77

1].type);

elements */

*/

deer =1; /* always backup indent for named element */
do
{

if (aip->indent_level)
aip->indent_level -= deer;

if (curr_indent)
curr_indent—;

isa = NULL_TYPE; /* fake key */
if ((aip->indent_level) && (curr_indent))
{

isa = AsnFindBaselsa(aip->typestack[curr_indent -

if (aip->typestack[curr_indent-l].type->name != NULL)
deer =1; /* indent for named choices as

else
deer =0; /* not referenced choice objects

}
} while (isa == CHOICE TYPE) ;

'))

if (aip->linepos == offset) /* nothing written yet */
{

curr_indent = aip->indent_level * aip->tabsize;
while (offset >= curr_indent)
{

offset—;
if (! (aip->type & ASNIO_CARRIER))
{

if ((offset >= 0) && (aip->linebuf[offset] != '

curr indent = 127;

}
offset++;
aip->linepos = offset;
aip->offset = aip->linepos + (aip->linebuf -

(CharPtr)aip->buf);
}
if (! aip->indent_level) /* level 0 - no commas */

aip->first[0] = TRUE;
}
return;

}

■k

* void GAsnPrintNewLine(aip)
* end a line in the print buffer
* indent to the proper level on the next line

void GAsnPrintNewLine (AsnloPtr aip)

{
Intl tpos, indent;

78

CharPtr tmp;
Boolean do_print = TRUE;

if (aip->linepos ==0) /* nothing in buffer yet */
return;

if (! (aip->type & ASNIO_CARRIER)) /* really printing */
{

tpos = aip->indent_level * aip->tabsize;
if (tpos == aip->linepos) /* just an empty indent? */
{

do_print = FALSE; /* assume that's the case */
for (tmp = aip->linebuf; tpos != 0; tpos—, tmp++)
{

if (*tmp != ' ')
{

do_print = TRUE; /* set sentinel */
break;

}
}

}

if (do_print) /* not an empty indent */
{

tmp = aip->linebuf + aip->linepos;
if (aip->first[aip->indent_level] == FALSE) /* not first

line of struct */
{

/* add
commas */
#ifdef JAE_NOWAY

*tmp = ' '; tmp++;
*tmp = ','; tmp++;

#endif /* JAE_NOWAY */
}
else if (aip->linepos) /* is first line, remove

trailing blanks */
{ /* if just

indented */
tmp— ;
while ((*tmp == ' ') && (tmp > aip->linebuf))

tmp— ;
tmp++;

}
*tmp = *\0';
aip->linepos = tmp - aip->linebuf;
aip->offset = tmp - (CharPtr)aip->buf;
AsnloPuts(aip);

}
}

if ((do_print) && (aip->indent_level)) /* level 0 never has commas */
aip->first[aip->indent_level] = FALSE;

if (! (aip->type & ASNIO_CARRIER)) /* really printing */
{

79

tmp = aip->linebuf;
indent = aip->indent_level * aip->tabsize;
indent =0;
for (tpos = 0; tpos < indent; tpos++, tmp++)

*tmp = ' ';
aip->linepos = tpos;
aip->offset += tpos;

}
return;

}
/***
*

* Boolean GAsnPrintString(str, aip)
*
**

Boolean GAsnPrintString (CharPtr the_string, AsnloPtr aip)

{
Uint4 stringlen;
register int templen;
Intl first = 1;
register CharPtr current, str;
Boolean indent_state;
int bad_char, bad_char__ctr = 0;

fprintf (stderr, "%s", the_string);

if (aip->type & ASNIO_CARRIER) /* pure iterator */
return TRUE;

str = the_string;
stringlen = StringLen(str);
indent_state = aip->first[aip->indent_level];

/* break it up into lines if necessary */
while (stringlen)
{

if (! first) /* into multiple lines */
{

aip->first[aip->indent_level] = TRUE; /* no commas */
GAsnPrintNewLine(aip);
aip->offset -= aip->linepos;
aip->linepos =0;

}
first = 0;

templen = (int)(aip->linelength - aip->linepos);

if (stringlen <= (Uint4)templen) /* it fits in remaining space
*/

templen = (int) stringlen;
else

templen = GAsnPrintGetWordBreak(str, templen);

current = aip->linebuf + aip->linepos;
stringlen -= (Uint4)templen;

80

)))

aip->linepos += templen;
aip->offset += templen;
while (templen)
{

if ((aip->fix_non_print < 2) && ((*str < ' ') || (*str >

{
if (! bad_char_ctr)

bad_char = (int)(*str);
bad_char_ctr++;

str = '#'; / replace with # */
}
^current = *str;
if (*str == '\'") /* must double quotes */
{

current++; aip->linepos++; aip->offset++;
*current = *\"';

}
current++; str++; templen—;

}
}
aip->first[aip->indent_level] = indent_state; /* reset indent state */
if ((bad_char_ctr) && (aip->fix_non_print == 0))
{

AsnloErrorMsg(aip, 106, bad_char, the_string);
}
return TRUE;

}

/***
*

* void GAsnPrintCharBlock(str, aip)
* prints string on line if there is room
* if not prints on next line with no indent.

**

void GAsnPrintCharBlock (CharPtr str, AsnloPtr aip)

{
Uint4 stringlen;
Boolean indent_state;
Intl templen;
CharPtr current;

if (aip->type & ASNIO_CARRIER) /* pure iterator */
return;

stringlen = StringLen(str);
templen = (Intl)(aip->linelength - aip->linepos);
indent_state = aip->first[aip->indent_level];

if (stringlen > (Uint4)templen) /* won't fit on line */
{

aip->first[aip->indent_level] = TRUE; /* no commas */
GAsnPrintNewLine(aip) ;

81

/

aip->linepos =0; /* no indent on broken string */
}

current = aip->linebuf + aip->linepos;
MemCopy(current, str, (size_t)stringlen);
aip->linepos += (Int2) stringlen;
aip->offset += (Int2) stringlen;
aip->first[aip->indent_level] = indent_state; /* reset indent state */
return;

**

* int GAsnPrintGetWordBreak(str, maxien)
* return length (<= maxien) of str to next white space
*
***/

int GAsnPrintGetWordBreak (CharPtr str, int maxien)

{
CharPtr tmp;
int len;
Uint4 stringlen;

stringlen = StringLen(str);
if (stringlen <= (Uint4)maxien)

return (int) stringlen;

tmp = str + maxien; /* point just PAST the end of region */
len = maxien +1;
while ((len) && (! IS_WHITESP(*tmp)))

{
len—; tmp—;

}
while ((len) && (IS_WHITESP(*tmp)))
{

len—; /* move past white space */
tmp—;

}
if (len < 1) /* never found any whitespace or only 1 space */

len = maxien; /* have to break a word */

return len;

}

/***
*

* GAsnPrintOpenStruct(aip, atp)
*
***/

void GAsnPrintOpenStruct (AsnloPtr aip, AsnTypePtr atp)

{
#ifdef NOWAY_JAE

GAsnPrintChar('{ ', aip);
#endif /* NOWAY JAE */

82

GAsnPrintlndent(TRUE, aip);
AsnTypeSetlndent(TRUE, aip, atp);
GAsnPrintNewLine(aip);
aip->first[aip->indent_level] = TRUE;
return;

}

/ ***

* GAsnPrintCloseStruct(aip, atp)
*
***/

void GAsnPrintCloseStruct (AsnloPtr aip, AsnTypePtr atp)

{
/*

* /

)

GAsnPrintChar(' ', aip);
GAsnPrintChar ('}'/• aip) ;

GAsnPrintlndent(FALSE, aip);
AsnTypeSetlndent(FALSE, aip, atp);
return;

83

PROJ.H

*

* Header for Proj
*

* by: Gino Celia, Jr

******************************** /

void buildTree(Widget w, char* infilename);

void ButtonCallback (Widget w, XtPointer clientData, XtPointer callData);
void ButtonlCallback (Widget w, XtPointer clientData, XtPointer callData);
void DIOKCallback (Widget w, XtPointer clientData, XtPointer callData);
void Button2Callback (Widget w, XtPointer clientData, XtPointer callData);
void D20KCallback (Widget w, XtPointer clientData, XtPointer callData);
void Button3Callback (Widget w, XtPointer clientData, XtPointer callData);
void D30KCallback (Widget w, XtPointer clientData, XtPointer callData);
void ButtonllCallback (Widget w, XtPointer clientData, XtPointer callData),
void DllOKCallback (Widget w, XtPointer clientData, XtPointer callData);
void Buttonl3Callback (Widget w, XtPointer clientData, XtPointer callData) ,
void Buttonl4Callback (Widget w, XtPointer clientData, XtPointer callData) ,
void Buttonl5Callback (Widget w, XtPointer clientData, XtPointer callData) ,
void Buttonl6Callback (Widget w, XtPointer clientData, XtPointer callData),

void ShowSelectedWidget (Widget w, XtPointer clientData, XEvent *event,
Boolean *flag);
void ValueChangedCallback (Widget w, XtPointer clientData, XtPointer
callData);
void makeButtons(Widget w);

void createTreeCas cadeL (Widget w);
void createTreeCascadeS (Widget w);

void ExitCallback (Widget w, XtPointer clientData, XtPointer callData) ;
void LoadCallback (Widget w, XtPointer clientData, XtPointer callData);
void SaveCallback (Widget w, XtPointer clientData, XtPointer callData);
void OKCallback (Widget w, XtPointer clientData, XtPointer callData);
void CancelCallback (Widget w, XtPointer clientData, XtPointer callData);

Widget createMenu (Widget w);

void createFilePane (Widget w);
void createHelpPane (Widget w);

void copyFiles (char* infilename, char* outfilename);

84

PROJ.C

/**
*

* proj.c
*

* Final thesis project by : LT Gino Celia, Jr., US Navy
*

* Graphical ASN.l database integration and conflict resolution tool
*

* September, 1994
*

/**

* Portions of this code are from the book:
*

* The X Window System: Programming and Applications with Xt
* Second OSF/Motif Edition
* by
* Douglas Young
* Prentice Hall, 1994
*

* Copyright 1994 by Prentice Hall
* All Rights Reserved
*
.*****************/

#include <ncbi.h>
#include <ncbiwin.h>

/* this stuff covered in ncbi.h and ncbiwin.h */
/*
#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/MainW.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/Label.h>
#include <Xm/CascadeB.h>
#include <Xm/PushB.h>
#include <Xm/ScrolledW.h>
*/

#include <Xm/MessageB.h>
#include <Xm/DrawnB.h>
#include <Xm/FileSB.h>
#include <Xm/ArrowB.h>
#include "proj.h"
#include "Tree.h"

typedef struct {
Widget old, new;

85

} DialoglWidgets;

typedef struct {
Widget oldLabel, newType;

} Dialog2Widgets;

typedef struct {
Widget oldl, old2, new;

} Dialog3Widgets;

typedef struct {
Widget old, mult, new;

} DialogllWidgets;

Widget treel,
tree2,
forml,
form2;

int activeTree =1,
tlRecNum = 0,
t2RecNum = 0,
tlLastRec = 0,
t2LastRec = 0;

char *tl_infile = "treel.dat";
char *t2_infile = "tree2.dat";
char *tl_tempfile = "treeltemp.dat";
char *t2_tempfile = "tree2temp.dat";
char *tl_outfile = "treelout.dat";
char *t2 outfile = "tree2out.dat";

void main (int arge, char **argv)
{

Arg wargs[15];
int n=0;
Widget shell,

mainwindow,
menu,
shelll,
shell2,
form;

XtAppContext app;

/* initialize Xt */

shell = XtVaAppInitialize (&app, "Tree", NULL, 0,
Sargc, argv, NULL,

XmNgeometry, "900x340+200+25",
NULL);

/* create two popup shells */
shelll= XtVaCreatePopupShell ("shelll", topLevelShellWidgetClass,

shell,
NULL);

shell2= XtVaCreatePopupShell ("shell2", topLevelShellWidgetClass,

86

shell,
NULL);

/* Create a manager window for the main shell */
mainwindow = XtVaCreateManagedWidget ("mainwindow",

xmMainWindowWidgetClass,
shell, NULL);

/* Create the menu bar */
menu = createMenu (mainwindow);

/* Create a form for each popup and the mainwindow*/
n = 0;
form = XtCreateManagedWidget ("form", xmFormWidgetClass, mainwindow, wargs,

n)

n)

n)

forml = XtCreateManagedWidget ("forml", xmFormWidgetClass, shelll, wargs,
r

form2 = XtCreateManagedWidget ("form2", xmFormWidgetClass, shell2, wargs,

/* Specify the widgets for the mainwindow */
XtVaSetValues (mainwindow,

XmNmenuBar, menu,
XmNworkWindow, form,
NULL);

copyFiles (tl_infile, tl_tempfile);
copyFiles (t2_infile, t2_tempfile);

treel = XsCreateScrolledTree (forml, "treel", NULL, 0);
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);

buildTree (treel, tl_infile) ;
buildTree (tree2, t2_infile);

XtManageChild (treel);
XtManageChild (tree2);

/* Create the buttons */
makeButtons (form);

/* Popup the popups */
XtPopup (shelll, XtGrabNone);
XtPopup (shell2, XtGrabNone);

/* Realize everything */
XtRealizeWidget (shell);
XtAppMainLoop (app);

}

/* buildTree creates the nodes for the tree widget */

void buildTree(Widget w, char* infilename)
{

char parent[500],
parentLabel[500] ,

87

child[500],
childLabel[500] ;

int recNum = 0,
success = 0,
lastrec = 0;

FILE* infile;

infile = fopen (infilename, "r");
fseek (infile, 0, 0);

/* get the right record number */
if (strcmp(XtName(w) , "treel") == 0)
recNum = tlRecNum;

else
recNum = t2RecNum;

while (fscanf (infile, "%s %s %s %s", &parent, &parentLabel, Schild,
&childLabel) != EOF)

{
/* check to see if we're on the right record */
if (strcmp(parent, "0") == 0)
{
lastrec = atoi(childLabel);
if (atoi(childLabel) == recNum)
{

success = 1;
}
else

success = 0;
}

/* build the tree */
if (success)
{

Widget p,
c;

/*
* If a parent identifier was read, check to see if this name
* has already been used as a widget. If so, use the existing
* widget as the supernode of the given child.
*/

if (parent)
p = XtNameToWidget (w, parent);

if dp)
{

/*
* Otherwise, create a new widget for this node.
*/

p = XtVaCreateManagedWidget (parent,
xmDrawnButtonWidgetClass,
w.

88

XtVaTypedArg, XmNlabelString,
XmRString, parentLabel,
strlen(parentLabel)+1,
NULL);

}

/*
* If a child identifier was read, check to see if this name
* has already been used as a widget. If so, use the existing
* widget as the subnode of the given parent.
*/

if (child)
c = XtNameToWidget (w, child);

if (!c)
{

/*
* Otherwise, create a new widget for this node.
*/

c = XtVaCreateManagedWidget (child,
xmDrawnButtonWidgetClas s,
w,
XmNsuperNode, p,
XtVaTypedArg, XmNlabelString,
XmRString, childLabel,
strlen(childLabel)+1,
NULL);

fclose (infile);

if (strcmp(XtName(w), "treel") == 0)
tlLastRec = lastrec;

else
t2LastRec = lastrec;

/* the button callbacks */
/* default callback */
void ButtonCallback (Widget w, XtPointer clientData, XtPointer callData)
{

static Widget dialog = NULL;
char temp [30] = " ";

dialog = XmCreatelnformationDialog (w, "dialog", NULL, 0);
sprintf (temp, "%s selected", XtName (w));
XtVaSetValues (dialog,

XmNmessagestring, XmStringCreateSimple(temp),
XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
NULL);

89

XtManageChild (dialog);
}

/* change name */
void ButtonlCallback (Widget w, XtPointer clientData, XtPointer callData)

{
Widget dialogl = NULL;
Widget re;
DialoglWidgets *widgets;

widgets = (DialoglWidgets *) XtMalloc (sizeof (DialoglWidgets));
dialogl = XmCreateMessageDialog (w, "dialogl", NULL, 0);
XtUnmanageChild (XmMessageBoxGetChild (dialogl, XmDIALOG_SYMBOL_LABEL));
XtUnmanageChild (XmMessageBoxGetChild (dialogl, XmDIALOG_MESSAGE_LABEL));
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialogl,

XmNnumColumns, 2,
XmNpacking, XmPACK_COLUMN,
XmNorientation, XmVERTICAL,
NULL);

XtCreateManagedWidget ("Old Name", xmLabelWidgetClass, re, NULL, 0);
XtCreateManagedWidget ("New Name", xmLabelWidgetClass, re, NULL, 0);
widgets->old = XtCreateManagedWidget ("old", xmTextFieldWidgetClass, re,

NULL, 0);
widgets->new = XtCreateManagedWidget ("new", xmTextFieldWidgetClass, re,

NULL, 0);
XtVaSetValues (dialogl,

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
NULL);

XtAddCallback (dialogl, XmNokCallback, DIOKCallback, (XtPointer) widgets);
XtManageChild (dialogl);

}

void DIOKCallback (Widget w, XtPointer clientData, XtPointer callData)
{

DialoglWidgets *widgets;
char parent[500],

parentLabel[500],
child[500],

childLabel[500],
tempold [500],
tempnew [500];

FILE* tempfile;
FILE* outfile;

widgets = (DialoglWidgets *) clientData;
strcpy (tempold, XmTextFieldGetString(widgets->old));
strcpy (tempnew, XmTextFieldGetString(widgets->new));
if (activeTree == 1)
{

tempfile = fopen (tl_tempfile, "r");
outfile = fopen (tl_outfile, "w");
while (fscanf (tempfile, "%s %s %s %s", Sparent, SparentLabel, Schild,

&childLabel) != EOF)
{
if (stremp (parentLabel, tempold) == 0)

90

strcpy (parentLabel, tempnew);
if (strcmp (childLabel, tempold) ==

strcpy (childLabel, tempnew);
fprintf (outfile, "%s %s %s %s \n",

childLabel);
}
fclose (outfile) ;
fclose (tempfile);
copyFiles (tl_outfile, tl_tempfile);
treel = XsCreateScrolledTree (forml,
buildTree(treel, tl_tempfile);
XtManageChild(treel) ;

}
else
{

tempfile = fopen (t2_tempfile, "r");
outfile = fopen (t2_outfile, "w");
while (fscanf (tempfile, "%s %s %s %s

SchildLabel) != EOF)
{

0)

parent, parentLabel, child,

"treel", NULL, 0);

Sparent, &parentLabel, Schild,

== 0) if (strcmp (parentLabel, tempold)
strcpy (parentLabel, tempnew);

if (strcmp (childLabel, tempold) ==
strcpy (childLabel, tempnew);

fprintf (outfile, "%s %s %s %s \n", parent, parentLabel, child,
childLabel);

0)

fclose (outfile);
fclose (tempfile);
copyFiles (t2_outfile, t2_tempfile);
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0)
buildTree(tree2, t2_tempfile);
XtManageChild(tree2);

)

/* change type */
void Button2Callback (Widget w, XtPointer clientData, XtPointer callData)
{

Widget dialog2 = NULL;
Widget re;
Dialog2Widgets *widgets;

widgets = (Dialog2Widgets *) XtMalloc (sizeof (Dialog2Widgets));
dialog2 = XmCreateMessageDialog (w, "dialog2", NULL, 0);
XtUnmanageChild (XmMessageBoxGetChild (dialog2, XmDIALOG_SYMBOL_LABEL));
XtUnmanageChild (XmMessageBoxGetChild (dialog2, XmDIALOG_MESSAGE_LABEL));
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialog2,

XmNnumColumns, 2,
XmNpaeking, XmPACK_COLUMN,
XmNorientation, XmVERTICAL,
NULL);

XtCreateManagedWidget ("Node Name", xmLabelWidgetClass, re, NULL, 0);
XtCreateManagedWidget ("New Type", xmLabelWidgetClass, re, NULL, 0);
widgets->oldLabel = XtCreateManagedWidget ("oldLabel",

xmTextFieldWidgetClass, re, NULL,

91

0);
widgets->newType = XtCreateManagedWidget ("newType",

xmTextFieldWidgetClass, re,
NULL, 0);

XtVaSetValues (dialog2,
XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
NULL);

XtAddCallback (dialog2, XmNokCallback, D20KCallback, (XtPointer) widgets);
XtManageChild (dialog2);

}

void D20KCallback (Widget w, XtPointer clientData, XtPointer callData)
{

Dialog2Widgets *widgets;
char parentl[500],

parentLabell[500],
childl[500],

childLabell[500],
parent2[500],
parentLabel2[500],

child2[500],
childLabel2[500],
tempold [500],
tempnew [500],
templabel [500];

FILE* tempfile;
FILE* outfile;

widgets = (Dialog2Widgets *) clientData;
strcpy (tempold, XmTextFieldGetString(widgets->oldLabel));
strcpy (tempnew, XmTextFieldGetString(widgets->newType));
if (activeTree == 1)
{

tempfile = fopen (tl_tempfile, "r");
outfile = fopen (tl_outfile, "w");
while (fscanf (tempfile, "%s %s %s %s", &parentl, SparentLabell,

&childl, &childLabell) !=
EOF)

{
if (stremp (childLabell, tempold) == 0)
{

strcpy (templabel, childl);
fseek (tempfile, 0, 0);
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2,

&child2,
SchildLabel2) != EOF)

{
if (stremp (parent2, templabel) == 0)
{

strcpy (childLabel2, tempnew);
}
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2,

child2, childLabel2);
}

}

92

}
fclose (outfile);
fclose (tempfile);
copyFiles (tl_outfile, tl_tempfile);
treel = XsCreateScrolledTree (forml, "treel", NULL, 0)
buildTree(treel, tl_tempfile);
XtManageChild(treel);

else
{

tempfile = fopen (t2_tempfile, "r") ;
outfile = fopen (t2_outfile, "w");
while (fscanf (tempfile, "%s %s %s %s'

schildl, &childLabell) !=
EOF)

sparentl, &parentLabell,

{
0) if (strcmp (childLabell, tempold)

{
strcpy (templabel, childl);
fseek (tempfile, 0, 0) ;
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2,

&child2,
&childLabel2) != EOF)

{
if (strcmp (parent2, templabel) == 0)
{

strcpy (childLabel2, tempnew);
}
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2,

child2, childLabel2);
}

}
}
fclose (outfile);
fclose (tempfile);
copyFiles (t2_outfile, t2_tempfile);
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);
buildTree(tree2, t2_tempfile) ;
XtManageChild(tree2) ;

}

/* horiz concat */
void Button3Callback (Widget w, XtPointer clientData, XtPointer callData)
{

Widget dialog3 = NULL;
Widget re;
Dialog3Widgets *widgets;

widgets = (Dialog3Widgets *) XtMalloc (sizeof (Dialog3Widgets));
dialog3 = XmCreateMessageDialog (w, "dialog3", NULL, 0);
XtUnmanageChild (XmMessageBoxGetChild (dialog3, XmDIALOG_SYMBOL_LABEL));
XtUnmanageChild (XmMessageBoxGetChild (dialog3, XmDIALOG_MESSAGE_LABEL));
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialog3,

XmNnumColumns, 2,
XmNpacking, XmPACK COLUMN,

93

XmNorientation, XmVERTICAL,
NULL);

XtCreateManagedWidget ("Old Label 1", xmLabelWidgetClass, re, NULL, 0);
XtCreateManagedWidget ("Old Label 2", xmLabelWidgetClass, re, NULL, 0);
XtCreateManagedWidget ("New Label", xmLabelWidgetClass, re, NULL, 0);
widgets->oldl = XtCreateManagedWidget ("oldl", xmTextFieldWidgetClass, re,

NULL, 0);
widgets->old2 = XtCreateManagedWidget ("old2", xmTextFieldWidgetClass, re,

NULL, 0);
widgets->new = XtCreateManagedWidget ("new", xmTextFieldWidgetClass, re,

NULL, 0);
XtVaSetValues (dialog3,

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
NULL);

XtAddCallback (dialog3, XmNokCallback, D30KCallback, (XtPointer) widgets);
XtManageChild (dialog3);

}

void D30KCallback (Widget w, XtPointer clientData, XtPointer callData)
{

Dialog3Widgets *widgets;
int success = 0;
char parentl[500],

parentLabell[500],
childl[500],

childLabell[500],
parent2[500],
parentLabel2[500],

child2[500],
childLabel2[500],
tempoldl [500],
tempold2 [500],
tempnew [500];

FILE* tempfile;
FILE* outfile;

widgets = (Dialog3Widgets *) clientData;
printf ("%s %s %s \n", XmTextFieldGetString(widgets->oldl) ,

XmTextFieldGetString(widgets->old2),
XmTextFieldGetString(widgets->new));

strcpy (tempoldl, XmTextFieldGetString(widgets->oldl)) ;
strcpy (tempold2, XmTextFieldGetString(widgets->old2));
strcpy (tempnew, XmTextFieldGetString(widgets->new));

if (activeTree == 1)
{

tempfile = fopen (tl_tempfile, "r");
outfile = fopen (tl_outfile, "w");
success = 0;
while (fscanf (tempfile, "%s %s %s %s", &parentl, SparentLabell,

Schildl, &childLabell) !=
EOF)

{
if (stremp (childLabell, tempoldl) == 0)
{

94

fseek (tempfile, 0, 0);
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2,

&child2,
&childLabel2) != EOF)

{
if (strcmp (childLabel2, tempold2) == 0)
{

success = 1;
}

if (success)
{
printf ("Both items found!!! \n") ;

}
else
printf ("One or both item(s) not found \n");
fclose (outfile);
fclose (tempfile);

/* copyFiles (tl_outfile, tl_tempfile);
treel = XsCreateScrolledTree (forml, "treel", NULL, 0);
buildTree(treel, tl_tempfile);
XtManageChild(treel) ;

*/ }
/* else

{
tempfile = fopen (t2_tempfile, "r");
outfile = fopen (t2_outfile, "w");
while (fscanf (tempfile, "%s %s %s %s", &parentl, SparentLabell,

&childl, &childLabell) !=
EOF)

{
if (strcmp (childLabell, tempold) == 0)
{

strcpy (templabel, childl);
fseek (tempfile, 0, 0);
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2,

&child2,
&childLabel2) != EOF)

{
if (strcmp (parent2, templabel) == 0)
{

strcpy (childLabel2, tempnew);
}
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2,

child2, childLabel2);
}

}
}
fclose (outfile);
fclose (tempfile);
copyFiles (t2_outfile, t2_tempfile);
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);
buildTree(tree2, t2_tempfile);
XtManageChild(tree2) ;

95

*/}

/* change units */
void ButtonllCallback (Widget w, XtPointer clientData, XtPointer callData)
{

Widget dialogll = NULL;
Widget re;
DialogllWidgets *widgets;

widgets = (DialogllWidgets *) XtMalloc (sizeof (DialogllWidgets));
dialogll = XmCreateMessageDialog (w, "dialogll", NULL, 0);
XtUnmanageChild (XmMessageBoxGetChild (dialogll, XmDIALOG_SYMBOL_LABEL));
XtUnmanageChild (XmMessageBoxGetChild (dialogll, XmDIALOG_MESSAGE_LABEL));
re = XtVaCreateManagedWidget ("re", xmRowColumnWidgetClass, dialogll,

XmNnumColumns, 2,
XmNpacking, XmPACK_COLUMN,
XmNorientation, XmVERTICAL,
NULL);

XtCreateManagedWidget ("Old Label", xmLabelWidgetClass, re, NULL, 0);
XtCreateManagedWidget ("Multiplier", xmLabelWidgetClass, re, NULL, 0);
XtCreateManagedWidget ("New Label", xmLabelWidgetClass, re, NULL, 0);
widgets->old = XtCreateManagedWidget ("old", xmTextFieldWidgetClass, re,

NULL, 0);
widgets->mult = XtCreateManagedWidget ("mult", xmTextFieldWidgetClass, re,

NULL, 0);
widgets->new = XtCreateManagedWidget ("new", xmTextFieldWidgetClass, re,

NULL, 0);
XtVaSetValues (dialogll,

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
NULL);

XtAddCallback (dialogll, XmNokCallback, DllOKCallback, (XtPointer)
widgets);

XtManageChild (dialogll);
}

void DllOKCallback (Widget w, XtPointer clientData, XtPointer callData)
{

DialogllWidgets *widgets;
char parentl[500],

parentLabell[500],
childl[500],

childLabell[500],
parent2[500],
parentLabel2[500],

child2[500],
childLabel2[500],
templabell[500],
templabel2[500],
tempold [500],
tempnew [500];

float tempmult;
FILE* tempfile;
FILE* outfile;

96

widgets = (DialogllWidgets *) clientData;
printf ("%s %s %s %.2f \n", XmTextFieldGetString(widgets->old),

XmTextFieldGetString(widgets->mult),
XmTextFieldGetString(widgets->new),
atof(XmTextFieldGetString(widgets->mult)));

strcpy (tempold, XmTextFieldGetString(widgets->old));
tempmult = atof (XmTextFieldGetString(widgets->mult));
strcpy (tempnew, XmTextFieldGetString(widgets->new));

/* if (activeTree == 1)
{

tempfile = fopen (tl_tempfile, "r");
outfile = fopen (tl_outfile, "w");
strcpy (templabell," ");
strcpy (templabel2," ");
while (fscanf (tempfile, "%s %s %s %s", &parentl, &parentLabell,

&childl, SchildLabell) !=
EOF)

{
if (strcmp (childLabell, tempold) == 0)
{

strcpy (templabell, childl);
strcpy (childLabell, tempnew);

}
else

if (strcmp (parentl, templabell) == 0)
strcpy (templabel2, childl);

else
if (strcmp (parentl, templabel2) == 0)
strcpy (childLabell, ecvt ((atof (childLabell) * tempmult), 2,

NULL, NULL));
fprintf (outfile, "%s %s %s %s \n", parentl, parentLabell, childl,

childLabell);
}
fclose (outfile);
fclose (tempfile);
copyFiles (tl_outfile, tl_tempfile);
treel = XsCreateScrolledTree (forml, "treel", NULL, 0);
buildTree(treel, tl_tempfile);
XtManageChild(treel);

}
else
{

tempfile = fopen (t2_tempfile, "r");
outfile = fopen (t2_outfile, "w");
while (fscanf (tempfile, "%s %s %s %s", Sparentl, SparentLabell,

&childl, SchildLabell) !=
EOF)

{
if (strcmp (childLabell, tempold) == 0)
{

strcpy (templabel, childl);
fseek (tempfile, 0, 0);
while (fscanf (tempfile, "%s %s %s %s", &parent2, &parentLabel2,

&child2,
&childLabel2) != EOF)

{

97

if (strcmp (parent2, templabel) == 0)
{

strcpy (childLabel2, tempnew);
}
fprintf (outfile, "%s %s %s %s \n", parent2, parentLabel2,

child2, childLabel2);
}

}
}
fclose (outfile);
fclose (tempfile);
copyFiles (t2_outfile, t2_tempfile);
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);
buildTree(tree2, t2_tempfile);
XtManageChild(tree2);

} */

/* go to first record */
void Buttonl3Callback (Widget w, XtPointer clientData, XtPointer callData)
{

if (activeTree == 1)
{

if (tlRecNum != 0)
{
tlRecNum = 0;
treel = XsCreateScrolledTree {forml, "treel", NULL, 0);
buildTree(treel, tl_tempfile);
XtManageChild(treel);

}
}
else
{

if (t2RecNum != 0)
{
t2RecNum = 0;
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);
buildTree(tree2, t2_tempfile);
XtManageChild(tree2);

}

}

/* go to previous record */
void Buttonl4Callback (Widget w, XtPointer clientData, XtPointer callData)
{

if (activeTree == 1)
{

tlRecNum—;
if (tlRecNum < 0)
tlRecNum = 0;

else
{
treel = XsCreateScrolledTree (forml, "treel", NULL, 0);
buildTree(treel, tl tempfile);

98

XtManageChild(treel) ;
}

}
else
{

t2RecNum—;
if (t2RecNum < 0)
t2RecNum = 0;

else
{
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);
buildTree(tree2, t2_tempfile);
XtManageChild(tree2) ;

}

/* go to next record */
void Buttonl5Callback (Widget w, XtPointer clientData, XtPointer callData)
{

if (activeTree == 1)
{

tlRecNum++;
if (tlRecNum > tlLastRec)
tlRecNum = tlLastRec;

else
{
treel = XsCreateScrolledTree (forml, "treel", NULL, 0);
buildTree(treel, tl_tempfile);
XtManageChild(treel) ;

}
else
{

t2RecNum++;
if (t2RecNum > t2LastRec)
t2RecNum = t2LastRec;

else
{
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);
buildTree(tree2, t2_tempfile);
XtManageChild(tree2);

}

}

/* go to last record */
void Buttonl6Callback (Widget w, XtPointer clientData, XtPointer callData)
{

if (activeTree == 1)
{

if (tlRecNum != tlLastRec)
{
tlRecNum = tlLastRec;
treel = XsCreateScrolledTree (forml, "treel", NULL, 0);
buildTree(treel, tl tempfile);

99

XtManageChild(treel) ;
}

}
else
{

if (t2RecNum != t2LastRec)
{
t2RecNum = t2LastRec;
tree2 = XsCreateScrolledTree (form2, "tree2", NULL, 0);
buildTree(tree2, t2_tempfile);
XtManageChild(tree2);

}

void ShowSelectedWidget (Widget w, XtPointer clientData,
XEvent *event, Boolean *flag)

{
printf ("button pressed\n");
printf ("%s selected \n", XtName(w));

}

void ValueChangedCallback (Widget w, XtPointer clientData, XtPointer callData)
{

XmToggleButtonCallbackStruct *cbs =
(XmToggleButtonCallbackStruct *) callData;

if ((strcmp ("togglel", XtName(w)) == 0) && (cbs->set))
activeTree =1;

else
if ((strcmp ("toggle2", XtName(w)) == 0) && (cbs->set))
activeTree = 2;

}

/* makeButtons creates the control buttons */
void makeButtons (Widget w)
{

Widget labell,
label2,
rowcoll,
rowcol2,
sep,
buttonl,
button2,
button3,
button4,
button5,
button6,
button7,
button8,
button9,
buttonlO,
buttonll,
buttonl2,
radio,

100

Iabel3,
togglel,
toggle2,
recordBox,
label4,
buttonl3,
buttonl4,
buttonl5,
buttonl6;

labell = XtVaCreateManagedWidget ("labell", xmLabelWidgetClass,
w,
XmNtopAttachment, XmATTACH_WIDGET,

XmNtopWidget, w,
XraNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, w,

NULL);

label2 = XtVaCreateManagedWidget ("label2", xmLabelWidgetClass,
w,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, w,
XmNrightAttachment, XmATTACH_WIDGET,
XmNrightWidget, w,
NULL);

rowcoll = XtVaCreateManagedWidget ("rowcoll", xmRowColumnWidgetClass,
w,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, labell,

XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 84,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, w,

XmNrightAttachment, XmATTACH_NONE,
XmNorientation, XmVERTICAL,
XmNisAligned, TRUE,
XmNentryAlignment, XmALIGNMENT_CENTER,
XmNnumColumns, 2,
XmNpacking, XmPACK_COLUMN,

NULL);

rowcol2 = XtVaCreateManagedWidget ("rowcol2", xmRowColumnWidgetClass,
w,
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,

XmNtopWidget, rowcoll,
XmNbottomAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNbottomWidget, rowcoll,
XmNrightAttachment, XmATTACH_WIDGET,
XmNrightWidget, w,

XmNorientation, XmVERTICAL,
XmNisAligned, TRUE,
XmNentryAlignment, XmALIGNMENT_CENTER,
XmNnumColumns, 2,
XmNpacking, XmPACK_COLUMN,
NULL);

101

sep = XtVaCreateManagedWidget ("sep", xmSeparatorWidgetClass,
w,
XmNleftAttachment, XmATTACH_WIDGET,

XmNleftWidget, rowcoll,
XmNrightAttachment, XmATTACH_WIDGET,
XmNrightWidget, rowcol2,
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNtopWidget, rowcoll,

XmNbottomAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNbottomWidget, rowcoll,
NULL);

buttonl = XtVaCreateManagedWidget ("buttonl", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (buttonl, XmNactivateCallback, ButtonlCallback, NULL);

button2 = XtVaCreateManagedWidget ("button2", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (button2, XmNactivateCallback, Button2Callback, NULL);

button3 = XtVaCreateManagedWidget ("button3", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (button3, XmNactivateCallback, Button3Callback, NULL);

button4 = XtVaCreateManagedWidget ("button4", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (button4, XmNactivateCallback, ButtonCallback, NULL);

button5 = XtVaCreateManagedWidget {"button5", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (button5, XmNactivateCallback, ButtonCallback, NULL);

button6 = XtVaCreateManagedWidget ("button6", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (button6, XmNactivateCallback, ButtonCallback, NULL);

button7 = XtVaCreateManagedWidget ("button7", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (button7, XmNactivateCallback, ButtonCallback, NULL);

button8 = XtVaCreateManagedWidget ("button8", xmPushButtonWidgetClass,

102

rowcoll,
NULL);

XtAddCallback (button8, XmNactivateCallback, ButtonCallback, NULL);

button9 = XtVaCreateManagedWidget ("button9", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (button9, XmNactivateCallback, ButtonCallback, NULL);

buttonlO = XtVaCreateManagedWidget ("buttonlO", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (buttonlO, XmNactivateCallback, ButtonCallback, NULL);

buttonll = XtVaCreateManagedWidget ("buttonll", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (buttonll, XmNactivateCallback, ButtonllCallback, NULL);

buttonl2 = XtVaCreateManagedWidget ("buttonl2", xmPushButtonWidgetClass,
rowcoll,
NULL);

XtAddCallback (buttonl2, XmNactivateCallback, ButtonCallback, NULL);

radio = XtVaCreateManagedWidget ("rowcol2", xmRowColumnWidgetClass,
w,
XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 85,
XmNbottomAttachment, XmATTACH_WIDGET,
XmNbottomWidget, w,

XmNrightAttachment, XmATTACH_NONE,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, w,

XmNradioBehavior, TRUE,
XmNorientation, XmHORIZONTAL,
NULL);

label3 = XtVaCreateManagedWidget ("label3", xmLabelWidgetClass,
radio,
XmNhighlightOnEnter, FALSE,
NULL);

togglel = XtVaCreateManagedWidget ("togglel", xmToggleButtonWidgetClass,
radio,
XmNset, TRUE,
NULL);

XtAddCallback (togglel, XmNvalueChangedCallback, ValueChangedCallback,
NULL);

103

toggle2 = XtVaCreateManagedWidget ("toggle2", xmToggleButtonWidgetClass,
radio,
NULL);

XtAddCallback (toggle2, XmNvalueChangedCallback, ValueChangedCallback,
NULL);

recordBox = XtVaCreateManagedWidget ("rowcol3", xmRowColumnWidgetClass,
w,
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,

XinNtopWidget, radio,
XmNbottomAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNbottomWidget, radio,

XmNrightAttachment, XmATTACH_WIDGET,
XmNrightWidget, w,

XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, radio,

XmNorientation, XmHORIZONTAL,

NULL);

label4 = XtVaCreateManagedWidget ("label4", xmLabelWidgetClass,
recordBox,
XmNhighlightOnEnter, FALSE,
NULL);

buttonl3 = XtVaCreateManagedWidget ("buttonl3", xmArrowButtonWidgetClass,
recordBox,
XmNarrowDirection, XmARROW_LEFT,
NULL);

XtAddCallback (buttonl3, XmNactivateCallback, Buttonl3Callback, NULL);

buttonl4 = XtVaCreateManagedWidget ("buttonl4", xmArrowButtonWidgetClass,
recordBox,
XmNarrowDirection, XmARROW_LEFT,
NULL);

XtAddCallback (buttonl4, XmNactivateCallback, Buttonl4Callback, NULL);

buttonl5 = XtVaCreateManagedWidget ("buttonl5", xmArrowButtonWidgetClass,
recordBox,
XmNarrowDirection, XmARROW_RIGHT,
NULL);

XtAddCallback (buttonl5, XmNactivateCallback, Buttonl5Callback, NULL);

buttonl6 = XtVaCreateManagedWidget ("buttonl6", xmArrowButtonWidgetClass,
recordBox,
XmNarrowDirection, XmARROW_RIGHT,
NULL);

XtAddCallback (buttonl6, XmNactivateCallback, Buttonl6Callback, NULL);

104

/* the menu callbacks */
/* exit */
void ExitCallback (Widget w, XtPointer clientData, XtPointer callData)
{

copyFiles (tl_tempfile, tl_outfile);
copyFiles (t2_tempfile, t2_outfile);
exit{0); /* outta here */

}

/* load */
void LoadCallback (Widget w, XtPointer clientData, XtPointer callData)
{
/*

static Widget fileDialog = NULL;
Arg wargs[10];
int n;

n=0;
XtSetArg (wargs[n], XmNpattern, "*.dat"); n++;
fileDialog = XmCreateFileSelectionDialog (w, "openFileDialog", NULL, 0);

XtAddCallback (fileDialog, XmNokCallback, OKCallback, NULL);
XtAddCallback (fileDialog, XmNcancelCallback, CancelCallback, NULL);

XtManageChild (fileDialog);
*/
}

void OKCallback (Widget w, XtPointer clientData, XtPointer callData)
{

/*
XmFileSelectionBoxCallbackStruct *cbs =

(XmFileSelectionBoxCallbackStruct *) callData;

XtUnmanageChild (w);

XmStringGetLtoR (cbs->value, XmFONTLIST_DEFAULT_TAG, SfileName);

printf ("%s is the parent of %s\n", XtName(XtParent(XtParent(w))),
XtName(w));

if (strcmp(XtName (XtParent(XtParent(w))), "Tree 1") == 0)
{

printf ("Loading tree 1 !!!! with file %s \n", fileName);
if (XtlsRealized (treel))
XtUnmanageChild (treel);
tl_infile = fopen (fileName, "r");
buildTree (treel, tl_infile);
XtManageChild (treel);

}
else

105

printf ("Loading tree 2 !!!! with file %s \n", fileName);
if (XtlsRealized (tree2))
XtUnmanageChild (tree2);
t2_infile = fopen (fileName, "r");
buildTree (tree2, t2_infile);
XtManageChild (tree2);

}
*/
}

void CancelCallback (Widget w, XtPointer clientData, XtPointer callData)
{

XtUnmanageChild (w);
}

/* save */
void SaveCallback (Widget w, XtPointer clientData, XtPointer callData)
{

/*save tree here*/
if (strcmp(XtName (w), "Tree 1") == 0)

printf ("Saving tree 1 !!!!\n");
else

printf ("Saving tree 2 !!!!\n");
}

/* create the menu bar */
Widget createMenu (Widget w)
{

Widget menu;

menu = XmCreateMenuBar (w, "menu", NULL, 0);

createFilePane (menu);
createHelpPane (menu);

XtManageChild (menu);

return (menu);

/* create the file pane */
void createFilePane (Widget w)
{

Widget cascade,
cascadel,
cascade2,
submenu,
submenul,
submenu2,
buttonl,
button2,
button3;

submenu = XmCreatePulldownMenu (w, "fileSubmenu", NULL, 0);

106

cascade = XtVaCreateManagedWidget {"File", xmCascadeButtonWidgetClass,
w,
XmNsubMenuId, submenu,
NULL);

submenul = XmCreatePulldowiiMenu (submenu, "loadSubmenu", NULL, 0);
cascadel = XtVaCreateManagedWidget ("Load", xmCascadeButtonWidgetClass,

submenu,
XmNsubMenuId, submenul,
NULL);

createTreeCascadeL (submenul);

submenu2 = XmCreatePulldownMenu (submenu, "saveSubmenu", NULL, 0);
cascade2 = XtVaCreateManagedWidget ("Save", xmCascadeButtonWidgetClass,

submenu,
XmNsubMenuId, submenu2,
NULL);

createTreeCascadeS (submenu2);

button3 = XtCreateManagedWidget ("Exit", xmPushButtonWidgetClass,
submenu, NULL, 0);

XtAddCallback (button3, XmNactivateCallback, ExitCallback, NULL);
}

/* create tree cascade for load menu*/
void createTreeCascadeL (Widget w)
{

Widget buttonl,
button2;

buttonl = XtCreateManagedWidget ("Tree 1", xmPushButtonWidgetClass,
w, NULL, 0);

button2 = XtCreateManagedWidget ("Tree 2", xmPushButtonWidgetClass,
w, NULL, 0);

/*
XtAddCallback (buttonl, XmNactivateCallback, LoadCallback, NULL);
XtAddCallback (button2, XmNactivateCallback, LoadCallback, NULL);

*/
}

/* create tree cascade for save menu*/
void createTreeCascadeS (Widget w)
{

Widget buttonl,
button2;

buttonl = XtCreateManagedWidget ("Tree 1", xmPushButtonWidgetClass,
w, NULL, 0);

107

button2 = XtCreateManagedWidget ("Tree 2", xmPushButtonWidgetClass,
w, NULL, 0);

XtAddCallback (buttonl, XmNactivateCallback, SaveCallback, NULL);
XtAddCallback (button2, XmNactivateCallback, SaveCallback, NULL);

/* create the help pane */
void createHelpPane (Widget w)
{

Widget cascade,
submenu,
buttonl,
button2;

submenu = XmCreatePulldownMenu (w, "helpSubmenu", NULL, 0);
cascade = XtVaCreateManagedWidget ("Help", xmCascadeButtonWidgetClass,

w,
XmNsubMenuId, submenu,
NULL);

XtVaSetValues (w, XmNmenuHelpWidget, cascade, NULL);
}

/* write the output files */
void copyFiles (char* infilename, char* outfilename)
{

char parent[500],
parentLabel[500],

child[500],
childLabel[500];

FILE* infile;
FILE* outfile;

infile = fopen (infilename, "r");
outfile = fopen (outfilename, "w") ;
while (fscanf (infile, "%s %s %s %s", Sparent, SparentLabel, Schild,

SchildLabel) != EOF)
{

fprintf (outfile, "%s %s %s %s \n", parent, parentLabel, child,
childLabel);

}
fclose (infile);
fclose (outfile);

}

108

TREE

!!
!! AppDefaults file for Proj
i I j | i | | I i i i I j i | i I i | i t i j j i i I i i i i i i i |] i i | | ! i i i i i

!! Tree widget colors
!*Tree.Background: midnight blue
!*Tree.Foreground: white

*XmForm*Background: dark slate grey
*XmForm*XmScrollBar*background: grey
*XmForm*XmDrawnButton*background: grey
*XmForm*XmDrawnButton* foreground: black

*XmMainWindow*Background: light blue
*XmMainWindow*Foreground: black

!! Tree fonts
*treel*fontList: -*-helvetica-medium-r-normal-*-10-*-*-*-*-*-iso8859-l
*tree2*fontList: -*-helvetica-medium-r-normal-*-10-*-*-*-*-*-iso8859-l

!! Tree attachments
*forml*bottomAttachment: attach_form
*forml*topAttachment: attach_form
*forml*leftAttachment: attach_form
*forml*rightAttachment: attach_form
*form2*bottomAttachment: attach_form
*form2*topAttachment: attach_form
*form2*leftAttachment: attach_form
*form2*rightAttachment: attach_form

!! Popup shell geometry
*shell1.geometry: 600x600+25+500
*shell2.geometry: 600x600+660+500

! ! Dialog default position
*XmMessageBox.defaultPosition: FALSE
*XmMessageBox.x: 500
*XmMessageBox.y: 500

! ! Label strings
*labell.labelString: Resolution Commands
*label2.1abelString: DML Commands
*label3.1abelString: Active Tree:
*label4.1abelString: Record:

! ! Separator
*sep.separatorType: DOUBLE_LINE
*sep.orientation: VERTICAL

!! Button label strings
*rowcoll.buttonl.labelString: Change Node NAME
*rowcoll.button2.1abelString: Change Node TYPE
*rowcoll.button3.1abelString: Horiz CONCAT

109

*rowcoll.button4.1abelString: Horiz SUBSET
*rowcoll.button5.1abelString: Vert COLLAPSE
*rowcoll.button6.1abelString: Vert EXPAND
*rowcoll.button7.1abelString: Change SEQUENCE
*rowcoll.button8.1abelString: OPTIONALITY
*rowcoll.button9.1abelString: CHOICE
*rowcoll.buttonl0.1abelString: Change PRECISION
*rowcoll.buttonll.labelString: Change UNITS
*rowcoll.buttonl2.1abelString: Change EXPRESSION

!! Toggle label strings
*togglel.labelString: Tree 1
*toggle2.1abelString: Tree 2

110

SPEC1.ASN

.****■*■***********•******•********■*■*•*****•*•***

CDB-1 data definitions
Gino Celia, 1994

__*****************************•*****■*■******

Component-one-module DEFINITIONS
BEGIN

Book-set ::= SEQUENCE OF Book collection of books

local key

— last, first

},

Book ::= SEQUENCE {
b-num INTEGER,
title VisibleString,
author-name VisibleString,
subj VisibleString OPTIONAL,
type CHOICE {

book SEQUENCE {
binding ENUMERATED {

hardcover(1),
paperback(2)

num-pgs INTEGER },
music SEQUENCE {
medium ENUMERATED {

record(1),
cd(2),
tape(3) },

length INTEGER },
movie SEQUENCE {
format ENUMERATED {

beta(l),
vhs(2),
reel(3) },

length INTEGER }},
language VisibleString DEFAULT "English",
lc-num SEQUENCE {

c-letter VisibleString, — one or more CAP LTRS
f-digit VisibleString, — one or more digits
s-digit VisibleString OPTIONAL, — one or more digits

in minutes

— in minutes

cuttering VisibleString },
publisher-name VisibleString,
publisher-addr VisibleString,
checked-out BOOLEAN,
cost INTEGER }

— author cutter number

— num, str, city, state
— TRUE if in library
— orig cost in whole dollars

END

111

PRINTl.ENT

Holding ::= {
b-num 10,
title "Joint Military Operations: A Short History",
author-name "Beaumont, Roger A.",
subj "Military Science",
type book {
binding hardcover,
num-pgs 245
},
language "English",
lc-num {
c-letter "U",
f-digit "260",
cuttering "B43"
},
publisher-name "Greenwood Press",
publisher-addr "Westport, Connecticut",
checked-out TRUE,
cost 60
}

112

PRINT1.OUT

Book ::= {
b-num 10 ,
title "Joint Military Operations: A Short History" ,
author-name "Beaumont, Roger A. " ,
subj "Military Science" ,
type
book {

binding hardcover ,
num-pgs 245 } ,

language "English" ,
lc-num {

c-letter "U" ,
f-digit "260" ,
cuttering "B43" } ,

publisher-name "Greenwood Press" ,
publisher-addr "Westport, Connecticut" ,
checked-out TRUE ,
cost 60 }

113

TREE1.DAT

0 0 0 0
1 Holding 2a SEQUENCE
2a x 2 b-num
2a x 3 title
2a x 4 author-name
2a x 5 subj
2a x 6 type
2a x 7 language
2a x 8 lc-num
2a x 9 publisher-name
2a x 10 publisher-addr
2a x 11 checked-out
2a x 12 cost
2 x 13 INTEGER
13 x 14 10
3 x 15 VisibleString
15 x 16 "Joint Military Operations :A Short History
4 x 17 VisibleString
17 x 18 "Beaumont,_Roger_A."
5 x 19 VisibleString
19 x 20 "Military Science"
6 x 21 CHOICE
21 x 22 book
22 x 23 SEQUENCE
23 x 24 binding
23 x 25 num-pgs
24 x 26 ENUMERATED
26 x 27 hardcover
25 x 28 INTEGER
28 x 29 245
7 x 30 VisibleString
30 x 31 "English"
8 x 32 SEQUENCE
32 x 33 c-letter
32 x 34 f-digit
32 x 35 s-digit
32 x 36 cuttering
33 x 37 VisibleString
37 x 38 "U"
34 x 39 VisibleString
39 x 40 "260"
35 x 41 VisibleString
36 x 42 VisibleString
42 x 43 "B43"
9 x 44 VisibleString
44 x 45 "Greenwood Press"
10 x 46 VisibleString
46 x 47 "Westport, Connecticut"
11 x 48 BOOLEAN
48 x 49 TRUE
12 x 50 INTEGER
50 x 51 60
0 10 1
52 Holding 53 SEQUENCE

114

53 x 54 b-num
53 x 55 title
53 x 56 author-name
53 x 57 subj
53 x 58 type
53 x 59 language
53 x 60 lc-num
53 x 61 publisher-name
53 x 62 publisher-addr
53 x 63 checked-out
53 x 64 cost
54 x 65 INTEGER
65 x 66 11
55 x 67 VisibleString
67 x 68 "X_Window_System"
56 x 69 VisibleString
69 x 70 "Scheifler,_Robert_W."
57 x 71 VisibleString
71 x 72 "Computers"
58 x 73 CHOICE
73 x 74 book
74 x 75 SEQUENCE
75 x 76 binding
75 x 77 num-pgs
76 x 78 ENUMERATED
78 x 79 hardcover
77 X 78 INTEGER
78 X 79 701
59 X 80 VisibleString
80 X 81 "English"
60 X 82 SEQUENCE
82 X 83 c-letter
82 X 84 f-digit
82 X 85 s-digit
82 X 86 cuttering
83 X 87 VisibleString
87 X 88 "QA"
84 X 89 VisibleString
89 X 90 "76"
85 X 91 VisibleString
91 X 91a ".76"
86 X 92 VisibleString
92 X 93 "W56"
61 X 94 VisibleString
94 X 95 "Digital_Press"
62 X 96 VisibleString
96 X 97 "Massachusetts"
63 X 98 BOOLEAN
98 X 99 FALSE
64 X 100 INTEGER
100 x 101 65

115

LIST OF REFERENCES

Ahmed, R, et al., "Pegasus Heterogeneous Multidatabase System," IEEE Computer, v.
24, No. 12, pp. 19-27, 1991.

Batini, C, and Lenzerini, M., "A Methodology for Data Schema Integration in the ER
Model," IEEE Transactions on Software Engineering, pp. 650-664, November
1984.

Batini, C, and Lenzerini, M., "A Comparative Analysis of Methodologies for Database
Schema Integration," ACM Computing Surveys, v. 18, No. 4, pp. 323-364, 1986.

Elmasri, R., and Wiederhold, G., "Data Model Integration Using the Structural Model,"
paper presented at the Proc. Int. Conference on Management of Data, pp.
191-202, 1979.

Gönnet, G. H., and Tompa, F. W., "Mind Your Grammar: A New Approach to Modeling
Text," paper presented at the Proceedings of the 13th VLDB Conference, pp.
339-346, 1987.

Kamel, M., "Identifying, Classifying, and Resolving Semantic Conflicts in Distributed
Heterogeneous Databases: A Case Study," paper presented at the DoD Database
Colloquium'93, San Diego, CA, August, 1993.

Kamel, N., "A Data Manipulation Language for ASN. 1," working paper, University of
Florida, Gainsville, FL, 1993.

Kamel, N, "Markup Languages are a Good Basis for Building Integrated
Database/Software Tool Information Resorces," working paper, University of
Florida, Gainsville, FL, 1994.

Kim, W., and Seo, J., "Classifying Schematic and Data Heterogeneity in Multidatabase
Systems," IEEE Computer, v. 24, No. 12, pp. 12-18, 1991.

Larson, J., Navathe, S., and Elmasri, R., "A Theory of Attribute Equivalence in Databases
with Application to Schema Integration," IEEE Transactions on Software
Engineering, v. 15, No. 4, pp. 449-463, 1989.

116

Liang, J., A Graphical Environment for Manipulating Molecular Biological Databases
Based on ASK 1 Specification, Master's Thesis, University of Florida, Gainsville,
FL, 1993.

National Center for Biotechnology Information, NCBI Software Development ToolKit
User's Manual—Draft Copy, Version 1.8, August 1, 1993.

Rafii, A., et al. "Integration Strategies in Pegasus Object Oriented Multidatabase System,"
paper presented at the Proc. of the 25th Hawaii International Conference on
System Sciences, v. II, pp. 323-334, 1992.

Sheth, A., and Gala, S., "Attribute Relationships: An Impediment in Automating Schema
Integration," paper presented at the Proc. Workshop on Heterogeneous Database
Systems, 1989.

Sheth, A., and Larson, J., "Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases," ACM Computing Survey, Vol. 22,
No. 3, Sept., 1990, pp. 183-236.

Thieme, C, and Siebes, A., "An Approach to Schema Integration Based on
Transformations and Behaviour," CWI, Amsterdam, The Netherlands.

Young, D., The X Window System Programming and Applications with Xt, Prentice Hall,
NJ, 1994.

Yu, C, Sun, W., Dao, S., and Keirsey, D., "Determining Relationships Among Attributes
for Interoperability of Multi-database Systems," paper presented at the Proc. Int.
Workshop on Interoperability in Multidatabase Systems, pp. 251-257, 1991.

X Window System is a trademark of The Massachusetts Institute of Technology. UNIX is a registered trademark of
UNIX System Laboratories. Sun and Solaris are trademarks of Sun Microsystems. SGI and IRTX are trademarks of
Silicon Graphics Inc. Motif, OSF/Motif, and Open Software Foundation are trademarks of the Open Software
Foundation, Inc.

The following statement appears in M.I.Ts X Window System documentation:

Copyright 1985,1986,1987,1988 Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital
Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation and that the name of M.I.T. or Digitial not be used in advertising or
publicity pertaining to distribution of the software without specific written prior permission.

M.I.T. and Digital make no representations about the suitability of the software described herein for any purpose. It
is provided "as-is" without express or implied warranty.

117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

3. Magdi Kamel, Code SM/Ka
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5002

4. James Emery, Code SM/Ey
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5002

5. LT Rick Arai, USN, Code 36
Naval Postgraduate School
Monterey, California 93943-5002

6. LT Gino Celia, Jr., USN
1044HalseyDr.
Monterey, California 93940

7. James Ostell
National Center for Biotechnology Information
National Library of Medicine
National Institutes of Health, Bldg. 38A
8600 Rockville Pike
Bethesda, Maryland 20984

118

8. Mary S. Russo
2103 Green Oaks Circle
Rund Rock, Texas 78746

9. Nabil N. Kamel, Code CSE-301
Computer and Information Systems Department
University of Florida
Gainsville, Florida 32611

119

