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Advanced Solid Lubricant Films by Ion-Beam Assisted Deposition. 

ABSTRACT 
NRL is developing advanced solid lubricating films for bearings assemblies. The 

films are deposited by ion-beam assisted deposition (IBAD) to thickness that can be 
controlled from 0.02 /xm (1 /iinch) to > 1 pm (40 /iinch). Unlike evaporated or sputter- 
deposited films, IBAD films are dense and adhere well to virtually all solid surfaces. 
Durable films have been deposited on bearing steels, Ti alloys and many ceramic 
substrates, including Si3N4, alumina, SiC, TiN and CVD diamond. IBAD's multibeam 
capabilities have also been exploited to produce binary and ternary alloys over a wide 
range of stoichiometries. Studies of two solid lubricating films, MoS2 and ternary metal 
oxides, will be highlighted. 

IBAD MoS2 films exhibit reduced susceptibility to moisture degradation during 
storage. Alloyed MoSj films show increased durability in sliding and rolling contact 
without sacrificing the ultra-low friction behavior of M0S2. For high temperatures, a 
class of binary metal oxide films are being investigated. Candidate lubricants have been 
chosen based on tribological behavior of oxide powders and predictions from phase 
diagrams.  A recent study of the Cu-Mo-0 system will be presented. 

1. Introduction 
For bearings and other moving mechanical assemblies that must operate in extreme 

environments, solid lubricating films offer some advantages over liquids, such as less 
contamination of sensitive parts in vacuum and greater stability at elevated temperatures 
and high speeds. To realize these benefits, a solid lubricant must adhere to the bearing 
material (whether metal or ceramic), exhibit both storability and durability, and give low 
friction (torque) and friction noise (torque noise). In many cases, the method by which 
the solid lubricant is applied to the assembly will control these performance criteria. 

Traditionally, solid lubricants have been applied by burnishing, bonding, and, more 
recently, sputter deposition. Sputtered coatings have found widespread use as solid 
lubricants for space applications due to better endurance [1], as well as control of 
composition and thickness which can be attained. However, sputtered lubricating films 
need further development; for example sputtered coatings are often of low density and 
crystal orientation unfavorable for low friction, i.e. M0S2 basal plane perpendicular to 
the surface [2,3,4,5], and are degraded by moisture [6,7]. 

Some of these deficiencies can be addressed by ion-bombarding the sputtered film. 
For example, post ion bombardment of sputter-deposited lubricants has been shown to 
give increased endurance [8,9] and, in one case [10], to decrease friction. Also, 
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alternating sputter deposition and low-energy ion bombardment produced dense and 
oriented films [11]. Finally, simultaneous atom bombardment during deposition gave 
excellent endurance and low friction in room air [12]. A physical vapor deposition 
technology that combines sputter deposition with concurrent ion bombardment of the 
growing film is ion-beam-assisted deposition (IBAD). 

IB AD has several well known advantages over traditional sputter deposition [13]. 
Films are usually very adherent, due to the sputter cleaning and interfacial mixing 
afforded by direct ion bombardment. IBAD films can thereby be grown on substrates 
that show poor adhesion with other deposition processes. Films attain bulk density due 
to the energy imparted by the ions during deposition. Films can therefore be deposited 
at lower temperature, often at room temperature. The microstructure (and orientation), 
composition and mechanical properties can be tailored by controlling the deposition 
parameters. 

This paper reports on the tribological behavior of coatings produced by the IBAD 
method. Composition and structure data and friction and wear behavior were evaluated 
for a variety of processing parameters and substrates 
[14,15,16,17,18,19,20]. Most     of    the    investigations     have    focused     on 
lubrication at room temperature using MoS2 and MoS2-like (alloyed, composition 
modulated, ...) coatings. Towards the end, we present some recent work on lubrication 
at elevated temperature (up to 923K) using "double oxide" coatings. 

2. Experimental 
A schematic of NRL's IBAD system is 

shown in Fig. 1. Films were deposited in a 
vacuum chamber equipped with three 3-cm 
argon ion sources of the Kaufman type. Two 
focussed ion beams, usually operated at 1 
keV and at currents up to 70 mA, impinged 
on selectable sputtering targets. The third, 
with a broad beam, was directed at the 
substrates for sputter cleaning and to provide 
an assist ion beam during deposition. This 
beam was usually operated at 1 keV and at 40 
mA for cleaning and 1 to 6 mA in the assist 
mode. The substrate stage rotated during 
deposition to improve the film uniformity; the 
temperature could be control from ambient to 
620 K. The stage was also used for vacuum 
annealing films after deposition. The 
cryopumped chamber's base pressure was 

DUAL-BEAM ION ASSISTED DEPOSITION 

Figure 1       NRL chamber for ion 
beam assisted deposition of solid 

about 105 Pa, and the operating pressure   lubricating coatings. 
i 



about 0.05 Pa. A residual gas analyzer monitored the residual gas composition and the 
purity of the argon ion source gas. A quartz crystal thickness monitor provided thickness 
and rate data during deposition. 

For IBAD M0S2, the deposition process typically consisted of several minutes of 
assist beam sputtering to clean the substrate surfaces, IBAD of a base layer from a TiN 
target to a thickness of 10 to 90 nm, and IBAD of the MoSx top layer to a thickness of 
100 to 600 nm. Three techniques were used to form this top layer: sputtering from an 
MoSj target, cosputtering MoSj and sulfur, and cosputtering Mo and S. Deposition rates 
for the third method were 20 to 40 nm/minute, several times those of the first two. The 
base TiN layer serves as a diffusion barrier [15], not as a "thin hard coatings" as often 
speculated. 

3. Results and Discussion 
Films prepared under various conditions have been analyzed for composition and 

structure. We typically produce films having S/Mo ratios between 1.7 and 2.1 with no 
changes in tribological behavior. The films consist mainly of nanocrystalline (« 10 nm) 
(002) or (100) platelets, although some amorphous material can be present. A majority 
of the platelets are aligned with their basal (002) planes parallel to the substrate, the 
desired orientation for low friction behavior. (Note: with sputtered films, this orientation 
is achieved by "run-in" during which time substantial amounts of the film are worn 
away.) Due to continuous ion bombardment, IBAD films, unlike sputtered films, are 
fully dense. The films have a silvery appearance, unlike the non-dense sputtered films 
which look black. 

Friction and wear properties have been evaluated in dry and humid environments. 
In dry sliding, the friction coefficients are in the range called ultra-low friction (ULF), 

often from 0.005 to 0.02. The actual value depends on the interfacial shear strength, S, 
and the Hertzian pressure, PH, according to the formula [21] 

ix = S/PH. 

The shear strength of IBAD films is 15 to 20 MPa, a value comparable to the bulk shear 
strength of MoSj. Sliding in moist environments results in an order of magnitude increase 
in the friction coefficient and orders of magnitude lower endurance. 

IBAD films in dry environments have very high endurance. Wear rates at very 
high Hertzian pressures (1.4 GPa) are exceedingly small; we measure them at 1 nm per 
one to ten thousand passes. Several examples of durable films will be given later. One 
of the advantages of the IBAD process is that films store well in humid air. IBAD films 
stored over 2 years in ambient air (20 to 60%RH) exhibited no chemical or structural 
degradation, as measured by Auger and X-ray photoelectron spectroscopies and by X-ray 
diffraction. Also, IBAD coating performance after storage in humid air appear to be 



1.25 
D 

X X • 
tt u. 1.00 < r- —                 IBAD 
# a« '--..   D     •  
to n       ■■.                                                               rt 
CO V 
Q n 
UJ 
CC 

UJ 0.75 ''•. 
o o "•a. 
H i- • 
CO. co •                     • 
UJ 
Ü 
z 

UJ 0.50 '» 
z Sputter deposited 

2Ü 2 
:o -) 
Q Q 0 25 z Z 
UJ Ul 

C 
i.i.i. 

)               8               16              24              32 

STORAGE TIME (weeks) 

Table I 

SUBSTRATES LUBRICATED 
WITH IBAD COATINGS 

Figure 2       Effects of humid air 
storage on coating endurance for IBAD 
and sputter-deposited MoS2. 

METALS CERAMICS 
Fe SiC 
Ti Si3N4 
Mo TiB2 
Ni A1203 
Al CVD Diamond 
Si glass 
Ta 
Pt 
52100 Steel 
440C Steel 
M50 Steel 
AMS 5749 Steel 
Rene 41 
Inconel 625 
Ti-6A1-4V 

better than for sputtered films; this is seen in 
Fig. 2 which compares the change in 
endurance of films stored in humid vs dry air 
over 8 months [22]. The IBAD films 
suffered far less degradation than sputter 
deposited films. We attribute the improved 
storage behavior to the dense, basal 
orientation of the films; by contrast, sputter- 
deposited films have an open (porous) 
structure with edge-oriented platelets growing 
perpendicular to the substrate. Recently, 
IBAD MoS»2 films were evaluated for 
resistance to atomic oxygen and were found 
to outperform sputter-deposited solid 
lubricating films in both static oxidation and Fig"re 3 Endurance of IBAD MoS2 

post-oxidation wear tests [23]. The atomic on different substrates, 
oxygen resistance is also attributed to the 
dense, basal oriented structure that IBAD provides. We comment that while friction is 
not dependent on processing parameters, the endurance of the film can be optimized by 
choosing the proper ion assist beam currents [16]. 

IBAD M0S2 films have been deposited successfully on a variety of metal and 
ceramic substrates (see Table I).  A chart of maximum endurance on several substrates 
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is shown in Fig. 3. Note the endurance of the coating on Ti-6A1-4V; IBAD MoSj can 
lubricate Ti alloys as effectively as it does steel alloys, even at loads beyond the elastic 
limit of the Ti substrate [17]. It is commonly accepted and reported in the literature 
[24,25,26] that Ti alloys are difficult to lubricate. We suspect that the remarkable 
ability of IBAD MoSj to lubricate Ti is due to the improved adhesion associated with the 
IBAD process. 

The protective ability of IBAD MoSj can also be seen in the way it alters the wear 
mode of a normally high-wear couple: sapphire vs CVD diamond. Although sapphire is 
a very hard material (hardness » 22 GPa), it is worn severely by CVD films (see Fig. 
4). The wear is by abrasion, as identified by the wear scar on the sapphire ball in Fig. 
5. The abrasion is caused by a combination of hardness and roughness (roughness on the 
10 to 100 nm scale) of the CVD diamond films [18,19]. When a thin IBAD MoS2 film 
is deposited on the same CVD diamond films, the wear is reduced to zero (see Fig. 4). 
Inspection of the contact area on the sapphire ball (see Fig. 5) shows that, in place of 
wear, there is a transfer film of M0S2. The mechanism behind the change in wear mode 
is apparent: M0S2 attached itself to the sapphire surface during the early stages of 
sliding, separated the two surfaces and accommodated the relative motion between the 
two surfaces. The only "wear" that took place was the transfer (and retransfer) of MoSj 
between the two surfaces. 

EFFECT OF MoS ON SAPPHIRE/DIAMOND WEAR 
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Figure 4      Wear of sapphire ball by 
bare and IBAD MoS2-coated CVD 
diamond. 

Figure 5       Sapphire ball after sliding 
against bare and IBAD MoS2-coated CVD 
diamond. 

Structural and compositional modifications designed to improve the already good 
tribological performance of IBAD MoSj have also been investigated. Some examples of 



successful modifications are shown in the next few figures. Two of the most durable 
coatings tested in sliding contact are the ternary Pb-Mo-S coatings and MoS, coatings 
deposited in partial pressures of H2 gas. Maximum endurance of these two coatings are 
shown in Fig. 6, in comparison with the most reliable "optimized" IBAD Mo^ coatings 
We add that WS, coatings with about the same endurance as MoS, can also be made by 
*/*BAD process, but' in °rder t0 take Ml advantage of the high-temperature stability 
ot WS,, further work is needed to optimize the deposition process. 

IBAD coatings perform well not only under sliding contact, but also under rolling 
contact. Some results of thrust bearing endurance tests, conducted by Dr S Didziulis 
■£?£ ^r

c
0SPace CorP" m shown in pig- 7 [27]. Endurances for the two modified 

IBAD MoS, coatings (sulfur modulated and Pb alloyed) attest to the fact that IBAD films 
not only outperform traditional MoS, coatings like burnished and dc sputtered but also 
rank with the best on the newer, long lived films; these films were developed under 
contract to SDIO in the early 1990s and hold promise for longer-lived and quieter (debris- 
rree) guidance bearings [28]. 
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Figure 6       Endurance of different 
IBAD coatings on steel. 

Maximum Thrust Bearing Endurance 
of "1 ßm" MoS Coatings 
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OSMCpure 

OSMCAuPd 

NRL Pb-atoyed 
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10 12 
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Figure 7       Thrust bearing endurance 
tests of MoS,-based coatings 
(performed by The Aerospace Corp.). 

Our most recent application of the IBAD system has been to develop high 
temperature solid lubricating films. We chose to pursue the class of lubricants known as 
double oxides"; some of which are listed in Table 2. These materials, mainly in powder 

nm ' «reu  uen
T'

h0Wn t0 pr°vlde low friction over a wide ranSe of hi8^ temperatures 
•i"   With the IBAD system, we have been able to deposit binary metal and ternary 

oxide films.   Taking advantage of the dual targets, we can deposit films with a wide 



Table U 

MIXED METAL OXIDES WITH SOLID-LUBRICATING PROPERTIES. 

Molybdates PbMo04, NiMo04, CuMo04 

| Rhenates Cu(Re04)2, Ni(Re04)2, Co(Re04)2 

range of compositions and thereby explore the lubricity of a wide range of compositions 
and structures available in these ternary systems. Fig. 8 shows the range of compositions 
accessible for two candidate Co alloys, as verified by Rutherford backscattering 
spectrometry (RBS). The friction behavior of an IB AD Cu-Mo coatings at 873K is 
shown in Fig. 9. It displays the same friction coefficient (0.2) as the CuMo04 powder 
at this temperature [29]. XRD analysis indicated that the phase was indeed CuMo04. 

COATING COMPOSITION 
PROFILE 

-Calculated    o RBS 
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Figure 9      Friction trace of IBAD Cu-Mo 
coating slid at 873K. 

4. Summary 
In summary, IBAD coatings have the 

potential to provide solid lubricating film for a 
variety of substrates and operating environments. 
The IBAD MoS2 coatings are adherent, durable 
and give low friction in dry atmospheres and are 
not degraded by moisture storage or by atomic 

oxygen.   Alloyed IBAD MoS2 coatings promise improved performance in rolling and 
sliding contact.  For high temperatures, IBAD coatings of double oxides hold promise. 
We recommend IBAD coatings, in particular, for: 

Figure 8       Measured and 
calculated compositions of Co-based 
high-temperature candidate lubricants 
deposited by IBAD. 



o        hard-to-lubricate surfaces like Ti alloys or CVD diamond, 
o        assemblies requiring long-term storage, and 
o        precision bearings, where thin films are needed to reduce debris noise. 
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