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MODIFIED GAUSSIAN ELIMINATION FOR ADAPTIVE BEAMFORMING 

USING RNS ARITHMETIC 

1.        Introduction 

A typical beam pattern produced by an uniformly weighted linear array of antenna or 
hydrophones is shown below. 

FIGURE 1 
Beam pattern for a uniformly weighted linear array 

14-element linear array 

Direction (degrees) 

The horizontal axis is the physical angle of observation and the vertical axis represents the 
gain (attenuation) that the antenna array produces. If directional interference impinges the 
array, that interference will be attenuated by a given amount depending on the direction. We 
will have the most attenuation if the interferences falls in the direction of the nulls in the 
beam pattern. This is desireable but occurs only by chance. By choosing the appropriate 
amplitude and phase weighting of the antenna elements, we can steer the nulls in the 
direction of the interferences. The problem has been extensively studied and many solution 
algorithms have been developed. This paper describes one solution to this problem for a 
particular algorithm and suggests some novel processor implementations. 

The particular concern of this paper is with obtaining solution quickly on a 
physically small processing unit for operation on platforms such as aircraft or sonobuoys. 
This requires that we seek nonstandard solution techniques. Clearly, speed of numerical 
processing is vital; this is the reason for choosing RNS arithmetic. Speed also dictates that 
nonstandard RNS operations be kept to an absolute minimum; this in turn places 
constraints on the algorithm. The algorithm-architecture combination proposed here is 
based on using Gauss elimination to solve the covariance matrix formulation of the 
problem. 

The divisions implicit in the method are eliminated at the expense of requiring 
substantial growth in the dynamic range of the RNS system used. This growth is 
accommodated by a combination of the adaptive use of an array of RNS processors and 
some scaling to reduce the effect of the growth of the matrix elements. 

In the remainder of this section, we describe the adaptive beamforming problem and 
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2 Adaptive bcamforming with RNS arithmetic 

some of the approaches that have been used for its solution. 
In Section 2, we summarize briefly the relevant aspects of residue number systems 

RNS arithmetic, and its extensions to complex RNS arithmetic. The architecture required 
for our solution is based on an array of RNS processors. The section finishes with a brief 
discussion of scaling in RNS arithmetic. ,,.*•♦• 

Section 3 is concerned with Gauss elimination and a description of the modifications 
to the standard algorithm which are required here. It is also in this section that the basic 
philosophy of the algorithm is presented. In Section 4, several of the subproblems and their 
associated difficulties are discussed along with proposed answers to these problems. The 
difficulties center on the questions of the growth of the matrix elements and the use ot 
adaptive RNS-base extension and scaling to handle this growth. Scaling necessarily affects 
the accuracy of the solution; this effect is also discussed in this section. 

Section 5 brings the ideas together in a detailed description of the overall elimination 
algorithm. In Section 6, the back substitution phase is described and, in Section 7, the 
modification to a Gauss-Jordan solution is considered. 

1.1       Physical Problem and Basic Engineering Approach 

A typical beamforming situation is shown in Figure 2. An array of N antenna 
elements are sampled at time k to form a complex snapshot vector xk. A collection of K of 
these snapshots constitute the NxK (N<K) data matrix X. Inner products between the data 
vector xk and complex weights w form the complex scalar outputs yk. For the time from 1 

to K, the output vector y = w"X. The problem is to determine the weights w>0, wu ...,wN.1 

that will optimize the response y in some sense. When it is necessary to continually adjust 
the weights, we say that we are doing adaptive beamforming. 
Thus we have 

Input = i\t) = 

and seek 

*i(0 

**-iW, 

Weights = w = 

wn 

H\ 

\
W

N-V 

The situation is illustrated in Figure 2 below. 

There are various techniques used for solving the beamforming problem which fall 
into three basic categories. 
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FIGURE 2 

N Complex Weights 
to Steer Beam 

N Element 
Array 

1.2      Covariance Matrix methods of forming adapted weights 

We can derive the optimal weights to minimize the mean-square error, MSE = E[e2], 

where the error signal, e is the difference between the desired response and the output y. 

ek = dk-yk = dk-w"xk 

e2 = dk - 2dkw "xk + w "xjfw 

Taking expected values of both sides yields     

E[e2] = 7k = dk
2-2w'%dk + w"xkxk

Hw 

or _ (1.2.1) 
E[e2] = dk

2-2w"fxd + w"Rxxw 
To minimize this function, we set the gradient with respect to the weight vector equal to 

zero, that is, 
Vc2 = -2r. + 2Raw = 0   -   RJ* = r, 

(1.2.2) 
xd 

An approximation R to the correlation matrix /?.„ (also called the covariance matrix 
for zero-me n daMS]) is formed from the N*K data matrix X R„ « the complex N*N 
ir^EPl which is an infinite time average. Since we only have a finite number 
K of snapshots, we use the estimated covariance matrix 

R = XX" IK 

The covariance matrix is always non-singular, and hence R is a positive definite Hermitian 
matrLsince statistically independent noise exists on the antenna elements. The no.se 
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correlation matrix is just R„ = a2I, where a2 is the noise variance (power), and / is the 
identity matrix of size N. That is, the cross-correlation terms average out while the 
autocorrelation terms average to the variance of the noise. The data covariance matrix is 
made from the sum of the signal, jammer and noise covariance matrices: R = Rs + R} + Rn- 

The weight vector is found by solving the system Rw = s where either 
(a) s could be the steering vector given by 

s = (1,eA*-*V..,«-(AMX»)r 

where <J> = (2ndlk)s\r\6 and 6 is the desired look-angle with respect to the normal to the 
linear antenna array; d is the inter-element spacing and X is the wavelength of the incoming 
signal at the carrier frequency, or 
(b) s could be the cross-correlation vector 

^ = Elfrf] - (X3")IK 

where dk is the reference signal sampled at time k, xk = (x0,xv...,xN_,)T is the snapshot vector 
at time k, and, as before, £[•] is the expectation operator. 

Covariance matrix algorithms which have been used for solving this problem include 
Gauss elimination, Cholesky decomposition, and the recursive least-squares (RLS) method 
based on the matrix inverse lemma [5, p.385]. 

1.3 Data matrix methods of forming adapted weights 

The data matrix X is a complex NxK matrix, where K>4N, and TV is the number of 
antennas. The objective of the data matrix methods is to find the weight vector vv that 

minimizes the norm of the error vector, e = y-3=wHX-3 [15] usually in the least squares 
JC-1 

sense. Thus the weight vector iv is the solution to the problem min]T \wHxk-dk\
2. 

*> *-o 
Data matrix based algorithms which have been used include the singular value 

decomposition (SVD) of X, QR factorization of X by Givens rotations [6], Householder 
transformation [12], Gram-Schmidt [2] and modified Gram-Schmidt (MGS) orthogonalization 
and divisionless MGS [17]. 

1.4 Gradient based algorithms 

Gradient-based minimization methods have also been used to solve the beamforming 
problem. In equation (1.2.1), we see that the MSE is given by a positive definite quadratic 
form. Its N-dimensional surface is therefore described by a paraboloid and the desired 
solution is at the minimum of this function. The simplest gradient technique for minimization 
is the steepest descent method which for this problem can be described, following [5, p.198] 
as follows: 

The iteration proceeds as 
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U-2 

where wk is the estimated weight vector at time k and w , isthe new ^"^?*^ 
and M is the constant step size. The gradient vector is given by equation (1.2.2) and thus we 
have the iteration 

In this particular context, an even simpler iteration for the weight vectors is achieved 
in the Least Mean Squares (LMS) method [5, p.217] by dropping the expectation operator 
in the MSE equations. The gradient vector is then approximated by 2e^ so that the 

iteration reduces to just 

where the step size satisfies 0<\i<2Jkma, and k^ is the largest eigenvalue of R„. 

2.        Residue Number Systems 

2.1      Introduction 

Residue Number System (RNS) arithmetic has been considered as a number 
representation for digital computers since the early days of developing computers A residue 
number system, is an exact arithmetic using the integers, Z. An RNS is at parallel carry-free 
arithmetic. Due to this parallelism, the residue number system can perform addition and 
multiplication very fast compared to conventional integer processors without sacrificing 
dynamic range. The parallel channels provide inherent fault tolerance, by using redundancy. 
A Texas Instrument study showed that a FIR filter designed using RNS arithmetic is 
expected to have a high speed-to-area ratio and a high speed-to-power ratio compared to 
a binary implementation of the same filter. These results are expected for other 
multiply-accumulate intensive problems. ■.».♦••„ 

Because RNS is restricted to the integers, it cannot be used as the sole arithmetic in 
general purpose computers. Implied by this constraint is the requirement to convert between 
RNS arithmetic and standard binary arithmetic. This conversion is required to perform 
operations that can not be performed efficiently in RNS such as division, square roots and 
magnitude comparison. The integers are not closed under division, for example, so RNS can 
not readily be used for division. Whenever it is necessary to perform a division (or even 
when the algorithm has been cleaned of all overt divides, the scaling of data requires 
division) conversion to a weighted code such as binary is necessary. 

Signal processing tasks such as FIR filtering and DFTs are multiply-accumulate 
(MAC) intensive operations, hence RNS is an ideal arithmetic for these types of operations 
More complicated algorithms such as adaptive processing, present the more difficult 
ooerations for RNS. The conversion of RNS numbers to their weighted system equivalent 
is very expensive and if a sufficient number of conversions must be made, the advantages 
of RNS are outweighed. Unfortunately, because of the need for scaling and magnitude 
information in many signal processing algorithms, these conversion costs hindered the 
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development of RNS signal processors. Much of the rest of this paper is concerned with how 
we overcome the need for some of these operations within the adaptive beamforming 
algorithm. We also discuss some implementation details. 

For an extensive introduction to RNS see [13]. 

2.2      Theory and Examples 

Integers are mapped to an L-tuple of residues by reducing the integer mod/?, (1</<L) 
where the modulipt are relatively prime integers. The dynamic range, M, of the system is the 
product of the moduli: 

" = lift 
Arithmetic operations are performed on the respective elements in the L-tuples. For 
example, integers X and Y are mapped to (x„ x2, ...,xL) and (yu y2, ...yL) where 
x, - X mod pit yt - Y mod pr Addition and multiplication are then performed by 
componentwise modular arithmetic: 

XxY= ((*,«*,>„, hcß>y2)p2, -, xßyL)Pi) 

where the notation (a©£), {a®b)p denote the arithmetic operations mod p. 
A simple example follows. 

Example 1 
The summation of 34 and 54 using the moduli 3, 5, 7 is summarized by the diagram: 

Moduli 

Operand 1 

Operand 2 

Sum 

3 5 7 

34 - 1 4 6 

54 - 0 4 5 

88 - 1 3 4 

Residues 

Residues 

Residues 

The two operands are converted to their RNS representations by storing their remainders 
(or residues) after division by the respective moduli. In a practical system this conversion 
would be done by a multi-stage look-up table. The input value is separated into a set of 
subwords each representing a partial sum of the digits of that number. The residue, mod/», 
say, of each subword can be computed independently and the results then added, alos mod 
p, to obtain the desired residue. 

In this example, the residues are then added componentwise relative to the 
appropriate moudulus: 1+0 = 1 mod 3, 4+4 e 3 mod 5, and 6+5 = 4 mod 7. 

The resulting L-tuple which is the RNS representation of the sum can, if desired, be 
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converted back to standard representation using the Chinese  *™™d™™™T™d 
Remainder Theorem. For this conversion, we need the quantities m, = M/Pi, and their mod 

Pi reciprocals, On,"1),, for /=1,2,3,...,L: The inverse mapping X = 4T1(*i.*2. -.**) is then given 

by 

\i-i IM 

Example 2 
1x1^=3,^=5,^=7.ThenM = /w3 = 105.Uta = 7,and* = 9where a,b<=ZM. 

*(«) = (<7)3,<7>5,<7>7) = (1,2,0),   *(*) = «9>3, <9>5, <9>7) = (0,4,2) 

Then, for example, 
(1,2,0) + (0,4,2) = ((1 +0>3, <2+4>5, <0+2>7) = (1,1,2) 

(1,2,0) x (0,4,2) = «1x0>3,(2x4>5,<0x2>7) = (0,3,0) 

The   inverse   mapping   requires   the   following   values,   m,=35,   m2=21,   m3=15, 

<m;\ = 2, (m2-1)5 = 1, (m3-1)7 = 1 then, using the CRT we get 

4>-1d,1,2) = (EmKVj     • (35(2x1)3 + 21(1x1)5 + 15(1x2>7)105 = 16 

and 
' 3 

4>-1(0,3.0) = rZmjmfxM     - (35(2x0)3 + 21(1x3)5+15(1x0>7)105 = 63 
\i=1 /105 

An extension to RNS is the Quadratic RNS (QRNS) [1] which allows complex integer 
arithmetic using pairs of real integers. For example, a complex integer W\*™™**£ 
a pair of real integers {zf\ Given a prime/> of the formp = 4fc+l where keZ, Gaussian 
primes, then the congruence x* - -1 mod p has two solutions in the field Z, that are 

multiplicative and additive inverses of one another. Let /, /"1 denote these two solutions. 
Define a mapping from the complex integers mod/?, ZP\J] into ZpXZ, by 

6{a+jb) = (z,z*) 

where 
z - ifl+fi) mod P>      z* " (fl_^ mod p 

The inverse mapping is given by 

e-1(z,z*) = <2-1(z+zOW<2-7~VO>, 

Addition is preserved by this map. That is, if B(a+jb) = (z.z'), 6{c+jd) = (w,w*) then 

6((a+chj(b+d)) = (z+w.z'+w*) where the additions are performed with respect to a given 
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modulus. 

The following are suitable Gaussian primes of varying binary lengths: 
up to 7-bits 

{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113} 
8-bits 

{137, 149, 157, 173, 181, 193, 197, 229, 233, 241} 
9-bits 

{257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 
449, 457, 461, 509} 

10-bits 
{521, 541, 557, 569, 577, 593, 601, 613, 617, 641, 653, 661, 673, 677, 701, 709, 733, 
757, 761, 769, 773, 797, 809, 821, 829, 853, 857, 877, 881, 929, 937, 941, 953, 977, 997, 
1009, 1013, 1021} 

Example 3 

Let/? = 101, x = (34 + 637). We want t0 find aJ sucn that ^101 = <_1\oi = <100\oi • 
Clearly,) = 10 li> one solution. Also, the other solution is ;"1 = 91 which is both an additive 
and multiplicative inverse of;: 

^r1>ioi=<10 + 91\oi=Cl01>ioi=0 

^•x;-1)101=(10x91)101=(910>101=1 

The QRNS pairs are then computed as: 
6(34+63/) = {(34+10(63)>101,(34-10(63))101} = {58,10} 

To invert this QRNS process we use the fact that 

Re(z) = (z+z)/2,    Im(z) = (z -z)l2j 

and so we need (2-1)101 = 51 and then ((2/)-1>101 = <(51)(91))101 = 96. Then 

6-1(58,10) = <51(58+10)>101 +/(96(58-10)>101 = 34 + 63/ 

as expected. 

In a conventional arithmetic unit, a complex multiplication requires four real 
multiplies and two real adds. A further extension to QRNS is the Galois Enhanced QRNS 
(GEQRNS) [1] which allows this operation count to be reduced to just two real RNS-adds. 

To achieve this, we map the pair (z,z*) to their logarithms with respect to a generator of 
ZL (ez,ez.). For any prime modulus p there exists some aeZp that generates all non-zero 
elements'of the field GF(p)=Zp. That is to say {a' | i=0,l,2,...,p-2} = GF(p)\0. The integer 

2 is therefore equivalent to ial)p and can be uniquely represented by this exponent. These 
number theoretic logarithms may be added modulo p-\ to produce multiplications: 
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<«*M   = (ccV) • Hence, a complex multiply requires just 2 real adds. Since zero cannot 
be generated, zero must be detected and handled as a special case. 

&amP£4an example of GEQRNS arithmetic, let/> = 7, then a generator is a=3 so that 

GF(7)\0 = {(3% ! i = 0,1,2,3,4,5} = {1,3,2,6,4,5}. To multiply 3 and 5, we simply add 
(modulo 6) their mod 7 logarithms (to base a=3): 

3s - 5 mod 7  -  log3(5) = 5 

31 - 3 mod 7   -  log3(3) = 1 

so that 

(5x3)7 = (35x31)7 = «3*% = (3°)7 = 1 

2.3      Scaling in RNS 

in a practical system, RNS does not have infinite precision. There is a dynamic range 
limitation; just as there is a limitation in a conventional integer processor. When designing 
algorithms for RNS implementation, think of the RNS processor as an ^V°™™^ 
constraints, such as division and square root operations are not close in^^he integers 
therefore there is no simple way that these operations can be done in RNS. An integer 
processor on the other hand can approximate these operations since rounding may occur, 
but rounding can't happen in RNS. 

Algorithms must be designed to keep the growth of intermediate results under 
control, as in any algorithm design on a conventional integer processor^^ 
necessary to keep the growth under control. Unfortunately, the scaling can not be done 
directly in the RNS. Scaling can be accomplished by converting back to the.integer^andren 
dividing. The conversion, through the Chinese Remainder Theoremn^RT) or the Mrxed 
Radix Conversion (MRC) algorithms, or through the core function [13], requires extra 
overhead that may negate the advantages of the RNS. Therefore, the object is ito stay in^he 
RNS as long as possible, being careful not to overflow the dynamic range of the system^ 

How do you check if you are about to overflow? In conventional processors the 
intermediate results can be compared to the maximum number that can be represented on 
the processor. If that result is approaching the upper limit, then it is time to scale, keeping 
track of the scale factor to reconstruct the proper result (if necessary) later. Unfortunately, 
he comparison operation can not easily be done in RNS either. Because of this problem, 
he term^owth must be analyzed, or it must be determined if the problem can to erate this 

fatal overflow error occasionally. It may turn out that the fatal errors may occur infrequently 

and ca^e
a

t°^t
s
e
of the dement g^h is needed in order to determine how many 

operations can be performed before scaling is required in order to avoid overflowing the 
available dynamic range. Of course, more frequent scaling results m greater loss of ■precision 
and as we see shortly, the later we scale the better in terms of final accuracy. It is therefore 
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better to scale occasionally during the computation rather than to prescale the input data. 
Another possibility is continuous scaling which can be accomplished (at the cost of 

some loss of precision) via the L-CRT. The advantage is that this lends itslef to a data-flow 
architecture. The L-CRT operation can be partitioned into 4 stages [4], [7]. When one stage 
is complete, it passes the result to another stage. The output is delayed until the data passes 
through all of the stages in the pipe. This delay is called pipeline latency. If a continuous 
stream of data needs to be converted from RNS to binary, the effective conversion rate is 
one conversion every clock cycle, but it still takes 4 clock cycles to perform a single 
conversion. With this in mind, it may be possible to take advantage of this pipelining in the 
algorithm. The algorithm may scale continuously, using the L-CRT, instead of occasional 
scaling. 

The L-CRT is computed by factoring M into a real scale factor Fand an integer M' 
= 2k, where keZ\ such that M = VM', and 0 < M' < M. The L-CRT is given by 

Xs = (^[m^x^jvl 
, J=I IM' 

1* 

where |_\| denotes the integer-part or floor function and w^IJp,- The L-CRT is a 

residue-to-binary conversion that automatically scales by V. The disadvantage of the L-CRT 
is that it may introduce an error into the computed Xs. The error in the L-CRT is given by 
0 <. | X/V-Xs | <L which is usually small since L<M. 

To halve the word length, the scale factor is on the order of \[M. For the system 

using {p},p2,p3} = {101,109,113}, M = 1244017, JM = 1115.3551 which corresponds to 
about A:=10 or about half of the 20.2 bits of M. 

The scale factors V for various values of k for this system are: 

k M'=2" Scale Factor 
V=MIM' 

k M'=lk Scale Factor 
V=MIM> 

0 1 1244017 10 1024 1214.860352 

1 2 622008.5 11 2048 607.4301758 

2 4 311004.25 12 4096 303.7150879 

3 8 155502.125 13 8192 151.8575439 

4 16 77751.0625 14 16384 75.92877197 

5 32 38875.53125 15 32768 37.96438599 

6 64 19437.76563 16 65536 18.98219299 

7 128 9718.882813 17 131072 9.491096497 

8 256 4859.441406 18 262144 4.745548248 

9 512 2429.720703 19 524288 2.372774124 
20 1048576 1.186387062 
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3.        Gaussian elimination 

3.1      Why Gauss elimination? 

The primary reason for se.ee,ing Gauss f^^^^^Z^ 
solution of «he «near Syrern is; .ha, ^XthaeÄÄir/is tha« «he fac«ors 

""four „earn« applica,ion ^-^^ÄL": 
retention of the matrix factors is not so important. Any change in the reian 
relative strengths of me required signal and jammer results m a new sys em. 

Gauss elimination demands relatrvely few non-RNS <>P^°n^„ eliminated by 

square roots) and the dMsions that ^n«ded can^ fd^°*J™ QI dirJt 

SS3?"Ä ÄSSS, square-roo, operations are 

neCeSSaThe modified algorithm discussed here uses integer arithmetic Pe*™J^™£ 

significant this is sufficient. 

In its most basic form Gauss elimination for the solution of an nxn system 

Ax = S 

can be described as an n-l step process in which, a, smge* %£££££*£ 

be applied to the right hand side. 
We denote the matrix a. the ,"» stage by A» (so that A .A«>) and rts elements by 

„<» Similarly the components of the right-hand side at stage i will be denoted by b, . In rts 
^pfeÄ (oftenTrmed the «fcfeL) the Gauss elimination algonthm . then 

for i=l to n-l 
for j=i+l to n 

m = aji /alf ,     an     - ° 

for k=i+l to n 
(i+l)       _ (i)       ma <*> aj*     = ajk - maik 

To complete the solution, «his elimination phase is Mowed by the back substitution: 

xn = bn   I am 
for i=n-l down to 1 

for j=i+l to n 
b^-b^-agx, 

x^b^/aW 
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For general linear systems, pivoting is necessary in Gauss elimination in order to 
reduce the effect of roundoff error and preserve maximal accuracy in the computed result. 
Why are we not proposing to use pivoting here? The first reason is that integer arithmetic 
is being used and so roundoff error is not an issue. (Actually, there is some loss of precision 
involved in our solution by virtue of the scaling which is used to a limited extent in the 
modified algorithm presented. This will be discussed in detail later.) The matrix here is 
hermitian positive definite. The use of partial pivoting destroys the symmetry and therefore 
the ability to economize on storage if that becomes an issue. Also, and more importantly, 
for a positive definite system using partial pivoting does not improve the numerical stability 
of the algorithm. [16] 

3.2      Avoidance/ elimination of the divisions 

In order to maximize the efficiency of our RNS processors for the solution of the 
linear system, we want to delay or even eliminate the non-RNS operations (divisions in the 
case of Gauss elimination). At this stage we can simply regard this as being a requirement 
to achieve the solution on an integer processor. 

Consider therefore one step of the elimination process. Suppose then that we are 
eliminating in column i and consider the effect of this elimination on row j>i. In the 

conventional application of Gauss elimination, we use the multiplier a^ \aü   so that each 

subsequent member of row j is replaced by aj+1) = af-at\$\af\. Clearly this requires a 
noninteger operation. 

This division can be eliminated by simply "cross-multiplying" between the two rows 
so that for each k>i 

■*jk ~ aii ajk      aji aik 

This evidently preserves the integer nature of the matrix elements but has associated 
computational costs. The most important difficulty introduced by this integer arithmetic 
requirement is that the size of matrix elements can grow rapidly as the elimination phase 
progresses. 

3.3      Growth of the matrix elements 

To get an idea of the rate of growth which may be encountered, consider just one 
step of the elimination in which we are effectively dealing with a 2x2 matrix. The standard 
Gauss elimination results in the modification: 

a  b       a        b 

c d\ "* [O d-b{cla\ 
whereas the integer preserving form yields: 

a b]     \a      b 

c d\     [0 ad-be 
in which the bottom-right element is a times that for the standard algorithm. For the full 

elimination this results in the final element a£~1) becoming the full determinant of the 
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original matrix - potentially a large number. ^mo„f ;„ 
At each stage of the elimination, there is the possibility that the largest element in 

the matrix could approach twice the square of the largest element at the previous stage. 

^^By way of illustration consider just a simple 3x3 example. The elimination procedure 
for the following matrix yields 

7 8 9 7    8      9 7    8 9 

8 3 2 ~* 0  -43  -58 ~» 0  -43 -58 

9 2 7 0  -58  -32 0    0 -198 

We see that although the growth here is not as severe as the worst case described above, 
there is still very rapid growth giving a greatest element close to (1/3)^. -tWt;r 

In our beamforming problem, we would be performing complex integer anthmetic 
which allows the possibility of even (slightly) faster growth in the matrix elements. For this 
aporoach to be viable we must clearly be able to handle a very large dynamic range in he 
later stages of the elimination. This can be achieved in principle by the column-parallel, 
parallel-channel" approach described below. 

3.4      Column-parallel, parallel-channel implementation 

The basic idea is to use a parallel array of RNS processors which are allocated to the 
various columns of the matrix. As the elimination proceeds, fewer columns are still active . 
The processors used for the inactive columns can be reallocated to extend the dynamic range 
available for the remaining columns. 

We begin by recalling briefly the column parallel version of the Gauss elimination 

algorithm. Denote by af> that part of the;«h column oM» below row i. The basic Gauss 

elimination algorithm entails the formation of the vector >a® = a<%*? and then each 
subsequent column is modified using vector the operation 

1*. tf-a«*« 
This is just the standard vector processor operation 'Vector + scalar x vector". The obvious 
modification for our integer algorithm is 

which is a similar though slightly extended "scalar x vector + scalar x vector" operation for 
which our processor can be suitably designed. 

The idea behind the adaptive parallel-channel approach to implementing this integer 
algorithm in RNS arithmetic is that a number of parallel RNS processor channe s would be 
used, each operating relative to a specific modulus. The number of such channels allocated 
to a particular data item essentially determines the dynamic range available for that data. 
Initially the processors would be divided evenly among the columns of the matrix. 

After the first stage of the elimination the number of active columns is reduced by 
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1 but the necessary dynamic range is increased. The idea is to adaptively allocate processors 
to columns so that as the required dynamic range grows, the number of processors grows 
too. The basic idea is easily illustrated for the case of four columns using a total of 12 RNS 
processor channels. 

The adaptive nature of the algorithm is illustrated in Figure 3 below. 

FIGURE 3 
Schematic diagram of the adaptive dynamic range : allocation of RNS processors. 
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In Figure 3, for a hypothetical situation of a 4x4 system, the first stage uses a dynamic 
range covered by a three-dimensional RNS representation. At the next stage, only three 
columns are active and so a fourth basis element can be introduced extending the dynamic 
range. Similarly for the third (and final) stage of the forward elimination only two columns 
remain active and so a six-dimensional representation can be used. The extent of the range 
extension is obviously dependent on the relative sizes of the basis elements. 

For the first stage of the back substitution, all 12 channels could be used to 
accommodate a greatly increased dynamic range which could then be reduced as the solution 
process proceeds. However, if the divisions required in the back substitution are also to be 
postponed or eliminated, then the dynamic range will grow further during that phase of the 
solution process. This is discussed later. 
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If the basis elements are all of similar magnitudes and the initial range is appropriate 
to the covariance matrix then the growth allowed for here is clearly insufficient for the worst 
case growth discussed above. The description and figure are intended to convey the broad 
philosophy of the solution process not the practical detail. The number of RNS channels, 
the choice of basis elements and control of the growth of matrix elements are all important 
factors to be discussed shortly. 

One important consideration which is suggested by the schematic diagram concerns 
the possibility of changing the prime modulus used by a specific channel during the 
computation. An RNS processor could be designed either to have a fixed modulus or to be 
programmable in the sense that the modulus can be changed during the computation. 

If the base modulus of a processor is fixed throughout and all of them are required 
for the final stage then, for conventional RNS arithmetic, all the moduli must be distinct. 
This presents potential problems since there may be insufficient suitable moduli of sufficient 
magnitude (but still representable in only, say, 8 bits) available for use. The solution process 
would also require frequent conversions of RNS representations between different basis 
vectors. Although this is an achievable task it necessarily costs time. 

An alternative within the fixed modulus framework might be to use repeated moduli 
and a mixed radix arithmetic system. . 

With programmable moduli, most of the above difficulties would be alleviated 
although there would remain problems of base-extension as the dynamic range and therefore 
the dimension of the basis increases. However the same basis vector can then be used 
throughout any stage of the elimination and this can always include the previous basis. Of 
course there are costs associated with changing the base modulus and these must be weighed 
against other costs of the overall solution process. 

It is important for understanding the overall algorithm to appreciate that Figure 3 
should not be interpreted too literally. The apparent reprogramming of processors 4 through 
12 for the second stage is wasteful. The process is pictured that way for simplicity. In 
practice we should anticipate processors 1 through 9 being unchanged - and used for the 
base extension to be discussed shortly - while processors 10 through 12 are all modified for 
modulus p4. Column 2 would then be processed using channels 1, 2, 3 and 10, while column 
3 would use 4, 5, 6 and 11, and column 4 uses 7, 8, 9 and 12. Similar modifications would 
take place at subsequent stages. 

3.5      Back substitution 

The back substitution phase of the solution begins with the single equation 

ann     wn       An 

which appears to require division immediately. However, we are only interested in the 
relative sizes of the weights and so this division need not be performed at this stage. 
However this implies a need for a further "cross-multiplication" at the next and subsequent 
stages of the solution. 

This in turn suggests further growth in the dynamic range required to accommodate 
the computation. If no scaling has been done in the forward elimination phase, then the 
dynamic effective wordlength doubled at each step. It follows that in the back substitution 
the effective wordlength required would increase more slowly since the ranges of the 
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multipliers are reducing. The overall effect would be that one further doubling of the 
wordlength would suffice for the whole back substitution phase. 

4.        Difficulties with the proposed algorithm 

There are several difficulties already apparent in the outlined solution process. In this 
section we discuss some of these in detail and present refinements of the algorithm to 
alleviate these problems. We discuss these within the specific framework of a four antenna 
array, so that the covariance matrix will be 4x4. It will also be assumed that the elements 
of the initial covariance matrix can be uniquely represented using three 7-bit moduli. The 
overall array of RNS processors will be assumed to have 16 such processors. Of course 
whatever operations are performed on the matrix must also be performed with the right 
hand side vector. We shall assume there is a similar array of 16 processors performing those 
operations in parallel with the matrix operations. 

4.1 Obtaining the covariance matrix 

The elements of the covariance matrix are formed as scalar products of the data 
vectors. These, for a model 4-antenna problem, would typically be vectors of length around 
16. 

Scalar products are readily performed in the proposed RNS architecture and so 
obtaining the covariance matrix relative to a fixed RNS basis is straightforward provided that 
the available dynamic range is sufficient to accommodate the intermediate results. 

Using the 16 processors subdivided into 4 groups of four each representing a column 
of the covariance matrix, we can compute a complete row of this matrix in parallel in a 
single RNS-channel scalar product time. Four such operations are therefore sufficient to 
generate the complete array. Note that at this stage we have a 4-dimensional basis vector 
even though the matrix elements could be stored using just three base moduli. The 
additional channel per column is essentially free at this stage but accommodates some of the 
dynamic range growth that will be needed for subsequent stages. 

Implicitly, we have assumed here that the individual RNS processors are 
programmable for different base moduli so that the same basis vector can be used for 
representation of all columns. Of course any changes of base modulus carry a penalty in the 
need to load new arithmetic tables. This time penalty must be balanced against any loss of 
precision which may be entailed in controlling the dynamic range. 

Scaling of the initial data or of the covariance matrix could be used to reduce the 
dynamic range requirement at the outset. This is equivalent to coarsening the resolution of 
the input data. We consider the effect of such a reduction in resolution shortly in connection 
with the question of scaling during the forward elimination. If any such scaling is to be used 
then clearly the choice of scale factors will be an important consideration. 

4.2 Element growth 

Almost obviously, the biggest problem with the proposed solution technique is the 
rate of growth of the matrix elements and the consequent range extension requirement. In 
the case of a positive definite matrix, Wilkinson [16] establishes that the growth in Gauss 
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elimination using divisions is bounded by 1. That is there is no growth. However ii' integer 
arithmetic without divisions is used, it is clear that the elements can grow rapidly. As we 
showed in the previous section the rate of growth can be of the order of squaring the largest 
element at each stage of the elimination. 

By way of illustration, we consider one example. 

Example 6 
Consider the situation of N=4 antenna, K=16 data vectors for a signal S=0 dB at 

0° and a jammer J=40 dB noise at 23°. The unadapted and adapted beam patterns for this 
problem are shown in Figure 4. 

FIGURE 4 
Unadapted and adapted beam patterns for Example 6 
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The averaging in the covariance matrix entails a division of the scalar products by K 
but since the relative weights are the required quantities this division can be ignored in the 
solution process. For this case the resulting matrix is 

254879 84113-240210/     -200191-159002/  -220468+135323; 

84113+240210/ 254223 83794-241184/'    -200316-163148; 

-200191+159002;    83794+241184; 256489 88751-243850; 

-220468-135323;  -200316+163148/    88751+243850; 262597 

The largest element in the initial matrix is around 2.6xJ()5 which is close to 218. It is 
therefore uniquely representable in the proposed 3-dimensional RNS form. After one stage 
of the elimination the active matrix is 
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20263148 2126089-10721400/  -6179050-8804311; 

2126089 + 10721400; 15587346 1684387-6944521; 

-6179050 + 8804311;   1684387 + 6944521; 12007410 

which now has a largest element of around 2xl07 or 2» The growth at this first stage has 
been substantially less than the worst case mentioned above. A 4-dimensional RNS 
representation would be sufficient in this case. Of course, we have availability for a 5- 
dimensional representation at this stage using our 16 RNS channels. 

The next stage of the elimination reduces the active matrix to the 2x2 system 

1.9638x1014 -2.568x1013-6.000x1013; 

-2.568x1013 + 6.000x1013;' 1.5883x1014 

in which the largest element is now around 2xl014 so that almost worst case growth has 
indeed occurred here. An 7-dimensional representation would now be necessary. (Eight 
channels per column are now available.) The final elimination yields the final element 
2.693xlO28 so that near worst case growth has again occurred but the 16 available RNS 
channels can easily accommodate this range. 

Of course the growth of the elements in this example cannot be assumed to represent 
the general case. In the absence of any special knowledge we must allow for worst case 
growth. Such growth could not be accommodated in the same array as described above 
without some other means of controlling that growth. One possibility would be to scale the 
active matrix periodically. Before discussing the use of scaling, we must consider the 
questions arising out of the base-extensions. 

4.3      Base extension 

There are two major aspects to the problems posed by the base extensions required 
by the algorithm under consideration. The first is the mathematical problem of finding the 
residues relative to new basis elements of an integer given only by its residues relative to the 
existing basis. This question and variations of it have been discussed extensively for various 
special cases [3], [10], [11], [14], for example. 

The case of interest here is almost the simplest in that all we wish to accomplish is 
the addition of one or more new moduli to the basis. Within our parallel architecture, any 
one processor would be concerned solely with the addition of a single basis element. The 
process is simply described in [3] by conversion from the existing standard RNS 
representation to the associated mixed radix system, MRS - an operation which is easily 
achieved using residue arithmetic throughout - and then computing the residue of the 
resulting mixed radix representation relative to the new basis element. 

A simple example is included for completeness. 

Example 7 
Suppose we have an integer n e [0, 105] represented in the RNS system with basis 

{3,5,7} by the vector (1,3,3). 
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We must first convert this into mixed radix form relative to this same basis. That is 
wemustfind a06{0,1,2},fl1 e{0,...,4},fl2e{0, ,6} satisfying      n = a0 + a1(3)+fl2(3)(5) 

It is immediate that *o-|i.|,-1   then  a, = |3>-flo) |5= |2(3-1)|5 = 4  and finally 

*2 = |3-15-1(n-fl0-ßl(3))|7= |(5)(3)(3-1-4(3))|7= |(1)(-10)|7 = 4 
To find the residue relative to a new base modulus,  11, we must now compute 

|1+4(3)+4(1^|11- I1+1+4WI«-- |2+5|„-7 
(Note that for this example n=73 which is indeed 7 mod 11.) 

The second fundamental problem of base extension arises out of the time-penalty 
associated with base extension. This has components arising from reprogrammmg the RNS 
processors for new base moduli and the extension operation itself. 

We consider first the operation count for base extension. There is a natural 
parallelism in the operations for extension of the members of a column of the matrix. In the 
above example, the computation of a, requires 2 arithmetic operations in the modulus* 
processor, followed by the computation of a2 which can be viewed as three multiply- 
accumulate operations in the modulus-7 processor. Concurrent with this latter stage, the a, 
commotion for the next element can be performed. The total time for the conversion to 
mixed radix form will therefore consist of the current vector length times the time tor the 
final modulus calculation plus a latency comprised of the sum of the times for a single 
element to pass through the earlier channels. Let us examine this for an RNS basis ot 
dimension L and active column length C. 

The number of operations required in the i,h processor for the conversion ot one 
entry to mixed radix is i except that the first processor is not needed. The total number of 
multiply-accumulate operations needed to obtain the full mixed radix representation of the 
first element is therefore L(L+l)/2 - 1. The rest of the column would require just a further 
(C-1)L   operations   so   that   the   total   number   of  parallel   operations   needed   is 
L(2C+L-l)/2-l. , 

This operation count must be increased since the elements of the pivot column must 
also be converted in each processor. This has the effect of doubling the vector length which 
gives a final count of L(4C+L-l)/2-l. For the first stage of our algorithm we have a vector 
length C=4 and an RNS basis of dimension L=4 so that the delay is 37 modular multiply- 
accumulate operation times. For the final elimination phase, C=2, L=8 and so the delay for 
this part of the conversion is 59 such operations. 

For each new modulus a vector of effective length 2C must be processed. The 
operation consists of L-l multiply-accumulate operations in this new modulus. For the same 
two stages as mentioned above this entails 24 and 28 operations respectively. 

However before the last step here can be performed, the processors for the new 
modulus must be reprogrammed for this new modulus. The principal component of this 
operation is the loading of the appropriate look-up tables. These tables, for 8-bit moduli 
consist of two 256-byte tables each. Assuming an effective transfer rate of 4 bytes/clock cycle, 
this operation takes 128 cycles which is a greater time penalty that is entailed in the RNS- 
MRS conversion. We may assume that these operations are concurrent. 

With a throughput of 1 multiply-accumulate/cycle, the overall delay caused by the 
base-extension is therefore around 150 cycles which is a large cost to absorb within our 
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requirements for a high-speed, physically small unit. This is especially true since the dynamic 
range growth allowed for in the example and in the above calculations is far from worst case. 
It is because of this cost that some scaling is incorporated into our algorithm. However, 
inclusion of scaling has its own associated costs - both in time and accuracy. We begin by 
considering the cost of scaling in terms of the accuracy of the final solution. 

4.4      Scaling and loss of precision 

First suppose that at some stage of the elimination, we try to preserve the actual 
dynamic range by scaling and that the active matrix contains elements which are close to 
extremes of that range. As we commented earlier, each individual step can be viewed as an 

fa  b 
operation on a 2x2 complex matrix which we can write as 

[c a] 
Suppose then that (the components of) each element of this matrix lie in the interval 

[-Mflf] and that we require a scaled version of the resulting element ad-bc which also lies 
in this range.  For complex arithmetic, the worst case implies that components of 

ad-bc € [-4M2,AM*] which demands a scaling by a factor of the order of 4M. This is 

comparable to scaling the elements of the matrix by 2y/M in advance of the computation. 
It is not equivalent to this prescaling since at least some of the lower order part of the result 
is preserved but it can approach this effective loss of precision especially if we believe that 
we are working close to the limits of the dynamic range. 

To see this consider the simplified situation of the multiplication of two 32-bit positive 
integers which are close to the limits of this range and the scaling of the result back to this 

same range. Denote the two factors by a and b and write a = ö12
16

 + ö2, b = &,216 + fc2 where 

a^,a2, bv fc2<216. Now the scaling that is necessary is the replacement of the product by 

[öffc/232] whereas     the     comparable     prescaling    would    result    in     computing 

[fl/2ie]*[i/216] = fl1*fc1.     For     avb,     close     to    the     extremes     of    the     range 

[ö*fc/232]<a1*fcl+min(fc1,a2) +min(a1,fr2) so   that   the   relative   difference   is   around 
l/maxfa.,,^) which we are assuming to be only about 2~u. 

The point of this is that the effect of scaling, when the numbers are close to the 
extremes of the range, is similar to the effect of prescaling and this is roughly equivalent to 
halving the resolution of the representation. 

Suppose that we tried to retain the same dynamic range throughout the computation. 
For our example, the components of the initial matrix occupied a dynamic range requiring 
about 19 bits and we conjectured using three 7-bit moduli so that we are indeed close to the 
extremes. Assuming that the growth is not quite as severe as the worst case, we might expect 
that the number of bits required would double at each stage. (This is not overly pessimistic 
since that rate of growth is indeed achieved in the final stage of our example.) 

The scaling at each stage is, according to the preceding analysis, approximately 
equivalent to halving the stored precision of the matrix - at each stage. Three such halvings 
of the precision would be needed which is equivalent to having an initial matrix with fewer 
than three bits of precision. The immediate question is "What effect does such a degradation 
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in the implied precision of the covariance matrix have on the solution?" 

The standard error analysis for Gauss elimination is not immediately applicable since 
it assumes that the divisions are performed. However, we can obtain an answer to this 
question by performing some simple experiments. 

Data from the ABF simulator was input to LabVIEW to test the adaptive 
beamforming algorithms. We conducted a few preliminary experiments on quantized data 
to see how the performance degraded with smaller and smaller resolution (# bits) in tne 
data. The same data was used for each variation in resolution so that we could see the 
difference in the beam plots, for a given resolution. 

There is a point in which quantization causes the Signal-to-Quantization Noise Ratio 
SNRQ (dB) to become larger than the Signal-to-Thermal Noise Ratio, SNRT. Given that 

there is 6dB (ICMog.22) per bit increase in the SNRQ, the number of bits, b, required for 
SNRQ to equal the SNRT is 

SNRT 

10 log ^ 
When b is chosen such that SNRQ > SNRT, the quantization noise acts like another 

jammer (but non-directional), whose power is greater than the desired signal. This would be 
one source of performance degradation. 

The adapted beam patterns were computed for varying numbers of bits of precision 
in the input data and the absolute difference |B(6S)-B(6y) | was compared to the desired 
solution. Here Qs, 6, represent the directions of the signal and the jammer respectively. In 
each case the jammer was J=30 dB noise so the maximum difference is about 30 dB due 
to the presence of thermal noise. The results of some experiments are presented in Table 
1 below. 

b = 

TABLE 1 
Degradation of solution as input data resolution is eroded. 

J = 30 dB Noise 
Values of |fl(es)-£(6,)| 

#bits 
8,=30° e,= 45° 

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 

16 30 dB 30 dB 28 dB 32 dB 31 dB 

5 28 dB 30 dB 29 dB 33 dB 32 dB 

4 26 dB 39 dB 32 dB 30 dB 34 dB 

3 28 dB 28 dB 31 dB 31 dB 31 dB 

2 17 dB 20 dB 21 dB 22 dB 28 dB 

1 

... 

9 dB Singular 
matrix 

17 dB 12 dB 15 dB 
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Initially this performance looks promising in that 3 or 4 bits resolution in the data 
appears to yield tolerably good accuracy in the solution. The actual beam patterns generated 
differed much more significantly from the "correct" solution but the results at the important 
bearings held fairly constant. However this first impression is somewhat misleading. For data 
vectors of length 16, data accuracy of 1 bit yields complex scalar products which require 6 
bits for their storage. That is the final row of Table 1 is obtained using a matrix with 
approximately twice the resolution (in the sense of double the wordlength) of the effective 
resolution suggested by the above analysis if we do not allow the dynamic range to grow. 

From Table 1, it appears that data resolution of 4 bits yields reasonable results. This 
is equivalent to an effective wordlength for the final solution of about 12 or 13 bits in the 
covariance matrix. Of course we have no strong evidence for the adequacy of this precision 
at this point - what we do have is evidence of the inadequacy of significantly less precision 
than this. Sensitivity of the solution to the precision in the weights was considered by 
Nitzberg [9]. 

The conclusion we draw is that some compromise between range extension (with its 
inherent costs in timing) and the use of scaling (with its cost in precision) is necessary in 
order to achieve acceptable (in both senses) results. 

5.        The elimination algorithm 

In this section, we describe in some detail the algorithm proposed for the elimination 
phase of the solution, together with giving further consideration to the architectural 
requirements of the process. Throughout the discussion we shall consider just a four-antenna 
problem using K= 16 data vectors so that the initial matrix elements consist of inner products 
of complex 16-vectors. 

We have already seen that substantial element growth must be accommodated and 
that some scaling is necessary in order to keep this under control. In order to decide on how 
much growth can be allowed and what scaling is necessary, we give some consideration first 
to the dynamic range which could be achieved for the final stage of the elimination using 16 
processors. 

The Gaussian primes which can be stored in eight or fewer bits are 5, 13, 17, 29, 37, 
41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241. The 
largest dynamic range which can be obtained using 16 of these is the product 

73x89x97x101x109x113x137x149x157x173x181x193x197x229x233x241 = 3.85x10s4 

which corresponds to about 115 bits. The effective range [-1.92x10s4,1.92x10s4] is sufficient 
for the Example 2 of the previous section but is not large enough to allow for worst case 
growth especially at some of the intermediate stages. 

The elements of the initial covariance matrix, we suppose can be represented relative 
to the RNS-basis {73, 89, 97} which has a symmetric dynamic range of Mj = [-315104, 
315104] which corresponds to slightly more than 19 bits of precision. Since both the real and 
imaginary parts consist of 2x16 products this allows the original data to be quantized to 7 
bits which appears from Table 1 to offer sufficient accuracy to allow satisfactory tuning of 
the array. 
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The 16-processor array would in fact have each element of the initial matrix stored 
relative to the four-dimensional basis {73, 89, 97, 101} which already accommodates some 
of the growth for the next stage. For this next stage a five-dimensional basis can be used and 
the Gaussian prime 197 is added to the basis. Now, 73x89x97x101x197 = W^WW 
so that the available dynamic range at this stage is M2 = [-6,269,634,236, o,Zo9,034,z;>oj 
which corresponds approximately to ±32.5 bits. Allowing for worst case growth from the 

original dynamic range would require a range of[-4Mu4M,] - [-3.97x10 ,3.97x10 ] 
which is approximately 63.3 times that available. A scale factor F>63.3 is therefore needed. 

If the L-CRT is used for the factorization then V must be chosen so that M' is a 
power of 2. Of course to avoid the risk of overflow, the scaling must be done in advance of 
the computation. Now scaling the dynamic range at this stage to ±232, that is choosing 
M' =232 is equivalent to scaling the elements of the matrix to a range of ±2 and so 
choosing V1 = 315,104x2"15 = 9.6162 10938 will suffice. 

For the next stage, we allow maximal growth of the dynamic range with an eight- 
dimensional basis by extending the RNS-basis to {73, 89, 97,101, 197, 229, 233, 241}. This 

yields M3 = [-8.06x1016,8.06x1016] or approximately ±2562 which must be compared with 
the demands of worst case growth from M2 which, with the scaling already applied, results 
in the interval [-2", I66] and so requires an effective scale factor around 210. Again the 
scaling must be done in advance of this stage of the computation. In order to attain a 
generated range [-256,256], it is necessary to scale the results of the previous stage to the 
range [-227,227] and so the scale factor required is V2 = 6,269,634,236x2"27 = 46.7124 1519. 
Note that this scaling carried out by the L-CRT requires the use of a 28-bit 2's complement 

Even the worst case growth at the final stage can be accommodated in the 16- 
dimensional RNS representation using the full basis above for which MA = [-1.92x10s4, 
1.92x10s4]. (This is true since the final stage consists of "real x real - complex x complex 
conjugate" which has a smaller growth factor associated with it than the more general 
operations needed earlier.) 

The scaling achieved here is essentially optimal. The final dynamic range available 
is approximately ±2ns and to keep within this the dynamic range used at the previous stage 
must be within ±256 and in order to stay within this the largest "power of 2" dynamic range 
allowable for the previous step is ±227. These are precisely the dynamic ranges achieved 
here. 

Of course the effect of this scaling could be achieved by the initial quantization ot the 
data. If we trace the scaling back to the original matrix then it is equivalent to the worst case 
of scaling the elements of the initial covariance matrix first to ±215 and subsequently by a 
further 2 bits to ±21S. This in turn is equivalent to a quantization of the initial data to ±4 
bits or, equivalently, 5 bits resolution. 

Note that the scaling advocated here would result in a smaller loss of precision since 
the contributions of less significant bits are retained as long as possible. This, combined with 
the experiments reported earlier gives cause to expect this algorithm to yield satisfactory 
results. 

Of course this prescaling is wanted at just the same stage of the computation as the 
base-extension and so the MRS-scaling algorithm should be considered as an alternative in 
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order to take full advantage of this conversion. 

We summarize the elimination phase as Algorithm 1 below. For simplicity in this 
description, we only refer to the first 16 RNS processors in the array and include only the 
operations concerned with the matrix itself and not those for the right-hand side vector. We 
also continue with the special case ofa 4x4 matrix. 
ALGORITHM 1 

The parallel RNS forward elimination algorithm 

Input    4x4 matrix A  with its elements represented in RNS 
with basis {73, 89, 97, 101} but scaled so that 

\ai:j\  £ (73x89x97-1) /2 = 315104 

Initialize The 16 processors are initialized for the moduli 
{73,89,97,101; 73,89,97,101; 73,89,97,101; 73,89,97,101} 
We shall denote by pk  the prime modulus in processor k. 

1. Scale the elements of A  using the L-CRT with 
V =   9.616210938, M'   = } 

using processors 4j-3 to 4j for column j. 

2. Processors 1-4: 
Reinitialize for mod 197 
Modulus vector is now: 

{197,197,197,197,73,89,97,101,73,89,97,101,73,89,97,101} 
Processors 5-16: 
Compute MRS representations of matrix elements: 

Processors 5-8     a±1,   ai2 
Processors 9-12    a±\i   ai3 
Processors 13-16   ail# ai4 

3. Compute (ai:7-)197 in processors 1-4 using processor j  for 
column j. 

4. For i,j>2,   compute 

(aij  W =  'aij ail " aijail'pk 

using 
Processors 2, 5-8 for j=2 
Processors 3, 9-12 for j==3 
Processors 4, 13-16 for j=4 

5. Scale ajj]   by L-CRT using processors as in Step 4 with 
V = 46.7124 1519, M'   = 227 

6. Processors 3. 4. 9-16: 
Compute MRS representations of ma'trix elements: 

Processors 3, 9-12 a[f, a™ 
Processors 4, 13-16 ai2 , ai4 

Processors 1. 2. 5-8: 
Reinitialize for moduli 229, 233, 241 
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Modulus vector is now: „«,, 
{229,229,197,197,233,233,241,241,73,89,97,101,73,89,97,101} 

7. Compute (aW)Pk  in processors 1, 2, 5-8 using 

Processors 1, 5, 7 for a^2 , a±3 

Processors 2, 6, 8 for a.i2 ,  ai4 

8. For i,j>3, compute 
/= (3>\  _ /-(2) , <2> _ a(2)-(2)\ \ai7- ;Pj. = \ai:/ a22   - a2j ai2 /Pjt 

using 
Processors 1, 3, 5, 7, 9-12 for j=3 
Processors 2, 4, 6, 8, 13-16 for j=4 

9. Processors 1. 3, 5r 7. 9-12: 
""""—"— ~ (3) 

Compute MRS representation of a±j 

Processors 2. 4. 6. 8. 13-16: 
Reinitialize for moduli 109,113,137,149,157,173,181,193 
Modulus vector is now: 

{229,109,197,113,233,137,241,149, 
73,89,97,101,157,173,181,193} 

10. Processors 2. 4. 6. 8. 13-16: 
Compute (aif)Pk 

11. Processors 1-16: 
Compute 

\a44 /Pjt = \a44 a33   - a34  a43 iPk 

Output 

where 
Pi = (73,89,97,101) 
p2 = (73,89,97,101,197) 
p.  = (73,89,97,101,197,229,233,241) 
j£ = (73,89,97,101,109,113,137,149,157,173,181,193,197,229,233,241) 

In Algorithm 1 we have assumed the presence of a second group of sixteen 
processors which would be used for the corresponding operations on the right hand side. Of 
course if only one such group were available then the operations described here could be 
duplicated for the right hand side. Some economy would be possible. The duplication of the 
computation of MRS representations for the elements of the pivot row could be eliminated 
in favor of operating with the right-hand side vector on one set of processors. The effective 
vector length for the elimination steps themselves would however be increased by one by 
distributing the right-hand side across the processors. 

In the event that 32 processors are available then further economies can be made to 
reduce the effective vector lengths by using some of the initially spare capacity. This is 
summarized in Figure 5 below. 
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MRS&    comDute Compute MRS *    Compute Compute 
Processor _      „     Store                       Compute Compute Compute                                 Compute Compu            ^        P 

#           Base^    <•>, i>l    SCa'e        MRS rep»,,          (->„i>2                   Boduli     «„          <V*3<.)Ä 

1 73           t hi            ' hi            ' hi 
229          a£> 109  4?   4?           4? 

2 89            < hi            ' hi            l hi 
229           <£»          off          M»  4P   *,"           bf 

3 97            , «ii            ' hi            l hi 
229          a»          «P>          <h?   a? 4? 

4            1 01            < hi            ' hi            ' hi 
229          frP>          *»          «£>   bf> *r 

5 73 *a 'a hi <hf          <h? 1? 113  4P 4»      4? 

6 89 aa «o *o „P> hi 
„p> 113 4? fri" if 

7 97 aa "a "a . „P> „P> So 137  4P »p> 4? 

8 101 aa "a "a „P> 4P „P> L37  «^ t«3» >r 
9 73 ai$ 

aa aa 
„P> «£> „P> «f 149  ^ °M 4? 

10 S9 ats 
au &a „P> /,p> „P> «u a? 149  4P *," NW 

11 97 aa al3 aa «Ü 4P 157  4P /,P> <h* ai? 

12 101 "a "a °I3 
„P> „P> «u <hs 157  *£> bf *r 

13 73 au au a» 'hi 4P a® <h?   4? 4? 

14 89 au au a>4 
„P> 
<h4 4? nF1 „P> <h4 

«w 

15 97 au att 
au „P> <h4 a,® «w <h4 «w «44 

16 101 au »14 <*u 4P 4P 4P «w 4? 

17 73 b, b, bt b? *P tT *,* /.p>  fcp> bf 

18 89 b, b, b, b? tf» bf bf /.p>   fcp> flu    ft, *r 
19 97 

*i b, b, b? 4*> b? bf /,p>   fcp> *r 
20 101 b, b, b, b? 4*> # bf bt 

21 197 b, •T •P bf> bf a?   bf> bf 

22 197 ao <h? 4P „p> 173  ^ /,P> 4? 

23 197 "a 'hi 
„P> «u „P> <hs 173 4T fc,w *r 

24 197 «« »P> 
«W 

„P> „P> „P> 'ht 
/.P>   »P> «44 

25 197 "u 
233 „P> 181 4P 4? 4? 

26 233 
„P> <h$ «to 181   a3» bf bf 

27 233 4P 4? /.P*   «P* 4? 

28 233 4» »T »P>     I.P* 
<hs    "t *4W 

29 241 
„P> 193  «^ 4P 4? 

30 241 
„P> 4P 193 a? •k" bf 

31 241 4P 4P „P>   «PI 4? 

32 241 4* ^ «P>   *P if 
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There are further economies that could be made here. The most obvious of which 
is that the initial basis could be augmented with 197 at no additional cost. This would 
eliminate the need for the first MRS conversion and base extension. This simplification was 
not incorporated into the diagram so that it adhered closely to Algorithm 1 as described 
above. 

6. Back substitution 

In this section, we are concerned with the back substitution phase of the solution 
process. Again the apparent need for divisions at each stage of the process is the source of 
potential difficulty. The method used to overcome this has the same consequent problems 
of element growth as for the forward elimination. We see that the postponement of the 
divisions can be rearranged so that they are eliminated entirely since only a scalar multiple 
of the weight vector is required. 

At the beginning of this stage we have the upper triangular system given by the 
augmented matrix 

'«ff a\2 «13 „<4> »,ro 

0 a23 
„<2> 

**" 

0 0 «33 4? *f 
0 0 0 # l *." 

We shall simplify the subsequent notation by rewriting this system as 

Ux = c 

and denoting the elements of this matrix and right-hand side by uijt c,   . 
We begin by describing the algorithm without paying any attention to the problems 

of element-growth and scaling that will be crucial to the realization of such an algorithm. 
The basic idea of the algorithm is to use a column-oriented (or column-sweep) algorithm with 
implicit multiplications on the left-hand side. The final row of the system represents the 
equation 

«44*4 = 
.(1) 

and we substitute this into the previous equations to get 
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« 44 

. 

"11 «12 "13 0 *1 

0 «22 «23 0 x2 

0 0 "33 0 *3 

0 0 0 1 S 

u r™ u r(1)l "44C1       "l4c4 
c«r 

u r(1)-u r(1) 
M44C2    ~«24C4 c? 

«44C31)-"3441> c{2) c3 

C4 C(2) 
4 

The arithmetic on the right hand side must be performed but the multiplication on the left 
is not needed since we are only interested in the relative magnitudes of the weights. 

At the next step, we can proceed similarly to get 

"33 "44 

"11 «12 0 0 *1' 

0 «22   0   0 x2 

0 0   1   0 *3 

0 0   0 1. *4. 

(2)              (2)1 
"33q'-M13C3 C(3)l c1 

(2)              (2) 
"33c2   ~"23c3 r(3) c2 

c3 c3 

(2) 
"33c4 r(3) 

4 

which in turn can be reduced to 

"22 "33 "44 

u iu  0 0 0 *1' 

0   10 0 x2 

0   0  10 *3 

0   0 0 1. s 

(3)             (3)1 
"22c1    ~"12C2 c1 

r(3) c2 r(4) c2 

(3) 
«22 c3 c3 

(3) 
«22c4 C(4) 

4 

and finally 

"11 "22 "33 "44 

10 0 0 *1" 
[  c(4)   1 c1 c1 

0  10 0 x2 
(4) 

"11C2 r(5) c2 

0 0 10 ^ 
(4) 

«11C3 
r(5) 
c3 

0 0 0 1 
*4. U   c(4) 

"l1 C4 t(5) 

. 4 

We can now use the final right-hand side vector as the solution setting xt = ct   and therefore 
eliminate the division operation from the back substitution phase completely. 

Clearly there is the possibility of substantial growth on the right-hand side of this 
system. At the beginning of the back substitution, the first row is scaled to ±21S, the second 
to ±232, the third to ±256 while the fourth has a dynamic range of approximately ±2113. The 
"cross-multiplication" operations of the process outlined above would generate growth up to 
a maximum of about 222 bits which could be accommodated by using the full array of 
processors if they can operate with 9-bit moduli. The potential growth of the elements of the 
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right hand side is shown in Table 2. The additional 14 moduli 257, 269, 277, 281, 293, 313, 
317, 337, 349, 353, 373, 389, 397, 401 would generate a sufficient dynamic range. However, 
the final'RNS-to-binary conversion would require a binary wordlength of around 223i bits 
which is perhaps too large to be practical. (The final scalar product operation of the CRT 
could be performed with a conventional floating-point multiply-accumulate unit since the 

relative magnitudes of the weights not the exact values of the c,® are required. Such a unit 
may be as efficient as a very long wordlength binary integer processor for this purpose.) 

TABLE 2 .    . 

i u- c(1) 
«," e* «," «f 

1 ±215 ±2130 ±2188 + 2222 ±2222 

2 ±232 ±2147 ±2205 ±2205 ±2222 

3 ±256 ±2171 ±2171 ±2205 ±2222 

4 ±2m ±2H3 ±2171 ±2205 + 2222 

Our algorithm has been based hitherto on the assumption of small (typically 8-bit) 
RNS processors which rules out any possibility of accommodating the full element growth 
and therefore necessitates the use of some scaling. 

In the back substitution phase there is a choice to be made as to which factors in a 
product are to be scaled, and by how much. In the elimination phase factors from similar 
dynamic ranges were being multiplied but that is no longer the case. Initially, the later rows 
have greater dynamic ranges and therefore carry more significant bits than the earlier ones 
and so we choose to scale the fourth row. In order to use just the same 16 base moduli as 
before, the right-hand side vector must be kept within the dynamic range of ±2113. It is 
necessary therefore for the first stage to scale the fourth row to M'=2SS before the 
arithmetic. This requires a scale factor V= 5.3381 9343xl017. Similar scalings are performed 
at the subsequent stages and these are summarized in Table 3. However, since subsequent 
scalings are being applied only to the right-hand side, any scaling must be applied to all 
elements of this vector. The scale factors used for the subsequent stages are approximately 
2* and 217. 

What is the effect of this scaling on the accuracy of the solution? Consider two 
quantities A+a, B+b where we assume that A,B have similar magnitudes and so do a,b with 
a,b being much smaller than A,B. Then 

A+a    A = aB-Ab = Q,^ 
B + b    B      B(B+b) 

and so the error in estimating (A+a)/(B+b) by A/B is of the order of (the reciprocal of) the 
scale factor. Thus the worst error in the relative weights which is introduced m this process 
is around 2"17 which is comparable with the accuracy of the initial covariance matrix. 
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TABLE 3 
Dynamic range and scaling requirements for back substitution 

i u c(1) Scaled 
to cf Scaled 

to «." 
Scaled 

to c,W «," 

1 ±21S 
±272 ±238 ±296 ±279 ±2113 ±2113 

2 ±232 
±289 ±255 ±2113 ±2* ±296 ±2113 

3 ±256 ±2113 ±279 ±279 ±262 ±2* ±2113 

4 ±2113 
±255 ±255 

±221 ±279 ±262 ±296 ±2113 

The algorithm consisting of the forward elimination and back substitution described 
here therefore provides a feasible solution to the adaptive beamforming problem using RNS 
arithmetic with an array of RNS processors to accommodate much of the element growth 
inherent in the integer solution of the system of linear equations. 

7.        Gauss-Jordan algorithm 

The Gauss-Jordan algorithm in which we eliminate above the main diagonal as well 
as below offers a natural alternative for the problem and architecture under consideration. 
The argument against the Gauss-Jordan algorithm on conventional processors lies in the fact 
that the arithmetic demands of the algorithm are significantly greater than using Gauss 
elimination. On an array processor this ceases to be true; while on a vector processor the 
disadvantage is reduced by virtue of increasing the effective vector lengths in the later stages. 

For our problem, the difficulties of the additional scaling requirements of the back 
substitution phase would be removed (or, at least, alleviated). The MRS conversions and 
base extensions would need to be performed for all rows of the matrix throughout the 
algorithm and therefore the scalings which are used in the forward elimination phase must 
also be applied to all rows. This penalty is reduced by observing that as the solution 
proceeds the number of zero elements is increasing and so the additional cost may be 
acceptable. The same scale factors that are used in the forward elimination would be 
suitable. As for conventional vector processors for much of the arithmetic the only additional 
cost is that entailed in increasing the vector lengths which could be quite small. 

On the surface Gauss-Jordan offers an attractive alternative for this situation which 
will be considered further in subsequent work. The biggest difficulty may well result from the 
fact that the final diagonal will not be just a constant as in the back substitution here which 
may mean that the final division is unavoidable. 
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8.        Conclusions 

In this paper we have presented a possible algorithm-arithmetic-architecture 
combination for the solution of the adaptive beamforming problem. The solution uses RNS 
arithmetic and a modified Gauss elimination algorithm. The divisions inherent in this 
algorithm are eliminated at the expense of a small number of scaling operations and the 
adaptive use of an RNS processor array to accommodate some of the growth in the desired 
dynamic range implicit in the method. 

The indications from preliminary simulation of the RNS processors suggest that this 
algorithm may provide significant speed-up over conventional processors running at similar 
clock speeds. However it is anticipated that the RNS processors will be capable of much 
greater clock speeds and therefore the potential speed-up may be substantial. Clearly such 
claims are subject to much more extensive and complete experiment and this is one of the 
immediate next tasks. 

Other future investigations following on from this work will entail the use of 
alternative algorithms for the solution of the underlying problem as well as modifications to 
this algorithm in which, for example, the use of the core function and other scaling 
techniques will be investigated for the possibility of further improvements. 
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