
Report No. NAWCADWAR-94112-50

MODIFIED GAUSSIAN ELIMINATION FOR
ADAPTIVE BEAM FORMING USING
RNS ARITHMETIC

Barry J. Kirsch
Mission Avionics Technology Department (Code 5051
NAVAL AIR WARFARE CENTER
AIRCRAFT DIVISION WARMINSTER %%v

P.O. Box 5152 M
Warminster, PA 18974-0591 f-- V.\

Peter R. Turner, Ph.D. ^\;-r
Mathematics Department \;i '
U.S. NAVAL ACADEMY
Annapolis, MD 21402

)

1

1 SEPTEMBER 1994

FINAL REPORT
Period Covering 6 July 1992 to 11 September 1992

Approved for Public Release; Distribution is Unlimited.

Prepared for
OFFICE OF NAVAL RESEARCH
800 N. Quincy Street
Arlington, VA 22217

19941213 042
Imö QÜALiry Wim--,,.

NOTICES

REPORT NUMBERING SYSTEM — The numbering of technical project reports Issued by the
Naval Air Development Center is arranged for specific identification purposes. Each
number consists of the Center acronym, the calendar year in which the number was
assigned, the sequence number of the report within the specific calendar year, and the
official 2-dlglt correspondence code of the Command Officer or the Functional Department
responsible for the report. For example: Report No. NADC-88020-60 indicates the twentieth
Center report for the year 1988 and prepared by the Air Vehicle and Crew Systems
Technology DeartmenL The numerical codes are as follows:

CODE OFFICE OR DEPARTMENT

00 Commander, Naval Air Development Center

01 Technical Director, Naval Air Development Center

05 Computer Department

10 Antisubmarine Warfare Systems Department

20 Tactical Air Systems Department

30 Warfare Systems Analysis Department

40 Communication Navigation Technology Department

50 Mission Avionics Technology Department

00 Air Vehicle & Crew Systems Technology Department

70 Systems & Software Technology Department

B0 Engineering Support Group

90 Test & Evaluation Group

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial
products herein do not constitute an endorsement by the Government nor do they convey
or imply the license or right to use such products.

Reviewed Bv: ^<^L^ Date. t/?/?f

Reviewed Bin J^.r/- ULM^ J Date:

Approved By: V^W V^jiU^O^UC Dale

Director/Deputy Director

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center
Aircraft Division Warminster

Code 5051
PO Box 5152

„garminster J_PA_18.9.74=P591

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
1 September 1994

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

MODIFIED GAUSSIAN ELIMINATION FOR ADAPTIVE BEAMFORMING
USING RNS ARITHMETIC

6. AUTHOR(S)

Barry J. Kirsch
*Peter R. Turner, Ph.D.

9. SPOUSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAWCADWAR-94112-50

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

* Mathematics Department
US Naval Academy

_J&napolisJ_MD__2..L40JL
12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution is Unlimited

12b. DISTRIBUTION CODE

13ABSTRAC
Tb:TsTaper

0isC'concerned with the development of a solution to the adaptive
beamforming problem. The proposed solution consists of an algorithm-architecture-
arithmetic combination which has the potential for very fast solution of tbe
problem on a physically small platform which might be suitable for use on aircraft
or sonobuoys. The arithmetic system used in the proposed solution is the RNS
system implemented on an array of RNS processors which can be reassigned as
the algorithm proceeds. The underlying algorithm is a modification of Gaussian
elimination. The (non-RNS) division operations are eliminated in favor of some
scaling and the adaptive use of the processor array to accommodate the growth in
dynamic range which is implicit in this divisionless implementation.

14. SUBJECT TERMS

RNS arithmetic, Beamforming, Gauss -elimination

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

.UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

16. PRICE CODE

20, LIMITATION OF ABSTRACT
SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-I8
298-102

94112-50
NAWCADWAR

TABLE OF CONTENTS
REPORT NO. NAWC-XXXXX-XX

Page
1. Introduction 1

1.1 Physical Problem and Basic Engineering Approach 2
1.2 Covariance Matrix Methods of forming adapted weights 3
1.3 Data matrix methods of forming adapted weights 4
1.4 Gradient based algorithms. 4

2. Residue Number System • 5
2.1 Introduction ••— 5
2.2 Theory and Examples «

Example 1 6
Example 2 '
Example 3 °
Example 4 9

2.3 Scaling in RNS • 9

3. Gaussian Elimination J j
3.1 Why Gauss Elimination? Jl
3.2 Avoidance/elimination of the divisions 12
3.3 Growth of the matrix elements • • 12

Example 5 • 13
3.4 Column-parallel, parallel-channel implemenation.... 13
3.5 Back Substitution 15

4. Difficulties with the proposed algorithm 16
4.1 Obtaining the covariance matrix • 16
4.2 Element growth 16

Example 6 1^
4.3 Base Extension 1°

Example 7 18
4.4 Scaling and loss of precision 20

5. The Elimination Algorithm 22
5.1 Algorithm 1 24

6. Back Substitution • 26
7. Gauss-Jordan Algorithm • 29*
8. Conclusions 30
9. References 30

LIST OF FIGURES

Figure 1 - Beam Pattern for uniformly weighted linear array 1
Figure 2 - Antena Array Beamformer 3
Figure 3 - Schematic diagram of the adaptive dynamic range allocation of RNS
processors 14
Figure 4 - Unadapted and adapted beam patterns for example 6 17
Figure 5 - Diagrammatic representation of Algorithm 1,32 processor version 25a

TABLE OF TABLES

TABLE 1 - Degradation of solution as input data resolution is eroded 21
TABLE 2 - Dynamic range required for element growth during back substitution 28
TABLE 3 - Dynamic range and scaling requirements for back substitution 29

94112-50
NAWCADWAR

MODIFIED GAUSSIAN ELIMINATION FOR ADAPTIVE
BEAMFORMING USING RNS ARITHMETIC

Barry J Kirsch
Naval Air Warfare Center

Code 5051
Warminster PA 18974

bkirsch@nadc.navy.mil

and Peter R Turner
Mathematics Department

U S Naval Academy
Annapolis MD 21402

prt@usna.navy.mil

Abstract:
This paper is concerned with the development of a solution to the adaptive

beamforming problem. The proposed solution consists of an algorithm-architecture-
arithmetic combination which has the potential for very fast solution of the problem on a
physically small platform which might be suitable for use on aircraft or sonobuoys. The
arithmetic system used in the proposed solution is the RNS system implemented on an
array of RNS processors which can be reassigned as the algorithm proceeds. The
underlying algorithm is a modification of Gaussian elimination. The (non-RNS) division
operations are eliminated in favor of some scaling and the adaptive use of the processor
array to accommodate the growth in dynamic range which is implicit in this divisionless
implementation.

Key Words:
RNS arithmetic, Beamforming, Gauss elimination

Avail and/or
Soooia!

94112-50
NAWCADWAR

MODIFIED GAUSSIAN ELIMINATION FOR ADAPTIVE BEAMFORMING

USING RNS ARITHMETIC

1. Introduction

A typical beam pattern produced by an uniformly weighted linear array of antenna or
hydrophones is shown below.

FIGURE 1
Beam pattern for a uniformly weighted linear array

14-element linear array

Direction (degrees)

The horizontal axis is the physical angle of observation and the vertical axis represents the
gain (attenuation) that the antenna array produces. If directional interference impinges the
array, that interference will be attenuated by a given amount depending on the direction. We
will have the most attenuation if the interferences falls in the direction of the nulls in the
beam pattern. This is desireable but occurs only by chance. By choosing the appropriate
amplitude and phase weighting of the antenna elements, we can steer the nulls in the
direction of the interferences. The problem has been extensively studied and many solution
algorithms have been developed. This paper describes one solution to this problem for a
particular algorithm and suggests some novel processor implementations.

The particular concern of this paper is with obtaining solution quickly on a
physically small processing unit for operation on platforms such as aircraft or sonobuoys.
This requires that we seek nonstandard solution techniques. Clearly, speed of numerical
processing is vital; this is the reason for choosing RNS arithmetic. Speed also dictates that
nonstandard RNS operations be kept to an absolute minimum; this in turn places
constraints on the algorithm. The algorithm-architecture combination proposed here is
based on using Gauss elimination to solve the covariance matrix formulation of the
problem.

The divisions implicit in the method are eliminated at the expense of requiring
substantial growth in the dynamic range of the RNS system used. This growth is
accommodated by a combination of the adaptive use of an array of RNS processors and
some scaling to reduce the effect of the growth of the matrix elements.

In the remainder of this section, we describe the adaptive beamforming problem and

94112-50
NAWCADWAR

2 Adaptive bcamforming with RNS arithmetic

some of the approaches that have been used for its solution.
In Section 2, we summarize briefly the relevant aspects of residue number systems

RNS arithmetic, and its extensions to complex RNS arithmetic. The architecture required
for our solution is based on an array of RNS processors. The section finishes with a brief
discussion of scaling in RNS arithmetic. ,,.*•♦•

Section 3 is concerned with Gauss elimination and a description of the modifications
to the standard algorithm which are required here. It is also in this section that the basic
philosophy of the algorithm is presented. In Section 4, several of the subproblems and their
associated difficulties are discussed along with proposed answers to these problems. The
difficulties center on the questions of the growth of the matrix elements and the use ot
adaptive RNS-base extension and scaling to handle this growth. Scaling necessarily affects
the accuracy of the solution; this effect is also discussed in this section.

Section 5 brings the ideas together in a detailed description of the overall elimination
algorithm. In Section 6, the back substitution phase is described and, in Section 7, the
modification to a Gauss-Jordan solution is considered.

1.1 Physical Problem and Basic Engineering Approach

A typical beamforming situation is shown in Figure 2. An array of N antenna
elements are sampled at time k to form a complex snapshot vector xk. A collection of K of
these snapshots constitute the NxK (N<K) data matrix X. Inner products between the data
vector xk and complex weights w form the complex scalar outputs yk. For the time from 1

to K, the output vector y = w"X. The problem is to determine the weights w>0, wu ...,wN.1

that will optimize the response y in some sense. When it is necessary to continually adjust
the weights, we say that we are doing adaptive beamforming.
Thus we have

Input = i\t) =

and seek

*i(0

**-iW,

Weights = w =

wn

H\

\
W

N-V

The situation is illustrated in Figure 2 below.

There are various techniques used for solving the beamforming problem which fall
into three basic categories.

94112-50
NAWCADWAR Adaptive bcamlorming willi KNS aritlimclic

FIGURE 2

N Complex Weights
to Steer Beam

N Element
Array

1.2 Covariance Matrix methods of forming adapted weights

We can derive the optimal weights to minimize the mean-square error, MSE = E[e2],

where the error signal, e is the difference between the desired response and the output y.

ek = dk-yk = dk-w"xk

e2 = dk - 2dkw "xk + w "xjfw

Taking expected values of both sides yields

E[e2] = 7k = dk
2-2w'%dk + w"xkxk

Hw

or _ (1.2.1)
E[e2] = dk

2-2w"fxd + w"Rxxw
To minimize this function, we set the gradient with respect to the weight vector equal to

zero, that is,
Vc2 = -2r. + 2Raw = 0 - RJ* = r,

(1.2.2)
xd

An approximation R to the correlation matrix /?.„ (also called the covariance matrix
for zero-me n daMS]) is formed from the N*K data matrix X R„ « the complex N*N
ir^EPl which is an infinite time average. Since we only have a finite number
K of snapshots, we use the estimated covariance matrix

R = XX" IK

The covariance matrix is always non-singular, and hence R is a positive definite Hermitian
matrLsince statistically independent noise exists on the antenna elements. The no.se

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic

correlation matrix is just R„ = a2I, where a2 is the noise variance (power), and / is the
identity matrix of size N. That is, the cross-correlation terms average out while the
autocorrelation terms average to the variance of the noise. The data covariance matrix is
made from the sum of the signal, jammer and noise covariance matrices: R = Rs + R} + Rn-

The weight vector is found by solving the system Rw = s where either
(a) s could be the steering vector given by

s = (1,eA*-*V..,«-(AMX»)r

where <J> = (2ndlk)s\r\6 and 6 is the desired look-angle with respect to the normal to the
linear antenna array; d is the inter-element spacing and X is the wavelength of the incoming
signal at the carrier frequency, or
(b) s could be the cross-correlation vector

^ = Elfrf] - (X3")IK

where dk is the reference signal sampled at time k, xk = (x0,xv...,xN_,)T is the snapshot vector
at time k, and, as before, £[•] is the expectation operator.

Covariance matrix algorithms which have been used for solving this problem include
Gauss elimination, Cholesky decomposition, and the recursive least-squares (RLS) method
based on the matrix inverse lemma [5, p.385].

1.3 Data matrix methods of forming adapted weights

The data matrix X is a complex NxK matrix, where K>4N, and TV is the number of
antennas. The objective of the data matrix methods is to find the weight vector vv that

minimizes the norm of the error vector, e = y-3=wHX-3 [15] usually in the least squares
JC-1

sense. Thus the weight vector iv is the solution to the problem min]T \wHxk-dk\
2.

*> *-o
Data matrix based algorithms which have been used include the singular value

decomposition (SVD) of X, QR factorization of X by Givens rotations [6], Householder
transformation [12], Gram-Schmidt [2] and modified Gram-Schmidt (MGS) orthogonalization
and divisionless MGS [17].

1.4 Gradient based algorithms

Gradient-based minimization methods have also been used to solve the beamforming
problem. In equation (1.2.1), we see that the MSE is given by a positive definite quadratic
form. Its N-dimensional surface is therefore described by a paraboloid and the desired
solution is at the minimum of this function. The simplest gradient technique for minimization
is the steepest descent method which for this problem can be described, following [5, p.198]
as follows:

The iteration proceeds as

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic

U-2

where wk is the estimated weight vector at time k and w , isthe new ^"^?*^
and M is the constant step size. The gradient vector is given by equation (1.2.2) and thus we
have the iteration

In this particular context, an even simpler iteration for the weight vectors is achieved
in the Least Mean Squares (LMS) method [5, p.217] by dropping the expectation operator
in the MSE equations. The gradient vector is then approximated by 2e^ so that the

iteration reduces to just

where the step size satisfies 0<\i<2Jkma, and k^ is the largest eigenvalue of R„.

2. Residue Number Systems

2.1 Introduction

Residue Number System (RNS) arithmetic has been considered as a number
representation for digital computers since the early days of developing computers A residue
number system, is an exact arithmetic using the integers, Z. An RNS is at parallel carry-free
arithmetic. Due to this parallelism, the residue number system can perform addition and
multiplication very fast compared to conventional integer processors without sacrificing
dynamic range. The parallel channels provide inherent fault tolerance, by using redundancy.
A Texas Instrument study showed that a FIR filter designed using RNS arithmetic is
expected to have a high speed-to-area ratio and a high speed-to-power ratio compared to
a binary implementation of the same filter. These results are expected for other
multiply-accumulate intensive problems. ■.».♦••„

Because RNS is restricted to the integers, it cannot be used as the sole arithmetic in
general purpose computers. Implied by this constraint is the requirement to convert between
RNS arithmetic and standard binary arithmetic. This conversion is required to perform
operations that can not be performed efficiently in RNS such as division, square roots and
magnitude comparison. The integers are not closed under division, for example, so RNS can
not readily be used for division. Whenever it is necessary to perform a division (or even
when the algorithm has been cleaned of all overt divides, the scaling of data requires
division) conversion to a weighted code such as binary is necessary.

Signal processing tasks such as FIR filtering and DFTs are multiply-accumulate
(MAC) intensive operations, hence RNS is an ideal arithmetic for these types of operations
More complicated algorithms such as adaptive processing, present the more difficult
ooerations for RNS. The conversion of RNS numbers to their weighted system equivalent
is very expensive and if a sufficient number of conversions must be made, the advantages
of RNS are outweighed. Unfortunately, because of the need for scaling and magnitude
information in many signal processing algorithms, these conversion costs hindered the

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic °

development of RNS signal processors. Much of the rest of this paper is concerned with how
we overcome the need for some of these operations within the adaptive beamforming
algorithm. We also discuss some implementation details.

For an extensive introduction to RNS see [13].

2.2 Theory and Examples

Integers are mapped to an L-tuple of residues by reducing the integer mod/?, (1</<L)
where the modulipt are relatively prime integers. The dynamic range, M, of the system is the
product of the moduli:

" = lift
Arithmetic operations are performed on the respective elements in the L-tuples. For
example, integers X and Y are mapped to (x„ x2, ...,xL) and (yu y2, ...yL) where
x, - X mod pit yt - Y mod pr Addition and multiplication are then performed by
componentwise modular arithmetic:

XxY= ((*,«*,>„, hcß>y2)p2, -, xßyL)Pi)

where the notation (a©£), {a®b)p denote the arithmetic operations mod p.
A simple example follows.

Example 1
The summation of 34 and 54 using the moduli 3, 5, 7 is summarized by the diagram:

Moduli

Operand 1

Operand 2

Sum

3 5 7

34 - 1 4 6

54 - 0 4 5

88 - 1 3 4

Residues

Residues

Residues

The two operands are converted to their RNS representations by storing their remainders
(or residues) after division by the respective moduli. In a practical system this conversion
would be done by a multi-stage look-up table. The input value is separated into a set of
subwords each representing a partial sum of the digits of that number. The residue, mod/»,
say, of each subword can be computed independently and the results then added, alos mod
p, to obtain the desired residue.

In this example, the residues are then added componentwise relative to the
appropriate moudulus: 1+0 = 1 mod 3, 4+4 e 3 mod 5, and 6+5 = 4 mod 7.

The resulting L-tuple which is the RNS representation of the sum can, if desired, be

94112-50
NAWCADWAR

Adaptive beamfonning with RNS arithmetic

converted back to standard representation using the Chinese *™™d™™™T™d
Remainder Theorem. For this conversion, we need the quantities m, = M/Pi, and their mod

Pi reciprocals, On,"1),, for /=1,2,3,...,L: The inverse mapping X = 4T1(*i.*2. -.**) is then given

by

\i-i IM

Example 2
1x1^=3,^=5,^=7.ThenM = /w3 = 105.Uta = 7,and* = 9where a,b<=ZM.

*(«) = (<7)3,<7>5,<7>7) = (1,2,0), *(*) = «9>3, <9>5, <9>7) = (0,4,2)

Then, for example,
(1,2,0) + (0,4,2) = ((1 +0>3, <2+4>5, <0+2>7) = (1,1,2)

(1,2,0) x (0,4,2) = «1x0>3,(2x4>5,<0x2>7) = (0,3,0)

The inverse mapping requires the following values, m,=35, m2=21, m3=15,

<m;\ = 2, (m2-1)5 = 1, (m3-1)7 = 1 then, using the CRT we get

4>-1d,1,2) = (EmKVj • (35(2x1)3 + 21(1x1)5 + 15(1x2>7)105 = 16

and
' 3

4>-1(0,3.0) = rZmjmfxM - (35(2x0)3 + 21(1x3)5+15(1x0>7)105 = 63
\i=1 /105

An extension to RNS is the Quadratic RNS (QRNS) [1] which allows complex integer
arithmetic using pairs of real integers. For example, a complex integer W*™™**£
a pair of real integers {zf\ Given a prime/> of the formp = 4fc+l where keZ, Gaussian
primes, then the congruence x* - -1 mod p has two solutions in the field Z, that are

multiplicative and additive inverses of one another. Let /, /"1 denote these two solutions.
Define a mapping from the complex integers mod/?, ZP\J] into ZpXZ, by

6{a+jb) = (z,z*)

where
z - ifl+fi) mod P> z* " (fl_^ mod p

The inverse mapping is given by

e-1(z,z*) = <2-1(z+zOW<2-7~VO>,

Addition is preserved by this map. That is, if B(a+jb) = (z.z'), 6{c+jd) = (w,w*) then

6((a+chj(b+d)) = (z+w.z'+w*) where the additions are performed with respect to a given

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic

modulus.

The following are suitable Gaussian primes of varying binary lengths:
up to 7-bits

{5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113}
8-bits

{137, 149, 157, 173, 181, 193, 197, 229, 233, 241}
9-bits

{257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433,
449, 457, 461, 509}

10-bits
{521, 541, 557, 569, 577, 593, 601, 613, 617, 641, 653, 661, 673, 677, 701, 709, 733,
757, 761, 769, 773, 797, 809, 821, 829, 853, 857, 877, 881, 929, 937, 941, 953, 977, 997,
1009, 1013, 1021}

Example 3

Let/? = 101, x = (34 + 637). We want t0 find aJ sucn that ^101 = <_1\oi = <100\oi •
Clearly,) = 10 li> one solution. Also, the other solution is ;"1 = 91 which is both an additive
and multiplicative inverse of;:

^r1>ioi=<10 + 91\oi=Cl01>ioi=0

^•x;-1)101=(10x91)101=(910>101=1

The QRNS pairs are then computed as:
6(34+63/) = {(34+10(63)>101,(34-10(63))101} = {58,10}

To invert this QRNS process we use the fact that

Re(z) = (z+z)/2, Im(z) = (z -z)l2j

and so we need (2-1)101 = 51 and then ((2/)-1>101 = <(51)(91))101 = 96. Then

6-1(58,10) = <51(58+10)>101 +/(96(58-10)>101 = 34 + 63/

as expected.

In a conventional arithmetic unit, a complex multiplication requires four real
multiplies and two real adds. A further extension to QRNS is the Galois Enhanced QRNS
(GEQRNS) [1] which allows this operation count to be reduced to just two real RNS-adds.

To achieve this, we map the pair (z,z*) to their logarithms with respect to a generator of
ZL (ez,ez.). For any prime modulus p there exists some aeZp that generates all non-zero
elements'of the field GF(p)=Zp. That is to say {a' | i=0,l,2,...,p-2} = GF(p)\0. The integer

2 is therefore equivalent to ial)p and can be uniquely represented by this exponent. These
number theoretic logarithms may be added modulo p-\ to produce multiplications:

94112-50
NAWCADWAR . . 9

Adaptive beamforming with RNS arithmetic

<«*M = (ccV) • Hence, a complex multiply requires just 2 real adds. Since zero cannot
be generated, zero must be detected and handled as a special case.

&amP£4an example of GEQRNS arithmetic, let/> = 7, then a generator is a=3 so that

GF(7)\0 = {(3% ! i = 0,1,2,3,4,5} = {1,3,2,6,4,5}. To multiply 3 and 5, we simply add
(modulo 6) their mod 7 logarithms (to base a=3):

3s - 5 mod 7 - log3(5) = 5

31 - 3 mod 7 - log3(3) = 1

so that

(5x3)7 = (35x31)7 = «3*% = (3°)7 = 1

2.3 Scaling in RNS

in a practical system, RNS does not have infinite precision. There is a dynamic range
limitation; just as there is a limitation in a conventional integer processor. When designing
algorithms for RNS implementation, think of the RNS processor as an ^V°™™^
constraints, such as division and square root operations are not close in^^he integers
therefore there is no simple way that these operations can be done in RNS. An integer
processor on the other hand can approximate these operations since rounding may occur,
but rounding can't happen in RNS.

Algorithms must be designed to keep the growth of intermediate results under
control, as in any algorithm design on a conventional integer processor^^
necessary to keep the growth under control. Unfortunately, the scaling can not be done
directly in the RNS. Scaling can be accomplished by converting back to the.integer^andren
dividing. The conversion, through the Chinese Remainder Theoremn^RT) or the Mrxed
Radix Conversion (MRC) algorithms, or through the core function [13], requires extra
overhead that may negate the advantages of the RNS. Therefore, the object is ito stay in^he
RNS as long as possible, being careful not to overflow the dynamic range of the system^

How do you check if you are about to overflow? In conventional processors the
intermediate results can be compared to the maximum number that can be represented on
the processor. If that result is approaching the upper limit, then it is time to scale, keeping
track of the scale factor to reconstruct the proper result (if necessary) later. Unfortunately,
he comparison operation can not easily be done in RNS either. Because of this problem,
he term^owth must be analyzed, or it must be determined if the problem can to erate this

fatal overflow error occasionally. It may turn out that the fatal errors may occur infrequently

and ca^e
a

t°^t
s
e
of the dement g^h is needed in order to determine how many

operations can be performed before scaling is required in order to avoid overflowing the
available dynamic range. Of course, more frequent scaling results m greater loss of ■precision
and as we see shortly, the later we scale the better in terms of final accuracy. It is therefore

94112-50
NAWCADWAR

Adaptive bcamforming with RNS arithmetic 10

better to scale occasionally during the computation rather than to prescale the input data.
Another possibility is continuous scaling which can be accomplished (at the cost of

some loss of precision) via the L-CRT. The advantage is that this lends itslef to a data-flow
architecture. The L-CRT operation can be partitioned into 4 stages [4], [7]. When one stage
is complete, it passes the result to another stage. The output is delayed until the data passes
through all of the stages in the pipe. This delay is called pipeline latency. If a continuous
stream of data needs to be converted from RNS to binary, the effective conversion rate is
one conversion every clock cycle, but it still takes 4 clock cycles to perform a single
conversion. With this in mind, it may be possible to take advantage of this pipelining in the
algorithm. The algorithm may scale continuously, using the L-CRT, instead of occasional
scaling.

The L-CRT is computed by factoring M into a real scale factor Fand an integer M'
= 2k, where keZ\ such that M = VM', and 0 < M' < M. The L-CRT is given by

Xs = (^[m^x^jvl
, J=I IM'

1*

where |_\| denotes the integer-part or floor function and w^IJp,- The L-CRT is a

residue-to-binary conversion that automatically scales by V. The disadvantage of the L-CRT
is that it may introduce an error into the computed Xs. The error in the L-CRT is given by
0 <. | X/V-Xs | <L which is usually small since L<M.

To halve the word length, the scale factor is on the order of \[M. For the system

using {p},p2,p3} = {101,109,113}, M = 1244017, JM = 1115.3551 which corresponds to
about A:=10 or about half of the 20.2 bits of M.

The scale factors V for various values of k for this system are:

k M'=2" Scale Factor
V=MIM'

k M'=lk Scale Factor
V=MIM>

0 1 1244017 10 1024 1214.860352

1 2 622008.5 11 2048 607.4301758

2 4 311004.25 12 4096 303.7150879

3 8 155502.125 13 8192 151.8575439

4 16 77751.0625 14 16384 75.92877197

5 32 38875.53125 15 32768 37.96438599

6 64 19437.76563 16 65536 18.98219299

7 128 9718.882813 17 131072 9.491096497

8 256 4859.441406 18 262144 4.745548248

9 512 2429.720703 19 524288 2.372774124
20 1048576 1.186387062

94112-50
NAWCADWAR n

Adaptive bcamforming with RNS arithmetic

3. Gaussian elimination

3.1 Why Gauss elimination?

The primary reason for se.ee,ing Gauss f^^^^^Z^
solution of «he «near Syrern is; .ha, ^XthaeÄÄir/is tha« «he fac«ors

""four „earn« applica,ion ^-^^ÄL":
retention of the matrix factors is not so important. Any change in the reian
relative strengths of me required signal and jammer results m a new sys em.

Gauss elimination demands relatrvely few non-RNS <>P^°n^„ eliminated by

square roots) and the dMsions that ^n«ded can^ fd^°*J™ QI dirJt

SS3?"Ä ÄSSS, square-roo, operations are

neCeSSaThe modified algorithm discussed here uses integer arithmetic Pe*™J^™£

significant this is sufficient.

In its most basic form Gauss elimination for the solution of an nxn system

Ax = S

can be described as an n-l step process in which, a, smge* %£££££*£

be applied to the right hand side.
We denote the matrix a. the ,"» stage by A» (so that A .A«>) and rts elements by

„<» Similarly the components of the right-hand side at stage i will be denoted by b, . In rts
^pfeÄ (oftenTrmed the «fcfeL) the Gauss elimination algonthm . then

for i=l to n-l
for j=i+l to n

m = aji /alf , an - °

for k=i+l to n
(i+l) _ (i) ma <*> aj* = ajk - maik

To complete the solution, «his elimination phase is Mowed by the back substitution:

xn = bn I am
for i=n-l down to 1

for j=i+l to n
b^-b^-agx,

x^b^/aW

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 12

For general linear systems, pivoting is necessary in Gauss elimination in order to
reduce the effect of roundoff error and preserve maximal accuracy in the computed result.
Why are we not proposing to use pivoting here? The first reason is that integer arithmetic
is being used and so roundoff error is not an issue. (Actually, there is some loss of precision
involved in our solution by virtue of the scaling which is used to a limited extent in the
modified algorithm presented. This will be discussed in detail later.) The matrix here is
hermitian positive definite. The use of partial pivoting destroys the symmetry and therefore
the ability to economize on storage if that becomes an issue. Also, and more importantly,
for a positive definite system using partial pivoting does not improve the numerical stability
of the algorithm. [16]

3.2 Avoidance/ elimination of the divisions

In order to maximize the efficiency of our RNS processors for the solution of the
linear system, we want to delay or even eliminate the non-RNS operations (divisions in the
case of Gauss elimination). At this stage we can simply regard this as being a requirement
to achieve the solution on an integer processor.

Consider therefore one step of the elimination process. Suppose then that we are
eliminating in column i and consider the effect of this elimination on row j>i. In the

conventional application of Gauss elimination, we use the multiplier a^ \aü so that each

subsequent member of row j is replaced by aj+1) = af-at\$\af\. Clearly this requires a
noninteger operation.

This division can be eliminated by simply "cross-multiplying" between the two rows
so that for each k>i

■*jk ~ aii ajk aji aik

This evidently preserves the integer nature of the matrix elements but has associated
computational costs. The most important difficulty introduced by this integer arithmetic
requirement is that the size of matrix elements can grow rapidly as the elimination phase
progresses.

3.3 Growth of the matrix elements

To get an idea of the rate of growth which may be encountered, consider just one
step of the elimination in which we are effectively dealing with a 2x2 matrix. The standard
Gauss elimination results in the modification:

a b a b

c d\ "* [O d-b{cla\
whereas the integer preserving form yields:

a b] \a b

c d\ [0 ad-be
in which the bottom-right element is a times that for the standard algorithm. For the full

elimination this results in the final element a£~1) becoming the full determinant of the

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic
13

original matrix - potentially a large number. ^mo„f ;„
At each stage of the elimination, there is the possibility that the largest element in

the matrix could approach twice the square of the largest element at the previous stage.

^^By way of illustration consider just a simple 3x3 example. The elimination procedure
for the following matrix yields

7 8 9 7 8 9 7 8 9

8 3 2 ~* 0 -43 -58 ~» 0 -43 -58

9 2 7 0 -58 -32 0 0 -198

We see that although the growth here is not as severe as the worst case described above,
there is still very rapid growth giving a greatest element close to (1/3)^. -tWt;r

In our beamforming problem, we would be performing complex integer anthmetic
which allows the possibility of even (slightly) faster growth in the matrix elements. For this
aporoach to be viable we must clearly be able to handle a very large dynamic range in he
later stages of the elimination. This can be achieved in principle by the column-parallel,
parallel-channel" approach described below.

3.4 Column-parallel, parallel-channel implementation

The basic idea is to use a parallel array of RNS processors which are allocated to the
various columns of the matrix. As the elimination proceeds, fewer columns are still active .
The processors used for the inactive columns can be reallocated to extend the dynamic range
available for the remaining columns.

We begin by recalling briefly the column parallel version of the Gauss elimination

algorithm. Denote by af> that part of the;«h column oM» below row i. The basic Gauss

elimination algorithm entails the formation of the vector >a® = a<%*? and then each
subsequent column is modified using vector the operation

1*. tf-a«*«
This is just the standard vector processor operation 'Vector + scalar x vector". The obvious
modification for our integer algorithm is

which is a similar though slightly extended "scalar x vector + scalar x vector" operation for
which our processor can be suitably designed.

The idea behind the adaptive parallel-channel approach to implementing this integer
algorithm in RNS arithmetic is that a number of parallel RNS processor channe s would be
used, each operating relative to a specific modulus. The number of such channels allocated
to a particular data item essentially determines the dynamic range available for that data.
Initially the processors would be divided evenly among the columns of the matrix.

After the first stage of the elimination the number of active columns is reduced by

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 14

1 but the necessary dynamic range is increased. The idea is to adaptively allocate processors
to columns so that as the required dynamic range grows, the number of processors grows
too. The basic idea is easily illustrated for the case of four columns using a total of 12 RNS
processor channels.

The adaptive nature of the algorithm is illustrated in Figure 3 below.

FIGURE 3
Schematic diagram of the adaptive dynamic range : allocation of RNS processors.

Active matrix
Processor

1 2 3 4 5 6 7 8 9 10 11 12

RNS basis vector and residues of matrix elements

Pi P2 P3 Pi P2 P3 Pi P2 P3 Pi P2 P3

L<1> „(1) z*(1) n(1) a
11 fl12 ä13 a14

„<1> /,<'> /iü> /li1)
"21 «22 "23 °M

(n n\ MI m
°ii aH ^33 fl34

„(D ,,(1) _(D _(D
[a41 a42 ö43 a44

<4?
„<1> «31

„<1> fl41

„<1>

„<1> a21

„<1> "31

„<1> Ö41

«A'
„<1> ö21

„<1>
031

„<1>

„<1> fl12

„<1> Ö22

„<1> a32

„<1> a42

„<1)
fl12

„<1> Ö22

„<1> «32

„<1> «42

„<1>

„<1> °23

„<1> °33

„<1> fl43

„<1)
Al3

„<1> 023

„<1>
°33

„<1> fl43

„<1> Ö13

„<1> °23

„<1> C33

„<1> Ö43

„<1> «14

„<1>

„<1> 034

„<1> «44

„<1> "14

„<1> fl24

„<1> 034

„<1> fl44

«14

fl24

„<1> 034

„<1> fl44

Pi P2 P3 P< Pi P2 P3 P< Pi P2 P3 P^

[<£ *8 <£'
aS *8 <&

(2) (2) (2)
[°42 a43 fl44

„09 °22 „09 Ö22 „09 „09 ^22
„09 °23 °23 „09 a23

„09 °23
.P) fl24

„P9 fl24
„I2» a24

„09 a24

„09 „09 °32
„09 Ö32

„09 °32 fl09 a33
„09 033 „09 °33 „09

«33
„09 fl34 «34

„P9
%4 «P 034

«ff „09 <*42
„09 „09 Ö42

„09 Ö43 „09 fl43 „09 fl43 „09 fl43
„09 «44 „09 ^44

„09 °44 „09
Ö44

Pi P2 P3 P< Ps P« Pi P2 P3 P< P5 P6

«33 °34

[«»43 «44

°33 fl33 °33 „09 «33 °33 „09 °33 „P> °34 „09 °34
„09
«34

„09 °34 „W O34

Ö43 „^ «43 „09 fl43 043 fl43
„09 Ö44

„09 «44 „O «44
„09 fl44 O44 „^ «44

In Figure 3, for a hypothetical situation of a 4x4 system, the first stage uses a dynamic
range covered by a three-dimensional RNS representation. At the next stage, only three
columns are active and so a fourth basis element can be introduced extending the dynamic
range. Similarly for the third (and final) stage of the forward elimination only two columns
remain active and so a six-dimensional representation can be used. The extent of the range
extension is obviously dependent on the relative sizes of the basis elements.

For the first stage of the back substitution, all 12 channels could be used to
accommodate a greatly increased dynamic range which could then be reduced as the solution
process proceeds. However, if the divisions required in the back substitution are also to be
postponed or eliminated, then the dynamic range will grow further during that phase of the
solution process. This is discussed later.

94112-50
NAWCADWAR 15

Adaptive bcamforming with RNS arithmetic

If the basis elements are all of similar magnitudes and the initial range is appropriate
to the covariance matrix then the growth allowed for here is clearly insufficient for the worst
case growth discussed above. The description and figure are intended to convey the broad
philosophy of the solution process not the practical detail. The number of RNS channels,
the choice of basis elements and control of the growth of matrix elements are all important
factors to be discussed shortly.

One important consideration which is suggested by the schematic diagram concerns
the possibility of changing the prime modulus used by a specific channel during the
computation. An RNS processor could be designed either to have a fixed modulus or to be
programmable in the sense that the modulus can be changed during the computation.

If the base modulus of a processor is fixed throughout and all of them are required
for the final stage then, for conventional RNS arithmetic, all the moduli must be distinct.
This presents potential problems since there may be insufficient suitable moduli of sufficient
magnitude (but still representable in only, say, 8 bits) available for use. The solution process
would also require frequent conversions of RNS representations between different basis
vectors. Although this is an achievable task it necessarily costs time.

An alternative within the fixed modulus framework might be to use repeated moduli
and a mixed radix arithmetic system. .

With programmable moduli, most of the above difficulties would be alleviated
although there would remain problems of base-extension as the dynamic range and therefore
the dimension of the basis increases. However the same basis vector can then be used
throughout any stage of the elimination and this can always include the previous basis. Of
course there are costs associated with changing the base modulus and these must be weighed
against other costs of the overall solution process.

It is important for understanding the overall algorithm to appreciate that Figure 3
should not be interpreted too literally. The apparent reprogramming of processors 4 through
12 for the second stage is wasteful. The process is pictured that way for simplicity. In
practice we should anticipate processors 1 through 9 being unchanged - and used for the
base extension to be discussed shortly - while processors 10 through 12 are all modified for
modulus p4. Column 2 would then be processed using channels 1, 2, 3 and 10, while column
3 would use 4, 5, 6 and 11, and column 4 uses 7, 8, 9 and 12. Similar modifications would
take place at subsequent stages.

3.5 Back substitution

The back substitution phase of the solution begins with the single equation

ann wn An

which appears to require division immediately. However, we are only interested in the
relative sizes of the weights and so this division need not be performed at this stage.
However this implies a need for a further "cross-multiplication" at the next and subsequent
stages of the solution.

This in turn suggests further growth in the dynamic range required to accommodate
the computation. If no scaling has been done in the forward elimination phase, then the
dynamic effective wordlength doubled at each step. It follows that in the back substitution
the effective wordlength required would increase more slowly since the ranges of the

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 16

multipliers are reducing. The overall effect would be that one further doubling of the
wordlength would suffice for the whole back substitution phase.

4. Difficulties with the proposed algorithm

There are several difficulties already apparent in the outlined solution process. In this
section we discuss some of these in detail and present refinements of the algorithm to
alleviate these problems. We discuss these within the specific framework of a four antenna
array, so that the covariance matrix will be 4x4. It will also be assumed that the elements
of the initial covariance matrix can be uniquely represented using three 7-bit moduli. The
overall array of RNS processors will be assumed to have 16 such processors. Of course
whatever operations are performed on the matrix must also be performed with the right
hand side vector. We shall assume there is a similar array of 16 processors performing those
operations in parallel with the matrix operations.

4.1 Obtaining the covariance matrix

The elements of the covariance matrix are formed as scalar products of the data
vectors. These, for a model 4-antenna problem, would typically be vectors of length around
16.

Scalar products are readily performed in the proposed RNS architecture and so
obtaining the covariance matrix relative to a fixed RNS basis is straightforward provided that
the available dynamic range is sufficient to accommodate the intermediate results.

Using the 16 processors subdivided into 4 groups of four each representing a column
of the covariance matrix, we can compute a complete row of this matrix in parallel in a
single RNS-channel scalar product time. Four such operations are therefore sufficient to
generate the complete array. Note that at this stage we have a 4-dimensional basis vector
even though the matrix elements could be stored using just three base moduli. The
additional channel per column is essentially free at this stage but accommodates some of the
dynamic range growth that will be needed for subsequent stages.

Implicitly, we have assumed here that the individual RNS processors are
programmable for different base moduli so that the same basis vector can be used for
representation of all columns. Of course any changes of base modulus carry a penalty in the
need to load new arithmetic tables. This time penalty must be balanced against any loss of
precision which may be entailed in controlling the dynamic range.

Scaling of the initial data or of the covariance matrix could be used to reduce the
dynamic range requirement at the outset. This is equivalent to coarsening the resolution of
the input data. We consider the effect of such a reduction in resolution shortly in connection
with the question of scaling during the forward elimination. If any such scaling is to be used
then clearly the choice of scale factors will be an important consideration.

4.2 Element growth

Almost obviously, the biggest problem with the proposed solution technique is the
rate of growth of the matrix elements and the consequent range extension requirement. In
the case of a positive definite matrix, Wilkinson [16] establishes that the growth in Gauss

94112-50
NAWCADWAR

Adaptive bcamforming willi KNS arilhmc(ic 17

elimination using divisions is bounded by 1. That is there is no growth. However ii' integer
arithmetic without divisions is used, it is clear that the elements can grow rapidly. As we
showed in the previous section the rate of growth can be of the order of squaring the largest
element at each stage of the elimination.

By way of illustration, we consider one example.

Example 6
Consider the situation of N=4 antenna, K=16 data vectors for a signal S=0 dB at

0° and a jammer J=40 dB noise at 23°. The unadapted and adapted beam patterns for this
problem are shown in Figure 4.

FIGURE 4
Unadapted and adapted beam patterns for Example 6

N-4;K-16>40 dU Nolle @ 2Mc|: S-0 dB @ Odcg;

-JJ

■40

■*i

■30

s
...'?)ivf....\::,JA./.

.;.. .Uiudapted:
—— DMI w/ Si wring

■10 ■60 ■40 ■20 20 40 60 10

The averaging in the covariance matrix entails a division of the scalar products by K
but since the relative weights are the required quantities this division can be ignored in the
solution process. For this case the resulting matrix is

254879 84113-240210/ -200191-159002/ -220468+135323;

84113+240210/ 254223 83794-241184/' -200316-163148;

-200191+159002; 83794+241184; 256489 88751-243850;

-220468-135323; -200316+163148/ 88751+243850; 262597

The largest element in the initial matrix is around 2.6xJ()5 which is close to 218. It is
therefore uniquely representable in the proposed 3-dimensional RNS form. After one stage
of the elimination the active matrix is

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 18

20263148 2126089-10721400/ -6179050-8804311;

2126089 + 10721400; 15587346 1684387-6944521;

-6179050 + 8804311; 1684387 + 6944521; 12007410

which now has a largest element of around 2xl07 or 2» The growth at this first stage has
been substantially less than the worst case mentioned above. A 4-dimensional RNS
representation would be sufficient in this case. Of course, we have availability for a 5-
dimensional representation at this stage using our 16 RNS channels.

The next stage of the elimination reduces the active matrix to the 2x2 system

1.9638x1014 -2.568x1013-6.000x1013;

-2.568x1013 + 6.000x1013;' 1.5883x1014

in which the largest element is now around 2xl014 so that almost worst case growth has
indeed occurred here. An 7-dimensional representation would now be necessary. (Eight
channels per column are now available.) The final elimination yields the final element
2.693xlO28 so that near worst case growth has again occurred but the 16 available RNS
channels can easily accommodate this range.

Of course the growth of the elements in this example cannot be assumed to represent
the general case. In the absence of any special knowledge we must allow for worst case
growth. Such growth could not be accommodated in the same array as described above
without some other means of controlling that growth. One possibility would be to scale the
active matrix periodically. Before discussing the use of scaling, we must consider the
questions arising out of the base-extensions.

4.3 Base extension

There are two major aspects to the problems posed by the base extensions required
by the algorithm under consideration. The first is the mathematical problem of finding the
residues relative to new basis elements of an integer given only by its residues relative to the
existing basis. This question and variations of it have been discussed extensively for various
special cases [3], [10], [11], [14], for example.

The case of interest here is almost the simplest in that all we wish to accomplish is
the addition of one or more new moduli to the basis. Within our parallel architecture, any
one processor would be concerned solely with the addition of a single basis element. The
process is simply described in [3] by conversion from the existing standard RNS
representation to the associated mixed radix system, MRS - an operation which is easily
achieved using residue arithmetic throughout - and then computing the residue of the
resulting mixed radix representation relative to the new basis element.

A simple example is included for completeness.

Example 7
Suppose we have an integer n e [0, 105] represented in the RNS system with basis

{3,5,7} by the vector (1,3,3).

94112-50
NAWCADWAR i9

Adaptive beamfonning with RNS arithmetic

We must first convert this into mixed radix form relative to this same basis. That is
wemustfind a06{0,1,2},fl1 e{0,...,4},fl2e{0, ,6} satisfying n = a0 + a1(3)+fl2(3)(5)

It is immediate that *o-|i.|,-1 then a, = |3>-flo) |5= |2(3-1)|5 = 4 and finally

*2 = |3-15-1(n-fl0-ßl(3))|7= |(5)(3)(3-1-4(3))|7= |(1)(-10)|7 = 4
To find the residue relative to a new base modulus, 11, we must now compute

|1+4(3)+4(1^|11- I1+1+4WI«-- |2+5|„-7
(Note that for this example n=73 which is indeed 7 mod 11.)

The second fundamental problem of base extension arises out of the time-penalty
associated with base extension. This has components arising from reprogrammmg the RNS
processors for new base moduli and the extension operation itself.

We consider first the operation count for base extension. There is a natural
parallelism in the operations for extension of the members of a column of the matrix. In the
above example, the computation of a, requires 2 arithmetic operations in the modulus*
processor, followed by the computation of a2 which can be viewed as three multiply-
accumulate operations in the modulus-7 processor. Concurrent with this latter stage, the a,
commotion for the next element can be performed. The total time for the conversion to
mixed radix form will therefore consist of the current vector length times the time tor the
final modulus calculation plus a latency comprised of the sum of the times for a single
element to pass through the earlier channels. Let us examine this for an RNS basis ot
dimension L and active column length C.

The number of operations required in the i,h processor for the conversion ot one
entry to mixed radix is i except that the first processor is not needed. The total number of
multiply-accumulate operations needed to obtain the full mixed radix representation of the
first element is therefore L(L+l)/2 - 1. The rest of the column would require just a further
(C-1)L operations so that the total number of parallel operations needed is
L(2C+L-l)/2-l. ,

This operation count must be increased since the elements of the pivot column must
also be converted in each processor. This has the effect of doubling the vector length which
gives a final count of L(4C+L-l)/2-l. For the first stage of our algorithm we have a vector
length C=4 and an RNS basis of dimension L=4 so that the delay is 37 modular multiply-
accumulate operation times. For the final elimination phase, C=2, L=8 and so the delay for
this part of the conversion is 59 such operations.

For each new modulus a vector of effective length 2C must be processed. The
operation consists of L-l multiply-accumulate operations in this new modulus. For the same
two stages as mentioned above this entails 24 and 28 operations respectively.

However before the last step here can be performed, the processors for the new
modulus must be reprogrammed for this new modulus. The principal component of this
operation is the loading of the appropriate look-up tables. These tables, for 8-bit moduli
consist of two 256-byte tables each. Assuming an effective transfer rate of 4 bytes/clock cycle,
this operation takes 128 cycles which is a greater time penalty that is entailed in the RNS-
MRS conversion. We may assume that these operations are concurrent.

With a throughput of 1 multiply-accumulate/cycle, the overall delay caused by the
base-extension is therefore around 150 cycles which is a large cost to absorb within our

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 20

requirements for a high-speed, physically small unit. This is especially true since the dynamic
range growth allowed for in the example and in the above calculations is far from worst case.
It is because of this cost that some scaling is incorporated into our algorithm. However,
inclusion of scaling has its own associated costs - both in time and accuracy. We begin by
considering the cost of scaling in terms of the accuracy of the final solution.

4.4 Scaling and loss of precision

First suppose that at some stage of the elimination, we try to preserve the actual
dynamic range by scaling and that the active matrix contains elements which are close to
extremes of that range. As we commented earlier, each individual step can be viewed as an

fa b
operation on a 2x2 complex matrix which we can write as

[c a]
Suppose then that (the components of) each element of this matrix lie in the interval

[-Mflf] and that we require a scaled version of the resulting element ad-bc which also lies
in this range. For complex arithmetic, the worst case implies that components of

ad-bc € [-4M2,AM*] which demands a scaling by a factor of the order of 4M. This is

comparable to scaling the elements of the matrix by 2y/M in advance of the computation.
It is not equivalent to this prescaling since at least some of the lower order part of the result
is preserved but it can approach this effective loss of precision especially if we believe that
we are working close to the limits of the dynamic range.

To see this consider the simplified situation of the multiplication of two 32-bit positive
integers which are close to the limits of this range and the scaling of the result back to this

same range. Denote the two factors by a and b and write a = ö12
16

 + ö2, b = &,216 + fc2 where

a^,a2, bv fc2<216. Now the scaling that is necessary is the replacement of the product by

[öffc/232] whereas the comparable prescaling would result in computing

[fl/2ie]*[i/216] = fl1*fc1. For avb, close to the extremes of the range

[ö*fc/232]<a1*fcl+min(fc1,a2) +min(a1,fr2) so that the relative difference is around
l/maxfa.,,^) which we are assuming to be only about 2~u.

The point of this is that the effect of scaling, when the numbers are close to the
extremes of the range, is similar to the effect of prescaling and this is roughly equivalent to
halving the resolution of the representation.

Suppose that we tried to retain the same dynamic range throughout the computation.
For our example, the components of the initial matrix occupied a dynamic range requiring
about 19 bits and we conjectured using three 7-bit moduli so that we are indeed close to the
extremes. Assuming that the growth is not quite as severe as the worst case, we might expect
that the number of bits required would double at each stage. (This is not overly pessimistic
since that rate of growth is indeed achieved in the final stage of our example.)

The scaling at each stage is, according to the preceding analysis, approximately
equivalent to halving the stored precision of the matrix - at each stage. Three such halvings
of the precision would be needed which is equivalent to having an initial matrix with fewer
than three bits of precision. The immediate question is "What effect does such a degradation

94112-50
NAWCADWAR

Adaptive'beamforming with RNS arithmetic 21

in the implied precision of the covariance matrix have on the solution?"

The standard error analysis for Gauss elimination is not immediately applicable since
it assumes that the divisions are performed. However, we can obtain an answer to this
question by performing some simple experiments.

Data from the ABF simulator was input to LabVIEW to test the adaptive
beamforming algorithms. We conducted a few preliminary experiments on quantized data
to see how the performance degraded with smaller and smaller resolution (# bits) in tne
data. The same data was used for each variation in resolution so that we could see the
difference in the beam plots, for a given resolution.

There is a point in which quantization causes the Signal-to-Quantization Noise Ratio
SNRQ (dB) to become larger than the Signal-to-Thermal Noise Ratio, SNRT. Given that

there is 6dB (ICMog.22) per bit increase in the SNRQ, the number of bits, b, required for
SNRQ to equal the SNRT is

SNRT

10 log ^
When b is chosen such that SNRQ > SNRT, the quantization noise acts like another

jammer (but non-directional), whose power is greater than the desired signal. This would be
one source of performance degradation.

The adapted beam patterns were computed for varying numbers of bits of precision
in the input data and the absolute difference |B(6S)-B(6y) | was compared to the desired
solution. Here Qs, 6, represent the directions of the signal and the jammer respectively. In
each case the jammer was J=30 dB noise so the maximum difference is about 30 dB due
to the presence of thermal noise. The results of some experiments are presented in Table
1 below.

b =

TABLE 1
Degradation of solution as input data resolution is eroded.

J = 30 dB Noise
Values of |fl(es)-£(6,)|

#bits
8,=30° e,= 45°

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2

16 30 dB 30 dB 28 dB 32 dB 31 dB

5 28 dB 30 dB 29 dB 33 dB 32 dB

4 26 dB 39 dB 32 dB 30 dB 34 dB

3 28 dB 28 dB 31 dB 31 dB 31 dB

2 17 dB 20 dB 21 dB 22 dB 28 dB

1

...

9 dB Singular
matrix

17 dB 12 dB 15 dB

94112-50
NAWCADWAR

Adaptive beamfonning with RNS arithmetic 22

Initially this performance looks promising in that 3 or 4 bits resolution in the data
appears to yield tolerably good accuracy in the solution. The actual beam patterns generated
differed much more significantly from the "correct" solution but the results at the important
bearings held fairly constant. However this first impression is somewhat misleading. For data
vectors of length 16, data accuracy of 1 bit yields complex scalar products which require 6
bits for their storage. That is the final row of Table 1 is obtained using a matrix with
approximately twice the resolution (in the sense of double the wordlength) of the effective
resolution suggested by the above analysis if we do not allow the dynamic range to grow.

From Table 1, it appears that data resolution of 4 bits yields reasonable results. This
is equivalent to an effective wordlength for the final solution of about 12 or 13 bits in the
covariance matrix. Of course we have no strong evidence for the adequacy of this precision
at this point - what we do have is evidence of the inadequacy of significantly less precision
than this. Sensitivity of the solution to the precision in the weights was considered by
Nitzberg [9].

The conclusion we draw is that some compromise between range extension (with its
inherent costs in timing) and the use of scaling (with its cost in precision) is necessary in
order to achieve acceptable (in both senses) results.

5. The elimination algorithm

In this section, we describe in some detail the algorithm proposed for the elimination
phase of the solution, together with giving further consideration to the architectural
requirements of the process. Throughout the discussion we shall consider just a four-antenna
problem using K= 16 data vectors so that the initial matrix elements consist of inner products
of complex 16-vectors.

We have already seen that substantial element growth must be accommodated and
that some scaling is necessary in order to keep this under control. In order to decide on how
much growth can be allowed and what scaling is necessary, we give some consideration first
to the dynamic range which could be achieved for the final stage of the elimination using 16
processors.

The Gaussian primes which can be stored in eight or fewer bits are 5, 13, 17, 29, 37,
41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241. The
largest dynamic range which can be obtained using 16 of these is the product

73x89x97x101x109x113x137x149x157x173x181x193x197x229x233x241 = 3.85x10s4

which corresponds to about 115 bits. The effective range [-1.92x10s4,1.92x10s4] is sufficient
for the Example 2 of the previous section but is not large enough to allow for worst case
growth especially at some of the intermediate stages.

The elements of the initial covariance matrix, we suppose can be represented relative
to the RNS-basis {73, 89, 97} which has a symmetric dynamic range of Mj = [-315104,
315104] which corresponds to slightly more than 19 bits of precision. Since both the real and
imaginary parts consist of 2x16 products this allows the original data to be quantized to 7
bits which appears from Table 1 to offer sufficient accuracy to allow satisfactory tuning of
the array.

94112-50
NAWCADWAR

Adaptive bcamfonning with RNS arithmetic

The 16-processor array would in fact have each element of the initial matrix stored
relative to the four-dimensional basis {73, 89, 97, 101} which already accommodates some
of the growth for the next stage. For this next stage a five-dimensional basis can be used and
the Gaussian prime 197 is added to the basis. Now, 73x89x97x101x197 = W^WW
so that the available dynamic range at this stage is M2 = [-6,269,634,236, o,Zo9,034,z;>oj
which corresponds approximately to ±32.5 bits. Allowing for worst case growth from the

original dynamic range would require a range of[-4Mu4M,] - [-3.97x10 ,3.97x10]
which is approximately 63.3 times that available. A scale factor F>63.3 is therefore needed.

If the L-CRT is used for the factorization then V must be chosen so that M' is a
power of 2. Of course to avoid the risk of overflow, the scaling must be done in advance of
the computation. Now scaling the dynamic range at this stage to ±232, that is choosing
M' =232 is equivalent to scaling the elements of the matrix to a range of ±2 and so
choosing V1 = 315,104x2"15 = 9.6162 10938 will suffice.

For the next stage, we allow maximal growth of the dynamic range with an eight-
dimensional basis by extending the RNS-basis to {73, 89, 97,101, 197, 229, 233, 241}. This

yields M3 = [-8.06x1016,8.06x1016] or approximately ±2562 which must be compared with
the demands of worst case growth from M2 which, with the scaling already applied, results
in the interval [-2", I66] and so requires an effective scale factor around 210. Again the
scaling must be done in advance of this stage of the computation. In order to attain a
generated range [-256,256], it is necessary to scale the results of the previous stage to the
range [-227,227] and so the scale factor required is V2 = 6,269,634,236x2"27 = 46.7124 1519.
Note that this scaling carried out by the L-CRT requires the use of a 28-bit 2's complement

Even the worst case growth at the final stage can be accommodated in the 16-
dimensional RNS representation using the full basis above for which MA = [-1.92x10s4,
1.92x10s4]. (This is true since the final stage consists of "real x real - complex x complex
conjugate" which has a smaller growth factor associated with it than the more general
operations needed earlier.)

The scaling achieved here is essentially optimal. The final dynamic range available
is approximately ±2ns and to keep within this the dynamic range used at the previous stage
must be within ±256 and in order to stay within this the largest "power of 2" dynamic range
allowable for the previous step is ±227. These are precisely the dynamic ranges achieved
here.

Of course the effect of this scaling could be achieved by the initial quantization ot the
data. If we trace the scaling back to the original matrix then it is equivalent to the worst case
of scaling the elements of the initial covariance matrix first to ±215 and subsequently by a
further 2 bits to ±21S. This in turn is equivalent to a quantization of the initial data to ±4
bits or, equivalently, 5 bits resolution.

Note that the scaling advocated here would result in a smaller loss of precision since
the contributions of less significant bits are retained as long as possible. This, combined with
the experiments reported earlier gives cause to expect this algorithm to yield satisfactory
results.

Of course this prescaling is wanted at just the same stage of the computation as the
base-extension and so the MRS-scaling algorithm should be considered as an alternative in

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 24

order to take full advantage of this conversion.

We summarize the elimination phase as Algorithm 1 below. For simplicity in this
description, we only refer to the first 16 RNS processors in the array and include only the
operations concerned with the matrix itself and not those for the right-hand side vector. We
also continue with the special case ofa 4x4 matrix.
ALGORITHM 1

The parallel RNS forward elimination algorithm

Input 4x4 matrix A with its elements represented in RNS
with basis {73, 89, 97, 101} but scaled so that

\ai:j\ £ (73x89x97-1) /2 = 315104

Initialize The 16 processors are initialized for the moduli
{73,89,97,101; 73,89,97,101; 73,89,97,101; 73,89,97,101}
We shall denote by pk the prime modulus in processor k.

1. Scale the elements of A using the L-CRT with
V = 9.616210938, M' = }

using processors 4j-3 to 4j for column j.

2. Processors 1-4:
Reinitialize for mod 197
Modulus vector is now:

{197,197,197,197,73,89,97,101,73,89,97,101,73,89,97,101}
Processors 5-16:
Compute MRS representations of matrix elements:

Processors 5-8 a±1, ai2
Processors 9-12 a±\i ai3
Processors 13-16 ail# ai4

3. Compute (ai:7-)197 in processors 1-4 using processor j for
column j.

4. For i,j>2, compute

(aij W = 'aij ail " aijail'pk

using
Processors 2, 5-8 for j=2
Processors 3, 9-12 for j==3
Processors 4, 13-16 for j=4

5. Scale ajj] by L-CRT using processors as in Step 4 with
V = 46.7124 1519, M' = 227

6. Processors 3. 4. 9-16:
Compute MRS representations of ma'trix elements:

Processors 3, 9-12 a[f, a™
Processors 4, 13-16 ai2 , ai4

Processors 1. 2. 5-8:
Reinitialize for moduli 229, 233, 241

94112-50
NAWCADWAR

Adaptive beamfonning with RNS arithmetic ^

Modulus vector is now: „«,,
{229,229,197,197,233,233,241,241,73,89,97,101,73,89,97,101}

7. Compute (aW)Pk in processors 1, 2, 5-8 using

Processors 1, 5, 7 for a^2 , a±3

Processors 2, 6, 8 for a.i2 , ai4

8. For i,j>3, compute
/= (3>\ _ /-(2) , <2> _ a(2)-(2)\ \ai7- ;Pj. = \ai:/ a22 - a2j ai2 /Pjt

using
Processors 1, 3, 5, 7, 9-12 for j=3
Processors 2, 4, 6, 8, 13-16 for j=4

9. Processors 1. 3, 5r 7. 9-12:
""""—"— ~ (3)

Compute MRS representation of a±j

Processors 2. 4. 6. 8. 13-16:
Reinitialize for moduli 109,113,137,149,157,173,181,193
Modulus vector is now:

{229,109,197,113,233,137,241,149,
73,89,97,101,157,173,181,193}

10. Processors 2. 4. 6. 8. 13-16:
Compute (aif)Pk

11. Processors 1-16:
Compute

\a44 /Pjt = \a44 a33 - a34 a43 iPk

Output

where
Pi = (73,89,97,101)
p2 = (73,89,97,101,197)
p. = (73,89,97,101,197,229,233,241)
j£ = (73,89,97,101,109,113,137,149,157,173,181,193,197,229,233,241)

In Algorithm 1 we have assumed the presence of a second group of sixteen
processors which would be used for the corresponding operations on the right hand side. Of
course if only one such group were available then the operations described here could be
duplicated for the right hand side. Some economy would be possible. The duplication of the
computation of MRS representations for the elements of the pivot row could be eliminated
in favor of operating with the right-hand side vector on one set of processors. The effective
vector length for the elimination steps themselves would however be increased by one by
distributing the right-hand side across the processors.

In the event that 32 processors are available then further economies can be made to
reduce the effective vector lengths by using some of the initially spare capacity. This is
summarized in Figure 5 below.

94112-50
NAWCADWAR

FIGURE 5 Diagrammatic representation of Algorithm 1.- 32 processor version

MRS& comDute Compute MRS * Compute Compute
Processor _ „ Store Compute Compute Compute Compute Compu ^ P

Base^ <•>, i>l SCa'e MRS rep»,, (->„i>2 Boduli «„ <V*3<.)Ä

1 73 t hi ' hi ' hi
229 a£> 109 4? 4? 4?

2 89 < hi ' hi l hi
229 <£» off M» 4P *," bf

3 97 , «ii ' hi l hi
229 a» «P> <h? a? 4?

4 1 01 < hi ' hi ' hi
229 frP> *» «£> bf> *r

5 73 *a 'a hi <hf <h? 1? 113 4P 4» 4?

6 89 aa «o *o „P> hi
„p> 113 4? fri" if

7 97 aa "a "a . „P> „P> So 137 4P »p> 4?

8 101 aa "a "a „P> 4P „P> L37 «^ t«3» >r
9 73 ai$

aa aa
„P> «£> „P> «f 149 ^ °M 4?

10 S9 ats
au &a „P> /,p> „P> «u a? 149 4P *," NW

11 97 aa al3 aa «Ü 4P 157 4P /,P> <h* ai?

12 101 "a "a °I3
„P> „P> «u <hs 157 *£> bf *r

13 73 au au a» 'hi 4P a® <h? 4? 4?

14 89 au au a>4
„P>
<h4 4? nF1 „P> <h4

«w

15 97 au att
au „P> <h4 a,® «w <h4 «w «44

16 101 au »14 <*u 4P 4P 4P «w 4?

17 73 b, b, bt b? *P tT *,* /.p> fcp> bf

18 89 b, b, b, b? tf» bf bf /.p> fcp> flu ft, *r
19 97

i b, b, b? 4> b? bf /,p> fcp> *r
20 101 b, b, b, b? 4*> # bf bt

21 197 b, •T •P bf> bf a? bf> bf

22 197 ao <h? 4P „p> 173 ^ /,P> 4?

23 197 "a 'hi
„P> «u „P> <hs 173 4T fc,w *r

24 197 «« »P>
«W

„P> „P> „P> 'ht
/.P> »P> «44

25 197 "u
233 „P> 181 4P 4? 4?

26 233
„P> <h$ «to 181 a3» bf bf

27 233 4P 4? /.P* «P* 4?

28 233 4» »T »P> I.P*
<hs "t *4W

29 241
„P> 193 «^ 4P 4?

30 241
„P> 4P 193 a? •k" bf

31 241 4P 4P „P> «PI 4?

32 241 4* ^ «P> *P if

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 26

There are further economies that could be made here. The most obvious of which
is that the initial basis could be augmented with 197 at no additional cost. This would
eliminate the need for the first MRS conversion and base extension. This simplification was
not incorporated into the diagram so that it adhered closely to Algorithm 1 as described
above.

6. Back substitution

In this section, we are concerned with the back substitution phase of the solution
process. Again the apparent need for divisions at each stage of the process is the source of
potential difficulty. The method used to overcome this has the same consequent problems
of element growth as for the forward elimination. We see that the postponement of the
divisions can be rearranged so that they are eliminated entirely since only a scalar multiple
of the weight vector is required.

At the beginning of this stage we have the upper triangular system given by the
augmented matrix

'«ff a\2 «13 „<4> »,ro

0 a23
„<2>

**"

0 0 «33 4? *f
0 0 0 # l *."

We shall simplify the subsequent notation by rewriting this system as

Ux = c

and denoting the elements of this matrix and right-hand side by uijt c, .
We begin by describing the algorithm without paying any attention to the problems

of element-growth and scaling that will be crucial to the realization of such an algorithm.
The basic idea of the algorithm is to use a column-oriented (or column-sweep) algorithm with
implicit multiplications on the left-hand side. The final row of the system represents the
equation

«44*4 =
.(1)

and we substitute this into the previous equations to get

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 27

« 44

.

"11 «12 "13 0 *1

0 «22 «23 0 x2

0 0 "33 0 *3

0 0 0 1 S

u r™ u r(1)l "44C1 "l4c4
c«r

u r(1)-u r(1)
M44C2 ~«24C4 c?

«44C31)-"3441> c{2) c3

C4 C(2)
4

The arithmetic on the right hand side must be performed but the multiplication on the left
is not needed since we are only interested in the relative magnitudes of the weights.

At the next step, we can proceed similarly to get

"33 "44

"11 «12 0 0 *1'

0 «22 0 0 x2

0 0 1 0 *3

0 0 0 1. *4.

(2) (2)1
"33q'-M13C3 C(3)l c1

(2) (2)
"33c2 ~"23c3 r(3) c2

c3 c3

(2)
"33c4 r(3)

4

which in turn can be reduced to

"22 "33 "44

u iu 0 0 0 *1'

0 10 0 x2

0 0 10 *3

0 0 0 1. s

(3) (3)1
"22c1 ~"12C2 c1

r(3) c2 r(4) c2

(3)
«22 c3 c3

(3)
«22c4 C(4)

4

and finally

"11 "22 "33 "44

10 0 0 *1"
[c(4) 1 c1 c1

0 10 0 x2
(4)

"11C2 r(5) c2

0 0 10 ^
(4)

«11C3
r(5)
c3

0 0 0 1
*4. U c(4)

"l1 C4 t(5)

. 4

We can now use the final right-hand side vector as the solution setting xt = ct and therefore
eliminate the division operation from the back substitution phase completely.

Clearly there is the possibility of substantial growth on the right-hand side of this
system. At the beginning of the back substitution, the first row is scaled to ±21S, the second
to ±232, the third to ±256 while the fourth has a dynamic range of approximately ±2113. The
"cross-multiplication" operations of the process outlined above would generate growth up to
a maximum of about 222 bits which could be accommodated by using the full array of
processors if they can operate with 9-bit moduli. The potential growth of the elements of the

94112-50
NAWCADWAR

Adaptive bcamforming with RNS arithmetic 28

right hand side is shown in Table 2. The additional 14 moduli 257, 269, 277, 281, 293, 313,
317, 337, 349, 353, 373, 389, 397, 401 would generate a sufficient dynamic range. However,
the final'RNS-to-binary conversion would require a binary wordlength of around 223i bits
which is perhaps too large to be practical. (The final scalar product operation of the CRT
could be performed with a conventional floating-point multiply-accumulate unit since the

relative magnitudes of the weights not the exact values of the c,® are required. Such a unit
may be as efficient as a very long wordlength binary integer processor for this purpose.)

TABLE 2 . .

i u- c(1)
«," e* «," «f

1 ±215 ±2130 ±2188 + 2222 ±2222

2 ±232 ±2147 ±2205 ±2205 ±2222

3 ±256 ±2171 ±2171 ±2205 ±2222

4 ±2m ±2H3 ±2171 ±2205 + 2222

Our algorithm has been based hitherto on the assumption of small (typically 8-bit)
RNS processors which rules out any possibility of accommodating the full element growth
and therefore necessitates the use of some scaling.

In the back substitution phase there is a choice to be made as to which factors in a
product are to be scaled, and by how much. In the elimination phase factors from similar
dynamic ranges were being multiplied but that is no longer the case. Initially, the later rows
have greater dynamic ranges and therefore carry more significant bits than the earlier ones
and so we choose to scale the fourth row. In order to use just the same 16 base moduli as
before, the right-hand side vector must be kept within the dynamic range of ±2113. It is
necessary therefore for the first stage to scale the fourth row to M'=2SS before the
arithmetic. This requires a scale factor V= 5.3381 9343xl017. Similar scalings are performed
at the subsequent stages and these are summarized in Table 3. However, since subsequent
scalings are being applied only to the right-hand side, any scaling must be applied to all
elements of this vector. The scale factors used for the subsequent stages are approximately
2* and 217.

What is the effect of this scaling on the accuracy of the solution? Consider two
quantities A+a, B+b where we assume that A,B have similar magnitudes and so do a,b with
a,b being much smaller than A,B. Then

A+a A = aB-Ab = Q,^
B + b B B(B+b)

and so the error in estimating (A+a)/(B+b) by A/B is of the order of (the reciprocal of) the
scale factor. Thus the worst error in the relative weights which is introduced m this process
is around 2"17 which is comparable with the accuracy of the initial covariance matrix.

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 29

TABLE 3
Dynamic range and scaling requirements for back substitution

i u c(1) Scaled
to cf Scaled

to «."
Scaled

to c,W «,"

1 ±21S
±272 ±238 ±296 ±279 ±2113 ±2113

2 ±232
±289 ±255 ±2113 ±2* ±296 ±2113

3 ±256 ±2113 ±279 ±279 ±262 ±2* ±2113

4 ±2113
±255 ±255

±221 ±279 ±262 ±296 ±2113

The algorithm consisting of the forward elimination and back substitution described
here therefore provides a feasible solution to the adaptive beamforming problem using RNS
arithmetic with an array of RNS processors to accommodate much of the element growth
inherent in the integer solution of the system of linear equations.

7. Gauss-Jordan algorithm

The Gauss-Jordan algorithm in which we eliminate above the main diagonal as well
as below offers a natural alternative for the problem and architecture under consideration.
The argument against the Gauss-Jordan algorithm on conventional processors lies in the fact
that the arithmetic demands of the algorithm are significantly greater than using Gauss
elimination. On an array processor this ceases to be true; while on a vector processor the
disadvantage is reduced by virtue of increasing the effective vector lengths in the later stages.

For our problem, the difficulties of the additional scaling requirements of the back
substitution phase would be removed (or, at least, alleviated). The MRS conversions and
base extensions would need to be performed for all rows of the matrix throughout the
algorithm and therefore the scalings which are used in the forward elimination phase must
also be applied to all rows. This penalty is reduced by observing that as the solution
proceeds the number of zero elements is increasing and so the additional cost may be
acceptable. The same scale factors that are used in the forward elimination would be
suitable. As for conventional vector processors for much of the arithmetic the only additional
cost is that entailed in increasing the vector lengths which could be quite small.

On the surface Gauss-Jordan offers an attractive alternative for this situation which
will be considered further in subsequent work. The biggest difficulty may well result from the
fact that the final diagonal will not be just a constant as in the back substitution here which
may mean that the final division is unavoidable.

94112-50
NAWCADWAR

Adaptive beamforming with RNS arithmetic 3°

8. Conclusions

In this paper we have presented a possible algorithm-arithmetic-architecture
combination for the solution of the adaptive beamforming problem. The solution uses RNS
arithmetic and a modified Gauss elimination algorithm. The divisions inherent in this
algorithm are eliminated at the expense of a small number of scaling operations and the
adaptive use of an RNS processor array to accommodate some of the growth in the desired
dynamic range implicit in the method.

The indications from preliminary simulation of the RNS processors suggest that this
algorithm may provide significant speed-up over conventional processors running at similar
clock speeds. However it is anticipated that the RNS processors will be capable of much
greater clock speeds and therefore the potential speed-up may be substantial. Clearly such
claims are subject to much more extensive and complete experiment and this is one of the
immediate next tasks.

Other future investigations following on from this work will entail the use of
alternative algorithms for the solution of the underlying problem as well as modifications to
this algorithm in which, for example, the use of the core function and other scaling
techniques will be investigated for the possibility of further improvements.

References

[I] A.Z. Baraniecka and G. A. Jullien, Residue Number System Implementations of Number
Theoretic Transforms in Complex Residue Rings, IEEE Trans ASSP 28 (1980) 285-271.

[2] K. Gerlach, Fast Orthogonalization Networks, IEEE Trans Antennas and Prop, AP-34
(1986) 458-462.

[3] R.T. Gregory and D.W. Matula, Base Conversion in Residue Number Systems Third
Symposium on Computer Arithmetic, IEEE, Washington DC, 1975, 117-125.

[4] M. Griffin, M. Sousa and F.J. Taylor, Efficient scaling in the residue number system,
Proc IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, IEEE, New York,
1989

[5] S. Haykin, Adaptive Filter Theory, Prentice Hall, 1986
[6] J.G. McWhirter, Recursive Least-Squares Minimization Using a Systolic Array, Proc.

SPIE, 431, Real-Time Signal Processing VI, 1983, 105-112.
[7] J. Mellot, J. Smith, E. Strom and L. Smethwick, The Gauss Machine: A GEQRNS

DSP systolic array, IEEE Trans Comp, to appear
[8] R. A. Monzingo and T.W. Miller, Introduction to Adaptive Arrays, Wiley, 1980.
[9] R. Nitzberg, Computational precision requirements for optimal weights in adaptive

processing, IEEE Trans AES 16 (1980) 418-425.
[10] K.H. O'Keefe, A note on Fast Base extension for Residue Number Systems with three

moduli, IEEE Trans Comp 24 (1975) 1132-1133.
[II] K.H. O'Keefe and J.L. Wright, Remarks on Base Extension for Modular Arithmetic,

IEEE Trans Comp 22 (1973) 833-835.
[12] C. Rader and A. Steinhardt, Hyperbolic Householder Transformations, Linear Algebra

94112-50
NAWCADWAR

Adaptive bcamforming with RNS arithmetic 31

in Signals, Systems and Control, SIAM, Philadelphia, 1988, 186-208
[13] M.A Soderstrand, W.IC Jenkins, G.A Jullien, and F.J. Taylor, Residue NNumber

System Arithmetic: Modem Applications in Digital Signal Processing, IEEE, New York,
1986.

[14] N. Szabo and R. Tanaka, Residue Arithmetic and its Application to Computer
Technology, McGraw-Hill, New York 1967

[15] CRT Tang, and KJ.R. Liu, A Fully Parallel and Pipelined Systolic Array for MVDR
Beamforming, Report #TR 91-89, University of Maryland - College Park, 1991.

[16] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.
[17] S.M. Yuen, Algorithmic, Architectural, and Beam Pattern Issues of Sidelobe

Cancellation, IEEE Trans. Aerospace and Electronic Systems, 25 (1989) 459-471.

DISTRIBUTION LIST
Report No. NAWCADWAR-94112-50

No. of Copies

Office of Naval Research 5
800 N. Quincy St.
Arlington, VA 22217

Defense Technical Information Center 2
ATTN: DTIC-FDAB
Cameron Station BG5
Alexandria, VA 22304-6145

U.S. Naval Academy 10
Mathematics Department (ATTN: Peter R. Turner)
Annapolis, MD 21402

Mission Avionics Technology Department 12
Naval Air Warfare Center
Aircraft Division Warminster
P.O. Box 5152
Warminster, PA 18974-0591

10 copies for Code 5051; Barry J. Kirsch
2 Copies for Code 0471

