
AEROSPACE REPORT NO.
ATR-92(2778)-2

Safety Properties of Terminating and
Nonterminating Ada Programs in the
State Delta Verification System (SDVS)

30 September 1992
DE CLL4

DEC 1994

Prepared by

T. K. MENAS
Computer Systems Division

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

Engineering and Technology Group

~~~~~e iuJ ~ -w tsc

-PUBLIC RELEASE IS AUTHORIZED19 42 4 0 4

-g g - S .- - ~ c '- -;



Aerospace Report No.
ATR-92(2778)-2

SAFETY PROPERTIES OF TERMINATING AND NONTERMINATING ADA
PROGRAMS IN THE STATE DELTA VERIFICATION SYSTEM (SDVS)

Prepared by

T. K. Menas Acce:ion For
Computer Systems Division

W~IS CR I& I
DTIG r AB El
U J amoLJ -'1d D

30 Septem ber 1992 D -, ---------------------------------- -

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691 I

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

PUBLIC RELEASE IS AUTHORIZED



Report No.
ATR-92(2778)-2

SAFETY PROPERTIES OF TERMINATING AND NONTERMINATING
ADA PROGRAMS IN THE STATE DELTA VERIFICATION SYSTEM (SDVS)

Prepared

T. K. Menas

Approved

B. H. Levy, Manager
Computer Assuranceection

D. B. Baker, Director C. A. Sunshine•,•Prin ip Director
Trusted Computer Systems Department Computer Science a echnology

Subdivision

11ii°



Abstract

We describe recent enhancements to the implementation of invariance in SD VS, the purpose
of the new weaknext-tr flag, and enhancements to the omegainduct command. We
use these enhancements to SDVS to prove a safety property of both a terminating and a
nonterminating Ada program.



Contents

Abstract

1 Introduction 1

2 A Safety Property of a Terminating Program 3

2.1 Enhancements to Invariance and the weaknext-tr Flag .. .. .. .. ........ 3

2.2 A Proof of a Safety Property of a Terminating Ada Program. .. .. .. ..... 4

3 A Safety Proof of a Nonterminating Ada Program 21

3.1 The omegainduct Command................................ 21

3.2 A Proof of a Safety Property of a Nonterminating Ada Program......... 22

4 Conclusions 37

References 39

vii



1 Introduction

This report describes some recent enhancements to SDVS that support the specification and
verification of safety properties of programs, and then demonstrates these enhancements
through two Ada examples.

We noted in [13 that "Although SDVS without invariance is well-suited for the proof of live-
ness properties of programs, most safety properties cannot be proved in its logic, because
the change in the value of a local variable cannot be constrained to be discrete by any state-
ment of its language. In SDVS with invariance this constraint can, in a sense, be imposed
by a simple statement of the language; consequently, a large class of safety properties of
terminating programs should be provable in its logic (see [2])." It is now possible for the
user to impose this constraint on the state deltas generated by the language translators of
SDVS by means of the weaknext-tr flag. The application of these state deltas advances
the execution of a program by almost discrete steps. Thus, for a terminating program,
the only states that are allowed by the symbolic execution of the program are precisely
those states that are required by the program execution. The generation of the restricted
translator state deltas was easy to implement, but it was impossible to obtain the full theo-
retical benefits of their meaning in the system. For this, we had to change the SDVS apply
command at one minor but important point. We discuss this change and the weaknext-tr
flag in Section 2.1.

The above enhancements to SDVS are not sufficient for proofs of a large class of safety
properties of nonterminating programs. For a proof of a safety property of a nonterminating
program, it is often not enough to require that each state change in its execution be discrete.
We must also disallow possible states in its execution that are infinite limits of other states.
This restriction is obtained by the use of the omegainduct command, which we discussed
in [1]. We found it necessary to alter omegainduct to make it usable in a wider class of
cases. These changes are discussed in Section 3.1.

Our first example of the above changes concerns a terminating Ada program whose function
is to calculate the sum of two integers, x and y, by means of a while loop in which two other
integers, i and s, are incremented by one, y times. The variable i is initially set to zero and
is therefore nonnegative throughout the loop. The latter fact is the safety property of the
program that we have chosen to prove in Section 2.2.

The second example concerns a nonterminating Ada program whose function is to switch
the values of two variables infinitely often. The safety property we prove is that after the
initialization of the two variables, it is the case that at every time in the future (in the
execution of the program), there is a still later time at which the values of-the variables are
switched. We prove this in Section 3.2 and present our conclusions in Section 4.



2 A Safety Property of a Terminating Program

In this section we briefly discuss the enhancements to the invariance code that we found
necessary to prove safety properties of programs, the weaknext-tr flag, and the proof of a
simple safety property of a terminating program. The enhancements and the weaknext-tr
flag are also needed, along with a revised omegainduct command, to prove safety proper-
ties of nonterminating programs. We discuss the latter in the next section.

2.1 Enhancements to Invariance and the weaknext-tr Flag

I

Let S be the state delta p c mq. If in the course of a proof of a state delta with an

interpreted invariant J, S is applicable, then the use of the apply command' with S as the
state delta to be applied results in the following sequence of events:

(i) The upper-level dotted places in I are replaced by their possibly symbolic values at
the current state, resulting in the interpreted invariant IP.

(ii) Any information of the current state that depends on the places in the modification
list m of S is deleted from the current state.

(iii) The system opens a proof of the state delta 1* all. J. The effect of step (ii) is to
force the user to prove this state delta at a time intermediate to the precondition and
postcondition times of S.

(iv) After the completion of the proof of the state delta of step (iii), the state delta p c-+m q
is applied.

Suppose that the invariant I of S is the formula #all = .all, and suppose that t4 is the
current time (prior to the application of S). Then there is a least time tj Ž ti at which
the postcondition q of S is true, and, furthermore, all the states in the time interval [ti, tj)
are stutterings of ti. By Theorem 1 of [3], the truth of a temporal formula of SDVS is
constant in the interval [ti, tj). Therefore, in this case, step (ii) above may be eliminated:
if I* -+ J is proved at ti, then it follows that 1* --) J at every state in the interval [ti, tj).
We have amended the implementation of the apply command to reflect this fact because,
under certain circumstances and for certain J, for example if x is in m and J =_ (#x > 0),
it is not possible to prove the state delta of (iii) after the completion of step (ii).

Leo Marcus first dealt with this limitation by implementing of a new flag, strongcoverings.
When this flag is on, SDVS asserts certain facts about places at every application. But we
discovered that this flag mires the system in an almost endless computation, and that it
is also insufficient for proofs in all but the simplest of cases. A partial implementation
of Theorem 1 of [3] (in the case of the application of a state delta with the invariant

'For a more complete explanation of the apply command for a state delta with an invariant, see [2].

3



(#all = .all)), the addition of the weaknext-tr flag, and a change in the omegainduct
command provide a basis for proofs of a large class of safety properties of programs.

We are often interested in the case of I E (#all = .all) because we have concluded that in
order to prove even simple safety properties of a program, the symbolic execution of that
program in SDVS must proceed in a manner in which the only states that are allowed in the
timeline of the execution are those that are necessitated by the program. To ensure this,
we have added a new flag to SDVS, weaknext-tr; when it is on, the language translators
of SDVS translate a program into state deltas with the invariant (#all = .all). Thus, with
this flag on, the execution of the program is forced to proceed in almost discrete steps.

2.2 A Proof of a Safety Property of a Terminating Ada Program

Consider the simple program "add" in the file "add.ada":

with text-io; use text.io;
with integer-io; use integer-io;
procedure add is

i,s,x,y : integer;
begin

getW();
get(y);

i :0;
S : X;

while i < y loop
i i+1;
s :=s+l;-

end loop;
put(s);

end add;

If the input value of y is greater than or equal to zero, then the program terminates and
the value that is output for s is equal to the sum of the input values of x and y. This is a
liveness property of the program. One possible safety property, the one that we will prove,
is that in the execution of the program, i > 0 from the time that i is assigned the value 0
to the time that the "put(s)" statement is executed. In fact, we will prove that both the
safety and the liveness properties are true of "add."

We first set the appropriate flags and create the state deltas that encapsulate these prop-
erties.

<sdvs.3> init
proof name] : <CR>

State Delta Verification System, Version 12

4



Restricted to authorized users only.

<sdvs. I> setflag
flag variable: invariance
on or off[off]: on

setflag invariance -- on

<sdvs.2> setflag
flag variable: weaknext-tr
on or off [off]: on

setflag weaknext-tr -- on

<sdvs.3> init
proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs. 1> adatr
path name [/eg5/add.ada] : /eg5/add.ada

Previously translated Stage 3 Ada file
-- "/egS/add.ada"

<sdvs.2> createsd
name: addsd

[SD pre: ada(add.ada) , .stdin[2] ge 0, -(.stdin[1]=.stdin[2])
comod[l: all

modE]: all
inv[]: <CR>
post: #i=0 and formula(eventl)

<sdvs.2> createsd

name: eventl
[SD pre: true
comod[] : all

mod[]: all
inv[]: #i ge .i
post: #add~pc = exited(standard.text-io.put) and #s=.x + .y

]



The condition add\pc =exited(standard.text.io.put) is attained when the program
exits the "put(s)" statement (add\pc is the program counter). The state delta eventl is
true at a time t k iff there is a time tj > tk such that

S(tj) = X(tk) +.y(tk)

and i > i(tk) in the interval [tk, tl). 2 The state delta addsd asserts that if the second input
value (the value of y) is greater than or equal to zero and the program is executed, then
there will be a time in the future at which eventi will be true.

We first open the proof of addsd, advance to the execution of the "i := 0" statement, and
omit most of the SDVS output of the intermediate applications. The omitted portions are
marked by "etc."

<sdvs.2> prove
state delta[]: addsd
proof E : < CR>

open -- [sd pre: (ada(add.ada),.stdin[2] ge 0,

"(.stdin[l] = .stdin[2]))
comod: (all)

mod: (all)
post: (#i = 0 & formula(eventl))]

Complete the proof.

<sdvs.2.1> until

formula: #i=O

apply -- [sd pre: (true)
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr procedure add is
i. ...... integer

begin
get (x);

end add; >)]

---- etc.

apply -- [sd pre: (true)
comod: (all)

'For any variable u and time t, u(t) is the value of u at t.

6



mod: (add\pc,i)
inv: (#all = .all)

post: (#i = 0,

<adatr i := 0;>)]

until break point reached -- #i = 0

Now we open the proof of eventl.

<sdvs.2.16> prove
state delta[]: eventi
proof[0: <CR>

open -- [sd pre: (true)
comod: (all)

mod: (all)
inv: (#i ge .i)

post: (#add\pc = exited(standard.text-io.put) &
#s = .X + .y)]

comment -- prove the invariant of the state delta to be proven

open-- Esd pre: (true)
comod: (all)
post: (Wi ge 0)]

close -- 0 steps/applications

Complete the proof.

SDVS automatically opened the proof of the invariant of eventi at the current state and
closed it automatically, since it is clearly true.

We now execute the "s := x" statement by applying the corresponding state delta.

<sdvs.2.16.2> usable

u(1) [sd pre: (true) comod: (all) post: (#i ge 0)]

u(2) [sd pre: (true)
comod: (all)

mod: (add\pc,s)
inv: (#all = .all)

post: (#s = x,
<adatr s := x;>)]

7



No usable quantified formulas.

<sdvs.2.16.2> apply
sd/number[highest applicable/once]: u

number: 2

comment -- prove the invariant prior to the application

open -- Esd pre: (.all = all\305)

comod: (all)
post: (#i ge 0)]

close -- I steps/applications

apply-- [sd pre: (true)

comod: (all)
mod: (add\pc,s)
inv: (#all = .all)

post: (#s = X,
<adatr s := x;>)]

Complete the proof.

Note that prior to the application of u(2), SDVS opened and automatically closed a proof
of the invariant of the state delta to be proved, eventi. Henceforth, as long as the state
delta to be proved is eventi (or in "cases" and "induction" proofs therein), then at every
application of a state delta with the invariant (#all = .all), SDVS will first open a proof,
at the state in which the apply command is given, that the interpretation of (#all = .all)
implies the invariant of eventl.

The state of the execution is now at the "while" loop.

<sdvs.2.16.2> usable

u(1) [sd pre: (-(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i i+ 1;

end loop;>)]

8



u(2) [sd pre: (.i 1t .y)

comod: (all)
mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i := i + 1;

end loop;>)]

No usable quantified formulas.

We proceed by doing a cases on the predicate (.i y .y). This is the easy case, since under
this condition y = 0 and s = x + y = x. After five apply's (which we know will suffice
from previous executions of the proof), we will exit the standard output of s, and SDVS
will open the case of (.i < .y).

<sdvs .2.16.2> usable

u(i) [sd pre: (C(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i := 1 + 1;

end loop;>)]

u(2) [sd pre: (.i It .y)
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i : i + 1;

end loop;>)]

No usable quantified formulas.

<sdvs.2.16.2> cases

9



cases -- (.A it .y)

open -- [sd pre: (-(.i it .y))
comod: (all)

mod: (all)
inv: (#i ge 0)

post: (#add\pc = exited(standard.text.io.put) &
#s = stdin\280 + stdin\278)]

<sdvs.2.16.2.1.1> apply
sd/number[highest applicable/once]: 5

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\311)
comod: (all)
post: (#i ge 0)]

close -- 1 steps/applications

apply -- [sd pre: (-(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i :=i+ 1;

end loop; >)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\315)
comod: (all)
post: (#i ge 0)]

close-- I steps/applications

apply-- [sd pre: (true)

comod: (all)
mod: (add\pc,add)
inv: (#all = .all)

post: (alldisjoint(add,.add,put\item),
covering(#add,.add,put\item),

10



declare (put\ item, type (polymorphic)),
<adatr put (s)>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\320)

comod: (all)
post: (Wi ge 0)]

close -- 1 steps/applications

apply-- [sd pre: (true)
comod: (all)

mod: (add\pc,put\item)
inv: (#all = .all)

post: (#put\item = s,
<adatr put (s)>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\324)
comod: (all)
post: (#i ge 0)]

close -- 1 steps/applications

apply -- [sd pre: (true)
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (*add\pc = at(standard.text-io.put),

<adatr put (s)>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\327)
comod: (all)
post: (#i ge 0)]

close -- I steps/applications

apply -- [sd pre: (.add\pc = at(standard.text-io.put))

comod: (all)
mod: (add\pc,stdoutl[.stdout\ctr] ,stdout\ctr)
inv: (#all = .all)

11



post: (#stdout[.stdout\ctr] = .put\item,

#stdout\ctr = .stdout\ctr + 1,
#add\pc = exited(standard.text-io. put),

<adatr null;>)]

close -- 0 steps/applications

open -- [sd pre: ((((.i lt .y))))
comod: (all)

mod: (all)

inv: (#i ge 0)
post: (#add\pc = exited(standard.text-io.put) &

#s = stdin\280 + stdin\278)]

Complete the proof.

We are now in the second case of the "while" loop and must proceed with an induction

from i = 0 to i = y with the invariant being the formula s = x + i plus the conjunction of

the two state deltas that represent the "while" loop.

<sdvs.2.16.2.2.1> usable

u(1) [sd pre: (-(.i lt .y))

comod: (all)
mod: (all)

inv: (#i ge 0)
post: (#add\pc = exited(standard.text-io.put) &

#s = stdin\280 + stdin\278)]

u(2) [sd pre: (-(.i lt .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

1 : i + 1;

end loop; >)]

u(3) [sd pre: (.i lt .y)

comod: (all)
mod: (add\pc)

inv: (*all = .all)

post: (<adatr while i < y

12



1 + 1;

end loop;>)]

No usable quantified formulas.

<sdvs.2.16.2.2.1> letsd
name: addloopu2
state deltaD : u

number: 2

letsd -- addloopu2 = u(2)

<sdvs.2.16.2.2.2> letsd
name: addloopu3
state deltal : u

number: 3

letsd -- addloopu3 = u(3)

<sdvs.2.16.2.2.3> induct
induction expression: .t

from: 0
to: .y

invariant list [: .s=.x+.i, formula (addloopu2), formula (addloopu3)
comodification list[]: x,y

modification listE]: i,s,add\pc
base proofD[]: <CR>
step proof[] : <CR>

induction -- .i from 0 to .y

open -- [sd pre: (true)
comod: (all)
post: (.s = .x + A,

[sd pre: (-(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i := i + 1;

end loop;>)],

13



[sd pre: (.i it .y)

comod: (all)
mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i 1 + 1;

end loop;>)],
.A = 0)]

close -- 0 steps/applications

open -- Esd pre: (.i ge 0,.i it .y,.s = .x + A,

[sd pre: (-(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i : 1 + 1;

end loop;>) ],
[sd pre: (.i it .y)

comod: (all)
mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i : 1 + 1;

end loop;>)])
comod: (x,y)

mod: (i,s,add\pc)
inv: (#i ge 0)

post: (#s = #x + #i,

[sd pre: (-(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i : i + 1;

end loop;>)],

14



end loop;>)],
[sd pre: (.i it .y)

comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i : + 1;

end loop;>)],
#i = .i + 1)]

Complete the proof.

The base case was trivially true. We are now in the step case of the induction proof. Eight
applications will close the proof (we know this from previous executions; a go command
would also close the proof).

<sdvs.2.16.2.2.3.2.1> apply
sd/number [highest applicable/once]: 8

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\338)
comod: (all)

post: (#i ge 0)]

close-- 1 steps/applications

apply -- [sd pre: (.i it .y)
comod: (all)

mod: (add\pc)

inv: (#all = .all)
post: (<adatr while i < y

j : i + 1;

end loop; >)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\341)
comod: (all)
post: (#i ge 0)]

close -- 1 steps/applications

15



apply -- [sd pre: (true)
comod: (all)

mod: (add\pc,i)
inv: (#all = .all)

post: (#i = .i + 1,
<adatr i := i + 1;>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\344)
comod: (all)
post: (Wi ge 0)]

close -- I steps/applications

apply -- [sd pre: (true)
comod: (all)

mod: (add\pc,s)
inv: (#all = .all)

post: (#s = .S + 1,
<adatr s := s + 1;>)]

close -- 0 steps/applications

join induction cases -- Lsd pre: (0 le .y)
comod: (all,x,y)

mod: (i,s,add\pc)
post: (#i = y, = #x + #y,

[sd pre: (-(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i ...

i := ... ;

end loop;>)],
[sd pre: (.i It .y)

comod: (all)
mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i ...

i:

16



end loop;>)])]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\350)

comod: (all)

post: (#i ge 0)]

close -- 1 steps/applications

apply -- [sd pre: (-(.i it .y))
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (<adatr while i < y

i: + I;

end loop;>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\354)
comod: (all)
post: (#i ge 0)]

close-- I steps/applications

apply-- [sd pre: (true)
comod: (all)

mod: (add\pc,add)
inv: (#all = .all)

post: (alldisjoint(add,.add,put\item),

covering(#add,.add,put\item),
declare(put\item,type(polymorphic)),

<adatr put (s)>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\359)
comod: (all)

post: (#i ge 0)]

close -- 1 steps/applications

17



apply -- [sd pre: (true)
comod: (all)

mod: (add\pc,put\item)
inv: (#all = .all)

post: (#put\item = s,
<adatr put (s)>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\363)
comod: (all)
post: (#i ge 0)]

close-- 1 steps/applications

apply -- [sd pre: (true)
comod: (all)

mod: (add\pc)
inv: (#all = .all)

post: (#add\pc = at(standard.textJio.put),
<adatr put (s)>)]

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\366)
comod: (all)
post: (#i ge 0)]

close-- 1 steps/applications

apply -- [sd pre: (.add\pc = at(standard.text-io.put))
comod: (all)

mod: (add\pc,stdout [.stdout\ctr],stdout\ctr)
inv: (#all = .all)

post: (#stdout[.stdout\ctr] = .put\item,
#stdout\ctr = .stdout\ctr + 1,
#add\pc = exited(standard.text-io.put),
<adatr null;>)]

close -- 3 steps/applications

join -- [sd pre: (true)
comod: (all)

mod: (all)
post: (#add\pc = exited(standard.text-io.put) &

18



#s = stdin\280 + stdin\278)]

close -- 2 steps/applications

close -- 16 steps/applications

<sdvs.3> usable

u(1) [sd pre: (ada(add.ada),.stdin[2] ge O,'(.stdin[l] .stdin[2]))
comod: (all)

mod: (all)
post: (#i = 0 & formula(eventl))]

No usable quantified formulas.

19



3 A Safety Proof of a Nonterminating Ada Program

We first discuss the enhanced version of the omegainduct command and then illustrate
its use in a safety proof.

3.1 The omegainduct Command

For the reader's convenience, we give a complete description of the command. The omegain-
duct command is based on the formula I:

I
[(true all.-.Oa A /3)A(true ^-+,((a A 13) all"* all(a[#/.] A 3[#/.] A OR)))] -+ (true ¢--a[#/.])

where I _ a[#/.] and OR 0 (#xl 5 .x1 V #x 2 $ .X2 V ... V #xn $ .x,,) for some local
variables x1,... , x,,. This formula is true on precisely those timelines T in which w + 1 is
not embeddable (See [1] and [4]).

The first conjunct in the antecedent of I,, is the base-case state delta, and the second is the
step-case state delta. If omegainduct is used in the course of a proof, the user must enter
as parameters the formula a on which the induction will proceed, the optional "auxiliary
formula" 13, and a nonempty set of places x1 , X2,... ,xn. Both formulas must be of type
precondition.

The induction formula a is the formula that will be asserted to be henceforth true.

The purpose of the auxiliary formula is to allow the induction to proceed over loop bodies
generated by the SDVS program translators. In these cases, the auxiliary formula is intended
to be the state delta that asserts that execution is at the top of the loop. If the user does
not enter an auxiliary formula, the system assumes the formula is "true."

The list of places must have the property that, in the induction step of the proof, at least
one of the places will change its value.

After the parameters to omegainduct have been given, SDVS opens the proof of the base
case of the induction:

(true all.,-+Oa A )3)

Once the base case state delta is proved, SDVS will open the proof of the step-case state
delta:

I

[true 0-.0((a A 13) all- all(a[#/.] A 3[#/.] A OR))]

where I - a[#/.], and OR = (#xl 5 .X1V#x 2 $ .x 2 V...V# $Xn .x,n). After the step-case
state delta has been proved, SDVS will assert the state delta

(true 0*0a[#/.])

at the state at which the omegainduct command was given.

21



3.2 A Proof of a Safety Property of a Nonterminating Ada Program

Consider the following Ada program:

with text-io; use text-io;
with integer.io; use integer-io;

procedure infswitch is

v, x, y, temp : integer;
begin
get(x);
get(y);
v:= 1;

while true loop
temp:= x;

x:= y;
y:= temp;

end loop;
end infswitch;

The purpose of infswitch is to switch the values of the program variables x and y infinitely

often. The purpose of the variable v and the assignment statement "v := 1" is only to allow
us to demarcate the point in the execution at which the switching will begin: a possible

improvement to SDVS would be a tool that generates and inserts statement labels to a
program. This would enable the user to refer to particular points in the execution of the

program by means of the program counter "pc." For example, if "<10>" were the statement
label of "while true loop" and if in the SDVS symbolic execution of infswitch, the value of

"infswitch\pc" were equal to "<10>" at the top of the loop, then we could use this fact to

demarcate the beginning of the loop.

It is clear from the program, that every time execution is at the top of the loop, there will

be a strictly later time at which the program variables x and y will have switched values,
that is, the state delta swap

true all'all(oX = .y A-#y = .X)

is always true at the top of the loop. However, it is not possible to express "at the top of
the loop" in the current version of SDVS.

A closer examination of the program reveals that swap is always true not only at the top
of the loop but at every time within the loop as well. The statement that swap is always

true is expressed by the state delta infevent:

true 0--*f ormvla(swap)

22



Thus, infevent is true at the time the assignment statement for v is executed.

There is one more wrinkle in our proof: if x = y initially, then x = y thereafter, and
furthermore, all the program variables remain constant from some point on in the execution.
In the present implementation of SDVS we cannot prove that, if x = y initially, then the
execution of the program does not terminate, a circumstance that makes impossible the
use of the omegainduct command. (Statement labels and an implementation that forces
the program counter to have these labels as values at the appropriate times would correct
this defect.) So we will assume that the input values of x and y are different and add this
condition to the precondition of infswap.

Thus, we will prove the state delta infswap:

[sd pre: (ada(infswitch. ada), (.stdin[l] = .stdin[2]))
comod: (all)

mod: (all)
post: (#v = 1 & formula(infevent))]

We first open the proof, apply until v = 1, and omit part of the SDVS output (The omitted
portions are marked by "etc.").

<sdvs.4> prove
state delta[]: infswap
proof []: < CR>

open -- [sd pre: (ada(infswitch.ada),(.stdin[l] = .stdin[2]))
comod: (all)

mod: (all)
post: (#v = I & formula(infevent))]

Complete the proof.

<sdvs.4.1> until
formula: #v=1

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc)
inv: (#all = .all)

post: (<adatr procedure infswitch is
v ...... integer

begin
get (x);

end infswitch;>)]

23



-etc.

apply -- Esd pre: (true)

comod: (all)
mod: (infswitch\pc,v)
inv: (#all = .all)

post: (#v = 1,
<adatr v := 1;>)]

until break point reached -- #v = 1

<sdvs.4.16> usable

u(1) [Esd pre: ('true)
comod: (all)

mod: (infswitch\pc)
inv: (#all = .all)

post: (<adatr while true

temp := x;

end loop; >)]

u(2) [sd pre: (true)
comod: (all)

mod: (infswitch\pc)
inv: (#all = .all)

post: (<adatr while true

temp := x;

end loop; >)]

"No usable quantified formulas.

<sdvs.4.16> letsd
name: swaploop
state delta[ : u

number: 2

letsd -- swaploop = u(2)

The state delta swaploop is the branch of the loop that will always be applicable at the
top of the loop. We may now use the omegainduct command with the induction formula

24



swap. The successful completion of this command will assert our current goal, infevent, at
the current time.

<sdvs.4.17> omegainduct
on. formula(swap)

auxiliary formulas []: formula (swaploop) and .x=.y
places: x

base proof[ L: <CR>
step proof[]: <CR>

omegainduction on -- (formula(swap))

open -- [sd pre: (true)
comod: (all)
post: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y =

formula(swaploop) & .x .y)]

SDVS has opened the proof of the base case of the omega induction. We must prove that
both the induction formula and the auxiliary formulas are true at the current time. The
formula that is not known to be true at the current state is the induction formula swap.
We prove this part of the goal by advancing through part of the loop.

<sdvs.4.17.1.1> prove
state delta[]: g

number: 1
proof []: <CR>

open -- [sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y = .x)]

Complete the proof.

<sdvs.4.17.1.1.1> until
formula: #x=.y and #y=.x

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc)
inv: (#all = .all)

post: (<adatr while true

25



temp x;

end loop;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,temp)
inv: (#all = .all)

post: (#temp =x,

<adatr temp := x;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,x)
inv: (#all = .all)

post: (#x = y,
<adatr x := y;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,y)
inv: (#all = .all)

post: (#y = .temp,
<adatr y := temp;>)]

close -- 4 steps/applications

close -- 1 steps/applications

open-- [sd pre: (true)
post: ([sd pre: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y =.4,

formula(swaploop) & .x .y)
comod: (all)

mod: (all)
inv: ([sd pre: (true)

comod: (all)

mod: (all)
post: (#x= .y & #y = .1)])

post: (#x "= X,
[sd pre: (true)

comod: (all)

26



mod: (all)
post: (#x = .y & #y =x),

formula(swaploop) & #x =#y)])]

Complete the proof.

After the completion of the base case, SDVS opened the proof of the step case of the omega
induction. We open the proof of the state delta g(1) that comprises the postcondition of
the step-case state delta. Note that this state delta has swap as its invariaat. Henceforth,
until the end of the proof of g(1), we will have to prove swap at every application, unless
SDVS already knows it to be true and closes the proof automatically.

<sdvs.4.17.2.1> prove
state delta[J: g

number: 1
proof[]: <CR>

open -- [sd pre: ([sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .y & #y =x),

formula(swaploop) & .x -= .y)
comod: (all)

mod: (all)
inv: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y =x))

post: (#x -= x,
[sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y
formula(swaploop) & #x #y)]

comment -- prove the invariant of the state delta to be proven

open -- [sd pre: (true)
comod: (all)
post: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y =x))

close -- 0 steps/applications

27



Complete the proof.

<sdvs.4.17.2.1.2> usable

u(1) [sd pre: (true)
comod: (all)
post: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y =xM

u(2) [sd pre: (true)
comod: (all)

mod: (infswitch\pc)
inv: (#all = .all)

post: (<adatr while true

temp := x;

end loop;>)]

u(3) [sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .y & y = .x)]

No usable quantified formulas.

Note that SDVS opened (and closed) the proof of the invariant swap at the current state.
It closed automatically because we had just proved it.

<sdvs.4.17.2.1.2> apply
sd/number [highest applicable/once]: u

number: 2

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\44)

comod: (all)
post: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & y =.

28



close -- I steps/applications

apply-- [sd pre: (true)
comod: (all)

mod: (infsvitch\pc)
inv: (#all = .all)

post: (<adatr while true

temp := x;

end loop;>)]

Complete the proof.

<sdvs.4.17.2.1.2> usable

u(I) [sd pre: (true)
comod: (all)

mod: (infswitch\pc,temp)
inv: (#all .all)

post: (#temp = .X,
<adatr temp := x;>)]

No usable quantified formulas.

The proof of swap closed automatically because the invariant of the state delta that is
applied is the special formula "#all=. all." Thus the state at which swap is to be proved
is the current state. This was not the case in the previous implementation of invariance.
We now execute the statement "temp := x."

<sdvs.4.17.2.1.2> apply
sd/number [highest applicable/once]: <CR>

comment -- prove the invariant prior to the application

open -- [sd pro: (.all = all\47)
comod: (all)
post: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y = xM)

<sdvs.4.17.2.1.2.1.2> prove

29



state delta[ : g
number: 1

proof[D: <CR>

open -- [sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .y & *y = .x)]

Complete the proof.

<sdvs.4.17.2.1.2.1.2.1> until
formula: #x=.y and #y=. x

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,temp)
inv: (#all .all)

post: (#temp =x,

<adatr temp := x;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,x)
inv: (#all = .all)

post: (#x = y,
<adatr x := y;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pcy)
inv: (#all = .all)

post: (#y = .temp,
<adatr y := temp;>)]

close -- 3 steps/applications

close -- 2 steps/applications

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,temp)
inv: (#all .all)

post: (#temp =x,

<adatr temp := x;>)]

30



Complete the proof.

<sdvs.4.17.2.1.2> usable

u(1) [sd pre: (true)
comod: (all)

mod: (infswitch\pc,x)
inv: (#all = .all)

post: (#x = y,
<adatr x := y;>)]

No usable quantified formulas.

The next statement is "x := y.

<sdvs.4.17.2.1.2> apply
sd/number [highest applicable/once]: <CR>

comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\54)

comod: (all)
post: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & #y =xM

<sdvs.4.17.2.1.2.1.2> prove
state delta[]: g

number: 1
proof[]: <CR>

open -- [sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .y & #y = .x)]

Complete the proof.

<sdvs.4.17.2.1.2.1.2.1> until
formula: #x=.y and #y=.x

apply -- [sd pre: (true)

31



comod: (all)
mod: (infswitch\pc,x)
inv: (#all = .all)

post: (#x = y,
<adatr x := y;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,y)
inv: (#all = .all)

post: (#y = .temp,
<adatr y := temp;>)]

close -- 2 steps/applications

close -- 2 steps/applications

apply -- [sd pre: (true)

comod: (all)
mod: (infswitch\pc,x)
inv: (*all = .all)

post: (#x = y,
<adatr x :y;>)]

Complete the proof.

<sdvs.4.17.2.1.2> usable

u(1) [sd pre: (true)
comod: (all)

mod: (infswitch\pc,y)
inv: (#all = .all)

post: (#y = .temp,
<adatr y := temp;>)]

No usable quantified formulas.

The last statement of the loop is "y := temp."

<sdvs.4.17.2.1.2> apply
sd/number [highest applicable/once]: <CR>

comment -- prove the invariant prior to the application

32



open -- [sd pre: (.all = all\60)
comod: (all)
post: ([sd pre: (true)

comod: (all)
mod: (all)

post: (#x = .y & *y = .x)M)J

<sdvs.4.17.2.1.2.1.2> prove
state deltaL]: g

number: 1
proof [: <CR>

open-- [sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .y & #y .x)]

close -- 0 steps/applications

close -- 2 steps/applications

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,y)
inv: (#all = .all)

post: (#y = .temp,
<adatr y := temp;>)]

Complete the proof.

<sdvs.4.17.2.1.2> usable

u(1) [sd pre: (-true)
comod: (all)

mod: (infswitch\pc)
inv: (#all = .all)

post: (<adatr while true

temp := x;

end loop;>)]

u(2) Isd pre: (true)
comod: (all)

mod: (infswitch\pc)

33



inv: (#all = .all)
post: (<adatr while true

temp := x;

end loop;>)]

No usable quantified formulas.

We are now at the top of the loop. But of our three goals, the second one, swap, is not

known to be true.

<sdvs.4.17.2.1.2> goals

g(l) #x -= x\41
g(2) [sd pre: (true)

comod: (all)

mod: (all)
post: (#x = .y & #y = .x)]

g(3) ([sd pre: (true)
comod: (all)

mod: (infswitch\pc)
inv: (*all = .all)

post: (<adatr while true

temp :x;

end loop;>)]) &

#x -= #y

<sdvs.4.17.2.1.2> whynotgoal
simplify? [no]: <CR>

g(2) [sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .y & #y = .x)]

We will have to go through a part of the loop once more to establish that swap is true at

this state as well.

<sdvs.4.17.2.1.2> prove
state delta[]: g

number: 2

34



proof[i: <CR>

open -- [sd pre: (true)
comod: (all)

mod: (all)
post: (#x = .y & #y = .x)]

Complete the proof.

<sdvs.4.17.2.1.2.1> until
formula: #x=.y and #y=.x

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc)
inv: (#all = .all)

post: (<adatr while true

temp :x;

end loop; >)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,temp)
inv: (#all = .all)

post: (#temp =x,

<adatr temp := x;>)]

apply -- Esd pre: (true)
comod: (all)

mod: (infswitch\pc,x)
inv: (#all = .all)

post: (#x = y,
<adatr x := y;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (infswitch\pc,y)
inv: (#all = .all)

post: (#y = .temp,
<adatr y := temp;>)]

close -- 4 steps/applications

35



close -- 2 steps/applications

close -- I steps/applications

assert always formula
-- [sd pre: (true)

post: (formula(swap))]

close -- 17 steps/applications

<sdvs.5> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 12

Restricted to authorized users only.

36



4 Conclusions

We have demonstrated proofs of simple safety properties of terminating and nonterminating
Ada programs. Yet even for the simple safety property of the nonterminating program, the
proof was long and, at least in part, somewhat contrived. The addition of statement labels
and the suggested implementation for the program counter should alleviate some of these
problems.

In general, proofs in SDVS of safety properties of programs require that the timeline of
execution of the programs be discrete and, furthermore, that every state (time) allowed in
the execution of a program is a state necessary to the execution of the program. This report
showed that these restrictions suffice for the proof of safety properties of both terminating
and nonterminating Ada programs.

37



References

[1] T. Menas, "Safety, Invariance, and a New Induction Command in SDVS," Technical
Report ATR-92(2778)-l, The Aerospace Corporation, September 1992.

[2] T. K. Menas, "The Implementation of Invariance in the State Delta Verification System
(SDVS)," Technical Report ATR-90(5778)-8, The Aerospace Corporation, September
1990.

[3] T. K. Menas, "Variants of Invariance," Technical Report ATR-89(8490)-5, The
Aerospace Corporation, September 1989.

[4] T. K. Menas and L. G. Marcus, "Timelines and Proofs of Safety Properties in the State
Delta Verification System (SDVS)," Technical Report ATR-92(2778)-9, The Aerospace
Corporation, September 1992. Submitted to Journal of Automated Reasoning.

39


