
AEROSPACE REPORT NO.
ATR-92(2778)-3

Some Examples of Verifying Stage 1 Hardware
Descriptions Using the State Delta
Verification System (SDVS)

30 September 1992

Prepared by

I. V. FILIPPENKO, J. M. BOULER, and B. H. LEVY
Computer Systems Division

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

Engineering and Technology Group

rA) - PUBLIC RELEASE IS AUTHORIZED
u • i S

II , S.dl~ • r * Sl'•l't

AEROSPACE REPORT NO.
ATR-92(2778)-3

Some Examples of Verifying Stage 1 Hardware Descriptions
Using the State Delta Verification System (SDVS)

Prepared by
I. V. FILIPPENKO, J. M. BOULER, and B. H. LEVY

Computer Systems Division

Accesion For

NITIS CID,,-&•1
DTIC TAB3 1

30 September 1992 UircoLu:-:cad D
Justiic•t o

Dist ib !io

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000 Dist

Engineering and Technology Group

PUBLIC RELEASE IS AUTHORIZED

Report No.
ATR-92(2778)-3

SOME EXAMPLES OF VERIFYING STAGE 1 VHDL HARDWARE DESCRIPTIONS
USING THE STATE DELTA VERIFICATION SYSTEM (SDVS)

Prepared

I. V. Filippenko J.,&l. Bouler
/

B. H. Levy

Approved

B. H. Levy, Maf'ger
Computer Assurance Se/on

D. B. Baker, Director C. A. Sunshine, Prin ip 1 Director
Trusted Computer Systems Department Computer Science a echnology

Subdivision

111,o

Abstract

We illustrate, by a sequence of examples, how the State Delta Verification System (SDVS)
can be used to create formal specifications and correctness proofs for hardware descriptions
in Stage 1 VHDL, a subset of the VHSIC Hardware Description Language (VHDL).

The examples include the following:

"* a handshake protocol for interprocess communication

"* a counter

"* a description involving TRANSPORT delay

"* a description involving a WAIT statement embedded in a conditional

"* a description involving a WAIT statement embedded in a loop

"* a description involving an EXIT from a nested loop

"* a shift-and-add multiplier

Of these, the first two and the last are realistic hardware descriptions, while the remainder
are intended to demonstrate the additional functionality of Stage 1 VHDL compared to
Core VHDL, the original SDVS VHDL language subset.

v

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

2 SDVS and Hardware Verification 3

3 Stage 1 VHDL 5

4 Simplifier Theories for VHDL 7

4.1 VHDL Tim e 7

4.2 VHDL W aveforms 8

5 Handshake Protocol 11

5.1 General Description 11

5.2 VHDL Code 12

5.3 State Delta Specification 13

5.4 Batch Proof 14

6 Two-Bit Counter 15

6.1 General Description 15

6.2 VHDL Code 15

6.3 State Delta Specification 16

6.4 Batch Proof 17

6.5 Discussion 18

7 TRANSPORT Delay 19

7.1 General Description 19

7.2 VHDL Code 19

7.3 State Delta Specification 20

7.4 Batch Proof 20

vii

1 Introduction

The State Delta Verification System (SDVS), under development over the course of several
years at The Aerospace Corporation, is an automated verification system that aids in writing
and checking proofs that a computer program or (design of a) digital device satisfies a
formal specification. The system takes its name from the distinguishing formulas, called
state deltas, of its underlying temporal logic.

The purpose of this report is to show, by a sequence of examples, how SDVS can be used to
create formal specifications for and correctness proofs of hardware descriptions in the Stage
1 VHDL subset of the VHSIC Hardware Description Language (VHDL). Familiarity on the
reader's part with SDVS, as described in [1], is assumed. We also assume knowledge of the
basics of behavioral VHDL (simulation cycle, processes, signals, drivers); references [2] and
[3] are useful supplements to the VHDL Language Reference Manual [4]. Access to [5] and
[6] is helpful, but not strictly necessary.

As explained in Section 2, SDVS is being adapted to VHDL in stages. To date, three
VHDL subsets have been defined and incorporated into SDVS: Core VHDL [7], Stage 1
VHDL [6], and Stage 2 VHDL [8], each being a language superset of the one preceding.
The seven examples presented in this report are all written in Stage I VHDL; listed in
order of presentation, they are:

"* a handshake protocol for interprocess communication

"* a counter

"* a description involving TRANSPORT delay

"* a description involving a WAIT statement embedded in a conditional

"* a description involving a WAIT statement embedded in a loop

"* a description involving an EXIT from a nested loop

"* a shift-and-add multiplier

The "handshake protocol" example, borrowed from lecture notes prepared by Vantage
Analysis Systems, Inc. [9], illustrates a small but interesting hardware function described
in Stage 1 VHDL.

The "counter" example is an extension of one presented in [5], with a somewhat more
general specification.

The "shift-and-add multiplier" example is by far the most substantial: its discussion
addresses the sorts of issues that can arise in the course of a rather complex correctness
proof of a relatively sophisticated Stage 1 VHDL hardware description.

The remaining examples are intended primarily to demonstrate the additional functionality
of Stage 1 VHDL compared to Core VHDL.

Before embarking on the examples, we present an overview of SDVS and its application to
hardware verification in Section 2, a definition of the Stage 1 VHDL subset in Section 3, and
in Section 4 an itemization of the function and predicate symbols in the SDVS Simplifier
for reasoning about VHDL time and waveforms during the symbolic execution of VHDL
descriptions.

In general, each example is organized according to the following topics:

* General Description

* VHDL Code

* State Delta Specification

e Batch Proof

e Discussion

A few examples are simple enough that their proofs require no further comment, in which
case the Discussion section is omitted. On the other hand, the proof of the "shift-and-
add multiplier" requires static reasoning using integer and bitstring lemmas, which are
exhibited in separate sections. Owing to its complexity, we have chosen to present this
particular example last.

Finally, it is to be understood that the actual pathnames to files referenced in this report
are irrelevant to the report's content. All the reader needs to know is that a path to a .vhdl
file must be supplied as the argument to the vhdltr ("translate VHDL file") command,
and that we follow the convention of supplying a path to a spec file as the argument to
the read ("read file") command.

2

2 SDVS and Hardware Verification

The long-term goal of the SDVS project is to create a prototype of a production-quality
verification system that is useful at all levels of the hierarchy of digital computer systems;
our aim is to verify hardware from gate-level designs to high-level architecture, and to verify
software from the microcode level to application programs written in high-level program-
ming languages. We are currently extending the applicability of SDVS to both lower levels
of hardware design and higher levels of computer programs. Detailed information on the
system may be found in [1].

Several features distinguish SDVS from other verification systems (refer to [10] for a detailed
discussion). The underlying temporal logic of SDVS, called the state delta logic, has a
formal model-theoretic semantics. SDVS is equipped with a theorem prover that runs in
interactive or batch modes; the user supplies high-level proof commands, while many low-
level proof steps are executed automatically. One of the more distinctive features of SDVS
is its flexibility - there is a well-defined and relatively straightforward method of adapting
the system to arbitrary application languages (to date, we have tackled ISPS, Ada, and
VHDL). Furthermore, descriptions in the application languages potentially serve as either
specifications or implementations in the verification paradigm. A given application language
is incorporated into SDVS by being translated to the state delta logic via a Common Lisp
translator program, which is (generally) automatically derived from a formal denotational
semantics for the application language.

Following the approach taken successfully with Ada [11], we have envisioned an incremental
adaptation of SDVS to a sequence of VHDL subsets of increasing semantic complexity [12].
For a simple but nontrivial initial language subset, dubbed Core VHDL, in fiscal year 1989
we formally specified and implemented a translator and made attendant enhancements to
the SDVS inference machinery. In fiscal year 1990, the Core VHDL translator was substan-
tially revised and applied to a variety of examples [5]. The VHDL features comprising Core
VHDL were carefully selected to circumscribe a manageable set of essential language con-
structs, e.g. entity declarations, architecture bodies, concurrent processes, and sequential
signal assignment statements [13]. A translator for a somewhat larger VHDL subset, called
Stage 1 VHDL, was implemented in fiscal year 1991 [6].

We did not intend that either Core VHDL or Stage 1 VHDL be used to express real hardware
applications. Rather, our goal was the rapid prototyping of an SDVS interface to VHDL
- the semantic specification of some key VHDL features and experimentation with small,
though interesting, examples. This work formed the basis for Stage 2 VHDL, a much more
capable and realistic language subset incorporated into SDVS in fiscal year 1992.

In some aspects of its behavior, the VHDL translator functions like a simulator kernel [7, 14].
Unlike simulation, however, translation into state delta logic enables correctness proofs by
symbolic execution. An SDVS correctness proof demonstrates that one state delta implies
another, or that two state deltas are equivalent. Thus, a formal relationship between VHDL
descriptions and abstract specifications must be created, on which the SDVS proof strategies
may be brought to bear.

Figure 1 diagrams our current paradigm for hardware verification, showing the relationships

3

State Delta
Specification

correctness
Proof

VHDL translation _1State Delta

Descriptioni Representation

Figure 1: Hardware Verification Paradigm (Short-Term)

between a VHDL description and its state delta representation and specification. The box
at the left is what a hardware designer normally sees; it contains a VHDL data flow or
behavioral architecture (the initial VHDL subsets do not encompass structural architec-
tures). The VHDL translator automatically maps the VHDL description to its state delta
representation, according to the semantics that the translator implements. The specifica-
tion of intent for the VHDL description is hand-coded in the state delta language by the
person performing the verification. A correctness proof verifies that the lower-level state
delta representation of the description implies the upper-level state delta specification.

VHDL translation• State Delta

Behavior Representation,

Sclever correctness
implementation Proof

VHDL translation State Delta

Data Flow Representation12

Figure 2: Hardware Verification Paradigm (Long-Term)

Figure 2 diagrams our long-term paradigm for hardware verification. Unlike Figure 1,
Figure 2 involves two different VHDL descriptions. The hardware designer implements
the behavioral description by a data flow description. The VHDL translator automatically
maps both descriptions to their separate state delta representations, and a correctness proof
demonstrates that the one description indeed implements the other. This second paradigm
has not yet been exercised by SDVS in the context of VHDL, although it is employed
extensively for ISPS verification (see [15, 16]).

4

3 Stage 1 VHDL

Stage 1 VHDL is a relatively small, but powerful, subset of VHDL. As in developing Ada
for SDVS, our approach with VHDL has been to implement increasingly complex language
subsets; this enables a smooth, structured approach to hardware verification. The first such
subset was Core VHDL. The second subset, Stage 1 VHDL, is described here. Other stages
are described in [12].

Stage 1 VHDL encompasses a small collection of language constructs that yield insight into
the state delta semantics and translation of concurrency and timing. To the extent that
they have been incorporated in SDVS, the previous two application languages, ISPS and
Ada, provide no experience in this arena.

Differences between VHDL and most other programming languages stem principally from
the presence of SIGNAL objects, PROCESS statements, and the event-driven simulation se-
mantics. Consequently, we focus on these features in Stage 1 VHDL. Stage 1 VHDL de-
scriptions are limited to the specification of hardware behavior or data flow, rather than
structure. More comprehensive VHDL subsets for SDVS will include constructs for the
structural description of hardware in terms of its hierarchical decomposition into connected
subcomponents.

The primary VHDL abstraction for modeling a digital device is the design entity. A design
entity has two parts: an entity declaration, giving an external view of the component by
declaring the input and output ports, and an architecture body, giving an internal view of
the system in terms of its structure or behavior.

In Stage 1 VHDL, each architecture body is constrained to be behavioral, consisting of a set
of declarations and concurrent PROCESS statements. As described below, processes define
the functional interpretation of the device being modeled. The data types of Stage 1 VHDL
are integers, booleans, bits, and bitvectors (arrays of bits).'

A PROCESS statement is a block of sequential zero-time statements that execute sequentially
but "instantaneously" in zero time [14], and some (possibly none) special sequential WAIT
statements, whose execution suspends the process and allows time to elapse. A process
may schedule future values to appear on data holders called signals, by means of sequential
signal assignment statements. The execution of a signal assignment statement puts (at
least one) new transaction, or time-value pair, on a driver of the signal assigned to, which
is known as the target signal.

Signals act as data pathways between processes. Each process applies operations to values
being passed through the design entity. We may regard a process as a program implementing
an algorithm, and a Stage 1 VHDL description as a collection of independent programs
running in parallel.

In full VHDL, a target signal appearing in multiple processes has correspondingly many
drivers; this is called a resolved signal. As did Core VHDL, Stage 1 VHDL disallows
resolved signals: a signal is not permitted to appear as the target of a signal assignment

'An additional physical type TIME, used for time expressions in WAIT statements, is modeled by type
INTEGER.

5

statement in more than one process body; equivalently, every signal has a unique driver.

Stage 1 VHDL removes three restrictions previously imposed by Core VHDL:

1. In Stage 1 VHDL, iterative constructs may occur inside a process body; these comprise
the LOOP and WHILE statements (but not FOR loops).

2. In Stage 1 VHDL, a WAIT statement can occur wherever any other sequential statement
can occur, e.g. nested inside conditionals or loops.

3. In Stage 1 VHDL, transport delays in signal assignments can be explicitly indicated,
overriding the default of inertial delay.

In lieu of explicit WAITs, a process may have a sensitivity list of signals that activate pro-
cess resumption upon receiving a new value. The sensitivity list implicitly inserts a WAIT
statement as the last statement of the process body.

The VHDL concurrent signal assignment statement is not included in Stage 1 VHDL, as it
is always equivalent to a PROCESS statement (with a sensitivity list) comprised of just that
signal assignment. Thus data flow architectures, which employ a register-transfer style of
description using concurrent signal assignment statements, are seen to be special cases of
behavioral architectures.

Both a concrete and an abstract syntax for Stage 1 VHDL have been defined [6], as required,
of course, for the implementation of the Stage 1 VHDL translator. Perhaps the following
summary provides the best way of seeing the language subset at a glance:

* design entities: entity declarations + architecture bodies

* object declarations: CONSTANT, VARIABLE, SIGNAL & PORT

* sequential statements

- NULL statement

- variable assignment (scalar & bitvector)

- signal assignment (scalar & bitvector)

- inertial or TRANSPORT delay

- conditional constructs: IF, CASE

- iteration constructs: LOOP, WHILE

- WAIT statement, possibly nested in other constructs

e concurrent statements

- PROCESS statement

6

4 Simplifier Theories for VHDL

SDVS correctness proofs of VHDL descriptions necessitate the extension of the SDVS Sim-
plifier with two new theories, which provide knowledge about the domains VHDL Time and
VHDL Waveforms.

This section describes briefly the function and predicate symbols of these theories, as well
as their interpretations. For information on other Simplifier theories, the reader is referred
to the SDVS 11 Users' Manual [1].

4.1 VHDL Time

The character "t" is used to denote the theory of VHDL Time. The command "activate
t" activates the solver for the theory of VHDL Time, making available the Simplifier's
automatic deductive capabilities for the VHDL Time domain; "deactivate t" deactivates
this solver.

The language of the theory of VHDL Time contains the function and predicate symbols
described by the following table, in which T denotes the domain of VHDL time objects, N
the domain of nonnegative integers, and P the domain of propositional (boolean) values.

VHDL Time Symbols

function symbol simp symbol description type

time TIME time constructor N x N -- T
timeglobal TIMEGLOBAL global time selector T -- N
timedelta TIMEDELTA delta time selector T - N
timeplus TIMEPLUS time addition T x T - T

predicate symbol simp symbol description type

timelt TIMELT time less than T x T - P
timele TIMELE time less than or equal T x T - P
timegt TIMEGT time greater than T x T -- P
timege TIMEGE time greater than or equal T X T - P

The interpretations of the VHDL Time symbols are as follows.

Function time takes two nonnegative integers, m and n, and constructs time(m, n), a VHDL
time object.

Function timeglobal takes a VHDL time object time(m, n) and returns m, the global time
component.

Function timedelta takes a VHDL time object time(m, n) and returns n, the delta time
component.

7

Function timeplus takes two VHDL time objects, time(mi, n1) and time(m 2, n2), and re-
turns a time object that is their sum, according to the following (idiosyncratic) definition:

a if m2 = 0, then

timeplus (time(m1 , n1), time(m 2, n2)) = time(m1 , ni + n 2)

* if m 2 • 0, then

timeplus(time(ml, n1), time(m 2, n2)) = time(m1 + M 2 , 0)

Predicates timelt, timele, timegt, and timege compare two VHDL time objects according
to the lexicographic order in their components.

4.2 VHDL Waveforms

The character "w" is used to denote the theory of VHDL Waveforms. The command
"activate w" activates the solver for the theory of VHDL Waveforms, making avail-
able the Simplifier's automatic deductive capabilities for the VHDL Waveforms domain;
"deactivate w" deactivates this solver.

The language of the theory of VHDL Waveforms contains the function and predicate symbols
described by the following table, in which W denotes the domain of VHDL waveform objects,
TR the domain of transaction objects, T the domain of VHDL time objects, N the domain
of nonnegative integers, P the domain of propositional (boolean) values, and U the universal
domain (any arbitrary object is in U).

VHDL Waveforms Symbols

function symbol simp symbol description type

waveform WAVEFORM waveform constructor TR+ --* W
transaction TRANSACTION transaction constructor T x U --* TR
inertial-update INERTIAL-UPDATE waveform update W x TR+ - W
transport-update TRANSPORT-UPDATE waveform update W x TR+ W
val VAL driver value W x T -* U

predicate symbol simp symbol description type

preemption PREEMPTION preemption test for update W x TR -+ P

The interpretations of the VHDL Waveforms symbols are as follows.

Function waveform takes a sequence of one or more transaction objects, transaction1,
transaction 2, ... , and constructs wave form(transaction1 , transaction 2,...), a waveform
object.

8

Function transaction takes a VHDL time object time(m, n) and a value v, and constructs
a transaction object transaction(time(m, n), v).

Functions inertial-update and transport-update each take a waveform object and a se-
quence of transaction objects, and return the updated waveform according to the VHDL
Language Reference Manual's algorithms for updating projected output waveforms using
inertial and transport delays, respectively (see [4], Section 8.3.1).

Function val takes a waveform object and a VHDL time object, and returns the value of
that transaction in the waveform whose time is nearest to, but not greater than, the time
object.

Predicate preemption takes a waveform and a transaction, and determines whether that
transaction will preempt (replace) prior transactions on the waveform as a result of the
VHDL algorithm for inertial driver update.

9

5 Handshake Protocol

5.1 General Description

The Stage 1 VHDL description for this example, displayed in Section 5.2, is assumed to
reside in a file handshake .vhdl.

Adapted from a set of lecture notes produced by Vantage Analysis Systems, Inc. [9], the
description defines a handshake protocol for communicating data between two processes, in
which:

* Process A sends data to Process B; and

* Process A suspends until the "acknowledge" signal ack
is received from Process B.

Process A Process B

send
send <= '1'; WAIT FOR 50 NS;

data <= datain; dataout <= data;
data

WAIT UNTIL ack = '1'; ack <= '1',

send <= '0'; '0' AFTER 50 NS;

WAIT FOR 100 NS; ack WAIT UNTIL send = '1';

T 1'
datain dataout

Figure 3: Handshake Protocol

11

5.2 VHDL Code

PROGRAM handshake IS

ENTITY handshake IS

PORT (SIGNAL datain : IN INTEGER;
SIGNAL dataout : OUT INTEGER);

END handshake;

ARCHITECTURE register-transfer OF handshake IS

SIGNAL send, ack : BIT;
SIGNAL data : INTEGER;

BEGIN

a : PROCESS

BEGIN

send <= '1';
data <= datain;
WAIT UNTIL ack = '1';
send <= '0';
WAIT FOR 100 NS;

END PROCESS a;

b : PROCESS

BEGIN

WAIT FOR 50 NS;
dataout <= data;
ack <= '1', '0' AFTER 50 NS;
WAIT UNTIL send = '1';

END PROCESS b;

END register-transfer;

12

5.3 State Delta Specification

The state delta handshake. sd below, our specification for this example, is assumed to reside
in a file handshake. spec.

It expresses the claim:

At any point at which the translation of handshake. vhdl holds, there will be a later
point at which the model will have been elaborated and such that at some later
point, the datain will have been transmitted to dataout, its receipt acknowledged,
and the send flag for that data transmission reset. Furthermore, there will be a still
later point, corresponding to increments in vhdltime of first 100 nanoseconds (=
100,000,000 femtoseconds) and then 1 delta cycle, at which the send flag will be set
for the next transmission.

handshake.sd =

[sd pre: (vhdl(handshake.vhdl))
mod: (all)

post: (vhdl-model-elaboration-complete(handshake),
[sd pre: (true)

comod: (all)
mod: (all)

post: (#dataout = .datain,
#ack = 1(1),
#send = 0(1),
[sd pre: (true)

comod: (all)
mod: (all)

post: (#vhdltime =
timeplus (timeplus (. vhdltime,

time(100000000,0)),
time(0,1)),

#send = 1(1))1)])1

13

5.4 Batch Proof

A straightline symbolic execution proof is all that is needed for this example. Notice that we
need to open proofs of the nested state deltas in handshake. sd at the appropriate points.

(defproof handshake.proof
"(setflag autoclose off,

vhdltr \"testproofs/vhdl/handshake.vhdl\",
read \"testproofs/vhdl/handshake.spec\",
prove handshake sd

proof:
(go vhdl-modelJelaboration-complete(handshake),
prove g(2)

proof:
(go #dataout = .datain & *ack = I(I) & #send = 0(l),
prove g(4)

proof:
(go #send = I(I),
close),

close),
close))")

14

6 Two-Bit Counter

6.1 General Description

The Stage 1 VHDL description for this example, displayed in Section 6.2, is assumed to
reside in a file counter. vhdl.

The description models a two-bit counter, that is, a device that counts "ticks" of a "clock"
modulo 4. A "tick," for the purposes of this example, is a change of the clock signal from
bit '0' to bit '1'. The number of such ticks is recorded on output bitvector q of length 2.

Ordinarily, a design under test is used as a component in a test bench with another en-
tity, the test generator, whose purpose is to generate test values. Since Stage 1 VHDL
does not encompass such structural descriptions, we incorporate a test-generating process
clock-driver as part of the architecture body in the description below. This process
generates the ticks of signal clock, which are counted by process count-up.

6.2 VHDL Code

PROGRAM counter IS

ENTITY count IS

PORT (SIGNAL q : OUT BITVECTOR(1 DOWNTO 0));

END count;

ARCHITECTURE behavior OF count IS

SIGNAL clock : BIT;

BEGIN

clock-driver: PROCESS

BEGIN

clock <= '0', '1' AFTER 50 NS;
WAIT FOR 100 NS;

END PROCESS clock-driver;

15

count-up: PROCESS (clock)

VARIABLE count-value : INTEGER := 0;

BEGIN

IF clock = 'I' THEN

count-value := (count-value + 1) MOD 4;

IF count-value MOD 2 = 0
THEN q(O) <= '0' AFTER 10 NS;
ELSE q(O) <= '1' AFTER 10 NS;

END IF;

IF countmvalue / 2 = 0
THEN q(1) <= '0' AFTER 10 NS;
ELSE q(1) <= '1' AFTER 10 NS;

END IF;

END IF;

END PROCESS count-up;

END behavior;

6.3 State Delta Specification

The state delta counter. sd below, our specification for this example, is assumed to reside
in a file counter. spec.

It expresses the claim:

At any point at which the translation of counter. vhdl holds, 60 + 100*.n nanosec-
onds later (for n = 0 or 1) it will be the case that if I . q I is the current count of clock
ticks, then in another 100 nanoseconds the count I #q I of clock ticks will be (I. q I +
1) mod 4.

The full specification and proof of the behavior of descriptions such as this one is a topic
of current research in SDVS; see Section 6..5.

16

counter.sd =

[sd pre: (vhdl(counter.vhdl),
covering(all,n),

.n = 0 or .n = 1)
comod:

mod: (all)
post: (#vhdltime = time(60 + 100*.n, 0),

formula(counter sdbody))]

counter.sdbody =

[sd pre: (true)
comod: (all)

mod: (all)
post: (#vhdltime = timeplus(.vhdltime,time(100,0)),

I#qI = (I.qI + 1) mod 4)]

6.4 Batch Proof

The proof simply involves arguing by cases on the number n of clock ticks.

(defproof counter.proof
"(setflag autoclose off,

vhdltr \"testproofs/vhdl/counter.vhdl\",
read \"testproofs/vhdl/counter.spec\",
prove counter.sd

proof:
cases .n = 0

then proof:
(go #vhdltime = time(60,O),

prove g(2)
proof:

(go I#qI = (I.qI + 1) mod 4,
close),

close)
else proof:

(go #vhdltime = time(160,0),
prove g(2)

proof:
(go I#qI = (I.qI + 1) mod 4,

close),
close))")

17

6.5 Discussion

The intended behavior of the counter is modeled (1) by the expression I*q - (I .q I + 1)
mod 4, to indicate that the new value of the two-bit counter q is one greater (modulo 4)
than its previous value, and (2) by the time expressions, to indicate the hardware times at
which q changes value.

The above verification demonstrates that the counter model behaves correctly for the hard-
ware times time(60,0) and time(160,0).

More generally, one would wish to require correct behavior of the counter for all hardware
times time(60 + 100*.n, 0), where n is a nonnegative integer. This more comprehensive
specification is easily formulated by slightly modifying the state deltas in Section 6.3, as
follows:

couter.sd =

[sd pre: (vhdl(counter.vhdl),
covering(all,n),
0 le n)

comod:
mod: (all)

post: (#vhdltime = time(60 + 100*.n, 0),
formula(counter. sdbody))]

counter.sdbody =

[sd pre: (true)
comod: (all)

mod: (all)
post: (#vhdltime = timeplus(.vhdltime,time(100,O)),

J#ql = (l.ql + 1) mod 4)]

At present we cannot prove the general specification because the SDVS Simplifier and
Stage 1 VHDL translator are currently limited to reasoning about concrete, as opposed to
symbolic, time values. Furthermore, to achieve such general results concerning all hardware
cycles, the capability of induction over VHDL simulation cycles would be required.

We are currently investigating ways to define the necessary induction rule. Although several
technical problems must be overcome, we remain optimistic about the feasibility of verifying
VHDL hardware descriptions by symbolic execution with symbolic VHDL time expressions.

18

7 TRANSPORT Delay

7.1 General Description

The Stage 1 VHDL description for this example, displayed in Section 7.2, is assumed to
reside in a file transport-delay .vhdl.

The description illustrates the translation and proof of a Stage 1 VHDL description involving
a TRANSPORT delay in a sequential signal assignment statement, a language feature not
available in Core VHDL.

7.2 VHDL Code

PROGRAM transport-delay IS

ENTITY transport-delay IS

PORT (SIGNAL a INOUT INTEGER := 0;
SIGNAL b OUT INTEGER

END transport-delay;

ARCHITECTURE behavior OF transport-delay IS

BEGIN

PROCESS (a)

BEGIN

b <= TRANSPORT a AFTER 10 NS;

IF a < 3 THEN

a <= a + I AFTER I NS;

END IF;

END PROCESS;

END behavior;

19

7.3 State Delta Specification

The state delta transport-delay sd below, our specification for this example, is assumed
to reside in a file transport-delay. spec.

It expresses the claim:

At any point at which the translation of transport-delay. vhdl holds, there will be
a later point at which the model will have been elaborated, such that at some later
point, the time time(13,O) will have been achieved, the values of both a and b at
this time will be 3, and the model will have completed execution.

transport-delay .sd =

[sd pre: (vhdl(transport.delay.vhdl))
comod:

mod: (all)
post: (vhdl_model-elaboration.complete(transport-delay),

Esd pre: (true)
comod: (all)

mod: (all)
post: (#vhdltime = time(13,O),

#a= 3,
#b= 3,
vhdl-modelexecution.complete(transport-delay))])]

7.4 Batch Proof

A straightline symbolic execution proof is all that is needed for this example.

(defproof transport.delay .proof
"(setflag autoclose off,

vhdltr \"testproofs/vhdl/transport-delay. vhdl\",
read \"testproofs/vhdl/transport.delay.spec\",
prove transport-delay. sd

proof:
(go vhdl_model-elaboration-complete(transport.delay),
prove g(2)

proof:
(go vhdl-model-execution-complete(transport-delay),
close),

close))")

20

7.5 Discussion

Two types of time delay can be specified by a sequential signal assignment statement, and
Stage 1 VHDL encompasses both. Inertial delay, the default, models a target signal's inertia
that must be overcome in order for the signal to change value; that is, the scheduled new
value must persist for at least the time period specified by the delay in order actually to

be attained by the target signal. Transport delay, on the other hand, must be explicitly
indicated in the signal assignment statement with the reserved word TRANSPORT, and models
a "wire delay" wherein any pulse of whatever duration is propagated to the target signal
after the specified delay.

21

8 WAIT in IF

8.1 General Description

The Stage 1 VHDL description for this example, displayed in Section 8.2, is assumed to
reside in a file wait-in if. vhdl.

The example illustrates the translation and proof of a Stage 1 VHDL description involving
WAIT statements embedded in an IF statement, a possibility disallowed in Core VHDL.

The description itself increments the input ports x and y by 2 and 4, respectively, and is
intended simply to exercise the occurrences of the embedded WAITs.

8.2 VHDL Code

PROGRAM wait-in-if IS

ENTITY wait-in-if IS
PORT (SIGNAL x, y: INOUT INTEGER);

END wait_in-if;

ARCHITECTURE behavior OF wait-in-if IS

SIGNAL a : INTEGER := 4;

BEGIN

PROCESS

BEGIN

IF a /= 0 THEN

IF a MOD 2 = 0 THEN
X <=x+ 1;
a <= a - 1;
WAIT FOR 10 NS;
y < y + 2;

ELSE
a<=a- 1;
WAIT FOR 5 NS;

END IF;

23

ELSE
WAIT;

END IF;

END PROCESS;

END Behavior;

8.3 State Delta Specification

The state delta wait in-if.sd below, our specification for this example, is assumed to
reside in a file waitin-if . spec.

It expresses the claim:

At any point at which the translation of wait-in.if . vhdl holds, there will be a later
point at which the model will have been elaborated, such that at some later point, x
will have been incremented by 2, y will have been incremented by 4, and the model
will have completed execution.

wait-in-if.sd =

[sd pre: (vhdl(wait-in-if.vhdl))
comod:

mod: (all)
post: (vhdl_model-elaboration-complete(vait-in-if),

[sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .x + 2,

#y = .y + 4,
vhdl._modelexecution_ complete(wait_ in_.if))])]

24

8.4 Batch Proof

A straiglitline symbolic execution proof is all that is needed for this example.

(defproof wait-.in-.if .proof
"2 (setf lag autoclose off,
vhdltr \"testproofs/vhdl/wait-in-if .vhdl\",
read \"testproofs/vhdl/wait-in-.if .spec\",
prove wait-.in...if .sd

proof:
(go vhdl-model-elaboration-complete(wait..i~n-if),
prove g(2)

proof:
(go vhdl-model-execution..complete(wait-in-f),
close),

close))")

25

9 WAIT in WHILE

9.1 General Description

The Stage 1 VHDL description for this example, displayed in Section 9.2, is assumed to
reside in a file wait-in-while .vhdl.

The example illustrates the translation and proof of a Stage 1 VHDL description involving
WAIT statements embedded in a WHILE statement. No loop statements of any kind - nor,
perforce, WAIT statements embedded in loops -- were allowed in Core VHDL.

The description itself is a behavioral model of an integer multiplier.

9.2 VHDL Code

PROGRAM wait-in-while IS

ENTITY wait-in-while IS
PORT (SIGNAL x : IN INTEGER 2

SIGNAL m : IN INTEGER 3
SIGNAL p: OUT INTEGER 0);

END wait-in-while;

ARCHITECTURE behavior OF wait-in.while IS
BEGIN

mult : PROCESS
VARIABLE i : INTEGER := 0;

BEGIN

WHILE (i < ABS(m)) LOOP
p <= p +X;
i := i + 1;
WAIT FOR 10 NS;

END LOOP;

IF m < 0 THEN
p <= - p;

END IF;

WAIT ON x, m;

END PROCESS mult;

END behavior;

27

9.3 State Delta Specification

The state delta wait-in.while, sd below, our specification for this example, is assumed to
reside in a file wait-in-while. spec.

It expresses the claim:

At any point at which the translation of wait.in.while.vhdl holds, there will be a
later point at which the model will have been elaborated, such that at some later
point, the value of p will be the product of the input values of m and x, and the model
will have completed execution.

wait-in-while .sd

[sd pre: (vhdl (wait-in-while.vhdl))
comod:

mod: (all)
post: (vhdl-model-elaboration-complete(vait-in.while),

[sd pre: (true)
comod: (all)

mod: (all)
post: (#p = .m * x,

vhdl-model-execution.complete(wait-in-while))])]

9.4 Batch Proof

A straightline symbolic execution proof is all that is needed for this example.

(defproof wait-in-while .proof
"(setflag autoclose off,

vhdltr \"testproofs/vhdl/wait-in-while.vhdl\",
read \"testproofs/vhdl/wait-in-while. spec\",
prove wait-in-while .sd

proof:
(go vhdl-model-elaboration-complete(waitin-while),
prove g(2)

proof:
(go vhdl-model-execution.complete(wait-in.while),
close),

close))")

28

9.5 Discussion

The input ports x and m in the above description are supplied with concrete values, which is
what makes the proof by straightline execution possible. Symbolic values for the input ports
would necessitate an induction over the loop; currently, we do not know how to perform
such an induction in the presence of the embedded WAIT statement.

The difficulty is that we do not yet know how to perform inductions over simulation cycles of
a VHDL description, partly because SDVS cannot yet reason about symbolic representations
of VHDL time, and partly because it is not yet clear how to state invariants that must hold
at the end of each simulation cycle. Attempting to induct over a loop with an embedded
WAIT statement, however, would immediately entail just such an induction over simulation
cycles: the "step" case of the induction would assume that a certain (unspecified) number
of loop executions had been performed, hence a certain number of executions of the WAIT
statement, and hence - since a WAIT suspends the parent process until a later simulation
cycle - a certain number of simulation cycles for the whole description.

This is an issue for further research relative to the incorporation of VHDL into SDVS.

29

10 EXIT from Outer Loop

10.1 General Description

The Stage 1 VHDL description for this example, displayed in Section 10.2, is assumed to
reside in a file exit.-outer.loop. vhdl.

The example illustrates the translation and proof of a Stage 1 VHDL description involving
an EXIT statement in a nested WHILE loop. No loop statements of any kind - nor, perforce,
EXITs from loops - were allowed in Core VHDL.

In the description itself, the EXIT request (made from the inner loop) is to exit the outer
loop, which then results in the suspension of the process and the assignment of '1' to the
zero-th order bit of the bitvector v. Because of its sensitivity to changes in v, the process
executes a second time, whereupon the zero-th order bit of v is reset to '0'.

10.2 VHDL Code

PROGRAM exit.outer-loop IS

ENTITY exit.outer.loop IS

PORT (SIGNAL v : INOUT BITVECTOR(2 DOWNTO 0) ="000");

END exit-outer-loop;

ARCHITECTURE behavior OF exit.outer.loop IS

BEGIN

set-bit_0 : PROCESS (v)
VARIABLE i, j : INTEGER;

BEGIN

i := 0;

i.loop:
WHILE (i < 3) LOOP

j : 0;

jloop:
WHILE Qj <= 10) LOOP

EXIT i-loop WHEN j > i;

31

IF (j = i)
THEN v(j) <= NOT(v(j));

END IF;

j :j+ 1;

END LOOP j-loop;

i : + 1;

END LOOP i-loop;

END PROCESS set-bitO;

END behavior;

10.3 State Delta Specification

The state delta exit.outer_. sd below, our specification for this example, is assumed to
reside in a file exit-outer-loop. spec.

It expresses the claim:

At any point at which the translation of exit -outer.loop .vhdl holds, there will be
a later point at which the model will have been elaborated, such that at some later
point, the value of bitvector v will be 1 in three bits, and at yet a later point, it will

be 0 in 3 bits.

exit-outer-loop .sd =

[sd pre: (vhdl (exit.outer-loop.vhdl))
comod:

mod: (all)
post: (vhdl.model-elaboration- complete(exit-outer-loop),

[sd pre: (true)
comod: (all)

mod: (all)
post: (*v = 1(3),

[sd pre: (true)
comod: (all)

mod: (all)

post: (#v = 0(3))])])]

1 32

10.4 Batch Proof

A straightline symbolic execution proof is all that is needed for this example.

(defproof exit-outer-loop-test.proof
"(setflag autoclose off,

vhdltr \"testproofs/vhdl/exit.outer.loop.vhdl\",
read \"testproofs/vhdl/exit-outer-loop.spec\",
prove exit-outer-loop.test.sd

proof:
(go vhdl-model-elaboration-complete(exit-outer-loop),
prove g(2)

proof:
(go #v = 1(3),
prove g(3)

proof:
(go #v = 0(3),
close),

close),
close))")

33

11 Shift-and-Add Multiplier

11.1 General Description

The Stage 1 VHDL description for this example, displayed in Section 11.2, is assumed to
reside in a file shift-and.add.multiplier. vhdl. Note that the syntax of Stage 1 VHDL
differs slightly from that of IEEE Standard 1076-1987 VHDL [4] in the representation of
BIT-VECTOR constants as strings (of bit characters). In a fully legal implementation of the
language, we would need to write, e.g., B"100000000" rather than 00000000.2

This description serves as a low-level behavioral implementation for the design modeled by
the description in Section 14 of [5]: a device for computing the product of two integer inputs
- a nonnegative "multiplier" m and a "multiplicand" x - returning the result through an
integer output port, p.

In the description of [5], the product was computed as the sum of the products of x with
the terms in the binary expansion of m:

p = x * [(m mod 2) + ((m / 2) mod 2) * 2
"+ ((m / 4) mod 2) * 4
"+ (m / 8) * 8]

= (m mod 2) * x + ((m / 2) mod 2) * 2 * x
+ ((m / 4) mod 2) * 4 * x
+ (m /8) * 8 * x

The algorithm embodied in the VHDL description below is identical, with the only difference
being in the implementation of the multiplier m and the multiplicand x as bitvectors of length
4 (corresponding to integers in the range 0 to 15). The appropriate portions of VHDL code
are modified to describe actual shifts (right and left) of bits, previously simulated by division
and multiplication by 2.

We gratefully acknowledge Professor Richard Auletta of George Mason University for pro-
viding us with the VHDL code for this example, and for his collaboration on the proof [17].
Together, we defined the overall proof structure shown in Section 11.4. Professor Auletta
proposed some integer and bitstring lemmas necessary for static portions of the proof, shown
in Sections 11.5 and 11.6. Assuming the truth of these niostly unproved lemmas, the main
proof was able to close.

With one exception, we have proved the required lemmas, as well as a number of subordinate
static facts. As discussed in Section 11.7, however, the original statement of one key lemma
(xn) was erroneous. While our effort to patch the resulting hole in the main proof has
solved the problem in principle, an actual implementation of a working proof still needs to
be carried out.

In our discussion, we shall concentrate on clarifying the various issues encountered in our
attempt to complete this verification example.

2This has been rectified in Stage 2 VHDL [8].

35

11.2 VHDL Code

PROGRAM shift-and-add.multiplier IS

ENTITY shift-and-add.multiplier IS

PORT (SIGNAL x IN BITVECTOR(3 DOWNTO 0);
SIGNAL m IN BITVECTOR(3 DOWNTO 0);
SIGNAL p BUFFER BITVECTOR(7 DOWNTO 0)

END shift-and-add-multiplier;

ARCHITECTURE behavior OF shift-and.add.multiplier IS

-- signals to act like a shift register
SIGNAL sr8 : BITVECTOR(7 DOWNTO 0);
SIGNAL s : BITVECTOR(7 DOWNTO 0);

-- clock signals
SIGNAL phi : BIT '0';
SIGNAL add : BIT '0';
SIGNAL reset : BIT '1';

BEGIN

sr_4 : PROCESS

VARIABLE sr4 : BITVECTOR(3 DOWNTO 0) "0000";

BEGIN

WAIT UNTIL phi = '1';

IF reset = 'I' THEN -- load

sr4 := m;
ELSE -- shift right

sr4(O) sr4(1);
sr4(i) sr4C2);

sr4(2) sr4(3);
sr4(3) '0';

END IF;

36

add <= sr4(O); -- serial output the shifted value

END PROCESS sr_4;

sr_8 : PROCESS

VARIABLE tmp : BITVECTOR(7 DOWNTO 0);

BEGIN

WAIT UNTIL phl = '1';

tmp := sr8;

IF reset = '1' THEN -- load
tmp(O) x(O);
tmp(l) x(1);

tmp(2) x(2);

tmp(3) x(3);
tmp(4) '0';
tmp(5) 0'';
tmp(6) '0';
tmp(7) '0';

ELSE -- shift left

tmp(7) tmp(6);
tmp(6) tmp(5);
tmp(S) tmp(4);
tmp(4) tmp(3);
tmp(3) tmp(2);

tmp(2) tmp(l);
tmp(i) tmp(O);

tmp(O) '0';
END IF;

sr8 <: tmp; -- parallel output the shifted value

END PROCESS sr_8;

latch_8 : PROCESS

BEGIN

WAIT UNTIL phl= '1';

37

IF reset = I1' THEN -- clear the data
p <= "00000000"; -- parallel output the latched value

ELSIF add = '1' THEN -- latch the data
p <= s; -- parallel output the latched value

END IF;

END PROCESS latch.8;

adder-.8 :PROCESS (p, sr8)

VARIABLE sum BIT-VECTOR(7 DOWNTO 0);
VARIABLE cout BIT-VECTOR(7 DOWNTO 0);

BEGIN

sum(0) p(O) XOR sr8(0);
cout(0) sr8(0) AND p(O);

sum(l) p~i) XOR sr8(l) XOR cout(o);
cout(i) (p~i) AND sr8Ci)) OR (p~i) AND cout(0)) OR Csr8(1) AND cout(O));

sum(2) PC2) XOR sr8(2) XOR cout~l);
cout(2) := p(2) AND sr8(2)) OR (p(2) AND cout~i)) OR Csr8(2) AND cout(i));

sum(3) :=p(3) XOR sr8C3) XOR coutC2);
cout(3) :=(p(3) AND sr8(3)) OR (p(3) AND cout(2)) OR (sr8(3) AND cout(2));

sum(4) P(4) XOR sr8(4) XOR cout(3);
cout(4) :=(pC4) AND sr8C4)) OR (p(4) AND cout(3)) OR (sr8(4) AND cout(3));

sum(S) P(5) XOR sr8(5) XOR cout(4);
cout(S) (p(S) AND sr8(5)) OR (p(5) AND cout(4)) OR Csr8(5) AND coutC4));

sum(6) PC6) XOR sr8(6) XOR cout(S);
cout(6) (p(6) AND sr8C6)) OR (p(6) AND cout(S)) OR (sr8(6) AND cout(5));

sum(7) pM7 XOR sr8C7) XOR cout(6);
cout(7) (p(7) AND sr8C7)) OR (p(7) AND cout(6)) OR (sr8(7) AND cout(6));

s <= sum;

'END PROCESS adder..8;

38

clock : PROCESS

BEGIN

phi <= NOT phi AFTER 40 NS; -- 'I' -> '0' clock tick

reset <= '0' AFTER 80 NS;
WAIT ON phi;
phi <= NOT phi AFTER 40 NS;
WAIT ON phi;

phi <= NOT phi AFTER 40 NS; -- 'I' -> '0' clock tick
WAIT ON phi;
phi <= NOT phi AFTER 40 NS;
WAIT ON phi;

phi <= NOT phi AFTER 40 NS; -- 'I' -> '0' clock tick
WAIT ON phi;
phi <= NOT phi AFTER 40 NS;
WAIT ON phi;

phi <= NOT phi AFTER 40 NS; -- 'I' -> '0' clock tick
WAIT ON phi;
phi <= NOT phi AFTER 40 NS;
WAIT ON phi;

phi <= NOT phi AFTER 40 NS; -- 'I' -> '0' clock tick
WAIT ON phi;
phi <= NOT phi AFTER 40 NS;
WAIT ON phi;

WAIT;

END PROCESS clock;

END behavior;

11.3 State Delta Specification

The state delta shift-and.add-multiplier. sd below, our specification for this example, is
assumed to reside in a file shift-and.add.multiplier. spec.

It expresses the claim:

39

At any point at which the translation of shift.a~nd-.add-multiplier.vhdl holds,
there will be a later point at which the model will have been elaborated, such that at
some later point the integer value of the output bitvector p will be the product of the
integer values of the input bitvectors m and x; furthermore, at this point the model
will be done executing.

shift-and..add.multiplier. sd=

[sd pre: (vhdl (shift-and..add..multiplier. vhdl))
comod:

mod: (all)
post: (vhdl..-model-..elaborat ion-..compl et e(shift and-add..mult ipl ier),

[sd pre: (I.mI ge 0,
I.mI le 15,

I-xt ge 0,
1.x1 le 15)

comod: (all)
mod: (all)

post: (I~pI = I.mI * I.XI,
vhdl-model-.execution-complete (shift-.and-.add.multiplier))])]

11.4 Batch Proof

(defproof shift-a~nd-.add.multiplier .proof
"1(setflag autoclose off,,
vhdltr \"testproofs/vhdJ./shift..and-.add-multiplier .vhdl\",
read \"testproofs/vhdl/shift...and..add..multiplier. spec\",
read \"testproofs/vhdl/shift-and..add-.multiplier. integerlemmas\",
read \"testproofs/vhdl/shift-and-.adcL-multiplier.bitstringlemmas\",
activate m,
prove shift..and-.add-.multiplier .sd
proof:

(go vhdl-model-elaboration-.complete(shift-.and-add-multiplier),
prove g(2)

proof:
(interpret proof. static,
go.,
cases .p = val(.driver\\p, .vhdltime-.previous)
then proof:

(go,
cases .sr8 = val(.driver\\sr8,.vhdltime-.previous)
then proof:

(go,
interpret bitadd,
cases .add = 1(l)

40

then proof:
interpret proof.intermediate

else proof:
interpret proof.intermediate)

else proof:
(go,
interpret bitadd,
cases .add = 1(1)

then proof:
interpret proof.intermediate

else proof:
interpret proof.intermediate))

else proof:
(go,
interpret bitadd,
cases .add = 1(1)

then proof:
(go,
cases .p = val(.driver\\p,.vhdltime.previous)

then proof:
interpret proof.intermediate

else proof:
interpret proof.intermediate)

else proof:
(go,
interpret bitadd,
cases sr8 = val(.driver\\sr8,.vhdltime.previous)

then proof:
interpret proof.intermediate

else proof:
interpret proof.intermediate))),

date,
close))")

(defproof proof.static
"(readaxioms \"axioms/div.axioms\",

provebyaxiom (I.mI / 2) / 2 = .m / 2 - (1 + 1)
using: divby2repeat,

notice (I.ml / 2) / 2 = I.ml / 4,
provebyaxiom (I.mI / 2 - 2) / 2 = .m / 2 - (2 + 1)

using: divby2repeat,
notice (I.ml / 4) / 2 = I.mI / 8,
provebylemma (I.ml / (2 (4 - I))) mod 2 = I.mI I (2 (4 - 1))

using: maxfactors,
notice (I.ml / 8) mod 2 = I.ml / 8,

41

provebylemma I.mi mod 2 ge 0 & I.mi mod 2 it 2

using: modposrange,
provebylemma (I.ml / 2) mod 2 ge 0 & (I.ml / 2) mod 2 it 2

using: modposrange,
provebylemma (I.ml / 4) mod 2 ge 0 & (I.ml I 4) mod 2 it 2

using: modposrange,
provebylemma (i.ml / 8) mod 2 ge 0 & (I.ml / 8) mod 2 it 2

using: modposrange,
provebylemma i.ml = (i.ml / 2) * 2 + l.ml mod 2

using: remdef-with-mod,
provebylemma i.mI / 2 = ((I.ml / 2) / 2) * 2 + (I.ml / 2) mod 2

using: remdef-with-mod,

notice i.mI / 2 = (I.ml / 4) * 2 + (I.ml / 2) mod 2,

notice I.mI = ((I.mi / 4) * 2 + (I.mI / 2) mod 2) * 2 + I.ml mod 2,

provebylemma ((I.ml / 4) * 2 + (I.ml / 2) mod 2) * 2 =

(I.ml / 4) * 2 * 2 + ((I.ml / 2) mod 2) * 2

using: multdistributeplus.right,
notice i.ml = ((I.ml / 4) * 4 + ((I.ml / 2) mod 2) * 2) + i.ml mod 2,

provebylemma I.mi / 4 = ((I.ml / 4) / 2) * 2 + (I.ml / 4) mod 2

using: remdef-with-mod,
notice i.ml / 4 = (l.ml / 8) * 2 + (I.ml / 4) mod 2,

notice I.ml = (((I.ml / 8) * 2 + (I.ml / 4) mod 2) * 4 +

((I.ml / 2) mod 2) * 2) +

I.ml mod 2,
provebylemma (Ci.ml / 8) * 2 + (I.ml / 4) mod 2) * 4 =

(I.ml / 8) * 2 * 4 + ((I.ml / 4) mod 2) * 4

using: multdistributeplus-right,
notice I.ml = (((I.ml / 8) * 8 +

((i.ml / 4) mod 2) * 4) +

((i-mI / 2) mod 2) * 2) +
I.ml omod 2,

provebylemma ((((I.ml / 8) * 8 +
((i.ml / 4) mod 2) * 4) +

((I.ml / 2) mod 2) * 2) +

I.mI mod 2) * J.xl

(((I.ml / 8) * 8 +
((I.ml / 4) mod 2) * 4) +

((l.ml / 2) mod 2) * 2) * I.xl +
(I.ml mod 2) * i.xl

using: multdistributeplus.right,
provebylemma (((I.ml / 8) * 8 +

((I.ml / 4) mod 2) * 4) +

((I.ml / 2) mod 2) * 2) * I.xI

((I.ml / 8) * 8 + ((i.ml / 4) mod 2) * 4) * 1.xl +

42

(((I.ml / 2) mod 2) * 2) * I.xI
using: multdistributeplus-right,

provebylemma ((I.ml / 8) * 8 + ((I.ml 1 4) mod 2) * 4) * I.xI

((I.m[/ 8) * 8) * I.xI + (((I.m[/ 4) mod 2) * 4) * I.x[
using: multdistributeplus-right,

notice I.ml * I.xl = (I.ml / 8) * 8 * I.xI +
((W.mI / 4) mod 2) * 4 * [.xI +
(([.ml / 2) mod 2) * 2 * I.xI +
(I.m[mod 2) * I.xI,

provebylemma I.m<O:O>I = (O.m[/ 2 0) mod 2
using: bitmod,

provebylemma I.m<1:l>I = (I.ml / 2 1) mod 2
using: bitmod,

provebylemma I.m<2:2>I = ([.ml / 2 2) mod 2
using: bitmod,

provebylemma I.m<3:3>I = (I.m[/ 2 3) mod 2
using: bitmod)")

(defproof proof. intermediate
"(go,

interpret bitadd,
cases .add = I(i)

then proof:
(go,
interpret bitadd,
cases .add = 1(1)

then proof:
interpret proof .simple

else proof:
interpret proof simple)

else proof:
(go,
interpret bitadd,
cases .add = 1(1)

then proof:
interpret proof .simple

else proof:
interpret proof. simple))")

43

(defproof proof.simple
"(go,

interpret bitadd,
cases .add = 1(I)

then proof: (go, close)
else proof: (go, close))")

(defproof bitadd
"(provebylemma (.p ++ .sr8)<O:O> = .p<O:O> usxor .sr8<O:O>

using: xO,
provebylemma (.p ++ .sr8)<1:1> =

(.p<1:1> usxor .sr8<1:1>) usxor
.sr8<1 - 1:1 - I> && .p<l - 1:1 - 1>

using: xl,
provebylemma (.p ++ .sr8)<2:2> =

(.p<2:2> usxor .sr8<2:2>) usxor .cout<2 - 1:2 - 1>

using: xn,
provebylemma (.p ++ .sr8)<3:3> =

(.p<3:3> usxor .sr8<3:3>) usxor .cout<3 - 1:3 - I>

using: xn,
provebylemma (.p ++ .sr8)<4:4> =

(.p<4:4> usxor .sr8<4:4>) usxor .cout<4 - 1:4 - 1>

using: xn,
provebylemma (.p ++ .sr8)<5:5> =

(.p<5:5> usxor .sr8<5:5>) usxor .cout<S - 1:5 - 1>
USing: in,

provebylemma (.p ++ .sr8)<6:6> =
(.p<6:6> usxor .sr8<6:6>) usxor .cout<6 - 1:6 - 1>

using: xn,

provebylemma (.p ++ .sr8)<7:7> =

(.p<7:7> usxor .sr8<7:7>) usxor .cout<7 - 1:7 - 1>
USing: in,

provebylemma .sr8[1] usxor .p[i] = .p[11 usxor .sr8[1]
using: usxor\\commute,

provebylemma sr8 [2] usxor p [2] = p [2] usxor sr8 [2]

using: usxor\\commute,
provebylemma .sr8[3] usxor p[3] = p[3] usxor sr8[3]

using: usxor\\commute,
provebylemma sr8[4] usxor p[4] = .p[4] usxor sr8[4]

using: usxor\\commute,
provebylemma sr8[5] usxor p[5] = p[5] usxor sr8[5]

using: usxor\\commute,
provebylemma sr8[6] usxor .p[6] = .p[6] usxor sr8[6]

using: usxor\\commute,

44

provebylemma .sr8E7] usxor .p[7] = .p[7] usxor .sr8[7]
using: usxor\\commute,

provebylemma I(.p ++ .sr8)<7:0>1 =
I(.p ++ .sr8)<7:7> 0 (.p ++ .sr8)<6:6> 0
(.p ++ .sr8)<5:S> 0 (.p ++ .sr8)<4:4> 0
(.p ++ .sr8)<3:3> 0 (.p ++ .sr8)<2:2> 0

(.p ++ .sr8)<1:1> c (.p ++ .sr8)<O:O>l
using: add8)")

11.5 Integer Lemmas

;* Top-level Integer Lemmas *;

(deflemma maxf actors
"x ge 0 & y gt 0 & n ge 1 & x it y - n

-- > (x / (y - (n - 1))) mod y =x /(y "(n W)"

(x y n) nil nil nil
:proof
"(provelemma maxfactors

proof:

(provebyaxiom x / y (n - 1)
= ((x / y (n-i))/ y) * y +

(x / y (n - 1)) rem y

using: remdef,
provebylemma (x / y (n-)) / y = x / y n

using: divbyylemma,
provebyaxiom x / y n 0

using: diveqO,

provebyaxiom y * 0 = 0
using: multO,

provebyaxiom y * 0 = 0 * y
using: multcommute,

provebyaxiom y (n - 1) gt 0
using: el,

provebyaxiom x / y (n - 1) ge 0
using: divgeO,

provebylemma (x / y C- - 1)) mod y
= (x / y (n - 1)) rem y

using: nevmodreml))")

45

(deflemma modposrange
"y gt 0 -- > x mod y ge 0 & x mod y it y"
Ux y) nil nil nil
:Proof "1(readaxioms \"axioms/mod. axioms\",

provelemma modposrange
proof:

(provebyaxiom x mod y ge 0
using: modpos,

provebylemma x mod y it y
using: modposlt,

close))")

(def lemma remdef-with-mod
",x ge 0 & y gt 0 --> x =(x / y) * y +' x mod y"
(x y) nil nil nil
:Proof "1(readaxioms \"axioms/rem. axioms\",

provelemma remdef-with-mod
proof:

(provebylemma x mod y =x rem y
using: mod-.rem-.eq,

provebyaxiom x = Ux y) * y + x rem y
using: remdef,

close))")

(def lemma multdistributeplus-.right
"1(y + Z) * x =y * x +z * x11

(x y z) nil nil nil
:proof "(activate m,

readaxioms \"axioms/mult .axioms\"1,
provelemma multdistributeplus..zight
proof:

(notice (y + Z) * x = x * (y +)
notice y * x = x * Y
notice z * x = x * z
provebyaxiom x * (y + z) = x * y + x *z

using: multdistributeplus,
close))")

46

;* Subordinate Integer Lemmas *;

;; For positive y, non-negative x, and n greater than 1,
;; the quotient of x and y to the (n-l)th power divided by y
;; is equal to the quotient of x and y to the nth power.

;; Used in proof of lemma: maxfactors

(deflemma divbyylemma
"(n ge 1 & y gt 0) & x ge 0

-- > (x / y - (n-)) / y = x / y n
(x y n) nil nil nil
:proof "(provelemma divbyylemma

proof:
(provebyaxiom y 1 * y (n - 1) = y (1 + (n - 1))

using: e3,
provebylemma y 1 = y

using: tothezerothlemma,
provebyaxiom y (n - 1) gt 0

using: el,
provebylemma (x / y (n - 1)) / y

x / (y (n- 1) * y)
using: divdivlemma))")

;; y raised to the first power is y.

;; Used in proof of lemma: divbyylemma

(deflemma tothezerothlemma
"y -1 = yi

(y) nil nil nil
:proof "(provelemma tothezerothlemma

proof:
cases y = 0

then proof:
else proof:

(provebyaxiom y - 1 = y * y (1 - 1)
using: expmult,

provebyaxiom y - 0 = 1
using: e4))")

47

,; For b,c positive and a non-negative,

,; division a by b and then by c is equal to dividing a by (b*c).

,; Used in proof of lemma: divbyylemma

; N.B.: this proof may have to be modified as a bug
in the axiom divdistl was discovered after it was proved.

(deflemma divdivlemma
"(a ge 0 & b gt 0) & c gt 0 -- > (a /b) / c = a / (b * c)"
(a b c) nil nil nil

:proof "(provelemma divdivlemma
proof:

(provebyaxiom a = (a / b) * b + a rem b

using: remdef,

provebyaxiom a / b
= ((a / b) / c) * c + (a / b) rem c

using: remdef,
provebyaxiom b *

(((a / b) / c) * c + (a / b) rem c)
= b * (((a / b) / c) * c) +

b * ((a / b) rem c)
using: multdistributeplus,

provebylemma ((a / b) rem c) * b + a rem b it b * c

using: remlesslemma,
provebyaxiom b * c gt 0

using: multgtO,
provebyaxiom a / b ge 0

using: divgeO,

provebyaxiom (a / b) / c ge 0
using: divgeO,

provebyaxiom ((b * c) * ((a / b) / c) +

(b * ((a / b) rem c) + a rem b)) / (b * c)

= (a / b) I c
using: divdist1))")

;; Used in proof of lemma: divdivlemma

(deflemma remlesslemma
"(a ge 0 & b gt 0) & c gt 0

-- > ((a / b) rem c) * b + a rem b it b * c"
(a b c) nil nil nil
:proof "(provelemma remlesslemma

proof:

48

cases a = 0
then proof:

(provebyaxiom a / b = 0
using: diveqO,

provebyaxiom (a / b) rem c = 0
using: remO,

provebyaxiom a rem c = 0
using: remO,

provebyaxiom 0 rem b = 0
using: remO,

provebyaxiom b * c gt 0
using: multgtO)

else proof:
(provebyaxiom abs(a rem b) = a rem b

using: rempos,
provebylemma a rem b ge 0

using: absxeqxlemma,
provebyaxiom a / b ge 0

using: divgeO,
cases a / b = 0

then proof:
(provebyaxiom 0 rem c = 0

using: remO,
provebyaxiom abs(a rem b) it abs(b)

using: remub,
read \"axioms/mult. axioms\",
provebyaxiom b * c ge b * I

using: multge)
else proof:

(provebyaxiom abs((a / b) rem c) = (a I b) rem c
using: rempos,

provebylemma (a / b) rem c ge 0
using: absxeqxlemma,

provebyaxiom abs(a rem b) it abs(b)
using: remub,

provebyaxiom abs((a / b) rem c) = (a / b) rem c
using: rempos,

provebylerima (a / b) rem c ge 0
using: absxeqxlemma,

provebyaxiom abs((a / b) rem c) it abs(c)
using: remub,

provebyaxiom b * (c - 1) ge b * ((a / b) rem c)
using: multge,

provebyaxiom b * (c - 1)
=b c-b*1

using: multdistributeminus)))")

49

;; For nonnegative y: x mod y it y.

;; Used in proof of lemma: modposrange

(deflemma modposlt
"1y gt 0 -- > x mod y it y"

(x y) nil nil nil
:proof
"(read \"axioms/rem.axioms\",

read \"axioms/mod.axioms\",
provelemma modposlt

proof:
cases x = 0

then proof: provebyaxiom x mod y = 0
using: modO

else proof:
cases (x / y) * y = x or x gt 0

then proof:
(provebylemma x mod y = x rem y

using: newmodreml,
provebyaxiom abs(x rem y) it abs(y)

using: remub,
provebylemma abs(x mod y) ge x mod y

using: absgelemma)
else proof:

(provebylemma abs(x rem y) = abs(y) - abs(x mod y)
using: newmodrem2,

provebyaxiom abs(x rem y) ge 0
using: remib,

provebyaxiom x = (x / y) * y + x rem y

using: remdef,
provebylemma abs(x rem y) -= 0

using: absneOlemma,
provebylemma abs(x mod y) ge x mod y

using: absgelemma))")

;; Used in proof of lemma: remdef-with-mod

(deflemma mod.rem.eq
"x ge 0 & y gt 0 -- > x mod y = x rem y"
(x y) nil nil nil
:proof "(readaxioms \"axioms/mod.axioms\",

readaxioms \"axioms/rem.axioms\",

50

provelemma mod-rem.eq
proof:

(cases x le 0
then proof:

(notice x = 0,
provebyaxiom x mod y = 0

using: modO,
provebyaxiom x rem y = 0

using: remO,
close)

else proof:
(provebyaxiom x mod y = x rem y

using: modreml,
close),

close))")

;; Various facts about absolute values.

;; The absolute value of x is greater than x.

Used in proof of lemma: modposlt.

(deflemma absgelemma
"abs(x) ge x"
Wx) nil nil nil
:proof "(provelemma absgelemma

proof:
(cases x ge 0

then proof:
else proof:))")

;; x not equal to 0 implies the absolute value of x is not equal to 0.

;; Used in proof of lemma: modposlt

(deflemma absneOlemma

"ix = 0 -- > abs(x) -= 0"

Wx) nil nil nil
:proof "(provelemma absneOlemma

proof:
(cases x gt 0

then proof:
else proof:))")

51

;; If the absolute value of x is equal to x, then x is non-negative.

;; Used in proof of lemma: remlesslemma

(deflemma absxeqxlemma
"abs(x) = x -- > x ge O"

(x) nil nil nil
:proof "(provelemma absxeqxlemma

proof:
(read \"axioms/abs. axioms\",
cases x ge 0

then proof:
else proof: provebyaxiom abs(x) =-x))")

;* Proposed Axiom Revisions *;

;; Proposed revision for existing axiom: modreml in bitstring.axioms
;; Fixes bug in cases where x is a multiple of y.
;;

;; Used in proofs of lemmas: maxfactors and modposlt.

(deflemma newmodreml
"((x / y) * y = x or 0 gt x & 0 gt y) or x gt 0 & y gt 0

-- > x mod y = x rem y"
Ux y) nil nil nil)

;; Proposed revision for existing axiom: modrem2 in bitstring.axioms
;; Fixes bug in cases where x is a multiple of y.
';

;; Used in proof of lemma: modposlt

(deflemma newmodrem2
"(x / y) * y -= x & (0 gt x & y gt 0 or x gt 0 & 0 gt y)

-- > abs(x rem y) = abs(y) - abs(x mod y)"
Ux y) nil nil nil)

52

11.6 Bitstring Lemmas

;*Top-level Bitstring Lemmas *

;;The value of the nth bit of m is
;;the quotient of the value of m and 2 to the nth mod 2.

(def lemma bitmod
"Im<n:n>I = (Imi / 2 -n) mod 2"
(n m) nil nil nil
:proof
"(provelemma bitmod

proof:
cases n ge lh(m)
then proof:

(provebyaxiom, lh(m<n:n>)
max(O, 1 + (min(Th(m) -1,n) -max(O,n)))

using: lh\\ussub,
provebyaxiom. max(O,n) ge n

using: lemax,
provebyaxiom, n ge max(O,n)

using: gemax,
provebyaxiom. min(lh(m) - I,n) ge ih(m) - 1.

using: lemin,
provebyaziom. lh(m) - 1 ge min(lh(m) - 1,n)

using: minle,
provebyaziom, 2 -lh(m) gt Imi

using: usval\\lt\\lh,
provebyaxiom 2 -n ge 2 -lh(m)

using: e2,
read \"axiomsldiv.axioms\",
provebyaxiom. Imi / 2 -n = 0

using: diveqO)
else proof:

cases n it 0
then proof:

(provebyaxiom. lh(m~n:n>)=
maxCO, 1 + (min(lh(m) - ,n) -max(0,n)))

using: lh\\ussub,
provebylemma 2 -n = 0

using: negexptlexnma,
provebyaziom. Iml / (-0) = -(Imi / 0)

using: divneg2)

53

else proof:
(provebylemma Iml = (2 - (n + 1) * Im<lh(m) - 1:n + 1>1 +

2 - n * Im<n:n>l)
+ Im<n - 1:0>1

using: valfraglemma,
provebyaxiom 2 - n * 2 1 = 2 - (n + 1)

using: e3,
provebyaxiom 2 - n * (2 1 * Im<lh(m) - 1:n + 1>1 +

Im<n:n>l)

2 - n * (2 -1 * Im<lh(m) - 1:n + 1>0) +
2 - n * Im<n:n>l

using: multdistributeplus,
provebyaxiom 2 n * (2 I * Im<lh(m) - l:n + 1>0) =

(2 n * 2) * lm<lh(m) - 1:n + 1>1
using: multassoc,

let front = Im<lh(m) - 1:n + 1>1,
let back = Im<n - 1:0>1,
let nthbit = Im<n:n>l,
cases n = 0

then proof:
(read \"axioms/mod.axioms\",
read \"axioms/rem.axioms\",
provebylemma Im<n:n>l = 0 or tm<n:n>l = 1

using: bitvaluecases,
cases nthbit = 0

then proof:
provebyaxiom 0 mod 2 = (0 + front * 2) mod 2

using: modmult
else proof:

cases nthbit = 1
then proof:

provebyaxiom I mod 2 = (1 + front * 2) mod 2

using: modmult
else proof:)

else proof:
(provebyaxiom lh(m<n - 1:0>) =

max(O, I + (min(lh(m) - 1,n - 1) - max(0,0)))
using: lh\\ussub,

provebyaxiom 2 - lh(back) gt Ibacki
using: usval\\lt\\lh,

provebyaxiom 2 n ge 2 - 0
using: e8,

provebyaxiom (2 n * (2 * front + nthbit) + back) / 2 n =

2 * front + nthbit
using: divdistl,

54

cases nthbit = 0
then proof:

provebyaxiom 0 mod 2 = (0 + front * 2) mod 2
using: modmult

else proof:
cases nthbit = 1

then proof:
provebyaxiom 1 mod 2 = (1 + front * 2) mod 2

using: modmult
else proof:

provebylemma Im<n:n>l = 0 or Im<n:n>l = 1)))")

;; Half-Adder Bit-Zero Lemma

;; Also used in proof of lemma: xl

(deflemma xO
"lh(x) ge 1& lh(y) ge 1 -- > (x ++ y)<O:O> = x<0:0> usxor y<O:O>"
(x y) nil nil nil
:proof
"(provelemma xO

proof:
(provebyaxiom lh(x<0:0>)

= max(O, I + (min(lh(x) - 1,0) - max(0,0)))

using: lh\\ussub,
provebyaxiom lh(y<0:0>)

= max(O, I + (min(lh(y) - 1,0) - max(0,0)))
using: lh\\ussub,

provebyaxiom x<0:0> usxor y<O:0> = (x<0:0> ++ y<O:O>)<O:O>

using: usxor\\usplus,
provebyaxiom (x usxor y)<O:O> = x<0:0> usxor y<O:O>

using: ussub\\usxor,
provebyaxiom (x<0:0> ++ y<0:0>)<O:O> = (x ++ y)<O:O>

using: ussub\\usplus\\ussub))")

;; Full-Adder Bit-One Lemma

(deflemma xl
"(lh(x) gt 1 & lh(y) gt 1) & lh(x) = lh(y)

-- > (x ++ y)<l:l> = (x<1:1> usxor y<1:l>) usxor y<O:O> && x<0:0>"
(x y) nil nil nil
:proof "(provelemma xl

proof:
(rewritebylemma (x ++ y)<1:1>

using: addlemma,

55

rewritebylemma (x ++ y)<O:O>
using: xO,

rewritebyaxiom lh(x<1:1>)
using: lh\\ussub,

rewritebyaxiom lh(y<1:1>)
using: lh\\ussub,

rewritebyaxiom lh(x<0:0>)
using: lh\\ussub,

rewritebyaxiom lh(y<0:0>)
using: lh\\ussub,

mcases
(case: ((x<1:1> = 0(l) & y<1:1> = 0(1)) & x<0:0> = 0(1)) &

y<O:O> = 0(1)

proof:
case: ((x<1:1> = 0(l) & y<1:1> = 0(1)) & x<0:0> = 0(1)) &

y<O:O> = 1(1)
proof:

case: ((x<1:1> = 0(1) & y<1:1> = 0(1)) & x<0:0> = 1(1)) &
y<O:O> = 0(1)

proof:
case: ((x<1:1> = 0(1) & y<1:1> = 0()) & x<0:0> = 1(1)) &

y<O:O> = 1(1)
proof:

case: ((x<1:1> =0(1) & y<l:l> = 1(1)) & x<0:0> = 0()) &
y<0:0> = 0(1)

proof:
case: ((x<1:1> = 0(l) & y<1:1> = 1(1)) & x<0:0> = 0(1)) &

y<O:O> = 1(1)
proof:

case: ((x<1:1> = 0(1) & y<l:1> = 1(1)) & x<0:0> = 1(i)) &
y<O:0> = 0(1)

proof:
case: ((x<1:1> = 0(1) & y<1:1> = 1(1)) & x<0:0> = i(1)) &

y<O:O> = 1(1)
proof:

case: ((x<1:1> = I(1) & y<1:1> = 0()) & x<0:0> = 0()) &
y<O:O> = 0(I)

proof:
case: ((x<1:1> = i(1) & y<1:1> = 0(1)) & x<0:0> = 0(1)) &

y<0:0> = 1(1)
proof:

case: ((x<1:1> = I(1) & y<l:l> = 0(1)) & x<0:0> = 1(1)) &
y<O:O> = 0(1)

proof:
case: ((x<1:1> = I(1) & y<1:1> = 0(1)) & x<0:0> = i(1)) &

y<O:O> = 1(1)

56

proof:
case: ((x<1:1> = 1(1) & y<1:1> = 1(1)) & x<O:O> = 0(1)) &

y<0:O> = 0(1)
proof:

case: ((x<1:1> = 1(1) & y<l:l> = 1(1)) & x<0:O> = 0()) &
y<O:O> = i(I)

proof:
case: ((x<1:1> = I(1) & y<1:l> = 1(1)) & x<0:0> = 1(1)) &

y<O:O> = 0(1)
proof:

case: ((x<1:1> = 1(1) & y<l:l> = 1(1)) & x<0:0> = i(1)) &
y<O:O> = 1(1)

proof:)))")

;; Full-Adder Bit-Slice Lemma

;; Original lemma is erroneous: consider x = 1(3), y = 2(3), c = 3(3), n = 2

;;(deflemma xn
"(lh(x) gt 1 & lh(y) gt 1) & lh(x) = lh(y) & lh(c) gt 1 & lh(x) = lh(c) &

c<n-l:n-l> = x<n - 1:n - 1> && y<n - 1:n - 1> usor

x<n - 1:n - 1> && c<n - 2:n - 2> usor

y<n - 1:n - 1> && c<n - 2:n - 2>

-- > (x ++ y)<n:n>

= (x<n:n> usxor y<n:n>) usxor c<n-1:n-1>"
(c x y n) nil nil nil)

;; State delta correction of lemma xn
;;

;; Suitably modified, can replace xn in shift-andadd.multiplier.proof

(defsd xn.sd
"[sd pre: ((((lh(x) gt 1 & lh(x) = lh(y)) & lh(y) = lh(c)) & n ge 0) &

forall n (c<n:n>

= (x<n:n> && y<n:n> usor
x<n:n> && c<n - l:n - 1>) usor

y<n:n> && c<n - 1:n - 1>))

post: ((x ++ y)<n:n>
= (x<n:n> usxor y<n:n>) usxor c<n - 1:n - 1>)]")

57

;;Proof of xn.sd

(defproof xn. sd-proof
"(Prove xn.sd

proof:

(natural induction on: m
formulas: ((x ++ y)<m:m>

=(x<m:m> usxor y<m:m>) usxor
c<ni - 1:m - I>)

base proof: rewritebylemma (x ++ y)<O:0>
using: addlemma

step proof:
mcases

(case: m lt 0
proof:

case: m = 0
proof:

(revritebyaxiom lh(c<- : -1>)
using: lh\\ussub,

rewritebyaxiom lh(x<0 :0>)
using: lh\\ussub,

rewritebyaxiom lh(y<0 :0>)
using: lh\\ussub,

provebyinst ant iat ion
using: q(1)
substitutions: (n=0),

rewritebylemma Ux ++ y)<O:O>
using: addlemma,

revritebylemma, (x<0:0> usxor y<0:0>) usxor 0(0)
using: nilusxorzerolemma,

revritebylemma (x ++ y)<l:l>
using: addlemma,

rewritebylemma (x<0:0> usxor y<0:0>) usxor Ux ++ y)<O:O>
using: usxorcancellemma,

rewritebylemma. x<0:0> && 0(1)
using: usandzerolemma,

reuritebylemma y<0:0> && 0(l)
using: usandzerolemma.)

case: m gt 0 & m it lh(x)
proof:

(rewritebyaxiom lh(c~m - 1:m - 1>)
using: lh\\ussub,

rewritebyaxiom lhx<m:m>)
using: lh\\ussub,

reuritebyaxiom lh(y<m:m>)

58

using: lh\\ussub,
provebylemma c<m - 1:m - 1>

(x<m:m> usxOr y<m:m>) usxor (x ++ y)<m:m>
using: shiftclemma,

provebyinstant iat ion
using: q(1)
substitutions: (n-m),

rewritebylemma (x ++ y)<m + 1:m + 1>

using: addlemma)
case: m ge lh(x)
proof:

(rewritebyaxiom lh((x ++ y)<m + 1:m + 1>)
using: lh\\ussub,

rewritebyaxiom lh(x~m + 1:m + D>)

using: Th\\ussub,
rewritebyaxiom 1h(y<m + 1:m + D,)

using: lh\\ussub,
rewritebyaxiom lh(c<m :m>)

using: lh\\ussub)),
provebyinstant iat ion

using: forall m. (m, ge 0
-- > (x ++ y)<m:m>

- x<m:m> usxor y<m:m>) usxor

c<M - I:m D 1)

substitutions: Cm~n)))")

;;USXOR is commutative.

(def lemma usxor\\commute
"1x usxor y = y usxor x"
Cx y) nil nil nil
:proof
"(provelemma usxor\\commute

proof:
(provebylemma x usxor y

= x && y usor -x -&y
using: usxor\\usand\\usor,

provebylemma y usxor x
= y && x usor -y && -x

using: usxor\\and\\or,
provebyaxiom x && y = y && x

using: commuteusa~nd,
provebyaxiom -x && -y = -y && -x

using: commuteusand))")

59

Eight-Bit Adder Lemma without Carry-Out

(deflemma add8
"lh(x) = 8 & lh(y) = 8

-- > {(x ++ y)<7:0>1
1 (((((.((x ++ y)< 7 : 7 > Q (x ++ y)< 6 : 6 >) 0

(x ++ y)<5:5>) 0

(x ++ y)<4:4>) 0

(x ++ y)<3:3>) Q

(x ++ y)<2:2>) C
(x ++ y)<1:1>) C

(x ++ y)<O:O>1"
(x y) nil nil nil
:proof

"(provelemma add8
proof:)")

;* Subordinate Bitstring Lemmas *;

;2 to any negative power is 0.

;; Used in proof of lemma: bitmod

(deflemma negexptlemma
"x lt 0 -- > 2 - x = 0"

Wx) nil nil nil
:proof "(read \"axioms/exp.axioms\",

provelemma negexptlemma
proof:

(provebyaxiom 1 gt 2 - x
using: e6,

provebylemma 2 - x ge 0
using: pospowerlemma))")

;; A positive number raised to any power is non-negative.
;;

;; Used in proof of lemma: negexptlemma

(deflemma pospowerlemma
"b gt 0 -- > b - x ge 0"
(b x) nil nil nil

60

:proof "(provelemma pospowerlemma
proof:

cases x ge 0
then proof: provebyaxiom b x gt 0

using: el

else proof:
(provebyaxiom b - (-x) gt 0

using: el,
provebyaxiom b x * b (-x) = b (x - x)

using: e3,
provebyaxiom b - 0 = 1

using: e4,
read \"axioms/div.axioms\",
provebylemma (b - (-x) * b x) / b (-x) = b x

using: improveddivmulteq,
provebyaxiom 1 / b - (-x) ge 0

using: divgeO))")

;; Integer division by non-zero a is inverse to multiplication by a.

;; Used in proof of lemma: pospowerlemma

(deflemma improveddivmulteq
"a -= 0 -- > (a * b) / a = b"

(a b) nil nil nil
:proof "(provelemma improveddivmulteq

proof:
cases age 1

then proof: provebyaxiom (a * b) / a = b
using: divmulteq

else proof:
cases a le -1

then proof:
(provebyaxiom ((-a) * b) / (-a) = b

using: divmulteq,
provebyaxiom (-a) * b = -(a * b)

using: multminus,
provebyaxiom (-(a * b)) / (-a)

= -((a * b) / (-a))
using: divnegl,

provebyaxiom (a * b) / (-a) = -((a * b) / a)
using: divneg2)

else proof:)")

61

;;The value of a bitstring in terms of the nth bit
;;and the parts of the string before and after the nth bit.

;;Used in proof of lemma: bitmod

(def lemma vaifraglemma
"In ge 0 & n it lh(x)

-- jxi = (2 -(n + 1) * lx<lh(x) - l:n + 1>1 +

2 -n* lx<n:n>l) +

lx<n - 1:0>111
(x n) nil nil nil
:proof "(provelemma valfraglemma

proof:
(provebyaxiom lh(x<n:0>)

= max(0, 1 + (min(lh(x) -1,n) -max(0,0)))

using: lh\\ussub,
provebyaxiom x<lh(x) - 1:n + 1> 0 x<n:0>

= x<lh(x) - 1:0>
using: squash,

provebyaxiom x = x<lh(x) - 1:0>
using: ussub\\total,

provebyaxiom Ix<lh(x) - 1:n + 1> 0 x<n:0>i
= x<lh(x) - 1:n + 1>1 *2 lh(x<n:0>) +

Ix<n:o>I
using: usval\\usconc,

provebyaxiom Th(x<n - 1:0>)
= max(0, 1 + (min(lh(x) -1,n -1) -max(0,0)))

using: lh\\ussub,
provebyaziom x<n:n> 0 x<n - 1:0> = x<n:0>

using: squash))")

;;The value of a legitimate bit in a bitstring is 0 or 1.

;;Used in proof of lemma: bitmod

(def lemma bitvaluecases
"In ge 0 & n le lh(x) - 1 -- > Ix<n:n>I = 0 or Ix<n:n>I = 1"1

(n x) nil nil nil
:proof "1(provelemma bitvaluecases

proof:
(provebyaxiom lh (x<n :n>)

= max(0, 1 + (min(lh(x) - 1,n) -max(0,n)))

using: lh\\ussub,
provebylemma Ix<n:n>i = 0 or Ix~n:n>l = I

using: zerooronelemma))")

62

;; Used in proof of lemma: bitvaluecases

(deflemma zerooronelemma
"x ge 0 & x It 2 -- > x = 0 or x = 1"
(x) nil nil nil
:proof "(provelemma zerooronelemma

proof:
cases x = 0

then proof:
else proof:

cases x = 1
then proof:
else proof: provebylemma x = 0 or x gt 0)")

;; Strictly to force contradiction in zerooronelemma

(deflemma trivlemma
"x ge 0 -- > x = 0 or x gt 0"
(x) nil nil nil
:proof "(provelemma trivlemma

proof:)")

;; Working definition of bitstring addition

;; Used in: proof of lemma xI, xn.sd-proof

(deflemma addlemma
"(x ++ y)<n:n>

= (x<n:n> usxor y<n:n>) usxor
((x<n - 1:n - 1> && y<n - 1:n - 1>) usor

(x<n - 1:n - 1> &&
(x<n - 1:n - I> usxor y<n - 1:n - 1> usxor

(x ++ y)<n - 1:n - J>)) usor
(y<n - 1:n - 1> &&

(x<n - 1:n - I> usxor y<n - l:n - 1> usxor
(x ++ y)<n - 1:n - 1>)))"

(x y n) nil nil nil)

63

;; Definition of USXOR in terms of USAND, USOR, and USNEG.

;; Used in proof of lemma: usxor\commute

(deflemma usxor\\usand\\usor
"1x usxor y = x && y usor -x && y"
(x y) nil nil nil)

;; Lemmas used in xn.sd-proof

(deflemma nilusxorzerolemma
"lh(x) = I & lh(y) = 1 -- > (x usxor y) usxor 0(0) x usxor y"
(x y) nil nil nil
:proof "(provelemma nilusxorzerolemma

proof:)")

(deflemma usxorcancellemma
"(lh(x) = 1 & lh(y) = 1) & x usxor y = z -- > (x usxor y) usxor z = 0(1)"

(x y z) nil nil nil
:proof "(provelemma usxorcancellemma

proof:
mcases

(case: lh(x) -= 1
proof:

case: x = 0(1)
proof: mcases

(case: lh(y) -= 1
proof:

case: y = 0(1)
proof:

case: y = 1(1)
proof:)

case: x = I(I)
proof: mcases

(case: lh(y) -= 1
proof:

case: y = 0(1)
proof:

case: y = 1(1)
proof:)))")

64

(deflemma usandzerolemma
"lh(z) = 1 -- > z && 0(1) = 0(1)"
(z) nil nil nil

S:proof "(provelemma usandzerolemma

proof:)")

(deflemma shiftclemma

"((lh(x) = 1 & lh(y) = 1) & lh(z) = 1) & w = (x usxor y) usxor z
-- > z = (x usxor y) usxor w"

Ux y z w) nil nil nil
:proof "(provelemma shiftclemma

proof:
mcases

(case: -((lh(x) = I & lh(y) = 1) & lh(z) = 1)
proof:

case: (x = 0(l) & y = 0()) & z = 0()
proof:

case: (x = 0(1) & y = 1(W)) & z = 0(1)
proof:

case: Ux = 0(1) & y = 1(1)) & z = 1(1)
proof:

case: (x = 1(1) & y = 0(1)) & z = 0(1)

proof:
case: (x = 1(1) & y = 1(1)) & z = 0(1)

proof:
case: (x = 0(1) & y = 0(1)) & z = 1(1)

proof:
case: (x = I(1) & y = 0()) & z = I(I)

proof:
case: Ux = I(1) & y = 1(1)) & z = 1(1)

proof:))")

11.7 Discussion

The high-level view of the shift-and-add-multiplier.proof is that symbolic execution
proceeds until special handling is required in either of two situations: (1) an argument by
cases must be made on whether or not an event (change in value) has occurred for a signal
to which a PROCESS statement is sensitive (determining whether or not, respectively, the
process resumes execution), or (2) static facts must be verified in order for usable (true)
state deltas to become applicable. In addition, certain static facts relating integer division,
multiplication, and modulus axe established "up front" by interpreting proof . static; these
are subsequently available to the remainder of the overall proof. Portions of the proof that
have identical structure are isolated and named separately, for invocation via the interpret

command (a kind of "macro expansion").

65

Our discussion will focus on three main areas: specific issues that arose in the course of
proving the lemmas required by the main proof; reasons why the present incarnation of the
proof is only "almost" complete and our plans for its completion; and some general issues
of a heuristic nature deriving from our work on this example.

To recall Sections 11.5 and 11.6 above, the lemmas faAl into two categories: integer lemmas
and bitstring lemmas. Of the integer lemmas, the lemma maxf actors was by far the hardest
to prove. It states that for nonnegative x, positive y, and n at least 1, if x is less than yn,
then the y-modulus of the integral quotient of x by yn-i is precisely the integral quotient
itself (in effect, x/yn-1 < y). The proof is complex primarily because integer division does
not enjoy the pleasant properties of ordinary (real number) division. Interestingly, the proof
of the main subordinate lemma (divdivlemma) was suggested by a pictorial argument in
which a fixed area is subdivided in two different ways.

The bitstring lemma bitmod states that the integer value of the nth bit of bitstring m
is the 2-modulus of the quotient of the integer value of m by 2n. Its proof, while more
straightforward than that of maxf actors, is complicated by having to consider cases where
the index n is "out of range" - negative or exceeding the length of m - whence m<n:n>
denotes the empty bitstring rather than a "legitimate" bit. The let command was used to
assign meaningful identifiers to certain terms, improving readability.

In fact, the proof of bitmod for negative n relies upon the fact that currently, it is possible
for SDVS to deduce the equality Im 1/0 = 0. Though surprising, this does not lead to any
contradictions: within the SDVS axiom base, arithmetic facts that exclude fractions with
zero denominator (e.g., a/b = c -- > a = b*c) are stated in such a way that they cannot
be instantiated with 0 in the denominator (for example, the above fact would be expressed
by the axiom "b ne 0 implies (a/b = c implies a = b*c)").

Whether the axioms should be further modified to exclude the deducibility of Wml/0 = 0
is under consideration. However, even if the system were to be so modified, this would not
have negative consequences for our example. Specifically, the way bitmod is used in the
main proof relies only on "legitimate" bits, so a lemma without these cases could easily be
formulated to serve the identical purpose. This suggests a possible SDVS rule-of-thumb:
other things being equal, some care should be taken to state lemmas as weakly as possible
for the main proof to go through, in order to avoid the superfluous effort required by the
consideration of irrelevant cases.

When the bitstrings or substrings of interest are of known (finite) length, a proof by cases
may be feasible. For example, in the bitstring lemma xl, all the relevant substrings are of
length 1, so the lemma can be proved by a separate argument for each bit combination.
In each case, the Simplifier can reduce the desired consequent to true, closing the proof
automatically. It might be worthwhile to investigate the possibility of implementing a
general command to handle this sort of situation.

Bitstring lemma xn states that the nth bit of the sum of two bitstrings is the exclusive-or
of three bits: the nth bits of the summands and the n-ist carry bit. Unfortunately, the
original version of the lemma - employed as an unproved lemma in the main proof -
was incorrect: see the "def lemma xn" form (commented with semicolons) in Section 11.6.
A counterexample is provided by x = 1(3), y = 2(3), c = 3(3), and n = 2.

66

A proper formulation of lemma xn would require a recursive definition, involving quantifica-
tion, of the carry bitstring c. Because SDVS does not accept quantifiers in lemmas, however,
we had to recast the corrected lemma as the state delta xn. sd displayed in Section 11.6.

Our intended strategy was to substitute "applys of xn. sd" for the "provebylemmas using
=n" occurring in the main proof (see the proof fragment bitadd in Section 11.4). It turns

out that this strategy cannot be carried through: the user cannot instantiate variables in
an apply command in the same way that provebylemma allows for variable instantiation.
Specifically, an application of xn. sd can result only in the assertion of its literal postcondi-
tion, referring to terms x, y, c, and n, rather than the assertion of a postcondition involving
terms .p, . sr8, . cout, and an integer constant instantiated for n, as required by the proof
fragment bitadd.

As a result, the proof is currently unfinished, but we have a plan, in the short term, for
completing it. We shall use (already proven) state deltas exactly like xn. sd, but with .p,
. sr8, . cout, and integer constants substituted for x, y, c, and n, and then suitably modify
the main proof to apply the appropriate one of these state deltas in lieu of invoking the
provebylemma command using lemma in.

Though relatively straightforward, these modifications are somewhat tedious to implement,
because ideally it should be arranged that at each such point in the proof, the correct state
delta to apply will be the highest applicable one. In the longer term, this particular sort of
problem will be eliminated by enhancing the SDVS lemma capability to accept quantifiers.

Regarding bitstring lemma usxor\commute, an attempted proof of the commutativity of
usxor by induction from the existing axioms uncovered several bugs in the implementation
of the SDVS natinduct command. After these were rectified, induction on the length of the
bitstrings was frustrated by the existing SDVS mechanisms for proofs involving quantified
statements. There may be a way of working around the problem with the existing proof
commands, but it is not obvious and probably involves knowing the details of how SDVS
interacts with EKL, its predicate logic solver inherited from Stanford University [18]. For
the time being, the proof goes through by treating usxor as a derived operator (i.e., one
defined in terms of usand, usor, and usneg).

Another challenge that had to be met was the lack of sufficiently strong axiomatic char-
acterizations of bitstring addition. All existing SDVS axioms characterize usadd only in
the absence of carries. This stems from the fact that an appropriate axiomatization of
bitstring addition apparently requires a recursive definition, and proving properties of func-
tions defined in this way requires something at least as strong as the nat induct command,
a relatively recent addition to the SDVS prover. A suitable (albeit nonintuitive) definition
of bitstring addition, viz. lemma addlemma, is needed for the proofs of lemma xl and state
delta xn. sd.

We shall now explore a few general issues that arose in the course of proving the integer
and bitstring lemmas. To begin with, SDVS currently provides no libraries of established
lemmas that may be searched and employed in a new proof: for each example, all necessary
facts must be proved "from scratch." This impedes the proof of theorems in a top-down
fashion. The user cannot be sure that a natural strategy of decomposition into lemmas will
make the proof substantially easier. The low-level lemmas proved herein provide a good

67

start towards producing such libraries. It is expected that this situation will be remedied
as SDVS becomes more widely used, and as larger applications are tackled. This will, in
turn, lead to the need for more sophisticated search routines.

Another important issue relates to the fact that in SDVS, assertions may be added as
needed to the axiom sets when they are felt to be consistent with the existing axioms.
While convenient, and motivated by the SDVS emphasis on proving properties of programs
rather than general theorems, this approach opens the door to the possibility of introducing
inconsistencies into the axiom base. Moreover, the fact that axioms have been added to
the axiom base on a largely ad hoc basis means that the axioms are not as well-organized
as might be desired, and tend to be overly specific; this occasionally makes searching for
appropriate axioms difficult. We consider it advisable either to find a standard model for
the existing axioms, or to find an existing well-understood axiomatization for the SDVS
operators and then try to prove the SDVS axioms from them.

Finally, we have identified certain behaviors of SDVS which, while presenting no real im-
pediment during proof development, might nevertheless be improved. One example is that
the "multiple cases" command mcases does not merely check that the precondition implies
the conjunction of the cases, but requires that the conjunction of the cases be true. This
can be handled by including a case for the negation of the precondition (as in the proof of
bitstring lemma shiftclemma).

68

12 Conclusion

The examples considered in this report give the flavor of our second VHDL language subset,
Stage 1 VHDL. Their specifications and correctness proofs, ranging from the very simple
to the complex, are indicative of the capability of SDVS for dealing with Stage 1 VHDL.

The correctness proof of the "shift-and-add multiplier" example, while worked out in prin-

ciple and mostly implemented, will require one more revision for a complete, functioning

implementation.

Stage 2 VHDL, implemented in 1992, is a considerably more powerful behavioral subset of
the language, extending Stage 1 VHDL with the addition of the following VHDL language

features: (restricted) design files, declarative parts in entity declarations, package STANDARD

(containing predefined types BOOLEAN, BIT, INTEGER, TIME, CHARACTER, REAL, STRING, and
BIT-VECTOR), user-defined packages, USE clauses, array type declarations, certain predefined
attributes, enumeration types, subprograms (procedures and functions, excluding parame-

ters of object class SIGNAL), concurrent signal assignment statements, FOR loops, octal and

hexadecimal representations of bitstrings, ports of default object class SIGNAL, and general
expressions of type TIME in AFTER clauses.

In 1993 we will be implementing a translator for the Stage 3 VHDL language subset. Stage
3 VHDL is expected to include constructs for structural descriptions (e.g., component decla-

rations, component instantiation statements, and configuration declarations). Furthermore,

SDVS will be enhanced with proof capabilities enabling both more general specifications

and more tractable proofs of VHDL hardware descriptions. Two enhancements of particular

importance will be the ability to translate structural descriptions, and the ability to reason

about symbolic representations of VHDL time.

69

References

[1] L. G. Marcus, "SDVS 11 Users' Manual," Technical Report ATR-92(2778)-8, The
Aerospace Corporation, September 1992.

[2] R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware Description and Design,
(Norwell, MA: Kluwer Academic Publishers, 1989).

[3] D. L. Perry, VHDL, (New York: McGraw-Hill, Inc., 1991).

[4] IEEE, Standard VHDL Language Reference Manual, 1988. IEEE Std. 1076-1987.

[5] I. V. Filippenko, "Some Examples of Verifying Core VHDL Hardware Descriptions
Using the State Delta Verification System (SDVS)," Technical Report ATR-91(6778)-
6, The Aerospace Corporation, September 1991.

[6] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 1
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-91(6778)-7, The Aerospace Corporation, September 1991.

[7] T. Aiken, I. Filippenko, B. Levy, and D. Martin, "A Formal Description of the In-
cremental Translation of Core VHDL into State Deltas in the State Delta Verifica-
tion System (SDVS)," Technical Report ATR-89(4778)-9, The Aerospace Corporation,
September 1989.

[8] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 2
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-92(2778)-4, The Aerospace Corporation, September 1992.

[9] Vantage Analysis Systems, Inc., 42808 Christy Street, Ste 200, Fremont, CA 94538,
VHDL Basics Lecture Manual, 1991.

[10] B. H. Levy, "Feasibility of Hardware Verification Using SDVS," Technical Report ATR-
88(3778)-9, The Aerospace Corporation, September 1988.

[11] D. F. Martin and J. V. Cook, "Adding Ada Program Verification Capability to the
State Delta Verification System (SDVS)," in Proceedings of the 11th National Com-
puter Security Conference, National Bureau of Standards/National Computer Security
Center, October 1988.

[12] I. V. Filippenko, "The Partition of VHDL into Language Subsets for the State Delta
Verification System (SDVS)," Technical Report ATR-90(5778)-7, The Aerospace Cor-
poration, September 1990.

[13] S. H. Kelem and B. H. Levy, "Preliminary Definition, Examples, and Specifications of
Core VHDL," Technical Report ATR-88(3778)-8, The Aerospace Corporation, Septem-
ber 1988.

[14] L. Marcus and B. H. Levy, "Specifying and Proving Core VHDL Descriptions in
the State Delta Verification System (SDVS)," Technical Report ATR-89(4778)-5, The
Aerospace Corporation, September 1989.

71

[15] J. V. Cook, "Final Report for the C/30 Microcode Verification Project," Technical
Report ATR-86(6771)-3, The Aerospace Corporation, September 1986.

[16] J. V. Cook, "Verification of the C/30 Microcode Using the State Delta Verification
System (SDVS)," in Proceedings of the 13th National Computer Security Confer-
ence, (Washington, D. C.), pp. 20-31, National Institute of Standards and Technol-
ogy/National Computer Security Center, October 1990.

[17] R. J. Auletta, "Application of SDVS Verification to VHDL Design and Synthesis,"

technical report, Electrical and Computer Engineering, George Mason University, 1991.
Navy-ASEE Faculty Research Program.

[181 J. Ketonen and J. Weening, "EKL-An Interactive Proof Checker User's Reference
Manual," Technical Report STAN-CS-84-1006, Dept. of Computer Science, Stanford
University, June 1984.

72

