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I. INTRODUCTION

The research performed on this contract covers a broad range of topics related to
coherent radiation sources. In general, the research can be divided into two broad
categories: theoretical research into innovative concepts in the physics of ubitrons (or free-
electron lasers), and in the application of this theory to the support of the experimental
ubitron program in the Vacuum Electronics Branch of the Electronics Science and
Technology Division at the Naval Research Laboratory (NRL). The work on this program
was conducted by the Principal Investigator, Dr. H.P. Freund at a level of effort of 1
Manyear per calendar year during the contract period. ~

The general theory research covers a wide range of topics of interest. Linearized
analyses of the ubitron/free-electron laser (FEL) have been performed to study (1) thermal
effects on the gain in both planar and helical wiggler geometries in ubitrons, and (2) the
relationship between the variation in the relative phase and optical guiding. Nonlinear
analyses have been conducted for a wide variety of confi gurations and purposes. These can
be roughly categorized as studies of: (1) the effect of wiggler imperfections on ubitron
operation, (2) space-charge effects in ubitrons, (3) slow-wave ubitrons, (4) tunability of
tapered wiggler configurations in ubitrons, (5) a high-efficiency collective FEL experiment
using a helical wiggler and an anti-parallel axial guide magnetic field, (6) the inclusion of a
model of self-electric and -magnetic fields in the nonlinear simulations of ubitrons, (7) a
high power Cerenkov maser, and (8) the analysis of the Coaxial Hybrid Iron (CHI)
wiggler.

The theory support for the ubitron program in Code 6840 covers two distinct
experiments. The first experiment is that of a fundamental harmonic ubitron using a helical
wiggler and an axial guide. Extensive theoretical capability to analyze this configuration has
been developed over the course of this and preceding contacts with Code 6840 at NRL, and
the simulation codes developed were employed to analyze the results of this experiment.
Gratifyingly, good agreement has been found between the experiment and the theory. The
second experiment employs a planar wiggler and operated at higher harmonics of the
resonance frequency. Once again, good agreement has been found between simulation and
the experiment.

The organization of this final report is as follows. A description of the general
theory developed under the contract is given in Section. II. This will be divided into six
sub-sections corresponding to each of the categories listed above. A discussion of the
theoretical support provided for the ubitron experiments is given in Section III. A summary
is given in Section IV. The text of the report will not be very detailed in that figures and
drawings illustrating the results of the work will not be given in the body of the report.
These are shown instead in the papers published during the contract period, and copies of
all papers published in refereed journals for this research is given in Appendices following
the text of the report.

II. GENERAL THEORY

A detailed description of the general theory will not be given here since this is
contained within the papers in the Appendices. Instead, only a general overview of the
principal results will be presented. To this end a brief discussion of the methodology used
in nonlinear analyses is in order. '

The nonlinear techniques used in this research program are based upon slow-time-
scale analyses of the resonant interaction between the electron beam and the radiation field




in a variety of waveguide structures. For example, the vacuum TE modes in a cylindrical or
coaxial waveguide can be expressed in the form -

SA(x ) = 1=§=1 0A,(2) [KLW, Z(k,r) €, sin a,, + Z/(x,1) €,c0s a,m] ,

where 8A(x,?) denotes the vector potential,
4 .
o, = fo dz'k,(2') +16- wt ,

denotes the phase corresponding to wavenumber ky,, and angular frequency w, and x, is
the cutoff wavenumber of the mode. Observe that the amplitude 84,,(z) and wavenumber
of each mode is assumed to vary slowly in z with respect to the wavelength of the mode.
The cutoff wavenumbers are given by the dispersion equation J/'(x;,R,) = O for a
cylindrical waveguide of radius R, and by J}(xa) Y} (kyub) = J|(x1nb) Y (k}na) for a
coaxial waveguide of inner and outer radii a and b respectively. The polarization vector is
given by Zi(xp,r) = Ji(k),r) for a cylindrical waveguide, and Zy(k;,r) = J(kpal) +
ApmY(xy7) for a coaxial waveguide where Ay, = - J (kb)) Y{(knb).

The dynamical equations for each mode is found by substitution of the above-
mentioned representation for the field into Maxwell's equations and (1) orthogonalizing in
the transverse coordinates, and (2) averaging over a wave period. The results can be
compactly written in the form

2 2 2
[+ (& -t )Joas= B2
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where dayy, = edA,/mec? is the normalized amplitude, wp, is the ambient beam plasma
frequency, and the sources are
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Here Hip = 2K5m?Rg2/(k1m2Rg? - P)J(kimRg) for a cylindrical waveguide, and
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for a coaxial waveguide. Finally, the averaging operator is defined as the average over the
initial conditions of an ensemble of electrons. An initial momentum distribution is defined
as

F(p,) = Ae~eo-roT%35(p2 — p2 _ p23H(p,) ,
where the normalization constant is
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This distribution describes a nionoenergetic beam with a pitch angle spread, and the axial
energy spread corresponding to this pitch angle spread can be expressed as :

ey [reayi-n 28]

where yo = (1 + pi?/mc?)1/2. As a result, the averaging operator takes the form
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where A, is the cross-sectional area of the waveguide, 9y (= — wlp) is the initial phase
corresponding to an entry time &, ¢p = tan~}(pyo/pyo), and oy and oy represent the initial
distributions in cross-section and phase. These equations exhibit no direct mode-mode
coupling. All coupling is through the electron beam. Hence, to complete the formulation the
electron trajectories must also be specified. For this purpose, we use the full Lorentz force
equations in the fields composed of the wiggler, the electromagnetic wave(s), and the self-
fields (to be discussed below). Thus, we integrate

v, L p=-e[SE+E”+ 7 vx(Bf,+ B, +5B+B%) ,
for an ensemble of electrons, where B,, denotes the wiggler, E®) and B® denote the self-
fields,

-_109 =
6E-—336E, and 3B =V x dA ,

describes the electromagnetic ficld, and an axial guide field is included as well. Obseive
that the Lorentz force equations need not be averaged since they are implicitly slowly-
varying for waves near resonance. This constitutes the principal difference between the
formulation pioneered by SAIC and nonlinear approaches developed elsewhere. This non-
averaged approach to orbit dynamics permits the self-consistent inclusion of beam injection
into the wiggler as well as the treatment of wiggler tapering for efficiency enhancement and
all harmonic interactions.

Finally, before proceeding to the detailed discussion of the work performed on the
contract, it is important to remark that this nonlinear formulation can also be applied to the
TM modes as well as other waveguide geometries by the simple expedient of using the
vacuum modes of other configurations. Of particular relevance to the work performed on
the contract is the rectangular waveguide, and dielectric-lined waveguides.

A. Thermal Effects on the Linear Gain

The interaction in a ubitron is crucially sensitive to the beam quality, and even small
thermal spreads can result in substantial degradations in the gain and efficiency of the
interaction. As a result, SAIC conducted a study of the effect of the beam thermal spread
on the linear gain in both helical and planar wiggler ubitrons. This analysis has been
published in the IEEE Journal of Quantum Electronics [vol. 27, p. 2550 (1991)], and was
conducted by Dr. Freund in collaboration with Dr. D. Kirkpatrick of SAIC and Dr. R.C.




Davidson at the Princeton Plasma Physics Laboratory. A copy of the paper is given in
Appendix I.

As expected, the analysis showed a steep decline in the gain with increasing thermal
spreads. However, there were differences in the analysis in comparison with the previously
commonplace approach to thermal effects in ubitrons. The typical analysis of thermal
effects in ubitrons made use of a Maxwellian velocity distribution, and resulted in an
expression for the dispersion equation which contained the Plasma Dispersion function.
This is the most common approach used to describe thermal effects in drifting plasmas.
However, it is incorrect to apply this formalism to ubitrons. The reason for this twofold.
The first is that it is implicitly assumed in this analysis that the axial velocity is a constant of
the motion. This is true for uniformly magnetized beams, but not for electron propagation
through a wiggler. Here, the constants of the motion are the total energy and the canonical
momenta. Orbits with constant axial velocity can be found for a helical wiggler, but they
represent a special class of trajectory which breaks down if there is any thermal spread. The
situation is even worse for planar wigglers, since there are no orbits with constant axial
velocity in this geometry. The second reason is that the Maxwellian distribution does not
apply either since this distribution does not describe the beams in a ubitron. In the ubitron
the electron beam will be characterized by a maximum energy corresponding to the potential
applied across the diode. Hence, there will be no long exponentially decaying tail at very
high energies. As a consequence, the Maxwellian distribution is an approximation at best.
Since the Plasma Dispersion function appears only in the context of the Maxwellian
distribution in which the axial velocity is a constant of the motion, this also represents a
questionable approximation.

In order to overcome these problems, a completely new analysis was developed.
The first consideration was to construct an appropriate distribution function. Since the
beams in most ubitrons of interest to Code 6840 are produced in a diode with a fixed
potential, a monoenergetic beam was assumed. The source of the thermal spread, therefore,
is the pitch angle spread induced by electron transport across the cathode/anode gap.
Hence, a distribution of the form

n
F(P.Pp) = —5 e

-(P2+P21 AP?

Ap-p,) .

was chosen, where P, and Py are the canonical momenta, p is the total momentum, nb is
the ambient density, and po and AP denote the total beam momentum and momentum
spread. Using this distribution, we obtained dispersion equations for both helical and
planar wiggler configurations which included a thermal function of the form

T(Q=E[1-Ce'E(D)] .

where E; is the exponential integral function and

Y2 (w2
¢= 75 (F)

where v, denotes the bulk axial beam velocity.

The result found using this approach differed from that found using the Maxwellian
and the Plasma Dispersion function. The difference consisted in the fact that we found that
the gain remains relatively constant for small increases in the thermal spread, and only
begins to decrease after a threshold is reached in the thermal spread. No such plateau is
found using the Maxwellian/Plasma Dispersion function analysis. Since the Maxwellian




approach represents an approximation at best, this newer analysis constitutes an advance in
our understanding of the physics of ubitrons.

B. Optical Guiding and the Relative Phase

The issue of optical guiding in ubitrons and free-electron lasers has received a great
deal of attention with respect to short wavelength FELSs in which the radiation is quasi-
optical. In this regime, it was feared that diffraction could cause to radiation beam to
expand outside the bounds of the electron beam, and that this could result in a reduction in
the gain and efficiency of the interaction. The work on optical guiding was predicated on
the hypothesis that the dielectric effect of the beam acts as an optical fiber which will
confine the radiation to within the electron beam envelope. On the basis of previous
theoretical formulations, this appeared to be quite feasible.

The effect of optical guiding at short wavelengths is related to the phase shift
induced by the beam at microwave frequencies. Hence, we felt that a study of the relative
phase could have relevance to the question of whether optical guiding works at short
wavelengths. The relative phase can be defined in the following manner

10,0 = [ &t~/ G -s |

which measures the change in the evolution of the phase in the beam-loaded system with
respect to the vacuum waveguide. Using the nonlinear codes described above, it was found
that the relative phase could be either positive or negative over the band of unstable
frequencies. Typically, at the low (high) frequency portion of the gain band the relative
phase is negative (positive), and there is one frequency at which the relative phase remains
unchanged. Since optical guiding requires a positive relative phase in order for the
refractive effect of the beam to result in guiding of the wave, this implies that guiding is
found only over a part of the gain band.

In order to test this conclusion Dr. Freund, in collaboration with Dr. T.M.
Antonsen at the University of Maryland, performed a theoretical analysis of optical guiding
and showed that it did indeed correspond to the variations in the relative phase. This work
was published in the IEEE Journal of Quantum Electronics [vol. 27, p. 2539 (1991)], and
is included in Appendix II.

C. Wiggler Imperfections

Since the ubitron/FEL is so sensitive to the effects of beam thermal spreads, it is
feared that imperfections in the wiggler magnet can also have a deleterious impact on the
gain and efficiency. The reason for this is that variation in the wiggler field can induce
variations in the particle velocity which can result in resonance broadening. Much of the
analysis of the effect of wiggler imperfections has been based upon orbit averaged
formulations in which the effect of wiggler imperfections is included via some assumed
random walk model of electron motion in a randomly varying wiggler. Dr. Freund had
some reservations about this model which stemmed from the fact that the random walk
model was originally constructed to deal with Brownian motion in which small particles
experience random and discontinuous impulses. In this way, the particle "walk off" from
their initial location , and the displacement varies as the square root of the number of
impulses they receive. This is not what happens in a wiggler however. In this case, while
the wiggler may vary in an random (i.e., unknown or unplanned) manner, the field is
continuous. Thus, the electrons don't experience random and sudden impulses. Rather,
they follow a meander line associated with the field variations. A better model for this




motion might be a bead sliding on a wire which has been bent or twisted in a random
manner. By this analogy, the electrons would not be expected to walk off.

In order to test this hypothesis, Dr. Freund modified the nonlinear simulation codes
to treat random variations in the wiggler field. This was a relatively straightforward process
since the formulation integrates the electron trajectories in a given wiggler field. Thus, all
that was required was to modify the wiggler model to include a randomly chosen set of
imperfections in the wiggler amplitude. These analyses were conducted in collaboration
with Dr. R.H. Jackson and have been published in Phys. Rev. A [vol. 45, p. 7488 (1992)]
and Nucl. Instrum. Meth. [vol. A341, p. 225 (1994)). These papers are include din
Appendices III and IV.

The detailed model employed was based upon the fact that a planar wiggler is
constructed of a stack of permanent magnets, and that random imperfections can result
form variations in the magnetization of each element in the magnet stack. Thus, the field
amplitude can vary in a random way from pole face to pole face, which occurs regularly at
some fractional length of the wiggler period. As a result, a wiggler model was constructed
in which the amplitude varied on some length scale Az = )LW/NP, where A,, denotes the
wiggler period and N, is the number of pole faces per wiggler period. A random sequence
of wiggler variations in then chosen {AB,} where AB, = AB,(nA7). The variation in the
wiggler amplitude between these points is then constructed from a continuous map as
follows

0z

AB,(nfz + 67) = AB, + (AB,, ,~ AB,) sin2(2—Az—) ,

for 0 < 6z < Az Given this variation in the wiggler amplitude, it is possible to integrate the
electron trajectories for a large number of different error distributions. In this way, it is
possible to construct an ensemble average of the efficiency as a function of the rms
magnitude of the wiggler error.

The results of the study indicate that the effect of wiggler imperfections is much less
severe than the effect of beam thermal spread, and that for most experiments (at least at
long wavelengths) there is no cause for alarm based upon the current manufacturing
tolerances for wiggler magnets.

It is also interesting to note that this approach to treating wiggler imperfections also
allows us to model the effect of a specific set of imperfections in any given wiggler magnet.

D. Tunability of Tapered Free-Electron Lasers

It is widely known, and practiced, that the efficiency in ubitrons can be
substantially enhanced by using a tapered wiggler. The physical basis of this process is that
as the electrons decelerate as they lose energy to the wave and drop out of resonance.
However, the electrons can be accelerated if the wiggler amplitude decreases and the
resonance condition can, therefore, be maintained over an extended interaction length. The
efficiency enhancement in such cases is extremely sensitive to both the slope of the taper
and the start-taper position. The start of the taper must be chosen in such a way that the
electrons have just become trapped in the ponderomotive potential formed by the beating of
the wiggler and radiation fields but have not had time to undergo one half of an oscillation
in the trough of the wave. The slope of the taper must not be so fast that the electrons
"slosh" out of the trough nor so slow that no effective enhancement occurs. Because of this
sensitivity, it had been felt if the start-taper point and slope of the taper had been chosen for
optimum performance at one given frequency, then the efficiency enhancement at other




frequencies would suffer. In other, words, that the tapered wiggler interaction would have
a narrow instantaneous bandwidth.

In order to test this hypothesis, Dr. Freund collaborated with Drs. B. Levush and
T.M. Antonsen of the University of Maryland. The procedure used in the study was to use
one-dimensional (B. Levush and T. Antonsen) and three-dimensional (H. Freund)
simulations for tapered wiggler configurations optimized at one frequency to test the output
efficiency at other frequencies. In other words, the parameters were optimized at a given
frequency, and then held fixed while the frequency was changed.

The results of the study showed that the previously accepted hypothesis of a narrow
bandwidth for the tapered wiggler interaction was in error. In fact, 1t was shown that the
bandwidth for the tapered wiggler case was as broad as that for the uniform wiggler.

E. A Slow-Wave Ubitron

One important goal of the ubitron program in Code 6840 at NRL is the development
of ubitrons which can operate at high frequencies but low voltages. Three principal
strategies are being used for this purpose: (1) harmonic interactions, (2) short period
wigglers, and (3) slow-wave circuits. It is the latter approach which will be discussed in
this subsection.

In order to study the effect of a slow-wave circuit, Dr. Freund adapted the
aforementioned nonlinear formulation to treat the case of a dielectric-lined rectangular
waveguide and a planar wiggler. The waveguide chosen had a dielectric liner applied to the
long dimension of the waveguide (the x-direction) which coincided with the direction of
wiggler motion. The mode structure in such a waveguide is not strictly TE or TM with
respect to the longitudinal axis of the waveguide. Instead it is TE and TM with respect to
the y-direction. These are referred to as the LSE and LSM modes respectively. The analysis
has been published in Nucl. Instrum. Meth. [vol. A304, 555 (1991)], and is included in
Appendix VI. This paper includes a detailed discussion of the formulation as well as the
results of the simulation.

The results of the analysis indicate that high efficiencies and voltage reductions are
possible with such a slow-wave circuit. However, dielectric liners are subject to problems
of charging and breakdown, not to mention mechanical failure. Hence, an actual slow-
wave ubitron might be better constructed with a more robust slow-wave circuit such as a
grating or rippled wall.

F. Cerenkov Masers

The Cerenkov maser is essentially a traveling wave tube in which the slow-wave
circuit is composed of a dielectric liner. Cerenkov masers have been built and operated at
Dartmouth for many years, and hold promise for low voltage operation at relatively high
frequencies. In order to understand the interaction and its limitations Dr. Freund, in
collaboration with Dr. A K. Ganguly at NRL, has formulated a nonlinear slow-time-scale
analysis of the Cerenkov maser for a configuration in which a cylindrical waveguide is
lined with a dielectric material. This formulation was conducted under a previous contract
SAIC with NRL. However, more recently a high power X-Band Cerenkov maser
experiment has been performed at General Dynamics which recorded power levels of more
than 280 MW at 8.6 GHz. Drs. Freund and Ganguly applied their previously written
simulation code in order to study this experiment. This work has been published in Nucl.
Instrum. Meth. [vol. A304, p. 612 (1991) and is included in Appendix VII.




Details of the formulation and the comparison are given in Appendix VII and will
not be repeated here. Briefly, the experiment employed a 788 kV/3.1 A annular electron
beam with a mean radius of ~ 1.15 cm and a thickness of 2 mm. The waveguide was lined
with stycast (¢ = 10) and has a radius of 1.74 cm at the wall and 1.47 cm at the inner
surface of the dielectric, and an overall length of 23.9 cm. It was operated as an amplifier
with a 100 kW driver at 8.6 GHz. The measured output power was 280 MW for a gain of
34.5 dB (1.44 dB/cm). The results of the simulation were in substantial agreement with the
experiment as regards the gain over the 23.9 cm of the experiment. However, the
simulation indicates that the interaction had not saturated over that length. Saturation in the
simulation occurs at a power of 620 MW over a length of 28 c¢m for an efficiency of 32%
and an average gain of between 14.4-1.6 dB/cm. More importantly, the simulation
indicates that the device is relatively insensitive to thermal spread. In particular, the
efficiency is seen to drop to 18% for an energy spread of Ay,/yy = 30%. These are
remarkable figures, and indicate that there is promise in this technology for high power
applications.

G. Self-Field Effects in Ubitrons

It has long been known that the interaction in intense beam ubitrons is based upon
stimulated Raman scattering in which the negative energy beam space-charge wave scatters
off the wiggler field to result in the output signal. A great deal of effort has been expended
in the study of these Raman interactions. However, the effect of the DC self-electric and
self-magnetic fields has received relatively little attention. Recently, it became apparent that
the self-field effects were important to the operation of the ubitron in Code 6840 at NRL,
and Dr. Freund, in collaboration with Dr. R.H. Jackson at NRL and Dr. D.E. Pershing at
MRC, undertook the task of including these effects in the nonlinear slow-time-scale
analyses.

This work was published in Phys. Fluids B [vol. 5, p. 2318 (1993)], and is
included in Appendix VIII. The formulation makes use of an approximate form for the self-
fields. Under the assumption of a flat-top density profile with a uniform axial velocity, the
self-electric and self-magnetic fields can be written in the form

E®= - 0 [0~ ()&, +(-() 8] ,
and

B®= - o= o (B) [0- 0D &, -(x— (N E] .

These representations for the self-fields are then used in the nonlinear formulations to study
both helical and planar geometries using circular beams.

The results of this study indicated that the self-fields are relatively unimportant for
ubitrons/FELs which have been constructed at MIT and at LL.NL. However, this was not
the case for the ubitron under construction at NRL. For this experiment, the self-fields
were predicted to have a major impact on beam transmission and interaction efficiency. At
the time this paper was written, no experimental results from the NRL ubitron were
available. However, the experiment became operational before the end of the contract, and
confirmed this prediction. These comparisons will be discussed in more detail in the next
section dealing with the theoretical support for the experiment.
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H. Simulation of a High Power FEL

Dr. Freund, in collaboration with Dr. A.K. Ganguly, has applied the nonlinear
simulation codes to the analysis of a recent experiment conducted at MIT. This experiment
employed a helical wiggler field in conjunction with an axial guide field to produce an FEL
amplifier at 35 GHz. The novel feature of this experiment was that the axial guide field was
oriented anti-parallel with the bulk streaming velocity of the electron beam. This work has
been published in the IEEE Trans. Plasma Sci. [vol. 20, p. 245 (1992)] and in Phys.
Fluids B [vol. 5, p. 1869 (1993)], and these papers are included in Appendices IX and X.
We will merely summarize the essential points of the study here. ‘

The experiment used a 750 kV/300A electron beam with a radius of 0.25 cm. The
wiggler had a period of 3.18 cm and a maximum amplitude of about 1.8 kG, and the guide
field could reach an amplitude of approximately 12 kG. The experiment was operated as an
amplifier at 35 GHz and could be driven with powers of about 8.5 kW. Output power was
peaked at 61 MW for a wiggler amplitude of 1.47 kG and a reversed guide field of 10.92
kG. Significantly, there was a sharp dip in the output power for the reversed field cases at
an axial field of about 7.5 kG. This corresponded to the magnetic antiresonance in which
the Larmor period associated with the cyclotron motion corresponded to the wiggler period.
This was a previously unexpected phenomenon.

The simulation has proven to be in remarkably good agreement with the reversed
field measurements. Choosing an initial axial energy spread of 1.5% in accord with the
experimentally quoted figure for beam quality, the simulation predicts an output power of
60 MW for the 10.92 kG reversed field case. This is exceptionally close agreement. In
addition, the simulation also shows the dip in the output power near the magnetic
antiresonance. The source of this effect has proven to be an antiresonant perturbation in the
orbits of the off-axis electrons. In effect, an electron which is undergoing wiggler-driven
helical oscillations far from the axis of symmetry experiences a periodic driving force due
to the wiggler inhomogeniety which becomes very large near the antiresonance. The fact
that this unexpected effect was correctly described by the simulation represents a success
for the non-averaged orbit analysis.

I. Space-Charge Effects in Ubitrons

The nature of the Raman regime in ubitrons/FELSs is often poorly understood. This
is because there are several effects which contribute to the relative importance of the beam
space charge waves. For example, an experiment conducted at MIT by J. Fajans and G.
Bekefi was unambiguously in the Raman regime despite a current of only 4 A, while
another experiment (also at MIT) conducted by D. Kirkpatrick and Bekefi was not in the
Raman regime despite a current of 900 A. In order to explain this, Dr. Freund studied a
group of four experiments with the view of evaluating their Raman status based upon three
different criteria. This work was published in Nucl. Instrum. Meth. [vol. A331, p. 496
(1993)], and is include in Appendix XI. :

The three essential criteria for Raman effects to be important are as follows. Firstly,
the beam current must be high enough that the space-charge potential of the beam-plasma
waves exceeds the ponderomotive potential formed by the beating of the wiggler and
radiation fields. Secondly, the frequency shift associated with the beam-plasma waves
[i.e., the beam plasma frequency] must exceed the gain bandwidth of the interaction.
Thirdly, the beam plasma waves must not be subject to Landau damping. This last
condition is equivalent to the requirement that the Debye length be greater than the
wavelength of the beam-plasma waves.

11




Four experiments were considered in this study. These included the three
experiments at MIT and one experiment at LLNL. Of these four experiments, the two with
the highest currents were found to be not in the Raman regime, while the two lower current
ones were found to be in the Raman regime.

The highest current was found in the Kirkpatrick and Bekefi experiment at MIT. As
mentioned, this experiment used a 900 A electron beam and operated at ~ 500 GHz. In this
case, the space-charge potential was comparable to the ponderomotive potential, but the
beam plasma frequency (= 5.5 GHz) was much less than the bandwidth of the interaction
(= 50 GHz). In addition, the Debye length was = 0.09 cm is comparable to the space-
charge wavelength (= 0.06 cm); hence, the space-charge waves should be damped. This
experiment, therefore, is not expected to be in the Raman regime.

The next highest current is found in the LLNL experiment which was a 35 GHz
amplifier using 2 3.5 MV/850 A electron beam. In this case, the ponderomotive and space-
charge potentials also were comparable, but the plasma frequency (= 2.2 GHz) was much
less than the bandwidth (= 15 GHz). In addition, the Debye length was = 0.8 cm while the
space-charge wavelength was also = 0.8 cm. Hence, the space-charge waves experienced
sever Landau damping. Hence, this experiment was not in the Raman regime either.

The third highest current was found in the reversed field experiment at MIT
described in a previous subsection. This experiment employed a 750 kV/300 A electron
beam. In this case the space-charge potential exceeded the ponderomotive potential, and the
Debye length (= 0.14 cm) was much less than the space-charge wavelength (= 0.8 cm).
Hence, Landau damping was unimportant. Finally, the plasma frequency (= 5.2 GHz) was
comparable to the bandwidth. This experiment, therefore, was in the Raman regime. '

The lowest current was found in the Fajans and Bekefi experiment which was a 9.3
GHz amplifier that used a 155kV/4 A electron beam. The space-charge potential in this
experiment also exceeded the ponderomotive potential, and the plasma frequency (= 0.72
GHz) was comparable to the bandwidth. In addition, the low energy spread (= 0.3%)
minimized the Debye length and kept Landau damping small. hence, this experiment was
also unambiguously in the Raman regime.

It should also be mentioned that the nonlinear simulation codes are in agreement
- with these general conclusions on the applicability of the Raman interaction in these four
experiments.

J. The CHI Wiggler

It was previously mentioned that the goal of the ubitron research program is to
operate at high frequencies with relatively low voltage beams, and that one means of
accomplishing this is to develop short period wigglers. One impediment to the development
of short period wigglers is that the construction of a wiggler necessitates the Jjuxtaposition
of oppositely directed magnets. This means that the shorter the period, the more field
cancellation there will be which, in turn, means that the lower the maximum achievable
field amplitude. In order to ease this limitation, a novel wiggler design has been invented
by a team composed of Dr. R.H. Jackson at NRL, H.P. Freund at SAIC, D.E. Pershing at
MRC, and J.M. Taccetti from the University of Maryland. This wiggler is called the
Coaxial Hybrid Iron wiggler, or CHI wiggler for short.

The CHI wiggler is formed by the coaxial insertion of a central rod and an outer

ring into a solenoid. Both the central rod an the outer ring are composed of alternating
spacers made of ferromagnetic and non-ferromagnetic material in such a manner that the
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ferromagnetic (non-ferromagnetic) spacer on the central rod corresponds to the non-
ferromagnetic (ferromagnetic) spacer on the outer ring. Such a design is relatively
inexpensive and easy to manufacture, and permits the creation of a high amplitude/short
period wiggler by the relatively simple expedient of using high field solenoids. The wiggler
component of the resulting field is limited primarily by the saturation of the ferromagnetic
material used.

The initial work on this design has been published in Nucl. Instrum. Meth. [vol.
A341, p. 454 (1994)] and Phys. Plasmas [vol. 1, p. 1046 (1994)], and are included in
Appendices XII and XIII. A good description of the CHI wiggler is contained in these
papers along with schematic illustrations of the wiggler and perspective and contour plot of
the field itself. In addition, the latter paper describes a nonlinear simulation of the
interaction based upon the aforementioned slow-time-scale analysis for a coaxial
waveguide. The essential conclusion of this work is that the CHI wiggler does indeed hold
promise as a design which can achieve the necessary short periods and high amplitudes to
operate at high frequency with relatively low beam voltage. In view of this, NRL has
submitted a patent application for the CHI wiggler in the names of the co-inventors.

More recently, the CHI wiggler has been applied to the design of a G-band FEL for
application to the cyclotron resonant heating of magnetic fusion reactors. A paper
describing this work has been submitted to Phys. Rev. Lett. and represents a collaboration
between Dr. Freund at SAIC, Dr. M.E. Read at PSI, Dr. R.H Jackson at NRL, Dr. D.E.
Pershing at MRC, and J.M. Taccetti from the University of Maryland. This paper is
included in Appendix XIV. The results indicate that it should be possible to build a G-band
amplifier using the CHI wiggler capable of producing 3.5 MW with no beam loss over the
course of the interaction. Hence, we have concluded that this design holds promise for
meeting the requirements for such a source of RF power.

Finally, Dr. Freund is providing theory support for the design of a Ka-band CHI
wiggler ubitron amplifier in Code 6840 at NRL. This experiment represents the Ph.D.
thesis work of J.M. Taccetti. An initial paper describing the design phase of this project has
been submitted for publication in Nucl. Instrum. Meth., and is included in Appendix XV.
SAIC expects to continue providing theoretical support for this experiment under a new
contract.

III. THEORETICAL SUPPORT

Theoretical support has been provided for three experimental projects. One has
already been described in the preceding section and deals with the start of the CHI wiggler
experiment. This was presented in the last section in the interests of a more coherent
presentation. The two other projects involve a fundamental mode ubitron and a harmonic
ubitron. Each one will now be discussed in turn.

A. The Fundamental Mode Ubitron

The fundamental mode ubitron experiment in Code 6840 at NRL employs a well-
known helical wiggler/axial guide field configuration and an electron beam (230 kV/100 A)
propagating through a cylindrical waveguide. The experiment has a been conducted largely
by D. Pershing of MRC and R. Jackson of NRL with H. Freund providing the theory
support. The experiment is designed for long pulse operation (~ 1 usec) with a rep rate of
several Hz. The ubitron was operated as a Ku-band amplifier. This experiment has been
under study for several years, and the start predates this contract. SAIC has been providing
theoretical support for this experiment over its complete lifetime under the aegis of several
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consecutive contracts. Recently, the experiment has come to fruition and recorded an output
of approximately 4.2 MW at 16.6 GHz. Given the pulse time and rep rate, this represents
an average power of 36 W, which is the record high average power for a ubitron/FEL to
date.

Two papers describing the experiment have been published/submitted in refereed
journals during the contract: Nucl. Instrum. Meth. [vol. A304, p. 127 (1991)], and Nucl.
Instrum. Meth. [submitted in 1994]. These papers are included in Appendices XVI and
XVIL.

The earlier paper recorded gains of the order of 16-20 dB and the theory was in
some agreement with the results. However, there were some unsatisfying discrepancies. At
that time, the self-fields had not been included in the simulation. Inclusion of these effects
resulted in much better agreement, as described in the second paper in Appendix XVII.
There are still some uncertainties; however, we feel that they can be largely accounted for
by two effects. The first is the uncertainty in the calibrations for the beam voltage and the
wiggler and guide field amplitudes. It has been found in both theory and the experiment
that the output power is extremely sensitive to variations in these parameters, and a few
percent change in any of them can result in substantial variations in the power. Hence, this
uncertainty can explain a large part of the discrepancies that still remain. The second is that
the effect of reflections in a long pulse system like this can also affect the output power by
causing an effective increase in the drive power. This is important in the current experiment
since there is not enough drive power to run the ubitron to saturation. The specific level of
these reflections is not known with certainty, but only a percent or less of total reflection
would be required to account for a substantial variation in the output. Together, these two
uncertainties can account for a large measure of any discrepancies between the theory and
the experiment.

One notable success in the theory is the prediction of beam loss. There was
substantial beam loss observed in the ubitron which increased monotonically with output
power. After inclusion of the self-fields in the simulation, the theory has been shown to
closely predict this scaling of beam loss with output power [see Fig. 7 in Appendix X VII].

B. The Harmonic Ubitron

The harmonic ubitron experiment in Code 6840 at NRL was conducted largely by
H. Bluem of the University of Maryland as a thesis project. Also represented on the
experiment were R. Jackson, V. Granatstein, and D. Pershing, and H. Freund provided
theory support. The results of this experiment were published in Phys. Rev. Lett. [vol. 67,
p- 824 (1991)] and is included in Appendix XVIII. This experiment differed from the
fundamental mode ubitron in that it employed a planar wiggler and a rectangular
waveguide. Also, since it operated on a harmonic interaction in the Ku-band, the beam
voltage was much less than the nominal 200 kV used in the fundamental mode ubitron.

The experiment used a 100 kV/7 A beam and found gains of the order of 7 dB at
frequencies in the range of 14-15 GHz. This was a second harmonic interaction making use
of the periodic position interaction. This experiment marked the first experimental
demonstration of this interaction in a ubitron, and we note that the nonlinear theory was in
substantial agreement with the experimental observations. Once again, we attribute the fact
that the simulation was able to treat this new interaction mechanism without modification to
the non-averaged nature of the electron dynamics.
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IV. SUMMARY AND DISCUSSION

The preceding contents of the final report represent the technical work performed
under this contract, and the 18 Appendices include the refereed papers either published or
submitted for publication during the contract term. However, this does not include a list of
invited and contributed papers presented at conferences (which may be published in such
non-archival formats as conference proceedings). In this regard, three invited papers were
presented during the contract period, and more than 35 contributed papers were presented
at a variety of professional conferences. In addition, Dr. Freund, in collaboration with Dr.
R. Parker of NRL, has written a chapter on Free-Electron Lasers for inclusion in the
Encyclopedia of Science and Technology [Academic Press, San Diego (1992), vol. 98, p.
523].
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Thermal Effects on the Linear Gain in Free-Electron
Lasers

H. P. Freund. R. C. Davidson. and D. A. Kirkpatrick

Abstract—The effect of an axial energy spread on the linear-
ized gain in free-electron lasers is considered for configurations
which employ both helical and planar wiggler fields. The anal-
ysis includes collective effects and is valid for either the Raman
or high-gain Compton regimes. A therma!l function is obtained
which applies to both the helical and planar wiggler configu-
rations at the fundamental, and which is generalized to treat
the thermal effect on the harmonics for a planar wiggler. It is
assumed that the displacement of the electron beam from the
axis of symmetry for a helical wiggler, or the plane of symme-
try for a planar wiggler, is much less than the wiggler period,
and an idealized one-dimensional model is considered. The
electron-beam model used to describe the axial energy spread
is based upon the assumption of a monoenergetic beam which
exhibits a pitch angle spread. This is described in the analysis
by the inclusion of nonvanishing components of the canonical
momenta in the single-particle trajectories of the electrons, and
the specific distribution used is that of a Gaussian spread in the
canonical momenta. The linearized Vlasov-Maxwell equations
are then used to derive the dispersion equations, including col-
lective Raman effects, for both the helica! and planar wigglers.
The analysis treats the interaction at the fundamental reso-
nance frequency in the case of the helical wiggler, and a genera!

thermal function is derived which describes the effect of the

axial energy spread. The planar wiggler configuration admits
interactions at odd harmonics as well as the fundamental, and
8 general dispersion equation is derived which includes the
thermal effect at each harmonic as well as the fundamental. In
addition, the nonvanishing canonical momenta results in an os-
cillation in the axial velocity at the wigaler period which gives
rise to emission at all harmonics. This effect is included in the
analysis for the planar wiggler configuration.

1. INTRODUCTION

AN IMPORTANT issue in the generation of coherent
radiation at short wavelengths from the free-electron
laser (FEL) is the effect of a beam thermal spread on the
interaction. Indeed, in many cases, the thermal spread
available from various electron-beam sources constitutes
the essential limiting factor for many FEL applications.
In this paper, we address the question of the effect of an
axial energy spread upon the linear gain of the FEL at
both the fundamental resonance frequency and at harmon-
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ics of the fundamental. Coherent harmonic radiation is an
important approach to the reduction in the beam energy
required to achieve short-wavelength operation. and has
been observed in the laboratory over a wide spectral range
[1}-15]. The question of the effect of beam thermal spread
upon the gain at the harmonics, therefore. is of particular
importance.

Theoretical analyses of harmonic radiation in FELs
have dealt with both the linear [6]-[9] and nonlinear [ 10]-
[16] interactions. Resuits of these analyses indicate that
substantial gains and efficiencies are possible for the har-
monic interactions. but that the sensitivity of the interac-
tion to the beam thermal spread increases with harmonic
number. Hence, the beam quality required for coherent
emission rises dramatically at the higher harmonic num-
bers. Analytical formulations of the interaction which in-
clude thermal effects have considered both a distribution
in the pitch angle spread |8} and the axial velocity, typi-
cally specified by a Gaussian {9]. [17]. In the former case
dealing with the pitch-angle spread. the effect of three-
dimensional wiggler geometry has been included via be-
tatron oscillations arising from the wiggler inhomoge-
neity. however. the analysis is restricted to the low-gain
Compton regime. The formulations in the latter case de-
scribe a beam with an energy spread but a vanishing emit-
tance (or pitch-angle spread), and treat either harmonic
emission from a planar wiggler configuration in the high-
gain Compton regime [9] or the fundamental interaction
in a variety of operating regimes [17). In addition. non-
linear analyses and simulation of both the fundamental
and harmonic interactions for a planar wiggler configu-
ration in the high-gain Compton regime in three dimen-
sions have been presented [10]. [12]). [14] which include
both the effects of a pitch-angle spread (for a monoener-
getic beam) and the wiggler inhomogeneity.

In contrast with the preceding work, our purpose in this
paper is to develop a unified formulation of thermal ef-
fects on the linear gain in both the high-gain Compton and
collective Raman regimes. We assume that the beam is
monoenergetic but characterized by a pitch-angle spread,
and treat both the fundamental (for both helical and planar
wigglers) and harmonic (for a planar wiggler) -interac-
tions. In order to treat this problem analytically, we shall
impose an idealized one-dimensional approximation in
which we neglect the wiggler inhomogeneity, and treat
the pitch-angle spread by the inclusion of nonvanishing

0018-9197/91501.00 © 1991 IEEE
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canonical momenta in the single-particle trajectories. As
such, we assume that the electron displacements from
either the axis (helical wiggler) or plane (planar wiggier)
of symmetry are much smaller than a wiggler period. In
practical terms, this implies that the bulk transverse ve-
locity associated with the pitch-angle spread be much less
than the wiggler-induced transverse oscillation.

The effect of the pitch-angle spread is twofold. In the
first place. the resultant axial energy spread acts to de-
grade the interaction, and a general thermal function
which describes this effect for both the helical and planar
wigglers is derived for the interaction at the fundamental
resonance. The effect of the axial energy spread on the
odd harmonics excited in planar wiggler configurations is
also described. and a generalized thermal function is de-
rived for the linear gain at the harmonics. In the second
* place, the pitch angle spread induces an oscillation in the
axial velocity which can also act to excite harmonic ra-
diation. and this is treated for the case of a planar wiggler.

Indeed, for many classes of electron beam, the source
of the axial energy spread is predominantly the pitch-an-
gle spread rather than a spread in the total energy. For
example, electron beams produced by MIG and Pierce
guns are accelerated by voltages of up to several mega-
electronvolts and focused, prior to injection into the in-
teraction region, either by shaped electric or magnetic
fields. The coils and/or electrodes which produce the ex-
ternal fields in these guns must be carefully designed in
order to offset the effects of the self-electric and magnetic
fields of the beam. While the accelerating voltage may
vary over the duration of the beam pulse. the electrons are
instantaneously characterized by a largely monoenergetic
distribution. However, the focussing process itself gives
rise to a pitch-angle spread due to a variety of causes (such
as field imperfections, shot noise. and self-field effects of
the beam). Similar effects are found in a variety of accel-
erating mechanisms. and the description of the axial en-
ergy spread as arising from a pitch-angle distribution,
rather than a spread in the total energy, is appropriate to
a wide range of FEL designs.

The organization of the paper is as follows. A summary
of the single-particle orbits in both helical and planar wig-
glers is given in Section II. The general formalism used
to derive the linear growth rates for helical and planar
wigglers is described in Section III. Sections IV and V
include the linear stability analyses for the helical and
planar wigglers, respectively. In the case of helical wig-
glers, the effect of an axial energy spread is included only
upon the growth rate at the fundamental. In this case a
general thermal function is derived which describes the
axial thermal effect upon the instability. In the case of
planar wigglers, the analysis includes the effect of the ax-
ial energy spread upon the fundamental and the harmon-
ics. Here we observe that one effect of the axial energy
spread derived by means of a nonvanishing canonical mo-
mentum is to give rise to growth at both even and odd
harmonics. A summary and discussion is given in Section
VL
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Il. SINGLE-PARTICLE ORsiTS

The physical configurations we consider in this paper
are those of a relativistic electron beam propagating
through either a helical or a planar wiggler within the con-
text of the idealized, one-dimensional limit. As such, we
implicitly assume that the displacements of the electron
beam from the axis or plane of symmetry are much smaller
than the wiggler period (i.e., k,.r << 1). The helical wig-
gler field is assumed to be generated by a bifilar helical
current winding which produces a field of the form

B, = B.(é, cos k,z + é, sin k,.2) H

in the idealized limit, where B, denotes the wiggler am-
plitude. and &, is the wiggler wavenumber (= 2x /N,
where A, is the wiggler period). The representation for a
planar wiggler in the idealized limit is given by

B. = Bé,sink,z. 2)

Since x and v are ignorable coordinates in the idealized
representation for the wiggler fields, these components of
the canonical momenta (denoted by P, and P,) are con-
stants of the motion. In addition. the total energy is also
a conserved quantity. As a result, the single-particle or-
bits in a helical wiggler are given by

P =P +p, cosk,z (3)
p. =P, +p, sink,: )]

and

P: = VP - 2p (P, cos k. + P sink,z) (5)

where y = (1 + p*/mlc?)'/ is the relativistic factor cor-
responding to the total electron energy and momentum p,
Pv = ym.v,. v, = —-Q [k, is the wiggler-induced ve-
locity, @, = leB,./ym.c|. m, is the electron mass, c is
the speed of light in vacuo, and Pl = p - pi - P: -
P; defines the bulk axial momentum. Observe that the
magnitude of both the transverse and axial components of
the velocity are constant in the limit in which both P, and
P, vanish, and the orbit describes a helix which is in phase
with the wiggler field and characterized by an axial mo-
mentum py = (p° ~ pi)'/?,

The single-particle orbits in the idealized planar wig-
gler are given by (3) for the x component of the momen-
tum

Py =P, 6)

and

P: = P} ~ 1picos 2k,z - 2p, P, cos kuz ()

where
Pi=p - ipi— Pl - I €]

for a planar wiggler. Since the Yy component of the mo-
mentum is constant, the magnitude of the transverse wig-
gler-induced velocity in a planar wiggler oscillates at the
wiggler period. This results in an oscillation in the axial
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momentum and velocity as well. which broadens the
wave-particle resonance. and gives rise to harmonic in-
teractions. In addition. the principal resonance and cou-
pling coefficient are determined by the bulk transverse ve-
locity (v, ) = ¢, /s/i. This reduces the effective wiggler
field with respect to the helical wiggler.

The assumption of small displacements from either the
symmetry axis (for a helical wiggler) or plane (for a planar
wiggler) is equivalent to the condition that fe /o] <<
I. It is also evident from (5) and (8) that the existence of
a nonvanishing canonical momentum introduces an oscil-
lation into the axial velocity in the case of both helical
and planar wigglers, which can also give rise to har-
monic emission when V, = p_. where V., = (P} +
P})'2 /ym, is the velocity which corresponds to the trans-
verse canonical momenta. In most FEL experiments,
however, V, << v,. and the effect of a nonvanishing
canonical momentum is largely on the broadening of the
wave-particle resonance and the consequent degradation
of the interaction strength. It should be remarked that this
inequality is identical to that required in order 1o neglect
the effect of betatron oscillations and wiggler inhomogen-
ieties. Hence, in the remainder of this paper we will dis-
cuss the effect of the axial momentum spread due to a
nonvanishing canonical momentum on the gain at the fun-
damental in both helical and planar wiggler FEL's, and
on the gain in planar wiggler FEL's at harmonics of the
fundamental.

III. GeNeraL FORMULATION

In this section, we derive the general formalism for ob-
taining the linearized dispersion equation for the FEL in
the idealized one-dimensional representation within the
context of a linearized Vlasov-Maxwell formalism. The
Vlasov equation in the combined wiggler and electromag-
netic fields is

[-?-+v-v-e<6E(z.t)+lv
or c

X [B.(2) + 8B(z, t)]) : V,]f,,(z. p.N=0 (9

where fy(z, p, 1) is the distribution function of the electron
beam, 8E(z, 1) and 6Bz, t) denote the fluctuating electric
and magnetic fields of the wave, and

9 d 2
V,®é— + & — + 8 —.
, = 6, . é o, é. . (10)

The Vlasov equation is linearized by expanding the dis-
tribution in powers of the fluctuating fields. To this end
we write fi(z, p, 1) = Fy(z, p) + & fo(2, p, t) where F, and
6f, are the equilibrium and perturbed components of the
distribution, and it is assumed that the perturbed distri-
bution is of the order of the fluctuating fields and YA
<< |F,|. The equilibrium distribution must satisfy the
lowest order Vlasov equation

[%+v- V—EUXBW(Z).V,]F,,(z,p)=0. (1

This is satisfied for any equilibrium distribution which is
a function of the constants of the motion. As discussed in
Section II, these constants are the total energy (or mo-
mentum) as well as the canonical momenta for both hel-
ical and planar wigglers in the one-dimensional represen-
tation; hence, we may express the equilibrium distribution
in the form Fy(z. p) = F,(P,. P,, p). Correct to first order
in the fluctuation fields. the perturbed distribution satis-
fies

d e
[a + p V —;l’ x B“(:) N vaaﬁ(:‘p' ’)

=e (85(:. N+ %v X 6B(z, t)) - Vo F,. (12)

The perturbed Vlasov equation may be solved by the
method of characteristics in which we integrate

8fz.p, 12)) = e S d”—’ [GE(:. 7(z"))
o v(')

+ %v(:') x 8B(z, r(:’))] * Y, F, (13)

over the unperturbed trajectories under the assumption that
the perturbations are negligibly small at time ¢ = 0. Ob-
serve that we treat the case of spatial growth and have
adopted Lagrangian coordinates in which v (2) denotes the
unperturbed velocity of an electron as a function of the
axial position, and

cody
—_—

14
o v(") 14

) = 1y + j
represents the time it takes an electron to reach a partic-
ular axial position after crossing the z = 0 plane at time
f.

The solution to the perturbed Vlasov equation is solved
in conjunction with Maxwell's equations. We choose to
deal with the scalar 8¢(z, 1) and vector potentials 64 (z,
1) in the Coulomb gauge. Note that since we treat a one-
dimensional model, the scalar and vector potentials de-
scribe plane waves. Hence, the vector potential represents
a purely transverse electromagnetic wave. In terms of this
representation, Maxwell’s equations are

1 @ 4
(v2 - FaTz) A, = -7" 8J, (15)
and
2 .
— b = 4x5J.. 1
Frow 4xdJ. (16)

Observe that the scalar potential is described in terms of
the z component of Ampere’s Law rather than with Pois-
son’s equation. The perturbed source current is given in
terms of the perturbed distribution function as follows:

1
8Jiz, » = —mi 5 d3p ;p&_ﬁ,(z. ps 0. (17
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The dispersion equation governing the growth and/or
damping of the electromagnetic field is obtained by the
simultaneous solution of (13), (15), and ( 16).

Since the FEL operates by means of an axial bunching
mechanism, it is the axjal velocity spread which is most
important. As a consequence, in the treatment of thermal
effects on the linear stability properties we shall impose
the simplification that the electron beam is monoenergetic
but exhibits a pitch-angle spread. The effect of the pitch-
- angle spread is to include velocity spreads in both the ax-
ial and transverse directions, and may be described by a
distribution function of the form [18]

FyP,, P,, p) = m,G,(P,, P,) % 8p - py) (18)

where n, denotes the bulk ambient density, and G, (P,,
P,) represents the transverse distribution. For conve-
nience we shall assume that this transverse distribution
takes the form of a Gaussian

exp (-P% /APY (19)

G.L(va P\) = l’APz

where P2 w P2 4 P}, and AP represents the thermal
spread. An alternate distribution which includes the ef-
fects of both emittance and Betatron oscillations has also
been developed | 19].

IV. HeLicAL WiGGLER CONFIGURATIONS

In treating the case of a helical wiggler under the as-
sumption of plane-wave solutions, the vector and scalar
potentials for a wave with angular frequency w are of the
form

A, (2. 1) = 384, () exp (=iwt) + c.c. (20)
and
de(z, 1) = 35(2) exp (—iwt) + c.c. 21
After transformation to the basis
é =i 1 id) 22)

which is convenient for the description of left- and right-
hand circularly polarized electromagnetic waves, the per-
turbed distribution function can be written as

8oz, P, 1(2)) = 8f(z, p) exp ( —iwr(z)) + c.c. (23)
where

e a . 0
e =52[o. (3 +137)

[
9 3 3
— e ] — + —
+D. (ap, ! ap,> D. apJ
- F{P,, P,, p). 24)

The orbit integrals in (24) are defined as
¢ , exp (iwr(z, 7)) /. _ ,_§_> P
D, = L dz _—T-(Z'T— (uu vAz’) % 6A4.(2)
25)
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and
D=l j\zd" exp (iwr(z, z')
Foopde ™ vAZ')

)
X (‘CP:(Z') P 0¢(z")

+iwlp_(2') 84.(2') + p.(2) 6L(z')1> (26)

wherep, mp, F Py, 72, 2') = 7(2) ~ 7(z'), and
8A; = J (54, F iody) 27

denotes the amplitudes of the circularly polarized electro-
magnetic waves.
The source current

6Jz, 1) = [8],()é, + 6] _(pé. + 8J(2)é)
* exp (—iwr) + c.c. (28)

is determined by means of the perturbed distribution as
follows:

6J t(Z)) e S P (;&)
= -=\dr,aP,dp L 5p,. :
<6f:(z) m, v /2 fiz. p .

(29)

The interaction principally couples the space-charge and
right-hand circularly polarized modes; hence, we neglect
the left-hand circular polarization state. Therefore, the or-
bit integrals can be written as

Dy = 84, exp iwr(z, 0) - 84,)  (30)
and
ym,c

D, = —— j dz’ exp liwr(z, 2')]
P Jo

O soey +19P= 54
{ P op(z') + c . 0A.(z )J. (31)

The Lagrangian time coordinate which appears in the or-
bit integrals can be evaluated using the single-particle tra-
jectories in (3)-(5), and we obtain

’ =L’n' -— ! _Lp"
T(Z’Z)‘P,, [(z 2" kP]

* (sin k.2 ~ sin k,z7")

+pwP, (cos k,.z — cos k ')J | (32)
kP (08 Kut vt

correct to terms of order in p2P2,/P{. In the evaluation
of the source currents, we substitute for the perturbed dis-
tribution function and integrate by parts in P, and P,.
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Hence

e’ S p [( p.p-)
= —— »dP,dp — | {2 + D,
6J.(» e de,@‘yp. )

(4 <

0 ) d
P (51"}*‘61’,)”* ”*D:ap]

.Fb(ij P_ny)

(33)
and

2

() = <— p
3@ 2m,c s dp, dP, dp ¥
d . 0 3

[(3}",: + i apy> D+ Dz ap] Fb(an Py, p)

(34)
where we observe that from the single-particle trajectories

o 8\

(5;‘4-18’,”)}).,-2 (35)
and

a .49 _ Pp-

(a,,x*“apy)h— P 6

The orbit integrals may be evaluated using the single-
particle trajectories. We retain only the lowest order con-
tributions due to P, and Py in the steady-state trajectories;
hence, these contributions appear principally in the reso-
nance condition. We consider the high-gain regime in
which

84, (2) = 84,(0) exp (~ik, z)
and
8p(2) = 84(0) exp (- ikz). (37

Under these conditions, the axial orbit integral can be ap-
proximated as
=Ml k0 _vu..
D, = p [MZ)w “k, e 84.(2")

- exp (ik,2") (38)

)
w - (k + k',) V.
where Vy = Py /vyom, is the axial velocity corresponding
to the generalized steady-state trajectory. In addition, we
retain only the term which varies as exp (ik, z) in D,.
Hence, the source currents can be written as

e . 5 [p Bi)
mec 440 | dP. P, dp | - (1 +

8J.2 = - >

ﬁ, wm, vy 6]
2 w-iv,5p) Py P
2

- in_, PwdH(2) exp (~ik,2) s dP, dP, dp

k 9

. m 5 Fy(P,, P,, p),

(39)

and

Cz - .
8J(2) = Ime Pu6A (2) exp (ik,2) SdP, dP, dp

@ d
¢ ————— — Fy(P,. P,
T — kv ap o P )

et . S et 9
_RW(Z) ddeP.vdp;--—maP
- Fy(P,, P,, p) “o

Yo = (1 + p3/mic)'?, v, = (p§ — pl)/vom,, and B2
= v2/v{. Note that vy and v, now denote the axial and
transverse velocities for the steady-state trajectory corre-
sponding to .

The derivatives of the distribution with respect to p
which appear in the above expressions for the source cur-
rents may be integrated by parts and the results substituted
into Maxwell’s equations to give

2 2 .2 2.2
222 Y, _twe - ket ] ;
[w e - (l ¢ (@ - kvy)? 7(!)) M.0
_w_‘z,g,_,ck(ck - why)
290 ¢ (w = kyy)

R}) 52(0) @n

and
2
- kpy)? - 2 ]‘0
[(w vy) mm‘)&o()

w v, @ .
= ";;b? (l - c—kB') R 4,000 (42)
where we identify k = k, + k, from the wavenumber
matching condition, 8, = vy /c, yf = (1 - vi/c})",
and T(¢{) defines the thermal function which arises from
the Gaussian distribution in the canonical momenta. This
thermal function is defined as

Y) = 1 - Fexp OE Q) 43)
for the argument
vom: (@
{= AP: (p - vl) 44)
where
B = | 220 @)

denotes the exponential integral function defined over the
domain |arg {| < .

The dispersion equation which results from this for-
mulation is

2
_ 2 _ W 2 3122 _ W
o -t - o] - - ]

2 .2 2
= 9% Vw 2 _ 2.2 _ W
= “2ec /ity) [w k’c - nn] @6)
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Fig. 1. Graph of the magnitude of the growth rate versus frequency for
AP/py = 0.0.025. and 0.05, and R, /ck. = 0.05. v, = 2.957, and ws/ck,
= 0.1.

correct to lowest nontrivial order in v,./c. In order to ver-
ify that this dispersion equation reproduces that found in
the idealized beam limit, we observe that lim, p-olf] =
. Expanding the exponential integral function in the
asymptotic limit, therefore, we find that limyp.o($) =
I and that the ideal beam dispersion equation is re-
covered. Thermal effects become dominant whenever Im
k/(Re k + k,) = Avy /vy, where the wavenumber is to
be evaluated at the peak growth rate in the ideal beam
limit. On the basis of the perturbed trajectories, it is clear
that Avy /vy = AP?/2pk; hence, thermal effects are im-
portant when

Y Ji(ﬁi. ». )'/’
Pl 24 \28] T k2o

in the high-gain Compton regime, and

AP2 ﬁu. Wy
— ® —— ’* 48)
o 2918y N yo ck,, “%)

in the collective Raman regime.

The effect of the thermal spread on the linear growth
rate is threefold. In the first place, the wider range of axial
velocities introduced thereby results in a broader reso-
nance condition in which the unstable frequency band in-
creases. In the second place, the fact that the bulk axial
velocity decreases means that the center frequency of the
gain band also decreases. In the third place, the peak
growth rate decreases with increasing AP. Each of these
properties is illustrated in Fig. 1 in which we solve (46)
numerically for the growth rate, and plot the magnitude
of the growth rate as a function of the frequency for
0, /ck, = 0.05, v, = 2.957, and w, /ck, = 0.1. Observe
that the growth rate peaks for |Im k| /k, = 0.011 in the
absence of the thermal spread, and decreases by over
100% as the thermal spread increases 0AP/p, = 5%.

The detailed variation in the peak growth rate and the
frequency corresponding to peak growth as a function of
AP is illustrated in Fig. 2. As shown in the figure, the
peak growth rate remains relatively constant for AP/p,
< 2% and decreases rapidly thereafter. As a conse-
quence, thermal effects become dominant for AP/p, =
3%. We expect that for thermal effects to be important

47)

e

2585
0012 - . . ~16.00
0010 - s
. :
X ooos .
. : - <1520 B
..,! 0006 -  NTv----o . - =~
£ . <1480 ™
0.004 ~
- ek, =0.05
- Yo=2957 - 14.40
0.002 D ek, =01 .
0.000 - 14.00

0.02 0.04 0.06 0.08
4Pip,

'Fig. 2. Graph of the inagnitude of the maximum growth rate (solid line)

and the corresponding frequency (dashed line) as a function of AP /p, for
2, /ck, = 0.0s, Yo = 2.957. and w, /ck, = 0.1.

Avy /v, = Imk/(k, + Re k) = 0.067% (where Im k/k,
= 0.0l1 and Re k/k, = 15.4 at peak growth) for this
example. This yields an estimate of AP/py = 3.7%,
which is in reasonable agreement with the numerical so-
lution for the growth rate shown in the figure. The fre-
quency at which peak growth is found drops approxi-
mately 2% over this range.

V. PLANAR WIGGLER CONFIGURATIONS

In this case, the interaction occurs principally for plane
waves polarized in the direction of the wiggler-induced
oscillation, and the vector and scalar potentials for a wave
with angular frequency w are of the form

0A(z, 1) = 38A(2)é, exp (=iwt) + c.c. (49)
and
8p(z. 1) = 380(2) exp (—iwr) + c.c. | (50)

The analysis is similar to that described for the helical
wiggler configuration. As in the case of the helical wig-
gler analysis, the perturbed distribution function takes the
form

e d 2
of(z, p) = 7e [Dx P, + D, 5} FyP, P, p) (51)

where the orbit integrals are defined as
D = j d:’ M'I(Z_,Z_)). <,‘w - v(z') .27> 5,4‘(2')
0 v(2') (74
(52)
and
P j’ gy P (:wr('z, ')
Soopdoe v(Z')
a bt ’ ;s ! H +
) [ —pA) P 0p(2) + iwp(z') bA(z )} (53)
7z, 2°) = 7(2) ~ 7(z'). Observe that D, may be integrated
directly to give
D = ~84@) + 54(0) exp Giwriz, 0)).  (54)
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Thc source current
8Jiz.n = [6J (e, + Bf:(:)e‘:] exp (—iwr) + c.c. (55)

is determined by integration over the perturbed distribu-
tion

J) = -—-i e f .p.. - -
8J(2) - SdP, dP, dp o [p: é + e} (56)

Substitution of the perturbed distribution yields. after in-
tegration by parts over P,,

i) = £ PIO (pp)_» iJ
8J.(2) - de, dP, dp [ 7 (p D,) D.

2 y LoP, p. “dp
: Fb(va I,_rs P) (57)
and
P = £ pld , _ f_]
6":(3) _me 5ddeP_vdp_y[anDx D:ap
- Fy(P,. P,, p). (58)

The orbit integrals D, and D_ which appear in the source
currents represent an integration over the unperturbed
electron trajectories in the planar wiggler. The character-
istic trajectories in a planar wiggler differ from those in a
helical wiggler in that the magnitudes of the axial and
transverse velocity components are not constant but,
rather, oscillate at harmonics of the wiggler period. This,
in tum, introduces harmonic components into the dynam-
ics of the interaction. In particular, we observe that in a
planar wiggler the Lagrangian time variable characteristic
of the electron trajectories is of the approximate form

r(z)-:—to+i+5"“' 1

v VB 7.- k——-w v, sin k,,2

w1
8Vik,.V,
where it is assumed that both v, < Vyand P, < P,. Ob-
serve that existence of a nonvanishing canonical momen-
tum introduces an oscillation at the wiggler period into
the trajectory.

We express the vector and scalar potentials by appli-

cation of Floquet’s theorem for periodic systems in the
form

sin 2k,.z (59)

SA@2) = Z_ 84, exp (ik,2) (60)
and
8¢(2) = ._E_u &, exp (ik,2) (61)

where k, = k + nk,,. Since the gain is exponential in this
regime, we may neglect the initial value contributions to
the orbit integrals. In the analysis of the thermal regime
the dominant contribution of the axial thermal spread oc-
curs within the resonance condition. Hence, if we restrict

the analysis to the resonance associated with the Doppler
upshift in frequency then the source currents can be ex-
pressed in the form

2 o

W
FYoC n= -

8J() = - 3 A, exp (ik,z)

L =T
X (1 4c’ Lm‘;—w Kn'(b2)

- H dP,dP.G (P, P)J} (b,
. o = C-zk:zwl*Zm-H )
(w - kn+l+2m+l VH)2

z [- ]
+ =2 T kbb, exp (k- ,2)Jnbo)
161‘70 Rim- -~

" V(b)) = Jp s 1(b)]
x H dP,dP.G,(P,, P)J} (b))

vy
U\ Knspoom — w ?

"
(W = kysro2m¥y)’ 62)
and
2 [ ]
8J, = 8,‘;"’7i Ik, 8, exp (ik,2)J3(b,)
oY) nm= -~

x || e ap.6. b, Py Y

. @
(w - kn+l+2mVl)2

S e 5
167y € nim=-=

° [Jn(bZ) = Jn+l(b2)]

84, _ | exp (ik,2)J,(b,)

X gs dpx dP'yG;(Px- P\)le(bl)

vy
Uy kn+l+2m - w?

(w— kn+l+2m Vl)2

where ¥, and v, are the bulk axial velocities with and
without the pitch angle spread, respectively, and J; de-
notes the regular Bessel function of the first kind. In ad-

(63)

. dition
@ o, P
A @
2
@ L 78
AT ©
Kby = [Uu(b) = T, ()] (66)
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and we have made use of the Besse! function relations

2n
" ) = () + J,_,(x) (67

CXp (ibsinb) = 2 J,(b) exp (inf). (68)
The integrals over the canonical momenta in (62) and (63)
may be evaluated using the transverse distribution func-
tion, and we find that in the limit in which P, << p,

HC N /10
” dP, dP,G, (P, P,) -y = o o) (69)
where
¢ j" j" Ji by
=~ 1| 4 -2 —/—— (70
T,(g')nz1r \ b A dz exp ( Z)(z+§’)2 (70
2.2 2
Yom, [w
S = apt (r - "5) an
and we write that
b= L%l e (72)
kooy vy py

If we now select a specific harmonic (i.e., for fixed [
and m), then the coupled mode equations may be written
as

2
@ = kyspipmey)? = 2 e J o mlB2)
[‘0 I+2m¥y) Yol 1 s142m) | 62,0 (b,

n

2
wp U, . v
‘,TL'Z-CaAn-ln(fnuzm) (kmnzm - wﬁ)

" Unlbs) = T \(B2)) (73)

and

——
eN
|

2 2
W Uy -
ek, - 1‘: (1 rps; K. (b,

2 2 2
LW = kyyeame

(w - k +1+z..11|)2 T;({n#»l»b.))} Mn-l

2
W, knvw a
E - 6‘9,.7. P )
20 (@ = kyuyy2mty)? s

X (kn+/+2m - %) Inb) U (br) - 1, 1(by)]

(74)
where
2 2
70’”3 w
& l*(ﬁ—-v) (75)
i APZ kfzn-l-t?.m i

The dispersion equation is found by requiring that the de-
terminant of the coefficients vanishes. Therefore, for a
specific choice of harmonic interaction, the dispersion

2587

equation which results is expressed as a straightforward
generalization of that found in the cold beam limit; spe-
cifically

2
W
[w ~ knsivamty) - T’:ﬁ 7}(5.+1+2m)]

¢ (wz - Czk,z,-] - ﬂf)

Yo
2 2
— Vw wp
= _462 7—0 K;(:)(bz)n(funzn)

2
. (ﬁ’z - Czk3+l+2m - %n(§n+l+2m)>~ (76)
0

This dispersion equation which includes the effect of an
axial energy spread for a Planar configuration is similar
to that found for the corresponding case for a helical wig-
gler geometry. The differences are as stated previously in
that 1) the wiggler amplitude is replaced by the root-mean-
Square (rms) value, 2) the oscillation in the axial velocity
introduces modifications in K w'(b2) and J3(b,), and 3)
harmonic amplification is found in the one-dimensional
formulation. The effect of the pitch-angle spread on the
axial velocity is the source of the /th harmonic contribu-
tion, which has the effect of modifying the thermal func-
tion 7,. In order to describe this effect in more detail, we
assume that b, << 1 which is valid aslong as P, << Py
As a result, we expand

1 v, AU w 2/ AP 2 , 2
o= ) (25) () oo

an
As a consequence
) 2 z 2
o= S () (@)
" 20/ \k,p, P
- exp (D) L dr °""t§") -9 (78

As in the case of the helical wiggler, the thermal function
may be expressed in terms of the exponential integral
function. To this end we observe that

exp (D j{ drg‘@a -y

== - ¢+ p

Texp(DE(D) + Uy (79
where
U = o, <2
I k-2 R LT PR
Ry k!(l(- 'Zmlf'f —ar 1z2
(80)
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As a consequence

21 2 2/
20 (v, AP
([) 21'” ku'"! P

AEDETN - ¢+ 0

cexp (DE(D] + Udy. (81)

We observe that for / = 0 the planar wiggler thermal func-
tion reduces to that found for the helical wiggler (43),
ie.,

TyH) = {1 = texp (DE(D)]. (82)

This will reproduce a thermal response for the interaction
at the fundamental which is similar to that found for the
helical geometry

The general dispersion equation (76) has been solved
numerically for a case which illustrates the relative growth
of the fundamental and the third harmonic. In general,
strong harmonic amplification requires a relatively large
oscillation in the axial velocity; hence, the growth rate at
the harmonics increases rapidly with Q,, /ck,.. Indeed, the
growth rate at the harmonics as predicted by (76) can be
larger than that at the fundamental when Q.. /ck, exceeds
unity. However, this is an unjustifiable conclusion based
upon the present type of formulation. It is important to
bear in mind that the analysis cannot be applied for arbi-
trarily large values of this parameter because 1) the ideal-
ized one-dimensional model breaks down when the dis-
placement of the electrons from the plane of symmetry
becomes large, and 2) the Lagrangian time coordinate (14)
has been integrated in (59) under the assumption that v,
<< v;. Therefore, the analysis of cases in which Q./ck,
is greater than unity requires a fully three-dimensional
analysis. We restrict the numerical analysis herein to the
case for which @, /ck, = 1. Thisis a physicaliy interest-
ing case which is at the fringe of the range of validity of
the formulation, and will serve to clearly illustrate the re-
lationship of the harmonics to the fundamental. In addi-
tion, we shall assume that v, = 2.957 and wy/ck, = 0.1
as well. It should also be remarked that in order for the
thermal effects to result in substantial growth at the even
harmonics, AP /p, must be of the order of unity as well.
Since this is unreasonably high for any well-designed ex-
periment, we shall ignore this effect henceforth, and con-
centrate on the emission at the odd harmonics.

The magnitude of the growth rate is plotted as a func-
tion of frequency in Fig. 3 for the fundamental and the
third harmonic. The fundamental exhibits a peak growth
rate of {Im k| /k,, =~ 0.065 at a normalized frequency of
w/ck, = 1.55. In contrast, the magnitude of the growth
rate at the third harmonic is |Im k| /k, ~ 0.012 at a fre-
quency of w/ck, = 4.80. Observe that both the magni-
tude and bandwidth of the harmonic is reduced relative to
the fundamental.

The effect of the thermal spread on the fundamental and
the third harmonic is shown in Fig. 4. Here we plot the
normalized growth rate (defined as the ratio of the maxi-
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Fig. 3. Graph of the growth rate versus frequency for the fundamental and
third harmonic interactions.
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Fig. 4. Variation of the normalized growth rates at the fundamental and
third harmonic with the axial momentum spread.

mum growth rate for a specific value of AP/p, to the
maximum growth rate for AP/p, = 0) as a function of
AP /p, for the fundamental and third harmonic. Observe
that thermal effects are expected to become important on
the fundamental when A v, /v, = |Im k|/(k, + Re k) =
0.025, which corresponds to AP/p, = 22% (recall that
Avy/vy = APY/2pd). This is in substantial agreement
with the results shown in the figure. For the case of the
harmonics, thermal effects are expected to become im-
portant at a much reduced thermal spread (71, [10]; spe-
cifically, when Av, /vy = |Im k| /[(1 + 2m)k, + Re k).
For the third harmonic in the present example Av, /v, =
{Im k|/(3k, + Re k) = 0.0015. This corresponds to
AP/py, = 5.5%, which is also in good agreement with
the calculation.

VI. SUMMARY AND Discussion

In this paper, we have developed a self-consistent for-
mulation of the linear gain in both helical and planar wig-
gler configurations in the presence of an axial energy
spread derived from a beam pitch-angle spread. Such a
beam may be thought of as monoenergetic but with a non-
vanishing emittance. The analysis included collective Ra-
man effects for both the helical and planar wiggler sys-
tems, and described the gain at harmonics in the case of
a planar wiggler. General dispersion equations were de-
rived, and solved numerically, for each wiggler configu-
ration which included a general thermal function which
described the effect of the pitch-angle spread.
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The conclusions from the analysis are consistent with
those found previously on the basis of an analytic model
of thermal effects due to an energy spread {7) and a non-
linear simulation using the pitch-angle spread model [13],
[14]. Specifically, that the gain at the harmonics is more
sensitive to the effects of a thermal spread than is the fun-
damental. In particular, the thermal effect becomes im-
portant when Avy /vy = |Im k[/I(1 + 2m)k, + Re k}.
Inaddition, it is clear that the thermal effect itself can give
rise to amplification at the even as well as odd harmonics.
However, this process requires a large energy spread
which will result in relatively low growth rates, and is not
likely to be of practical use.
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Abstract—The relationship between the relative phase and
optical guiding in the free-electron laser is studied. The relative
phase in this case is defined as the shift in the wavenumber from
the vacuum value integrated over the interaction length. In
terms of the optical guiding of the signal in free-electron lasers,
the relative phase must be positive in order for refractive guid-
ing of the signal to occur. The relative phase is studied from
the standpoint of the linear stability analysis in both the high-
and low-gain regimes, and the qualitative implications in each
of these regimes of the relative phase on the refractive guiding
of the signal are identical. Specifically, the relative phase is
found to be negative at the low-frequency end of the gain band.
The relative phase increases with increasing frequency over this
bands until it turns positive at a frequency approximately 10%
below the frequency of peak gain. Thus optical guiding is in-
dicated over a large portion, but not all, of the gain band. A
quantitative measure of the optical guiding of the signal is ob-
tained by an analytic formulation of the guiding of the signal.
This formulation is based upon a separable beam approxima-
tion in which the evolution of the signal is determined by a
Green’s function analysis. The specific example of interest in-
volves the low-gain regime prior to saturation. In this case, it
Is shown that the analytic result is in substantial agreement with
the calculation of the relative phase.

1. INTRODUCTION

PTICAL guiding dunng the course of the interaction

in free-electron lasers refers to the self-focusing of
the electromagnetic wave by the electron beam [1}-]12].
Optical guiding of the signal occurs by two related mech-
anisms referred to as gain and refractive guiding. Gain
guiding describes the preferential amplification of radia-
tion in the region occupied by the electron beam. There-
fore, an optical ray will undergo amplification as long as
it is coincident with the beam. If it propagates out of the
beam, then the interaction will cease. Refractive guiding
describes the focusing (or defocusing) of the radiation by
means of the shift in the refractive index due to the di-
electric response of the electron beam. In particular, if the
wavenumber is shifted upward due to the interaction with
respect to the vacuum state, then the phase velocity of the
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wave decreases and the beam acts as an optical guide. It
should be remarked. however, that gain and refractive
guiding are intimately linked and are not independent pro-
cesses.

The process of refractive guiding is related to variation
in the relative phase, since this quantity measures the shift
in the wavenumber due to the dielectric effect of the beam.
As shown in the nonlinear simulations of both the helical
and planar wiggler configurations the relative phase de-
creases with axial position at the low-frequency portion
of the gain spectrum [13}-[15]. This decrease occurs be-
cause the dielectric shift induced by the beam reduces the
wavenumber below that of the vacuum state, and corre-
sponds to a defocusing of the signal. As the frequency
increases, however. the downshift in the wavenumber de-
creases until a critical frequency is reached at which the
relative phase remains approximately constant. This cor-
responds to a wavenumber which is comparable to the
vacuum state, and for which there is no refraction of the
signal. The frequency at which this is found is, typically,
below the frequency of peak growth rate. For frequencies
higher than the critical point. the relative phase increases
with axial position. corresponding to the guiding of the
signal.

The organization of the paper is as follows. The behav-
ior of the relative phase as determined from a linear the-
ory of the interaction mechanism is described in Section
I1. The configuration we employ is that of a planar wig-
gler model in the idealized one-dimensional limit. In this
regard the shift in the wavenumber in the high-gain re-
gime is calculated by the numerical solution of the dis-
persion equation. This formulation is capable of treating
both the collective Raman and the high-gain Compton re-
gimes. In the low-gain regime, the relative phase is cal-
culated on the basis of the evolution of the untrapped elec-
tron trajectories in the ponderomotive potential. It should
be noted that the results of each of these treatments are in
qualitative agreement with the description of either guid-
ing or defocusing described above. The evolution of the
wavefront is determined analytically in Section 1iI on the
basis of a separable beam model [8}-[11]. In this case.
we assume that the electron trajectories are given in the
idealized onc-dimensional limit. This is valid as long as
the electron displacement from the symmetry plane is less
than the wiggler period. In addition, it is assumed that the
cross-sectional profile of the beam is cylindrically sym-
metric and determined by a Gaussian decrease in the den-
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sity. The radiation field is modeled by the injection of an
optical Gaussian mode whose subsequent evolution can
be calculated by means of a Green's function. The inte-
gration of the kernel is accomplished for parameters con-
sistent with the low-gain regime, and the results are shown
to be in substantial agreement with the behavior of the
relative phase. A summary and discussion is given in Sec-
tion IV,

II. OpTICAL GUIDING AND THE RELATIVE PHASE

The physical basis of the optical guiding mechanism
can be best understood in terms of the behavior of the
relative phase, which is defined as the integrated differ-
ence between the wavenumber in the interaction region
and the free-space wavenumber. This can be understood
most clearly on the basis of the idealized one-dimensional
analysis. We first consider the high-gain regime. Under
the assumption that |v, /v, | << 1, the dispersion equa-
tions for both the helical and planar wiggler geometries
can be expressed as

2
b

- 2 _ Y
<lw k + k,)vy) -mi)

2 2 2
: («»2 - %2 - ﬂ) =% 00, )
Yo € Yo

where w and k are the angular frequency and wavenumber
of the electromagnetic wave, v, denotes the relativistic
factor corresponding to the bulk energy of the beam, v,
is the bulk axial velocity of the beam v, = (1 -

vi/c?)7'72, @, is the beam plasma frequency, and

Q

" C_‘E‘i' helical wiggler ,
—1= a, 2)

m, planar wiggler

denotes the bulk wiggler-induced transverse velocity cor-
responding to Q,, = B, / Yom,c for a wiggler amplitude
B, and wavenumber k.. In order to illustrate the refractive
shift in the wavenumber, we transform the wavenumber
in(l)to 8k = k - w/c, which measures the shift from
the vacuum wavenumber. Note that the bulk axial veloc-
ity is given by v, /c = | - vo® = v2/c?. Under the
assumptions that |8k| << k, = (w? — wi/v0)'/*/c, and
wp/v0’? << w, the dispersion equation can be written in
the form of a cubic equation

8k — ky) [chvﬁ - 24w Skvy

2 2 2
- 2_ WL _Uwwh
(Aw ‘70'7i) ] T2 Yo b &

where Aw = (1 - y;/c)w ~ k,vy.

The solution to (3) for the real (solid line) and imagi-
nary (dashed line) pants of &k as functions of frequency is
shown in Fig. 1 for v, = 3.5, v./c = 0.0, and
ws/v4*ck, = 0.1. The frequency corresponding to the

U0 210 s 20 2s
aﬂd_

Fig. 1. Graph showing the growth rate (dashed line) and the shift in the
’ wavenumber (solid line) as functions of frequency.

peak growth rate for this choice of parameters is w/ck,,
= 21.6. It is clear that the wavenumber is shifted down-
ward from w /c in the absence of the wiggler (i.e., 8k <
0) for frequencies below w /ck, < 21.5, which is below
the frequency of peak growth. In contrast, for frequencies
above this critical value, including at peak growth, the
wavenumber is shifted upward from the vacuum wave-
number. Hence, the qualitative behavior for the wave-
number in the idealized one-dimensional analysis is the
same as that from the three-dimensional nonlinear for-
mulation. The conclusion to be drawn from these results
is that the refractive effect of the wave-particle interaction
in the wiggler can either guide or defocus the electromag-
netic wave depending upon the interaction frequency.

In order to understand the process of optical guiding in
the low-gain regime, we consider an analysis of the evo-
lution of the relative phase in an idealized one-dimen-
sional model in which the vector potential of the optical
signal is represented in the form

0A(z, 1) = 8A(2)é, cos (wz/c — 1) + Ad(2)) @)
where A¢ denotes the relative phase, and both A¢ and the
amplitude 4 are assumed to be real. The wiggler field is
assumed to be given by the idealized one-dimensional
representation in which B, = B¢, sin k,z. Substitution
of this form for the vector potentiai into Maxwell’s equa-
tions yields an equation of the form
80 84 cos [a(z/c = 0] + 2 34

- sin [w(z/c - 9] = 2‘—:: 6J; (5)

where 8J, denotes the source current, 8k = dlé¢] /dz de-
notes the perturbed wavenumber, and it is assumed that
|6k| << w/c. Note that second-order derivatives of the
amplitude and phase have been neglected in (5). Multj-
plication by cos [w(z/c - )] and subsequent averaging
of the resulting equation over a wave period yields

28 /w
ok = é L dr 6J, cos [w(z/c - 1)). (6)

Under the assumption that U, = v, cos k2, therefore, the
perturbed wavenumber becomes
2
Wy O

w |
S ik {cos ¢¥) 0
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where ¢ denotes the ponderomotive phase, w, is the beam
plasma frequency, 5a m 54 /m,c? is the normalized am-
plitude, and the average is taken over the initial phase.
Observe that the corresponding equation for the small-sig-
nal gain is obtained by multiplication by sin [w(z/c —
n}.

The phase average may be determined by solution of
the pendulum equation in the untrapped limit. The evo-
lution of the ponderomotive phase in the combined elec-
tromagnetic and magnetostatic fields is governed by the
nonlinear pendulum equation

d’ 2 .
= ¥ =K siny 8)

where

Uy w?/c?
v 2707iB]

In the linear regime, the solutions describe untrapped tra-
jectories which may be determined by a perturbative so-
lution to (8). In this case we expand ¥ = y, + Akz +
0y, where y, is the initial phase

Ak--ﬂ<n-ﬂ>+k,
vy c

K’ = 8a 9

(10)

describes the mismatch parameter, and it is assumed that
|6¥ /¥ | << 1. To lowest order in the perturbation, there-
fore, the pendulum equation can be expressed in the form

2
:7wsx2sin(¢o+Akz). (1

Subject to the initial conditions that 8y (z = 0) = 0 and
déy (z = 0) /dz = 0, this equation has the solution
KZ
oy = —zp‘[sin (Yo + Akz) — sin ¥ + Akz cos ).
(12)

As a consequence
2

(cos ¢ ) = 5—2’7[1 —cos‘Akz — Akz sin Akz}  (13)

and
2
(siny) = —m[finAkz-AkzcosAkz]. (14)
Hence, the perturbed wavchumbcr is given by
2 2
@ = 81:7‘,ivi %i! e
* [I — cos Akz - AkzginAkz]. (15)

The relative phase is found by integration of (15) over
axial position; hence, the relative phase at the end of the
wiggler (i.e., z = L) is given by
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Fig. 2. The relative phase as a function of frequency within the gain band
as calculated from the idealized one-dimensional model of the low-gain
regime.

wlkl? l?."_ 4
16y0vfof 20f AkL?

So(L) =

-[l+qosAkL—?-‘i—L-sinAkL]. (16)

The relative phase has been evaluated for a choice of
parameters in which yo = 10, v, /c = 0.05, w,/y4/?ck,
= 0.1, and a wiggler with L = 10, in length, and the
results are illustrated in Fig. 2. The gain band for this
choice of parameters ranges over w/ck,, = 180-200, and
a peak gain of approximately 20% is found at w/ck, =
192. As shown in the figure, the relative phase is positive
at the high-frequency portion of the gain band which in-
cludes the frequency of peak gain.

III. THE SEPARABLE BEAM LIMIT

The fundamentals of the optical guiding process can
best be understood in terms of a separable beam approx-
imation [8]-[11] in which the wiggler-driven source cur-
rent is decomposed into a product of functions depending
upon radius and axial position. Hence, the electron beam
is assumed to be cylindrically symmetric. The electron
trajectories are treated in the context of an idealized one-
dimensional approximation of the planar wiggler geome-
try. This model has the considerable advantage of allow-
ing an analytic solution for the radiation spot size, and is
generally valid as long as the beam radius is much less
than either the spot size of the radiation and the wiggler
period.

The idealized planar wiggler geometry implies that the
interaction will be with a cylindrically symmetric plane
polarized wave in which the vector potential of the elec-
tromagnetic field is expressed in the form

BA(r, 2, 1) = J8A(r, D&, exp liw(z/c - B] + c.c. (17)

for an angular frequency w and wavenumber w/c. Sub-
stitution of this form of the vector potential into Max-
well’s equations yields a dynamical equation of the form

- _ic! 81,0, ) exp [—iw(z/c - ] (18)
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where the source current is defined as
@™ v,
oJ.(r, 2) = —en,(Ney, j_ dty a(1y) l—v_l ot — 7z, )]

(19)

where n, (r) notes the radial variation of the ambient beam
density, 7(z, 1,) is the Lagrangian time coordinate which
describes the time at which an electron which enters the
interaction region at time 1, reaches the axial position z,
Uy denotes the initial axial velocity, and o(1y) denotes the
distribution in entry times. As a consequence, averaging
(18) over a wave period gives a dynamical equation of the

form
19 @ w0
(—r-;r5+21¢.a:>6a(r. 2)

2 ’ .
= "’;*(') Bo :— (exp (=iy)) (20)

where 8, = vo/c, wi(r) = 4te2n,,(r)/m,. v = (w/c
+ k)2 — wr denotes the ponderomotive phase, dq =
€A /m.c?, the orbits are given in the idealized approxi-
mation subject to the requirement that lon/ty] << 1, and
the average is over the initial phase. The dynamical equa-
tion is solved for an electron beam with a Gaussian den-
sity profile

m(r) = nyy exp (—rz/ri) 2n

where n,, denotes the maximum density on-axis and r,is
the Gaussian beam radius.

The solution of the dynamical equation is may be writ-
ten in terms of a Green's function which satisfies the
equation

19 0 _wa ,
(;a—rr;r"i'zlca—:)ar.g‘..)

= ?cxp (=r*/r})éz - 2y, (22)

Equations (20) and (22) can be combined to yield

0 0

oo I +0+
§ dr j d-: [6a(r. 26z ~-17)
- 20 B L G(r. 2" ~ ) (exp (—M(z)))]

. o I+0°
=< j dr j dz [2 (réa(r. 2) 9 G(r, 2’ - z))
w or

r

(rG(r. -2 9 da(r, z))}
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The first integral on the right-hand side of (23) vanishes
subject to the requirements that

Ba(r=°°.z)=G(r=°°.z—z')=0 (24)

and

d
==Gr,z-7) =0. (29
ar N

a

= da(r, z

ar ( ),“,

The second integral on the right-hand side yields the ho-

mogeneous solution in the absence of the interaction.
ence, the solution in terms of the this Green’s function

is '

SN

w

éa(r, 2) = da,(r, 7) +

€in

v,
B —_—
o

"
L&

. L d2'G(r, ' ~ 2) (exp (=) (26)

where w}, = 41re2n,,o/m,, and da, (r, ) denotes the ho-
mogeneous solution which describes the evolution of the
vector potential in the absence of the beam.

We now consider the low-gain regime. In order to de-
scribe the focusing or defocusing of the radiation due to
the interaction, we define an average field in the form

(8a(r, 2)), = % L drrexp (~r’/r}) da(r, 7). - (27
This is a weighted average over the cross section of the
electron beam which is a measure of the effective field
experienced by the electrons. In the low-gain regime, the
ponderomotive phase is determined by the solution of the
pendulum equation (8) in the untrapped regime. Utiliza-
tion of this average vector potential in the definition of k2
in (9), therefore, gives a phase average which varies as

: Y S .
(exp (+iY(2))) = CYVE (1 ~ exp (tiAkz)
t iAkz exp (+idkz)) (28)

where
[ w?/c?
v 2%0718]°

It may be verified by substitution that the Green’s func-
tion is

K = (a(r, 2)), (29)

o L e /ri +2i - 27y,
G"*z'z"z"i 1 +2iz - 2') /g,
- H(z - 2') (30)

where H(z) denotes the Heaviside function, ang L =
wri/c. As a consequence, the average field can be ex-
pressed as

- (Mh(" Z))r

(6‘1(’. :))r - S(Z) (31)
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where
: {1 +In <x + 1‘:) — exp (—ifk)
= i[l + Ak(z, + i2)) exp (- iAkz)
_ S:/adx exp (iAik:bx)}.

()} 1 + ix

(32)

If the homogeneous solution js given in terms of a Gauss-
ian beam which is focused down to the minimum spot size
atz = 0, then [16)

exp [r?/ri(1 + 2iz/25)]

8ay(r, 2) = dag 1+ 2iz/z

(33)

where day is real and denotes the initial amplitude of the
field. ry denotes the Gaussian radius of the beam. and 2
= wrj/c denotes the Rayleigh length. As a consequence

(bay(r, 2)), = — . (34)
ry .2
1 + -5 + 2i=
ro ¥4

An effective focusing factor may be defined in terms of
this average field in the form

2
l:éa(r. 2,1 . (35)

2
— j drr |a(r, 2)|?

ry Jo

Fo) =

Since the homogeneous solution for the vector potential
describes the propagation of the signal in the absence of
the beam, the focusing factor measures the evolution of
the radiation spot size relative to the diffraction of the
Gaussian beam in free space.

The denominator can be determined by energy conser-
vation arguments. Retuming to the dynamical equation
for the field (20), we observe that

02
Who o T 27,2 ;
= - Bo v—l exp (—-r*/r}) da* (exp (—~iy)) (36)

-LFN ,'j—| exp (=r*/r}) dacexp (¥)).  (37)

Subtracting the second equation from the first, we find
that .

3

Joal* = =2 g

v, o
exp(—r-/r;)
4

o

d
2 f P
* [8a* Cexp (~i¥)) ~ 8a(exp (iy))!.
(38)
Obsemc that we have omitted the terms in 8a*V: sq -
3aV", 8a* since they will vanish upon integration over ra-

dius. Integration of (38) over both axial position and ra-
dius, therefore yields

-23 L drr |8a(r, )|
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2 2 .2
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1+244 z—z) oo

s Zd

(39)
where
2 3 2 . 2
= __Ywk® v, d f(sin 0)
%= et 6)

is the expression for the power gain in the idealized one-
dimensional formulation of the fundamental interaction in
the low-gain regime, & = w/c, and 6 = Akz/2. Com-
bining (33)-(35) and (39), we find that the focusing-factor

over the total length of the system L may be approximated
in the form

F(L) = ! . @)

rl L? )
[l +5+45+ G(L)} | S(L))
ro 4]

Observe that in the limit in which the interaction van-
ishes (i.e., in the absence of either the beam or the wig-
gler field) the gain also vanishes and the focusing factor
describes the free-space diffraction of the optical beam

1

Sﬁ(L) = "i Xk 42)
1+ = + 4 -5
ro 20

Hence, the effect of the interaction upon the diffraction of
the optical beam can be effectively measured by a nor-
malized focusing factor defined as

F)
Sy

Hence, when F.(L) > 1 the diffraction of the signal is
slower than in the free-space limit, and the signal is ef-
fective guided. Conversely, when F.(L) < 1, the diffrac-
tion is more rapid than in free space. It is important to
remark at this point that the focussing factor as deter-
mined by the separable beam analysis implicitly includes
the effects of both gain and refractive guiding.

The specific example under consideration is that of a
system for which v, /¢ = 0.05, w,y /v ck, = 0.1, and

Fall) = 43)
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108 oo " 3 IV. SuMMARY AND Discussion

106 - avrdc b= 0.1 s A great deal of work has been devoted to the question

o4 b u,’j::‘.? / : of optical guiding in free-electron lasers [1]-[12]. The

- ! ks =0.1 4 principal thrust of the present work has been to clarify the
Q 12~ nhelo /A Z . . .

MR Peak Gain connection between the relative phase, which measures

® 4 the shift in the wavenumber induced by the free-electron

088 - \_/ 3 laser interaction, and the optical guiding of the signal. In

! ] this regard, we have evaluated the relative phase within

B B T R TR T R T v the context of a linear theory of the interaction in both the

wick, high- and low-gain regimes. The qualitative conclusions

Fig. 3. Illustration of the normalized focussing factor for representative
parameters in the low-gain regime.

Yo = 10. Further, it is assumed that there are 10 wiggler
periods within the interaction length (i.e.. L/\,. = 10),
k,r, = 0.1, and that the optical beam radius is focused
down to the beam radius upon the entry to the wiggler
(i.e., r, = ry). Observe that this choice of parameters
corresponds to that used in the calculation of the relative
phase in the idealized one-dimensional regime shown in
Fig. 2. The peak gain in the idealized one-dimensional
limit for this choice of parameters over length L is of the
order of 20% and occurs for w/ck, = 191.7. The focus-
ing-factor at z = L associated with this choice of param-
eters is shown in Fig. 3 for frequencies within the gain
band. It is evident that the indicated diffraction of the ra-
diation found on the basis of the calculation of the relative
phase and the separable beam limits is qualitatively sim-
ilar. That is, that the diffraction is slower than the free-
space value for the low-frequency portion of the gain
The separable beam model can also be used to analyze
optical guiding in the high-gain regime [9], [11]. The dis-
persion relation is obtained from (26) and the one-dimen-
sional equation of motion by looking for solutions which
grow exponentially in axial position. Rather than repeat
the derivation here, we merely quote the result. First, we
note that in the Compton regime (1) can be rewritten as

2 d
2 v, w, wk,/c
- You P = 28 — . (44
[w =k + k) ty] i PE Ry Py (44)

Inclusion of the effects of diffraction modifies this result,
and we find that

[w ~ (k + k)]

2 2 2 2
=2r 3;“’”’”%5[2 & - wz/cz)] (45)
c c 2

Yo
where E(») is defined as
1 s“" exp (—ivx)
Rtr=0 by eyt

Observe that (45) reduces to (44) in the limit in which
[rilk’ = w?/c?)| << 1| where diffraction is unimportant.
Solutions for growth rates and filling factors in the high-
gain limit obtained from (45) can be found in [11].

B R e Tt o S

drawn from this analysis indicate that optical, or at least
the refractive, guiding of the signal does not occur over
the entire gain band. In particular, we find that the relative
phase is negative indicating that a defocusing of the signal

should occur at the low-frequency portion of the gain

band. As the frequency increases, the relative phase also
increases, however, until a critical frequency is reached
at which the relative phase vanishes. This point typically
is found to occur at a frequency approximately 10% be-
low the frequency of maximum growth rate. For still
higher frequencies, the relative phase is positive and some
guiding of the signal should occur.

The qualitative estimates of refractive guiding based
upon the relative phase are compared with a more quan-
titative analysis of the diffraction of an optical Gaussian
mode by means of a Green's function solution of Max-
well’s equations in the low-gain regime under the as-
sumption of a separable beam approximation. In this case,
a focusing factor was derived which measures the diffrac-
tion of the signal due to the interaction relative to the dif-
fraction in free space. It is important to note here that this
Green's function approach implicitly includes both gain
and refractive guiding. The results of this analysis are in
substantial agreement with the qualitative conclusions
based upon the behavior of the relative phase, and indi-
cate that a small degree of guiding is possible even in the
low-gain regime.
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A self-consistent analysis of wiggler-field errors in free-electron lasers is described using the three-
dimensional simulation code WIGGLIN. A random variation is chosen for the pole-to-pole wiggler ampli-
tude, and a continuous map is used between the pole faces. On average, increases in the root-mean-
square value of the field causes a decrease in the interaction efficiency; however, this is relatively benign
for the specific case studied, and particular error distributions can result in efficiency enhancements.

PACS numberl(s): 41.60.Cr, 05.40. +j, 52.65.+z, 52.25.Sw

Free-electron lasers (FEL’s) have operated over wave-
lengths from microwaves [1,2] to the infrared [3,4] and
visible spectra [S]. The FEL operates by the coherent ax-
ial bunching of electrons in the ponderomotive wave
formed by the beating of the wiggler and radiation fields.
The interaction is extremely sensitive to the axial energy
spread of the electron beam, and an energy spread of 1%
or less [6] is sufficient to cause substantial reductions in
the efficiency due to the detuning of the wave-particle res-
onance.

A related effect is caused by random wiggler-field er-
rors. Wigglers can easily exhibit a random rms fluctua-
tion of 0.5% from pole to pole [7]. This yields a velocity
fluctuation which causes a phase jitter that also detunes
the wave-particle resonance. The purpose of this paper is
to explore the effects of wiggler errors on FEL perfor-
mance, and to compare the effects of wiggler errors with
those of an axial energy spread. To this end, a self-
consistent treatment of random wiggler errors has been
incorporated into the three-dimensiona! nonlincar simu-
lation code WIGGLIN [8].

The effects of random wiggler errors have been studied
using a random-walk model for the electron trajectories,
and their effects upon both spontaneous emission [9] and
the linear gain [10,11). Nonlinear modeling of wiggler
field errors has been based [11-14) upon the inclusion of
an analytic model of the random walk in a wiggler-period
averaged formalism of the electron trajectories. In con-
trast, no average over a wiggler period is performed in
WIGGLIN, and no explicit assumption of the random walk
is included.

Consideration of the effects of wiggler errors shows
that any perturbation induced in one of the pole pieces
will induce a series of correlated changes in the field over
several adjacent wiggler periods. This effect has been

J

B,(x)=[B,(z)+AB,(2)] [cosk,,,z &,sinh |2 |sinh
k
—V2%,cosh _\%‘_ sinh

4

M sink, z
V2 wrle

measured in the laboratory on a prototype planar wiggler
design [15]. Here, an error was introduced by reducing
the gap spacing between one set of pole pieces. An axial
scan of the on-axis field showed that the error propagated
through *1 wiggler period (12 pole pieces for this
design) with an increase in amplitude at the adjacent
poles of ~55% and at the next poles of ~10%. The am-
plitude and extent of these correlations are dependent
upon the detailed design of any given wiggler, and can be
substantial. Thus the question of the nature of “random”
errors in wiggler magnets requires further study. As a
first step, a continuous mapping of random field errors
from pole to pole has been included. The effects of corre-
lated errors will be dealt with in later studies for specific
wiggler designs.

The WIGGLIN formulation [8) includes the simultane-
ous integration of a slow-time-scale formulation of
Maxwell’s equations for an ensemble of TE and TM
modes of a rectangular waveguide (—a/2<x<a/2,
=b/2Zy<b/2), as well as the complete Lorentz force
equations for an ensemble of electrons. We emphasize
that no average of the orbits equations is imposed. The
wiggler model includes an adiabatic entry taper which de-
scribes the injection of the beam into the wiggler, as well
as a model for the description of the wiggler-field errors.
As a result, the initial conditions on the electron beam
are specified at the entrance to the wiggler, and the subse-
quent evolution of the electromagnetic field and the elec-
tron beam are integrated in a self-consistent manner.
Thermal effects are included under the assumption that
the electron beam is initially monoenergetic but with a
pitch angle spread to describe the axial energy spread.

The configuration employed is that of a planar wiggler
with parabolic pole faces for enhanced focusing {1}, and
can be represented as

.

kwy +A h kwx h kwy
\/i €,cos \/i COSs. ‘/5
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where k,, denotes the wiggler wave number for a wiggler
period A, B, (z) and AB,_(z) denote the systematic (i.c.,
nonrandom) and random variations in the amplitude, re-
spectively. The systematic variation in the wiggler ampli-
tude is assumed to be

F4
Bsin® [—— |, 0<z<N_A,
Bw(z)= l4N'” }

B,, N, <z,

2

which describes the adiabatic entry taper over N, wiggler
periods.

The random component of the amplitude is chosen at
regular intervals using a random number generator, and a
continuous map is used between these points. Since a
particular wiggler may have several sets of pole faces per
wiggler period, the interval is chosen to be Az =A,/N,,
where N, is the number of pole faces per wiggler period.
Hence a random sequence of amplitudes {AB, ] is gen-
crated, where AB, =AB, (nAz). The only restriction is
that AB, =0 over the entry taper region [i.e., AB, =0 for
02n< 1+N,N,] to ensure a positive amplitude. The
variation in AB,,(z) between these points is given by

AB,(nAz+82z)=AB, +(AB, ,,—AB, )sin? ’-;I% ] ,

3

where 0<8z < Az. In the rest of this paper it shall be as-
sumed, for simplicity, that N, =1. Note that it is possible
to model the effects of pole-to-pole variations in specific
wiggler magnets with this formulation.

The configuration under study is one in which a 3.5-
MeV, 850-A electron beam with an initial radius of 1.0
¢m propagates through a rectangular waveguide [a =9.8
cm, b=2.9 cm] in the presence of a wiggler with
B,=3.72 kG, A,=9.8 cm, and N,=5. Hence the
wiggler parameter a, [=eB,/m,c%k, ]=3.404. This
corresponds to an experiment at Lawrence Livermore
National Laboratory [16], and comparisons between
WIGGLIN and the experiment show good agreement [8].
WIGGLIN has also been validated by comparison with a
fundamental and second-harmonic free-electron laser
(FEL) experiment [17,18]. Resonant interaction occurs
with the TEy,, TE,,, and TM,, modes at frequencies of
30-40 GHz, and the efficiency decreases with increasing
frequency across this band. For an ideal beam and
-wiggler [i.e., Ay, =0 and AB,=0] the efficiency falls off
from a maximum 7=12.38% at 30 GHz to 2 minimum
of n=3.58% at 40 GHz. A frequency of 34.6 GHz
(n=8.57%) is selected for the comparison.

The effect of the axial energy spread is illustrated in
Fig. 1 in which the extraction efficiency is plotted as a
function of Ay, /y, (for AB,=0). Note that the initial
drive powers in the modes were chosen to be 50 kW in
the TE,, mode, 500 W in the TE;, mode, and 100 W in
the TM;, mode, and that the saturation length varies
with Ay,. As shown, the efficiency decreases gradually
with the axial energy spread (due to the relatively high

a=98cm; b=29 cm; f = 34.6 GHz
10 1 T T T T T e

—teabeaaia Lo o,

)
e
~
[9]
S Vo=3.5keV
o= »=3. 4
£ 40 1,=8504 -
23) Rp=10em Mode TP, W)]
2 }_B..,=3.72kG TEs |50.000 | -
f Aw=9.8an TEx [ 500 7]
L’\_/:y=5 T™z: | 100 1
0 L ' et
0 1 2 3
A/ (%)

FIG. 1. Variation in the saturation efficiency as a function of
the initial axial energy spread.

a,) for Ay, /y,<3%, at which point the efficiency has
fallen to 5.45%.

Random wiggler fluctuations can take many different
forms for a fixed rms value. It is most natural to consider
a random fluctuation which is relatively uniform over the
interaction region (ie., (AB,)=0); however, other
configurations are possible. For example, fluctuations
where the wiggler field is always greater (or less) than the
systematic value for B, are possible, as is one in which
AB, is very large over a small range and zero elsewhere.
These are only limited examples, and a thorough analysis
necessitates a large number of simulation runs with
different random wiggler fuctuations to obtain adequate
statistics. Typical runs for WIGGLIN on a CRAY-2
Supercomputer are ~ 14 s for Ay, =0. Hence it is possi-
ble to make a sufficient number of runs (i.e., if the mean
efficiency has converged to within 1%) to obtain good
statistics.

The effect of random wiggler errors is shown in Fig. 2
where the efficiency is plotted versus the rms wiggler er-
ror (for Ay,=0). The dots represent the average
efficiency over the ensemble of random fluctuations, and

a=98cm:b=29cm; f= 34.6 GHz

Np=1'

 Vp=35MeV.
6 | Ih=850A
- Rp=1.0m Modc | P (W) l
R n {
TAy.=0
L ) TEun | 50.000
4 © B.=372KG R
,Ic...:z-ﬁcm ™: ] 100

0 L T 5 6
‘JB“ /R\l')llﬂ\ ((7( )

Efficiency (%)
o0
r 9
a-baa bl Lo g, o L

.

B L D P

FIG. 2. Variation of the saturation efficiency as a function of
the rms magnitude of the wiggler-field error.
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FIG. 3. The wiggler field as represented by a,. as a function
of axial position for (AB,/B,),.=3% and a saturation
efficiency of n=10.27%.

the error bars denote the standard deviation. As shown,
the average efficiency is relatively insensitive to wiggler
errors for (AB, /B, ), < 5%, although the standard de-
viation increases with the rms error. For this example,
the effect of a given (AB,, /B, ), is much more benign
than for a comparable Ay, /y,.

Particle loss was not found to be a problem for the
range of (AB, /B, ), shown in Fig. 2. As a result, we
conclude that the random-walk model is not appropriate
for the treatment of wiggler errors. An explanation for
this is that, although the wiggler amplitude may vary in a
random manner from pole to pole, the field varies in a
continuous fashion. As a result, regardless of the detailed
model of the wiggler, electrons do not experience sudden
random impulses but, rather, follow meandering field
lines through the wiggler.

ideal wiggler case for some particular wiggler error distri-
butions. In order to understand this, recall that the
efficiency varies across the frequency band. This tuning
can also be accomplished by variations in the wiggler

3.6 T
o
35 g_ B, rms \,\ _E
4 ! \ :
;t h ! if\ B
FY E .“"l ‘l : z
) 3.4 E"‘—"‘-\_‘ i o =
I v\ , \ ‘l : E
= ‘\‘. : \\\ '\v:' =
33E i \ J =
\\/ 1 E
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32 e : ’ :
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8
2R

FIG. 4. The wiggler field as represented by a, as a function
of the axial position for (AB, /B, )ms=3% and a saturation
efficiency of n=15.929%.

»

magnitude, and an increase (decrease) in the mean B, can
be expected to result in an increase (decrease! in the
efficiency as long as the chosen frequency remains in the
resonant bandwidth of the interaction. Another way in
which the form of the error distribution can affect the
efficiency is if the field exhibits a bulk taper either upward
or downward over the interaction region. A downward
{upward) taper can be expected to increase (decrease) the
efficiency. In order to illustrate this, consider the case for
which (AB, /B, ).=3%. Wiggler error distributions
which give rise to 7=10.27% and 5.92% (compared to
n=8.57% for an ideal wiggler), respectively, are shown
in Figs. 3 and 4. The average a,. for each of these cases is
close to the systematic value of 3.404; however, the field
exhibits a downward taper in Fig. 3 and an upward taper
in Fig. 4.

In general, the statistical distribution of the efficiency
differs from the normal distribution, and the standard de-
viation must be used with some caution. For example, 35
runs were generally required to obtain adequate statistics,
and the probability histogram is shown in Fig. 5 for
(AB,. /B,).=3%. Here, the skewness =~ —0.4] and
the kurtosis =0.92, indicating a distribution skewed
below the mean and more peaked than the normal distri-
bution.

In summary, a self-consistent analysis of the effect of
random wiggler errors on the saturation efficiency of the
FEL has been presented in which no a priori assumption
of a random walk of the electron orbits has been imposed.
For the specific parameters under study, the results indi-
cate that the effects of random wiggler errors are relative-
ly benign, and particle loss was not found to be a prob-
lem. Indeed, some error configurations chosen at random
were found to result in efficiency enhancements due to
effective increases. It is important to note here that ex-
perimental quantification of these issues is difficult to ob-
tain. While measurements for (AB,. /B, ), are possible
to achieve with some accuracy, there is always a greater
uncertainty as to beam quality. Hence it is difficult to

25 - - - -
: (A—B_’ =3% :
20 = { By Ioms -
T s
8 15 - 4
& : p
5 10 - 4
- 4 - j
: 4
s ]
1

0

2 4 6 8 10 12 14
Efficiency (%)

FIG. 5. Probability histogram of the number of simulation
runs vs the saturation efficiency for (AB,. /B, ), =3%. The to-
tal number of simulation runs in this sample is 35.
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determine the relative importance of wiggler errors in the
laboratory. The results of the present work, however,

su

ggest that wiggler errors may not constitute a serious

issue for FEL design.
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Wiggler imperfections in free-electron lasers

H.P. Freund **, R.H. Jackson
Navel Research Laboratory, Washington, DC 20375, USA

A sclf-consistent 3-D analysis of wiggler imperfections in FELs is described using the WIGGLIN simulation code. WIGGLIN
treats the electron dynamics using the 3-D Lorentz force equations, and does not rely on a wiggler-averaged formalism. In the
planar wiggler model used, both the divergence and the axial component of the curl vanish identically while the transverse
components of the curl are small. In describing wiggler imperfections, a random variation is chosen for the pole-to-pole variations
in the amplitude and a continvous map is used between the pole faces. The average efficiency, as well as the standard deviation
about the average efficiency, is determined by using an ensemble of different randomly chosen wiggler variations with a fixed rms
value. The specific parameters chosen correspond to the 35-GHz ELF experiment conducted at Lawrence Livermore National
Laboratory; however, the fundamental physics is relevant to a wide range of FEL experiments. On average, increases in the field
imperfections cause a decrease in the efficiency; however, this is relatively benign and is certainly a much less severe constraint
than that imposed by electron beam quality considerations. In addition, particular error distributions can result in efficiency

enhancements.

1. Introduction

The free-clectron laser (FEL) operates by the co-
herent axial bunching of electrons in the ponderomo-
tive wave formed by the beating of the wiggler and
radiation fields. The interaction is extremely sensitive
to the axial energy spread of the electron beam, and an
energy spread of a percent or less is often sufficient to

cause substantial reductions in the efficiency due to

the detuning of the wave-particle resonance. A related
effect is caused by random wiggler field imperfections.
Wigglers can easily exhibit a random rms fluctuation of
05% from pole to pole [1] This yields a velocity
fluctuation which causes a phase jitter that also de-
tunes the wave -particle resonance. The purpose of this
paper is to explore the effects of wiggler errors on FEL
performance, and to compare the effects of wiggler
errors with those of an axial energy spread. To this
end, a self-consistent treatment of random wiggler
errors has been incorporated into the 3-D nonlincar
simulation code WIGGLIN {2,3].

The effects of random wiggler imperfections have
been studied using a random walk mode] for the elec-
tron trajectories, and their effects upon both sponta-
neous emission [9] and the linear gain [4,5). Nonlinear
modeling of wiggler field imperfections has been based
[5-9] upon the inclusion of an analytic model of the
random walk in 3 wiggler-period averaged formalism of

* Corresponding author.
! Permanent address: Science Applications International
Corp., McLean, VA 22102, USA.

0168-9002/94 /$07.00 © 1994 - Elsevier Science B.V. Al rights reserved
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the clectron trajectories. In contrast, no average over a
wiggler period is performed in WIGGLIN, and no
explicit assumption of the random walk is included.

Consideration of the effects of wiggler errors shows
that any perturbation induced in one of the pole pieces
will induce a series of correlated changes in the field
over several adjacent wiggler periods. This effect has
been measured in the laboratory on a prototype REEL
planar wiggler design {10]. Here, an error was intro-
duced by reducing the gap spacing between one set of
pole pieces. An axis! scan of the on-axis feld showed
that the error propagated through +1 wiggler period
(£2 pole pieces for this design) with an increase in
amplitude at the adjacent poles of = 55% and at the
next poles of =10%. The amplitude and extent of
these correlations are dependent upon the detailed
design of any given wiggler, and can be substantial.
Thus, the question of the nature of “random" imper-
fections in wiggler magnets requires further study. The
effects of correlated imperfections will be dealt with in
later studies for specific wiggler designs.

2. The mathematical formulation

The WIGGLIN formulation [2,3] inclides the si-
multancous integration of a slow-time-scale formula-
tion of Maxwell's equations for an ensemble of TE and
T™M modes of a rectangular waveguide [-a/2 <x <
a/2, —~b/2 <y <b/2] as well as the complete Lorentz
force equations for an ensemble of electrons. The
wiggler model includes an adiabatic entry taper which

IV. THEORY
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describes the injection of the beam into the wiggler, as
well as a model! for the description of the wiggler field
imperfections. As a result, the initial conditions on the
clectron beam are specified at the entrance to the
wiggler, and the subsequent evolution of the electro-
magnetic ficld and the electron beam are integrated in
a self-consistent manner. Thermal effects are included
under the assumption that the electron beam is initially

monoenergetic but with a pitch angle spread to de-

scribe the axial energy spread.

The effect of wiggler imperfections using the WIG-
GLIN formulation has been studied in an carlier work
using a wiggler model for a planar wiggler based upon
parabolic pole faces which is both divergence- and
curl-free for the case of a uniform wiggler. However,
the divergence and curl for this model were ponvanish-
ing for the case of a nonuniform wiggler. Thus, random
imperfections on a short length scale can result in
significant deviations from the self-consistent wiggler
model even for relatively small wiggler fluctuations. In
order to remedy this deficiency, we reconsider the
effects of random wiggler imperfections in this paper
using an improved planar wiggler model in which (12

B, .(x)

k.z d
- B,(z)|sin k,z-%'r:)-zl.(z)]

Y(k,y) 311 4
x[sinh k.y——s—ﬁm —-—X(x),

2k3 k, dx
(1)
B, ,(x)
cos kz d
=B ( z)[sin k,z- m EB'(Z)J
x [cosh k,y- wi].ﬂx), 2)
v 2k} dx?
B, ,(x)=B_(z)cos k.z[sinh k,y
2 2
- K(zl:"Ty)(l + éi-,)%]xu).
3)

where B_(z) denotes the axial variation in the wiggler
amplitude, Y(k, y)= k,y cosh k_y - sinh k,y, and
X(x)=1+(x/a,)™/2. Here a, and m are arbitrary
and are used to denote the wiggler gradient in the
x-direction. :

The wiggler amplitude is decomposed into system- -

atic and random components as follows
B.(2)=BJ'(z) +aB,(2). 4)

where

ko2
in?f — |.
B&"(z)- B, sin (4 ). 0<z<N,A,, )
B,; N, <z,

describes the systematic component. The random com-
ponent of the amplitude, AB_(2), is chosen at regular
intervals using a random number generator, and a
continuous map is used between these points. The
systematic variation in-the wiggler amplitude given in
Eq. (5) describes an adisbatic entry taper over N,
wiggler periods, and allows us to selfconsistently de-
scribe the injection of the beam into the wiggler. In the
description of the random variation, we note that a
particular wiggler may have several sets of pole faces
per wiggler period, each of which may vary in 8 ran-
dom fashion. Hence, the interval between the random
fluctuations in the amplitude is chosen to be Az =
A, /N,, where N, is the number of pole faces per
wiggler period. A random sequence of amplitudes
{AB,) is then generated, where AB,mAB._(nA,). The
onlymtrictionisthatnrequire AB, =0 over the
entry taper region [i.e, 4B, =0for0<n < 1 +N,N,)
to ensure a positive amplitude. The variation in AB (2)
between these points is given by
AB,(nAz+3z)=AB, +[AB,,, - AB,}

x:’m’( b 6
2Az) (6
where 0<82 <4z Note that it is also possible to
model the effects of the measured pole-to-pole varia-
tions in specific wiggler magnets with this formulation.

Both the divergence and the Z<component of the
curl vanish identically for arbitrary choices of B,(2)
for this model of the field. In addition, the transverse
components of the curl are given by

N(2+N,

[VxB,|, = —is——’)-k.AB,, )
subject to the assumptions that k,a, <1, a,/ve<1,
and k R, <1 where a_[m eB,/k.m c?] denotes the
wiggler parameter, and R, is the beam radius. Hence,
these contributions remain small as long as the ms
level of the wiggler imperfections are small.

3. Numerical analysis

The configuration under study is one in which 2 3.§
MeV /850 A clectron beam with an initial radius of 1.0
cm propagates through a rectangular waveguide (g =
9.8 cm, b= 2.9 cm) in the presence of a wiggler with
B,=3.72 kG, A, =938 cm, and N, =S. This corre-
sponds to an experiment at LLNL {13], which mea-
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sured an output power of approximately 180 MW over
a saturation Jength of 1.3 m.

Comparisons between WIGGLIN in the absence of
wiggler imperfections and the experiment show good
agreement. Resonant interaction occurs with the TE,,
TE,, and TM,, modes at frequencies of 30-40 GHz,
and the efficiency decreases with increasing frequency
across this band. For an ideal beam and wiggler {i.c.,
Ay,=0 and AB, = 0] the efficiency falls off from a
maximum 7 = 124% at 30 GHz to a minimum of
n = 3.6% at 40 GHz. A frequency of 34.6 GHz (n =
6.9%) is selected for the comparison.

In Fig. 1 we plot the evolution of the total power in
all the modes and the power in the TE,, mode at 34.6
GHz for the choice of Ay,/y,= 1.5%. Note that the
axial energy spread is known to be less than 2%
through electron spectrometer measurements of the
beam. The initial drive powers in the modes were
chosen to be 50 kW in the TE,, mode, 500 W in the
TE,, mode, and 100 W in the TM,, mode. Observe
that although the TE,, mode is overwhelmingly domi-
nant at the start of the interaction, it accounts for only
about 60% of the signal at saturation. This is due to
the fact that the TE; mode had the higher growth
rate. The oscillation in the power occurs at a period of
A./2 and is due to the effect of the lower beat wave
between the wiggler and the radiation field {2,3]
Agreement between the simulation and the experimen-
tal measurement is good. The peak saturated power
found in simulation is approximately 190 MW, which
falls to approximately 180 MW when averaged over the
lower beat wave, which is in good agreement with the
measurements. In addition, the saturation length is
found to be approximately 1.45 m which is also close to
the experimental value. Finally, we note that WIG-
GLIN has also been validsted by comparison with a

(@=9.8cm; b=29cm; f = 34.6 GHz)

m [ r—r—rv
V,= 3.5 MeV 1
S I."”A TM :
10 R,=10cm ]
t A1 =15%
. B, =3.12kG ]
g 100r A =98cm ]
3 N,=1 4
= m=l Mode
0r  a,=30cm T b
3 ‘ 1
° r TR S NP RS e ]
0 40 80 120 160 200
Axial Distance (cm)
Fig. 1. Evolution of the power versus axial distance in the
absence of wiggler imperfections.
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Fig. 2. Variation in the saturation efficiency as a function of
the initial axial energy spread.

fundamental and second harmonic FEL experiment
[14])

The effect of the axial energy spread is illustrated in
Fig. 2 in which the extraction efficiency is plotted as a
function of Ay,/y, (for AB, = 0). Observe that the
saturation length varies with Ay, and that this figure
represents the efficiencies at saturation. As shown, the
efficiency decreases gradually with the axial energy
spread due to the extremely high value of the wiggier
parameter (a,, = 3.4) for this experiment. Note that the
decline in the efficiency with the axial energy spread
was found to be more rapid with the parabolic pole
face wiggler mode [2.3) than with the present model,
although good agreement with the experiment is also
found for the parabolic pole face model with Ay, /o
= 1.5%. This is due to the fact that the gradient in the
wiggler in the direction of the bulk wiggler-induced
transverse motion is higher for the parabolic pole face
model.

Random wiggler fluctuations can take many differ-
ent forms for s fixed rms value. It is most natural to
consider a random fluctuation which is relatively uni-
form over the interaction region [i.c. (AB, ) = 0} how-
ever, other configurations are possible. For example,
fluctuations where the wiggler field is always greater
(or less) than the systematic value for B, are possibie,
as is one in which A B, is very large over a small range
and zero elsewhere. These are only limited examples,
and a thorough analysis necessitates a large number of
simulation runs with different random wiggler fluctua-
tions to obtain adequate statistics. The .effect of ran-

"dom wiggler errors is shown in Fig. 3 where the effi-

ciency is plotted versus the rms wiggler error (for
Ay, =0) for N, =2 The dots represent the average
efficiency over the ensemble of random fluctuations,
and the crror bars denote the standard deviation. A
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Fig. 3. Variation of the saturation efficiency as 2 function of
the rms magnitude of the wiggler field imperfection.

total of 35 runs (for 35 different random distributions
in the wiggler fluctuation distributions) was found to
give convergence to within = 1%. As shown, the aver-
age efficiency is relatively insensitive to wiggler errors
for (AB,/B,) . < 4%, although the standard devia-
tion increases with the rms error. For this example, the
effect of a given (AB,/8,),,, is much more benign
than for a comparable Ay,/v,. Particle loss was not
found to be a problem for the range of (AB,/B,).,
shown in Fig. 3.

The effect of variations in the number of pole faces
per wiggler period is shown in Fig. 4 for (AB_/B,),..
=2%. Note that the choice of N, =1 is primarily of
mathematical interest only as most actual wiggler de-
signs have more than one pole face per wiggler period.
As is evident in the figure, the efficiency is relatively
insensitive to the number of pole faces per wiggler
period, although a very weak relative minimum is found
for N, = 2. It should be noted that this relative mini-
mum was found to be more pronounced in Ref. [11] in
which a parabolic pole face model was used for the
wiggler field. Although the genera! conclusion that the
effect of the wiggler field imperfections is much weaker
than a corresponding axial energy spread is found for
both wiggler models, we attribute the greater variation
in the efficiency with N, for the parabolic pole face
wiggler model to be due to the fact that this model was
ncither curl- nor divergence-free under variations in
the amplitude.

Note that the efficiency increases relative to the
ideal wiggler casc for some particular wiggler fluctua-
tion distributions. Variations in the efficiency can oc-
cur due to a retuning in the average wiggler magnitude,
and an increase (decrease) in (AB,) can be expected
to resuit in an increase (decrease) in the efficiency.
Another way in which the form of the error distribu-

Fig. 4. Varistion of the saturation efficiency as a function of
the number of pole faces per wiggler period.

tion can affect the efficiency is if the field exhibits a
bulk taper either upwards or downwards over the inter-
action region. A downward (upward) taper can be

expected to increase (decrease) the efficiency. In order .

to illustrate this, consider the case for which
(AB,/B,) = 4% and N,=1. The wiggler fluctua-
tion distribution which gives rise 10 5 = 9.13% (com-
pared to a mean y =6.2%) is shown in Fig. 5. The
average a,, for this case is close to the systematic value
of 3.4; however, the field exhibits a bulk downward
taper which acts to enhance the efficiency. In addition,

- the minimum efficiency case was found to exhibit a

bulk upward taper in the wiggler field.

In general, the statistical distribution of the effi-
ciency differs from the normal distribution, and the
standard deviation must be used with some caution.
The probability histogram showing the breakdown in

40 —r e e o R
3 M.
38 (r)n-"*
N’ll

36 N=9.13% J
Q! 1
34F b
32 ¢ 1
3.0 A 1 it FURPUEE Y al a . A_j
1 9 13 17 2l

z/A'
Fig. 5. Plot of the fluctuations in the wiggler parameter which

give rise 10 an increased efficiency.
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Run Count
o e o ¥

™
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Efficiency (%)

i Fag. 6. Probability histogram of the number of simulation runs

+ wersus the saturation efficiency for (AB, /B, ), = 2% and

" N,=2. The total number of simulation runs in this sample is
3s.

: the 35 runs used to obtain the bulk efficiency to within

approximately 1% is shown in Fig. 6 for (AB,/B,),p.,
: =2% and N, =2. Here, the skewness = —0.87 and
 the kurtosis = 0.74 indicating a distribution skewed
‘ below the mean and more peaked than the normal
distribution. In general, we find that the probability
* histograms are skewed below the mean. However, the
distribution is not always more peaked than the normal
distribution, and the kurtosis can be either positive or
" megative depending upon both (AB,/B,),, and N,

Hence, the actual statistics of the wiggler imperfections

- must be studied on a case-by-case basis.

! 4 Sammary and discuzsics

In summary, a self-consistent analysis of the effect
of random wiggler imperfections on the saturation effi-
dency of the FEL has been presented in which no a

_priori assumption of a random walk of the electron
| orbits has been imposed. For the specific parameters
; under study, the results indicate that the effects of
random wiggler errors are relatively benign, and parti-
; cle loss was not found to be a problem. Indeed, some
" imperfection configurations chosen at random were
found to result in efficiency enhancements due to
effective increases. Hence, we conclude that wiggler
imperfections are not a major factor below a certain
level (depending upon the specific parameters). It is

important to note here that experimental quantifica-
tion of these issues is difficult to obtain. While mea-
surements for (AB, /B,),.. arc possible to achieve
with some accuracy, there is always a greater uncer-
tainty as to beam quality. Hence, it is difficult to
determine the relative importance of wiggler errors in
the laboratory. The results of the present work, how-
ever, suggest that while wiggler imperfections may pro-
vide a more severe constraint for short wavelength
FELs than the present case studied, wiggler imperfec-
tions constitute a less serious issue for FEL design
than does the problem of beam quality.
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Tunability of tapered free electron lasers *

B. Levush **, H.P. Freund !, T.M. Antonsen, Jr.

Laboratory for Plasma Research, University of Maryland, College Park, MD 20742, USA

Free electron laser amplifiers are tunable sources under development as high power, high frequency radiation sources for
magnetic fusion applications. High efficiencies can be achieved by varying the wiggler field strength and /or the wiggler period. In
addition to the requirement of high efficiency, the free electron laser must be tunable for electron cyclotron heating and current
drive applications in magnetic fusion devices. Although the tunability of free electron lasers is well established, the tunability of a
tapered free clectron laser amplifier has not been studied. In this paper we present an investigation of the tunability of a tapered
wiggler free electron laser amplifier operating in the neighborhood of 94 GHz. The configuration of the free electron laser is one in
which a sheet electron beam propagates through a rectangular waveguide in the presence of a planar wiggler field with tapered
period. We found that the tapered free electron laser amplifier is tunable over a reasonably wide range of frequencies by small

adjustments in the energy and current of the electron beam.

1. Introduction

A prime characteristic of free electron lasers (FELSs)
is their ability to be tuned over a broad frequency
range by simply changing the beam voltage. A number
of schemes have been suggested to achieve high elec-
tronic efficiencies. One of the most promising schemes
involves tapering of the wiggler amplitude and/or the
wiggler period [1]. Designs of tapered wiggler FELs
have been optimized for maximum efficiency at a par-
ticular frequency of operation. Therefore, wide tunabil-
ity of a tapered wiggler FEL is not obvious.

The purpose of this paper is to address the question
of the tunability of a tapered wiggler amplifier. In
particular, we are interested in how the efficiency
varies with the frequency of the drive signal in a
tapered wiggler FEL amplifier optimized to operate at
a specific frequency. In addition, we address the re-
lated question of the required tuning of the beam
voltage and/or current to maintain a relatively con-
stant efficiency over a broad range of frequencies.
These issues have not been adequately addressed in
the literature, and are of interest in applications of
high power FELs to electron cyclotron resonance heat-

* This work is supported by US Department of Energy.
** Corresponding author.
! Science Application International Corporation, McLean,
VA 22102, USA.

ing and current drive for thermonuclear fusion applica-
tions.

2. Design of a tapered FEL amplifier

The specific parameters used herein correspond to
the University of Maryland short period, sheet beam
FEL experiment [2-9]. In this experiment, an electron
beam 0.1 cm thick and 2.0 cm wide, having a current of
about 10 A and a voltage of about 500 kV, is injected
into a rectangular waveguide (4.0 cm-0.32 cm) placed
inside a magnetic wiggler. The amplitude of the mag-
netic wiggler field is B, = 5.1 kG and the period A, =
0.96 cm. The corresponding normalized wiggler param-
eter a, =gB,_/mc?k, (where g and m are the elec-
tron charge and mass, respectively, ¢ is the speed of
light, and k_ =2m/A,, is the wiggler wavenumber) is
less than unity.

The enhancement of the efficiency in a tapered
wiggler FEL is accomplished by reducing the resonant
energy for the interaction as the electron beam loses
energy to the wave. The resonance for a wave with
frequency @ and wavenumber k, in a planar wiggler in
which a, <« 1 is given approximately by

1+a2/2
1- ksz/(kz + kw)z ’

¢))

v?

where y, denotes the relativistic dilation factor, and
the wavenumbers in the waveguide are related via

0168-9002/94 /$07.00 © 1994 - Elsevier Science B.V. All rights reserved
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w?/c?mkl=k2+ x2 for a cutoff wavenumber x . In
order to maintain the resonance as the beam loses
energy, at fixed wavelength A = 2% /k, the wiggler
taper must vary with the energy loss as

Ay, Ay, 2 AB, 3 2 A,
—! g2 " .4

1.. 47'2A a' B' + (1 + Iaw) A' ’ (2)
where we have assumed that k, » &k, x, for simplic-
ity. It is evident, therefore, that high efficiencies can
only be achieved in systems in which a, <« 1 by taper-
ing of the period. It is this scheme which we shall
investigate in this paper.

Specifically, we assume that starting at some dis-

tance z, the rate of change of the wiggler wave num-
ber is constant, namely

k.(0)
ku(z) = {k.(O) +b(z-2,)

where k_(0) is the wiggler wave number in the unta-
pered region, and z, is the axial distance at which the
tapering starts. As described in ref. (7], with a short-
period wiggler the wiggler strength depends on the
wiggler period via the following relation:

- cosh[ k,,(0)5/2]
é.(Z) -B"(D)W'

where & is the gap spacing (we "assume that the gap
spacing is equal to the waveguide thickness). We solve
the FEL equations for different values of the parame-
ters z, and b. The optimum tapering parameters yield
maximum efficiency. The FEL amplifier equations con-
sist of the wave equation and the particle motion
equations. In this paper, we limited ourselves mainly to
the one-dimensional model. In the Appendix, we pre-
sent the final form of the equations we used in our
analysis.

We introduced into the 1D particle motion model a
spread in the particle injection angle. This mimics the
effects of the radial variation of the wiggler field for
the beam with finite size. In this case, the particles are
injected with non-zero perpendicular momentum, p?
=p292, where 0 is the injection angic and p is the
total initial particle momentum. This will introduce
spread in the axial velocity according to

1+ (p2 /m?c?) +0.5q2
B,-\/l- (p/m'e?) + 05au )

if 2 <Z°,
if z>z,,

3

)

2
We assume that the distribution for 8 has the Gaussian
form, f(8) =8 exp(~6/6)?, where 8 is the charac-
teristic spread in the injection angle. We estimated
that for the parameters of the Maryland FEL experi-
ment the 1D model with 8 = 2°~4° would mimic well
the interaction process. The angular spread has been
estimated on the basis of the betatron motion due to

the transverse wiggler inhomogeneity and the finite
size of the beam. To confirm this result, we also
employed the 3D FEL simulation code WIGGLIN
{8,9] under the assumption of the injection of a finite
size beam with a zero initial axial energy spread. WIG-
GLIN includes three-dimensional wiggler effects in a
self-consistent manner, and the finite size beam as-
sumption introduces the transverse particle motion due
only to wiggler inhomogeneities. The results of the
WIGGLIN simulation indicate a saturated power RF

- of approximately 245 kW for a uniform wiggler. The

1D simulation indicates a saturated power which de-
creases from 290 kW to 163 kW as 6 increases from 2°
to 4°. Hence, the 1D simulation is in substantial agree-
ment with the 3D simulation code WIGGLIN for the
presumed angular beam spread corresponding to the
betatron motion of the beam.

In the 1D simulations we assumed that 1 kW of
power in the TE,, mode is injected into the rectangu-
lar waveguide. The tapering parameters were opti-
mized to yield maximum FEL efficiency for an injected
signal at 94 GHz. We found that for a 200 cm long
wiggler the maximum efficiency is achieved at beam
voltage V' = 476.8 kV and tapering parameters z, = 74.5
cm and b = 0.021 cm ™2, The beam current was fixed at
10 A. The results of the simulation indicate an opti-
mum output power of about 540 kW for an interaction
efficiency of 11.3%. We now turn to the question of
the tunability of this design.

1
orf
o8t ¢ .
ot}
os | o
osf P
0el
o3}
0z}
o1t

°

Output Power ( MWatt )
®

80 % 20 » 100 108 110
frequency (GHz)

Fig. 1. Output power versus frequency for a tapered short
period wiggler sheet beam in the University of Maryland FEL
amplifier. The tapering parameters are optimum for opera-
tion at 94 GHz. The total length of the wiggler is 200 cm. The
wiggler strength in the untapered section is 5.1 kG and the
wiggler period is 0.96 cm. The length of the untapered section
is 74.5 cm. The injected power is 1 kW. The circle symbols
correspond to simulations with a beam current of 10 A. The
diamond symbols correspond to simulations in which the
efficiency was optimized with respect to beam current in
addition to the beam voltage. The first two diamonds corre-
spond to a beam current of 12 A and the remaining diamonds
correspond to a beam current of 13 A.
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tion in the output power. This is particularly important
for applications in which the radiation source is re-
quired to operate at high efficiency. For example, the
tunability requirement for some fusion applications is
on the order of 5% for a source with multi-megawatt
output power at frequencies around 150 GHz. This can

* be met by using a tapered FEL amplifier.

It should be noted that there are discrepancies
between the 1D analysis and the 3D WIGGLIN simu-
lation of the tapered wiggler configuration. In this
regard, we observe that there is an optimum slope for
the taper in any nonuniform wiggler configuration,
since at extremely high degrees of taper the beam
cannot remain in the bucket. The discrepancy at this
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Fig. 2. The optimum beam voltage corresponding to the data
shown in Fig. 1.

3. Tunability of a tapered FEL amplifier

For the tunability studies we fixed the aforemen-
tioned tapering parameters in the case of 94 GHz
injection frequency. We also fixed the beam current,
the length of the wiggler, and the injected power. The
simulations were then performed for a given wiggler
design with an injected signal at different frequencies
and optimized for beam energy. Fig. 1 shows the out-
put power versus frequency and Fig. 2 gives the corre-
sponding beam voltage versus frequency tuning curve.

Fig. 1 shows the variation in the output power
versus frequency for two cases. The circles correspond
to the output power at fixed current and optimum
beam voltage, while the diamonds show the output
power subject to both voltage and current optimiza-
tion. It is evident from the figure that the variation in
power over the frequency band is relatively mild at
fixed current. The variation in beam voltage with fre-
quency used to generate Fig. 1 is shown in the circles
in Fig. 2. However, when the current optimization is
performed as well, then the output power variation
across this frequency band is negligible. The specific
currents used in this case are: at 85 and 90 GHz the
current was 12 A, and at 94-105 GHz the current was
13 A. Observe that the corresponding voltage tuning
for the currents is shown by the diamonds in Fig. 2.

4. Summary

The results of our study clearly illustrate that ta-
pered FEL amplifiers are tunable sources for all prac-
tical purposes. We performed simulations to determine
the tunability characteristics of a tapered FEL ampli-
fier. In the computation, we used the parameters of
the University of Maryland short period wiggler FEL
experiment. We found that in this FEL a tunability of
about 25% can be achieved without significant reduc-

time seems to lie in the fact that the 3D model predicts
an optimum taper which is much less than that seen in
the 1D model although both models are consistent
with the simplified bucket efficiency predicted from
Eq. (2). This issue is currently under study and will be
discussed at length in a future publication. The prelim-
inary results seem to indicate that the 3D model pre-
dicts a transverse spreading of the beam at high power
level which results in enhanced detrapping of the beam.
This enhanced detrapping then acts to limit the ex-
tracted power and forces a reduction in the optimum
slope of the taper.

Appendix

In this appendix, we present the FEL amplifier
equations in 1D approximation which we used to per-
form our analysis. The equations for particle phase
¥ =(k, +k,)z - wt and energy ymc? are

dy k. Bu(z)

4z " B.A2) (l Nz ) ' "
and

dy a,(2)C(z) 21m(a, ¢*), (A.1b)

dz " (2)B(2)

where a, =gA,/mc? is the normalized signal field
amplitude (A4, signal field vector potential). The cou-
pling coefficient has the form

C(2) = 3[Jo(u(2)) = 1(u(2))], (A2)
where

a%(2)
“D= 10 +054%(2))

and J,, J, are ordinary Bessel functions. The wave
equation is

day 1 ga(5)C(s)
@ T s (A
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where I, =mc?/q = 1.7x10* (A), I is the beam cur-
rent, S is the waveguide arca, the brackets {--*)
represent an average over initial particle phases, and g
is a normalized factor for transverse average of the
radiation profile
1 lax )
N | ) L

g e
where a, is the peak signal amplitude at x , = 0. Note
that the ratio gS,/S serves as the beam filling factor,
where S, is the beam area. For TE, mode in the

rectangular waveguide g = 2.
Egs. (A.1)-(A.3) are the model equations which

have been used in our analysis.
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Nonlinear theory of slow-wave ubitrons /free electron lasers

H.P. Freund !
Naval Research Laboraiory, Washingion, DC 20375, US4

A three-dimensional nonlinear formulation of a slow-wave ubitron /free electron laser is presented. The configuration is that of an

electron beam propagating through a dielectric-lined rectangular wav,

eguide in the presence of a planar wiggler field. The wiggler field

model describes parabolic pole faces for enhanced beam focussing. The clectromagnetic field is described in terms of a multimode
ensemble of the normal modes of the vacuum waveguide. In this case, the dielectric liner is imposed along the y-axis of the guide
(which is also the principal orientation of the wiggler) and there are no orthogonal TE or TM modes. Instead, we deal with modes

which are transverse electric (LSE) or magnetic (LSM) to the y
amplitude and phase of these modes in terms of the microscopic p.
complete Lorentz force equations for the electron trajectories. Th

-axis. Equations are derived which describe the evolution of the
article currents. These equations are solved in conjunction with the
¢ essential purpose of employing a slow-wave structure is to reach

shorter waveiengths at relatively low beam encrgies, and numerical results will be presented 10 demonstrate the potentialities of this

concept.

Ubitrons and free electron lasers have been con-
structed with a wide range of waveguide and optical
geometries [1-8]. In the bulk of these cases, the electron
beam interacts with a supraluminous wave in which the
resonant wavelength scales inversely as the square of
the beam energy. In many cases, however, this imposes
100 high a requirement on the electron beam energy,
and methods for reducing the beam energy requirement
have been eagerly sought. One technique is to pursue
the interaction at harmonics of the resonant frequency.
Unfortunately, the harmonic interaction poses difficul-
ties in that (1) some method of suppressing the funda-
mental interaction must be found, (2) there is some
penalty to be paid in terms of reductions in both the
gain and efficiency at the harmonics, and (3) the re-
quirements of high beam quality become progressively
more severe as the harmonic number increases. In this
article, therefore, an alternative method of reducing the
beam energy requirement is studied: specifically, the use
of a dielectric liner to slow the phase velocity of the
wave. The interaction that results can be either with a
supraluminous or a subluminous wave, but in cither
case the beam energy required for interaction at a given
frequency is reduced.

The configuration employed is that of a single-
frequency amplifier in which a relativistic electron beam
propagates through a dielectric-lined rectangular wave-

' Permanent address: Science Applications International
Corp.. McLean, Virginia 22102, USA.

0168-9002/91,/$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)

guide in the presence of a planar wiggler field. The
waveguide is characterized as shown in fig. 1 in which
the dimensions of the outer walls are at x = 0. a and
y= % 1b. The dielectric is aligned paraliel to the long
(i.e., x) axis of the waveguide with a thickness 4 and an
inner surface at y = +d, where d = 16— 4. The wiggler
field model is chosen to describe the effect of parabolic
pole faces for enhanced focussing [1,9], i.c..

B. = B,(z){cos(k.z)[é, sinh(k,x/VZ) sinh(k, y/vVZ )
+é, cosh(k,x/v2) cosh(k.,y/ﬁ)]
=V2 ¢, sin(k,z) cosh(k,x/v2 )
xsinh(k, y/¥Z)). (1)

where k, (=2n/)_, where A, denotes the wiggler
period) is the wiggler wavenumber, and B, (z) describes
the amplitude. The wiggler amplitude is allowed to vary
slowly in z as follows:

B, sin*(k,z/4N,), 0<z<NA,,
B,,(Z)" Bw‘ waw<1<20'
B,1 te ko (2-2)). 2>z,

2

in order to describe (1) the injection of the beam
through an adiabatic entry taper over N, wiggler peri-
ods, and (2) the efficiency enhancement by means of a
tapered wiggler amplitude (in which €,, describes the
slope of the taper). This wiggler model is both curl- and
divergence-free for a uniform wiggler amplitude, and we
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- b2

Fig. 1. Schematic illustration of the configuration of the dielectric-lined waveguide.

implicitly assume that the gradients imposed by the
amplitude tapering are small (i.c., N,>land ¢, = 1).
Observe that the orientation of this wiggler model im-
plies that the direction of the transverse wiggler-induced
oscillations are aligned parallel to the dielectric liner.
This was chosen, along with the enhanced focussing
provided by the parabolic pole faces, in order to mini-
mize loss of the beam to the dielectric.

The electromagnetic field is represented by means of
an expansion in terms of the vacuum modes (i, in the
absence of the electron beam) of the waveguide. The
standard TE and TM modes of a rectangular waveguide
do not exist in the presence of the dielectric liner.
Instead, there are normal modes which are cither trans-
verse electric (LSE) or transverse magnetic (LSM) with
respect 10 the y-axis in the present configuration [10].
We focus on the LSE modes since only this polarization
presents an electric field component which is aligned
with the bulk wiggler-induced transverse velocity. The
electric and magnetic fields of these modes can be
represented in the form

BE(x. )= -2 }:s,q,,z,,,(y)[e‘, cos(Inx/a) sin a
i.n

= %é‘, sin({mx/a) cos a]. )

and

5B(x,1)= Ek,,&A,,[—l,:'—zZ,;(y)e‘x sin(lnx/a)
i.n a. in .

2.2

. I°n 5
Xsin a - (1 + W)Z,,(y)ey

Xcos(/mx/a) sin « — T(II—Z,:,(y)e‘z

xcos(lnx/a) cos aJ, 4)

where we assume that the amplitude 84,, and the
wavenumber k,, are slowly-varying functions of z, and
the phase is given by

a![;dz'k,,,(z')—wl. (5)

There are even and odd modes which are differentiated
by the dispersion-equations and the transverse mode
patterns Z (y). For the even modes, the dispersion
equation is

X tan x,d=«; cot x; 4, (6)
where
2 2,2
«w 2, I°n 2
(‘z = kln + az + xl'n M (7)

in the dielectric, and

2 2,2
w 2, I*n 2
:i =kiy + a? + Kino (8)
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in the vacuum. The transverse vanation for these modes
is given by

sin x, (3b-¥). d<y<ib,
Za(r)= {-;f ;o: :::: cos k, ¥, =-d<y<d,

sin x, (1b+y), ~db<y< —d.

(9)

For the odd modes, we have the dispersion equation
x;, cot k,,d = —«x, cot x; 4, (10)
and the transverse mode structure

sin ;,(16-y). d<y<1ib,

‘ x,, cos k, A

Z,.(y)= T X, cosk,d Kpy, —d<y<d,

-sin x;,(3b+y). ~ib<y< —d.

(11)

The dynamical equations which govern the evolution
of the slowly varying amplitude and wavenumber are
obtained by substitution of the representation of the
electric field, eq. (3), into Maxwell's equations

1 92
vi- —-2——2)85(.\'. t)-v(v-8E(x.1))
¢t or
4n o
= ?2—-3—15.’(.!. 1), (12)
where the source current is given by
8J(x. 1)

= _?"bf// dPo".-oFl,(Po)Lfd*"o dye,
1

T/2
(0. 30) [ dtg oy(10)o(z: 5o 3. fo. 50}

x8[x, —x, (2: X0, Yo. to. Po))
x5["7(23 Xo+ Jo. lo. Po)]~ (13)
lo.(2: xo. Yo. to. Po) |
where v, is the initial axial velocity, p, is the initial
momentum, A, is the cross-sectional area of the wave-
guide, T=L /v, (where L is the length of the system),
and o, o,, and F, describe the distribution of the
initial conditions of the beam.
Substitution of the field representation into
Maxwell's equation yields

2,2 2
(1 + Lﬂ_.)(% —-k,z,,—x,z,,)Sa,,,
a

2klz

‘*’zb G,
=8—= F (Zn(y)

(o in

v lnx In x\ .
<[ el ) oo oo 5) o]

and
2,2
2(k,"+ - )i.sa,n
in | -
2
wy, G,
= -g§—2

v Inx\ I ( l‘r_\ ’
X —.cos(—z—)sma-akl"sm o jcosal )
(15)

after averaging over a wave period and neglecting sec-
ond-order derivatives of the amplitude and phase, where
ba,, = edA,, /m_c?. 3} =4me’n,/m,. n, denotes the
ambient beam density. G,=% when /=0 and unity
otherwise,

- sin® x; 4 sin 2, d)  A( _ sin 26,4
" st k,d\ T Iad )t 20,4 |
(16)

for the even modes, and

sin® x,,4 ( ] sin 2«,,d ) L4 ( I
sin® x,, d 2x,,d d

in

sin 2x,,4
T 2,4

(17)

for the odd modes. The averaging operator in egs. (14)
and (15) is defined over the initial conditions of the
beam. and includes the effect of an initial momentum
spread by means of the distribution function

Fo(po)=4 exn[ =(P:0 -po)z/Ap:’]

x8( p§ = pio—rh)H(pw). (18)
where p, and Ap, describe the initial bulk momentum

and momentum spread. H(x) is the Heaviside function.
and the normalization constant is

-1
A!{nLﬁodp,o exp[—(p,o-Po)’/Ap.-’]} . (19)

Observe that this distribution describes a beam which is
monoenergetic but with a pitch-angle spread which is
equivalent to an axia/ energy spread of

Ay, 1

Yo Vi+2(¥3-1)4p,/p,

where o= (1 + pi/mc?)'/2. As a result, the averaging
operator takes the form

(20)

(o g [ ol dpo B
XCXP[ = (P ‘Po)z/APzz]j:’ dv, 0y(¥o)
x[[ axdyo.(xo. )(-). (@)
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LSE“ (@=98cm; b=29 cm;A=085cm: ¢ = 4.2)
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Fig. 2. Graph of the evolution of the power in the LSE,; mode
as a function of axial distance.

In order to complete the formulation, we must specify
the orbit equations for the electron ensemble. Since we
deal with an amplifier model, we integrate the complete
three-dimensional Lorentz force equations in :. No
average of these equations over a wiggler period is
performed.

The numerical example we consider deals with a
waveguide with dimensions g = 9.8 cm, b=29 cm and
4 =0.5 cm, and the dielectric constant is ¢ = 4.2 which
corresponds to boron nitride. The wiggler field has a
period A =98 cm and increases to a constant valuye
B,=1 kG over an entry taper region which is five
wiggler periods in length. We assume an ideal (i.c.,
4y, = 0) solid pencil electron beam with an energy of
1.35 MeV, a current of 1.0 kA, and with a radius of 0.25
cm. This example corresponds to a resonance at a
frequency of 5.1 GHz in the LSEy, mode which is still
in the supraluminous range, but has a phase velocity
well below that of the TEg, mode in the absence of the
dielectric. As shown in fig. 2, we inject a 50 kW signal
in the LSE,; mode, which subsequently grows to a peak
power level of approximately 324 MW for a saturation
efficiency of 24.15%. The oscillation seen in the power
occurs with a period of 1A, and corresponds to the
effect of the lower beat wave upon the interaction in
planar wiggler configurations {11). No attempt has yet
been made to optimize these parameters.

In summary, a nonlinear formulation and sirnulation
code has been developed which is capable of treating
the interaction between a relativistic electron beam and
a planar wiggler field in the presence of a dielectric-lined
rectangular waveguide. Note that a dielectric liner is

only one way of slowing the wave, and that alternative
techniques include a vaniety of slow-wave structures
including gratings and rippled wall geometries. An ex-
ample showing high gain and efficiency is given for the
case of the resonant interaction of the LSE,, mode in
the supraluminous regime. Although this does not rep-
resent a slow wave (which usually denotes a sub-
luminous wave), there is still a substantia) advantage 10
be gained in achieving high frequency operation ar
relatively lower voltages than would be possible in the
absence of a dielectric. However, future studies will
extend this analysis to the subluminous regime. Finally,
it should also be remarked that this formulation is
capable of treating the Cherenkov maser interaction for
subluminous waves as well by the simple expedient of
letting the wiggler field amplitude vanish,
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High efficiency operation of Cherenkov masers

H.P. Freund ' and A.K. Ganguly
Naval Research Laboratory, Washington, DC 20375, U'SA

A nonlinear simulation of the Cherenkov maser amplifier is presented for a configuration in which an electron beam propagates
through a dielectric-lined cylindrical waveguide. The parameters used correspond to an experiment at General Dynamics which
measured a total efficiency of 11.5% at 8.6 GHz. The simulation is in agreement with this but indicates that the system was too short
to reach saturation and that an efficiency of 30% would have been possible for a longer system, and the performance is not
significantly degraded by thermal spreads up to 20%.

The Cherenkov maser has been demonstrated over a broad spectral range and operates by means of an
interaction between an energetic electron beam and a subluminous electromagnetic wave. Cherenkov
masers have been operated at 100 kW power levels at 1 mm wavelengths [1-3], at 200 MW power levels at
8 cm wavelengths [4) as well as wavelengths as short as in the far-infrared at 100 um [S). In the present -
work, we describe a comparison between a nonlinear formulation of the Cherenkov maser amplifier [6) and
an experiment conducted at General Dynamics [7]. This experiment achieved a total output power of 280
MW at a frequency of 8.6 GHz. The nonlinear theory is in substantial agreement with the experimental
measurements for the quoted beam and waveguide parameters, but indicates that the experiment was too
short to reach saturation and that a total output power in the neighborhood of 800 MW could have been
achieved with a longer system. The response of the system to the beam thermal spread is also remarkable
in that the gain and saturation efficiency are not substantially degraded by energy spreads as high as 20%.

The configuration employed in the analysis is that of an electron beam propagating through a
cylindrical, dielectric-lined waveguide. We use R, and R, to denote the inner radii of the waveguide and
dielectric liner (with a dielectric constant of ¢) respectively. The boundary conditions imposed on the
electromagnetic field are satisfied by expanding the field in terms of the normal modes of the cold
waveguide. The beam interacts with the parallel component of the electric field and couples primarily with
the TM modes. We make the further assumption of azimuthal symmetry, and represent the field as an
expansion of the TM,,, modes of the vacuum waveguide {8] for which

S8E(x.1)=- Y -‘-:—BAO,,[Z,,,(r)é, sin a, + %ﬁZO"(r)e‘_. cos a,,]. (1)
nw] n
Ed KZ

B(x.1)=- % k,,(l - -;%)SAO,,Z,,,(r)é‘, sin a,,, (2)
n=1 n

where 84, measures the amplitude and has the dimensions of a vector potential, w and &, denote the
frequency and wavenumber, and

a"EL: dz’k,(2") — wt, (3)

is the phase of the TM,,, mode. Both the amplitude and the wavenumber are assumed to be slowly varying
functions of z in the sense that both vary slowly with respect to the wavelengths of interest. The radial

! Permanent address: Science Applications International Corp., McLean, VA 22102, USA.
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dependence of these eigenmodes is given by (/=0,1)

I(x,r), O<r<Rg,.
N i) + B (), R s R,.

(4)

where J, and Y represent the regular Besse] and Neumann functions, I, denotes the modified Bessel

n n

function of the first kind, and

’ K': ’ ’
= bR, W ROT (IR = (e, RV (18,
" | ()
’ kll ’, ’
b= ‘%"Knkd[‘-“ Il(Kan)-’o(“nR.s) _’o("an)-’l("an)]-

Both «, and «/ are analogues of the cutoff wavenumbers and are defined by

w?

k-, ©

in the vacuum, and

ll("an) €K, YO(“"'R:)"I(";R‘:)‘-’o(";R;)Yl(“;Rd) 0 @)
- ’ ’ ’ ’ - ’
Io(k,Ry) ~ x; Yo("nR;)-’o("an)‘Jo(“nR;)Yo("an)

which, in combination with egs. (5) and (6), relates w and k,.

K: W’ 2} s Kn i
(l - k_z)(c_Z - k3 + xf)&ao,, = rcg <l!(‘.’)m cos a,, — k—"IO(xnr) sin an)' (9)
and
x2) d 243 v K
al1= 2 |az00 = = 13 (L) 1 sina, + R hlsr) cosa,), (10)

where w2 = 4qp ve’/m, is the square of the beam plasma frequency, bay, = ed4,,/m.c, and

€—1 ek,
An = 7[112(K,,Rd) - :,TIOZ(KHRG)
n

2 ew?
+ xR, clezlo(“,.Rd)l,(x,,Rd)J
R: xi ’ ’ 2
+¢R—§ xTz{a.Jx(k.R;) +b,.Y1(x,,R')] ) a
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The neglect of beam space-charge modes from the formulation is valid as long as (1) w, <« w, and (2) the
exponentiation time is much less than the period of the beam-plasma wave.

The averaging operator is defined over the initial conditions of the beam, and includes the effect of an
initial momentum spread by means of the distribution function

Fo(po) = A exp = (po=p0)'/8p2|8( P = Po = p2) H( puo). (12)

where p, and Ap. describe the initial bulk momentum and momentum spread, H(x) is the Heaviside
function, and the normalization constant is

-1

A= {nfop"dp.-o cxp[-(p.-o-po)z/Ap_?]} : (13)

Observe that this distribution describes a beam which is monoenergetic but with a pitch-angle spread
which is equivalent to an axial energy spread of

—=1- : (14)

where y, = (1 + p3/mZc?)'/. As a result. the averaging operator takes the form

(0 m g [ o[ dpio B exp] = (o = po)'/852]

x-/:"d% "u('l’o)fokd droro, (r)(---), (15)

where Y, (= —wt,) is the initial phase, ¢y, = tan™( Pyo/Pxo)s Bro = U.o/c, and 6,(y,) and o, (r,) describe
the initial beam distribution in phase and cross section.

In order to complete the formulation, the electron orbit equations must also be specified. Since we are
interested in amplifier configurations, we integrate the complete Lorentz force equations in z using an
axial guide magnetic field to provide for the confinement of the beam. and the electromagnetic field given
in egs. (1) and (2).

This formulation is compared with an amplifier experiment at General Dynamics {7] which employed
an intense relativistic electron beam (788 keV and 3.1 kA) produced by a cold “ knife-edge” cathode which
resulted in an annular beam with a mean radius of approximately 1.15 cm and a thickness of 2 mm. After
correction for the space-charge depression, the beam energy is of the order of 736 keV. No diagnostic
measurement of the beam quality (ie., thermal energy spread) was made. The dielectric-liner was Stycast
(e=10) with a radius R, =1.74 cm and R, = 1.47 cm. The dielectric had a 3.3 cm taper at both ends to
suppress oscillation, and a uniform central region which was 23.9 cm in length. Beam transport was
accomplished with a 15 kG solenoid. The amplifier was driven by a 100 kW input signal which was
tunable over the band from 8.4-9.6 GHz. At these frequencies only the TM,,; mode can interact with the
beam. A total gain of 34.5 dB (1.44 dB/cm over the uniform dielectric) was observed at a power level of
approximately 280 MW (for an efficiency of 11.5%), with an uncertainty of approximately 3 dB.

The simulation is in reasonable agreement with the observations, and shows that the power has not
saturated over the 23.9 cm length of the uniform dielectric. As a result, the power predicted in simulation
shows a substantial sensitivity to the specific choice of any parameter which modifies the linear gain. In
particular, the simulation exhibits a large sensitivity to the thickness of the dielectric. For example, a
power level of approximately 60 MW over the 23.9 cm length is predicted in simulation for R;=147cm.
However, there is an uncertainty in the dielectric thickness of the order of +0.005 cm due to the
fabrication process [9]. If we choose Ry = 1.475 cm corresponding to a thinner dielectric, then the power
found in simulation over this length rises to approximately 131 MW, which is within the experimental

_un

sut
ap
th.
ex:
ar
of

T
a\

at

e

b

Ci




({3

N e ¢

H.P. Freund A.K. Ganguly / Cherenk ot musers 61
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Fig. 1. Graph of the evolution of the power (solid line) and gain (dashed line) with axial disiance.

experiment. Since this mechanism relies on the Cherenkov resonance in which o ~ kv, = 0, thermal effects
become important when Avy/vy=1Im k /Rek. In this case, the growth rate is extremely high with
Imk=0.18cm™". Since Re k = 2.35 cm~, this gives Avy /vy, = 7.5% which (using eq. (14)) corresponds to
an axial energy spread of Ay./y, = 24%.

In view of the power levels found both in the laboratory and in simulation, the simplicity of the
configuration, and the relative insensitivity to beam thermal effects in the case of intense relativistic

TM“ Mode (R. = 174 cm; R‘ = 1475 cm; £ = 10)

35' e — e e m—
5 30{
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Fig. 2. Graph of the variation of the saturation efficiency vs axial energy spread.
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electron beams, the Cherenkov maser is an attractive competitor for gyrotrons, free electron lasers. and
relativistic klystrons for a wide variety of applications. In particular, the potentiality of producing
single-mode powers in excess of 700 MW at frequencies in the neighborhood of 9 GHz compares favorably
with recent results obtained with relativistic klystrons [10,11}; however, unlike the relativistic klystron, the
Cherenkov maser is easily scalable to higher frequencies. We anticipate that the level of performance
demonstrated herein at 8.6 GHz can be achieved at frequencies as high as 35 GHz as well. It should be
remarked that Cherenkov masers based upon dielectric liners can exhibit both dielectric and mechanical
breakdown at high power levels, and that these effects may have operated to limit the power and /or puise
length in the experiment at General Dynamics [9): However, this configuration represents only one
approach to the interaction, and other slow wave structures may be used to overcome these difficulties. In
general, this device falls into the category of relativistic intense-beam traveling wave tubes (TWTs), and

similar levels of performance have been obtained using a rippled wall slow-wave structure in both
backward wave oscillators [12] and TWT amplifiers [13).
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A model of the self-fields associated with the charge density and current of the electron beam is
incorporated into three-dimensional nonlinear formulations of the interaction in free-clectron
lasers for both planar and helical wiggler configurations. The model assumes the existence of a
cylindrically symmetric electron beam with a flat-top density profile and a uwniform axial
velocity, and the self-electric and self-magnetic fields are determined from Poisson’s equation
and Ampere's law. Diamagnetic and paramagnetic effects due the electron beam interaction with
the wiggler field are neglected; hence, the model breaks down when the wiggler-induced
transverse displacement is comparable to the beam radius. The nonlinear formulations are based
upon the ARACHNE and WIGGLIN codes, which represent slow-time-scale formulations for the
evolution of the amplitudes and phases of a multimode superposition of vacuum waveguide
modes. The electron dynamics in these codes are treated by means of the complete
three-dimensional Lorentz force equations, and the representations for the self-fields are
incorporated directly into this formulation. The results of the simulations are compared directly
with an experiment at Lawrence Livermore National Laboratory based upon a planar wiggler
and experiments at the Massachusetts Institute of Technology and the Naval Research
Laboratory, which employed helical wigglers. These experiments employed intense electron
beams with current densities of 200-1200 A/cm? and comparable space-charge depressions of
A%,/ 70=0.53%-0.78% across the beam. The simulations are in reasonable agreement with the
experiments, and indicate that the self-fields tend to (1) reduce saturation efficiencies and (2)

enhance beam spreading depending upon the magnitude of external beam focusing.

I. INTRODUCTION

Free-electron laser (FEL) experiments that operate in
the millimeter and submillimeter wave bands generally use
intense-beam accelerators such as modulators,’ pulse-line
accelerators,’ and induction linacs.”® These intense-beam
experiments have often operated in the collective Raman
regime in which the space-charge potential from the elec-
trostatic beam-plasma waves is dominant over the ponder-
omotive potential due to the beating of the wiggler and
radiation fields. However, the direct current (dc) self-
electric and self-magnetic fields due to the charge and cur-
rent densities of the beam are typically assumed to be neg-
ligible in most theoretical treatments of these experiments.
In this paper, we describe a nonlinear treatment of the FEL
interaction, which includes a model of the dc self-fields of
the beam in the formulation.

The dc self-fields have been treated in one-dimensional
analyses of FEL's in both linear theory™!? and by means of
& nonlinear particle-incell simulation.'® Our goal in the
present work is to develop a nonlinear model of dc self-
fields in FEL’s in three dimensions. Of course, the most
general treatment of dc self-fields arises in the context of a
fully three-dimensional particle-in-cell simulation of the
FEL. In many cases, however, this poses an insurmount-
able computational obstacle. Instead, we have constructed
a model of the dc self-fields, which is incorporated into

*'Permanent address: Science Applications International Corp.,, McLean,
Virginia 22102,

YPermanent address: Mission Research Corp., Newington, Virginia
22122,
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slow-time-scale simulation codes for both helical and pla-
nar wiggler geometries.'"*> These slow-time-scale formu-
lations require considerably less computer time than a cor-
responding particle-in-cell simulation, yet are capable of
accurate point-by-point descriptions of FEL experiments.
These nonlinear formulations, including the dc self-fields,
are compared with intense-beam experiments using a pla-
nar wiggler at the Lawrence Livermore National
Laboratory,® and helical wiggiers ai the Massachusetts In-
stitute of Technology® and the Naval Research
Laboratory.!

The organization of the paper is as follows. A descrip-
tion of the self-field model and the slow-time-scale formu-
lation is given in Sec. II. Section III is devoted to the
numerical analysis of the experiments at LLNL, MIT, and
NRL. Results indicate that the dc self-field effects in these
experiments provide for a reduction in the interaction ef-
ficiency relative to that computed without the self-fields as
well as enhanced beam spreading. However, the overall
results are within the experimental uncertainties in the
measurements of the output power. A summary and dis-
cussion is given in Sec. IV,

Il. THE MATHEMATICAL FORMULATION

An electron beam in a physically realizable FEL is
born and accelerated and/or transported for some distance
before it enters the wiggler. Various focusing schemes are
often employed to transport the beam to the wiggler, which
can rely upon external magnetic (typically either solenoids
or magnetic quadrupoles) or electric fields. In addition,
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many experiments employ some form of beam scraping
(sometimes referred to as emittance selection) to ensure a
beam with a small axial velocity spread.*® Hence, the elec-
tron beam, and the self-fields, can exhibit a complex struc-
ture at the entrance to the wiggler, and a complete treat-
ment of the initial conditions and self-fields in the electron
beam in a FEL would require a full-scale particle-in-cell
simulation for each specific configuration, including the
accelerator and beam transport system as well as the FEL.
Such an end-to-end simulation is beyond the scope of this
paper. Instead, we develop a model of the self-fields in an
FEL based upon the simplest treatment of the self-fields in

an electron beam derived from an idealized model of a.

beam with uniform, azimuthally symmetric profiles in both
the density and velocity. This describes the case of the
injection of a uniform parallel-propagating beam.

In such a case, the beam density is given by n,(r) =n,
for /<R, and zero otherwise, where R, denotes the beam
radius; then the self-electric field, E'*), is determined by

10
>3 (rE”) = —4meny(r), ¢}

which has the solution

m, "
EW = —3, O, )

where e and m, are the electronic charge and mass, and
w}=4nelny/m, is the square of the beam-plasma fre-
quency. Energy conservation for this configuration is given
by the sum of the kinetic and potential (due to the self.
electric field) energies. Within the beam, the Lorentz force
equations yield

2
% (7-3 r’)=o, 3)

where y is the relativistic factor. This results in a space-
charge depression in the kinetic energy across the beam,
which may be expressed as

R |
r(r)=ro+3 (P—R3). (4)

In Eq. (4), ¥, denotes the kinetic energy at the edge of the
beam or, alternatively, the total energy.

The lowest-order representation for the self-magnetic
field is obtained under the assumption that the beam prop-
agates paraxially with v=y8, for 7<R;, and zero other-
wise. This assumption requires that the space-charge de-
- pression across the beam be small. Observe from (4) that
the space-charge depression in the kinetic energy at the

center of the beam depends upon w}RY/4c? and is propor-

tional to the total beam current through

AVt 1,
——5.88%10"° . (5)
Yo J;o—l

where the beam current 1, is in amperes. For the specific
cases under consideration here AY,/Y0< 1%, and the as-
sumption of a uniform axial velocity provides a good ap-
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proximation for the self-magnetic field. In this case, the
self-magnetic field is determined by Ampére’s law,

10 ® 4re
;éi—r('B" )=—T""(')v‘; (6)
hence,
m
B"’=—5fm§a,rea. )]

where c is the speed of light in vacuo and B.=v/c.

The nonlinear formulation for the analysis of self-field

effects in FEL's described in this paper is based upon a
generalization of the three-dimensional nonlinear simula-
tion codes ARACHNE'"" and WIGGLIN'®® for FEL ampli-
fiers. These codes represent slow-time-scale formulations,
where the electromagnetic field is expanded in a superpo-
sition of the transverse electric (TE) and transverse mag-
netic (TM) modes of either a cylindrical or rectangular
waveguide, and the space-charge field describing the beam-
plasma modes is expanded in a superposition of the Gould-
Trivelpiece modes of the beam. Note that the space-charge
field associated with the Gould-Trivelpiece mode is dis-
tinct from the self-electric field. Slow-time-scale equations
govern the evolution of the amplitude and phase of each
TE, TM, and Gould-Trivelpiece mode due to the interac-
tion with the beam and wiggler/axial guide field. These
equations are integrated simultaneously with the three-
dimensional Lorentz force equations in the complete en-
semble of electromagnetic, electrostatic, and magnetostatic
fields. We emphasize that no averaging procedure is im-
posed on the orbit equations.

There are two major distinctions between ARACHNE
and WIGGLIN. The first is that ARACHNE deals with a he-

Beu(x) = Bo#, + B, (x), (8)
where the wiggler field is
B,(x)=2B,(z2) [13(2)#, cos y—¢( 1/A)I,(A)&g sin y
+11(4)8&, sin y}, (9)
and I and 1] denote the modified Bessel function of the
first kind and its derivative, A=k, X=0-k.z, k, is the

wiggler wave number ( =2w/4,), and the wiggler ampli-
tude is assumed to vary adiabatically as

B, sinz(ki); 0<z<N A,
aN, (10)

Bu(z) = {
B,; z>N o

The planar wiggler used in WIGGLIN (no axial guide field is

included) is of the form'*!*
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. coskz d
B, .(x)=B,(2) (sm k,:—n-(z—)' e B,,(z))

Yky) &\ 1 d
X (sinh k.y——(?.v—) 2;:) k—d‘—xX(x),

. coskz d
B, ,(x)=B,(2) (sm ku;—z—a-)- e B,,(z))

&
X (cosh k,,y-——zii— E)X(I). (12)

Y(koy)
B, ,(x)=B,(z)cos k.,z[sinh k.v—%‘?y—

X (1+é d%) gz]xm, (13)

where the amplitude B,(z) is given by Eq. (10),
Y(ky)=kyycosh ky—sinhk,y, and X(x)=1+(x/
a,)?"/2. Observe that the bulk direction of wiggler motion
for this model is in the x direction. The use of a wiggler
model with an adiabatic entry taper for both the helical
and planar wigglers allows us to self-consistently describe
the injection of the beam into the wiggler. In addition, the
wiggler amplitude in this model increases with increases in
displacement from the axis of symmetry and provides for
an additional focusing force on the beam.

The second major distinction between ARACHNE and
WIGGLIN is that the Gould-Trivelpiece space-charge
modes are not included in WIGGLIN. As will be discussed
in detail later, this does not constitute an important restric-
tion for the case presently under consideration.

The equations governing the evolution of the TE
modes in a rectangular waveguide, as used in WIGGLIN, '*1?
are given here for the sake of clarity. A detailed derivation
of the corresponding equations for the TM modes may also
be found in Refs. 12 and 13, and the TE and TM modes
and Gould-Trivelpiece modes in a cylindrical waveguide
are treated in Refs. 11 and 13. The electromagnetic field in
a rectangular waveguide of dimensions —a/2<x<a/2 and
—b/2<y<b/2 is represented as a superposition of the TE
and TM modes of the vacuum waveguide. Hence, the vec-
tor potential of the TE modes is given by

SA(x,0) = ‘.Zo ‘84, (2)e(xy)coman(ze),  (14)

where the phase for frequency & and wave number k;, is
given by

a(zt)= J:dz' kiy(2)—ar, (15)

the summation X' indicates that both / and 2 are not both
zero,

xL.=v\g+§,, (16)
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is the cutoff wave number, X =x+a/2, Y=y+b/2, and
the polarization vector is

AL L

b a b
S ) ¢ nrY ;
—‘7 e,sm(—;—)oos(T). : (17)

It is implicitly assumed that the amplitudes and wave num-
bers vary slowly in z over a wave period.

The slow-time-scale equations governing the evolution
of the amplitudes and wave numbers of each of these
modes are obtained by substitution of the field representa-
tion into Maxwell’s equations and averaging those equa-
tions over a wave period. This effectively removes the fast-
time-scale oscillation from consideration, and results in
two second-order equations for the amplitudes and phases,

di:: Sa;,+ (g—ki.—x’,,,)&u

2
=sF, = (2%, |
_SFL,?( ™ €. v) (18)

and

d mi sin a;,
Zk,'.,nz(kzz&u)=—81’h? (—m-eL,-v),
(19)

where 8a,,=¢ 84,,/m* and F, =}, when cither /=0 or
n=0, and unity otherwise. As mentioned previously, sim-
ilar equations apply for the TM modes in a rectangular
waveguide, as well as for the TE and TM modes and
Gould-Trivelpiece modes in a cylindrical waveguide.

These equations are equivalent to a calculation of the
average J+5E,, for each mode. The averaging operator
that appears in (18) and (19) is defined over the initial
conditions of the beam upon entry to the wiggler (at 2=0),
and includes the effect of 8 momentum spread by means of
the distribution

Fy(po) =A exp[ — (po—po) /AP

X6 —p} o—P%)H(p ), (20)

where p, and Ap, denote the bulk momentum and the axial
momentum spread, respectively, H denotes the Heaviside
function, and the normalization constant is

LI =)\ 1™

AEI‘I j; dp,oexp( —%3—)] : 1)
Observe that this distribution describes a ‘monoenergetic
bumwithapitch«nglespread.'rheaxialeuergyspmd
associated with the distribution is related to the momen-
tum spread vis

Ar,_l 1

% I+2(5-1)(Ap/p)’

where y5=1+p/mZc*. As a result, the averaging operator
takes the form

(22)
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A [ N —(Po—pp)?
(("'))=m . d%j; dpnﬁnCXP(T)

Xf:'dvl:oaﬂ (%)f L‘dxod)‘oax (x00)

X(+-), (23)

where 4, is the initial cross-sectional area of the beam,
Yo(=—aty) is the initial value of the ponderomotive
phase, By=v/c, $o=tan""(p,o/p,o), and o; and 0, de-
scribe the initial beam distribution in phase and cross sec-
tion.

Each mode interacts resonantly with the electrons and
is coupled via the Lorentz force equations in the combined
static and fluctuating fields, which, in the present analysis,
includes the self-electric and self-magnetic fields of the
beam. As mentioned previously, a complete self-consistent
analysis of self-fields in FEL’s requires a full-scale, three-
dimensional particle-in-cell simulation. This necessitates a
significantly greater computational investment than the
slow-time-scale formulation, and is beyond the scope of
this paper. Instead, we shall adapt the simplified descrip-
tion of the self-fields given in Egs. (2) and (7) by allowing
for the motion of the beam centroid in the wiggler and
using an average axial velocity in the self-magnetic field.
As a result, the self-electric and magnetic fields are repre-
sented as

Ev)=-%fm:[<x-<x>)e,+ G- 0N, (24)
and

B~ _%n,i(ﬁ‘) [O0-0NE—(x—(x))g,). (25)

Given these self-fields, as well as the external fields speci-
fied earlier for the axial guide and wiggler fields, the Lor-
entz force equations take the form

d e
U gz P= —e(E¥ 1 5E) -z vX(Bgé,+B,+B" +5B),
(26)

where SE and 5B represent the aggregate electric and mag-
netic fields from each TE, TM, and Gould—Trivelpiece
mode.

It is important to observe that several implicit assump-
tions underlie this approximation for the self-fields in the
wiggler. The first is that even while the beam density is
assumed to be a uniform flat-top profile with a circular
Cross section upon entry to the wiggler, it does not neces-
sarily remain either uniform or circular during the course
of the interaction. This distortion of the beam in the wig-
gler has been well documented for both helica]'!~!3 and
Planar wigglers'*'? under the neglect of the self-fields. The
second is that the self-magnetic field has been derived un-
der the additional assumptions of uniform paraxial motion
of the beam. However, the effect of the wiggler is to induce
- abulk transverse wiggle motion and a velocity shear due to
the wiggler inhomogeneities, and these distortions to the
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beam current can affect the self-magnetic field in the wig-
gler. In order to estimate the magnitude of this effect, con-
sider the inclusion of the lowest-order wiggler-induced mo-
tion in an idealized one-dimensional helical wiggler in the
Source current for the self-magnetic field. This results in a
correction to the self-magnetic field of the form (see the
Appendix)

v} ko

Qo—k
where Qo=eBy/yym . The second term can describe ei-
ther diamagnetic [Qy< ko ] or paramagnetic [0, > ko ]
corrections to the wiggler field,’ but is negligible as long as
k,,R,>2|v./vn |, where v, is the wiggler-induced trans.-
verse velocity. Hence, Eqs. (24) and (25) represent a rea-
sonable approximation for the self-fields in the wiggler as
long as the transverse electron displacement due to the
wiggler is less than the beam radius,

B=_"0l ot B,, (27)
2 7

Ill. NUMERICAL ANALYSIS

The set of coupled nonlinear differential equations for
the fields and the electrons is solved numerically for an
amplifier configuration in which a single wave of frequency
@ is injected into the system at z=0 in concert with the
electron beam. The solution to this initial value problem
can be accomplished by a variety of different algorithms,
including  Adams-Moulton predictor/corrector and
Runge-Kutta techniques. The advantage of the Adams-
Moulton technique is that it is more stable than the
Runge-Kutta algorithm; however, this occurs at the prac-
tical cost of a greatly increased memory requirement. In
practice, it is found that the fourth-order Runge-Kutta-
Gill technique Jeads to no serious numerical instabilities
and is employed here.

The initial conditions on the waveguide modes are cho-
sen to model the injection of each mode at the same fre-
quency with some arbitrary power level and with a wave
number equal to that of the vacuum value [ie.,
kia(2=0) = (0*/~x2,)3]. Since the wiggler field is zero
atthestartofthewigglcr. the growth rate of each mode s
also assumed to be zero initially. The initialization of the
Gould-Trivelpiece modes for the helical wiggler/
cylindrical waveguide configuration is accomplished using

‘l'heinitialstateoftheelectmnbeam'nchosento
model the injection of a monoenergetic, uniform, axisym-
metric electron beam with a flat-top density profile for
70<R;; hence, oy =1 for —w<y,<7, and o, =1 for
To<R,. The effect of the self-clectric field on the initial
kinetic energy mirrors the space-charge reduction de.
scribed in Eq. (6), where 7o describes the total energy that
is the initial kinetic energy at the edge of the beam. As a

result, we scale the initial momentum,

A 2%0+A
y(ro) [ f:oj Y('o)]’ 28)

Po(7) =POJ 1+
where
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2
Ar(ro)s% (R—RD), (29)

and |pgl¥/mic’=y3~1. Thus, the initial kinetic energy of
the particles increases with radius from the beam center.
The particle averages, as well as the initial particle loading,
are performed by an nth-order Gaussian quadrature in
each of the initial degrees of freedom (i.e., 7, 65, Yo, Po.
éo0). A more detailed description of the numerical proce-
dures is given in Refs. 11-13.-

It is important to observe here that no attempt is made
to match the beam into the wiggler in order to achieve a
beam envelope with a relatively constant radius through-

out the wiggler. We treat a simpler mode! in which a

paraxially propagating beam is injected into the wiggler,
and the subsequent motion is calculated for the assumed
electrostatic, magnetostatic (including the self-magnetic),
and eclectromagnetic fields.

The effect of the self-electric and self-magnetic fields
are studied for parameters consistent with two 35 GHz
amplifier experiments corresponding to planar and helical
wiggler configurations and with a 16 GHz amoplifier exper-
iment using a helical wiggler. The planar-wiggler experi-
ment was conducted at Lawrence Livermore National Lab-
oratory and employed a 3.5 MeV/850 A electron beam
with an initial radius of 1 cm propagating through a rect-
angular waveguide (¢=9.8 cm and 5=2.9 cm) in the pres-
ence of a planar wiggler with a period of 9.8 cm and an
entry taper of one wiggler period in length. The wiggler
was generated by a stack of electromagnets, which could be
adjusted to produce fields of more than 4 kG in magnitude.
Additional beam focusing in the experiment was accom-
plished with an external quadrupole field; hence, the self-
fields may have been less important in the experiment than
indicated in the simulation. However, it is found that the
results of the simulation with or without the self-fields are
in agreement with the measurements to within the experi-
mental uncertainties. The first helical wiggler experiment
we describe is located at the Massachusetts Institute of
Technology® and employed a 750 keV electron beam, with
an initial beam radius of 0.25 cm. The beam current that
could propagate through the system varied with the axial
magnetic field up to a maximum of approximately 300 A.
The beam propagated through a cylindrical waveguide
with a radius of 0.51 cm in the presence of a helical wiggler
field (B,<1.8 kG, 1,=3.14 cm), with a six period entry
taper and an axial guide field of up to 12 kG. Experiments
were conducted with the axial guide field oriented both
paralle] and antiparalle] to the bulk streaming of the elec-
tron beam. The second helical wiggler experiment is lo-
cated at the Naval Research Laboratory' and employs a
250 keV/100 A electron beam with an initial beam radius
of 0.4 cm. The wiggler field has a period of 2.54 cm, and an
entry taper region of five wiggler periods in length, an exit
taper of three wiggler periods in length, and an amplitude
variable up to 500 G. The axial guide field can be varied up
to a field of 3.2 kG. This is an amplifier experiment at
frequencies in the range of 12-20 GHz, which employs &
waveguide with a radius of 0.815 cm; hence, the primary
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interaction is with the TE,, mode. It should be noted that
although the beam parameters were very different in these
experiments, the magnitudes of the space-charge depres-
sion across the beam in each case are similar, and we find
that Ay,,/y,=064% in the LLNL experiment,
AY,/70=0.78% in the MIT experiment (at a current of
300 A), and A¥,/¥0=0.53% in the NRL experiment.

In order to evaluate the effect of the self-fields in the
context of this formulation, we shall compare the experi-
mental measurements with the results of WIGGLIN and
ARACHNE, both with and without the inclusion of the self-
field models.

A. The planar wiggler configuration

The amplifier experiment at LLNL was driven by a
magnetron that produced approximately 50 kW at a fre-
quency of 34.6 GHz. At this frequency, the waveguide is
overmoded and the power was predominantly injected into
the TEy,, TE;,, and TM,, modes, although the TE,, mode
was dominant. The experimental results indicated that sat-
uration occurred at a power level of approximately 180
MW over a length of 1.3 m (including the entry taper).
The bulk of the output signal was found to be in the TEg,
mode, but there was also substantial power in the TE,, and
TM;; modes as well. As mentioned earlier, the space-
charge (i.e., Gould-Trivelpiece) waves were not important
for this experiment. The primary reason for this is that, for
these beam parameters, Landau damping of the space-
charge waves ensures that the space-charge waves do not
reach sufficiently high amplitudes to affect the
interaction.'s1?

In comparing the results from WIGGLIN with the ex-
periment, we must make assumptions as to (1) the initial
power levels in each of the three relevant waveguide
modes, and (2) the initial axial energy spread of the beam.
Experimental measurements® indicate that the bulk of the
injected power was in the TE,;, mode and that the initial
power in the TE;; mode was approximately 1% that of the
TEq; mode. The power in the TM,,; mode was found to be
still lower than that of the TE,, mode. Hence, these modes
are initialized at power levels of 50 kW in the TEq, mode,
500 W in the TE,, mode, and 100 W in the TM,,; mode.
Direct measurements of the initial axial energy spread of
the beam'® with an electron spectrometer were able only to
place an upper bound on the initial axial energy spread of
approximately 2%.

In the absence of the self-fields, WIGGLIN provided
close agreement with the experimental observations for the
choice of Ay,/y,=1.5%, which is within the bound set by
the experimental measurements. A plot of the growth of
the signal versus axial distance for these: parameters is
shown in Fig. 1, showing both the total power and the
power in the TEq, mode. Observe that although the TE,
mode is overwhelmingly dominant at the start of the inter-
acﬁon,itawountsforonlyaboutw%ofthedgnalat
saturation. This is due to the fact that the TE,, mode had
the higher growth rate. The oscillation in the power occurs
at a period of 4,,/2 and is due to the effect of the lower beat
wave between the wiggler and the radiation field.'>"
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FIG. 1. Evolution of the power versus axial distance in the absence of
self-fields.

Agreement between the simulation and the experimental
measurement is good. The peak saturated power found in
simulation is approximately 190 MW, which falls to ap-
proximately 180 MW when averaged over the lower beat
wave. The saturation length is found to be approximately
1.45 m.

The interaction efficiency is relatively insensitive to the
initial axial energy spread for A7,/70<2% in the absence of
the self-fields; however, this is not the case when the self-
fields are included in the simulation, The reason for this is
that effect of the self-fields and that of an initial axial en-
ergy spread both act to increase the spreading of the beam.
Recall that the axial energy spread is due to a pitch-angle
spread; hence, increases in the axial energy spread imply
increases in the transverse momenta of the beam. As a
result, the combined effects of the self-fields and an increas-
ing axial energy spread can act to enhance beam loss to the
waveguide walls as well as to decrease the coupling be-
tween the beamn and the waveguide modes. This is illus-
trated clearly in Fig. 2, in which we plot the variation in
the efficiency as a function of the initial axial energy
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FIG. 2. Plot of the efficiency versus the initial axial energy spread both
with and without the self-felds.
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FIG. 3. Evolution of the power versus axial distance in the presence of
scif-fields.

spread, both with and without the inclusion of the self-
fields. As shown in the figure, the efficiency decreases from
about 7.129% to 6.35% as the axial energy spread varies up
10 2%. In contrast, when self-fields are included, the effi-
ciency falls off rapidly for AY/79>0.5%. Note that the
initial increase in the efficiency with the axial energy spread
for Ay,/79<0.25% is due to the shift in the tuning of the
interaction with changes in the energy spread. This effect
has been discussed in the literature,'” and is due to the fact
that the increase in the axial energy spread effectively re-
duces the average streaming velocity of the beam. This
shifts the gain band, and can increase the efficiency at fixed

It is clear from Fig. 2 is that the power measured in the
experiment can be recovered from the simulation for
AY/7¥0<0.5%, which is within the experimental uncer-
tainty. The general conclusion to be drawn from this is that
the effect of the dc self-fields on the interaction can be
significant, but that in this case they are smaller than the
effect of the uncertainties in the initial axial energy spread,

- despite the use of a high current beam.
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FIG. 4. Beam cross section at the entrance to the wiggler.
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FIG. 5. Beam cross section at z=93.6 cm without self-fields.

The evolution of the power as a function of axial dis-
tance subject to the inclusion of the self-fields is shown in
Fig. 3 for the choice of an initial axial energy spread of
0.5%. This is chosen for illustrative purposes since the
saturated power in the TEg, mode is relatively unchanged,
in comparison with the results shown in Fig. 1. In this case,
a peak saturated power level of approximately 175 MW
(falling to =165 MW when averaged over the lower beat
wave) was found over a saturation length of about 1.45 m.
Hence, the result of the inclusion of the self-fields is a
reduction of approximately 8% in the total saturated
power, and somewhat less of a reduction in the growth
rate. Recall that no additional focusing due to a magnetic
quadrupole field is included in WIGGLIN; hence, the effects
of the self-fields seen in simulation may be greater than in
the experiment. However, given the experimental uncer-
tainties in the power measurements and the fact that only
an upper bound of 2% is known regarding the initial axial
energy spread of the beam, the results from WIGGLIN e
ther with or without the self-Selds are cousisient with ihe
experimental measurements.

It is important to observe, as mentioned previously,
that the saturated power in the TEy, mode both with and
without the self-fields is of the order of 125 MW; hence, the
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FIG. 6. Beam cross section at 2=96.7 cm without self-fields.
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FIG. 7. Beam cross section st z=99.8 cm without self-fields.

reduction in the total saturated power is due largely to a
decline in the power in the TE,; (and to a lesser extent the
TM;;) mode. A detailed analysis of the electron dynamics
is required in order to explain why the TE,;; and TM,,
modes are more sensitive to the self-fields for these param-
eters. In either case, the initial cross section of the electron
beam is chosen to model the injection of a cylindrical pen-
cil beam. The initial loading of the electrons by means of a
ten-point Gaussian algorithm in 7, and 6, is shown in Fig.
4. Note that (1) the nonuniform spacing between the elec-
trons is characteristic of the Gaussian algorithm that com-
pensates by the assignment of different weights to each
electron, and (2) that the noncircular envelope is an arti-
fact due to the scale on the plot.

In the absence of the self-fields, the beam undergoes
complex motion, which includes the bulk wiggler-induced
transverse oscillation, betatron oscillations due to wiggler
inhomogeneities, and responses to the electromagnetic
fields. Figures 5-8 show the evolution of the beam cross
section over approximately one wiggler period in the linear
stage of the interaction well before saturation, without the
inclusion of the self-fields. The inclusion of the self-fields
can be expected to alter the beam trajectories to some de-
gree depending upon the magnitude of the fields. One im-
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FIG. 8. Beam cross section st 2=102.9 cm without self-fields.
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FIG. 9. Beam cross section at 2=93.6 cm with self-flelds.

portant effect is the spreading of the beam induced by the
self-electric field. Figures 9-12 show the beam cross section
over the same range, with the self-fields included. It is clear
that the beam distortion due to the action of the wiggler,
radiation, and self-fields is complex. However, the princi-
pal effect that can alter the interaction with the TE,; and
TM;, modes is the spreading induced in beam cross section
in the x direction under the action of the self-electric field.
The TEg; mode will be relatively insensitive to this varia-
tion since this field is uniform in the x direction; hence,
relatively little variation in the saturated power in this
mode is expected. In contrast, since the TE;, and T™,,
modes vary in x, any beam spreading in this direction due
to the action of the self-fields can be expected to impact the
saturated power—in this case to reduce it.

Energy conservation is preserved to good accuracy
whether or not self-fields are included in the simulation,
although the potentia! cncigy due io the seif-electric field
must be included in the calculation. In the absence of the
self-fields, the relative difference between the energy lost by

0.1%. When self-fields are included, however, the discrep-
ancy increases, and energy conservation is good to within
1%. The reason for this increased discrepancy is that the
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FIG. 10. Beam cross section at 2=93.7 cm with self-fields.
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FIG. 11. Beam cross section 8t 2=99.8 cm with self-fields.

self-field model implicitly assumes a cylindrical beam,
while the beam distortions due to the action of the wiggler
and self-fields results in a more complex shape. However,
the inaccuracies introduced by the distortion of the beam
cross section are relatively small for the present case since
energy conservation is still preserved to within 1%.

B. The helical wiggler configuration

The MIT amplifier experiment was driven by a mag-
netron that produced from 8-10 kW at a frequency of
33.39 GHz. The TE,; mode was the only wave mode, given
the waveguide radius, which could resonantly interact with
the beam; however, this experiment operated in the Raman
regime and the Gould-Trivelpiece modes must be in-
cluded. In practice, it was found® that only the lowest-
order Gould-Trivelpiece mode (for azimuthal mode num-
ber /=0, and radial mode number n=1) was required to
obtain reasonable agreement between ARACHNE and the
experiment in the absence of self-field effects. The experi-
ment operated in three regimes corresponding to an axial
magnetic field which was aligned either parallel or antipar-
allel (or reversed field) to the wiggler and the streaming of
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FIG. 12. Beam cross section at 22=102.9 cm with self-felds.
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FIG. 13. The evolution of the power versus axial position as determined
with ARACHNE and from the experiment (dots) for the reversed-field
configuration.

the electron beam. In the parallel orientation of the mag-
netic field, two regimes are found, which are referred to in
the literature as either group I for which Qo <k, or
group II for which Qo> kb, , and the experiment was
operated for axial fields in both regimes. The third operat-
ing regime is the reversed-field case. The maximum oper-
ational output power was found to occur in the reversed-
field case in which 61 MW. Output powers of the order of
5 MW was obtained in either the group I or group II cases.
Detailed descriptions of the comparison of ARACHNE with
this experiment in the absence of self-fields can be found in
Refs. 20 and 21. :

The first case we consider here is that of a field-
reversed configuration, in which the nominal experimental
magnetic field parameters were an axial field magnitude of
10.92 kG and a wiggler field of 1.47 kG. The transmitted
current for these field parameters was 300 A (+10%),
and the axial energy spread of the beam is assumed to be

TE,; Mode (R, = 0.51 cm; f = 33.39 GHz; P, =8.5 kW)
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FIG. 14. The evolution of the power as determined with ARACHNE and
from the experiment (dots) for the reversed-field configuration subject to
the inclusion of the self-ficlds.
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FIG. 15. The evolution of the power as determined with ARACHNE and
from the experiment (dots) for the group I case with and without the
self-fields.

1.5%, as indicated in the experiment. These parameters
represent the case of the peak power observed in the ex-
periment of 61 MW.

The comparison of the experiment and ARACHNE in
the absence of seif-fields is shown in Fig. 13, in which the
power is plotted as a function of axial position, and in
which the dots represent the power as measured in the
experiment. As shown in the figure, ARACHNE was used for
two sets of parameters. The first corresponds to the nom-
inal experimental values given above, and the second cor-
responds to the upper limits on the (1) current, (2) wig-
gler field, and (3) input power (due to the experimental
uncertainties) of 330 A, 1.55 kG, and 10 kW, respectively.
As is evident in the figure, the agreement between the ex-
perimental measurements and ARACHNE is good, and vir-
tually all the data points fall between these two curves. The
saturated power for these two choices of the current, wig-
gler field, and input power differ only marginally and are

TE,) Mode (R, =0.51 cm: f = 3339 GHz; P,, =8.5kW)
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FIG. 16. The evolution of the power as determined with ARACHNE and
from the experiment (dots) for the group II case with and without the
seif-fields.
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ginal, and a negligible difference is found between the runs

with and without the self-fields for the 300 A parameters,

The negligible effect of the self-fields is significant since
the magnitudes of the space-charge depression here and for
the planar wiggler case described above are comparable.
The reason why the self-field effect on the interaction effi-
ciency is negligible here but not in the planar wiggler ex-
ample lies in the orbit dynamics of the beam. In the case of
the planar wiggler, the wiggler itself provided relatively
weak focusing of the beam jn the wiggle direction; hence,
the beam spreading due to the self-fields was relatively
large. That is not the case for the helical wiggler/axial

mented by the axial guide field. As a result, the effect of the
self-fields on the beam dynamics is relatively
unimportant—at least for these parameters. It should also
be noted that the beam retaing its circular cross section in
these fields; hence, the énergy conservation is unaffected by
the inclusion of the self-fields and remains good to within
approximately 0.1%.

It is also found that self-field effects introduce small
modifications to the output power in the group I and group
II regimes as well. It should be noted here that there is a
discrepancy between ARACHNE and the experiment, in that
using the axial energy spread of 1.5% nominally quoted for
the experiment results in predicted efficiencies comparable
to that found for the reversed-field case. The assumption of
much higher axial cnergy spreads are required to obtain
reasonable agreement with the measured power. The rea-
son for this discrepancy remains uncertain at this time, but
it is speculated that some misalignment exists in the trans-
port system from the cathode to the wiggler that results in
the increased axial energy spread for these cases. Be that as
it may, we shall employ axial energy spreads of approxi-
mately 6.4% in these cases, which provide good agreement
between the simulation and the measured powers.

The results for the Power as calculated with ARACHNE
with and without the self-fields is plotted versus the axial
position in Fig. 15 along with the experimental data (rep-
resented by the dots) for an assumed axial energy spread of
AY/70=6.4%. It is evident from the figure that the results
from ARACHNE with and without the self-fields are close to
the experimental measurements and lie within the experi-
mental uncertainties in the power measurements.

Similar conclusions are found for the group II case
shown in Fig. 16, although it is noted that while the sim-
ulation is in agreement with the output power measured in
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the experiment it is not in agreement with the detailed
evolution of the signal.

The NRL experiment has recently been redesigned and
is presently in the construction/shakedown phase. It

by a magnetron, which produces up to 5 kW of power over
the K, band from 12-20 GHz. Hence, since the circular
waveguide has a radius of 0.815 cm, the interaction is
solely with the TE,) mode. Observe that the space-charge
depression for this experiment Y,/ ¥0=0.53% is compa-
rable to the other two experiments, despite the much lower
beam current.

In order to simulate this experiment, we consider op-
eration at 16 GHz and use the following model for the
wiggler field amplitude in Eq. (9) for the helical wiggler,

k
[3,, sinz(%); 0<z<sa,,

B,; 5/1,,<z<3041,,,

ko (z—301
B,cos’(%); 304,<2<334,,.
.

(30)

Simulations without the inclusion of the self-fields indicate
t extremely high efficiencies are possible. Both the effi-

ciency and beam transmission are plotted as functions of

B, (2)=

Freund, Jackson, and Pershing 2327




TE;; Mode (R =0.815cm: f = 16 GHz: P, = 5 kW)

L T
301 Vy=250keV

I,=100A — 8% ¥
& 25 R,=04cm , \\ ’ 5
; 20 . Ay/Yp=03% s?”-lﬁ;le‘df i 60 é‘!

tnciu .
E N i é
£ 00 N \ 190
T i e | B
- i i
B,=3(X)G ~ N e 20 aQ
5r A,=254cm h \i =~

0 P N R Y )

22 23 24 25 26

Axial Magnetic Field (kG)

FIG. 18. Plots of the variation in the efficiency and beam transmission
versus the axial magnetic field in the presence of the self-fields.

increases from 2.2 to 2.6 kG. However, the beam transmis-
sion falls precipitously with the increase in the efficiency
from a value of about 99% at an axial field of 2.2 kG to
approximately 5% at an axial field of 2.6 kG. This decline
in the beam transmission is due to two factors. The first
factor is that the loss of up to 30% of the beam energy to
the TE,, mode implies that the beam undergoes massive
deceleration, which is accompanied by an increase in the
radius of the wiggler-induced trajectory. The second factor
is that the high-power electromagnetic wave acts to kick
the beam away from the axis. It should be noted that, as in
the case of the group I and II regimes in the MIT
experiment,®?' saturation in the NRL experiment occurs
due to beam loss rather than the more familiar phase trap-
ping of the beam in the ponderomotive potential formed by
the beating of the wiggler and radiation fields. Operation
with acceptable levels of beam loss, therefore, should re-
strict the experiment to efficiencies below approximately
20%.

As might be expected, the effect of the self-fields can
act to enhance the beam losses. The effects of the self-fields
are more pronounced in this experiment than in the previ-
ously analyzed MIT experiment since the space-charge de-
pressions are comparable for the two experiments, but the
beam voltage and axial guide field is lower in the NRL
experiment. The efficiency and beam transmission are plot-
ted in Fig. 18 as functions of the axial guide. field for a
wiggler amplitude of 300 G, subject to the inclusion of the
space-charge fields. It is evident from the figure that for
strong axial guide fields in excess of approximately 2.5 kG
the efficiency and beam transmission do not differ greatly
from those found in the absence of the self-fields. This is
because the axial field acts to confine the beam against the
spreading induced by the self-fields. In contrast, both the
efficiency and beam transmission are substantially less than
that found in the absence of the self-fields for weak axial
guide fields below about 2.3 kG. In the intermediate regime
for axial guide fields in the range of 2.3-2.5 kG, however,
the beam transmission is enhanced relative to both the
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weak and strong guide field cases. This occurs for two
reasons. The first is that the axial guide field is strong
enough to provide appreciable confinement of the electron
beam. The second is that the self-fields are strong enough

.10 cause a reduction in the interaction efficiency; hence, the

beam has not lost enough energy and the radiation has not
gained enough energy to kick the beam appreciably toward
the wall. As a result, we expect that operation with axial
guide fields in the neighborhood of 2.4 kG for a wiggler
field of 300 G is preferred, and will result in efficiencies of
approximately 10%-15%.

IV. SUMMARY AND DISCUSSION

The nonlinear formulation of the interaction in FEL’s
with dc self-fields presented in this paper is based upon an
idealized model in which a uniform paraxially propagating
beam is injected into either a planar or helical wiggler. The
model of the dc seif-fields is derived from Poisson’s equa-
tion and Ampére’s law for this idealized beam, and has
been employed previously in the study of orbital chaos in
FEL's. 2% The subsequent beam evolution is followed by
the integration of the Lorentz force equations in the com-
bined dc self-fields, the magnetostatic wiggler and axial
guide field, and the oscillating electromagnetic fields. asso-
ciated with the waveguide and Gould-Trivelpiece modes.
The nonlinear formulation is applied to the study of three
experiments using both planar and helical wiggler geome-
tries and currents ranging from 100-850 A, but which all
had similar space-charge depressions in the kinetic energy
across the beam 0.53% < Ay,y/7<0.78%.

The nonlinear formulation and simulation code
WIGGLIN for the planar wiggler configuration is applied to
the study of the self-fields for parameters that nominally
correspond to a 35 GHz FEL amplifier experiment at
LLNL. The difference lies in the fact that a magnetic quad-
rupole field was used in the experiment $o provide for ad-
ditional focusing of the beam, but was not incorporated
into the simulation. As a result, the effect of the self-fields

 is expected to be more pronounced in simulation than in

the experiment. Be that as it may, however, the principal
result of the simulation is that the experimental uncertain-
ties in the power measurements and in the initial axial
energy spread of the beam have a greater impact on the
interaction efficiency than the effect of the dc self-fields,
despite the relatively high current beam used in the exper-
iment. The most important uncertainty here is in the axial
energy spread, which is known only to within an upper
bound of approximately Ay,/y,~2%. For appropriate
choices of the initial axial energy spread, WIGGLIN is found
to be in agreement with the power and growth rate mea-
surements in the experiment either with or without the
inclusion of the self-fields. Additional conclusions from the
simulation are that the additional beam spreading induced
by the self-fields (1) renders that interaction more sensitive
totheeﬂ'ectoftheinitialaxialcnergyspread,md (2)is
relatively less important for the TEy, mode, which is uni-
form in the direction of the bulk wiggler-induced oscilla-
tion than for the TE;, and TM,, modes, which are not.
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The nonlinear formulation and simulation code
ARACHNE for helical wiggler configurations is applied to
the study of self-field effects in experiments at MIT and

helical wiggler and the strong axial guide fields ( B,>4kG)
used in the experiment. In the case of the NRL experiment,
the self-fields are found to have A significant impact on
both the beam transmission and the interaction efficiency
for axial guide fields below approximately 2.4-2.5 kG. For
guide fields above this value, the interaction efficiency is
only slightly reduced by the effect of the dc self-fields.

The general conclusion, therefore, from this analysis is
that the dc self-fields can have a substantial impact on the
operation of FEL's, but that the impact can be difficult to
quantify in the laboratory due to various experimental un-
certainties.
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APPENDIX: ANALYTICAL MODEL OF THE SELF-
FIELDS

A more detailed analytical model for the self-magnetic
field than is given in Eq. (4) is obtained under the assump-
tion tthebeamCurrentisdeterminedfromtheelectron
sentation for the external fields including both an axial
guide magnetic field and a helical wiggler field is given by

= Beu(2)=Bg@,+ B,,,(é,cosk,z+é,sin k,z). (Al)

This wiggler field admits a class of steady-state helical tra-
Jectories, for which

V(Z)=U.,(é,0“ kvz+e;.ink.z) +D. é, (A2)

where the transverse and axial components of the velocity
are determined by the simultaneous solution of

=0
”"_no—kv, (A3)
and
7 +u3,=( 1_;'%)&, (A®)

where 0, = leBy/yome|. Using this representation for
the beam velocity, therefore, Ampére’s law can be written
in the form

1 a 41re
% 3}"-3—2 ) = === m(r)v, cos(k,z-9),

3 F) drre
% B -5 8= ~— (v, sin(k,z—6),

2320 Pmﬂma.va.s.mzmrm

19 14 4qe
- (y_ _ - =
>3 (B¢’ "rao Bf”-——c—n,(r)vl i (AS)
We look for solutions of the form
B = B,(r)cos(k,z—),
B = By(r)sin(k z—8) +By(r), (A6)
B = B,(r)sin(k_z—9).
Substitution of (A6) into (AS) yields
- d . 41renb
kDBr—E BO= ¢ vpl (AS)
d _ d . -\, 4ren,
a (rBa) + (; (rBy) —B,)sm(k.z—a)= ~= M.
(A9)
The last of these equations implies that
d _ 4zen,
7 (rBo)=— m, (A10)
and
d (rBoy=3
d_r(fBa)— re (All)

which can also be obtained by elimination of B, from Eqs.
(A7) and (A8). Equation (A10) can be integrated imme-
diately to give

= m, , v,

==t iy 2
Bg—zem,rc .

(A12)

The requirement that the divergence of this field vanishes
yields

1d . 1. .
PP (rB,) -7 By+k_B,=0. (A13)
Elimination of B, and 5, using Eqa. (A7) and (A11) gives

3d

& . a R m, o}
an Bet; Z By— il By= =7 T ke

(Al14)
The simplest solution to Eq. (Al4) is
2
a @, kﬂ
By= B, AlSs
(] ’_‘?ﬂo-kdﬁ &) ( )
which implies that
2
a_ @, kJJl
B’_I_c? ok ooy B, (A16)
and
B,=0. (A17)

Together, Eqgs. (A12) and (A15)~(A17) give the self-field
shown in Eq. (27). '
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Nonlinear Simulation of a High-Power,

Collective Free-Electron Laser
H. P. Freund and A. K. Ganguly

Abstract— A comparison is described between the three-
dimensional nonlinear analysis and simulation code, ARACHNE,
and a recent 33.4-GHz, collective, free-electron laser amplifier
experiment at MIT. The experiment has demonstrated power
levels of 61 MW (= 27% efficiency) without recourse to tapered
magnetic fields, using a 750-keV/300-A electron beam with
a nominal axial energy spread of 1.5% propagating through
a cylindrical drift tube in the presence of a helical wiggler
(Bw < 1.8 kG, Aw = 3.18 cm) and an axial guide magnetic
field (Bo < 12 kG). Significant differences in the character of
the emission were found based upon the direction of the guide
magnetic field. When the wiggler and guide fields were paraliel,
observed power levels reached approximately 4 MW for both
the strong and weak guide field regimes, but vanished in the
neighborhood of the magnetic resonance (when the Larmor and
wiggler periods are comparable). In this case, resonance refers to
the enhancement of the transverse wiggle-induced velocity, and
the reduction in the emission is due to the fact that the electron
beam cannot propagate in this regime due to orbital instabilities.
However, the maximum power was observed in the reversed
field case when the wiggler and guide fields were antiparailel.
In this case, no resonant enhancement in the transverse velocity
is expected to occur; however, a significant reduction in the
output power was found to occur in the neighborhood of
the antiresonance. The ARACHNE simulation is in substantial
agreement with the experiment. In the reversed field case, the
simulation shows peak power levels of 60 MW at the nominal
axial energy spread of the experiment, as well as providing good
correspondence with the power reduction at the anti-resonance.
The source of this power reduction appears to be a previously
unsuspected effect on the electron orbits due to the wiggler
inhomogeneity. Agreement with the much lower power levels
found when the wiggler and guide fields are parallel, however,
requires the assumption of a substantial increase in the energy
spread of the beam.

1. INTRODUCTION

HE free-electron laser (FEL) has demonstrated operation

over wavelengths extending from microwaves [1]-[18]
through the optical spectrum [19}-[29). Free-Electron Laser
experiments have been conducted with electron beams pro-
duced by virtually every type of accelerator, including radio-
frequency linacs, microtrons, storage rings, electrostatic ac-
celerators, induction linacs, pulse-line accelerators, and mod-
ulators. High energy/low current accelerators (i.e., RF linacs,
storage rings, microtrons, and electrostatic accelerators) are
typically employed at wavelengths in the infrared or shorter
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wavelengths, and the maximum efficiencies achieved are of the
order of 4%, even using tapered wiggler designs [24). [25].
In contrast, low-energy/high-current electron beams (from
induction linacs, pulse-line accelerators, and modulators) are
employed at longer wavelengths in the microwave or mil-
limeter wave regime. In the past. the optimal performance
demonstrated in this regime is represented by efficiencies
of the order of approximately 12% for a uniform wiggler
configuration {1], [6], and approximately 35% for the case
of a tapered wiggler [10).

The present paper is concerned with the theoretical de-
scription of a recent experiment conducted by Conde and
Bekefi [30], {31] at the Massachusetts Institute of Technology
(MIT), which demonstrated a peak efficiency of approxi-
mately 27% at a frequency of 33.4 GHz using a uniform
wiggler configuration. The above-mentioned tapered wiggler
experiment achieved a 35% efficiency at the same frequency
using a 3.5-MeV/850-A electron beam produced by the ETA
induction linac at the Los Alamos National Laboratory (LLNL)
in conjunction with a planar wiggler with a tapered am-
plitude [10]. In contrast, the MIT experiment emploved a
750-keV /300-A electron beam produced by a pulse-line ac-
celerator in conjunction with a uniform helical wiggler/axial
guide field configuration. This latter configuration has been
used in the past to produce a 35-GHz FEL amplifier; however,
the maximum efficiency obtained was of the order of 7%
with a tapered axial magnetic field [4]. In addition, the
maximum efficiency in the MIT experiment was observed
when the wiggler and axial guide magnetic fields were directed
antiparallel to each other. This reversed-field geometry is a
previously untried configuration. Hence, this experiment has
broken new ground in the performance of FEL amplifiers, and
illustrates some novel aspects in the interaction physics of
the FEL. :

For convenience, we refer to the three-dimensional non-
linear simulation code used to analyze this experiment as
“ARACHNE.” This code was first developed to treat the
case of FEL amplifiers in the high-gain Compton regime
{32]-[36] in which the coupling with. the fluctuating beam
space-charge waves can be ignored. However, ARACHNE was
subsequently extended to treat the coliective Raman regime
[37] and has been benchmarked, with good results, against two
carlier FEL experiments at MIT [12], [16], as well as against
a series of experiments at the Naval Research Laboratory [17).
The ARACHNE code represents a slow-time-scale formulation
in which the electromagnetic field is expanded in terms of a
superposition of the vacuum TE and TM modes of a cylindrical
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waveguide. The space-charge field is expanded in terms of
a superposition of the Gould-Trivelpiece modes [38] of a
beam propagating through the waveguide in the absence of
the wiggler field. A series of slow-time-scale equations are
then derived for the evolution of the amplitude and phase of
each TE, TM, and Gould-Trivelpiece mode in the presence
of the interaction with the electron beam in the wiggler,
These equations are then integrated simultaneously with the
three-dimensional Lorentz force equations for the electrons
in the complete ensemble of electromagnetic, electrostatic,
and magnetostatic fields. We emphasize that while Maxwell’s
equations are averaged over the wave period in order to
derive the slow-time-scale equations for the field amplitudes
and phases, no averaging procedure is imposed on the orbit
equations. It will be demonstrated that this is an essential
feature of the formulation required to explain many aspects
of the experiment.

The organization of the paper is as follows. A brief descrip-
tion of the experiment is given in Section II. Section III is
devoted to a brief description of the single-particle orbit dy-
namics in a combined helical wiggler/axial guide field system,
and the associated implications for the FEL interaction. A more
complete description of the ARACHNE formulation is given
in Section IV. The detailed comparison with the experiment is
presented in Section V, which is divided into two subsections
dealing with the parallel and antiparallel alignment of the
wiggler and guide magnetic fields. A summary and discussion
is given in Section VI.

II. EXPERIMENTAL DESCRIPTION

In this section, we provide a brief description of the ex-
periment for purposes of comparison. The interested reader
is referred to the original paper by Conde and Bekefi [30],
[31] for a complete description. The basic configuration is
that of an amplifier in which a weakly relativistic electron
beam is injected into a cylindrical waveguide in the presence
of both a helical wiggler field and an axial guide solenoidal
field. The wave-particle interaction is with the fundamental
TE); mode of the waveguide at a frequency of 33.39 GHz,
which corresponds to the frequency of the magnetron used to
drive the amplifier.

The electron beam is generated by a Physics International
Pulserad 100A by means of field emission from a graphite
cathode, and the beam energy used in the experiment is
750 keV (+50 keV). The quality (ie., the emittance and
cnergy spread) of the beam delivered to the interaction region
is controlled by scraping the beam with a shaped graphite
anode. This technique was originally pioneered at the Naval
Research Laboratory for use in an FEL experiment driven
by the VEBA accelerator [3], [4]. In the MIT experiment,
the shaped anode-cathode geometry results in a beam with a
radius of 0.25 cm (corresponding to the radius of the anode
aperture) and an axial energy spread estimated to be approxi-
mately Av, /v ~1.5%. This energy spread corresponds to a
normalized RMS beam emittance of €a<4.4x10°2 cm-rad,

The current available using this configuration was of the
order of 300 A(+30 A) as delivered to the interaction region
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Fig. 1. Current Propagation as a function of the axijal guide field for the
parallel orientation of the field (data courtesy of Conde and Bekefi {30),
[31).
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Fig. 2. Current propagation as a function of the axial guide field for the
reversed-field configuration (data courtesy of Conde and Beketj (30}, [31)).

at the entrance to the wiggler. However, the amount of current
which could be Propagated through the wiggler/guide field
configuration varied based upon the stability of the electron
trajectories. Current Propagation data indicated quite different
results depending upon the orientation of the axial guide
field. The results found for the current propagated through the
wiggler as a function of the magnitude of the axial guide field
for orientations in which the guide field is directed parallel
and antiparallel (referred to as the reversed-field configuration)
to the wiggler are shown in Figs. 1 and 2, respectively. In
each case, the amount of current which could be propagated
generally increased with increases in the magnitude of the
guide field. An exception to this, however, was found when
the guide field was oriented parallel to the wiggler in the
vicinity of the magnetic resonance at which the Larmor period
associated with the guide field is comparable 10 the wiggler
period. In this case, there is a well-known instability in the
electron trajectories which prevents propagation of the beam
[38]~[42]. In addition, the increase in the propagated current
leveled off in the field-reversed case when the Larmor and
wiggler periods were comparable. For convenience, we shall

refer to this as the antiresonance.,




The explanation for this antiresonant effect was discovered
independently by Chu and Lin [39]), who found that the
inhomogeneity in the wiggler field introduces a sinusoidal
driving term to the electron orbit equations. This term arises
from the fact that an electron on a helical orbit centered off the
axis of symmetry experiences a sinusoidally varying wiggler
field which acts to drive the electrons at a period close to

the wiggler period. Hence, this effect becomes important for -

electron beams which are big enough that a substantial fraction
of the electrons are located relatively far from the symmetry
axis. In addition, it is resonant for axial fields close to the
antiresonance. We shall discuss this in more detail during the
comparison of the simulation with the power measurements,
since the orbital irregularities introduced by this effect have a
significant impact on the growth of the signal.

The wiggler field is produced by a bifilar helix with a period
of A, = 3.18 cm, a length of 50\, and an adiabatic entry
taper which is six wiggler periods in length. The wiggler
amplitude was continuously adjustable up to an amplitude of
approximately 1.8 kG. The axial guide field could be adjusted
up to a maximum amplitude of almost 12 kG.

The beam propagated through a cylindrical waveguide of
0.51 cm in radius, which provided for a wave-particle res-
onance with the fundamental TE;; mode in the vicinity
of 35 GHz. The FEL was operated as an amplifier, and a
magnetron which produced approximately 17 kW (£10%) at a
frequency of 33.39 GHz was used as a driver. Since the output
from the magnetron was linearly polarized, this corresponded
to approximately 8.5 kW in the right-hand, circularly polarized
state which was capable of interacting with the helical wiggler
geometry.

This constitutes a summary of the experimental configu-
ration which is relevant to the discussion of the theoretical
analysis. Further discussion of such aspects of the experiment
as the input coupler and the detection system are not directly
relevant to the discussion in this paper, and the interested
reader is referred to Conde and Bekefi [30), [31] for a complete
presentation.

The output from the amplifier showed the greatest efficiency
for the field-reversed configuration. In this case, a peak power
of 61 MW for a conversion efficiency of 27% was found for
a wiggler-field magnitude of approximately 1.47 kG and an
axial magnetic field of 10.92 kG. The current which could be
propagated in these fields was near the maximum of 300 A.
The output power for the field-reversed configuration also
showed a severe decrease in the vicinity of the antiresonance,
dropping by more than three orders of magnitude. The power
observed when the axial magnetic field was oriented parallel
to the wiggler was much less than for the field-reversed
configuration, and showed a maximum measured power of
approximately 4 MW. Details of the output power spectra will
be presented in the comparison with the theoretical results.

HI. SINGLE-PARTICLE DYNAMICS

Before we describe the nonlinear simulation, it is useful to
summarize the essential properties of the single-particle orbits
in FEL configurations, which consist in a combination of a

helical wiggler and an axial guide magnetic field. The three-
dimensional representation of the magnetostatic fields for this
geometry in cylindrical coordinates is [40]

Boxl (3) = B()éz
+ 2B, |I}(M)é, cosx - %Il(/\)ég sinx + Iy(A)e. sin x
(1)

where By and B, denote the axial and wiggler field am-
plitudes, A = k,r, x = 0 - k.2, k(= 27/A.) denotes
the wiggler wavenumber, and I, and I/, denote the modified
Bessel function of the first kind of order n and its derivative,
respectively.

The dynamics of electrons in these combined fields have
been discussed in both one [41], [42) and three dimensions
[40], [43], [44]. The fundamental equations governing the
electron trajectories can be most simply analyzed in the
coordinate frame which rotates with the wiggler field and is
defined by the basis vectors: é; = &, cos kwz + &, sink,z,
€2 = —é,sink,z+ é, cos kyz, and &3 = é,. We shall
henceforth refer to this as the wiggler frame. In this coordinate
frame, the three-dimensional Lorentz force equations can be
expressed as [43]

1 = — (o — kwvy + 22, 13(A) sin x)v2

+ Qyv3lx(A) sin 2y )
vy = (Qo - k.,v" + 20,1, (A) sin x)v1
= Quu3[I1(A) + Ir(A) cos 2] 3)
U3 = Quv2[l1(A) + I2(X) cos 2x] = R, v115(A) sin 2x. 4
A= ku(v; cos x + vy sin x) 5)
and
o ke, - -
X = —-(v2 c0s x - v sin x - Avy) ©)

where Qo = eBg o /ym.c,y = (1 - v"’/c?)_uz

These equations exhibit a class of steady-state helical tra-
jectories which may be found by requiring the derivatives in
(2)-(6) to vanish. This implies that v; = v, v, = 0, v3 = vy,
X = £7/2, and A = Ag, where vy is constant, Ay = Fv, /v,
and

_ 2Dy h(Xe)/ 2o
" = o~ kuoy £ 20011 ) @

In addition, we must require that v,, and vy, satisfy the energy-
conservation requirement which implies that

r-1_9Q 2 1+7N
Ve (5. ®

These equations constitute a set of two transcendental equa-
tions for v,, and vy as functions of the parameters which define
the fields and the total energy.

We first consider the solution of these equations in the case
in which the axial guide fields are directed paralle! to the
wiggler field. A solution for the axial velocity as a function
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Fig. 3. Plot of the axial velocity versus the magnitude of the axia} guide
field for the parallel orientation of the wiggler and axial guide fields,

of the magnitude of the axial guide field is shown in Fig. 3
for parameters consistent with the experiment. This consists
of a beam energy of 750 keV, a wiggler field amplitude of
0.63 kG, and a wiggler period of 3.18 cm. As shown in this
figure, there are two distinct regimes which are referred to as
Group I (when Qo < k, v) in the weak-guide field regime, and
Group II (when 0 > k. v) in the strong-guide field regime.
The transitional resonant regime for Qo = k, v, occurs in this
case for axial fields between approximately 5-8 kG. In this
regime the transverse velocity becomes large, which requires
the axial velocity to decrease. The dashed lines in the figure
denote unstable trajectories.

The stability of the Group I and I orbits can be determined
by a perturbation analysis [43] in which we write v; =
Uy + vy, 19 = bvy,v3 = vy + 61}3,x = +£7/2 + éx, and
A=A +6) Asa result, we may isolate the perturbed vari-
ables by means fourth- and fifth-order differential equations
of the form

2 2\ (L . o2\ [ow]
@)@ e)]-0 o

and
bv
d(d& d? 1
E (d—t:i + Qi) ((F + 92) bv3 | =0 (10)
)
where
1
Q= ?(wf +w§)
* _;'\/ W~ wd) + kuvy Q02 a1
: 2
oF = K207 + 20k, 0, (‘ }f")zz(xo) 12)
z,
2
_ (Qo - kwvﬂ) 1+ l\g
wg = W - 2kawvw '\3 12(A0) (13)
and

Y
wg = 8%(90 - 2k.,.v")

- [QoLy(20) + Aokwvy(I1(Ag) + 2A012(Ao))].
(14
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Fig. 4. Plot of the axial velocity versus the maghnitude of the axial guide field
in the reversed-field orientation.

Examination of the definitions of Q2 shows that 22 >o.
Orbital instability occurs whenever N2 < 0, which is the case
shown by the dashed lines in Figs. 3 and 4.

A similar plot of the axial velocity as a function of the
magnitude of the axial magnetic field in the reversed field
case is shown in Fig. 4 for a wiggler amplitude of 1.47 kG,
which corresponds to the experimental value of the wiggler
field used in this configuration. As shown in this figure, there
is no resonant enhancement in this case when the Larmor
and wiggler periods are comparable (in the vicinity of the
antiresonant at which Q ~ - w¥)), and the axial velocity
varies only weakly with the magnitude of the guide field. In
addition, there is no orbital instability. It will be shown in
Section V, in which we discuss the results of the simulation
and electron trajectories in the vicinity of the antiresonance,
that the degradation in the output power seen in the experiment
results from the effects of the wiggler inhomogencity on
electron trajectories which are displaced far from the axis
of symmetry. Hence, the reason that these steady-state orbits
do not display this behavior is that they have been obtained
subject to the assumption of axi-centered motion,

IV. THE THEORETICAL FORMULATION

For the sake of brevity, we do not provide a discussion of
the detailed dynamical equations employed in the ARACHNE
formulation here. Rather, we give a summary of the essential
properties of the ARACHNE formulation, and refer the inter-
ested reader to the original papers [32]-[37] for a complete
derivation and description.

The ARACHNE formulation Tepresents, fundamentally, a
slow-time-scale description of a steady-state FEL amplifier in
three-dimensions. To this end, it is assumed that only a single
frequency Propagates and, therefore, Maxwell’s equations can
be averaged over a wave period. This results in two related
sirplifications of the numerical problem, Specifically, (i) that
the fast-time-scale oscillation is removed from the problem
and only the slow-time-scale growth (or damping) of the wave
need be resolved, and (i) that only an electron beamlet (ie., a
group of electrons which enter the interaction region within
one wave period) needs to be included in the simulation,




Together, these two simplifications result in both a substantial
increase in the step size and a reduction in the number of
electrons in the simulation with respect 1o the requirements of
a full-scale particle-in-cell simulation. Hence, the numerical
requirements for the simulation of an FEL amplifier are rela-
tively modest. Typical run times for the cases presented herein
are in the range of 5-10 min. on a Cray-2 supercomputer.

The electromagnetic field in this formulation is represented
in terms of a superposition of the TE and TM modes of the
vacuum waveguide. Note that this does not violate the single-
frequency assumption, since the wavenumbers of the modes
which are included in the superposition will vary depending
upon the specific cut-off frequencies. One restriction, however,
which is imposed is that only propagating modes (in which
the cutoff frequency is lower than the wave frequency) can
be included in the formulation. The space-charge field is Tep-
resented in terms of a superpostion of the Gould-Trivelpiece
modes (at the same frequency as the electromagnetic wave)
for a beam which completely fills the waveguide [38]. Observe
that the transverse variation of the axial electric field of the
Gould-Trivelpiece modes is identical to that of the TM modes
of a cylindrical waveguide. The fundamental assumption in
the case of both the electromagnetic and electrostatic field is
that while the transverse mode structure is determined by the
waveguide or the beam conditions, the amplitude and phase
vary slowly (with respect to the wave period) in the axial
direction due to the interaction with the electron beam. Since
both the fluctuating electromagnetic and electrostatic fields are
at the same frequency, the dynamical equations for both cases
can be averaged over the wave period in order to obtain the
equations for the slow variations.

In order to complete the formulation, the orbit equations for
an ensemble of electrons must be specified. For this purpose
we employ the three-dimensional Lorentz-force equations.
This requires the integration of the electron trajectories in the

complete set of electrostatic (Gould-Trivelpiece modes), mag- -

netostatic (wiggler and axial guide fields), and electromagnetic
fields (TE and TM modes of the waveguide). It is important
to bear in mind that it is not necessary to perform an average
of these equations, since the Lorentz force equations are
inherently slowly varying for waves in near-resonance with the
beam. The generality of this formulation of the electron orbits
is a crucial feature which permits the simulation to describe
not only the primary oscillation induced by the wiggler, but
also Larmor effects due to the presence of the axial field
and Betatron oscillations and guiding-center drifts due to the
wiggler inhomogenieties. This is the critical requirement in
the simulation of the field-reversed configuration near the
antiresonance.

The initial conditions on the electron beam are chosen to
describe the beam as it is prior to the entry into the wiggler.
We assume a uniform distribution in both inital phase and cross
section. The beam is assumed to have a flat-top density profile
for simplicity. The effect of an axial energy spread is included
by means of a momentum space-distribution function which is
monocnergetic, but displays a pitch-angle spread. The wiggler
field model includes the adiabatic entry taper from zero to a
fixed value, and ARACHNE then describes the self-consistent

injection of the electron beam into the wiggler. This procedure
has a practical advantage. since it is easier 10 determine the
characteristics of the electron beam prior to the injection into
the wiggler.

The initial conditions imposed on the TE and TM modes are
that the initial amplitude of each mode is chosen to reflect the
injected power into the system, and the initial wavenumber
corresponds to the vacuum value appropriate to the mode.
ARACHNE then determines the self-consistent evolution of
both the amplitude and wavenumber due to the dielectric
effect of the beam in the wiggler. The initial growth rates
are assumed to be zero, since the wiggler field is initially zero
as well.

The initialization of the Gould-Trivelpiece modes is ac-
complished by evaluation of the appropriate initial phase
averages of the electron beam. Note that the assumption of a
uniform electron beam implies that the phase averages which
appear in Poisson’s equation will initially vanish. However,
the use of a discrete ensemble of electrons introduces a small
numerical error into the initial phase averages (i.c., (sin ) and
(cos p)). We find that in practice, the use of these numerical
uncertainties for the phase averages in Poisson’s equation
to select the initial amplitudes and wavenumbers smooths
the initial transients associated with the subsequent phase
bunching of the electron beam.

Within the context of this initialization scheme, ARACHNE
subsequently self-consistently integrates the dynamical equa-
tions for the ficld amplitudes and phases of each of the
electromagnetic and electrostatic waves included in the simu-
lation in conjunction with the Lorentz force equations for the
electron ensemble (which typically includes 9600 electrons).
Since the complete Lorentz force equations are used, this
permits the self-consistent description of the effects of the
injection of the beam into the wiggler, the bulk wiggler
motion, Larmor motion, the effects of wiggler inhomogenieties
(iLe., Betatron moiion and the associated guiding-center drifts,
velocity shear effects, orbital instabilities in the Group I and
Il regimes, etc.), and harmonic interactions. Of the greatest
significance to the current experiment, however, it is the
implicit inclusion of the antiresonance phenomena in the
reversed-field configuration.

V. THE EXPERIMENTAL COMPARISON

The experiment has been operated with the axial magnetic
field oriented both parallel and antiparalle] with the wiggler
field, and we shall discuss the comparison with each of
these regimes separately. Features common to both regimes,
however, involve the choice of various system parameters
as well as the initialization of the modes included in the
simulation.

Features common to all cases studied derive from the
geometry of the system. Specifically, we take the waveguide
radius to be R, = 0.51 cm, the wiggler period to be X, =
3.18 cm, and the wiggler entry taper as N,, = 6 wiggler
periods in length. In addition, while the beam current varies
with the magnitude of the axial guide field, the beam energy
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is 750 keV and the radius is fixed at the aperture of the anode
to R, = 0.25 cm.

Since the frequency of the amplifier experiment is fixed by
the 33.39-GHz magnetron, the beam energy of 750 keV and
waveguide radius of 0.51 cm insures that a resonant interaction
is possible only with the fundamental TE;; mode of the guide.
Since the magnetron produces approximately 17 kW with a
linear polarization, we assume that only half of this power
is available with the correct circular polarization to interact
with the beam. Hence, the initial power of the TE;; mode
is chosen to be 8.5 kW. The collective Raman interaction
in an FEL couples the TE;; mode, in principle, with each
of the Gould-Trivelpiece modes having an azimuthal mode
number of [ = 0 [37]. In practice, however, we find that
inclusion of only the lowest-order radial mode is required
to give reasonable agreement with the experiment. Note that
the axial electric field of this mode has the same transverse
variation of the TMy; waveguide mode. Hence, the following
simulations have been performed using only one waveguide
mode and one Gould-Trivelpiece mode.

A. The Reversed-Field Configuration

The first case we consider is that of a field-reversed con-
figuration in which the nominal experimental magnetic field
parameters were an axial field magnitude of 10.92 kG and a
wiggler field of 1.47 kG. The transmitted current for these field
parameters was 300 A(£10%) and the axial energy spread
of the beam is assumed to be 1.5%, as indicated in the
experiment. These parameters represent the case of the peak
power observed in the experiment of 61 MW.

The comparison of the experiment and ARACHNE is shown
in Fig. 5, in which we plot the power as a function of
axial position, and in which the dots represent the power
as measured in the experiment. As shown in the figure,
ARACHNE was used for two sets of parameters. The first
corresponds to the nominal experimental values given above,
and the second corresponds to the upper limits on the (i)
current, (ii) wiggler field, and (iii) input power (due to the
experimental uncertainties) of 330 A, 1.55 kG, and 10 kW, re-
spectively. As is evident in this figure, the agreement between
the experimental measurements and ARACHNE is good, and
virtually all the data points fall between these two curves.
The saturated power for these two choices of the current,
wiggler field, and input power differ only marginally and are
close to the 61 MW measured in the experiment. The principal
difference is in the saturation length, which is due to a small
discrepancy in the growth rates for these two cases.

The interaction efficiency in this case is approximately 27%,
which is far above that found in the laboratory previously
for uniform wiggler configurations and is comparable to the
maximum efficiency obtained for a tapered wiggler configura-
tion [10]. It should be noted, however, that efficiencies of this
magnitude have been predicted in previous simulations using
ARACHNE for uniform wiggler configurations [32], [36] and
is comparable to that which is expected due to the phase
trapping of the electron beam in the ponderomotive wave
formed by the beating of the wiggler and radiation fields. The
efficiency estimated by this technique represents the energy
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Fig. 5. The evolution of the power with axial position as determined with

ARACHNE and from the experiment (dots) for a field-reversed configuration.

lost by the electron as the axial velocity decreases by an
amount Av, = 2(v, - Uph), Where Vph = w/(k + k) is the
phase velocity of the ponderomotive wave. Here, (w.k) are
the angular frequency and wavenumber of the electromagnetic
wave, and k,, is the wiggler wavenumber. The phase-trapping
estimate for the efficiency can be expressed in the form:

~o2UfU w/e
(L) o

The inclusion of Raman effects in this estimate is
accomplished by the choice of the appropriate frequency and
wave number in the phase velocity of the ponderomotive
wave. ARACHNE includes collective Raman effects and for
the example shown, results in a normalized wavenumber of
k/ky = 2.98 for the TE,; mode at a frequency of 33.39 GHz
(ie., w/ck,, =~ 3.5). As a consequence, the phase velocity of the
ponderomotive wave is vn/c =~ 0.879. Note that this
wavenumber differs from the normalized wavenumber for a
vacuum TE;; mode for which k/k, =~ 2.985, and that the
dielectric loading of the waveguide due to the interaction
in either the Raman or Compton regimes is included in
ARACHNE. In addition, the axial electron velocity for the
steady-state orbit in this field configuration is v, /c ~ 0.911,
which gives ‘yl'f = 5.89. As a result, the estimate of the phase-
trapping efficiency is approximately 34%. It is important to
recognize that estimates such as this must be employed with
caution and should be taken in the present case to indicate the
possibility of high-efficiency operation. However, it should
also be noted that while the estimate is higher than that found
in either the simulation or experiment, it does not include the
effects of an axial energy spread.

The variation in the output power over an interaction length
of 150 cm as a function of the magnitude of the reversed
magnetic field is shown in Fig. 6. Again, the dots represent
the experimentally measured power, and the curve is the
result from ARACHNE. The current used in the simulation
for each value of the axial field corresponds to the transmitted
current shown in Fig. 2. Agreement between the experiment
and theory is good across the entire range studied. Of particular
importance is the sharp decrease in the output power in the
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vicinity of the antiresonance at axial field magnitudes between
approximately 7-8.5 kG. _

The source of this antiresonant decrease in the interaction
efficiency is the irregularities introduced into the electron
trajectories by the transverse inhomogeniety in the wiggler.
For this particular example, the radius of the wiggler-induced
motion (i.e., the radius of the helical steady-state trajectory) is
approximately 0.04 cm. However, the beam radius is 0.25 cm
in this experiment. As a consequence, the electrons at the
outer regions of the beam are quite sensitive to the wiggler
inhomogeniety and experience a sinusoidally varying wiggler
field during the course of their trajectories. These effects are
implicitly included in the ARACHNE formulation, and we can
illustrate their effect on the electron beam by examining the
orbits of selected electrons in the simulation.

The first case we shall consider is that of a electron which is
located near the center of the beam upon entry to the wiggler
for a reversed axial field of 7.2 kG, which is in the center of
the antiresonance region. The evolution of the trajectory in the
transverse plane is shown in Fig. 7, in which the jaggedness
is a antifact introduced into the figure by plotting only every
tenth point in the integration. The orbit shown in the figure
exhibits the expected spin-up of the electron trajectory due to
the adiabatic injection into the wiggler field, and the electron
executes a near-helical steady-state orbit upon transition to the
uniform-wiggler region (i.c., after the six wiggler periods of
the entry taper region). The principal characteristics of such
an orbit are the regular wiggler-induced transverse velocity,
which mediates the interaction, and a near-uniform axial
velocity, which permits the resonant wave~particle interaction
to occur over an extended interaction length. This behavior is
also found for electrons at the center of the beam for axial
fields away from the antiresonance. The differences occur
principally for the edge electrons.

In order to show the nature of these differences, we focus
on a characteristic electron which is initially located at the
edge of the beam (z =~ 0.25 cm and y ~ 0) upon entry to the
wiggler. The cross-sectional evolution of the trajectory of such
an electron for a reversed axial field of 10.92 kG is shown in
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Fig. 7. The cross-sectional evolution of the trajectory of an electron in-
jected near the center of the beam for an axial field in the vicinity of the
antiresonance.
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Fig. 8. This case is not in the vicinity of the antiresonance, and
the orbit illustrates several features. The predominant feature
is the aforementioned spin-up of the electron due to the bulk
wiggler motion. However, the electron also executes slower
motion which corresponds to Betatron and Larmor motion due
to the wiggler inhomogeneity which manifests as a guiding-
center drift in the counter-clockwise direction. This orbit is
fairly regular and does not result in any significant degradation
in the interaction efficiency (see Fig. 5).

However, the situation is quite different for an edge elec-
tron in the vicinity of the antiresonance. The cross-sectional
evolution of such a trajectory is shown in Fig. 9 for an axial
field magnitude of 7.2 kG. The orbit in this case exhibits the
initial spin-up due 1o the bulk wiggler action, but subsequently
undergoes what appears to quite irregular motion. The effect
of this motion on the axial momentum is shown in Fig. 10,
in which we plot the axial momentum versus axial position
for the central and the edge electrons. It is clear from this
figure that the axial momentum exhibits regular oscillations
about the bulk value for the central electron, but not for
the edge electron. In the latter case the motion exhibits far
more structure, reflecting the Betatron and Larmor motions as
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Fig. 9. The cross-sectional evolution of the trajectory of an electron injected
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Fig. 10. The evolution of the axial momentum versus axial position for
electrons injected at the edge of the beam and the center of the beam in the
vicinity of the antiresonance.

well as sudden transitions. Similar behavior is found for the
transverse components of the momentum as well. These rapid
and large variations in the axial momentum are the major cause
of the degradation in the interaction efficiency, since they act
to disrupt the resonant wave—particle interaction.

The fundamental physics of this antiresonant process [39]
can be understood by means of a relatively simple treatment
of the single-particle orbit dynamics. In order to accomplish
this, we return to the formulation presented in [43]. In this
treatment, the electron position and velocity are written as
T = T+ Zosc, Where the subscript ¢ denotes the guiding-center
position, and “osc” denotes the various oscillatory motions.
Under the assumption that the guiding-center position is fixed
(ie., v = v,,c), expansion of the orbit equations (2)-(4) about
the guiding-center position results in the following equations
for the electron velocity (where we drop the subscript “osc”
for convenience):

Ui = — (R - kuv3)vz + Quuslp(A,) sin 2y, (16)
152 = (Qo - kwvz)v, - Qwv;;”o(/\c) €os 2Xc] (17)
v3 = Qwvg[lo(a\c) + IZ(Ac) cos 2X€]

- Qw”ll‘l('\c) sin 2Xc (18)
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where (7., 8.) denote the guiding-center position in cylindrical
coordinates, and A, = k,r, and Xc = 0 — kyz. If we now
expand about the steady-state orbits via YV =Yy, +bv.vp =
bvs, v3 = o + $v3, where

To(Ac) (19)

then the equations for the perturbations are
vy = —(Qg - ka“)tsz + Qwv”Iz(/\c)sin 2x. (20)

bvp = (QO - kw””)éﬂl - :_w Qpbv,
It

= Quuyla(r.) cos 2x, (21)
6Y3 = Qu6v20h(),) - Qv Ip(A,) sin 2x.. 22)

Note that we have also neglected terms which vary as éulp(A.)
under the assumption that A, < 1 as well. In this representa-
tion, the electrons execute a helical trajectory centered about
the guiding center. In addition, this representation is quasi-
idealized in the sense that the transverse velocity includes
three-dimensional effects only in the inclusion of the Io(A.)
function, which describes the effect of the off-axis increase
in the magnitude of the field at the guiding center. These
equations may be reduced to a set of second-order differential
equations:

601 ]
( %22- + Q,z.) vy
603_]

[ oy - 3kuv)) cos 2y,
"2
= Qulh(A)- o Q- 3kyyy + —Jﬂ-) sin 2x.

=9 (Qo - 3’&‘,,,!)“) cos 2Xc

(23)
where
v2
Qz = (Qo - k.,,v“) [(1 + FW)QO - kwu”]. 24)
I
Observe that Q2 corresponds with Q2 in the limit in which
vi,/v} << 1, and this set of equations shows the orbital
instability which is expected for the Group I orbits when
Q2 < 0 (note that there is no orbital instability for the Group 11
orbits in the idealized representation or for the field-reversed
configuration), and it will also show the antiresonant effect.
To see the latter, we can generate the particular solutions of
these equations, which are

v 1
602
603

Qv l(Ac)
(% + kuvy) (R - 3kuyy) + ":,12,“; QR - kuoy)
(R0 - 3k.,,v',’|) cos 2x.
x (Qo - 3kuy) + g'l;,- Qo) sin2x. | (25)
-—%ﬁ (9 - 3kwvy)) cos 2x.
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In the limit in which vl /v] << 1 (which is appropriate
for this experiment), these particular solutions reduce to the
simpler form:

[MJ _ Quul(a) [ €0s 2xc

bv, - sin 2x. (26)
bv:} (QO + ku”“) - %I‘l_ cos 2X¢~J

which clearly show the antiresonant enhancement in the per-
turbation when Qo = —k,v,. However, since the particular
solution also depends upon I5().), this effect will not become
appreciable unless the electron guiding-center is located rela-
tively far from the symmetry axis. This perturbation describes
an oscillation at the wiggler period in Cartesian coordinates
Wwhich can become large near the antiresonance. Indeed, this
is the period of the rapid oscillation shown in the axial
momentum of the edge electron in Fig. 10. Note, however,
that this antiresonant enhancement in the perturbation is not
as serious a problem for beam transport than the Group I and
I orbital instabilities which occur when the axial guide field
is oriented paralle] to the wiggler field.

This simplified perturbation analysis suffices to illustrate
the basic physics of the antiresonant effect, but does not
describe either the nonlinear effects associated with the large-
amplitude perturbations at the antiresonance or the effect of
the fluctuating fields. These effects, however, are implicitly
included in ARACHNE.

B. The Group I and I Regimes

The agreement between ARACHNE and the experimental
measurements in the Group I and II regimes is not as good as
that found for the reversed-field configuration. In the cases in
which the axial guide field in oriented parallel to the wiggler
field, we find that 3 much larger energy spread than that
estimated for the experiment is required in order to account for
the measured power levels. Indeed, we find that the assumption
of an energy spread of 1.5% results in efficiencies comparable
to that found for the field-reversed configuration, and we
note that the efficiency predicted in simulation does not vary
appreciably for either orientation of the magnetostatic fields
for comparable beam-energy spreads. In order to account
for the Group I data we must assume an energy spread of
approximately 6.4% to account for the measured power. The
Group II data are more difficult to explain. The assumption
of a comparable energy spread of 6.4% results in reasonable
agreement for the power at the end of the interaction region,
but not for the detailed evolution of the signal (i.e., the
launching loss and the instantaneous growth rate) during the
course of the interaction.

We have no definitive explanation for this discrepancy, but
merely suggest that there might be some misalignment or other
beam-transport problem from the gun to the wiggler which
is exacerbated by the orientation of the axjal guide field. A
possible source for such a discrepancy could be the existence
of irregularities in the wiggler field upstream from the entrance
due to the sudden termination of the coils, Such irregularities
might give rise to orbital instabilities for a parallel alignment
of the wiggler and axial guide fields which result in enhanced
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Fig. 11. The evolution of the power with axial position as determined with
ARACHNE and in the experiment (dots) for Group I orbit parameters.

emittance growth. A detailed evaluation of these suggestions,
however, can only be accomplished by means of a thorough
analysis of the experimental configuration.

With all of this in mind, we plot the evolution of the power
versus axial position as measured in the experiment and as
determined with ARACHNE in Fig. 11 for wiggler and axial
guide fields of 0.63 and 4.06 kG, respectively, and for axial
energy spreads of 1.5 and 6.4%. These fields correspond to
Group I operation, and the transmitted current is 119 A As
shown in this figure, ARACHNE is in substantial agreement
with the experiment for the presumed energy spread of 6.4%,
both as regards the linear growth rate and the saturation
efficiency. :

Comparison of ARACHNE with experiment in the case of
wiggler and guide fields of 0.63 and 10.92 kG, respectively,
and a transmitted current of 300 A is shown in Fig. 12. Again,
we plot the resuits from ARACHNE for eneIgy spreads of both
1.5 and 6.4%. This case corresponds to Group II parameters
and shows rough agreement in the case of a 6.4 % energy
spread for the power (=~ 4 MW) and saturation efficiency,
but not the growth rate. In contrast, the growth rate (but not
the saturation efficiency) found in the experiment is in rough
agreement with that found in ARACHNE for the case of a
1.5% energy spread. However, the launching loss observed in
the experiment is much higher than that seen in simulation,
as evidenced by the fact that there is negligible growth in the
observed power until after an axial position of 70 cm after the
wiggler entrance.

A summary of the comparison between ARACHNE (for
axial energy spreads of both 1.5 and 6.4%) and the experiment
as a function of the axial fields magnitude is shown in Fig. 13
for the choice of transmitted current as shown in Fig. 1. It is
clear from this figure that the agreement between ARACHNE
and the experimental measurements is better for the case of
Group I parameters than for the case of Group I parameters
at high axial fields. In the low axial field Group I regime, the
agreement is quite good for the presumed 6.4% energy spread.
Quantitative agreement for the Group II regime is not as good;
however, ARACHNE does predict the existence of variations
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in the output power as a function of the field magnitude which
is similar to that seen in the experiment.

VI. SUMMARY AND DiscussioN

In this paper, we have presented a detailed comparison
between a recent high-power FEL amplifier experiment using a
combined helical wiggler/axial guide magnetic-field configura-
tion and a three-dimensional nonlinear formulation of the FEL
amplifier in the collective Raman regime (ARACHNE). Two
configurations were studied, corresponding to the paralle] and
antiparallel orientations of the axial guide field and wiggler,
Substantial agreement is found between the experiment and
ARACHNE for the reversed field configuration. However,

parallel orientation of the fields in the Group Iand I1 parameter
regimes required the assumption of a substantially higher
beam-energy spread. In addition, we cannot simultaneously
account for the measured growth rate and saturation efficiency
in the Group II regime. Fig. 12 shows that the measured
growth rate is given approximately by ARACHNE for the
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choice of an cnergy spread of 1.5%, but in order to account
for the ultimate efficiency we must assume an energy spread
of 6.4%. In addition, the experiment seems to indicate an
extremely long region of null growth or launching loss before
the signal begins to grow. The only explanation we Can suggest
for these discrepancies is the existence of problems in the
transport of the electron beam from the gun to the wiggler for
this configuration. However, it is impossible to confirm these
suggestions without a detailed analysis of the design of the
experiment.

One further point which merits discussion is the relative
efficiencies found for the Group I and N1 regimes. Previous
experiments at the Naval Research Laboratory [3] have found
higher efficiencies for Group II than for Group I operation.
In addition, extremely high efficiencies of the order of 479
have been predicted for Group II operation at 35 GHz us-
ing ARACHNE [36). However, in both of these cases the
high efficiencies resulted from operation in the negative-mass
regime, which is close to the resonance at which Larmor and
wiggler periods coincide. However, it is difficult to Operate
in this regime for energies below 1 MeV duye to the narrow
range of axial magnetic fields for which it occurs, which makes
injection of the beam into the wiggler difficult. The Group [I
measurements reported for the present experiment were not in
this negative-mass regime. Hence, it is not surprising that both
the experiment and ARACHNE report comparable efficiencies
for the Group I and I regimes.

There are two significant new results represented in the
experiment. The first is the achievement of a near-309 in-
teraction efficiency with a uniform-wiggler design. While
efficiencies of this magnitude are expected on the basis of
both simple phase-trapping arguments and detailed numerical
simulations, this is the first time such efficiencies have been
demonstrated in the laboratory. The second is the existence
of the antiresonant degradation in the operating efficiency.
This had been previously unsuspected, and the experimental
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A recent free-electron laser amplifier experiment conducted at the Massachusetts Institute of
Technology [M. E. Conde and G. Bekefi, Phys. Rev. Lett. 67, 3082 (1991)] has demonstrated
high-power operation without recourse to a tapered wiggler field. The experimental
configuration consisted in the propagation of an intense electron beam (750 keV/300 A with a
nominal axial energy spread of 1.5%) through a cylindrical waveguide in the presence of both
a helical wiggler (B,<1.8kG and A,=3.18 cm) and an axial guide magnetic field ( B,<12 kG).
The experiment operated with the axial guide field oriented both parallel and antiparallel to the
direction of the wiggler field, and the maximum efficiency was obtained for the antiparalle! (i.e.,
reversed-field) configuration. The reversed-field case demonstrated an output power of 61 MW
at 33.39 GHz for an efficiency of approximately 27%. The performance in the more usual
parallel alignment of the fields was much less and peak power levels of only about 4 MW were
obtained for both the weak (group I) and strong ( group II) field regimes of the axial guide field.
A detailed analytical characterization of this experiment has been presented in a previous work
[H. P. Freund and A. K. Ganguly, IEEE Trans. Plasma Sci. PS-20, 245 (1992)] in which -
substantial agreement was found between the theory and the experiment for the reversed-field
configuration. However, some discrepancies existed for the group I and II cases, and it was
conjectured that some problem with beam transport existed for these configurations which led
to an increased beam energy spread. In this paper, the question of beam transport in this
experiment is analyzed. It is shown that beam transport is not a problem for the reversed-field

configuration. However, substantial beam losses are found in the group I and 1I regimes, both
in the entry taper region of the wiggler and due to high-power electromagnetic waves.

I. INTRODUCTION

Recently, a free-electron laser (FEL) experiment at
the Massachusetts Institute of Technology (MIT) re-
ported high efficiencies without recourse to the use of a
tapered wiggler field."? The basic configuration is that of
an amplifier in which a weakly relativistic electron beam is
injected into a cylindrical waveguide in the presence of
both a helical wiggler field and an axial guide solenoidal
field. The wave-particle interaction is with the fundamen-
tal TE,; mode of the waveguide at a frequency of 33.39
GHz, corresponding to the frequency of the magnetron
used to drive the amplifier. The experiment operated with
the axial guide field oriented both parallel and antiparallel
to the direction of the wiggler, and the maximum efficiency
was obtained for the antiparalle] (i.e., reversed-field) con-
figuration. The reversed-field case demonstrated an output
power of 61 MW at 33.39 GHz for an efficiency of approx-
imately 27%. The performance in the more usual parallel
alignment of the fields was much less and peak power lev-
els of only about 4 MW were obtained for both the weak
(group I) and strong (group II) field regimes of the axial
guide field. A detailed analytical characterization of this
experiment has been presented in a previous work® in
which substantial agreement was found between the theory
and the experiment for the reversed-field configuration.
However, some discrepancies existed for the group I and I1

*’Permanent address: Science Applications International Corp., McLean,
Virginia 22102.
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cases, and it was conjectured that a problem with beam
transport existed for these configurations which led to an
increased beam energy spread. In this paper, we further
analyze the question of beam transport through the
wiggler/axial guide field in this experiment. Before pro-
ceeding further, however, a brief description of the exper-
iment is in order. .

The electron beam in the experiment was generated by
a Physics International Pulserad 110A using field emission
from a graphite cathode, and the beam energy used in the
experiment is 750 keV (50 keV). The quality (i.e., the
emittance and energy spread) of the beam delivered to the
interaction region is controlled by scraping the beam with
a shaped graphite anode. This technique was originally
pioneered at the Naval Research Laboratory for use in a
FEL experiment.* In the MIT experiment, the shaped
anode—cathode geometry results in a beam with a radius of
0.25 cm (corresponding to the radius of the anode aper-
ture), and an axial energy spread estimated to be approx-
imately Ay,/yy=1.5%. This energy spread corresponds to
a normalized rms beam emittance of ¢,<4.4X10~2
cm rad. The current available using this configuration was
of the order of 300 A (%30 A) at the entrance to the
wiggler. However, the amount of current which could be
propagated through the wiggler/guide-field configuration
varied based upon the stability of the electron trajectories.
Current propagation data indicated quite different results
depending upon the orientation of the axial guide field.

The wiggler field was produced by a bifilar helix with a
period of y,,=3.18 cm, a length of 504,,, and an adiabatic
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entry taper which is six wiggler periods in length. The
wiggler amplitude was continuously adjustable up to an
amplitude of approximately 1.8 kG. The axial guide field
could be adjusted up to a maximum amplitude of almost 12
kG in either the paralle] or reversed-field orientation.

The beam propagated through a cylindrical waveguide
of 0.51 cm in radius, which provided for a wave-particle
resonance with the fundamental TE, 1 mode in the vicinity
of 35 GHz. The FEL was operated as an amplifier, and a
magnetron which produced approximately 17 kW
(£10%) at a frequency of 33.39 GHz was used as a
driver. Since the output from the magnetron was linearly
polarized, this corresponded to approximately 8.5 kW in
the right-hand circularly polarized state which was capable
of interacting with the helical wiggler geometry.

The output from the amplifier showed the greatest ef-
ficiency for the field-reversed configuration. In this case, a
peak power of 61 MW for a conversion efficiency of 27%
was found for a wiggler-field magnitude of approximately
1.47 kG and an axial magnetic field of 10.92 kG. The
current, which could be propagated in these fields, was
near the maximum of 300 A. The output power for the
field-reversed configuration also showed a severe decrease
in the vicinity of the antiresonance, dropping by more than
three orders of magnitude. The power observed when the
axial magnetic field was oriented parallel to the wiggler
was much less than for the field reversed configuration, and
showed 8 maximum measured power of approximately 4
MW,

The organization of the paper is as follows. A brief
description of the nonlinear formulation used 1o describe
the experimental configuration is given in Sec. II. Beam
transport through the wiggler in the reversed-field config-
uration is described in Sec. IIL. The case of beam transport
for parallel orientation between the wiggler and axial guide
fields is discussed in Secs. I1I and IV for the weak (group
I) and strong (group II) axial guide-field regimes, respec-
tively. A summary and discussion is given in Sec. V.,

Il. THE THEORETICAL FORMULATION

For the sake of brevity, we do not provide a discussion
of the detailed dynamical equations employed in the non-
linear formulation here. Rather, we give a summary of the
essential properties of the formulation, and refer the inter-
ested reader to Refs. 5-11 for a complete derivation and
description. For the sake of convenience, we shall refer to
the nonlinear formulation and simulation code as
ARACHNE.>!!

The ARACHNE formulation represents a slow-time-
scale description of a steady-state FEL amplifier in three
dimensions. To this end, it is assumed that only a single
frequency propagates and, therefore, Maxwell’s equations
can be averaged over a wave period. This results in two
related simplifications of the numerical problem. Specifi-
cally, (1) that the fast-time-scale oscillation is removed
from the problem and only the slow-time-scale growth (or
damping) of the wave need be resolved, and (2) that only
an electron beamlet (i.c., a group of electrons which enter
the interaction region within one wave period) needs to be
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included in the simulation. Together, these two simplifica-
tions result in both a substantial increase in the step size
and a reduction in the number of electrons in the simula-
tion with respect to the requirements of a full-scale
particle-in-cell simulation. Hence, the numerical require-
ments for the simulation of a FEL amplifier are relatively
modest.

The electromagnetic field in this formulation is repre-
sented in terms of a superposition of the TE and TM
modes of the vacuum waveguide. Note that this does not
violate the single-frequency assumption, since the wave
numbers of the modes which are included in the superpo-
sition will vary depending upon the specific cutoff frequen-
cies. One restriction, however, which is imposed is that
only propagating modes (in which the cutoff frequency is
lower than the wave frequency) can be included in the
formulation. The space-charge field is represented in terms
of & superposition of the Gould-Trivelpiece modes (at the
same frequency as the electromagnetic wave) for a beam
which completely fills the waveguide.'? Observe that the
transverse variation of the axial electric field of the Gould-
Trivelpiece modes is identical to that of the TM modes of
a cylindrical waveguide. The fundamental assumption in
the case of both the electromagnetic and electrostatic field
is that while the transverse mode structure is determined
by the waveguide or the beam conditions, the amplitude
and phase vary slowly (with respect to the wave period) in
the axial direction due to the interaction with the electron
beam. Since both the fluctuating electromagnetic and elec-
trostatic fields are at the same frequency, the dynamical
equations for both cases can be averaged over the wave
period in order to obtain the equations for the slow varia-
tions.

In order to complete the formulation, the orbit equa-
tions for an ensemble of electrons must be specified. For
this purpose, we employ the three-dimensional Lorentz
force equations. This requires the integration of the elec-
tron trajectories in the complete set of electrostatic
(Gould-Trivelpiece modes), magnetostatic (wiggler and
axial guide fields), and electromagnetic fields (TE and TM
modes of the waveguide). It is important to bear in mind
that it is not necessary to perform an average of these
equations, since the Lorentz force equations are inherently
slowly varying for waves in near resonance with the beam.
The generality of this formulation of the electron orbits is
a crucial feature which permits the simulation to describe
not only the primary oscillation induced by the wiggler,
but also Larmor effects due to the presence of the axial field
and Betatron oscillations and guiding-center drifts due to
the wiggler inhomogeneities. This is the critical require-
ment in the simulation of the field-reversed configuration
near the antiresonance.

The initial conditions on the electron beam are chosen
to describe the beam as it is prior to the entry into the
wiggler. We assume a uniform distribution in both initial
phase and cross section. The beam is assumed to have a
flattop density profile for simplicity. The effect of an axial
energy spread is included by means of a momentum space
distribution function which is monoenergetic but displays a
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pitch-angle spread. The wiggler field model includes the
adiabatic entry taper from zero to a fixed value, and
ARACHNE then describes the self-consistent injection of the
electron beam into the wiggler. This procedure has a prac-
tical advantage, since it is easier to determine the charac-
teristics of the electron beam prior to the injection into the
wiggler.

The initial conditions imposed on the TE and ™
modes are that the initial amplitude of each mode is chosen
to reflect the injected power into the system, and the initial
wave number corresponds to the vacuum value appropriate
to the mode. ARACHNE then determines the self-consistent
evolution of both the amplitude and wave number due to

the dielectric effect of the beam in the wiggler. The initial

growth rates are assumed to be zero, since the wiggler field
is initially zero as well.

The initialization of the Gould-Trivelpiece modes is

accomplished by evaluation of the appropriate initial phase
averages of the electron beam. Note that the assumption of
a uniform electron beam implies that the phase averages,
which appear in Poisson’s equation, will initially vanish,
However, the use of a discrete ensemble of electrons intro-
duces a small numerical error into the initial phase aver-
ages (i.e., (sin @) and (cos @)). We find that, in practice,
the use of these numerical uncertainties for the phase av-
erages in Poisson’s equation to select the initial amplitudes
and wave numbers smoothes the initial transients associ-
ated with the subsequent phase bunching of the electron
beam.
Within the context of this initialization scheme,
ARACHNE subsequently self-consistently integrates the dy-
namical equations for the field amplitudes and phases of
each of the electromagnetic and electrostatic waves in-
cluded in the simulation in conjunction with the Lorentz
force equations for the electron ensemble (which typically
includes 9600 electrons). Since the complete Lorentz force
equations are used, this permits the self-consistent descrip-
tion of the effects of the injection of the beam into the
wiggler, the bulk wiggler motion, Larmor motion, the ef-
fects of wiggler inhomogeneities (i.e., betatron motion and
the associated guiding-center drifts, velocity shear effects,
orbital instabilities in the group 1 and 11 regimes, etc.), and
harmonic interactions.

Features common to all cases studied herein derive
from the geometry of the system. Specifically, we take the
waveguide radius to be R;=0.51 cm, the wiggler period to
be 4,=3.18 cm, and the wiggler entry taper as N,=6
wiggler periods in length. In addition, while the beam cur-
rent varies with the magnitude of the axial guide field, the
beamenergyis?SOkeVandtheradiusisﬁxedatthc
aperture of the anode to R,=0.25 cm.

Since the frequency of the amplifier experiment is fixed
bythe33.39GHzmagneuon,thebeamencrgyof750kev
and the waveguide radius of 0.51 cm ensures that a reso-
nant interaction is possible only with the fundamental TE;;
mode of the guide. Further, since the magnetron produces
approximately 17 kW with a linear polarization, we as-
sume that only half of this power is available with the
correct circular polarization to interact with the beam.
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Hence, the initial power of the TE,, mode is chosen to be
8.5 kW. The collective Raman interaction in a FEL cou-
ples the TE,, mode, in principle, with each of the Gould-
Trivelpiece modes having an azimuthal mode number of
/=0. In practice, however, we find that inclusion of only
the lowest-order radial mode is required to give reasonable
agreement with the experiment. Note that the axial electric
field of this mode has the same transverse variation as the
TM,, waveguide mode. Hence, the following simulations
have been performed using only one waveguide mode and
one Gould-Trivelpiece mode.

lil. THE REVERSED-FIELD CASE

As discussed Ref. 3, the first case we consider is that of
a field-reversed configuration in which the nominal exper-
imental magnetic-field parameters were an axial field mag-
nitude of 10.92 kG and a wiggler field of 1.47 kG. The
transmitted current for these field parameters was 300 A
(£10%), and the axial energy spread of the beam is as-
sumed to be 1.5% as indicated in the experiment. These
parameters represent the case of the peak power observed
in the experiment of 61 MW.

A detailed comparison of the experiment and
ARACHNE for this case is given in Ref. 3 and shows a
saturated power of 16 MW in good agreement with the
experiment. Analysis of beam transport through the wig-
glcrinthiscascindicatesthatnolosoftheheamtothe
waveguide walls occurs. The reason for this is that the
effect of the reversed field is to reduce the magnitude of the
wiggler-induced transverse velocity relative to that found
for the parallel orientation which results in a correspond-
ing reduction in the displacement of the beam from the axis
of symmetry. However, this conclusion is not universally
valid for the reversed-field configuration, and we find that
reductions in the level of beam transport occur when the
hmorpeﬁodasociatedwiththereveneduinlﬁeldis
comparable to the wiggler period. This so-called antireso-
nance also results in substantial reductions in the output
power of the FEL.

ARACHNE and the experimental results are in agree-
ment as to the existence of a marked reduction in the sat-
uration efficiency near the antiresonance (see Fig. 6 in Ref.
3) at axial field magnitudes between approximately 7-8.§
kG. The cause of this decrease in the efficiency is the trans-
verse inhomogeneity in the wiggler.*'* For this particular
example, the radius of the wiggler-induced motion is ap-
proximately 0.04 cm while the beam radius is 0.25 cm. As
a consequence, electrons at the outer regions of the beam
are quite sensitive to the wiggler inhomogeneity, and expe-
rience a sinusoidally varying wiggler field during the
course of their trajectories. The effect of these orbital ir-
regularities is twofold. In the first place, substantial oscil-
lations are found in the axial velocity® which act to degrade
the wave-particle resonance driving the interaction. In the
second place, these irregularities lead to increased loss of
the electron beam to the walls of the waveguide. The effect
of the oscillating axial velocity has been extensively dis-
cussed in Ref. 3, and we shall focus attention here on the
question of particle loss.
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We now consider an axial field of By=—17.2 kG which
is in the center of the antiresonant region. The current at
the entrance to the wiggler in this case is approximately
248 A and the wiggler field magnitude is B,=147kG. We
first treat the case of an ideal beam in which the initial (ie,
at the entrance to the wiggler) axial energy spread is zero,
and plot the evolution of the power and the transmitted
current versus axial position in Fig. 1. It is clear from the
figure that substantial particle loss is found over the course
of the interaction. Virtually no particle loss occurs in the
entry taper region (i.c., the first 19 cm of the wiggler), but
is rapid thereafter. Saturation at a power level of approxi-
mately 10 kW occurs after a distance of approximately 85
cm at which point 50% of the beam has been lost to the
waveguide wall. The total beam loss over the full 150 cm of
the interaction region is predicted to be approximately
60%.

If we consider the more realistic case in which the
initial axial energy spread of the beam is 1.5%, then we
find that these results are not substantially altered. The
beam transmission and power versus axial position for this
case is shown in Fig. 2. Again, we find no particle loss in
the entry taper region, but rapid loss thereafter. Saturation
at a power level of slightly less than 10 kW occurs after a
distance of approximately 90 cm. Beam loss at this point is
approximately 60%, and total beam loss over a 150 cm
interaction length is approximately 70%. Thus the effect of
the realistic choice in the axial energy spread results in a
small decrease in the saturated power and & somewhat
- more rapid loss of the beam.

lll. THE GROUP | CASE

As shown in Ref. 3, the agreement between ARACHNE
and the experimental measurements in the group I and I1
regimes is not as good as that found for the reversed-field
configuration. In the cases in which the axial guide field is
oriented parallel to the wiggler field, a much larger energy
spread than that estimated for the experiment is required
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in order to account for the measured power levels. Indeed,
we find that the assumption of an energy spread of 1.5%
results in efficiencies comparable to that found for the field-
reversed configuration, and we note that the efficiency pre-
dicted in simulation does not vary appreciably for either
orientation of the magnetostatic fields for comparable
beam energy spreads. In order to account for the group I
data we must assume an energy spread of greater than 6%
to account for the measured power. The group II data are
more difficult to explain and will be discussed in the fol-
lowing section.

We have no definitive explanation for this discrepancy,
but merely suggest that there is some misalignment or
other beam transport problem from the gun to the wiggler
which is exacerbated by the orientation of the axial guide
field. A possible source for such a discrepancy could be the
existence of irregularities in the wiggler field upstream
from the entrance due to the sudden termination of the
coils. Such irregularities might give rise to orbital instabil-
ities for a paralle! alignment of the wiggler and axial guide
fields which result in enhanced emittance growth. A de-
tailed evaluation of these suggestions, however, can only be
accomplished by means of a thorough analysis of the ex-
perimental configuration.

With all of this in mind, we plot the evolution of the
beam transmission and power versus axial position as mea-
sured in the experiment and as determined with ARACHNE
in Fig. 3 for wiggler and axial guide fields of 0.63 and 4.06
kG, respectively, and for an axial energy spread of 6.25%.
These fields correspond to group I operation, and the ini-
tialcurrentattheenmncetothewigglerisassumedtobe
90 A. Note that this initial current differs from that used in
Ref. 3 (i.e., which was 119 A) due to a further refinement
in the current measurements used in the experiment.'* As
shown in the figure, ARACHNE is in substantial agreement
with the experiment for the presumed energy spread of
6.25% both as regards the linear growth rate and the sat-
uration efficiency.
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It is evident from Fig. 3 that a substantial fraction of
the beam is lost in the entry taper region, but that little
beam is lost thereafter until the electromagnetic power
reaches a level of approximately 4-5 MW after which beam
loss occurs at a faster rate. This implies that the saturation
mechanism is not phase trapping in the ponderomotive
wave, as in the reversed-field example at B,= —10.92 kG.
Rather, saturation occurs in this case through loss of the
beam to the waveguide wall.

This effect of saturation by particle loss is more evident
if we consider the case of an ideal beam with an initial
energy spread Ay,/y,=0. The evolution of the transmitted
beam and the power as a function of axial position for this
case is shown in Fig. 4. In this case, since the initial axial
energy spread is zero, the entire beam is transmitted
through the entry taper region. The power is then seen to
grow exponentially until it reaches a level of approximately
10 MW, after which beam loss is rapid. Saturation is found
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at a power level of approximately 16 MW, at which point
the bulk of the beam has been lost to the waveguide wall.
An intermediate case is shown in Fig. § corresponding
to an initial axial energy spread of Ay,/yy=3.5%. In this
case,asmallfractionofthebeamislostinthcentxytaper
region after which the power grows exponentially. During
this phase of the interaction the loss rate of the beam is
relatively small. However, the loss rate of the beam in-
creases sharply when the power level reaches Approxi-
mately 8-9 MW. Subsequent beam loss is both rapid and
massive culminating in the loss of 78% of the beam over an
interaction length of 150 cm. The ultimate saturated power
in this case is approximately 11 MW.
Aaummryoftheeﬂ'ectoft.heiniﬁaluiﬂmergy
spread uponboththesatuntioneﬂiciencyiuhowninﬁg.
6. It is evident from this figure that the beam transmission
increases and the ssturation efficiency decreases with in-
creases in the initial axial energy spread. This is a novel
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FIG. 7. Variation in the beam transmission and saturation efficiency as
functions of the initial beam radius.

result since the initial axial energy spread (which is as-
sumed to be due to a pitch-angle spread) causes an increase
in the transverse electron velocities at the entrance to the
wiggler. This, in turn, gives rise to increasing electron dis-
placements from the symmetry axis. In most cases studied,
therefore, the effect of increasing the initial axial energy
spread is a reduction in the beam transmission. In the
present case, however, the wall radius is sufficiently greater
than the beam radius that beam loss is not primarily due to
this energy spread-induced loss mechanism. Instead, since
increases in the beam loss rate are correlated with increases
in the saturation efficiency, it may be concluded that beam
loss is due to the effect of the high-power TE;, mode. Since
the magnitude of this mode is greatest along the axis of
symmetry and decreases to zero at the waveguide wall, it
has the effect of driving the beam away from the axis to-
ward the wall.

The fact that massive beam loss resulting in the satu-
ration of the power occurs in the group I case but not in
the reversed-field case can be attributed to the fact that the
wiggler-induced transverse velocity is higher for the group
1, as opposed to the reversed-field example. Therefore, the
wiggler-induced beam displacement from the axis of sym-
metry is higher for the group I case which, in turn, results
in a greater sensitivity by the beam to the effects of a high-
power electromagnetic wave. Note also that the wiggler-
induced displacement from the symmetry axis is greater
near the magnetic resonance for the group I (and, for that
matter, the group II) case; hence, the beam loss rates will
also be more sensitive to the high-power electromagnetic
waves for the group I and I regimes in the vicinity of the
resonance.

Of course, the issue of beam loss due to the electron
displacement from the symmetry axis is related to the issue
of the effect of the initial beam radius on the saturation
efficiency and beam transmission. In order to illustrate this
effect, the variation in the efficiency and the beam trans-
mission is plotted versus the initial beam radius in Fig. 7.
As shown in the figure, the efficiency decreases monoton-
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ically with increasing beam radius for 0.15 em<R,<0.45
cm. This decrease in the efficiency is due primarily to the
fact that a smaller beam is less sensitive to wiggler inho-
mogeneities and 3o exhibits a smaller variation in velocity
(and, hence, the wave-particle resonance) across the
beam. However, the effect of the variation in the initial
beam radius on the beam transmission is more complex
and is controlled by two competing effects. On the one
hand, the increasing beam radius means that a relatively
greater fraction of the beam is closer to the wall. On the
other hand, the decrease in the efficiency means that the
high-power electromagnetic wave will be less effective in
drivingthcbenmtowardthewnll.lnviewofthis,thc
increase in the electron displacements in the initial beam
radius over 0.15 cm<R,<0.20 cm shown in Fig. 7 is still
too small to cause significant beam loss and the increase in
the beam transmission is due to the decrease in the TE,,
mode power. As the initial beam radius increases further,
however, the increasing electron displacements from the
symmetry axis become more important, and the beam
transmission falls until R,~0.35-0.40 cm. As the initial
beam radius increases further, the substantial decreases in
the TE,, modepowcrcauseasmallincreaseinthebeam
transmission until the initial beam radius begins to ap-
proach the wall radius.

IV. THE GROUP Il CASE

The group 11 data are more difficult to explain than the
group I case. The assumption of a comparable energy
spread of 6.4% results in reasonable agreement for the
power at the end of the interaction region, but not for the
detailed evolution of the signal ( i.e., the launching loss and
the instantaneous growth rate) during the course of the
interaction.

Comparison of ARACHNE with experiment in the case
of wiggler and guide fields of 0.63 and 10.92 kG, respec-
tively, and a transmitted current of 300 A is shown in Fig.
8 in which we plot the evolution of the transmitted current
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FIG. 9. Plot of the evolution of the transmitted beam and power, as seen
in ARACHNE versus axial position for an ideal beam with zero initial
energy spread for group II parameters.

and the power both from ARACHNE and from the experi-
ment (shown by the dots). This case shows rough agree-
ment in the case of a 6.4% energy spread for the power
(=4 MW) and saturation efficiency but not the growth
rate. In addition, the launching loss observed in the exper-
iment is much higher than that seen in simulation, as evi-
denced by the fact that there is negligible growth in the

~ observed power until after an axial position of 70 cm after

the wiggler entrance. Beam loss is not found in simulation
to be a major factor for this case until a power level of
approximately 4 MW is reached, after which beam loss
occurs at a very rapid rate. Hence, beam loss appears to be
the saturation mechanism for this case, as well as for the
group I cases.

The case of an ideal beam for these group II parame-
ters reveals very different behavior, as shown in Fig. 9 in
which we plot the evolution of the power versus axial pO-
sition for an ideal beam with an initial energy spread
A7,/Y0=0. Hence, the power saturates at a power level of
approximately 37 MW over a distance of 150 cm. The
transmitted beam as a function of axial position is not
plotted in the figure because no beam is lost. Hence, satu-
ration in this case is due to phase trapping in the ponder-
omotive wave,

An intermediate case is shown in Fig. 10 which corre-
sponds to an initial axial energy spread of AY/Y0=3.0%.
Inthismsc,nobeamislostintheentrytaperregionmd
exponential growth is found up until the power level
reaches approximately 10-20 MW. Subsequent beam loss
is rapid, but the saturated power level is comparable to that
shown in Fig. 9 for the case of an ideal beam. We conclude
that for this case beam loss can contribute only partially to
the saturation mechanism unless the initial axial energy
spread exceeds 3%.

V. SUMMARY AND DISCUSSION

In this paper, we have presented an analysis of beam
transmission in a high-power collective FEL"? which op-
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erated with both parallel and reversed guide field configu-
rations. Beam transmission was not found to be a problem
in the reversed-field configuration unless the magnitude of
the guide field was in the vicinity of the magnetoresonance
for which the Larmor period associated with the guide field
is comparable to the wiggler period. However, beam trans-
mission was a problem for the paralle] orientation of the
wiggler and guide magnetic fields.

In the case of group I parameters (i.c., weak axial
magnetic fields), ARACHNE was found to be in substantial
agreement with the experiment under the assumption of an
initial axial energy spread of 6.25%. However, the princi-
pal saturation mechanism was found to be beam loss which
occurs when the wave power reaches approximately 10
MW. This was found to be the case for all values of the
initial axial energy spread. The case of group II parameters
(i.e., strong axial magnetic fields) was more difficult to
characterize. It was found that a choice of an initial axial
energy spread of 6.44% resulted in good agreement with
the measured power, but not the measured growth rate. In
addition, the initial launching loss found in the experiment
was much greater than that predicted in simulation.
Hence, there are many unanswered questions regarding
group II operation in this experiment. Be that as it may,
however, particle loss was not found to be a major problem
in the group II regime until the initial axial energy spread
exceeded 3%, after which it was a contributing, but not the
sole influence on the saturation mechanism.
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Space-charge effects in free-electron lasers

H.P. Freund !
Naval Research Laboratory, Washington, DC 20375, USA

The questions of the importance and proper description of space-charge effects in free-clectron lasers are addressed. The
collective Raman regime occurs in free-electron lasers when the electron charge density is sufficiently high that the space-charge
potential associated with the beam space-charge waves becomes dominant over the ponderomotive potential. The theoretical
nonlinear treatment of collective effects in three-dimensions is discussed, and four intense electron beam experiments are analyzed
with the objective of determining the importance of Raman effects on the interactions. Three of these experiments used a helical
wiggler and an axial guide field. while the fourth used a planar wiggler. For each of these experiments, the usual well-known
Raman /Compton criterion predicts that space-charge effects will be important. However, a three-dimensional analysis of these
experiments indicates that only two of these experiments were in the Raman regime. Three essential conclusions are drawn. First,
the usual Raman /Compton criterion which was derived via an idealized one-dimensional analysis must be used with caution since
three-dimensional effects can alter the relative importance of the ponderomotive and space-charge potentials. In addition, 1) the
Raman shift in the resonance condition must be greater than the FEL linewidth, and 2) Landau damping of the space-charge waves
must be small in order for space-charge effects to be important.

The free-clectron laser (FEL) operates subject to
two mechanisms. In the Compton regime, the electron
beam interacts with the ponderomotive potential
formed by the beating of the wiggler and radiation
fields. For high currents, the electrostatic potential due
to the beam space-charge waves is dominant over the
ponderomotive potential, and the interaction proceeds
by stimulated Raman scattering of the negative-energy
space-charge wave off the wiggler. Of course, there is
also an intermediate regime in which both of these
mechanisms are operative. However, some controversy
still exists as to the transition between these regimes,
and as to the importance of space-charge effects in
various FEL experiments. The purpose of this paper is
to explore the nature of the Raman interaction by
studying the importance of space-charge effects in a
selection of FEL experiments [1-4].

The Compton/ Raman transition was first studied
with an idealized one-dimensional formulation [S], for
which the condition required for the dominance of the
Raman regime is

Wy, 73 2
ck,, e M
where w} = 4we?n,/y,m, is the square of the plasma

frequency, n, is the ambient beam density, Yo is the
relativistic factor corresponding to the bulk beam en-

! Permanent address: Science Applications International
Corp., McLean, Virginia 22102, USA.

ergy, and y?w (1 -v2/c)"! for a bulk axial velocity
v,. In addition, v, = -£)_/k, is the transverse
wiggle-velocity, where 2, meB, /yym, c for a wiggler
amplitude B,,, and k, is the wiggler wavenumber for a
period A,,. For a planar wiggler, the rms wiggler ampli-
tude must be used in v,. While this criterion (1) is
widely used in characterizing FEL experiments, its
application to a real system is clouded by several
factors. Firstly, the boundary conditions imposed by
the drift tube walls reduce the effective plasma fre-
quency. Secondly, the bulk characteristics of the elec-
tron orbits are modified by wiggler inhomogencities,
beam thermal effects, and the use of an axial guide
magnetic ficld. Planar wiggler configurations introduce
further difficulties since, in contrast to a helical wig-
gler, the axial and transverse electron velocities are
oscillatory. Due to these difficulties, a full 3-dimen-
sional nonlinear analysis is often required to character-
ize space-charge effects in any given experiment.

A second criterion required for space-charge effects
to be important is that the Raman frequency shift be
comparable to or greater than the linewidth. The phys-
ical interpretation of this criterion is that the wiggler
must be long enough for several plasma oscillations
during the course of the interaction. Of course, realis-
tic 3-dimensional effects can be expected to modify this
condition as well.

Finally, a third criterion required for space-charge
effects to play an important role is that Landau damp-
ing of the space-charge waves due to the thermal

0168-9002,/93 /506.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved




N

Table 1

H.P. Freund / Space-charge effects in FELs

A summary of the operational parameters for the experiments under consideration

497

Fajans et al. {1)

Orzechowski et al. [2) Kirkpatrick et al. [3)

Conde and Bekefi [4]

V, [MeV] 0.155 36 23 0.75
1, 1A] 41 850 930 300

R, [cm] 0.25 1.0 041 0.25
B, [kG] 0.176 (H) 36(P) 1.275 (H) 1.47(H)
1, lem) 33 9.8 3.14 3.18
B, [kG] 1.45 N/A N/A -10.92
P [MW] 0.08 185 18 61
n[%) 12 6 08 27

f [GHz] 9318 346 470 334
fy [GHz] 0.72 22 55 52
I/fs 0.077 0.063 0.012 0.156
w, /(ck,) 0.069 0.25 0.25 035
(2 /8) (v /¢2) 0.0023 033 0.079 0.01
Raman yes no no yes

spread of the beam must be small. In general, Landau
damping of space-charge waves is important for wave-
lengths less than the Debye length.

In order to elaborate on the importance of space-
charge effects in FELs, we shall consider four experi-
ments. The operational frequencys of these experi-
ments extended from 9 to 500 GHz, and the beam
parameters ranged from currents of 4 to 900 A and
energies ranging from 150 keV to 3.5 MeV. Three of
the experiments [1,3,4] employed a helical wiggler and
two also used an axial guide field [1,4] Of these two,
one used a guide field oriented parallel with the wig-
gler [1), while the other used a reversed-guide field
orientation [4). The remaining experiment used a pla-
nar wiggler configuration {2] Thus, these experiments

cover a wide range of parameter space. It is interesting
to observe that only two of these experiments were
unequivocally in the Raman regime, and that these
were the two with the lowest currents. A summary of
these experiments is given in table 1.

The experiments age analyzed using the 3-dimen-
sional nonlinear simulation codes ARACHNE [6] and
WIGGLIN [7], which are slow-time-scale formulations
where the electromagnetic field is expanded in a super-
positionofthe'!'Emd'leodesofeitheracylindri-
cal or rectangular waveguide, and the space-charge
field is expanded in a superposition of the Gould-Tri-
velpiece modes of the beam. Slow-time-scale equations
govern the evolution of the amplitude and phase of
each TE, TM, and Gould-Trivelpiece mode due to the

Phase (deg)
L J

Y=

1 + p/mo?

Fig. 1. Variation in the output phase versus beam encrgy as determined in the experiment [1] and with ARACHNE (6] TE,; mode
(R, =127 cm; P, = 27 kW Qlin.)).

IX. RAMAN FEL THEORY




e e s c——

498 - H.P. Freund / Space-charge effects in FELs

interaction with the beam and wiggler/axial guide
field. These equations are integrated simultaneously
with the 3-dimensional Lorentz force equations in the
complete ensemble of electromagnetic, electrostatic,
and magnetostatic fields. We emphasize that no aver-
aging procedure is imposed on the orbit equations.
This is an essential feature of the formulation required
to explain many aspects of the experiments, including
the behavior of the electron trajectories in the re-
versed-guide field configuration and the accurate de-
scription of the bulk motion of the electron beam in
the planar wiggler configuration. The distinctions be-
tween WIGGLIN and ARACHNE are 1) that
ARACHNE deals with a helical wiggler/axial guide
field with a cylindrical waveguide, while 2) WIGGLIN
deals with a planar wiggler with parabolic pole faces
and a rectangular waveguide, and 3) that the Gould-
Trivelpiece space-charge modes are not included in
WIGGLIN. As shall be shown later, this last distinc-
tion is no impediment as space-charge effects were not
important to the single planar wiggler experiment un-
der consideration. The four experiments under consid-
eration deal with both helical and planar wiggler con-
figurations; hence, ARACHNE has been used to ana-
lyze the experiments described in refs. [1,3,4] while
WIGGLIN was used to analyze the experiment de-
scribed in ref. [2].

The first experiment conducted [1] was an amplifier
driven by a traveling wave tube. As shown in table 1,
criterion (1) places this experiment in the Raman
regime, as was also demonstrated by the observation
that the gain scaled as the fourth root of the current
(8]. Further, the wiggler length of = 150 cm permitted
5-6 plasma oscillations over the course of the interac-
tion. Finally, the low energy spread (Ay,/y, = 0.3%)
minimized the effect of Landau damping. Note that at
4.1 A this experiment had the lowest current in the
group. A comparison of the variation in the phase of
the output signal with beam energy from the experi-
ment and as determined with ARACHNE is shown in
fig. 1. The phase measurement is equivalent to a tuning
curve which is the most sensitive test of the space-
charge effect (as opposed to absolute power measure-
ments). It is evident in the figure that substantial
agreement exists between the experiment and
ARACHNE; hence, we conclude that the collective
interaction is treated correctly in this formulation.

The second experiment is the ELF experiment [2}
which operated as a 35 GHz amplifier driven by a 50
kW magnetron with a planar wiggler and a rectangular
waveguide. As shown in table 1, this experiment is
transitional between the Compton and Raman regimes
on the basis of the idealized criterion (1), and it might
be expected that space-charge effects play some role.
However, the calculated linewidth {9] is = 15 GHz
which is much greater than the plasma frequency (= 2.2
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Fig. 2. Comparison of the tuning curves for the ELF experi-
ment [2] shown as circles and WIGGLIN over a 2 m interac-
tion length.

GH_z). In addition, the axial energy spread (Ay,/y, <
2%) yields a Debye length of = 0.8 cm. This is compa-
rable to the space-charge wavelength of = 0.8 cm;
hence, the space-charge waves are strongly damped
{10]. This issue, therefore, is not whether this experi-
ment is in the Raman regime (it is not), but the extent
to which space-charge cffects were important. This
question can be addressed by comparison of WIG-
GLIN with a detailed experimental spectrum.

Such a comparison is shown in fig. 2 where we plot
output power after 2 m as calculated by WIGGLIN
(for three choices of the axial energy spread) with an
experimentally measured tuning curve [2). Note that 1)
since the experiment was a 34.6 GHz amplifier driven
by a magnetron, the tuning is accomplished by varying
the magnetic field, and 2) saturation was found to
occur over a length of 1.4 m. In view of the latter point,
a detailed comparison of the spectral width is not valid
because sidebands are expected to result in spectral
broadening after saturation, and WIGGLIN does not
include sidebands in the formulation. Be that as it may,
the agreement between the spectral peak predicted by
WIGGLIN and found in the experiment is excellent
and does not vary greatly with the choices of axial
energy spread. The agreement between these peaks
from WIGGLIN and the experiment is = 30 G, which
is within the experimental uncertainty. As a result, it is
concluded that space-charge effects did not play a role
in this experiment.

It should be remarked for comparison purposes that
the FRED simulation code was also compared with
this spectral data [11]. The principal differences be-
tween WIGGLIN and FRED are 1) that FRED uses a
field solver rather than a modal superposition, 2) that a
wiggler-averaged orbit approximation is made in
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FRED, and 3) that the approximation for space-charge
is treated differently than by the Gould-Trivelpiece
superposition used in ARACHNE. The results of this
comparison between FRED and the spectral data are

that FRED is detuned from the experiment by 7%

without space-charge, and the inclusion of the space-
charge is necessary for agreement with the data. Since
this contrasts with WIGGLIN, it is of interest to con-
sider the source of the discrepancy.

The use of a field solver as opposed to a modal
superposition is not expected to result in a significant
discrepancy between these formulations. Since WIG-
GLIN is in agreement with the spectral data without
the explicit inclusion of space-charge effects, it is rea-
sonable to suppose that the principal source of the
discrepancy lies in the wiggler-averaged orbit approxi-
mation used in FRED but not WIGGLIN, and not in
the space-charge algorithm. Thus, consider the limits
of accuracy imposed by the orbit average.

Since the axial velocity in a planar wiggler is oscilla-
tory, the tuning will be sensitive to this average. This is
typically done with a Bessel function correction factor
that is derived under the assumption of a sinusoidal
variation in v,. However, the variation in v, is given by
an elliptic function for large displacements of the orbit
from the symmetry plane of the wiggler. Furthermore,
in a 3-dimensional analysis the magnitude of the wig-
gler varies over an electron orbit, which also acts to
break the sinusoidal variation in U;. Each of these
effects limit the accuracy of the wiggler-averaged orbit
approximation. In addition, the effect of a large ampli-
tude electromagnetic wave (ie., near saturation) is
included in the transverse components of the electron
trajectories in WIGGLIN (but not FRED), and is
observed to modify the electron orbits. Hence, we
assert that the discrepancy between the spectral data
and FRED arises from the wiggler-averaged orbit ap-
proximation. This discrepancy is to within = 7% in
B,,, which is equivalent 10 an = 3.5% error in v,. For
most purposes, this is a reasonable approximation, and
agreement between FRED an the experimental data
has been typically good. However, we conclude that the
wiggler-averaged orbit approximation is not good
enough to resolve the importance of space-charge ef-
fects in the ELF experiment.

The third experiment was @ superradiant amplifier
(i.c., the signal grew from noise) employing a helical
wiggler without an axial field [3). As shown in table 1,
this experiment is expected to be in the Raman regime
on the basis of the idealized criterion (1). However, the
linewidth of 50 GHz was much greater than the plasma
frequency. The beam encrgy spread of Ay, /y, = 0.25%
was consistent with an analysis of the gun geometry
using the EGUN code and with gains predicted with

cm while the space-charge wavelength is = (0.06 cm,

V=23 MeV
Iy=930 A
Ry=04lcm
A%/ =0.25%
By = 1.275kG
Ae=3.l4cm
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Fig. 3. Comparison of the experimental output spectrum [3)as
represented by the dots with ARACHNE. TE;, and T™™,,
modes (R, = 0.8 cm).
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and we expect that space-charge waves will be damped,
and that Raman effects will be unimportant. This con-
clusion is supported by ARACHNE. The output power
versus frequency from ARACHNE and the experiment
is shown in fig. 3. Evidently, ARACHNE accurately
reproduces the observed 5 . It should be noted
that the space-charge waves can be disabled in
ARACHNE, and that the predi ed spectrum is unaf-
fected by the inclusion of space-charge waves. We
eoncludethat}dimensio:maﬂeas(mchulheplm
frequency reduction and realistic orbits) modify the
idealized criterion (1),

The fourth experiment [4] operated as an amplifier.
Asshowninnblcl.thisexpeximentislhohthe
Raman regime based on criterion (1). In addition, the
wiggler length of =150 cm permitted 28-29 plasma
oscillations during the course of the interaction. Fi-
nally, the Debye length for this experiment was = (.14
cm while the wavelength of the space-charge waves was
= (.80 cm. Hence, Landay damping of the space-charge
waves is not important. Hence, we expect this experi-
ment to be in the Raman regime, and this conclusion is
supported by simulations with ARACHNE which shows
good agreement with the experiment [12). A maximum
power of =61 MW was found for a reversed-guide
field orientation. A comparison of the evolution of the
power versus axial position as determined in the exper-

ing to the nominal experimental parameters (/, = 300
A, B, =147 kG, and Py =85 kW) as well as the
upper limits due to experimental uncertainties. It is
evidcntfromtheﬁ;uretha!ARACHNE'uinanee-
ment with the experiment to within the experi

uncertainty. Note that this agreement cannot be ob-

IX. RAMAN FEL THEORY
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10* — T It should be noted that an altemate approach to the
3 3 development of a usable Raman / Compton criterion is
1! ] to use an ad hoc model for such factors as the space-
10" f 3 .
E L,=330A 3 charge reduction factor for the plasrpa_ frequency or
-~ ¢ | Bw=155kG X':gsgs‘::’ 1 the filling-factor of the beam and radiation. However,
g 10 F Pa= 10kW ” ;. 1.5% ] these descriptions must be used with some caution. For
) . \ ) 3 example, it was shown that the beam space-charge
3 3 Bo=~1092kG . . . .
S 10 i =3.18cm 1 wave itself can be driven unstable for helical wiggler/
\ No=6 : axial guide field configurations in the strong guide field
10° B’ : :3027% 1 regime [15]. Hence, the inclusion of the wiggler dynam-
Pi=85kW ics can have a significant diclectric effect on the
o e e e space-charge wave which must be included in any self-
0 60 120 180 consistent estimate of the effects of the plasma reduc-

Axial Distance (cm)
Fig. 4. The evolution of the power with axial position as
determined with ARACHNE and from the experiment (dots)
for a ficld-reversed configuration. TE,, mode (R, = 0.51 cm;
f=33.39 GHz).

tained with ARACHNE if the space-charge modes are
disabled.

In conclusion, we have examined the detailed effect
of space-charge on four experiments with the purpose
of determining criteria for the importance of Raman
effects on the FEL interaction. In the first place, it is
concluded that the wiggler-averaged orbit approxima-
tion can lead to a sufficiently large error in the bulk
axial velocity that no reliable determination of the
importance of space-charge effects can be made. It is
also concluded that the idealized Raman criterion (1)
must be used with caution since 3-dimensional effects
alter the relationship between the ponderomotive and
space-charge potentials. It should be pointed out here
that improved models of the interaction in the linear
regime have been developed which ireat the Kaman/
Compton regime with more precision than is given in
the one-dimensional Raman criterion (1). For example,
a complete three-dimensional solution to the eigen-
value problem posed by the propagation of a thin
electron beam through a cylindrical waveguide in the
presence of a helical wiggler and an axial guide field
has been developed [13}, and successfully applied to
the analysis of a Raman FEL [8). Similar analyses have
also been conducted using a hybrid one-dimensional
electron orbit/ three-dimensional waveguide model
[14]). Unfortunately, while such models are in good
agreement with FEL experiments, they are often too
complex to yield a simple Raman/Compton criterion.
In addition, two other criteria must be considered as
well. Specfically, 1) the Raman shift in the resonance
condition must be greater than the FEL linewidth, and
2) Landau damping of the space-charge waves must be
small in order for space-charge effects to be important.

tion factor. Further, attempts to include the effects of
the filling-factor must also be approached with caution
due to the optical guiding of the radiation. For these
reasons, it was judged preferable to employ the simpli-
fied one-dimensional form for the Raman/ Compton
criterion in this work.
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The coaxial hybrid iron (CHI) wiggler *

Robert H. Jackson **, Henry P. Freund !, Dean E. Pershing 2, .M. Taccetti 3
Code 6840, Vacuum Electromics Branch, Naval Research Laboratory, Washington, DC 20375-5347, UsA

A wiggler design has been developed which is scalable to small periods with high feid amplitude, high beam current
acceptance, and excellent transverse focusing and beam propagation properties. The coaxial hybrid iron (CHI) wiggler design
consists of a coaxial arrangement of alternating ferromagnetic and non-ferromagnetic rings with the central portion of the coax

ifted by one half period. The entire armangement is immersed in a solenoidal field which results in 2 cylindrically symmetric
periodic field. FEL configurations using this wiggler design have the potential for high power, bigh frequency coherent generation
in relatively compact systems. Analytic and simulated characteristics of the CHJ wiggler are discussed.

1. Introduction advantages in these areas for high power, high fre-
qQuency FELs.

Free-electron lasers (FELs) are attractive as tunable

sources of coherent radiation. However, the voltages

presently required for radiation are often beyond the 1. CHI wiggler configuration

desirable limit for many applications, Harmonic opera- . i

tion [1,2] and small period wigglers [3-10) are two Pnorworkb.ll]ha%shown. that largg wiggler fields

approaches being tested for reduced voltage (or en- can be gencrated by mmersing & periodic armay of

hanced frequency) operation. Each has advantages and ferromagnetic material in a solenoidal magnetic field.

disadvantages depending on the parameters and per- The maximum wiggler field attainable in this manner is
requirements of the particular application or set by geometric factors and saturation of the ferro-

system. By utilizing micro-wigglers (A, <S mm), FEL magnetic material. The strengths of this arrangement

operating voltages can be reduced (a V3. with re- are simplicity and the relative ease of generating large

sulting reductions in shielding, size, and cost, The solenoidal fields. Disadvantages include 3 large peri-

difficulty with this approach lies in fabricating small  odic component in the axial field within the structure,

period wigglers which will provide high field strength large variation in the axial and transverse field ampli-

and uniformity with reasonable 83p spacing and good tudes away from the symmetry axis, and potential beam

beam focusing. Several micro-wiggler configurations propagation problems because of gyroresonant and

have been proposed and investigated [3-10). Each of field gradient effects. In addition, although the wiggler

these configurations has advantages and disadvantages fields generated can be large they are still not high

in the areas of achievable field strength and uniform- enough to lower operating voltages significantly with-
ity, fabrication, control, tuning, cost, and beam accep- out sacrificing gain and power.
tance and focusing. The coaxial hybrid iron (CHI) The CHI wiggler design overcomes many of these

wiggler design presented in this paper has a number of shortcomings by employing a coaxial arrangement of
alternating ferromagnetic and non-ferromagnetic rings

with the central portion of the coax shifted relative to

the outer by one half period, see Fig. 1. The entire

arrangement is then immersed in a solenoidal field
OWortsponsoredby!heO!fneoleanescmh. e

; resulting in a periodic radial magnetic field and a
** Cotresponding author. . N foa
. _ . reduced solenoidal field with a low amplitude ripple
3 .
"‘““'M“""""";‘A‘us“”“m Usa T ons Intermational  THJ alternating gradients. One period in the CHI wig.
?  Permanent address: Mission Research Corp., Newington, gler structure consists of two adjacent rings or disks,
VA 2122, USA. one ferromagnetic and one not. This accounts for the

J % Permanent address; University of Maryland, College Park, ability of this wiggler structure to produce very small

MD 20742, USA. periods. Disks and rings of magnetic and non-magnetic
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materials only fractions of a millimeter thick can be
fabricated with very high precision. Stacks of such disks
can be brazed or otherwise formed into mechanically
robust wigglers. The most obvious materials for the
construction of the ferromagnetic disks are iron alloys.
However, other materials which have beneficial mag-
netic properties (e.g. high saturation field at cryogenic
temperatures) could be used. The non-ferromagnetic
disks can be fabricated from a wide range of materials
(or combinations of materials) including non-magnetic

metals, ceramics, plastics, air, superconducting materi- -

als, etc. The two different rings which make up a
period need not be identical in thickness, height, or
shape. Also, it is possible to yse different ring proper-
ties for the central element as long as the period
remains the same. The key to the enhanced perfor-
mance of the CHI wiggler is the addition of the central
element. The reasons for this will be discussed below.
(A linear wiggler system utilizing immersed shifted iron
poles has been under investigation by a group at Stan-
ford University, see ref. [12] for details.)

3. Analytic field approximation

An analytic representation for the CHI wiggler field
can be obtained by the solution of Laplace’s equation
subject to the appropriate boundary conditions at the
surfaces of the magnetic and non-magnetic rings. A
complete derivation of this representation will be given
indeuﬂinafuturemk[ﬂ].mdwmerelymtetbe
result here. The CHI wiggler field is azimuthally sym-
metric. The radial and axial components of this field
are given by

23 i sin k.l
Al r
sin(k,4,,,/2)
X {m[’l(k-')KO(kaR-)

+K(kar)o(k,Ry,))
__(_ l)n m(kndn/z)
(k.4,/2)
X[1(kar)Ko(kyR,,)

+K:(’t.')'o(k.Rm)]}- )

and
» (43 k,z
B,(r, z) =B+ 280.?] Go(k.Rm' k.Rh)
in(k,4,,
(ot

sin(k,4,/2)

-(- 1)'m—00(k." k.R.-))v

2

Fig. 1. Schematic of the Coaxial Hybrid iron (CHI) wiggler
geometry.

where B, denotes the average magnitude of the axial
ficld in the coaxial gap, k,=nk [= 2wn/A.), 4, and
4, denote the width of the rings on the inner rod and
the outer ring respectively, I, and K, denote the
modified Besse! functions of the first and second kind
of order n, and

Go(x,, ‘z)‘lo(xl)xo(‘z)"n(‘z)’(o(‘n)- 3)
Observe that for most applications 4, =4, =A /2
hence, the CH} wiggler field contains only the odd
harmonics.

The predicted axial and radial fields according to
Egs. (1) and ) for g = 1, 3 are shown in Figs.2and 3

reasonably uniform radial and axial field strength, Thus,
the beam will have less velocity spread induced by
intrinsic wiggler field gradients. This is an important
feature for high power FELs employing small period
wigglers.

4, Pcrfomancedllndedmcs
The POISSON codes were used to examine the

nonlincar magnetic properties of the CHI wiggler (the
internal B-H table for low carbon steel was used). A

isnotpossiblcinthisplper. anddeuﬂswillbe;iven
elsewhere [13,14). Both the radial and axial fields within

VIIl. UNDULATORS
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Fig. 3. Surface plot of analytic radial magnetic field in the gap of a CHI wiggler (gap/A, = 0.5, ring width/A_ = 0.5).
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Fig. 4. Peak radial wiggler field as a function of applied
solenoidal field (gap/A, = 0.5, ring width/A_ = 0.5).
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Fig. 5. Peak radial wiggler field as a function of normalized
8ap spacing (ring width/A, = 0., field measured in the mid-
die of gap).
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the gap were caiculated and compared with the ana-
Iytic results. Both qualitative and quantitative agree-
ment is excellent, and the results are substantially the
same as shown in Figs. 2 and 3. Magnetic flux line plots
from simulations of the CHI wiggler show the enhance-
ment caused by the center element. The central rings
act to pull the flux lines down as the upper rings pull
the flux lines up resulting in strong radial fields at the
edges of the rings. These radial fields are two times
larger than without the central rings when measured at
the same radius. (The difference is even larger if the
field is measured at the peak field radius of the TEy,
waveguide mode where the electron beam would be
placed.) In addition, field perturbations due to end
effects are much lower in the CHI wiggler configura-
tion.

The aspect of wiggler performance of most interest
is the dependence of the peak radial field on various
geometric and operational parameters. An operating
curve for a CHI wiggier with a sap to period ratio of

X ]

0.7
Radius/a,,

0.5 is shown in Fig. 4. This figure plots radial field
amplitude against applied solenoidal field, ie. the
solenoidal field which would exist in the absence of the
CHI wiggler structure. The radial field increases lin-
carly with the applied solenoidal field until the ring
material begins to saturate around 8 kG. In this linear
range, a substantial fraction, about 36%, of axial field
is converted into radial field. As the applied field is
further increased, the wiggler field amplitude levels off
and then decreases slowly. The peak wiggler field gen-
erated is substantial, = 3.2 kG, and, it should be noted,
is fully compatible with dc operation. Numerous simu-
lations have shown that the initial slope of the CHI
wiggler performance curve is dependent on details, but
the peak is mainly determined by the coaxial gap to
period ratio and the saturation field of the ring mate-
rial.

The variation of the peak field with respect to two
CHI wiggler geometric parameters is shown in Figs. §
and 6 for gap to period ratio and magnetic ring width

Fig. 2. Surface plot of analytic axial magnetic field in the 83p of a CHI wiggler (sap/A, =05, ving width/A_ = 0.5).
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3.28 low cost wiggler structure which is easy to fabricate
and assemble, and is capable of producing multi-kilo-
3.20 gauss ficlds even at millimeter wiggler periods. Be-
— 318 cause cooling considerations involve only the solenoid,
e CHI wigglers are compatible with dc, ac and pulsed
= 310 operation. The “effective” wiggler field amplitude is
« 2.08 tunable over a broad range in both the linear and
3 - saturated domains (in the latter due to gyroresonance
3.00 effects, see ref. (14]) The CHI configuration also pro-
vides a number of parameters which can be axially
2.98 tapered to control or enhance various FEL interaction
290 X . \ X characteristics. In addition, the coaxial nature of the
“o.a8 0.40 (X1 0.50 0.88 0.60 CHI configuration greatly increases the level of beam
Pole Thickness / ), current which can be propagated with sufficient quality

Fig. 6. Peak radial wiggler field as a function of normalized
central element pole thickness (outter ring width/A, = 0.5,
8ap/A, = 0.5, field measured in the middle of gap).

to period ratio respectively. Fig. S shows the expected
exponential drop in field streagth as the gap/period
ratio increases. A pole width/period ratio of 0.5 was
assumed. For small gap values, corresponding to high
beam energy or long wavelength radiation, extremely
high ficlds are possible, approaching 14 kG. The effect
of variation of the magnetic ring thickness, central ring
elements only, is shown in Fig. 6 for a gap/ period
ratio of 0.5. A peak occurs when there is a small axial
overlap of the outer and inner magnetic rings, i.c. the
inner magnetic rings are slightly wider than one half
period, ring-width/A_=0.55. For smaller gaps, the
peak field is achieved with greater pole overlap, e.g. at
8ap/A,, = 0.25 peak field is achieved at ring-width/A
= 0.6. These results also apply to width variation of the
outer rings or to simultaneous variation of both inner

and outer-rings. Other-factors such ‘as rifig height, etc.”

have been varied with similar results.

Although the CHI parameters at which the peak
field is achieved are highly dependent on particulars,
the peak value is almost independent of any factors
other than the relative gap size and ring material
magnetic saturation characteristics. In all calculations
performed to date, the peak fiekd has fallen somewhere
in the 3.2-3.3 kG range for low carbon steel rings with
8ap/A, = 0.5. Rings constructed from the best avail-
able iron alloys (Hiperco or Permendur) would in-
crease the maximum wiggler field by up to 20%, i.c. to
approximately 4 kG. Note that variations of the period,
8ap, material, ring height, applied axial field, etc. pro-
vide ample opportunities for tapering and tuning of
CHI wiggler fields.

S. Summary and discussion

The CHI wiggler configuration has several advan-
tages for applications in FEL systems. It is a simple,

for the FEL interaction.

To be sure, the CHI wiggler also has potential
disadvantages such as mechanical support of the cen-
tral element, increased mode competition and uncon-
ventional beam and resonator geometries. Although
these details must be addressed, they do not appear to
be insurmountable. With proper attention to details,
CHI wigglers will enable the development of compact,
low voltage FELs able to deliver high power at mil-
limeter and IR wavelengths.
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A three-dimensional nonlinear formulation of a free-electron laser based upon a coaxial hybrid
iron (CHI) wiggler is described. The CHI wiggler is created by insertion of a central rod and
an outer ring [composed of alternating ferrite and dielectric spacers in which the ferrite
(dielectric) spacer on the central rod is opposite to the dielectric (ferrite) spacer on the outer
ring] along the axis of a solenoidal. An analytic model of the CHI wiggler is developed which
is in good agreement with the Poisson/Superfish group of codes. The free-electron laser (FEL)
formulation is a slow-time-scale analysis of the interaction of an annular electron beam with the
CHI wiggler in a coaxial waveguide. The electromagnetic field is represented as the
superposition of the vacuum transverse electric (TE), transverse magnetic (TM), and
transverse electromagnetic (TEM) modes of the waveguide, and a set of nonlinear second-order
differential equations is derived for the amplitudes and phases of these modes. These equations
are solved simultanecously with the three-dimensional Lorentz force equations for the combined
magnetostatic and electromagnetic fields. An adiabatic taper is used to model the injection of the
beam, and an amplitude taper is included for efficiency enhancement. Simulations are presented
for K-, K,- and W-band operation. Multimode operation is also studied. The results indicate
that operation over a wide bandwidth is practical with the CHI wiggler, and that the bandwidth
in the tapered-wiggler cases is comparable to that for a uniform wiggler. Therefore, relatively
high field strengths can be achieved with the CHI wiggler at shorter wiggler periods than is
possible in many other conventional wiggler designs.

I. INTRODUCTION

The free-electron laser (FEL) has demonstrated oper-
ation over virtually the entire electromagnetic spectrum.'-*
The FEL operates by means of the beating of a periodic
magnetostatic field (called a wiggler) and an electromag-
netic field to produce a slowly varying ponderomotive
wave in phase with the electron beam. The wavelength A of
the resonant electromagnetic wave depends both upon the
beam energy and the wiggler parameters approximately as
Az=(1+8L)A/27}, where A, is the wiggler period, v, is
the bulk relativistic factor of the beam, and
a,=0.0934B.4, for a RMS wiggler amplitude B, in kG
and a wiggler period in cm. Further, in the exponential
Compton regime in which the collective space-charge ef-
fects of the beam are negligible, both the gain and satura-
tion efficiency scale as a2°/y,. Hence, the wavelength,
gain, and efficiency of the interaction all decrease as the
beam energy increases for fixed wiggler parameters. A
great deal of effort has been devoted, therefore, to the de-
sign of short period wigglers in order to operate at short
wavelengths with low beam energies. However, this is an
ultimately self-defeating process, since reductions in the

“'Permanent address: Science Applications International Corp., McLean,
Virginia 22102,

“’Permanent address: Mission Research Corp., Newington, Virginia
22122

©)Permanent address: Univensity of Maryland, College Park, Maryland
20742.
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wiggler period often result in a corresponding reduction in
the wiggler amplitude as well with a deleterious impact on
the efficiency and gain of the FEL.

It is our intention in this paper to analyze the perfor-
mance of a FEL amplifier based upon a coaxial hybrid
wiggler.® This novel wiggler design is based upon a config-
uration in which a central rod and a coaxial ring of alter-
nating ferrite and dielectric spacers is inserted into a sole-
noidal magnetic field. Further, in this design the ferrite
(dielectric) spacers on the central rod are aligned opposite
to the dielectric (ferrite) spacers on the outer ring. For
convenience, we refer to this design as the coaxial hybrid
iron wiggler, or CHI wiggler for short. A schematic illus-
tration of this configuration is shown in Fig. 1. The geom-
etry of this design produces an azimuthally symmetric pe-
riodic field in which, for a fixed period, the amplitude can
be increased by the relatively simple expedient of increas-
ing the strength of the solenoid. Since solenoidal magnets
are readily available with amplitudes of many tens of tesla,
the CHI wiggler is capable of producing relatively high-
amplitude but short period wiggler fields. It is important to
observe that the radial component of the field in the CHI
wiggler has a minimum at the center of the gap; hence, the
field tends to focus the electron beam against the effects of
self-field-induced spreading. In addition, the azimuthal
symmetry of the field in the CHI wiggler results in a bulk
wiggler-induced transverse velocity in the azimuthal direc-
tion; hence, the beam interaction is strongest for electro-
magnetic waves with an azimuthal component.

The organization of the paper is as follows. An analyt-
ical representation of the CHI wiggler is derived in Sec. II,

© 1994 American Institute of Physics




Solenoid

FIG. 1. Schematic illustration of the CHI wiggler configuration.

based upon a solution of Laplace’s equation and boundary
conditions appropriate to the coaxial geometry of the CHI
wiggler. This analytic representation is in substantial
agresment with results of a simulation of the CHI wiggler®
using the Poisson/Superfish group of codes (see Ref. 7 for
a discussion of the algorithm employed by these codes). A
nonlinear formulation of the interaction of the beam and
the CHI wiggler with the transverse electric (TE), trans-
verse magnetic (TM), and transverse electric and mag-
netic (TEM) modes of a coaxial waveguide is derived in
Sec. III. In this section a slow-time-scale formulation of the
dynamical equations for the electromagnetic fields is de-
rived for the coaxial waveguide geometry. These equations
must be solved simultaneously with the Lorentz force
equations for the electron trajectories in the combined
fields of the CHI wiggler and the TE, T™, and/or TEM
modes of the waveguide. A numerical analysis of the gain
and saturation efficiency for various representative sets of
parameters is described in Sec. IV, and a summary and
discussion is given in Sec. V.

Il. THE CHI WIGGLER

The CHI wiggler is formed by the insertion of a central
rod and a coaxial ring of alternating ferrite and dielectric
spacers within ‘a solenoidal magnetic field. A schematic
illustration of this configuration is shown in Fig. 1. The
arrangement of the ferrite and dielectric spacers are such
that the ferrite (dielectric) element on the central rod is
opposed to the dielectric (ferrite) element on the outer
ring. The magnetic field produced by this arrangement is
azimuthally symmetric, and the radial component of the
field has a minimum in the center of the gap. Hence, the
field provides a focusing force on the electron beam. Ad-
ditional focusing is provided by the bulk axial component
of the field.

The ease of construction of this design permits the
development of wigglers with extremely short periods by
the simple expedient of using thin dielectric and ferrite
spacers. The advantage of a short period wiggler is that
relatively low beam energies are required for resonance at

Phys. Plasmas, Vol. 1, No, 4, April 1994

a given frequency. However, in most wiggler designs this is
offset by the fact that shorter wiggler periods typically re-
sult in lower wiggler amplitudes and increased wiggler field
gradients. This is not necessarily the case for the CH] wig-
gler, since high wiggler amplitudes can be achieved by us-
ing a stronger solenoid. Also note that the gyroresonance
between the periodic and axial components can enhance
the FEL interaction as well.

In a source-free region the divergence and curl of the
magnetic field vanish, and the field in coaxial gap of the
CHI wiggler can be found by solution of Laplace’s equa-
tion,

V?B(rz) =0, (n

for the appropriate boundary conditions. Since the geom-
etry is azimuthally symmetric, we assume that

B(rz)=B,(rz)é,+ B,(rz)é,, (2)

where B,(rz) =R,(r)R,(2), and B,(rz)= (r)Z(2).
Each wiggler period, denoted by 4, corresponds to the
combined length of one ferrite and dielectric spacer, and
Wwe assume that the length of each spacer is 4,/2. As a
result, the wiggler field exhibits an axial periodicity of the
form B(r,z) =B( rz+NA,), where Nis an integer. Finally,
we shall use R;, to denote the radius of the central rod, and
Ry for the inner radius of the outer ring.

Substitution of this field into Laplace’s equation yields
two equations:

1 dfd 1 1 &

B,(rz) ”m ‘T’("T’Rr(r)) -;:] +m e Rz(z), =0,

3)

and

B [ ' d¢t d z 1 & z 0
:(fl)[mir‘ (’d—r r("))+zz(2) E z(z)]"—' .
4)
Since the radial and axial components of the fields should

independently vanish, we use nk,(=2mn/A,) as the sepa-
ration constant where 7 is an integer, and write

a R,
& 1d 1
P75 (#52) oo ©
and
& 1d
(P+;E—nzki)z,(r)=0. (7)

Equations (5)-(7) have the general solutions
Z,(2) =A,, cos nk z+ B,, sin nk,z,
R,(2)=A,, cos nk z+ B, sin nk,z,
Z,(r)=Cplo(nk,r) + DKol nk,p),
R,(r)=Cpl\(nk,r) + DK (nk,p).

(8)
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Under the requirement that V+B=0, the coefficients sat-
isfy 4,C.+B,C,=0, B Cp~A,C=0, 4,D,
—B,D,=0, and B, D,+A,,D,=0. As a result, the
field may be written as a sum over spatial harmonics,

B,(rz)=By+ 2, [ BJo(rkr) +CKo(nk r))
XOOS[IIk,,(Z—Z,)] (9)

and

B,(r2)= Z. [ By (nk7) +C K, (nk, ) ]

xsin[nk (z-2,)]. (10)

The relations between the remaining coefficients can be
determined by application of the boundary conditions. We
now assume that the effect of the ferrite spacers results in
a step function in the axial field at r=R_ and Ry, such
that B,(R,, 2)=B, and B/(R,,, 2)= B, along the sur-
face of the dielectric and zero along the surface of the
ferrite. Therefore, for the n=0 spatial harmonic,

AyBy i
2 (11)

Aubo= [ dz BBy )=
and

AuvBow

Ay
AuBy= L dz B,(Roy 2) = 22w (12)

2

This implies that B, = B,,=2B,. We can now Fourier
decompose the n> 1 spatial harmonics. Under the assump-
tion that the dielectric spacer along the surface of the cen-
tral rod is found over the first half-period of the wiggler, we
find that

B o(nkRy)+C Ko(nk Ry)
4B, (s

{4\ [n7m
7 o= ra( (),

(13)

where we choose z,=0 under the assumption that the first
spacers are half the typical length. This implies that the
dielectric spacer is found over the second half-period of the
wiggler along the outer ring; hence

B Io(nk R o)+ C Ko(nk R o)

4 4
_____!_o(J"V dz cos nkz+ J‘" dzcosnk,z)
Ao \ Jo /4

4\  /nm
=5{z)(7)
Using Eqs. (13) and (14), we can now write the field

in the form

(14)

1048 Phys. Plasmas, Vol. 1, No. 4, Aprl 1994
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B(rz)=By+B, El cos(nk,z)

{Selo(nk ) — T Ko(nk,r)}
G(nk R oy nk R;,)

(15)
and
B/(rz)=B, Z. sin(nk,z)

(S 1(nk )+ T K \(nkr))
G(nk Rounk Ry)  °

(16)
where B, =25,

G(5.8) =1y (E)Ko(8) —1o( ) K(£), an

s-a(;z;)nn("{) Kok Ra) + Ko(nk R )],
. (18)

T.a(%)-in("{)uo(nk...ki.mo(nk..kmn. (19)

This field has the form of a superposition of an axial guide
field and an azimuthally symmetric wiggler with a large
number of odd spatial harmonics. ’

The CHI wiggler field described in Egs. (15) and (16)
represents a reasonable approximation to the realistic field
withinthelimiucftheassnmptionsmadeinsolving La-
place’s equation. The radial and axial components of the
ﬁeldnormalizedtoBoareshowninFigs.Zand3for
Row/A,=1.0 and R, /A,=0.5 using the fundamental and
third spatial harmonic components, and is in good agree-

- ment with the solution for the field obtained in this geom-

etry using the Poisson/Superfish group of codes.’ The ef-
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FIG. 3. Nlustration of the Axial component of the CHI wiggler.

fect of the third harmonic contribution is substantial, and
results in a narrowing of the peaks in the radial field com.
ponent and the double-peaked ‘extrema in the axial field
component.

lil. THE NONLINEAR FORMULATION

We now consider the dynamical equations that govern
the electromagnetic fields and the electron beam, We con-

are neglected in the analysis. In general, this is valid ag
long as w,/ck, < 72v1/8yo%, where @, denotes the ambjent
beam plasma frequency, U, is the bulk transverse velocity
imparted by the wiggler, v, is the bulk relativistic factor of
the beam, and y,=( 1—4{ /)2 for a bulk streaming
velocity V) - Space-charge effects can also be neglected if
(1) the Wwavelength is less than the Debye length and the
Space-charge waves are subject to strong Landau damping,
or (2) the bandwidth of the interaction is greater than the

had l
0A(x,1) = Igo 64,,(2) (KT..’ Z(Kymr)&, sin a,,,

m=|

+Z;(k;mr)ég cos alm)v (20)

for the TE modes,
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SA(x,1) = IEO Mh(z)(z;(x,,,r)é,cosal,,
ma |

l
—=—2Z/(K,,,7)&, sin a
o 1K imP) g Im

Kim o .
+’I Z/(K;yr)é, sin az,.). (21)

for the TM modes, where the phase for angular frequency

@ and wave number ky, is

z
a,,,,sj; dr k,,,,(z’)+10-wt, (22)
and the dispersion of the modes is given by
o’

J1 (Kim@) ¥ (x,.) —Ji(kmb) Y; (xma) =0, (24)
for the TE modes, and
Ji(xma) ¥, AKpmb) ~JiKkb) ¥, H(Kpat) =0, (25)

for the TM modes, ‘Where J, and Y, denote the regular
Bessel and Neumann functions of order /. The radial po-
larization functions are composed of linear combinations of

the Bessel and Neumann ctions
Z/(Kimr) =J{K},r) +ApYx,,r), (26)
where
J1 (K1)
o o| Yilegpy' T mods, ”
Im= JI(KImb) . mOdes‘ ( )
. T Yikb)

The vector potential for the TEM mode js given simply
by

a
6A(x,t)=6A(z) ;é,cos a. (28)
Since the TEM mode is. not cut off, the dispersion and
phase are given by w=ck, and

, .
=f dz' k(2’) —owr. (29)
0
As in the case of the TE and TM modes, the amplitude and
Wave number of the TEM mode is assumed to vary slowly
in z over a wavelength,

The dynamical equations for the amplitydes and
Phases of each mode are obtained by subs}imﬁon of the
field representations into Maxwell’s equations gnq then
performing an orthogonalization in  and 6, as well as ap
average over the wave period. Derivations of these equa.
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°

uons 10r cylindnca: and rectangular waveguides have been
described in detail,’ and the derivation for the coaxial
waveguide follows analogously. The dynamical equations
that result are

(s

v,

@} ! .
=z Hy, ( ol a7 Z(xp,r)sin a;p,
Vg ,
+m Z;(xiwr)cos alm)' (30)

d
Zk;fd—z (k,‘,{,z ba;,)

@}

v, |
=2 i (1 iy 10

—-I:—"lli(xb.r)sin az..)' (1)

for the TE modes,

e ) (-

2
Dy (—'i'-z'(x )eos a
-:I im Iu:' 1 \KimT Im
Yo ! 2 ik rsina
—— —Z{x
lvxl Kim? ol m

Kim .
+;—Z,(x,,.,r)sm a,,,,). (32)
im

) ) o

Gy (Y
""2!' lm(‘”xl l(xlm’)malm

+ Vg ] Z’( )
T LK cosa
{ve| Kim? " m

—:—'"—'Z,(x,,,,r)oos a;,,.) , (33)
m

for the TM modes, and-

{2 g me),

o} P—a? v .
“& bin(b/a) (rlv,] sma),
(35)

for the TEM mode. In Eqs. (30)-(33), 8a,,,=¢ 54, /m ¢
is the normalized amplitude of the modes, and we have
defined the TE/TM mode coupling coefficients as

d
Zklnz (klﬂ 8‘)=
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’ 2 (B —a)

Wi’ ~ F)Z] (k) = (i — P) Z} () *

H,,={ TE modes,

23, (P -a?)

P2 1)~ Z ) T O
(36)

The electron beam is assumed to be monoenergetic with an

axial energy spread determined by an initial (i.e., at z=0)

pitch angle spread, and the averaging operator is defined

over the initial beam parameters,

A 2y 'Po
(e | aofo dpo B

X exp[ — (po—po)*/Ap?]

X f fdxod.voal (x0.50)
4

x [ dvooy (o) (), (37)

where A,=m(b*~a?) is the cross-sectional area of the
waveguide, Bo=vs/c for the initial axial velocity v,,
$o=tan~(p,o/p,0), (PoPyoPg) denote the initial beam
momenta, p, and Ap, denote the initial total momentum of
the beam and the initial axial momentum spread, respec-
tively, ¥o(= ~wt,, where ¢, is the time at which the par-
ticle crosses the z=0 plane) is the initial ponderomotive
phase, 0, and oy are the initial distributions of the beam
in cross section and phase, and

—(p—p 32\ 11
As[w"-:dp,oexp(%!ﬁo)—)] s (38)
is a normalization constant Thic recults in an axial enargy
spread given by

Ay, i 1

Yo J1+2(r-1) (Ap/po)

The equations for the fields must be solved simulta-
neously with the orbit equations for an ensemble of elec-
trons. Since this is an amplifier formulation, we integrate

(39)

- the complete three-dimensional Lorentz force equations,

d e
v‘Z’= -—esE—-z 'x(Bm"'SB)’ (w)

for each electron, where B,,, is the még_nctostatic field due
to the CHI wiggler, and SE and 5B denote the aggregate
electromagnetic fields for all the wave modes,

1 .
m=-;m2 57 Aim: (41)
and
SB= ) VXG&A,, (42)
all modes
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Further, the electron coordinates obey the equations

d
v, 2=V (43)
d 1
v, s =; Vg, (44)
and
d @
Uzd_z '/’=k+kw-;;- (45)
for the ponderomotive phase.

By specifying the initial beam conditions to the en-
trance of the wiggler and integrating the complete Lorentz
force equations, we obtain the advantage of modeling the
injection of the beam into the wiggler. This describes any
increase in the effective beam emittance due to the injection
mechanism in a self-consistent way. For this purpose, we
model the adiabatic injection region by means of a tapered
wiggler amplitude. In addition, we also consider amplitude
tapering for the purpose of efficiency enhancement. In or-
der to describe these effects within the CHI wiggler model
in Eqs. (15) and (16) we assume that the overall coeffi-
cient of the periodic component of the magnetostatic field
varies as

k
28, sinz(ﬁ); N A,,
w

280; NMW<Z<ZO’
2By[1+k e (2-20)); 2>z,

B,= (46)

where N, denotes the number of wiggler periods in the
entry taper region, and €, is the normalized slope of the
taper for purposes of efficiency enhancement.

IV. NUMERICAL ANALYSIS

The dynamical equations for the particles and fields
are solved for an amplifier configuration in which several
modes may propagate at a fixed frequency w. The numer-
ical treatment involves the solution of 6N, + 4N a ordinary
differential equations (where Ny is the total number of
clectrons and N, is the total number of modes) as an
initial value problem, and we use 2 Runge-Kutta-Gill al-
gorithm for this purpose. The particle average is accom-
plished by the Nth-order Gaussian quadrature in each of
the initial variables. This results in the use of 1000 particles
in the absence of an in initjal axial energy spread, and 9600
particles when the axial energy spread is nonzero,

The initial conditions on the fields are chosen to model
the injection of an arbitrary power level for each mode. We
note here that the time-averaged Poynting flux in GW for
each mode is given in terms of the mode amplitudes and
wave numbers as
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[ d)k[. P
069 g, 4554 TE modes,

P 0.69cThA,(l+Pl;)5az,,,,; T™ modes, (47)

wkb? b
2.18 = éa ln(;); TEM mode.

The initial wave numbers are chosen by the vacuum state,
and the growth rates are initially zero, since the amplitude
of the periodic component of the CHI wiggler is also ini-
tially zero. The initial state of the electron beam is chosen

'to model the injection of a continuous, axisymmetric beam

with a uniform density and annular cross section, so that
oy =1 for —n<so<7 and o, =1 for Ryin<r<Rp,, .

waveguide; hence, R, =a and Ry =b. While we shall be
concerned with the fundamental resonance [i.e.,
@ (k+k,)vy ] in this paper, both the first and third spa-
tial harmonics of the CHI wiggler are included in the anal-
ysis. The third harmonic interaction will be treated sepa-
rately in a future work.

A. K,-band operation

The first case we consider deals with a 200 kV/100 A
electron beam with inner and outer radii of R, =1.9 ¢m
and R, =2.3 cm Propagating through a coaxia] wave-
guide, with a=1.4 cm and 5=2.8 cm, The CHI wiggler is
characterized by a solenoidal field of By=1.6kG, a period
A,=2.54 cm, and an overall length of 35 wiggler periods
with a five period entry taper region. This gives a wiggler
field at the center of the gap of approximately 800 G,
which, in turn, results in an average axial velocity of

2=0.685. For these parameters, @y/ck,=0.057, which
corresponds to a beam plasma frequency of approximately
0.68 GHz. As will be discussed, this is much lower than
either the resonant frequency or bandwidth of the interac-
tion, and we are fully justified in the neglect of the collec-
tive space-charge modes in the analysis,

The TEy, mode for this waveguide is resonant in the
K, band with frequencies in the range of 15-19 GHz. In all
cases, we shall assume that the drive power js 1 kW. The
variation in the TE,, mode gain as a function of frequency
is shown in Fig. 4 for the case of an ideal beam with
Ay,=0. It is evident from the figure that the gaip g rela-
tively constant at approximately 30 dB from 13-17 GHz,
and falls off rapidly at the edges of the band. We now
examine the variation in the gain at the center of this band
(ie, at 15 GHz) in more detail.

The evolution of the power as a function of axia] dis-
tance is shown in Fig. 5 for the case of the idea] beam. The
power is seen in the figure to remain relatively constant
over the initial ten wiggler periods, which includes the eq-
try taper region, and to grow exponentially thereafter. A
rapid oscillation is also found to occur with a period of
A,/2, which corresponds to the lower beat wave interac-
tion. Such an oscillation has also been found to occyr jn
planar wiggler FEL’s.'® An output power of approximately
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FIG. 4. Plotofﬂnuinuafnncﬁoncfﬁequmnludhﬂhd
35 wiggler periods.

1.05 MW is reached at the end of the interaction region for
an overall efficiency of 5.3%, but saturation is not found
and more power can still be extracted with a longer wig-
gler.

The variation in the average beam velocity over the
interaction length is shown in Figs. 6-8. The evolution of
the average axial velocity is shown in Fig. 6. The injection
of the beam is clearly indicated by the initial decrease of
the axial beam velocity over the first five wiggler periods,
which corresponds to the increasing transverse compo-
nents of the velocity due to the wiggler. The average ve-
locity remains relatively constant thereafter until z2=254,,
after which the rapid decrease in the axial velocity is due to
the extraction of energy from the beam. The bulk of the
transverse motion due to the wiggler is in the azimuthal
motion of the beam, which is shown in Fig. 7. Again, the
“spin-up” of the beam in the entry taper region is clearly
shown along with the primary oscillation at the wiggler
pericd. The RMS component of the azimuthal velocity of
approximately (vg)/c=0.1. The average radial velocity is
shown in Fig. 8, and is seen to be substantially smaller than
the azimuthal component.

TEqy Mode (a= 1.4 cm; b=2.8cm; f = 15 GHz)

107 prrrrre T e
E V,=200kV
0 F L=100a e
~ | Rup=19em 1
B 10F R =23em 1
§ f 47,=0 3
£ 10* E
By=16kG 3
10° A=254em ]
] N, =5
y. ..I..,.l...xl...Ll....l..n.l.‘.-‘
R T TR 35

FIG. 5. Evolution of the power as a function of axial distance for an
ideal beam.
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FIG. 6. Evolution of the average axial velocity of the beam.

Figures 6-8 for the evolution of the average beam ve-
locity show existence of velocity components at higher har-
monics of the wiggler period. This is shown more clearly
by taking fast Fourier transforms of the average velocity
components. The Fourier transform of the average axial
velocity is shown in Fig. 9 and indicates the existence of a
second harmonic component, which is some 50 dB below
the amplitude of the average velocity. This second har-
monic component is due to the fact that, as in the case of
planar wigglers, the magnitude of the transverse velocity is
not constant. The Fourier transform of the azimuthal ve-
locity is shown in Fig. 10, and the predominant oscillation
is clearly at the fundamental wiggler period. However,
smaller oscillatory components are also seen at the second
harmonic and at the subharmonic, although these compo-
nents are about 35 dB lower than the bulk wiggler oscilla-
tion. Similar behavior is seen for the average radial veloc-
ity, as shown in Fig. 11. In the case of the average radial
velocity, however, the subharmonic is relatively larger than
for the average azimuthal velocity.

As in the case of more conventional FEL designs, the
interaction efficiency is very sensitive to the axial energy
spread of the beam.® Observing that the resonance condi-
tion is wzx (k+k,)v,, thermal effects become important
when Av/v,~Imk/(Rek+k,). In the present case,
(Im k)/k,=0.015 and (Re k)/k,=0.88; hence, we expect
that thermal effects will be important when Av/v,

0.20 prrrr e
015 |
0.10 F
0.0s |
A o.oo?\f
v -00s b
-0.10 |
-01s £

_0.20 :4..I,‘..l...-l
0 s 10 15

c

PSS S

A

T T
25 30 135

FIG. 7. Evolution of the average azimuthal velocity of the beam.
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FIG. 8. Evolution of the average radial velocity of the beam.

=0.80% and Ay,/7,=0.74%. The variation in the output
power as a function of the initial axial energy spread is
shown in Fig. 12. It is evident in the figure that there is a
rapid decrease in the output power as the axial energy
spread increases from zero. This decrease remains rela-
tively linear until thermal effects become important, after
which the power decreases somewhat less rapidly. Overall,
however, the output power decreases by more than an or-
der of magnitude as the initial axial energy spread increases
to 1.5%.

We now turn to the study of efficiency enhancement
with a tapered field. Note that with a drive power of 1 kW
and a configuration of 35 wiggler periods in length with a
five wiggler period entry taper this system did not reach
saturation at 15 GHz. Allowing for an arbitrary length, we
find that saturation in the case of an ideal beam with
A7,=0 occurs at z/4,~40 at a power level of 1.8 MW,
which corresponds to an efficiency of 7=9.0%. This satu-
ration efficiency can be enhanced by tapering of the ampli-
tudes of the bulk axial ccmponent of the CHI wiggler, or
the amplitude and/or period of the periodic components of
the CHI wiggler. This can be accomplished by tapering the
solenoidal field or varying the thickness and width of the
spacers. Of course, the specific design of the tapered com-
ponents in any given system can result in a field tapering in
which the amplitude of the bulk axial field as well as the
amplitude and period of the periodic component of the

8

7

Fourier Amplitude of v (dB)

FIG. 9. Fast Fourier transform of the average axial velocity.
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Fourier Amplitude of v, (dB)
[~

FIG. 10. Fast Fourier transform of the average azimuthal velocity.

CHI wiggler vary in complicated ways. The description of
any specific tapered configuration, therefore, requires the
detailed description of each of these components. For sim-
plicity, however, we shall assume that the solenoid and
spacer dimensions are chosen in such a way that only the
amplitude of the periodic component of the CHI wiggler
varies, as given in Eq. (46).

The basic physical mechanism underlying the tapered-
wiggler interaction depends upon the fact that the elec-
trons decelerate in the axial direction as they lose energy to
the wave. If the wiggler is tapered, it is possible to reaccel-
erate the electrons and so prolong the resonant interaction
and extract more energy from the beam. The specific per-
formance of a tapered wiggler configuration, however, de-
pends upon numerous considerations. For example, the
start-taper point must be chosen to correspond to the po-
sition at which the bulk of the beam becomes trapped in
the ponderomotive well. A choice of the start-taper point
that is either too carly or too late results in a degraded
performance. In addition, the slope of the taper must be
chosen properly to counter the rate of deceleration of the
beam. Finally, the magnitude of the efficiency enhance-
ment depends upon the magnitude of the wiggler-induced
transverse velocity.

As shown in Fig. 6, the average axial electron velocity
begins to decrease rapidly for z/A_~2S, which corre-

20
g
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'g :
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£
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FIG. 11. Fourier transform of the average radial velocity.

Freund et a/. 1053




|
i
o
*
)
o
o

leg Moge(a=1.4cm;b=28cm; Fp=1kW)

¥, =200kV
1,=100 A

Rpn=19cm
Ry, =23cm

Power (MW)

04 ¢ p-16kG
| A,=254cm

)
1
3
]
1
i
=
i
3
K
-~
1
PN, =5 4

hetd P A j
0.0 0.50 1.0 1.5
ar/y, (%)

FIG. 12. Variation in the output power as a function of the initial axial
energy spread of the beam.

sponds to the trapping of the beam in the ponderomotive
potential, and we find that the optimal start-taper point for
the TEy, mode interaction discussed above occurs for a
start-taper point of zo/A,,~ 13. Similarly, the optimal slope
of the taper is found to be €,=~—0.002. A comparison of
the evolution of the power with axial position for these
tapered-wiggler parameters and for the uniform wiggler is
shown in Fig. 13 for the case in which the wiggler ampli-
tude is tapered to zero. The maximum efficiency found
with the tapered wiggler in this case is 7=10.3%. This
corresponds to a A9=1.3% due to the tapered wiggler.
The reason for this relatively small efficiency enhance-
ment is that the wiggler-induced transverse velocity is also
small. The bulk transverse velocity for the CHI wiggler is
directed in the azimuthal direction, and, as shown in Fig.
7, (vedrms/c=0.1. However, the efficiency enhancement
predicted from an idealized one-dimensional model of the
tapered-wiggler interaction is given by’ : :

v} ausAB,
Ana -1} L:,‘-—*‘ST”. (48)

TE;, Mode (a = 1.4 cmb=28 cm; f=15GHz)

25 e —— .
[ Vy=200kv tapered wiggler ]
.20 nL=100A _
; 3 Rm»,=l.9cm
2 15 F Ran=23cm
5 L 4y,=0
g 10 E By=1.6kG
& Tt A,=254cm
N, =5
05 v
0.0: PN N .;l....I....l...,l....l..‘.

FIG. 13. Evolution of the power for both uniform and tapered-wiggler
configurations.

1054 Phys. Plasmas, Vol 1, No. 4, April 1994

a=ld4em b=28cm; P, =1 kWL =354
'6 T v T T ~ T

14 N

L/

s 12 } TE, B

) \ :

£ 10t j TE, =

]

S / :
g F/ -
of :
4 aad ; Las ) ] N

20 21 pas) 23 24 25 26 27

Frequency (GHz)

FIG. 14. Gains for the TE,,, TE,,, TE,,, and TE,, modes for the same
beam, wiggler, and waveguide parameters as shown for the TE,; mode in
Fig. 4.

The maximum tapered-wiggler extraction efficiency is
found for AB,/B,=—1and is ANz =7} v} qus/c. For
this specific example (see Fig. 6), (v,)/c=0.69; hence
‘rﬁ =19 and A7, =1.9%. This is in reasonable agree-
ment with the simulation.

The TEy, mode is the dominant mode for the CHI
wiggler interaction because it is polarized in the azimuthal
direction, which corresponds to the predominant direction
of the wiggler-induced transverse motion. However, the
resonance condition can be satisfied for other modes as
well. Of these, the TEM mode has a resonance at a fre-
Quency of approximately 26 GHz for these beam and wig-
gler parameters. However, the TEM mode couples to the
radial component of the velocity, and, as indicated in Fig.
8, (v,)rms/c=0.04, which is much less than the azimuthal
velocity. Hence, the gain found in simulation for the TEM
mode is negligible. The TM modes are also polarized pre-
dominantly in the radial direction, and these modes are
also found to have negligible gain for these beam, wiggler,
and waveguide parameters. However, the TE modes can
result in gain at other frequencies.

We restrict the discussion to the high-frequency upper
intersections between the TE mode dispersion curves and
the beam resonance line. For the specific choice of param-
cters used to study the TEy, mode, there are four other TE
modes that can interact resonantly with the beam. These
are the TE;, mode, which has an intersection with the
beam resonance line at a frequency of approximately 25.4
GHz, the TE,, mode at a frequency of approximately 24.8
GHz, the TE;; mode at a frequency of about 23.5 GHz,
and the TE,, mode at a frequency of about 21.6 GHz. It
should be remarked at this point that our single-mode anal-
ysis of the TE;;, mode is valid, since the resonant frequen-
cies for these modes are much higher that the 13-18 GHz
found for the TE;, mode.

A summary of the variation of the gains of these modes
with frequency is shown in Fig. 14, corresponding to the
same beam, wiggler, and waveguide parameters used in
Fig. 4. It is evident from the figure that the gain for each of
these modes is in the neighborhood of 12-15 dB which is
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FIG. 15. Evolution of the power for a multimode TE;/TE;; case.

much less than the 30 dB found for the TEq; mode. The
reason for this is that while the TEy mode is polarized
entirely in the azimuthal direction, the TE,, modes have a
component in the radial direction and thus couple less
strongly to the beam for a given set of wiggle parameters.
Note that each mode was considered individually in the
analysis in Fig. 14. However, there is some overlap be-
tween the TE,, and TE,, modes at approximately 25 GHz
and between the TE,, and TE,; modes at approximately 24
GHz. In these frequency regions, therefore, a multimode
analysis is required.

In order to examine the issue of multimode operation,
we now consider the growth of the TE,, and TE,; modes at
25 GHz and the TE,; and TE;; modes at 24 GHz. The
beam, wiggler, and waveguide parameters are the same as
used previously, but we now initialize each mode at 500 W
rather than the 1 kW used for the single-mode analyses.
The results for the TE,, and TE,; modes at 25 GHz are
shown in Fig. 15, and indicate that the TE,, mode sup-
presses the growth of the TE;, mode. A simi suppres-
sion of the higher-order mode is seen in Fig. 16 for the

1 and TE;, modes at 24 GHz.

a= l.4cm;b=2.8cm;f= 24 GHz
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FIG. 16. Evolution of the power for a multimode TE,,/TE,, case.
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B. K,-band operation

The second case we consider is that of operation in the
K, band. Theelectronbeamparameteminthismeare
assumed to have an energy of 230 keV, a current of 40 A,
and inner and outer radii of 0.814 and 0.986 cm, respec-
tively. The CHI wiggler is characterized by a solenoidal
field of 5.2 kG, a period of 1.09 cm, and an entry taper of
five wiggler periods in length. The gain band is extremely

“broad and amplification is found for operation in the TE,,

mode over the frequency range from 28 through 46 GHz
with inner and outer radii of 0.6 and 1.2 cm, respectively.
Further, we shall assume an input power level of 1 kW in
all subsequent simulations.

The evolution of the power as a function of axial po-
sition is shown in Fig. 17 for the case of an ideal beam (i.e.,
Ay,=0) and operation at 35 GHz with an input power of
1 kW. As shown in the figure, saturation occurs at a power
level of approximately 768 kW for an efficiency of 8.35%.
The saturation point occurs at 2/A,=41.6; hence, the av-
erage gain over the uniform wiggler region is approxi-
mately 0.62 dB/cm.

The 35 GHz example is near the center of the gain
band and is close to the peak efficiency. The maximum
efficiency (at varying axial distances) is plotted as a func-
tion of frequency in Fig. 18. As shown in the figure, am-
plification is found for frequencies ranging from 28
through 47 GHz, with the maximum efficiency of approx-
imately 9.4% found at 33 GHz, This does not, however,
correspond to the peak gain. The variation in the gain with
frequency is illustrated in Fig. 19. Two peaks are clearly
evident, corresponding to the high- and low-frequency in-
tersections between the TEy, mode dispersion curve and
the beam resonance line. The low-(high-) frequency max-
imum occurs at 30 GHz (43 GHz) with a gain of approx-
imately 0.82 dB/cm (0.71 dB/cm). Clearly, this represents
an extremely broadband interaction.

The sensitivity of the interaction to the axial energy
spread is shown in Fig. 20 at a frequency of 35 GHz. It is
clear from the figure that the efficiency decreases from the
peak of 8.57% to approximately 2.84% for an axial energy
spread of 1.0%. While this may seem to be a steep decline,
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FIG. 18. Variation in the efficiency with frequency.

it should be recognized that designs of electron guns that
produce axial energy spreads of less than 0.5% are fairly
standard at these voltages and has been achieved in several
experiments to date.!"™"® Therefore, the peak efficiencies
predicted in simulation should be achievable in the labora-
tory.

We now turn to the question of efficiency enhancement
with a tapered field. As discussed previously, the efficiency
enhancement is sensitive to both the slope of the taper and
to the start-taper point. In particular, the start-taper point
must be chosen to correspond to & point after which the
beam has become trapped in the ponderomotive potential
but before the beam has had a chance to execute one-half
of its oscillation within the potential well. This corresponds
to a point before saturation is reached. In order to deter-
mine the optimal start-taper point, therefore, we consider
the variation in the average axial velocity of the beam with
axial position. This is shown in Fig. 21 for the case of the
uniform wiggler interaction at 35 GHz. The figure illus-
trates the decrease in the axial velocity over the injection
process during the first five periods of the entry taper re-
gion, as well as the decrease in the axial velocity after the
beam becomes trapped at z/4,=30. It is clear from the
figure that saturation is found for z/4,~47; hence the

TEg; Mode (a=0.6 cm; b = 1.2 cm)
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FIG. 19. Variation in the gain with frequency.
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start-taper point must be chosen within the range
30<z/A,<47. Note that the oscillations in the average ax-
ial velocity for z/A,,> 40 correspond to the oscillations of
the beam in the ponderomotive well. A more precise de-
termination of the optimal start-taper point must be deter-
mined by simulations with a tapered wiggler.

We now consider operation at 35 GHz and assume
that we have an ideal beam with a vanishing axial energy
spread. The optimal start-taper point for this case is found
to be 2/4,,=42.2, and the optimum slope is €, = —0.0005.
The evolution of the power for this tapered wiggler field is
shown in Fig. 22 along with the result for the untapered
wiggler for comparison. As shown in the figure, the output
power can be substantially enhanced for this example with
a tapered wiggler, and the maximum output power rises to
approximately 1.41 MW at 2/4,~235. This corresponds
to a maximum efficiency of 15.3%. Thus, in contrast to the
K, band example, the higher wiggler field used in this case
permits a larger efficiency enhancement.

As illustrated in Figs. 18 and 19, the uniform-wiggler
interaction has an extremely broad bandwidth. In contrast,
it is generally believed that the bandwidth for a tapered-
wiggler interaction must be narrow, due to the sensitivity
of the efficiency enhancement to the start-taper point and

. the slope of the taper. While this belief may hold in specific
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FIG. 21. Evolution of the average axial velocity of the beam.
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cases, it is not generally valid. Indeed, the tapered-wiggler
interaction can exhibit a broad bandwidth. In order to il-
lustrate this, we take the optimized tapered-wiggler inter-
action at 35 GHz, as shown in Fig. 22 as a starting point,
and consider a tapered-wiggler amplifier with the same
parameters and a length of z/4,=235 (corresponding to
the peak in the output power at 35 GHz). The essential
purpose here is to consider a tapered-wiggler amplifier op-
timized for operation at 35 GHz, and to study the variation
in the output power as the drive frequency is varied.

The variation in the output power with frequency for
this example is shown in Fig. 23. It is clear from this figure
that the bandwidth of the tapered-wiggler interaction for
this example is comparsble to the uniform-wiggler case.
The power over this entire band varies between approxi-
mately 750 kW-1.4 MW. However, if the band is restricted
slightly to between 31-41 GHz, then the output power
varies over a much smaller range of from 1.2-1.4 MW.
Thus, we conclude that using a tapered wiggler in this
device will not compromise the bandwidth.

C. W-band operation

The third case under consideration is operation in the
W band at frequencies between approximately 80 and 100
GHz. For this purpose, we assume the electron beam is
characterized by an energy of 500 keV, a current of 50 A,
and inner and outer radii of 0.4 and 0.5 cm, respectively.
The CHI wiggler has By,=6.0 kG and has a period of 0.9
cm with a five wiggler period entry taper and inner and
outer radii of 0.311 and 0.622 cm, respectively. It should be
remarked here that this produces a periodic wiggler field of
approximately 3 kG at the center of the gap. While this
constitutes a high-amplitude wiggler field, it should be
noted that simulations with the Poisson code indicate that
wiggler fields as high as 3.5 kG at the center of the gap are
possible using standard low carbon steel. Hence, this rep-
resents 8 conservative choice for the wiggler field, which
has been made to ensure that no beam intercepts the wave-
guide walls.

The mode of interest here is again the TEy, mode, and
Wwe assume the drive power is 1 kW. Wave amplification is
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found over a frequency band of from approximately 70
through 115 GHz, although the peak efficiencies are found
in the ¥ band from 80-100 GHz, This is illustrated in Fig.
24, in which we plot the variation in the saturation effi-
ciency (over a variable interaction length) with frequency
for an ideal beam with Ay,=0. As is evident in the figure,
the maximum efficiency for this choice of parameters is
approximately 10.3% at 2 frequency of 85 GHz for an
output power of almost 2.6 MW. However, the efficiency
varies relatively little over the entire W band and the in-
teraction exhibits a bandwidth of about 33%.

We now focus on the interaction at the peak efficiency
at 85 GHz. The evolution of the power with axial distance
in this case is shown in Fj 25, and exponential growth is
evident, starting at the end of the eatry taper region and
extending out to the saturation point at z/4_~56. Note
that this gives a total interaction length of only 50 cm. The
decline in the efficiency with increases in the initial axial
energy spread of the beam is much Jess severe in this case
than in the two preceding examples due to the relatively
larger wiggler strength. A plot of the decline in the inter-
action efficiency with increases in the axial energy spread is
shown in Fig. 26. As shown in the figure, the efficiency
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decreases by less than a factor of 2 as the axial energy
spread increases to somewhat beyond Ay,/y,=1.25%.
Thus, good operational efficiencies are expected for axial
energy spreads less than approximately 0.5%.

We now turn to the case of a tapered wiggler. As men-
tioned above, the performance of a tapered wiggler ampli-
fier is sensitive to both the start-taper point and the slope of
the taper. Optimization of the interaction efficiency for the
case of operation at 80 GHz indicates that peak efficiency
is found for a start-taper point at zp/4,,~ 52 and a slope of
€,=~—0.003. A plot of the evolution of the power with
axial distance for this case is shown in Fig. 27. For this
choice of parameters, it is evident that the output power
peaks at approximately 4.2 MW over a total length of 88
wiggler periods. This translates into a total wiggler length
of only 79 cm, including the five wiggler period entry taper
region.

The variation in the output power as a function of
frequency over the W band is shown in Fig. 28. The choice
of parameters here is made to optimize the device for op-
eration at 80 GHz. Hence, we have chosen a start-taper
point of zo/A,=52, a slope of €,=—0.003, and a total
length of 88 wiggler periods. As shown in the figure, the
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curve of the efficiency versus frequency is double peaked.
The larger peak is, as might be expected, at 85 GHz and
the secondary peak is at the upper end of the W band at 95
GHz, representing an output power of about 3.5 MW.
Hence, we conclude that it is possible to design a W-band
MW amplifier using the CHI wiggler.

V. SUMMARY AND DISCUSSION

In this paper, we have presented a complete analytical
description of a FEL amplifier based upon the CHI wig-
gler. The nonlincar analysis makes use of an analytical
representation for the CHI wiggler derived in Sec. II,
which is, despite certain idealizations made in the interests
of achieving an analytic representation, in close agreement
with the results of nonlinear magnetics code calculations.®
The nonlinear FEL simulation represents a slow-time-scale
model for the self-consistent evolution of the TE, TM, and
TEM modes of a coaxial waveguide along with the trajec-
tories of an ensemble of electrons. It should be emphasized
that no wiggler-period-averaging process is applied to

TEg) Mode (a=0.311 cm; b= 0.622 cm; P,, = 1 kW)
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smooth the orbital dynamics. Hence, we treat the full par-
ticle dynamics and model the injection of the beam into the
wiggler.

Three specific examples have been discussed corre-
sponding to amplifier operation in the K, XK, and W
bands, with both uniform and tapered wigglers. The sim-
ulations have been performed primarily for cases in which
the interaction is with the TEo; mode of the coaxial wave-
guide, although multimode operation in the X, band is also
studied. For multimode operation, it was found that the
lower-order mode had the effect of suppressing the higher-
order mode for each specific case studied. Operation over a
wide bandwidth is found to be practical for the CHI
wiggler-based FEL's for both the uniform and tapered-
wiggler examples.

It is of particular interest to observe that the band-
width of the interaction for a tapered wiggler is found to be
comparable to that of the uniform wiggler. This is in con-
trast to the commonly accepted belief that the sensitivity of
the tapered-wiggler interaction to the start-taper point and
the slope of the taper would result in a narrow bandwidth.
We note here that this conclusion that the tapered-wiggler
interaction does not necessarily sacrifice bandwidth holds
for other wiggler designs as well, and is not confined to the
CHI wiggler. In support of this, we refer the interested
reader to a paper by Levush er gl 4 dealing with the tun-
ability of a tapered-wiggler FEL based upon a planar wig-
gler.

Our overall conclusion is that the CHI wiggler repre-
sents a design in which the limitations of conventional wig-
glers to reach high field strengths at short wiggler periods
are overcome to some degree. The CHI wiggler, therefore,
permiits the construction of high-frequency FEL amplifiers
at relatively low beam voltages. In addition, it should also
be noted that the CHI wiggler contains substantial compo-
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Dents at the odd harmonics; principally at the third har-
monic. While this harmonic component was included in
the simulation studies in this paper, we did not study the
third harmonic FEL resonance with the beam. We expect
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A FREE-ELECTRON LASER FOR CYCLOTRON RESONANT
HEATING IN MAGNETIC FUSION REACTORS
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ABSTRACT

A G-band free-electron laser designed for plasma heating is described using a
coaxial hybrid iron (CHI) wiggler formed by insertion into a solenoid of a central rod and
an outer ring of alternating ferrite and nonferrite spacers positioned so that the central ferrite
(nonferrite) spacers are opposite the outer nonferrite (ferrite) spacers. The CHI wiggler
provides for enhanced beam focusing and the ability to handle intense beams and high
power CW radiation. Simulations indicate that a power/efficiency of 3.5 MW/13% are

possible using a 690 kV/40 A beam. No beam loss was found in simulation.
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Sources of plasma heating for thermonuclear fusion reactors employ both ion and
electron cyclotron schemes. Electron cyclotron heating requires approximately 20 MW of
CW power at frequencies of 140-280 GHz depending upon whether the fundamental or
second harmonic resonance is utilized.! No source currently under consideration, or even
anticipated, is expected to produce the full power requirement in a single module, and a
system composed of several sources is envisioned. In this paper, we describe the design of
a G-band (140-150 GHz) free-electron laser (FEL) amplifier based upon a coaxial hybrid

iron (CHI) wiggler2:3 which can meet these requirements.

Solenoid
\

H B
A

Waveguide R

Ferromagnetic

Non-Ferromagnetic

Fig. 1 Schematic illustration of the CHI wiggler configuration.

(28]




The CHI wiggler is produced by insertion into a solenoid of a central rod and an
outer ring composed of alternating ferromagnetic and non-ferromagnetic (or dielectric)
spacers. A schematic representation of the structure is shown in Fig. 1. The position of the
spacers is such that the ferrite (nonferrite) spacers on the central rod are opposite the
nonferrite (ferrite) spacers on the outer ring. The field is cylindrically symmetric and
exhibits minima in the center of the gap providing for enhanced beam focusing.

The CHI wiggler has two major advantages for the application of interest. First,
even a small amount of beam loss in a high power CW design can result in catastrophic
failure. For example, the average beam power under discussion is = 28 MW, and a beam
loss of 1% implies that 28 kW is dissipated in the drift tube walls. This poses a difficult
design problem. Hence, the favorable focusing properties of the CHI wiggler are ideally
suited to high power CW applications. Indeed, no beam loss was observed in simulation.
Second, short wiggler periods are desireable to minimize the required beam energy, while
high wiggler fields are required for high gains. This is difficult to achieve in conventional
wiggler designs. However, high fields at short wiggler periods can be achieved with the
CHI wiggler by using narrow spacers and a ferrite with a high saturation level in a strong
solenoid. Hence, a CHI wiggler-based FEL is capable of producing high power at the
required wavelengths with a relatively low energy beam.

An analytic form for the CHI wiggler field can be found by solution of Laplace's
equation V2B(r,z) = 0 for appropriate boundary conditions. The solution is cylindrically
symmetric and has the form2:3

[So(nkur) = TR omk,1)]

B(rd)=B,+B, X cos (nk,2) o (1)
and
B(r2)=B, X sin (nk,2) [S"I’((;'(': ,:}:;f}t';")] : )
where B,, = 2Bo, G(£,0) = Io(§)Ko(0) = Io($)Ko(&),
.= (%) sin (%) [Ko(nk R,) + Kol Ra)] )




and

T, = (%) sin (%) [1otnk.R,) + ok, R,,)] - (4)

This solution is in substantial agreement with the results of the Poisson/Superfish family of
magnetics codes.#

We consider propagation within a coaxial waveguide with inner and outer radii a
and b respectively. Space-charge effects are negligible as long as wy/ck,, < %,3v,,2/8 %2,
where @y, denotes the beam plasma frequency, v, is the bulk transverse wiggler velocity,
7 is the bulk relativistic factor of the beam, and ¥, = (1 ~ v2/c2)~1/2 for a bulk streaming
velocity v). Space-charge effects can also be neglected if (1) the wavelength is less than the
Debye length and the space-charge waves are subject to strong Landau damping, or (2) the
bandwidth of the interaction is greater than the plasma frequency. These conditions for the
neglect of space-charge effects are valid even for relatively high-current electron beams.>

The boundary conditions of the fields at the coaxial waveguide walls (inner radius a
and outer radius b) are satisfied by a superposition of the TE, TM, and TEM modes of ihe
waveguide which constitute a complete and orthogonal set of basis vectors. The interaction
strength depends both upon the wave-particle resonance and upon the polarization of the
moeds. The CHI wiggler induces an oscillation which is predominantly in the aziumthal
direction; hence, the modes with the highest gains are those which are largely polarized in
that direction. For the present case, the predominant resonance is with an azimuthally
polarized TEq mode. The other modes are farther from resonance and have less favorable
polarizations. Hence, we limit the discussion here to the case of the TE modes. As such,

the vector potential can be expressed in cylindrical coordinates as3

0A(x,1) = Zo 0A ,(2) [?,l—r Z(K,,r) &, sin oy, + Z/ (K1) €405 @, | &)
l= m
m=]

where the phase for angular frequency @ and wavenumber &, is

a, = f: a2k, (2) +10- wr 6)




where @? = c2kj,? + c2K)? for a given cutoff Kj,. The amplitudes and wavenumbers are
assumed to vary slowly in z over a wavelength. The cutoffs are given by solution of the
dispersion equation J/'(Kima)Y/(Kimb) = J/(Kimb) Y/ (Kima), where J; and Y; denote the
regular Bessel and Neumann functions, and Zj(Ky,r) = J(Kijmr) + ApmYi( Kimr), where A,
= = J/ (Kimb)I Y[ (Kimb).

The dynamical equations for the modes in coaxial waveguides have been described

in detail,3 and the results for the TE modes are

i (a,; - klzm - "'lzm)}&zlm =

e—— + ey
dz? \c

wi Y, / 3 Y 4
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2 z
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where 6y, = e8A;,/m.c? is the normalized amplitude of the modes, and

2i5(b’ - a?)

Hin= (b’ - P) ZHK,.b) — (.a* = 1) ZHx.a)

&)

The beam is assumed to be monoenergetic with an axial energy spread determined by an
initial [i.e., at z = O] pitch angle spread, and the averaging operator is defined over the
initial beam parameters
p 4 Py
()= z,‘:Tg fo ddy fo dpoB o expl~(Po = Po) 1 4p}]

n
X ;!' f dxedy,0 1 (X0,Y0) f_ i dyooi(¥o) () (10)
-4

where A, is the cross-sectional area of the waveguide, B,0 = v o/c for an initial axial
velocityl V20, Po = tan~1(p,0/Px0), (Px0.Py0,0;0) denote the initial beam momenta, py and
Ap, denote the initial total momentum of the beam and the initial axial momentum spread
respectively, Yo [=— @i, where # is the time at which the particle crosses the z = 0 plane]
is the initial ponderomotive phase, 6 and oy are the initial distributions of the beam in

cross-section and phase, and




PO )
Asirm fo dpg expl~(po— p)14p31| (11)

is a normalization constant.

The field equations must be solved simultaneously with the orbit equations for an
ensemble of electrons. We integrate the complete 3D Lorentz force equations for each
electron in the aggregate fields of the CHI wiggler and electromagnetic fields for all the
wave modes. No orbit average is imposed, and we treat the injection of the beam into the
wiggler. This describes any increase in the effective beam emittance due to the injection
mechanism. For this purpose, we model the adiabatic injection r¢gion by means of a
tapered wiggler amplitude. In addition, we also consider amplitude tapering for the purpose
of efficiency enhancement. In order to describe these effects within the CHI wiggler model,

we assume that the overall coefficient of the periodic component of the field varies as
. of k.2
2Bosm2(4Nw) :2SNA,

B, = 2B, iNA. <2<z, , (12)

2B)[1 +k,E.(2—20)] 32> 2

where N,, denotes the number of wiggler periods in the entry taper region, and &, is the
normalized slope of the taper for purposes of efficiency enhancement.

The wiggler amplitudes and periods which can be achieved are determined using the
POISSON codes.# To this end, we specified vanadium permendur spacers and found that a
6 kG solenoid saturates the ferrite for spacers with inner and outer radii of a=0.7 and b =
1.5 cm, and a wiggler period of 4,, = 1.5 cm. We also assume that g and b are the inner
and 6uter radii of the waveguide. Using these dimensions, we operate with a 10 kG
solenoid which provides a maximum periodic field of 4 kG and a uniform axial field
component of = 6 kG. Note that a magneto-resonant enhancement in the gain and efficiency

is also present when the Larmor period associated with the uniform axial field component is




close to the wiggler period. We assume that N, = 5 to preserve the initial beam quality
through injection.

Since FEL performance is critically dependent upon beam quality, we must have an
electron gun which produces an annular beam with a low energy spread. The design tool
we used for this is the EGUN code.6 Since operation in G-band is desired, we chose an
electron beam voltage in the neighborhood of 690 kV and a current of 40 A. Assuming that
the inner and outer radii of the beam at the exit of the gun were 1.05 cm and 1.15 cm
respectively, it is possible to design a gun which produces an axial energy spread of
substantially less than 0.1%. The results from the gun calculation were used as initial

conditions in the FEL simulation.

TEO1 Mode (a=0.7 cm; b= 1.5 cm; Pin =1 kW)
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Fig. 2 Efficiency and saturation distance versus frequency at 690 kV.

We first address the interaction for a uniform wiggler, and consider the case of an
ideal beam in which the axial energy spread Ay, = 0. We also deal with the TEy; mode at
an injected power of 1 kW. The efficiency and saturation distance versus frequency are

plotted in Fig. 2. It is clear that the efficiency decreases with frequency over the resonant




band from 140-150 GHz. Observe that the maximum efficiency occurs at the minimum
minimum resonant frequency and does not correspond to the peak gain. This is a common
feature of the interaction in FELs,” and stems from the fact that the efficiency varies with
the difference between the beam velocity v, and the phase velocity of the ponderomotive
wave formed by the beating of the wiggler and radiation fields [Av = v, — w/(k -ka)].
Since the saturation distance is 'relatively constant over the range of 142-147 GHz, the peak
gain of = 0.5 dB/cm occurs at = 142 GHz for an efficiency of = 2.2%. As such, we
assume a frequency of 142.5 GHz in the remainder of the paper. It is possible, however, to
retune to higher frequencies using higher voltages or shorter wiggler periods.

Before proceeding to the study of the tapered wiggler interaction, we turn to the
effect of the axial beam energy spread. The variation in the efficiency as a function of Ay, is
shown in Fig. 3. Observe that the efficiency falls from about 2.24% to 2.10% as the axial
energy spread increases to 0.10%. This is a relatively modest decrease in efficiency, and a

beam quality within this range has been demonstrated in the gun design code.

TEO1 Mode (a=0.7 cm; b = 1.5 cm; f = 142.5 GHz)
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Fig. 3 Variation in the efficiency and saturation distance versus beam thickness.




Finally, it is important to note that no beam loss was found in the simulation prior
to saturation for the uniform wiggler cases studied.

Turning to a tapered wiggler, it should be noted that there is an optimum both in the
start-taper point and in the slope of the taper. Optimizing in both of these parameters, we
find that for 1 kW input power_the optimal start-taper point is zo/A, = 46 and the optimal
slope is €, = -0.001. The evolution of the power with axial distance for this choice is
shown in Fig. 4 for the cases of an ideal beam [Ay, = 0] and for A%/% = 0.2%. Note that
the interaction length is = 2004,, which is the length required to taper the wiggler amplitude
to zero [note that the uniform axial field component does not vanish]. It is clear that the
efficiency does not change greatly with the decrease in beam quality over this range, and

" rises to over 13% for an output power of better than 3.5 MW.
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Fig. 4 Evolution of the power with axial position for two choices of the energy spread.
The bandwidth of the tapered wiggler interaction is quite large. Consider the case of
the optimum parameters for the interaction at 142.5 GHz, including the total length of the

system. The bandwidth is determined by the response of this system at different drive




‘frequencies. In Fig. 5 we plot the tapered efficiency versus frequency. It is evident that the
efficiency remains high over a frequency range of = 142.5-160 GHz, for a large
instantaneous bandwidth. This agrees with an earlier study using a simpler FEL model.8
Finally, note that despite the extended interaction length for the tapered wiggler cases

shown, no beam loss was found in simulation for any of these parameters.

TE01 Mode (a=0.7cm; b= 1.5 cm; Pin =1 kW)
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Fig. 5 The bandwidth for the tapered wiggler interaction.

Our results can be summarized rather simply. In the first place, no beam loss was
found to occur for either the uniform or tapered wiggler runs. This is required for the
design of a CW device. In the second place, the efficiencies were found to be fairly high.
The tapered wiggler interaction produced efficiencies of 13-14%. These conclusions hold
for both an ideal beam and for one with the more realistic beam energy spread of < 0.2%. It
should be remarked that such beams are quite reasonable with careful gun design.

The major source of concern is the length of the interaction. At 200 wiggler periods
in length, the support of the central rod becomes a serious issue. However, we feel that it is

not insurmountable, and can be addressed in several ways. Firstly, a vertical mount is
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necessary in which the central rod is supported from the top by the collector. Secondly, it is
not necessary to taper the wiggler to saturation. A shorter tapered wiggler would sacrifice
some power but facilitate the support of the central rod. Lastly, this design is for an
amplifier configuration; however, an oscillator can also be constructed which would be
more compact without sacrifice of efficiency. The only drawback to an oscillator would be
a narrower bandwidth. Tuning of an oscillator would have to be accomplished by varying
the voltage, and whether the bandwidth would be sufficiently narrow to impair the device's
usefulness depends upon the Q factor of the cavity. This is an area of future study. Note,
however, that we do not expand the bandwidth to be less than that of the current generation
of gyrotrons which are used for this purpose. It should be emphasized that this study
represents an initial design only, and higher gains and shorter lengths are likely with proper
optimization of parameters. Preliminary estimates of the efficiency and interaction length
made on the basis of simple scaling laws? indicate that it should be possible to shrink the
interaction length by = 50% with only a minor reduction in the efficiency using a somewhat
shorter wiggler period and a beam with a lower voltage but a higher current. Operation
closer to the magneto-resonance is also an attractive means of achieving this goal.

Cooling is not expected to be a major problem even for long pulse/CW operation
since this is a low loss mode. Estimates indicate that loading on the central rod is = 10
W/cm? at a power of 5 MW, and that the loading on the outer conductor 1s even less. As a
result, cooling would be required only near the end of the interaction region using relatively
narrow water passages in the rod.

In summary, the CHI wiggler based FEL is attractive for a high power CW
radiation source. It is a robust design in which high efficiencies are possible over a wide
parameter range, and the required beam quality is well within current gun technology.
Finally, overall system efficency can be substantially increased by incorporation of

depressed collectors for energy recovery.
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ABSTRACT

Design and performance calculations for a Coaxial Hybrid Iron (CHI) wiggler free-
electron laser configuration are presented. The capability of generating high fields at short
periods, as well as good beam focusing properties, make it a desirable configuration for
high power coherent radiation sources in relatively compact systems. In addition to a
description of the geometry, numerical calculations detailing the magnetostatic wiggler
fields, the beam dynamics, and interaction of the beam with electromagnetic waves in K;-
band (26-40 GHz) will be presented. Key considerations for the experimental design will

be outlined and discussed.
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INTRODUCTION

Fast-wave interaction devices, i.e. gyrotrons and FEL/ubitrons, have many
attractive properties for the generation of high power, high frequency microwaves.
However, practical devices have been elusive because of magnetic field, voltage, and size
requirements. For FEL/ubitrons the disadvantage can be partially overcome by the
utilization of short period (A4, < 5 mm) magnetic wigglers. Several micro-wiggler
configurations have been investigated, each having its own advantages and disadvantages
in the areas of achievable field strength and uniformity, ease and cost of fabrication,
control, tuning, and beam acceptance and focusing (see (1), (2), and references therein).

The coaxial hybrid iron (CHI) wiggler is a short-period compatible configuration
which offers several advantages relative to the above issues. This paper will present design
and performance calculations for a CHI wiggler based K,-Band FEL amplifier under
development at the Naval Research Laboratory. The goal is an output power of 100 kW at

35 GHz while reducing the voltage to approximately 150 kV.

CHI WIGGLER CONFIGURATION

The CHI wiggler consists of alternating rings of ferro- and nonferromagnetic
materials, surrounding a central rod consisting of cylinders of the same materials as the
rings but shifted axially by half a period. As shown in Fig. 1, a wiggler period consists of
only two ferromagnetic pieces (an inner cylinder and an outer ring) along with their
respective non-ferromagnetic spacers. The width of the two ferromagnetic pieces need not
be the same, as long as the combined length is the same for both inner and outer sections.
This entire structure is placed inside a solenoid (the axes of the solenoid and the wiggler are
coincident) and causes a deformation of the solenoidal field into a combination of periodic
radial and axial components. Having the magnetic field source external to the wiggler offers
advantages for coil cooling and field tapering. Large wiggler fields are possible while

maintaining a relatively simple and low-cost design.




The electron beam is annular and travels down the gap between the outer rings and
the central piece. The radially undulating magnetic fields cause this annular beam to wiggle
azimuthally. The electrons may then exchange energy with coaxial modes which contain an

azimuthal electric field component, for example the TEg; mode.

Fig. 1 CHI wiggler geometry.

The magnetic fields in the gap can be found analytically by solving Laplace's
equation with the boundary conditions that the axial component of the magnetic field be
zero along the faces of the ferromagnetic pieces and some constant value B, along the faces
of the non-ferromagnetic ones. The resulting equations for both the axial and radial
components of the field (and accompanying figures) are described in earlier publications.!+2
In essence, the radial component varies sinusoidally along the axial direction and has a
minimum at the center of the gap. The axial component consists of a constant term and

oscillating terms which are small at the gap center.

MAGNETOSTATIC WIGGLER ANALYSIS

The magnetic field profile of a CHI wiggler may be modified by changing or
tapering several parameters of the basic configuration. Multiple variations of the basic CHI
wiggler geometry were studied in a parametric search aimed primarily at finding the
configuration which produced the highest periodic field. This search also detailed ways in
which the magnetic fields may be tailored by varying the parameters of the geometry. These




parametric variations were performed by funning computer simulations with the POISSON
codes. The ferromagnetic material was assumed to be low-carbon steel, and the B-H table
provided with the codes was used.

A schematic of the "standard" configuration used in the simulations is shown in
Fig. 2. Only one quarter of the actual wiggler is input because the codes take advantage of
its symmetry about the axis (bottom edge) and right edge. Notice that this configuration
also allows study of the entrance fields. Parameters varied on the standard configuration
include: gap height; inner pole height, width, taper angle; outer pole height, width, taper

angle; and axial phase offset of inner and outer pieces.

Solenoid

Fig. 2 Standard POISSON input file for the magnetostatic field study.
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Fig. 3 Peak radial magnetic field versus gap height.




Sample results are shown in Figs. 3-4. Fig.3 shows the dependence of the
maximum radial magnetic field on the gap height, and Fig. 4 shows how v@ing the height
of the outer rings can be used to change the value of the peak radial field. These and other
results show that variations of pole shapés increased the peak radial field by only a few

percent, and also show various ways to taper the field.
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Fig. 4 Peak radial field versus the height of the outer rings.

BEAM DYNAMICS

The dynamics of electrons in the CHI fields were also studied both analytically and
computationally. For the analytic solution, it was assumed that the particle did not stray far
from the gap center-its original position (i.e. 8r << A,,). The simplified forms used for the
fields were:

B, =B,sink,z ,
(D
B, =B, ,

In the above equations k,, = 21/A,, and B,, and Bo are constants. Assuming a constant bulk

axial velocity vy and solving the equations of motion to lowest order in wiggler amplitude,

one obtains the quasi-steady-state solutions:




[ B.(B/B.)Br

B2 - (ﬁjﬁo)zBrJ meos k. @

v, = BB,
[ - (B4B,) B2

Jq, sink, z (3)

where f, = uy/c, Br is a constant field in the axial direction, called the transition field, and

is given by:

B;= '— ?’ﬁok w o 4)
where y is the relativistic factor and S is the magnitude of the total particle velocity (a
constant) in units of c. The transition field is a constant value of the axial field which
delineates the transition from group I orbits to group II orbits as B, is increased. These
equations describe an electron performing an elliptical orbit in the -6 plane (with a period
equal to the wiggler period) while streaming at a constant axial velocity. These results are
analogous to those of a simplified planar wiggler field with a constant axial guide field.3

Using energy conservation and the quasi-steady state solutions for vg and v,
obtained above, one may obtain a quartic polynomial in vy, which may be solved
numerically. The existence of a constant field in the axial direction causes the transverse
velocities to increase about a certain resonant value of the axial field. The azimuthal
component of the velocity (Eq. 2) (as well as the radial component) is seen to depend
strongly on this gyroresonance effect, from the fact that the fields are squared in the
denominator.

A figure of merit of the strength of the wiggler is o (the ratio of azimuthal to axial
velocity). A plot of a against the applied field is given in Fig. 5 showing the gyroresonant
gap. Fig. 5 shows the sensitivity to the applied field, as seen from the width of this gap.
Notice that orbits below Br (Group I) are more sensitive as B, approaches By than those

above B (Group II). This sensitivity indicates that tapering of parameters will be very




important for achieving maximum performance. It also shows the enhancement possible in
the interaction due to the existence of the axial field. In preparing this figure, single and

multi-particle three-dimensional orbits were simulated using TRACK-3, a trajectory
integrator. The fields were calculated using the analytic solutions! with the field increasing
adiabatically in the entrance into the wiggler. Results of the simulations agree very well

with analytic values away from the gyroresonant gap, as the electron remains very near the

wiggler gap center.
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Fig. 5 Variation of o versus the applied field for By/Br = 0.135 (comparison of theory
and TRACK-3 simulation results).

An examination of the trajectories shows a drift in the -direction, but this is
acceptable in the CHI FEL case since it remains in the interaction region due to the
cylindrical geometry. Calculations have shown that this drift can be explained using
Busch's theorem and depends on the entrance conditions used in the simulation. Actual
CHI wiggler axial fields decrease in magnitude at the entrance into the wiggler (due to the
iron pieces), and may partially cancel out this drift. Future plans include running

simulations with PIC (particle in cell) codes utilizing 2-D simulations of the CHI wiggler

field including entrance conditions.




THE EXPERIMENT

The experiment to be built at the Naval Research Lab will be a CHI wiggler FEL
operating as an amplifier at a frequency of 35 GHz in K,-Band. The principal goal of the
experiment is to operate at lower voltages while still generating high power, high frequency
microwaves. Current plans call for operation at approximately 150 kV with an output
power of 100 kW. |

The major components of the FEL are the gun, the wiggler section (including the
solenoid and the waveguide), the beam collector, and the input and output couplers. The
gun will operate at around 150 kV and produce a 10 A annular beam for the CHI wiggler.
The wiggler assembly will be placed horizontally within the bore of an existing
superconducting magnet. The central rod of the wiggler will be Asupported by radial struts
located near the gun and the collector. The coaxial waveguide consists of the (electroplated)
faces of the inner and outer pieces of the wiggler. This waveguide will contain a central
sever to reduce rf reflections. The diameter of the wiggler, and therefore of the waveguide,
is limited by the bore of the magnet, 6.4 cm, and places a lower bound on our operating
frequency. The wiggler will have a period of about 1 cm and will be about 60 periods in
length.

A SLAC klystron gun will be modified to produce the necessary annular beam. The
superconducting magnet, with an axial field of up to 30 kG, will permit an extensive study
of the full performance range of the CHI FEL. The bore size of the magnet is 6.4 cm and
its total length is 78.3 cm .

Preliminary calculations using untapered configurations (using a previously
described nonlinear three-dimensional slow-time-scale formulation2) have shown gains on
the order of 0.3 dB/cm and efﬁciencieé in excess of 10 % in this frequency range. Studies
are currently under way to lower the voltage required while still retaining performance.
Figure 6 shows the gain profile for a specific set of parameters, for which a saturated gain

of about 30 dB (0.26 dB/cm) with a gain bandwidth of around 20% was achieved. In this




figure, Rpmin and Rpax are the inner and outer radii of the coaxial waveguide (i.e. the
wiggler gap), and Ny, is the number of adiabatic entrance periods. It must again be stressed

that these results are very preliminary since optimization of parameters was not performed.
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Fig. 6 Preliminary simulation results for a K,-Band
amplifier utilizing a coaxial TEy; mode.

SUMMARY AND CONCLUSIONS

The above results indicate interesting potential for high frequency amplifiers based
on the CHI wiggler configuration. Work is in progress on the design of a CHI wiggler
ubitron amplifier in K,-band. A Pierce-type electron gun is being modified to produce a
hollow beam for the device, which will have a period of about 1 cm and will consist of
about sixty periods with a central sever. An existing superconducting magnet (B, < 30 kG)
will be used to produce the axial field in order to allow exploration of the full performance
range of the CHI wiggler.

'I;his work was supported by the Office of Naval Research.
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Improved amplifier performance of the NRL ubitron
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Improved amplifier performance of the NRL Ku-band ubitron is reported following several experimental modifications. The
major modification is the substitution of a higher-current (100 A). higher-quality electron gun for the onginal modified SLAC
kiystron gun (250 kV. 37 A). The experimental configuration is otherwise unchanged: a solid, uniform-density electron beam

propagating through a helical wiggler /axial guide field configuration, interacting with a co-propagating circularly polarized TE ,, rf

wave. With these changes, small-signal gains of 23 dB have been observed in the 12.6-17.5 GHz frequency range. Good agreecment

® between measured and calculated gain in the Raman regime has been obtained using a three-wiggler model in the 3D nonlinear FEL
code ARACHNE.
1. Introduction on the wiggler field. Power is also dependent on the

The Vacuum Electronics Branch of the Naval Re-

o search Laboratory has an ongoing program to evaluate
the potential of the ubitron/FEL interaction as a high-

gain, high-power, broad-bandwidth micro- or millimeter

wave source. Moderate gain operation of the NRL

ubitron has been previously reported using a modified

SLAC klystron gun [1,2]. An improvement in the gain

has been observed following the installation of a higher-

e current, higher-quality electron gun [3]. The maximum
gain for a uniform axial field is 20 dB, and substantial

gain has been measured over the 12.6 to 17.4 GHz

frequency range. Gain is found to be limited by the

onset of a high-power oscillation. The oscillation can

reach high power levels (= 700 kW) and is dependent

' Permanent address: Mission Rescarch Corporation, 8560
Cinderbed Rd., Suite 700, Newington, VA 22122, USA.
Permanent address: Laboratory for Plasma Research, Uni-
versity of Maryland, College Park, Maryland 20742, USA.
Permanent address: Science Applications International
Corp., McLean, Virginia 22102, USA.

axial field profile and trim coil current. In addition. it
exhibits oscillation thresholds dependent upon both
beam voltage and wiggle velocity. Both amplifier and
oscillator experimental measurements are compared with
a fully three-dimensional nonlinear simulation of this
configuration using the code ARACHNE [4-7].

2. Experimental configuration

The present amplifier configuration is shown in fig.
1. The electron gun is on the left. All current emitted
from the gun is magnetically focused and injected into
the interaction region; no beam scraping is used. A
solenoidal field, generated by 14 individual coils, is used
for beam confinement and transport. Following the
direction of beam propagation, the major components
are: resistive injected-current monitor, modified four-
port turnstile junction input coupler, double taper, fluid
cooled bifilar helix (repetitively pulsed), resistive trans-
mitted current monitor, beam collector, four-port out-
put coupler, and a combination water load/ calorimeter.

CURRENT MONITOR

W CUTPUT MONITOR

SEam cOLLECTOR

WATER LOAD/CALOAINETYER

ELECTRON OUN
WATER COOLED SOLENOID (DBC) /
Y AV
CURRENT MONITOR FLUID COOLED SIFILAR MELIX WIOGLER (PULSED )
INPUT COUPLER ‘
Fig. 1. Schematic illustration of the NRL ubsitron.
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The input coupler generally launches a LHCP TE,,
fundamental mode wave into the interaction region,
although it can also launch a linearly polarized wave if
desired. The output coupler employs both broadwall
and narrow-wall ports for TE/TM mode selection pur-
poses. Essentially all of the injected and amplified rf
power is absorbed in the water load / calorimeter. The
parameter range over which the ubitron has been oper-
ated is: 190 < ¥, <250 kV, 65 </, <94 A, 18<B, <
29 kG, B, <575 G, and 12.6 <f<174 GHz The
wiggler field has a 2.54 cm period with effectively 10
periods in the uniform region and 4 and 5 periods in the
entrance and exit tapers, respectively. The device is
typically repetitively pulsed in the 3-6 Hz range.

3. Experimental results and comparison with theory

Ubitron amplifier performance has been measured
as a function of several independent variables: rf
frequency, wiggler field, beam voltage, and axial field.
Most measurements are in the small-signal regime;
saturation was not reached. The major performance
results discussed below are gain vs frequency and wig-
gler field.

The RHCP wiggler field is 8enerated by a multiple-
turn bifilar helix electromagnet with radially tapered
entrance and exit sections which was wound on an
aluminum form in anticipation of dc operation. How-
ever, due to cooling problems, the wiggler is operated in
a repetitively pulsed mode to achieve high field

strengths. As shown in fig. 2, the resulting transverse
field profile was measured only on-axis. Due principally
to magnetic diffusion effects, the field profile departs
considerably from the ideal profile, which would consist
of a smooth adiabatic increase in transverse field fol-
lowed by a constant transverse field region and then an
adiabatically decreasing field.

In addition to the reduced performance that could
be expected from this wiggler profile, comparison be-
tween experiment and theory is complicated due to the
difficulty in modelling this field. Since only the on-axis
transverse field profile was measured, insufficient data
were obtained to directly incorporate the measured pro-
file into the simulation. For simulation purposes, there-
fore, the wiggler field is approximated as the superposi-
tion of the fields of three ideal bifilar helices of different
amplitude and period. The fit is also shown in fig. 2,
and comes reasonably close to replicating the fine struc-
ture in the uniform field region.

The small-signal gain is shown in fig. 3 for the
following parameters: Vy=232 kV, I, =85 A, B, =
2.51 kG, B, =294 G, and P, =150 W. The solid line
represents simulation results in the Raman regime from
the code ARACHNE for axial energy spreads of 0 and
0.25%. For this set of parameters, velocity spread has
little effect on gain. The simulation results are in good
agreement with the average measured gain, but are less
accurate concerning the detailed profile. Contributing
factors to this discrepancy are the wiggler field model,
detailed beam characteristics not included in the code,
and treatment of ac space charge in the code.
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Fig. 2. Comparison of the measured transverse on-axis wiggler field and the three-wiggler model used in simulation,
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The saturation behavior has not been measured due
to an rf oscillation that limited the maximum gain to
approximately 20 dB. This value was measured at 14.8
and 16.6 GHz for different combinations of V,,, B,, and

B,,. Insufficient rf drive power was available to achieve
saturation at this level of gain. The maximum power
measured in the amplifier mode was 200-300 kW using
a uniform B, field. However, approximately 23 dB of
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Fig. 4. Dependence of the TE,, small-signal gain upon the wiggler field.
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gain has been measured using a nonuniform B, field.
Bandwidth in the small-signal regime exceeds 25%, and
the calculated peak gain/ wavelength is approximately
1.6 dB/A.

To further characterize ubitron performance, the gain
dependence on wiggler field was measured and calcu-
lated for a second set of parameters and is shown in fig.
4. In this case, the simulation and measurements are in
good agreement for the wiggler field required to gener-
ate maximum gain. However, the values of that maxi-
mum gain differ significantly. Discrepancies between
experiment and theory are due to the same factors listed
above.

4. High power oscillation

In an attempt to increase amplifier gain by increas-
ing the wiggler field, an oscillation was observed that
limited maximum gain, and which reached power levels
of approximately 700 kW (corresponding to an ef-
ficiency of 3%) at a frequency of approximately 17.4
GHz. Severe beam disruption also occurred at high
power levels. Identification of the oscillation mecha-
nism remains elusive at this time. Experimental evi-
dence points to either a fundamental ubitron oscillation
with the TE,, mode, or a second harmonic ubitron
interaction with the TE,, mode. This ambiguity results

from inadequate diagnostics to discriminate between
TE modes. The principal characteristics of the oscilla-
tion are:

(1) The oscillation requires the wiggler field, and is
not strongly dependent on the axial field; hence it is not
a cyclotron maser. The oscillation would have to switch
between the 2nd, 3rd and 4th gyrotron harmonics to
maintain either a TE,,, or a TE,, intersection near 18
GHz for the parameters at which oscillation was ob-
served.

(2) Oscillation power is dependent on the axial field
profile, wiggler field amplitude, and on gun trim coil
current. Measurements of oscillator power dependence
on wiggler field is shown in fig. 5 for two axial field
profiles. The compression B, profile has the effect of
slightly reducing the beam diameter in the wiggler re-
gion. The maximum power in this case is constderably
reduced from the maximum power measured with a
uniform B,, for nominal values of trim current, al-
though the oscillation will start at a lower wiggler field.
Measurements of oscillator power vs trim coil current
for both field profiles show a strong linear reduction in
oscillator power with increasing trim current.

(3) High output power is possible. However, at high
power levels, considerable pulse-to-pulse amplitude
fluctuations were observed, not correlated to macro-
scopic parameter variations. Both output coupler / diode
detector and calorimetric power measurements were
made.
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Fig. 5. Dependence of the oscillation power on wiggler field for two axial field profiles, and comparison with the TE;, mode second
harmonic oscillation calculation.
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(4) The oscillation frequency, which typically differs
trom the amplifier frequency, is near the TE,, mode
cutoff. A wavemeter was used for this measurement.
The oscillation does not appear 10 be a typical feedback
oscillation at the driven frequency, but grows from
noise on the beam at 17.4 GHz. Examination of uncou-
pled dispersion curves for both TE,, and TE,, combi-
nations show possible intersections near 17.4 GHz.

(5) An oscillation threshold exists at an on-axis
velocity ratio, independent of the axial field over the

range of 1.9 to 2.9 kG. The wiggler field required to -

initiate the oscillation was measured for a variety of
beam voltages and axial field values and /or profiles.
Although the initiation wiggler field spans the range of
250 to 300 G, the on-axis v, /vy is found to be ap-
proximately 0.13, computed in each case for an ideal
wiggler field and a uniform axial field of the measured
values.

(6) No oscillation occurs for beam voltages below
approximately 200 kV - independent of the wiggler
field magnitude. At this voltage, the second harmonic
TE,, interaction occurs at a frequency of 18.7 GHz
which is considerably higher than observed. However,
there is no TE,;, mode intersection at all at this voltage.

(7) Output coupler characteristics eliminate the pos-
sibility of a TM interaction.

The amplifier code ARACHNE (including the
three-wiggler model), was employed to model the inter-
action. In order to obtain a second harmonic ubitron
interaction with the TE,, mode the waveguide radius
was increased from 0.815 to 0.844 cm in order to lower
the cutoff frequency below the measured 17.4 GHz
oscillation frequency. Simulation results are presented
in fig. 5, showing the computed oscillator power
(saturated amplifier power) as a function of wiggler

_ fieid for a uniform 2.76 kG axial field. The shape of the

curve is in reasonable agreement with measured data,
lending credence to the hypothesis that this is a second
harmonic interaction with the TE;, mode. The maxi-
mum computed oscillator power (intracavity) is ap-
proximately 1.5 MW, also in reasonable agreement with
the estimated maximum oscillator output power of 700
kW. Calculations of the saturated amplifier power for
the TE,; mode using ARACHNE (with the nominal
waveguide radius of 0.815 cm) are on the order of 4-5
MW. This is considerably higher than the measured
value.

Factors favoring the TE,, interpretation are: (1) the
measured frequency is consistent with a TE,, intersec-
tion for the nominal waveguide radius, (2) the voltage
threshold is consistent with no TE,, intersection for
those parameters, and (3) no mode conversion is re-
quired for the free propagation of the signal. Arguments
against the TE,, interpretation are less well founded on
explicit observations: (1) measurements of component
return loss using linear polarization do not show large

reflections at 17.4 GHz reflectivity is actually higher
near 17.8 GHz. (2) the reason for the power sensitivity
to trim coil current is not clear. and (3) the measured
power level appears 10 be considerably lower than pre-
dicted by simulation.

The primary factors leading to a TE,, interpretation
of the observed oscillation characteristics are: (1) The
reflectivity is high near cutoff which facilitates oscilla-
tion, (2) the dispersion curve intersection frequency is
fairly constant. not highly dependent on external
parameters, (3) operation near cutoff is also consistent
with pulse-to-pulse power fluctuations and power sensi-
tivity to trim current, and (4) the observed power is
consistent with the expected saturation level based on
simulations. The primary factors against a TE,, inter-
pretation are related. While it is possible that the dis-
persion curve is altered in such a manner 10 reduce the
cutoff frequency from the vacuum value of 17.8 10 17.4
GHz in the interaction region, TE,, propagation be-
yond the beam collector is not possible without mode
conversion, since 17.4 GHz is below the vacuum wave-
guide cutoff.

5. Summary

Amplifier performance of the NRL ubitron has im-
proved following the installation of a higher-current,
higher-quality electron gun. A gain of 20 dB has been
measured, corresponding to a peak gain/ wavelength of
1.6 dB/A. The maximum output power is 200--300 kW.
3D nonlinear simulations of the ubitron configuration,
including a three-wiggler model, are in reasonable
agreement with measured data. Small-signal bandwidth
has been measured 10 exceed 25%. However, saturation
has not been achieved due to gain limitations caused by
the onset of a high power oscillation. The oscillation

‘can be fairly powerful: approximately 700 kW has been

measured. The oscillation mechanism has not been con-
clusively identified at this time. A major component
redesign is currently under way in order to improve the
wiggler and to enhance the diagnostics available for
distinguishing between TE modes.
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ABSTRACT

Operation of the Naval Research Laboratory Ky-band ubitron has successfully
demonstrated a high power/efficiency and broad bandwidth capability. This device
employs a helical wiggler/axial guide field configuration with a 212-255 kV/67-100 A
electron beam and wiggler and guide magnetic fields of 175-320 G and 1.75-2.54 kG.
Performance levels achieved at 16.6 GHz can be summarized as a peak power of 4.2 MW
for an efficiency of 17.5% and a gain of 29 dB, and an instantaneous bandwidth of 22%.
Substantial beam loss was observed. The specific loss rate was correlated with output
power, and reached a level of 50% beam loss at the 4.2 MW level. Nonlinear simulations

of the experiment are in good agreement with these observations.
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I. INTRODUCTION

With several modifications to the previous design,! the NRL ubitron has
demonstrated operation as a high power, broad band, and efficient amplifier with a
maximum output power of 4.2 MW for an efficiency of 18%, a 29 dB gain, and a large
signal bandwidth (not saturated) greater than 22%. The experiement met the performance
goals for the fundamental mode amplifier; specifically, an output power of 1-5 MW, an
efficiency greater than 15%, a large-signal gain of 25-30 dB, and a large-signal
bandwidth greater than 20%. Experimental results are in good agreement with theoretical
predictions using the 3-D nonlinear code ARACHNE.2- It is important to note in this
regard that, in contrast to earlier devices operating in the Raman regime,’ the DC self-
fields of the beam played an important role in the interaction.

The fundamental mode amplifier reported here is only one of several experiments
in the NRL ubitron program which includes integrated theory, simulation, design,
fabrication, and testing whose objective is the determination of the potential of the
ubitron/FEL as the basis for a new class of high-power, broad band, micro- and
millimeter wave amplifiers. Experiments include the fundamental mode amplifier, a
harmonic amplifier using rectangular waveguide and a linear wiggler,? and a reduced
voltage ubitron using the CHI wiggler.6:7 Three dimensional theories and simulation

codes have been developed for these and other interaction geometries.

II. EXPERIMENTAL RESULTS

A summary of the basic parameters and recent alterations in the experiment is
reported here. An extensive description of other experimental aspects is given in ref. 1.
The wiggler is a pulsed bifilar helix with a period of 2.54 cm and an overall length 33
wiggler periods. Of this length, the first five and the last three wiggler periods represent
an adiabatic entrance and exit. Amplification was measured over the following parameter

ranges: wiggler amplitude = 175-320 G, axial field = 1.75-2.54 kG, beam voltage = 212-




254 kV, and beam current = 67-100 A. The beam radius upon wiggler entry is = 0.4 cm
and the waveguide radius is 0.815 cm. The FWHM of the beam pulse is = 2.4 us, with a

flat top of = 1 us. Operation is largely in the TE;; mode at K, band (12.4-18 GHz). The

3

experimental configuration is shown in Fig. 1 with the major components identified. Note

that the solenoid is split to accommodate a gate valve separating the gun and the
interaction/diagnostics sections which necessitated additional solenoid coils to maintain
the field profile. Vacuum pumping has been added to the calorimeter to accommodate

any additional gas loading caused by beam loss in the interaction region.

INJECTED CURRENT MONITOR
| /o /- WATER COOLED SOLENOID (DC) BEAM COLLECTOR
.
i
1 |
e | T — oy |
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£
ELECTRON ¥
GUN INPUT COUPLER / J TOVACUUM
GATEVALVE FLUIDCOOLEDBIFILAR ~ TRANSMITTED CURRENT MONITOR FuMP

HELIX WIGGLER (pulsed)

Fig. 1 Illustration of the experimental configuration.

Amplification has been measured over a wide parameter range. Although the
nominal beam and axial field values are 250 kV/100 A and 2.2 kG, these do not
necessarily represent the optimal parameter range, and equivalent output power has been
obtained for several different ﬁarameter sets. The maximum power measured to date is
4.2-4.5 MW at a frequency of 16.6 GHz. Typical waveforms showing the essential
characteristics of ubitron‘ operation are given in Fig. 2. In this case, an output power of =
4.5 MW (4.2 MW from calorimeter) was measured for a 245 kV/94 A beam, with axial
guide field and wiggler field amplitudes of 2.47 kG and 270 G, respectively. This

represents a gain of 29 dB and an efficiency 18%.
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Fig. 2 Typical waveforms.

It is important to observe the presence of beam loss on the rising and falling edges

of the voltage pulse as well as high beam loss during the interaction. This will be

discussed later in more detail. Note that the ripples on the two beam current traces are not

physical, but are due to current monitor ringing. It should also be noted that the output
power shown in the figure does not represent saturation of the interaction. Indeed, for
most parameters we have been unable to drive the system to saturation.

The ubitron has also demonstrated a wide instantaneous bandwidth. However,
there are two factors which render this measurement difficult. Specifically (1) the
modulator exhibits a slow time scale voltage drift, and (2) in order to accommodate high
input power, the phase splitﬁng circuitry utilizes two sets of short slot hybrids to cover
most of Ky band and several hours are required switch between the them. Hence, the
bandwidth measufements are not always made with the identical parameters; however,
the measurements are indicative of ubitron bandwidth potential. Fig. 3 shows the
bandwidth characteristics for a case in which the output power exceeds 600 kW. This

represents a bandwidth in excess of 22%.
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Fig. 3 Ubitron bandwidth characteristics.

The NRL ubitron exhibits a high degree of sensitivity to variations in the beam
voltage and the axial and wiggler magnetic fields. An example of the sensitivity of the
output power to beam voltage is shown in Fig. 4. Output power for this case is seen to
reach a maximum in excess of 4 MW at a beam voltage of 245 kV, and to increase from
2-4 MW as the voltage increases about 4.5% from 234-245 kV. This sensitivity points to
the need for very-tight modulator voltage controi. Similar sensitivity to variations in ihe
axial and wiggler magnetic fields are also seen. In order to illustrate the sensitivity of the
inter#ction to variations in the axial magnetic field, we consider a 250 kV/83 A beam
with a wiggler field amplitude of 275 G. Experimentally, the output power is found to
vary from 2-4.4 MW at 16.6 GHz as the axial magnetic field increases from 2.4-2.54 kG.
Observe that the output power nearly doubles for an axial field increase of only about
5.5%. Somewhat less sensitivity is measured for wiggler field ;'ariations. With a 247
kV/83 A beam and an axial magnetic field of 7.6 kG, the output power increases from 0.4
to 2.6 MW at 16.6 GHz as the wiggler field increases from 160-280 G (i.e., a field

increase of = 25 % is required to double the output power). Part of the sensitivity to the




parameters arises because the system is not driven to saturation; hence, small changes in

the growth rate can result in relatively large variations in the output power.
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Fig. 4 Variation in the output power with beam voltage.

III. COMPARISON WITH THEORY

A key feature of the NRL ubitron program is the integration of theoretical,
computational, and experimental efforts which leads to the development and validation of
a detailed and precise design and simulation capability. To demonstrate this capability,
we of course need to compare experimental measurements with theory. We use the 3-D
nonlinear simulation code ARACHNE, which in its latest version3# includes both RF and
DC beam space charge effects, under the assumption of an initial axial energy spread of
1.5 %. It is also important to bear in mind that, as pointed out in ref. 3, the inclusion of
the DC space-charge fields are important for the current experiment

In general, we find that experimental performance generally follows theoretical
predictions as far as trends with wiggler field, axial field, beam voltage, and beam
transmission are concerned. However, we usually measure somewhat higher power than

predicted theoretically. Typically, we find that an approximately 5 % increase in both the




wiggler and axial magnetic fields in ARACHNE over the experimental calibration results
in good agreement between theory and experiment. Note that this is slightly outside our
estimated 2-3 % experimental uncertainty. Although this is not a large discrepancy, it is
an issue that is still under investigation, and there are several possible factors which
contribute to the discrepancy. On the theoretical side, possible reasons for the discrepancy
include unavoidable differences between the experimental implementation and theoretical
model, such as mechanical and field misalignments or actual injected beam conditions.
Although these factors would normally have a deleterious affect on output power, we
cannot rule these out as possible contributing factors. Experimentally, the presence of
internal reflections could increase the effective input power, and thereby increase the
output power over that expected for a single pass amplifier. In addition, although the
solenoid and wiggler fields were carefully measured with calibrated diagnostics and
compared with simulations prior to assembly, a final confirmation of the field calibrations
must await the ultimate dismantling of the apparatus.

The first comparison between theory and experiment deals with the dependence of
output power on input power. To this end, drive curves at 16.6 GHz are shown in Fig. 5
from the experiment and from ARACHNE for a 244 kV/82 A electron beam and for
wiggler and axial guide magnetic fields of 231 G and 2.47 kG, respectively. Power
measurements are higher than predicted by ARACHNE for single pass amplification, but
the system is not driven to saturation. In order to explain the discrepancy, we first assume
the presence of a small amount of internal reflections which can increase the output
power over that computed for single pass amplification. Note that the beam flat top is
about 1 us wide and the distance from the input coupler to the calorimeter is = 125 cm.
Hence, more than 100 round trip bounces of the radiation are possible during the beam
pulse and even a small degree of reflection can substantially alter the output power. In the
case shown, an assumed total reflection coefficient of 0.65% resulted in good agreement

between the simulation and the experiment. However, based on cold tests and some




reflected power during operation, we expect the round trip reflections of the order of 0.1-

0.3% at 16.6 GHz. Therefore, we expect that other factors must be involved.

== OULPUL pOWET ——— £2in
—— simulation power, . simulation gain
+0.65 % effective reflection ‘ @ 0.65% reflection
2 30
= 1.6 28
g Q)
5 12 £, 26 E.
3 =
2 Y 2
V. ~244kV
= 0.8 beam 24 E
& [ Tan =824
S o4 B, =2.47kG 59
’ B =231G
f=16.61 GHz
0 : 20
2 4

Input Power (kW)

Fig. 5 Drive curve showing the output power and gain as a function of the input poWer.
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Fig. 6 Variation in the output power with beam voltage for several values of wiggler amplitude.




The dependence of the output power on beam voltage for several values of the
wiggler field is shown in Fig. 6. The data for this figure are unfolded from a series of
acquired waveforms and presented as output power vs. beam voltage, where each point
represents a digitized value. The simulation results from ARACHNE are shown with the
solid curves, with the curve thickness matching the corresponding point thickness of the
experimental measurement for a given wigglef field. Good agreement is shown in the
voltage at which the peak output power occurs and in the overall voltage dependence.
However, as mentioned above, both the wiggler and axial magnetic field values used in
the simulation were 5 % higher than the experimental values.

In view of these two comparisons, it is our expectation that the discrepancy
between theory and experiment can, in many case, bé accounted for by the assumptions
of (1) a small degree of internal reflections, and (2) a recalibration in the magnetic field

levels.
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Fig. 7 Variation in beam loss with output power.

One final issue which is important in a production device is the beam loss. Both
simulation and experiment have shown high beam loss in the interaction region at

multimegawatt power levels. This is demonstrated in Fig. 7 in which we plot the variation




in beam loss with output power for a variety of different beam, wiggler and axial field
parameters. The solid triangles in the figure represent data collected from experimental
runs in which the variation in output power versus wiggler amplitude was studied.
Similarly, the solid circles (diamonds) represent data collected from studies of the
variation in the output power versus the axial guide field (beam voltage). The hollow
triangles represent ARACHNE simulations of oﬁtput power dependencies on wiggler and
axial guide fields. The solid line is simply a smooth fit to all of these points. It is evident
that the fraction of transmitted beam falls fairly uniformly with output power and reaches
about 50% transmission at a 4 MW power level. Observe that all the points from both the
experiment and the simulation cluster fairly closely about the fitted curve, and represents
good agreement between the theory and the experiment.

Although this degree of beam loss is clearly undesirable for high duty factor
operation, it does not necessarily result in tube damage. The NRL ubitron was
disassembled after many hours of operation at 6 pps and examined for damage in the
wiggler region. None was found. This not to say that the current loss is not a potential
problem; rather, that the beam loss is sufficiently distributed axially to result in little or
no tube damage. This effect could probably be reduced by simply reducing the initial

beam diameter, or operation further from gyroresonance.

IV. SUMMARY

In conclusion, results from the NRL ubitron experiment demonstrate that the
performance potential of the ubitron/FEL has been realized. A configuration using a
fundamental mode circularly polarized rf wave and a helical wiggler results in a relatively
compact, high power, and efficient amplifier with wide instantaneous bandwidth and
without the necessity of wiggler field tapering. Performance levels compare quite

favorably with those from other pulsed, high power microwave amplifier designs.

10




In general, there is good agreement between theory and experiment considering
output power dependence on beam voltage, wiggler field, and axial field. Both theory and
experiment show a high degree of output power sensitivity to beam voltage and axial
magnetic field. Some differences exist, with the experimental power levels typically
higher than predicted. Work is underway to determine the source of this discrepancy. At
the present time, we are examining the questiohs of internal reflections, magnetic field
calibrations, and beam modelling as sources of the discrepancy. Further attention to the
beam loss issue is required for higher duty factor operation. Future work will include
more extensive measurements of noise and phase characteristics, as well as utilization of

our theory/design capability for designs at higher frequency and lower voltage regimes.
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Demonstration of a New Free-Electron-Laser Harmonic Interaction
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The first experimental demonstration of a harmonic frec-clectron-laser amplifier utilizing a periodic
position instability is described for a planar wiggler configuration. The interaction occurs at the even
harmonics of the fundamental. A maximum gain of 7 dB was observed over a frequency band ranging
from 1410 15 GHz. The experimental results are compared with predictions from the three-dimensional
simulation code WIGGLIN with excellent agreement. Improvements due to a tapered wiggler for this in-

teraction are discussed.

PACS numbers: 42.55.Tb

The free-electron laser (FEL) dates back over three
decades [1,2], and has been intensively studied for over a
decade. Recently, harmonic generation has become an
important topic for either extending the frequency range
of fixed-voltage facilities or reducing the beam voltage
required at a given frequency. Reduced beam voltage
would have a significant impact on potential applications.
This paper describes the first measurement of even-
harmonic amplification utilizing a periodic position insta-
bility [2,3).

For conventional planar-wiggler FELs the interaction
occurs at the fundamental and the odd harmonics [4-11],
due to the velocity harmonics present in the unperturbed
undulations of the electrons. These harmonics are pres-
ent even for ideal wigglers with perfect beam injection,
and give rise to the periodic velocity instability of the
FEL. The even-harmonic interaction considered here,
however, requires no higher velocity harmonics. Rather,
it depends on a synchronism in the electron position with
respect 10 an antisymmetric radiation field. The interac-
tion can occur with either a transverse or axiai electric
field. The transverse field must be odd in the direction of
the wiggle motion, and the axial field must be even for
the respective interactions to occur. For a second-
harmonic interaction, the radiation goes through two cy-
cles as the clectron beam traverses one wiggler period A.,.

For the transverse interaction, the on-axis electric field
is zero, and the field peaks off axis. Considering only the
central part of the beam, the essentials of the transverse
interaction are shown in Fig. 1(a) where the electron
motion is greatly exaggerated and the transverse profile
of the field is included (in this case, the TE,, rectangular
waveguide mode). As seen in the figure, the electron will
always be in cither a decelerating or a zero electric field.
Although a particle displaced from the horizontal center
of the beam will be in an accelerating field a portion of
the time, the bulk of the beam will be in a decelerating
field most of the time, leading to a net amplification. The
axial interaction is shown in Fig. 1(b), again for the cen-
tral part of an on-axis beam. The transverse profile in
this case represents the axial field of the TM;; mode.
Here, even the central particle sees both an accelerating
and a decelerating field. The electron is in a decelerating

field on axis where the field is at its maximum and the ax-
ial velocity at a minimum, and in an accelerating field off
axis where the field is reduced and the axial velocity is
maximum. However, the transverse variation of the elec-
tric field is greater than the transverse variation of the ax-
ial velocity. This results in a stronger interaction on axis
which, again, leads to net amplification.

Although the axial and transverse interactions have
been considered separately in the preceding paragraph, it
is difficult to completely separate the two interactions. In
fact, computer simulations indicate that the overall per-
formance at the second harmonic is improved when the
two interactions are combined. Simulation also shows
that the second-harmonic periodic position interaction

Iransverse Interaction
electron beam transverse position (direction
of velocity is indicated by arrows)
BF wave dependence

()
VvV O\ >
e
: : x
Axal Interaction
RF wave dependence
(®) .
: transverse dependence
of axial field
E,
o

FIG. 1. Physical representation of the periodic position in-
teraction.
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can have a stronger growth rate than the fundamental
interaction, and is a significantly stronger interaction
than the third-harmonic FEL interaction for the current
range of experimental parameters. The remainder of this
paper includes a description of the experiment, as well as
a comparison with simulation results using the three-
dimensional nonlinear FEL amplifier code WIGGLIN
(10,12,13).

The experimental configuration is described in Ref. [9].
The drive frequency was between 12 and 18 GHz. The
experiment used a cylindrical electron beam tunable in
voltage from about 30 to 250 kV, with a 100-kV nominal
operating voltage for the second-harmonic interaction.
The beam voltage was measured as the output voltage of
the modulator using a capacitive voltage divider. The
current was measured at the gun with a current trans-
former, and at two downstream locations with resistive
current monitors. One measurement was taken before
the input coupler region and the other just after the in-
teraction region. The wiggler consisted of a permanent-
magnet-assisted electromagnet with a period of 3 ¢cm and
an amplitude variable over 670-1300 G. This corre-
sponds to a large perturbation of the electron motion at
these low voltages, and the ratio of transverse to axial ve-
locity is in the range of 0.23-0.43. The pole pieces ex-
tended partially down the sides of the waveguide to pro-
vide wiggle-plane focusing, and resulted in a very flat
profile near the center of the waveguide with the field ris-
ing sharply near the wall.

The experiment operated as an amplifier in an over-
sized waveguide (3.485x].58 cm) with the input signal
injected using a novel coupler capable of launching the
TEoi and TE/TM;, modes. These are the lowest-order
modes with the odd transverse symmetry necessary for
the periodic position interaction. Simulations of this
coupler suggest there was a 9 to | split between the TE,,
and TM,, modes with very little power in other modes,
The output radiation was analyzed via mode-selective
output couplers, and the microwave power was measured
with calibrated detectors at cach of the output coupler
ports. By comparing the signals from the output couplers
and by utilizing the uncoupled dispersion curves, the in-
teraction was positively identified as a second-harmonic
interaction with the 1,] modes. The input coupler was
also switched to launch the TEo mode (the lowest-order
mode for the FEL interaction) to verify that no interac-
tion occurred at these parameters.

Gain due to the second-harmonic periodic position in-
teraction was measured at beam voltages of 78-106 kV
and currents of 6-10 A (measured downstream from the
interaction region). This contrasts with voltages in the
range of 200-250 kv required for the fundamental in-
teraction at the same frequency. Operation at frequen-
cies of 12.5-16.5 GHz was achieved by both voltage and
wiggler-field tuning. The maximum observed gain was
approximately 7 dB. The measured gain spectrum will be

presented later in comparison with the theoretical anal-
ysis. The interaction could not be saturated at this valye
of gain with the available drive power, but the maximum
unsaturated efficiency obtained was 1.1%,

An oscillation also occurred at beam voltages of 115-
130 kV (depending on the wiggler strength) which had a
significant effect on the transported beam current, reduc-
ing it by as much as 12% and indicating a strong interac-
tion. The measured frequency was 104 GHz, corre-
sponding to the cutoff frequency of the 1,1 modes, An
uncoupled dispersion analysis indicated the oscillation
was a backward-wave second-harmonic periodic position
instability. This was supported by the observation of a
higher power exiting the input coupler than was mea-
sured at the output couplers. The measured power exit-
ing from the input coupler was 41.5 kW, corresponding to
an efficiency of over 3%. The actual power inside the de-
vice was uncertain due to the unknown response of the in-
put and output couplers at 10.4 GHz for the TE,, and
TM;, modes. Although the fraction of the total power
that was actually coupled out from the input coupler is
unknown, the apparent strength of this oscillation ind-
cates the potential of the periodic position interaction,

The experiment was not optimized for the second-
harmonic periodic position interaction. The primary limi-
tations were electron-beam generation and injection. The
electron gun was designed for a different experiment, and
new focusing and transport systems were devised to
match the beam to the wiggler. A good match was dif-
ficult to achieve as the beam was transported from a
solenoidal field into the planar wiggler, and a significant
portion of the beam was lost in the transition. The prob-
lems in the transition region also resulted in a larger than
desired beam diameter. Because of the nature of the in-
teraction, an increasing portion of the beam becomes
essentially noninteracting as the beam diameter increases,
thus limiting the gain. In addition, a large diameter also
gives rise to a large wiggler-induced velocity spread
which limits the operating efficiency.

The experimental observations were compared with
simulations using WIGGLIN, which includes the simul-
taneous integration of a slow-time-scale formulation of
Maxwell's equations as well as the complete Lorentz-
force equations for an ensemble of electrons. No average
of the orbit equations is performed. As such, WiGGLIN
implicitly includes both the well-known odd harmonic in-
teraction in a planar wiggler and the periodic position in-
teraction. No further fundamental modification is re-
quired to model the experiment. In this formulation, the
electrons are assumed to be initially monoenergetic but
with a pitch-angle spread that describes an axial energy
spread (12,13}

The wiggler model describes an inhomogeneity in the
wiggle direction (i.c., the x axis). The measured field was
quite uniform about the symmetry axis, and rose sharply
toward the edges of the interaction region. As such, we
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employ the following wiggler model [14]-

B, (x)= “sink.vz - E—’%’:'—zi— B.-(z)] [sinhk.y - L;l;*y);d“%];l‘_i_x(x) . ()

B, (x)= [ [sink.-z - E%%]B.-(Z)J [ooshk..y - k..y;i:;k..y ddxz: X(x), )

' B, .(x) =B, (z)cosk,.z [sinhk..y - _)’_(zl;(_;;l [l + kl..z ) J ;dxiz JX(x) . (3)

where B.(z) describes the axial variation, k. =2x/A.., l

X(x) denotes the variation in the wiggle plane, and
Y(Ic...y)Ek...ycoshk...y-sinhk...y. This field is not self-
consistent in that it is divergence-free but not curl-free.
However, the approximation is good as long as B,.(z) and
X(x) vary slowly compared with Aw.

We choose B..(z) to describe both the adiabatic injec-
tion of the beam into the wiggler over N, wiggler periods
and the downstream taper of the wiggler for efficiency
enhancement. Hence,

B.sin’(k.z/4N,), 0<:< Nk,
B.(z)=4B,, NA,.<z< 20, 4)
B, [1+k.e.(z=20)), 20<2,

where B.. is the wiggler magnitude in the uniform region,
and ¢, denotes the normalized taper. The variation in x
is described for the general case by a polynomial

X(x)=1+ 5 (x/a, )", (5)

where a, denotes the scale length for variation of the
field, and m is an integer. As a,— <o this reduces to a
wiggler with flat pole faces. A comparison of the actual
field with X(x) as used in the code (a quartic with m=2
and a, =1.4938) is shown in Fig. 2, and it is clear that
the approximation gives a reasonable fit to the data.

The specific parameters used for comparison are a volt-
age and current of 99.4 kV and 6.6 A with a beam radius
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FIG. 2. Comparison of the measured transverse wiggler vari-
ation and the quartic representation used in WIGGLIN.
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of 0.4 cm. The wiggler was characterized by 8. =1.295
kG, A. =3 cm, an input taper of N.=3, and a total
length of 34A.. Both the TE): and TM,, modes are in-
cluded (at a ratio of 9 10 1) with a total input power of
300 W. Figure 3 contains a comparison of the observa-
tions with results from WIGGLIN over the unstable band
for Ay./yo=0.0%, 0.025%, and 0.05%. The experimental
points over the frequency band fall, for the most part, be-
tween the curves representing energy spreads of 0.025%
and 0.05%. This is in 8ood agreement with the estimated
energy spread based upon trajectory calculations of the
gun geometry. Observe that the power has not saturated
in any of these cases. At 14.4 GHz, the saturated gain is
about 10 dB over 401, for Ay./70=0, which falls to
about 8 dB over a distance of approximately 50A. for
Ay./70=0.025%.

The effect of a tapered wiggler is shown in Fig. 4 for
the case of Ay. =0 and & ™ —0.00083. The efficiency
enhancement is sensitive to the start-taper position, which
must be close to the point at which the beam becomes
trapped in the ponderomotive potential formed by the
beating of the wiggler and radiation fields. For this ex-
ample, the optimal start-taper point is zo=30.2 em.
Only the total signal and the TE)) mode are shown in the
figure, and the large oscillations in the total power are
caused by the TM,, mode. It is evident that the saturat-

TE)) and TM;; Modes (a=3.485cm; b= 1.58 cm)
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FIG. 3. Comparison of the observed output spectrum and the
calculations with wiGGLIN,
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TE,, and TM,; Modes (a = 3.485 cm: b= 1.58 cm)
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FIG. 4. Simulation of the power vs axial distance for a
tapered-wiggler interaction.

ed efficiency can be increased relative to that of the
uniform-wiggler case for the present parameters by al-
most threefold through the use of a tapered wiggler.

In summary, the first experimental demonstration of a
harmonic periodic position amplifier has been achieved.

The interaction occurs at the even harmonics of the fun-

an odd symmetry about the wiggler symmetry plane. The
experiment permitted positive identification of the in-
teracting modes, and the experiment was seen to be in
close agreement with predictions from the WIGGLIN
simulation code. Improvements in the interaction
efficiency by means of a tapered-wiggler interaction have
been demonstrated in simulation; however, these results
are far from optimized, and we expect that substantjal
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