THE AEROSPACE
CORPORATION

-l Segundo, California

AEROSPACE REPORT NO.
ATR-92(2778)-11

Isolating and Transforming an Ada Heapsort
for SDVS Analysis

30 September 1992 h D T E C
c‘%i.‘;’r»“‘ej-, E L E CT E ‘\\(
A JEC 2 1 1994

Prepared by

L. A. CAMPBELL S
Computer Systems Division

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

for public release and sale; its

This document has besn approved
distributicn is unlimited,

Engineering and Technology Group

19941215 145

SRS INES SN I

PUBLIC RELEASE IS AUTHORIZED

Aerospace Report No.
ATR-92(2778)-11

ISOLATING AND TRANSFORMING AN ADA HEAPSORT
FOR SDVS ANALYSIS

Prepared by

L. A. Campbell
Computer Systems Division

30 September 1992

Engineering and Technology Group
THE AEROSPACE CORPORATION
El Segundo, CA 90245-4691

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

PUBLIC RELEASE IS AUTHORIZED

ISOLATING AND TRANSFORMING AN ADA HEAPSORT
FOR SDVS ANALYSIS

Prepared
é"‘ / i .
/ /é A, /
L. A. Campbell f
Approved

Lol Lo,

B. H. Levy, Managér /
i6n

Computer Assurance Sect

Report No.
ATR-92(2778)-11

L OAGeel

D. B. Baker, Director C. A. Sunshine, Prinfipal Director

Trusted Computer Systems Department Computer Science a

Subdivision

iii

Technology

Abstract

This report examines some of the issues that arise when the State Delta Verification System
(SDVS) is used for the analysis of code fragments extracted from larger bodies of “produc-
tion” code. The code fragment must be isolated from the larger body of code — by narrowing
its interface to other program components. It must often be altered as well, to satisfy the
narrowed interface semantics or to match available SDVS capabilities. These issues are
illustrated by means of a running example, involving a heapsort written in Ada. The code
is prepared for SDVS analysis, with the intention of proving that index-out-of-range condi-
tions cannot arise during execution. A bug is uncovered in the original source code in the
course of the analysis and the bug is fixed. The planned proof is then sucessfully carried out
for the corrected heapsort code. The point of view is that of a relatively unsophisticated
user of the SDVS system.

Accesion For f

NTIS CRA&J ’jl
DTIiC 7AB [
Unannour.ced]

HoaTion

JLJ',?*.;

Acknowledgments

My thanks all those who helped me in my struggles with learning to use SDVS. In particular,
thanks to Leo Marcus, Telis Menas, Ivan Filippenko, and John Doner. I also appreciate the
assistance of Rami Razouk, who supplied me with the program-specific code used as the
basis for the primary example in this report.

vi

Abstract

Acknowledgments

7

Introduction

Original Source Code
SDVS Version of the Code
Analysis Using SDVS

The Critical Lemma
Discovering a Bug

Conclusions

Appendices:

A. Proof of the adalemma heapsrt.returns.indices

References

Contents

vii

vi

13

15

17

19

31

1 Introduction

This report examines some of the issues that arise in applying the State Delta Verification
System (SDVS) to fragments of code extracted from a larger “production” code. The
intended use of SDVS in such a case is the analysis of the code fragment by verification of
selected properties. The properties selected for analysis are determined by the purpose for
which the analysis is undertaken.

In this report, it is taken for granted that the reader is familiar with both the Ada language
[1] and SDVS [2, 3].

In order to make SDVS analysis a practical proposition, a code fragment of interest must be
isolated from the larger matrix of the production program that contains it. This can be a
daunting task because of dependencies in the code. Typically, the fragment one wants must
be extracted along with a procedure in which it is nested. (Of course, other types of com-
pilation units may be involved.) The procedure may use data types, constants, functions,
and procedures that are defined in packages identified in with-clause(s) of the enclosing
program. Some minimal set of definitions, sufficient to exercise the code fragment, must
be singled out. Actually, the set need not be strictly minimal, but it must be of practical
proportions. Simply including everything in the contents of every package mentioned in a
with-clause into the set of definitions needed will (given almost any design for a production
code of even moderate size) produce too large a body of code for practical use in SDVS. The
selection of an appropriate set of definitions to exercise the code fragment is what is here
termed “narrowing the interface” (between the code fragment and the rest of the code).

The need to narrow the interface is primarily due to the fact that the current version of
the SDVS system is designed to analyze entire Ada programs. While it has facilities to
deal with subprograms (for instance, the adalemma capability for proving assertions about
subprograms [4, 5]), it requires an entire program for context. Thus the code fragment
plus the selected set of definitions on which it depends must be encapsulated in an Ada
program. Of course, the appropriate context for a program fragment must be supplied
somehow, and it is usually not completely local to the fragment; this is thus an issue faced
by any verification system, and requiring a complete program is probably the best interim
solution. In principle, one can input a large program to the SDVS Ada translator and
subsequently restrict one’s attention to the area of the code fragment of interest. This
can be done by selecting local properties, involving the code fragment, for verification. In
practice, however, inputting a large program will substantially increase the likelihood of
running into some Ada language feature that is not within the capabilities of the current
version of SDVS. For instance, at the time this report was written, SDVS did not handle
floating point arithmetic, even though that is clearly likely to show up in production code
(see [6] for future plans). Once the code fragment has been encapsulated in a “scaffold”
Ada program, it can be considered isolated from its matrix. ‘

Now consider source code transformations that may have to be applied to the fragment. If
one wants to claim that one has verified (some property of) a code fragment extracted from
a production program, it is obviously desirable to have analyzed an isolated fragment in
SDVS that is syntactically identical to the original fragment. Even when that is the case,
one must (informally, at least) show that the semantics of the isolated fragment and the

original fragment either agree, or are related in a way that does not violate the assumptions
of the analysis. (Two syntactically identical pieces of code may well have entirely different
semantics when encapsulated in different matrices; for instance, two procedures with the
same name in the fragment may be defined differently.) Unfortunately, the ideal of syntactic
identity is rarely achievable. Changes to the source of the original fragment may be required
to deal with differences in the textual context (the selected scaffolding and the original
production program). However, this is not the main reason why source code changes are
required. Rather, that reason is the limited Ada language capabilities of the current version
of SDVS. Constructs that the translator cannot handle must be replaced by equivalent (for
analysis purposes) ones that can be handled. The term “transformation” in the title of this
document refers to any syntactic changes to the original program fragment.

In so far as the analysis purports to apply to the original fragment, informal proofs must
be supplied to show that the transformations applied to the source code either have no
effect on the semantics of the program, or at least do not violate the assumptions of the
analysis. The topics discussed in general terms in the preceding paragraphs are illustrated in
concrete form in the remainder of this report. This is done by means of a running example,
in which an Ada heapsort is isolated and transformed, and then is subjected to analysis
using SDVS. The heapsort procedure is the code fragment to be analyzed. The procedure
was written by Dr. Rami Razouk, of Aerospace, in support of the Defense Support Program
(DSP) program office. It was consciously written as a line-for-line translation of a Fortran
program. It represents an approximation to code that the contractor plans to deliver later,
and was originally embedded in the contractor’s prototype Ada software. The purpose that
Dr. Razouk had in mind, in translating the Fortran code, was to use it to demonstrate
some properties of the sort procedure related to speed of execution, under different sets of
conditions involving the use of different compilers and different compiler options. SDVS
entered the picture because one of the compiler options investigated was index checking
for arrays, and Dr. Razouk was interested in the question of whether one could prove that
index checking could be turned off (using pragma suppress) with the assurance that there
would be no (unnoticed) out-of-range conditions.

To answer this question, one must verify the property that the variables used as indices for
the array in question are always in bounds. This turns out to be eminently amenable to
SDVS analysis, because SDVS checks that array indices are within bounds during symbolic
execution. In detail, before each reference to an array element, SDVS requires the verifica-
tion of the inequalities needed to establish that variables or expressions used as indices are
within bounds. A program for which SDVS can prove termination therefore cannot corrupt
memory by means of its array assignment statements, and this answers the principal con-
cern involved in the use of index checking. Interestingly enough, the SDVS analysis turned
up 2 bug that could be traced directly back to the Fortran original.

The point of view of this report is that of a naive user. This report springs from a dual effort
to train a new SDVS user (the author) and to institute a search for production code (defined
as program specific code, either prototype or deliverable) suitable for SDVS analysis.

2 Original Source Code

The code fragment that will be used as the basis for the running example in this document
is a heapsort. It was extracted from a prototype version of a DSP contract deliverable. It
should be noted that (1) the code was not a final version; (2) it was not therefore, in any
sense, a contract deliverable; (3) the actual heapsort procedure was, in fact, not written
by the contractor; and (4) the code is a direct translation into Ada of a Fortran heapsort.
However, the code (5) was created for program specific analysis purposes; (6) was part
of a larger system prototype; and (7) was tested repeatedly in the context of the system
prototype.

In the system context, the purpose of the heapsort routine was to sort an array of radar
return records by ascending value of one specific floating-point component. To accomplish
this, the procedure was passed input parameters consisting of an index bound (N) and the
array of floating-point values (X). The values to be sorted were thus defined as the values
X(1), X(2), ..., X(N). These parameters were not to be changed; in particular, the order
of values in the array could not be changed. Instead, the sort procedure was to operate by
returning a permutation of the original index values 1, ..., N, namely an array (IOUT),
with the property that the sequence X(IOUT(1)), ..., X(IOUT(N)) is in ascending order.
Figure 1 shows the Ada specification for the package (HEAPSRT PACK) containing the
heapsort procedure (HEAPSRT), just as it appeared (except for minor name changes) in
the system prototype.

with ATYPES_PACK; use ATYPES_PACK;
package HEAPSRT_PACK is

procedure HEAPSRT (¥ : in RR_RANGE; --
X : in X_RR_ARRAY ; ~-
IOUT : in out RR_IEDEX_ARRAY);

end HEAPSRT_PACK;

Figure 1: Specification for the HEAPSRT Package

Without a look at ATYPES_PACK, the above is not very informative. The package
ATYPE_PACK defines the type RR_RANGE as a subtype of integer, X_ RR_ARRAY as an
array type with index type RR_.RANGE and value type REALS, and RRINDEX_ARRAY
as an array type with index type RR_RANGE and value type RR_RANGE. The type REALS
is a floating-point type, so it is floating-point values that the routine sorts. Refer to Figure
2, the body of the procedure, and note that all the variables used in index calculations are
of type RR_.RANGE, and that the single variable, Q, used in value comparisons is of type
REALS (and is compared to array values and assigned the value of array entries). In the
next section the isolation of the procedure and its encapsulation in a stand-alone scaffold
program will be addressed.

with ATYPES_PACK; use ATYPES_PACK;
package body BEEAPSRT_PACK is
procedure HEAPSRT (¥ : in RR_RANGE; ~-
X : in X_RR_ARRAY ; ~-
IOUT : in out RR_INDEX_ARRAY) is
I,L,IR,J,IOUTT: RR_RANGE; Q: REALS;
begin
for K in 1..X loop
IOUT(K) :=K;
end loop; -—for K
L:=RR_RANGE(INTEGER(N)/2+1);
IR:=N;
<<L10>>null;
if L>1 then
L:=L~1;
IOUTT:=I0OUT(L);
Q:=X(I0UTT);
else
IOUTT:=I0UT(IR);
Q:=X(IOUTT);
IOUT(IR) :=I0UT(1);
IR:=IR-1;
if IR=1 then
I0UT(1) :=I0UTT;
goto LEND;
end if;
end if;
I:=L;
J:=L+L;
<<L20>>null;
if J<=IR then
if J<IR then
if X(IOUT(J))<X(I0UT(J+1)) then
J:=J+1;
end if;
end if;
if Q<X(IOUT(J)) then
IOUT(I):=I0UT(J);
I1:=J;
J:=3+J;
else
J:=IR+1;
end if;
goto L20;
end if;
I0UT(I) :=I0UTT;
goto L10;
<<LEED>>null;
end HEAPSRT;
end BEAPSRT_PACK;

Figure 2: Body for the

HEAPSRT Package

3 SDVS Version of the Code

The fragment of interest is the HEAPSRT procedure, so the package HEAPSRT _PACK
can be ignored. To create a scaffold program for procedure HEAPSRT, a substitute for
ATYPES_PACK is required. In addition, it will be desirable to have a main program that
exercises HEAPSRT at least minimally. This is not strictly necessary, as the ultimate
objective is to establish desired properties of the procedure solely by proof.

The original, production version ATYPES_PACK can be stripped of additional items to
the point where it contains only the definitions truly needed for HEAPSRT, namely those
of RR.RANGE, X_.RR_.ARRAY, RR.INDEX_ARRAY, and REALS. These are all defined
directly in terms of Ada basics. However, they involve two constructs that the current
version of SDVS is not prepared to handle: subtypes (of integer) and floating point types.
(This is expected to change soon, with the likely introduction of subtypes in 1993 and the
introduction of floating point under study [6]).

To avoid floating point types, the value types of the arrays will have to be something else,
and the integer type is a sensible choice. At this point one must invoke the first informal
argument. Claim: for the purposes of the analysis (verifying that index constraints are not
violated during assignment), it does not matter what the value type of the array is, as long
as it is ordered. Not even an informal proof of this claim will be attempted. Indeed, none
should be necessary, as the claim is fairly obvious. The purpose of these remarks, though,
is to make that claim explicit, and to observe that (1) it is necessary to make the claim to
support the analysis, and (2) the claim is not being formally verified.

Currently, SDVS handles arrays whose indices are integers within a range of the form :..7,
where 7 and j are themselves integers. It does not handle the direct declaration of ranges
(e.g. ©..7). Nor does it allow for the declaration of subtypes of integer, or of derived integer
types. The only practical remaining possibility is to declare all the array types involved
to have syntactically identical (anonymous) index types that are implicit integer subtypes
of the range (i..7) type. As the original code assumes a lower bound of 1, the appropri-
ate definition is that of a global upper bound for all indices, MAX_RR. In those terms,
X_RR_ARRAY becomes an array with index type 1. MAX_RR and value type integer, and
RRINDEX_ARRAY becomes an array type with index type 1..MAX_RR and value typein-
teger. Ideally, the value type of RR.INDEX_ARRAY would be constrained to 1..MAX_RR,
but this constraint cannot be expressed without the ability to designate the index type
1.MAX_RR directly. The use of a formally (syntactically) different form of declaration for
the array types that appear in procedure HEAPSRT once again makes an implicit appeal
to a claim that the analysis is not affected by this change. Here the nature of the claim is
that of the semantic equivalence of differing Ada declarations. In fact, the Ada reference
manual [1, 3.6.1] supports the claim that two different array declarations of the form type ...
is array(i..j) of ... implicitly define anonymous, compatible integer subtypes as the index
type for the arrays or array types.

Figure 3 shows the scaffolding code built to support analysis of the HEAPSRT procedure.
The array type definitions have been encapsulated in a package ATYPES_PACK, to make it
as similar to the original as possible, and that package is declared directly in the outer scope
of the main program. In the original version of ATYPES_PACK there was a definition of the

with text_io; use text_io;
with integer_io; use integer_io;
procedure sdvs_heapsrt is
---------- packaged type declarations
package ATYPES_PACK is
MAX_BR : constant integer := 22;
type X_RR_ARRAY iz array(1i..MAX_RR) of integer;
type RR_INDEX_ARRAY is array(l..MAX_RR) of integer;
end ATYPES_PACK;
use ATYPES_PACK;
----------- data declarations
K : integer;
X : X_RR_ARRAY;
Z : RR_INDEX_ARRAY;
----------- heapsort procedure
{See Figure 4 for the procedure body}
----------- begin main procedure
begin -~ sdvs_heapsxt
(1) :=1;
X(2) := -16;
X(3) :=4;
X(4) := 3567;
X(5) := -42;
I(6) := 0;
K :=1;
while K <= 6 loop
put (X(K));
K := K+1;
end loop;
K := 6;
HEAPSRT(K,X,Z);
K :=1;
while K <= 6 loop
put(X(zZ(KX)));
K:=K+1;
end loop;
end sdvs_heapsrt;

Figure 3: Scaffolding Code for SDVS Version

type REALS as well. This cannot be done for the SDVS scaffold version, because REALS
is to be replaced by a basic type (integer), and there is currently no aliasing possibility in
SDVS (one cannot define REALS to be a subtype or derived type of the integer type).

The scaffold code contains a number of executable statements, including assignments to
define array values, a call to the procedure HEAPSRT, and I/O statements to print out the
sorted values. Clearly, a trivial test of the operation of the procedure HEAPSRT, such as
that coded into the scaffold, does nothing to prove properties of the procedure in general.
In principle, one could use scaffold code that never calls the procedure of interest and still
verify properties of the procedure. In fact, in the application of SDVS to the analysis of
the procedure HEAPSRT, the heart of the analysis lies in the proof of a lemma establishing
that the output array IOUT is indeed an array of indices, and the executable statements in
the outer scope are of virtually no interest. But in practice, to guard against gross errors
(e.g. typos and omissions), the entire program (scaffold and fragment) should be tested by
compiling it using a reliable Ada compiler and running the resulting executable, before any
attempt at SDVS analysis.

procedure HEAPSRT (F : in integer;
X : in X_RR_ARRAY ;
IOUT : in out RR_INDEX_ARRAY) is

I1,L,IR,J,IOUTT: integer; Q: integer;

K,LABEL: integer;
begin
K :=1;
while K <= ¥ loop
I0UT(K):=K;
K:=K+1;
end loop;

L:=K/2+1;
IR:=K;

LABEL := 10;
while LABEL /= 30 loop
if LABEL = 10 then
if L>1 then
L:=L-1;
IOUTT :=I0UT(L) ;
Q:=X(I0UTT);
else
I0UTT:=I0UT(IR);
Q:=X(I0UTT) ;
TOUT(IR) :=I0UT(1);
IR:=IR-1;
if IR=1 then
10UT(1) :=I0UTT;
LABEL := 30;
end if;
end if;
if LABEL /= 30 then
I:=L;
J:=L+L;
LABEL := 20;
end if;
elsif LABEL = 20 then
if J<=IR then
if J<KIR then
if X(IOUT(J))<X(IOUT(J+1)) then
J:=J4+1;
end if;
end if;
if Q<X(IOUT(JI)) then
JOUT(I) :=I0UT(J);
1:=7;
J:=J+];
else
J:=IR+1;
end if;
else
I0UT(1) :=I0UTT;
LABEL := 10;
end if;
end if; -- “case'" statement on LABEL values
end loop; -~ while LABEL /= 30
end HEAPSRT;

Figure 4: SDVS Version of HEAPSRT Procedure

Figure 4 shows the transformed version of the HEAPSRT procedure used for SDVS analysis.
Two types of transformations have been applied to the original source code. First, there
are the transformations required by the choice of the scaffolding code generated to isolate
the procedure. These transformations consist (1) of the systematic replacement of local
variables of type RR.RANGE by variables of the same name but of type integer, and (2)
of the replacement of the local variable Q (originally of type REALS) by a variable Q of
type integer. As a further consequence of these changes, the one explicit type conversion
in the original fragment disappears. Second, there are transformations to the source code
designed to overcome limitations of the SDVS translator. At the time this project was
started, SDVS did not support for-loops, so the for-loop used for initialization in the
original code was replaced by a while-loop (SDVS 11 now supports for-loops). For clarity,
and to match the semantics of a for-loop more closely, a fresh integer variable, K, is used
in the initialization while-loop. The original code also contained GOTOs. These were
replaced by the introduction of an integer variable LABEL, which assumes only the values
10, 20, or 30, and of a while-loop containing what amounts to a case statement for the value
of the variable LABEL. Each path of the case statement contains code originally jumped to
by one of the GOTOs, and changes in the value of the variable LABEL determine (as the
GOTOs did originally) which portion of code is executed next. Both of the transformations
of the second type implicitly require the informal proof of a claim that the transformed
code is equivalent to the original code (with respect to the properties being analyzed).

The example used here is a good illustration of the problems that are currently likely to arise
in isolating and transforming a code fragment for SDVS analysis. It shows that even the
isolation and encapsulation of code in a scaffold program is liable tolead to compromises that
require arguments to support claims of equivalent semantics with respect to properties being
analyzed. Even if all Ada language constructs were handled by SDVS, such compromises
would tend to arise from attempting to “narrow the interface” by retaining only truly
relevant portions of the production code matrix containing the fragment. As the example
shows, choices made in creating the scaffold code can propagate into transformations of the
original fragment source code. The transformations of the second kind, those required to
remold the fragment code in terms of Ada language constructs handled by SDVS, are more
of a practical than a theoretical issue. From a practical (more specifically public relations)
point of view, they are, however, quite significant. A customer whose code is being verified
would surely like to see the source code, character for character, being used as input to the
analysis. Not only is this desirable, but the claims of equivalence that must be made for
transformed code cloud the issue of the extent to which the code is being (automatically,
mechanically, logically, mathematically — pick your poison) verified.

It should be noted that problems have a positive aspect as well. Any individual problem
encountered in isolating and transforming a code fragment is likely to be one that can be
easily remedied by a plausible enhancement to SDVS, and therefore suggests the possibility
of such an enhancement. Furthermore, examples, such as the heapsort used here, help
prioritize tasks for future development of the SDVS theory and tool.

4 Analysis Using SDVS

This section describes how SDVS can be used on the isolated and transformed code to
analyze the original question of interest. To recall, that question is whether the use of the
procedure HEAPSRT can lead to attempts to store data in unsafe or nonexistent locations.
This happens if an array-element assignment statement is executed and the index of the
array expression is out of the range of allowable indices for the array in question. Note
that the applicability of an analysis to the original code fragment, in its original context, is
subject to the validity of the informal arguments (supporting isolation and transformations)
described in previous sections.

In SDVS any array assignment statement must have provably-in-range indices before it can
be symbolically executed. Thus any proof of termination of a program guarantees that the
memory corruption problem cannot occur. A look at the SDVS version of the code shows
two different varieties of array assignment statements — those in the outer scope and those
occurring within procedure HEAPSRT. For the outer scope statements, termination shows
only that the particular scaffold chosen will be safe, and carries no guarantee of general
applicability. However, the proof will be by means of a lemma concerning the procedure
HEAPSRT - one that establishes that HEAPSRT returns (in IOUT) an array of in-range
indices. The meaning of this lemma is that, regardless of context, an assignment statement
will execute safely if the index is of the form IOUT(J), where J is an in-range index and
IOUT denotes the array returned by HEAPSRT. For the second variety of array assignment
statements, those that occur within the body of HEAPSRT, the proof of the lemma will
establish safety for all calls to HEAPSRT that satisfy the preconditions of the lemma,
because that proof requires the symbolic execution of HEAPSRT.

Below is the lemma in question, expressed in the form of a createadalemma command.
(Definitions, proofs, commands, and the like are shown in the compact form produced by a
write command in SDVS, rather than as they would be typed at the terminal. Lower case
is used for readability, taking advantage of the case insensitivity of Ada identifiers.)

createadalemma heapsrt.returns.indices
file: \"/u/campbell/ada/heapsrtfiles/sdvs_heapsrt.a\"
procedure: heapsrt
qualified name: sdvs_heapsrt.heapsrt
precondition: (.n ge 1,.n le range(iout))
mod list: (iout)
postcondition: (formula(iout.indexes.slice))

The precondition states that the input argument N to HEAPSRT must satisfy 1 < N <
range(IOUT), and the postcondition is defined by

(defformula iout.indexes.slice
"forall u (1 le u & u le #n --> 1 le #iout[u] & #iout[u] le #n)")

which expresses the property that each index value IOUT(u) is in the range 1..N, for each
u in that range.

The proof of termination of the main program, assuming the truth of the lemma, is captured
in the following goal definition and proof scheme

(defsd sdvs_heapsrt.terminates.sd
"[sd pre: (ada(sdvs_heapsrt.a))
comod: (all)
mod: (all)
post: (terminated(sdvs_heapsrt))]")

(defproof proof.mod.adalemma
"(prove sdvs_heapsrt.terminates.sd
proof:

(go #sdvs_heapsrt\\pc = at(sdvs_heapsrt.heapsrt),
invokeadalemma heapsrt.returns.indices,

go #iout = #z,

provebygeneralization forall v (1 le v & v le 6

-=> 1 le .z[v] & .z[v] le 6)

using: (q(1)),

g9,

provebyinstantiation formula(z.k.in.bounds)
using: q(1)
substitutions: (v=.k),

g9,

provebyinstantiation formula(z.k.in.bounds)
using: q(1)
substitutions: (v=.k),

g9,

provebyinstantiation formula(z.k.in.bounds)
using: q(1)
substitutions: (v=.k),

g9,

provebyinstantiation formula(z.k.in.bounds)
using: q(1)
substitutions: (v=.k),

g9,

provebyinstantiation formula(z.k.in.bounds)
using: q(1)
substitutions: (v=.k),

g9,

provebyinstantiation formula(z.k.in.bounds)
using: q(1)
substitutions: (v=.k),

gonN")

The proof has a simple pattern. Symbolic execution of the program proceeds automatically
to the point where the main program makes its single call to the procedure HEAPSRT. At

10

that point the lemma is invoked, and symbolic execution leads to the point at which the
procedure is exited and the postcondition formula(iout.indexes.slice) is true. The next
command proceeds to the point at which the output formal argument (IOUT) is identified
with the actual argument (Z) in the call. At this point the postcondition, which was a
property of IOUT is transferred to Z (by means of a provebygeneralization command
and the equality of Z and IOUT), and becomes a property of the actual argument Z. The
proof then proceeds automatically, by symbolic execution, to the first iteration of the loop
for displaying the sorted output, where the “put(X(Z(X)))” statement is encountered. At
this point a prood is required that the symbolic array index Z(X) is within bounds, before
the “put” statement can be executed. The formula proved on exit from HEAPSRT

forallv (1levé&vile6 -->11le .z[v] & .z[v] 1le 6)

which is known as q(1) at this point in the proof, is used to establish the required property,
namely formula(z.k.in.bounds), defined as

(defformula z.k.in.bounds
".z[.k] ge origin(x) & .z[.k] le (origin(x) + range(x)) - 1")

The same pattern is followed for the remaining five iterations of the loop body, and then
the program proceeds automatically to termination. There are more elegant ways of sym-
bolically executing through the output loop than by reproving the same result six times,
but this way works and requires no additional lemmas. Note that the proof is very short,
meaning that SDVS did most of the work in carrying the symbolic execution to its conclu-
sion. The form in which the proof was captured (i.e., a list of proof commands) omits a
great deal of detail that would be seen in a full proof trace.

What has been proved is, of course, only that the main program terminates if one assumes
the truth of the adalemma. It is the proof of the adalemma that deals with the intricacies of
the code in procedure HEAPSRT. The proof of the adalemma is considerably lengthier than
the above termination proof. As far the issues of interest here (isolating and transforming
a code fragment for SDVS analysis) are concerned, the actual proof of the adalemma is
virtually a technical detail. However, it turns out that carrying out that proof revealed a
bug in the original HEAPSRT code. This is addressed in the next section, and the actual
proof of the adalemma is given in Appendix A.

The following points are worth making in considering the relative roles of the termination
proof and the proof of the adalemma.

e The adalemma is the central result of the analysis, since it provides a tool that can
be carried over to the analysis of any program that invokes procedure HEAPSRT (so
that the preconditions of the adalemma are satisfied, of course).

o Once the adalemma has been properly defined (pre- and postconditions, mod- and
comodlists), its proof, while lengthy, is largely a matter of applying the SDVS mech-
anisms, and does not raise any further questions about claims concerning semantic

11

equivalence or the validity of transformations. Rather, the proof pertains strictly to
the piece of code as given.

The selection of the pre- and postconditions for the adalemma is largely a function of
what is required for the adalemma to function in the program termination proof.

Even though the scaffold represents one very particular instance of the use of proce-
dure HEAPSRT, the termination proof provides confidence that the adalemma is the
appropriate tool for proving the safety of the use of procedure HEAPSRT in other
contexts (that is, within other main programs). It illustrates that the adalemma is
actually a functional tool for proving termination. One would not have the same
confidence if, say, the scaffold just encapsulated HEAPSRT without invoking it.

The adalemma only establishes that HEAPSRT does indeed return indices within
range. It does not establish that the indices serve to sort the values in HEAPSRT.
Thus if the goal of the analysis were to prove that HEAPSRT sorts correctly, a cor-
respondingly more complex adalemma would have to be proved. Such proofs have
already been carried out in SDVS for implementations of certain other sorting algo-
rithms, e.g. quicksort [7].

12

5 The Critical Lemma

This section outlines the proof of the adalemma heapsrt.returns.indices. The adalemma
can be stated informally as follows: if procedure HEAPSRT is called with arguments N, X
and IOUT, and N is positive and less than or equal to the length of the array IOUT, then,
on exit from HEAPSRT, N and X are unchanged and each IOUT(I) for 1 <I < Nisan
integer in the same range (1 < IOUT(I) < N). Note that the adalemma carries with it the
obligation to prove that procedure HEAPSRT terminates.

The following is an informal proof of termination. Refer to Figure 4 for the complete text
of the SDVS version of the HEAPSRT procedure. The code has the following structure:

declarations
begin

while-loop to initialize JOUT(k) to k, for k in 1..N

L:=§/2+1;
IR:=N;
LABEL := 10;

while LABEL /= 30 loop
if LABEL = 10 then

code block to execute if LABEL is 10
elsif LABEL = 20 then
code block to execuie if LABEL is 20

end if; -- "case" statement on LABEL values
end loop; -- while LABEL /= 30
end HEAPSRT;

Figure 5: Outline of HEAPSRT Procedure

The while-loop that initializes IOUT terminates. Then the while-loop on LABEL is en-
tered, with LABEL equal to 10. The code block executed when LABEL is 10, namely

if L>1 then
L:=L-1;
I0UTT:=I0UT(L);
Q:=X(I0UTT);
else
JOUTT:=IOUT(IR);
Q:=X(IOUTT);
I0UT(IR) :=I0UT(1);
IR:=IR-1;
if IR=1 then
I0UT(1) :=I0UTT;
LABEL := 30;
end if;
end if;
if LABEL /= 30 then
I:=L;
J:=L+L;
LABEL := 20;
end if;

13

decrements the quantity L+IR by exactly one. Neither L nor IR is changed in the code
block executed when LABEL is 20, namely
if J<=IR themn
if JCIR then
if X(IOUT(I))<X(IOUT(I+1)) then
J:=J+1;
end if;
end if;
if Q<X(IOUT(J)) then
T0UT(I) :=I0UT(J) ;
I:=3;
J:=J41;
else
J:=IR+1;
end if;
else
T0UT(I) :=I0UTT;
LABEL := 10;
end if;

If one assumes that both L and IR should be positive at all times (since they are used as
indices), then it is clear that the first block can be executed at most finitely many times.
Whenever the first block is exited, there are three possible values for LABEL: 10, 20, 30.
If LABEL is 30, termination occurs; if LABEL is 10, we get another execution of the first
block. Finally, if LABEL is 20, we execute the second block. Execution remains within
the second block until J > IR, at which point control passes back to the first block. Thus
it remains to show that the second block can be repeatedly executed in succession only
a bounded number of times. But each successive execution of the second block with J
< IR increases the value of J without changing IR. This completes the informal proof of
termination.

Of course, termination is not the only thing to be proved. One must also verify that the
desired conclusion (that the values of IOUT are proper indices) holds. Consider the formula

forall u (1 leu & u le .n --> 1 le .ioutfu] & .ioutfu] le .n)

It holds once IOUT has been initialized, so if it can be shown that it continues to hold
during the execution of the while-loops on LABEL, it will hold when execution of procedure
HEAPSRT terminates (at procedure exit).

The SDVS proof of adalemma heapsrt.returns.indices was set up along the lines suggested
by the above. That is, in outline, the proof consists of an induction to establish that IQUT
has been initialized, symbolic execution to the point just before the while-loop on LABEL,
and then two nested inductions, one on L+IR and one on IR-J. For technical reasons the
proof is actually more complicated than this; e.g. the induction on IR-J is repeated to
deal with two different cases in the L+IR induction, and additional stretches of symbolic
execution (without induction) must be added to the proof to deal with boundary cases.

The proof is fairly long, partly because there are many different paths for possible symbolic
execution through the code, due to the large number of conditionals. One of these paths
led to the discovery of a bug in the HEAPSRT. The bug, and a fix, are described in the
next section. The proof of the adalemma (for the corrected code) is listed in Appendix A.

14

6 Discovering a Bug

What actually happened when the proof of adalemma rudheap.returns.indices was at-
tempted was that a previously unnoticed bug in HEAPSRT surfaced. It was unnoticed
precisely because it was on the path of a symbolic execution that would not tend to be
encountered in practice. Consider the block of code executed when LABEL is 10, and,
more exactly, the statements

IR:=IR-1;

if IR=1 then
I0UT(1) :=I0UTT;
LABEL := 30;

end if;

If procedure HEAPSRT is called with N > 2, then the initial value of IR is 2 or more,
and the statements will (eventually) cause IR to be decremented to 1, LABEL will be set
to 30, and the while-loop on LABEL will terminate in short order. On the other hand, if
HEAPSRT is called with N=1, these statements will be reached almost immediately, IR will
be decremented from 1 to 0, and LABEL will not be set to 30. Inspection of the code shows
that if out-of-bounds array indices are not detected, the result will be an infinite loop (the
second block, where LABEL is 20, sets IOUT(1) to IOUTT and then resets LABEL to 10).
That infinite loop will also then copy values into the locations IOUT(0), IOUT(-1), and so
on, thus overwriting supposedly safe memory locations. If out-of-bounds array accesses are
detected, then the second execution of the block of code for LABEL equal to 10 will result
in detecting the erroneous access IOUT(0).

This is definitely a bug, even though attempting to sort arrays of length 1 is not a frequent
occurrence. It is also obvious that the bug was in the original Fortran code, and had nothing
to do with either the translation into Ada or the isolation/transformation of the procedure.
When the bug was found, an appropriate test case was set up, and the execution of the Ada
main program was abandoned when a constraint error was raised (because RR_RANGE
was declared to be a derived type of POSITIVE). Thus the bug could have (should have?)
been caught if there had been just a little more sophisticated testing of the executable Ada
version.

Here is the patch that was made to the code to correct the bug. The statements above were
replaced by

if IR>2 then
IR:=1R-1;

else
I0UT(1) :=I0UTT;
LABEL := 30;

end if;

The reason that the attempted proof led to the discovery of the bug was that one of the
induction invariants was IR > 0, and this could not be proved with the flawed code. With
the above fix in place the proof was successfully carried out. It is listed in Appendix A.

15

7 Conclusions

The discussion in the previous sections is designed to highlight the following aspects of the
isolation, transformation, and analysis of code fragments from larger programs (production
codes).

1. Compromises of the semantics of production code are virtually inevitable when a code
fragment is isolated from a larger matrix.

2. Source code transformations are currently almost inevitable when the code fragment
is adapted for SDVS analysis.

3. Both items 1 and 2, above, impact the formal nature of verification.
4. Informal arguments are necessary to support analysis of code fragments.

5. Scaffold code is a distinct help in analyzing a code fragment.

The last point mentioned concerns the fact that although the scaffold code is often theo-
retically irrelevant to the goal of the analysis, it provides significant support in analyzing
a program fragment: feedback from compilation, execution, and interactive proofs in a
realistic setting.

The fact that a bug was found in the HEAPSRT procedure chosen for analysis illustrates
one of the benefits of formal verification. The bug really had nothing to do with either the
isolation of the code fragment or the transformations applied to it. The points above would
be equally valid if the code had been free of bugs.

Finally, the following are some recommendations for near-term changes to SDVS that would
have been helpful in this exercise:

1. Allow for subtypes and derived types. Even if implemented only for the base-type
integer, this would (a) allow for the more convenient naming of index types, and (b)
permit greater fidelity to the original source code by providing arbitrary character
strings as type names (for the subtypes or derived types).

2. Identify formal and actual parameters more closely. Currently, properties of scalar
formal parameters to a procedure carry over to actual parameters of output type [2].
In the proof of termination for HEAPSRT, it was explicitly necessary to transfer a
property of the formal parameter IOUT to the actual output parameter Z, because
the parameters were arrays. It would be useful if the transfer were automatic for
arrays as well.

17

A. Proof of the adalemma heapsrt.returns.indices

This appendix provides a listing of the proof of the adalemma heapsrt.returns.indices and
some supporting materials. To avoid any possible confusion, the first item is a listing of the
(bug-fixed) version of procedure HEAPSRT to which the lemma applies.

procedure REAPSRT (N : in integer;
X : in X_RR_ARRAY ;
I0UT : in out RR_INDEX_ARRAY) is
I,L,IR,J,I0OUTT: integer; Q: integer;
K,LABEL: integer;
begin
K :=1;
while K <= ¥ loop
IOUT(X) :=K;
K:=K+1;
end loop;
L:=K/2+1;
IR:=N;
LABEL := 10;
while LABEL /= 30 loop
if LABEL = 10 then
if L>1 then
L:=L-1;
I0UTT:=I0UT(L);
Q:=X(I0UTT);
else
IOUTT:=I0UT(IR);
Q:=X(I0UTT);
IOUT(IR) :=I0UT(1);
if IR>2 then
IR:=IR-1;
else
I0UT(1) :=IOUTT;
LABEL := 30;
end if;
end if;
if LABEL /= 30 then
I:=L;
J:=L+L;
LABEL := 20;
end if;
elsif LABEL = 20 then
if J<=IR then
if J<IR then
if X(IOUT(J))<X(IOUT(JI+1)) then
J:=J4+1;
end if;
end if;
if Q<X(IOUT(J)) then
I0UT(I) :=I0UT(J);
I:=J;
J:=J+];
else
J:=IR+1;
end if;
else
IOUT(I):=I0UTT;
LABEL := 10;
end if;
end if; -- “case" statement on LABEL values
end loop; -- while LABEL /= 30
end BEAPSRT;

19

Next, here are a variety of definitions of items that appear in the proof of the adalemma.

(defformula iout.indexes.slice
“forallu (1 le u & u le #n =-> 1 le #iout[u] & #iout[u] le #n)")

(defformula iout.in.range
“forall u (1 le u &£ u le .n =-> 1 le .iout{u] & .jout[u] le .n)")

(defsd dropi.sd
"[sd pre: (1 le .n & .n le range(iout),1 le .i & .i le .n,
forall u ((1 leu & u le .n) ku "= .i
==> 1 le .iout{u] & .ioutl[u] 1le .n),
1 le .iout{.i] & .iout{.i] le .n)
post: (forallu (1 le u & u le .n ==> 1 le .iout[u] & .iout[u] le .n))1*)

(defsd disjoint.sd

“[sd pre: (true)
post: (alldisjoint(iout[1:(.i + (~1))],iout[.i:.i]),
alldisjoint(iout{(.i + 1):.nJ,iout[.1:.i1))]1")

(defformula while.invariant
“forallu (1 le u £ u le .n -=> 1 le .iont[u] & .iout[u] le .n) &
(11le .22 .11le .2) &
(1 le .ir & .ir le .n)")

(defsd initial.values.in.range.sd
*[sd pre: (forallu (1 le u & u le .n --> .iout[u] = u))
comod: (all)
post: (forallu (1 le u & u le .n =-> 1 le .ioutlu] & .iout[u] le .n))J")

(defsd stays.true.sd
“[sd pre: (true)
comod: (heapsrt.k,iout[1:(.heapsrt.k - 1)])
mod: () '
post: (forall u (1 le u & u 1t .heapsrt.k ~~> .iout[ul] = w))]")

(defsd bridge.sd
"[sd pre: (.n ge 1,forallu (1 leu & u le .0
~-> 1 le .iout[u] & .iout{u] le .n))
comod: (mn)
mod: ()
post: ([sd pre: (true)
comod: (i,n,iout[1:(.i-1)],iout[(.i+1):.n])
post: (forallu ({1 leu £ ule .n) & u "= .i
-=> 1 le .iout[ul] & .iout[u] le .n))1)1*")

(defsd bridger.sd
“[sd pre: (.n ge 1,forallu (1 leu & u le .n
-=>1 le .iout[u] & .iout[u] le .n))
comod: (n)
mod: ()
post: ([sd pre: (true)
comod: (ir,n,iout[1:(.ir-1)],iout{(.ir+1):.n3)
post: (forall u ((1 le u & uw le .n) & u ~= .ir
==> 1 le .ioutfu] & .ioutl[u] le .n))PI™

(defsd bridgel.sd
“[sd pre: (.n ge 1,forallu (1 leut ule .n .
--> 1 le .iout[ul] & .iont[u] le .n))
comod: (n)
mod: ()
post: ([sd pre: (true)
comod: (n,iout{2:.n])
post: (forallu ((1 Jeu & ule .n) & u "=1
=-=> 1 le .iout[u] & .ioutlu)] le .n))1)I1*)

20

(defsd veaken.ir.sd
“[sd pre: (true)
comod: (ir,n,iout[1:(.ir-1)],iout[(.ir+1):.n])
mod: ()
post: (forallu ({1 leu & u le .n) & u = .ir
==> 1 le .iout[u] & .iout[u] le .n))1")

(defformulas induct.lir.invariants
|l.1 se 1.'
v.ir ge 1"
.1 le .n"
".ir le .n"
“.1+ .ir = lir"
“formula(lab30)"
"forammla(not30)"
" . label = 10"
"formmla(iout.in.range)")

(defformulas induct.gap.invariants
" oir - -j le sapn
" _label = 20"
“formula(lab20)"
“formula(not20)"
"1 le .i"
v.ile .n"
ll1 le .jll
“forallu (1 leun & u le .n --> 1 le .iout[u] & .iout[ul] le .n)")

Finally, here is the proof itself, in the form of a proof scheme produced by an SDVS write
command. Two slight liberties have been taken with the format: in “using:” clauses and
in provebygeneralization commands, the term formula(iout.in.range) has been used
in this listing instead of the actual quantified formula itself. It is expected that this will be
acceptable input to SDVS in the near future.

(defproof proof.of.adalemma
“(adatr \"/u/campbell/ada/heapsrtfiles/sdvs_heapsrt.a\",
read \"/u/campbell/ada/heapsrtfiles/defns\",
createadalemma heapsrt.returns.indices
file: \"/u/campbell/ada/heapsrtfiles/sdvs_heapsrt.a\"
procedure: heapsrt
qualified name: sdvs_heapsrt.heapsrt
precondition: (.n ge 1,.n le range(iout))
mod list: (iout)
postcondition: (formula(iout.indexes.slice)),
proveadalemma heapsrt.returns.indices
proof:
(go #heapsrt.k =1,
letsd ul = u(1),
letsd u2 = u(2),

let nn = .»,

induct on: .heapsrt.k
from: 1
to: on + 1

invariants: (formula(ui),formula(u2),
forall u (1 le u & u 1t .heapsrt.k --> .iout[u] = u),
.n = nn, nn le range(iout))
comodlist: ()
modlist: (sdvs_heapsrt\\pc,heapsrt .k,icut [.heapsrt.k])
base proof:
step proof:
(let k1 = .heapsrt.k,
provebygeneralization forall u (1 le u & u 1t k1 =-> .iout[u] = u)
using: (forall u (1 le u &£ u 1t .heapsxt.k --> .iout[ul = w)),

21

apply u(1),
let oldiout = .iout,
provebygeneralization forall u (1 le u & u 1t ki --> oldiout[u] = u)
using: (forall u (1 le u & u 1t .heapsrt.k -=> .iout[u] = u)),
readarioms \"/u/versys/sdvs/axioms/arraycoverings.axioms\",
provebyaxiom alldisjoint(iout[1:(.heapsrt.k ~ 1)],iout[.heapsrt.k:.heapsrt.k])
using: disjoint\\slices,
prove stays.true.sd
proof: ,
apply u(2),
apply u(2),
apply u(1),
provebygeneralization g(3)
using: (forall u (1 le u & u 1t k1 --> .ioutfu] = w))),
go #$label = 10,
prove initial.values.in.range.sd
proof: provebygeneralization g(1)
using: (q(1)),
provebygeneralization forall u (1 le u & u le .n ~~> .jioutfu] = w)
using: (forall m (1 le w & u 1t nn + 1 ==> .ioutfu] = u)),
apply initial.values.in.range.sd,
read \"/u/versys/sdvs/axioms/div.axioms\",
provebyaxiom .n / 2 ge 0
using: divgeO,
provebyaxiom .n gt .n / 2
using: divlt,
notice formula(while.invariant),
letsd 1ab30 = u(2),
letsd not30 = u(3),
prove disjoint.sd
proof:
(provebyaxiom alldisjoint(iout[1:(.i - 1)],ioutl.i:.i])
using: disjoint\\slices,
provebyaxiom alldisjoint(iout[(.i + 1):.n],iout[.i:.i])
using: disjoint\\slices),
letsd disjoint = u(1),
prove bridge.sd
proof: prove g(1)
proof: provebygeneralization g(1)
using: (formula(iout.in.ranmge)),
letsd bridge = u(1),
prove bridger.sd
proof: prove g(1)
proof: provebygeneralization g(1)
using: (formula(iout.in.range)),
letsd bridger = u(1),
prove bridgel.sd
proof:
(provebyaxiom alldisjoint(iout[2:.n],iout[1:1])
using: disjoint\\slices,
prove g(1)
proof: provebygeneralization g(1)
using: (formula(iout.in.range)),
letsd bridgel = u(1),
prove dropi.sd
proof: provebygeneralization g(1)
using: (q(1)),
letsd dropi = u(1),
cases .1 + .ir le 3
then proof:
(apply not30,
apply u(2),
apply u(1),
provebyaxiom alldisjoint(iout[1:(.ir - 1)],iout[.ir:.ix])
using: disjoint\\slices,
provebyaxiom alldisjoint(iout[{.ir + 1):.n],iout[.ir:.ir])

22

using: disjoint\\slices,

prove weaken.ir.sd
proof: provebygeneralization g(1)

using: (formula(iout.in.range)),

apply u(2),

apply u(2),

provebyinstantiation 1 le .iout[.ir] & .iout{.ir] le .n
using: formula(iout.in.range)
substitutions: (u=.ir),

notice 1 le .ioutt & .ioutt le .m,

apply u(1),

provebyinstantiation 1 le .iout[1] & .iout[1] le .n
using: formula(iout.in.range)
substitutions: (u=1),

apply u(1),

apply u(3),

provebygeneralization formula(iout.in.range)
using: (q(1)),

apply u(1),

provebyaxiom alldisjoint(iout[2:.n],iout[1:1])
using: disjoint\\slices,

apply bridgel,

apply u(2),

apply u(2),

provebygeneralization formula(iout.in.range)
using: (q(1)),

apply 7)
else proof:
(induct on: lir
from: 1+ Lirx
to: 3

invariants: (formumlas(irduct.lir.invariants))
comodlist: (n,heapsrt.x)
modlist: (label,l,ir,i,j,ioutt,iout,q,sdvs_heapsrt\\pc)
base proof:
step proof:
(apply u(1),
apply u(2),
cases .1 le 1
then proof:
(apply u(1),
provebyaxiom alldisjoint(iout[1:(.ir - 1)],iout[.ir:.ixr])
using: disjoint\\slices,
provebyaxiom alldisjoint(iout{(.ir + 1):.n],iout[.ir:.ir])
using: disjoint\\slices,
prove weaken.ir.sd
proof: provebygeneralization g(1)
using: (formula(iout.in.range)),
apply u(2),
provebyinstantiation 1 le .iout[.ir] & .iout[.ir] le .mn
using: formula(iout.in.range)
substitutions: (w=.ir),
notice 1 le .ioutt & .joutt le .n,
apply u(1),
provebyinstantiation 1 le .iout[1] & .iout[1] le .n
using: formula(iout.in.range)
substitutions: (u=1),
apply u(1),
apply u(3),
provebygeneralization forall u (1 leu & u le .n —-> 1 le .iout
[ul & .iout[u]
le .n)
using: (q(1)),
apply u(2),
apply u(1),
apply u(2),

23

apply u(1),
apply u(1),
apply u(1),
apply u(2),
apply u(1),
letsd 1lab20 = u(2),
letsd not20 = u(1),

induct on: gap
from: .ir
to: ~1

- .5

invariants: (formulas(induct.gap.invariants))

comodlist: (ir,

modlist: (i,j

base proof:

step proof:
(apply u(2),
apply u(2),

heapsrt.x,n,l,q,iocutt)
,iout,label,sdvs_heapsrt\\pc)

cases .j 1t .ir

then proof:
(apply u(2

provebyinstantiation 1 le .iout[.j] & .iout[.j] le

);

using: formula(iout.in.range)

substit

utions: (u=.j),

provebyinstantiation 1 le .iout

[.j +1] & .iout
[.j +1] 1le .n

using: formula(iout.in.range)

substit
cases .he

utions: (u=.j + 1),
apsrt.x[.iout[.j]]

1t .heapsrt.x[.jout[.j + 1]1]
then proof:

(appl

y u(2),

apply u(1),
cases .q 1t .heapsrt.x[.iout[.j]]
then proof:

(apply u(2),
apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1),
apply u(1),
apply u(2),
apply u(1))

else proof:
cases .q 1t .heapsrt.x[.ioutf.jl]

then proof:

else proof:
(apply u(2),
apply u(1),
apply u(2),
apply u(1)))

else proof:
(apply u(2),
cases .q 1t .heapsrt.x[.iout[.j]]
then proof:
(apply u(2),

apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1),
apply u(1),
apply u(2),

24

I

apply u(1))
else proof:
cases .q 1t .heapsrt.x[.iout[.j]]
then proof:
else proof:
(apply u(2),
apply u(1),
apply u(2),
apply u(1))))
else proof:
cases .j 1t .ir
then proof:
else proof:
(apply u(2),
provebyinstantiation 1 le .iout
[.31 & .iout[.j] 1e
using: formula(iout.in.range)
substitutions: (u=.j),
cases .q 1t .heapsrt.x[.iout[.jl]
then proof:
(apply u(2),
apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1),
apply u(1),
apply u(2),
apply u(1))
else proof:
(apply u(2),
apply u(1),
apply u(2),
apply u(1)))),
comment \“first induction on gap has closed\",
apply u(2),
apply u(1),
apply disjoint,
apply bridge,
apply u(2),
apply u(2),
provebygeneralization forall u (1 le u & u le .n ==> 1 le .iout
[ul & .iout[u]
le .n)
using: (q(1)),
apply u(1))
else proof:
(apply u(3),
apply u(1),
provebyinstantiation 1 le .iout[.1] & .iout[.1] le .n
using: formula(iout.in.range)
substitutions: (u=.1),
apply u(1),
notice 1 le .ioutt & .ioutt le .m,
apply u(1),
apply u(2),
apply u(1),
apply u(1),
apply u(1),
apply u(2),
apply u(1),
letsd 1ab20 = u(2),
letsd not20 = u(1),
cases .ir 1t .j
then proof:

25

I

(apply u(2),
apply u(1),
apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1))

else proof:
(induct on: gap
from: Jr - L)
to: -1
invariants: (formulas(induct.gap.invariants))
comodlist: (ir,heapsrt.x,n,1l,q,ioutt)
modlist: (i,j,iout,label,

sdvs_heapsrt\\pc)
base proof:
step proof:
(apply u(2),
apply u(2),
cases .j 1t .ir
then proof:
(apply u(2),
provebyinstantiation 1 le .iout
[.3] & .iout[.j] 1le .n
using: formula(iout.in.range)
substitutions: (u=.j),
provebyinstantiation 1 le .iout
.3+
1] & .iout
[.j+1]
le .n
using: formula(iout.in.range)
substitutions: (u=.j + 1),
cases .heapsrt.x[.iout[.j]]
1t .heapsrt.x
[.iout[.j + 11]
then proof:
(apply u(2),
apply u(1),
cases .q 1t .heapsrt.x[.iout[.jl]
then proof:
(apply u(2),
apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1),
apply u(1),
apply u(2),
apply u(1))
else proof:
cases .q lt .heapsrt.x
[.iout[.j1]
then proof:
else proof:
(apply u(2),
apply u(1),
apply u(2),
apply u(1)))
else proof:
(apply u(2),
cases .q 1t .heapsrt.x[.iout[.j]]
then proof:
(apply u(2),

26

apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1),
apply uf1),
apply u(2),
apply u(1))

else proof:
cases .q 1t .heapsrt.x
[.ioutf.j1]
then proof:

else proof:
(apply u(2),
apply u(1),
apply u(2),
apply u(1))))
else proof:
cages .j 1t .ir
then proof:
else proof:
(apply u(2),
provebyinstantiation 1 le .iout
[.7] & .iout
[.3]
le .n
using: formula(iout.in.range)
substitutions: (u=.j),
cases .q 1t .heapsrt.x[.iout[.j]]
then proof:
(apply u(2),
apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1),
apply u(1),
apply u(2),
apply u(1))
else proof:
(apply u(2),
apply u(1),
apply u(2),
apply u(1)))),
comment \"second induction on gap has clesed\",
apply u(2),
apply u(1),
apply disjoint,
apply bridge,
apply u(2),
apply u(2),
apply dropi,
apply u(1)))),
apply u(1),
apply u(2),
notice .1 + .ir = 3,
cases .1 gt 1
then proof:
(apply u(2),
apply u(1),
provebyinstantiation 1 le .iout[.1] & .iout[.1] le .n
using: formula(iout.in.range)
substitntions: (u=.l),
apply u(1),

27

notice 1 le .ioutt & .ioutt le .m,

apply u(1),

apply u(2),

apply u(1),

apply u(1),

apply u(1),

apply u(2),

apply u(1),

apply u(2),

apply u(1),

apply disjeint,

apply bridge,

apply u(2),

apply u(2),

provebygeneralization formnla(iout.in.range)
using: (q(1)),

apply u(1),

apply u(2),

apply u(2),

apply u(1),

provebyinstantiation 1 le .iout[.ir] & .iocut[.ir] le .n
using: formula(iout.in.range)
substitutions: (u=.ir),

apply u(1),

notice 1 le .ioutt & .ioutt le .n,

apply u(1),

provebyinstantiation 1 le .iout[1] & .iout[1] le .n
using: formula(iout.in.range)
substitutions: (u=1),

provebyaxiom alldisjoint(iout[1:(.ir - 1)],iout[.ir:.ir1)
using: disjoint\\slices,

provebyaxiom alldisjoint(iout[(.ir + 1):.n],iout[.ir:.ir])
using: disjoint\\slices,

apply bridger,

apply u(2),

apply u(3),

provebygeneralization formula(iout.in.range)
using: (q(1)),

apply u(1),

notice 1 le .ioutt &t .ioutt le .n,

provebyaxiom alldisjoint(iout[2:.n],iout[1:1])
using: disjoint\\slices,

apply bridgeil,

apply u(2),

apply u(2),

provebygeneralization formula(iout.in.range)
using: (q(1)),

apply 7)

else proof:

(apply u(2),

provebyinstantiation 1 le .iout[.ir] & .iout[.ir] le .n
using: formula(iout.in.range)
substitutions: (uv=.ir),

apply u(1),

apply u(1),

provebyinstantiation 1 le .jout[1] & .iout{1] le .n
using: formnla(iout.in.range)
substitutions: (v=1),

provebyaxiom alldisjoint(iout[1:(.ir - 1)],iout[.ir:.ir])
using: disjoint\\slices,

provebyaxiom alldisjoint(iout[(.ir + 1):.n],iout[.ir:.ir])
using: disjoint\\slices,

apply bridger,

apply u(2),

apply u(3),

provebygeneralization formula(iout.in.range)

28

using: (q(1)),

apply u(1),

provebyaxiom alldisjoint(iout[2:.n],iout{1:1])
using: disjoint\\slices,

apply bridgel,

apply u(2),

apply u(2),

provebygeneralization formula(iout.in.range)
using: (q(1)),

go))),

comment \"adalemma heapsrt.returns.indices has been proved\")")

The proof was developed interactively, of course, and it is entirely possible that it could be
shortened or made more elegant. For instance, several notice commands that originally
served primarily as reminders have been left in place.

The proof takes a bit more than twenty minutes on the most recent version (12a) of SDVS,
which became available as this report was being completed. The following is a display of the
proof state directly after completing the proof. A few date commands have been inserted
to demonstrate the statement about the length of time it takes to run the proof.

<< initial state >>

adatr /u/campbell/ada/heapsrtfiles/sdvs_heapsrt.a <7>

read /u/campbell/ada/heapsrtfiles/defns <6>

createadalemma heapsrt.returns.indices <5>

date “11/2/92 10:29:33 Elapsed time is 4 seconds." <4>

proveadalemma heapsrt.returns.indices <3>

date "11/2/92 10:52:37 Elapsed time is 23 minutes and 4 seconds." <2>
comment: adalemma heapsrt.returns.indices has been proved <1>

--> you are here <--

References

[1] U. S. Department of Defense, Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-18154), 22 January 1983.

[2] T. K. Menas, “SDVS 11 Tutorial,” Technical Report ATR-92(2778)-12, The Aerospace
Corporation, September 1992.

[3] L. G. Marcus, “SDVS 11 Users’ Manual,” Technical Report ATR-92(2778)-8, The
Aerospace Corporation, September 1992.

[4] J. E. Doner and J. V. Cook, “Offline Characterization of Procedures in the State Delta
Verification System (SDVS),” Technical Report ATR-90(8590)-5, The Aerospace Cor-
poration, September 1990.

[5] J. V. Cook and J. E. Doner, “Example Proofs Using Offline Characterization of Proce-
dures in the State Delta Verification System (SDVS),” Technical Report TR-0090(5920-
07)-3, The Aerospace Corporation, September 1990.

[6] L. G. Marcus, “Preliminary Investigations into Specifying and Proving Ada Floating-
Point Programs in the State Delta Verification System (SDVS),” Technical Report ATR-
91(6778)-4, The Aerospace Corporation, September 1991.

[7] J. V. Cook and J. E. Doner, “A Modular Correctness Proof of a Quicksort Procedure
Written in Ada using SDVS,” Technical Report ATR-91(6778)-8, The Aerospace Cor-
poration, September 1991.

31

