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I. INTRODUCTION 

The research performed on this contract covers a broad range of topics related to 
coherent radiation sources. In general, the research can be divided into two broad 
categories: theoretical research into innovative concepts in the physics of ubitrons (or free- 
electron lasers), and in the application of this theory to the support of the experimental 
ubitron program m the Vacuum Electronics Branch of the Electronics Science and 
Technology Division at the Naval Research Laboratory (NRL). The work on this program 
was conducted by the Principal Investigator, Dr. H.P. Freund at a level of effort of 1 
Manyear per calendar year during the contract period. 

The general theory research covers a wide range of topics of interest. Linearized 
analyses of the ubitron/free-electron laser (FEL) have been performed to study (1) thermal 
et ects on the gain m both planar and helical wiggler geometries in ubitrons, and (2) the 
relationship between the variation in the relative phase and optical guiding Nonlinear 
analyses have been conducted for a wide variety of configurations and purposes. These can 
be roughly categorized as studies of: (1) the effect of wiggler imperfections on ubitron 
operation, (2) space-charge effects in ubitrons, (3) slow-wave ubitrons (4) tunability of 
tapered wiggler configurations in ubitrons, (5) a high-efficiency collective FEL experiment 
using a helical wiggler and an anti-parallel axial guide magnetic field, (6) the inclusion of a 
model of self-electric and -magnetic fields in the nonlinear simulations of ubitrons (7) a 
high power Cerenkov maser, and (8) the analysis of the Coaxial Hybrid Iron (CHI) 
wiggler. v      ' 

The theory support for the ubitron program in Code 6840 covers two distinct 
experiments. The first experiment is that of a fundamental harmonic ubitron using a helical 
wiggler and an axial guide. Extensive theoretical capability to analyze this configuration has 
been developed over the course of this and preceding contacts with Code 6840 at NRL and 
the simulation codes developed were employed to analyze the results of this experiment 
Gratiiyingly, good agreement has been found between the experiment and the theory The 
second experiment employs a planar wiggler and operated at higher harmonics of the 
resonance frequency. Once again, good agreement has been found between simulation and 
the experiment. 

The organization of this final report is as follows. A description of the general 
theory developed under the contract is given in Section. II. This will be divided into six 
sub-sections corresponding to each of the categories listed above. A discussion of the 
theoretical support provided for the ubitron experiments is given in Section III. A summary 
is given in Section IV. The text of the report will not be very detailed in that figures and 
drawings illustrating the results of the work will not be given in the body of the report 
These are shown instead in the papers published during the contract period, and copies of 
all papers published m refereed journals for this research is given in Appendices following 
the text of the report. rr e 

II. GENERAL THEORY 

A detailed description of the general theory will not be given here since this is 
contained within the papers in the Appendices. Instead, only a general overview of the 
principal results will be presented. To this end a brief discussion of the methodology used 
in nonlinear analyses is in order. 

The nonlinear techniques used in this research program are based upon slow-time- 
scale analyses of the resonant interaction between the electron beam and the radiation field 



in a variety of waveguide structures. For example, the vacuum TE modes in a cylindrical or 
coaxial waveguide can be expressed in the form 

6A(x,0 = t J=i ÖAJz) y^ Zfrj) e\sin alm + Zfajr) Secos alm]   , 

where bA(x,t) denotes the vector potential, 

alm = j dz'kJfi+lB-mt , 

denotes the phase corresponding to wavenumber kltn and angular frequency to, and Kim is 
the cutoff wavenumber of the mode. Observe that the amplitude öAim(z) and wavenumber 
of each mode is assumed to vary slowly in z with respect to the wavelength of the mode. 
The cutoff wavenumbers are given by the dispersion equation Ji\KimRg) = 0 for a 
cylindrical waveguide of radius Rg, and by JKKbfl)Yl{Kjb) = JüKI^Y^K^) for a 
coaxial waveguide of inner and outer radii a and b respectively. The polarization vector is 
given by Zi(Kimr) = 7/(Kr/mr) for a cylindrical waveguide, and Z/( */„,/•) = Ji(Kimr) + 
AimY£Klmr) for a coaxial waveguide where Alm = - 7/'(»c/^)/r/(K:toö). 

The dynamical equations for each mode is found by substitution of the above- 
mentioned representation for the field into Maxwell's equations and (1) orthogonalizing in 
the transverse coordinates, and (2) averaging over a wave period. The results can be 
compactly written in the form 

[1?    \c*   ""    K"»]\0A»»- P"S"" ' 
and 

2£W2iL (kll2fiA )- °*b <f2) 
,m dz    'm      lm} ~ c5"   ,m ' 

where öaim s eöAiJnieC2 is the normalized amplitude, a>b is the ambient beam plasma 
frequency, and the sources are 

and 

s™ sH'm (f^J ^ Z/(,Ci/) sin a""+ j^\ zi'(K*r) °°s "*») 
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Here Him = 2Kim
2Rg
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for a coaxial waveguide. Finally, the averaging operator is defined as the average over the 
initial conditions of an ensemble of electrons. An initial momentum distribution is defined 
as 

F(p0)=Ae-^-po^^ö(pl-p[0-pDH(p!0) , 

where the normalization constant is 



This distribution describes a monoenergetic beam with a pitch angle spread, and the axial 
energy spread corresponding to this pitch angle spread can be expressed as 

where y0 
s (1 + po2lme

2c2)112. As a result, the averaging operator takes the form 

x fjäx^o^x^t    dy0ot(%) (• • •) , 

where A^ is the cross-sectional area of the waveguide, ipo (= - to/o) is the initial phase 
corresponding to an entry time to, #o = tan-1^^/?^), and qj_ and qi represent the initial 
distributions in cross-section and phase. These equations exhibit no direct mode-mode 
coupling. All coupling is through the electron beam. Hence, to complete the formulation the 
electron trajectories must also be specified. For this purpose, we use the full Lorentz force 
equations in the fields composed of the wiggler, the electromagnetic wave(s), and the self- 
fields (to be discussed below). Thus, we integrate 

vz-jj-p=-e[bE + E{s) + -L vx(50^+ Bw + 6B + Bw)] , 

for an ensemble of electrons, where Bw denotes the wiggler, E<s) and B<s> denote the self- 
fields, 

ÖE =- \, JL ÖE, and OB = V x ÖA , 

describes the electromagnetic field, and an axial guide field is included as well. Observe 
that the Lorentz force equations need not be averaged since they are implicitly slowly- 
varying for waves near resonance. This constitutes the principal difference between the 
formulation pioneered by SAIC and nonlinear approaches developed elsewhere. This non- 
averaged approach to orbit dynamics permits the self-consistent inclusion of beam injection 
into the wiggler as well as the treatment of wiggler tapering for efficiency enhancement and 
all harmonic interactions. 

Finally, before proceeding to the detailed discussion of the work performed on the 
contract, it is important to remark that this nonlinear formulation can also be applied to the 
TM modes as well as other waveguide geometries by the simple expedient of using the 
vacuum modes of other configurations. Of particular relevance to the work performed on 
the contract is the rectangular waveguide, and dielectric-lined waveguides. 

A. Thermal Effects on the Linear Gain 

The interaction in a ubitron is crucially sensitive to the beam quality, and even small 
thermal spreads can result in substantial degradations in the gain and efficiency of the 
interaction. As a result, SAIC conducted a study of the effect of the beam thermal spread 
on the linear gain in both helical and planar wiggler ubitrons. This analysis has been 
published in the IEEE Journal of Quantum Electronics [vol. 27, p. 2550 (1991)], and was 
conducted by Dr. Freund in collaboration with Dr. D. Kirkpatrick of SAIC and Dr. R.C. 



Davidson at the Princeton Plasma Physics Laboratory. A copy of the paper is given in 
Appendix I. 

As expected, the analysis showed a steep decline in the gain with increasing thermal 
spreads. However, there were differences in the analysis in comparison with the previously 
commonplace approach to thermal effects in ubitrons. The typical analysis of thermal 
effects in ubitrons made use of a Maxwellian velocity distribution, and resulted in an 
expression for the dispersion equation which contained the Plasma Dispersion function. 
This is the most common approach used to describe thermal effects in drifting plasmas. 
However, it is incorrect to apply this formalism to ubitrons. The reason for this twofold. 
The first is that it is implicitly assumed in this analysis that the axial velocity is a constant of 
the motion. This is true for uniformly magnetized beams, but not for electron propagation 
through a wiggler. Here, the constants of the motion are the total energy and the canonical 
momenta. Orbits with constant axial velocity can be found for a helical wiggler, but they 
represent a special class of trajectory which breaks down if there is any thermal spread. The 
situation is even worse for planar wigglers, since there are no orbits with constant axial 
velocity in this geometry. The second reason is that the Maxwellian distribution does not 
apply either since this distribution does not describe the beams in a ubitron. In the ubitron 
the electron beam will be characterized by a maximum energy corresponding to the potential 
applied across the diode. Hence, there will be no long exponentially decaying tail at very 
high energies. As a consequence, the Maxwellian distribution is an approximation at best. 
Since the Plasma Dispersion function appears only in the context of the Maxwellian 
distribution in which the axial velocity is a constant of the motion, this also represents a 
questionable approximation. 

In order to overcome these problems, a completely new analysis was developed. 
The first consideration was to construct an appropriate distribution function. Since the 
beams in most ubitrons of interest to Code 6840 are produced in a diode with a fixed 
potential, a monoenergetic beam was assumed. The source of the thermal spread, therefore, 
is the pitch angle spread induced by electron transport across the cathode/anode gap! 
Hence, a distribution of the form 

F(p,A>P) = ^p %e-^i*2ö(p-p0) , 

was chosen, where Px and Py are the canonical momenta, p is the total momentum, nb is 
the ambient density, and p0 and AP denote the total beam momentum and momentum 
spread. Using this distribution, we obtained dispersion equations for both helical and 
planar wiggler configurations which included a thermal function of the form 

where E\ is the exponential integral function and 

Q ^F IF V') ' 
where vz denotes the bulk axial beam velocity. 

The result found using this approach differed from that found using the Maxwellian 
and the Plasma Dispersion function. The difference consisted in the fact that we found that 
the gain remains relatively constant for small increases in the thermal spread, and only 
begins to decrease after a threshold is reached in the thermal spread. No such plateau is 
found using the Maxwellian/Plasma Dispersion function analysis. Since the Maxwellian 



approach represents an approximation at best, this newer analysis constitutes an advance in 
our understanding of the physics of ubitrons. 

B. Optical Guiding and the Relative Phase 

The issue of optical guiding in ubitrons and free-electron lasers has received a great 
deal of attention with respect to short wavelength FELs in which the radiation is quasi- 
optical. In this regime, it was feared that diffraction could cause to radiation beam to 
expand outside the bounds of the electron beam, and that this could result in a reduction in 
the gain and efficiency of the interaction. The work on optical guiding was predicated on 
the hypothesis that the dielectric effect of the beam acts as an optical fiber which will 
confine the radiation to within the electron beam envelope. On the basis of previous 
theoretical formulations, this appeared to be quite feasible. 

The effect of optical guiding at short wavelengths is related to the phase shift 
induced by the beam at microwave frequencies. Hence, we felt that a study of the relative 
phase could have relevance to the question of whether optical guiding works at short 
wavelengths. The relative phase can be defined in the following manner 

MJLz) - fQ ä'[*JO-s/$-< ] . 

which measures the change in the evolution of the phase in the beam-loaded system with 
respect to the vacuum waveguide. Using the nonlinear codes described above, it was found 
that the relative phase could be either positive or negative over the band of unstable 
frequencies. Typically, at the low (high) frequency portion of the gain band the relative 
phase is negative (positive), and there is one frequency at which the relative phase remains 
unchanged. Since optical guiding requires a positive relative phase in order for the 
refractive effect of the beam to result in guiding of the wave, this implies that guiding is 
found only over a part of the gain band. 

In order to test this conclusion Dr. Freund, in collaboration with Dr. T.M. 
Antonsen at the University of Maryland, performed a theoretical analysis of optical guiding 
and showed that it did indeed correspond to the variations in the relative phase. This work 
was published in the IEEE Journal of Quantum Electronics [vol. 27, p. 2539 (1991)], and 
is included in Appendix II. 

C. Wiggler Imperfections 

Since the ubitron/FEL is so sensitive to the effects of beam thermal spreads, it is 
feared that imperfections in the wiggler magnet can also have a deleterious impact on the 
gain and efficiency. The reason for this is that variation in the wiggler field can induce 
variations in the particle velocity which can result in resonance broadening. Much of the 
analysis of the effect of wiggler imperfections has been based upon orbit averaged 
formulations in which the effect of wiggler imperfections is included via some assumed 
random walk model of electron motion in a randomly varying wiggler. Dr. Freund had 
some reservations about this model which stemmed from the fact that the random walk 
model was originally constructed to deal with Brownian motion in which small particles 
experience random and discontinuous impulses. In this way, the particle "walk off" from 
their initial location , and the displacement varies as the square root of the number of 
impulses they receive. This is not what happens in a wiggler however. In this case, while 
the wiggler may vary in an random (i.e., unknown or unplanned) manner, the field is 
continuous. Thus, the electrons don't experience random and sudden impulses. Rather, 
they follow a meander line associated with the field variations. A better model for this 



motion might be a bead sliding on a wire which has been bent or twisted in a random 
manner. By this analogy, the electrons would not be expected to walk off. 

In order to test this hypothesis, Dr. Freund modified the nonlinear simulation codes 
to treat random variations in the wiggler field. This was a relatively straightforward process 
since the formulation integrates the electron trajectories in a given wiggler field. Thus, all 
that was required was to modify the wiggler model to include a randomly chosen set of 
imperfections in the wiggler amplitude. These analyses were conducted in collaboration 
with Dr. R.H. Jackson and have been published in Phys. Rev. A [vol. 45, p. 7488 (1992)] 
and Nucl. Instrum. Meth. [vol. A341, p. 225 (1994)]. These papers are include din 
Appendices III and IV. 

The detailed model employed was based upon the fact that a planar wiggler is 
constructed of a stack of permanent magnets, and that random imperfections can result 
form variations in the magnetization of each element in the magnet stack. Thus, the field 
amplitude can vary in a random way from pole face to pole face, which occurs regularly at 
some fractional length of the wiggler period. As a result, a wiggler model was constructed 
in which the amplitude varied on some length scale Az = kw/Np, where kw denotes the 
wiggler period and Np is the number of pole faces per wiggler period. A random sequence 
of wiggler variations in then chosen {ABn} where ABn ■ ABw(nAz). The variation in the 
wiggler amplitude between these points is then constructed from a continuous map as 
follows 

ABw(nAz + öz) = ABn+(ABn+1- ABn) sin2(||) , 

for 0 < öz < Az. Given this variation in the wiggler amplitude, it is possible to integrate the 
electron trajectories for a large number of different error distributions. In this way, it is 
possible to construct an ensemble average of the efficiency as a function of the rms 
magnitude of the wiggler error. 

The results of the study indicate that the effect of wiggler imperfections is much less 
severe than the effect of beam thermal spread, and that for most experiments (at least at 
long wavelengths) there is no cause for alarm based upon the current manufacturing 
tolerances for wiggler magnets. 

It is also interesting to note that this approach to treating wiggler imperfections also 
allows us to model the effect of a specific set of imperfections in any given wiggler magnet. 

D. Tunability of Tapered Free-Electron Lasers 

It is widely known, and practiced, that the efficiency in ubitrons can be 
substantially enhanced by using a tapered wiggler. The physical basis of this process is that 
as the electrons decelerate as they lose energy to the wave and drop out of resonance. 
However, the electrons can be accelerated if the wiggler amplitude decreases and the 
resonance condition can, therefore, be maintained over an extended interaction length. The 
efficiency enhancement in such cases is extremely sensitive to both the slope of the taper 
and the start-taper position. The start of the taper must be chosen in such a way that the 
electrons have just become trapped in the ponderomotive potential formed by the beating of 
the wiggler and radiation fields but have not had time to undergo one half of an oscillation 
in the trough of the wave. The slope of the taper must not be so fast that the electrons 
"slosh" out of the trough nor so slow that no effective enhancement occurs. Because of this 
sensitivity, it had been felt if the start-taper point and slope of the taper had been chosen for 
optimum performance at one given frequency, then the efficiency enhancement at other 
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frequencies would suffer. In other, words, that the tapered wiggler interaction would have 
a narrow instantaneous bandwidth. 

In order to test this hypothesis, Dr. Freund collaborated with Drs. B. Levush and 
T.M. Antonsen of the University of Maryland. The procedure used in the study was to use 
one-dimensional (B. Levush and T. Antonsen) and three-dimensional (H. Freund) 
simulations for tapered wiggler configurations optimized at one frequency to test the output 
efficiency at other frequencies. In other words, the parameters were optimized at a given 
frequency, and then held fixed while the frequency was changed. 

The results of the study showed that the previously accepted hypothesis of a narrow 
bandwidth for the tapered wiggler interaction was in error. In fact, it was shown that the 
bandwidth for the tapered wiggler case was as broad as that for the uniform wiggler. 

E. A Slow-Wave Ubitron 

One important goal of the ubitron program in Code 6840 at NRL is the development 
of ubitrons which can operate at high frequencies but low voltages. Three principal 
strategies are being used for this purpose: (1) harmonic interactions, (2) short period 
wigglers, and (3) slow-wave circuits. It is the latter approach which will be discussed in 
this subsection. 

In order to study the effect of a slow-wave circuit, Dr. Freund adapted the 
aforementioned nonlinear formulation to treat the case of a dielectric-lined rectangular 
waveguide and a planar wiggler. The waveguide chosen had a dielectric liner applied to the 
long dimension of the waveguide (the ^-direction) which coincided with the direction of 
wiggler motion. The mode structure in such a waveguide is not strictly TE or TM with 
respect to the longitudinal axis of the waveguide. Instead it is TE and TM with respect to 
the y-direction. These are referred to as the LSE and LSM modes respectively. The analysis 
has been published in Nucl. Instrum. Meth. [vol. A304, 555 (1991)], and is included in 
Appendix VI. This paper includes a detailed discussion of the formulation as well as the 
results of the simulation. 

The results of the analysis indicate that high efficiencies and voltage reductions are 
possible with such a slow-wave circuit. However, dielectric liners are subject to problems 
of charging and breakdown, not to mention mechanical failure. Hence, an actual slow- 
wave ubitron might be better constructed with a more robust slow-wave circuit such as a 
grating or rippled wall. 

F. Cerenkov Masers 

The Cerenkov maser is essentially a traveling wave tube in which the slow-wave 
circuit is composed of a dielectric liner. Cerenkov masers have been built and operated at 
Dartmouth for many years, and hold promise for low voltage operation at relatively high 
frequencies. In order to understand the interaction and its limitations Dr. Freund, in 
collaboration with Dr. A.K. Ganguly at NRL, has formulated a nonlinear slow-time-scale 
analysis of the Cerenkov maser for a configuration in which a cylindrical waveguide is 
lined with a dielectric material. This formulation was conducted under a previous contract 
SAIC with NRL. However, more recently a high power X-Band Cerenkov maser 
experiment has been performed at General Dynamics which recorded power levels of more 
than 280 MW at 8.6 GHz. Drs. Freund and Ganguly applied their previously written 
simulation code in order to study this experiment. This work has been published in Nucl. 
Instrum. Meth. [vol. A304, p. 612 (1991) and is included in Appendix VII. 



Details of the formulation and the comparison are given in Appendix VII and will 
not be repeated here. Briefly, the experiment employed a 788 kV/3.1 A annular electron 
beam with a mean radius of « 1.15 cm and a thickness of 2 mm. The waveguide was lined 
with stycast (e = 10) and has a radius of 1.74 cm at the wall and 1.47 cm at the inner 
surface of the dielectric, and an overall length of 23.9 cm. It was operated as an amplifier 
with a 100 kW driver at 8.6 GHz. The measured output power was 280 MW for a gain of 
34.5 dB (1.44 dB/cm). The results of the simulation were in substantial agreement with the 
experiment as regards the gain over the 23.9 cm of the experiment. However, the 
simulation indicates that the interaction had not saturated over that length. Saturation in the 
simulation occurs at a power of 620 MW over a length of 28 cm for an efficiency of 32% 
and an average gain of between 14.4-1.6 dB/cm. More importantly, the simulation 
indicates that the device is relatively insensitive to thermal spread. In particular, the 
efficiency is seen to drop to 18% for an energy spread of Ayzly0 « 30%. These are 
remarkable figures, and indicate that there is promise in this technology for high power 
applications. 

G. Self-Field Effects in Ubitrons 

It has long been known that the interaction in intense beam ubitrons is based upon 
stimulated Raman scattering in which the negative energy beam space-charge wave scatters 
off the wiggler field to result in the output signal. A great deal of effort has been expended 
in the study of these Raman interactions. However, the effect of the DC self-electric and 
self-magnetic fields has received relatively little attention. Recently, it became apparent that 
the self-field effects were important to the operation of the ubitron in Code 6840 at NRL, 
and Dr. Freund, in collaboration with Dr. R.H. Jackson at NRL and Dr. D.E. Pershing at 
MRC, undertook the task of including these effects in the nonlinear slow-time-scale 
analyses. 

This work was published in Phys. Fluids B [vol. 5, p. 2318 (1993)], and is 
included in Appendix VIII. The formulation makes use of an approximate form for the self- 
fields. Under the assumption of a flat-top density profile with a uniform axial velocity, the 
self-electric and self-magnetic fields can be written in the form 

Ew=-g»U(*-W)*,+(y-(y))SJ , 
and 

Bw= -£«*<&> [<y-m*x-(x-(x))Sj . 

These representations for the self-fields are then used in the nonlinear formulations to study 
both helical and planar geometries using circular beams. 

The results of this study indicated that the self-fields are relatively unimportant for 
ubitrons/FELs which have been constructed at MIT and at LLNL. However, this was not 
the case for the ubitron under construction at NRL. For this experiment, the self-fields 
were predicted to have a major impact on beam transmission and interaction efficiency. At 
the time this paper was written, no experimental results from the NRL ubitron were 
available. However, the experiment became operational before the end of the contract, and 
confirmed this prediction. These comparisons will be discussed in more detail in the next 
section dealing with the theoretical support for the experiment. 

10 



H. Simulation of a High Power FEL 

Dr. Freund, in collaboration with Dr. A.K. Ganguly, has applied the nonlinear 
simulation codes to the analysis of a recent experiment conducted at MIT. This experiment 
employed a helical wiggler field in conjunction with an axial guide field to produce an FEL 
amplifier at 35 GHz. The novel feature of this experiment was that the axial guide field was 
oriented anti-parallel with the bulk streaming velocity of the electron beam. This work has 
been published in the IEEE Trans. Plasma Sei. [vol. 20, p. 245 (1992)] and in Phys. 
Fluids B [vol. 5, p. 1869 (1993)], and these papers are included in Appendices IX and X. 
We will merely summarize the essential points of the study here. 

The experiment used a 750 kV/300A electron beam with a radius of 0.25 cm. The 
wiggler had a period of 3.18 cm and a maximum amplitude of about 1.8 kG, and the guide 
field could reach an amplitude of approximately 12 kG. The experiment was operated as an 
amplifier at 35 GHz and could be driven with powers of about 8.5 kW. Output power was 
peaked at 61 MW for a wiggler amplitude of 1.47 kG and a reversed guide field of 10.92 
kG. Significantly, there was a sharp dip in the output power for the reversed field cases at 
an axial field of about 7.5 kG. This corresponded to the magnetic antiresonance in which 
the Larmor period associated with the cyclotron motion corresponded to the wiggler period. 
This was a previously unexpected phenomenon. 

The simulation has proven to be in remarkably good agreement with the reversed 
field measurements. Choosing an initial axial energy spread of 1.5% in accord with the 
experimentally quoted figure for beam quality, the simulation predicts an output power of 
60 MW for the 10.92 kG reversed field case. This is exceptionally close agreement. In 
addition, the simulation also shows the dip in the output power near the magnetic 
antiresonance. The source of this effect has proven to be an antiresonant perturbation in the 
orbits of the off-axis electrons. In effect, an electron which is undergoing wiggler-driven 
helical oscillations far from the axis of symmetry experiences a periodic driving force due 
to the wiggler inhomogeniety which becomes very large near the antiresonance. The fact 
that this unexpected effect was correctly described by the simulation represents a success 
for the non-averaged orbit analysis. 

I. Space-Charge Effects in Ubitrons 

The nature of the Raman regime in ubitrons/FELs is often poorly understood. This 
is because there are several effects which contribute to the relative importance of the beam 
space charge waves. For example, an experiment conducted at MIT by J. Fajans and G. 
Bekefi was unambiguously in the Raman regime despite a current of only 4 A, while 
another experiment (also at MIT) conducted by D. Kirkpatrick and Bekefi was not in the 
Raman regime despite a current of 900 A. In order to explain this, Dr. Freund studied a 
group of four experiments with the view of evaluating their Raman status based upon three 
different criteria. This work was published in Nucl. Instrum. Meth. [vol. A331, p. 496 
(1993)], and is include in Appendix XI. 

The three essential criteria for Raman effects to be important are as follows. Firstly, 
the beam current must be high enough that the space-charge potential of the beam-plasma 
waves exceeds the ponderomotive potential formed by the beating of the wiggler and 
radiation fields. Secondly, the frequency shift associated with the beam-plasma waves 
[i.e., the beam plasma frequency] must exceed the gain bandwidth of the interaction. 
Thirdly, the beam plasma waves must not be subject to Landau damping. This last 
condition is equivalent to the requirement that the Debye length be greater than the 
wavelength of the beam-plasma waves. 
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Four experiments were considered in this study. These included the three 
experiments at MIT and one experiment at LLNL. Of these four experiments, the two with 
the highest currents were found to be not in the Raman regime, while the two lower current 
ones were found to be in the Raman regime. 

The highest current was found in the Kirkpatrick and Bekefi experiment at MIT. As 
mentioned, this experiment used a 900 A electron beam and operated at« 500 GHz. In this 
case, the space-charge potential was comparable to the ponderomotive potential, but the 
beam plasma frequency (« 5.5 GHz) was much less than the bandwidth of the interaction 
(« 50 GHz). In addition, the Debye length was * 0.09 cm is comparable to the space- 
charge wavelength (» 0.06 cm); hence, the space-charge waves should be damped. This 
experiment, therefore, is not expected to be in the Raman regime. 

The next highest current is found in the LLNL experiment which was a 35 GHz 
amplifier using a 3.5 MV/850 A electron beam. In this case, the ponderomotive and space- 
charge potentials also were comparable, but the plasma frequency (« 2.2 GHz) was much 
less than the bandwidth (ä 15 GHz). In addition, the Debye length was « 0.8 cm while the 
space-charge wavelength was also « 0.8 cm. Hence, the space-charge waves experienced 
sever Landau damping. Hence, this experiment was not in the Raman regime either. 

The third highest current was found in the reversed field experiment at MIT 
described in a previous subsection. This experiment employed a 750 kV/300 A electron 
beam. In this case the space-charge potential exceeded the ponderomotive potential, and the 
Debye length (« 0.14 cm) was much less than the space-charge wavelength (« 0.8 cm). 
Hence, Landau damping was unimportant. Finally, the plasma frequency (« 5.2 GHz) was 
comparable to the bandwidth. This experiment, therefore, was in the Raman regime. 

The lowest current was found in the Fajans and Bekefi experiment which was a 9.3 
GHz amplifier that used a 155 kV/4 A electron beam. The space-charge potential in this 
experiment also exceeded the ponderomotive potential, and the plasma frequency (x 0.72 
GHz) was comparable to the bandwidth. In addition, the low energy spread (= 0.3%) 
minimized the Debye length and kept Landau damping small, hence, this experiment was 
also unambiguously in the Raman regime. 

It should also be mentioned that the nonlinear simulation codes are in agreement 
with these general conclusions on the applicability of the Raman interaction in these four 
experiments. 

J. The CHI Wiggler 

It was previously mentioned that the goal of the ubitron research program is to 
operate at high frequencies with relatively low voltage beams, and that one means of 
accomplishing this is to develop short period wigglers. One impediment to the development 
of short period wigglers is that the construction of a wiggler necessitates the juxtaposition 
of oppositely directed magnets. This means that the shorter the period, the more field 
cancellation there will be which, in turn, means that the lower the maximum achievable 
field amplitude. In order to ease this limitation, a novel wiggler design has been invented 
by a team composed of Dr. R.H. Jackson at NRL, H.R Freund at SAIC, D.E. Pershing at 
MRC, and J.M. Taccetti from the University of Maryland. This wiggler is called the 
Coaxial Hybrid Iron wiggler, or CHI wiggler for short. 

The CHI wiggler is formed by the coaxial insertion of a central rod and an outer 
ring into a solenoid. Both the central rod an the outer ring are composed of alternating 
spacers made of ferromagnetic and non-ferromagnetic material in such a manner that the 
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ferromagnetic (non-ferromagnetic) spacer on the central rod corresponds to the non- 
ferromagnetic (ferromagnetic) spacer on the outer ring. Such a design is relatively 
inexpensive and easy to manufacture, and permits the creation of a high amplitude/short 
period wiggler by the relatively simple expedient of using high field solenoids. The wiggler 
component of the resulting field is limited primarily by the saturation of the ferromagnetic 
material used. 

The initial work on this design has been published in Nucl. Instrum. Meth. [vol. 
A341, p. 454 (1994)] and Phys. Plasmas [vol. 1, p. 1046 (1994)], and are included in 
Appendices XII and XIII. A good description of the CHI wiggler is contained in these 
papers along with schematic illustrations of the wiggler and perspective and contour plot of 
the field itself. In addition, the latter paper describes a nonlinear simulation of the 
interaction based upon the aforementioned slow-time-scale analysis for a coaxial 
waveguide. The essential conclusion of this work is that the CHI wiggler does indeed hold 
promise as a design which can achieve the necessary short periods and high amplitudes to 
operate at high frequency with relatively low beam voltage. In view of this, NRL has 
submitted a patent application for the CHI wiggler in the names of the co-inventors. 

More recently, the CHI wiggler has been applied to the design of a G-band FEL for 
application to the cyclotron resonant heating of magnetic fusion reactors. A paper 
describing this work has been submitted to Phys. Rev. Lett and represents a collaboration 
between Dr. Freund at SAIC, Dr. M.E. Read at PSI, Dr. R.H Jackson at NRL, Dr. D.E. 
Pershing at MRC, and J.M. Taccetti from the University of Maryland. This paper is 
included in Appendix XIV. The results indicate that it should be possible to build a G-band 
amplifier using the CHI wiggler capable of producing 3.5 MW with no beam loss over the 
course of the interaction. Hence, we have concluded that this design holds promise for 
meeting the requirements for such a source of RF power. 

Finally, Dr. Freund is providing theory support for the design of a Ka-band CHI 
wiggler ubitron amplifier in Code 6840 at NRL. This experiment represents the Ph.D. 
thesis work of J.M. Taccetti. An initial paper describing the design phase of this project has 
been submitted for publication in Nucl. Instrum. Meth., and is included in Appendix XV. 
SAIC expects to continue providing theoretical support for this experiment under a new 
contract. 

III. THEORETICAL SUPPORT 

Theoretical support has been provided for three experimental projects. One has 
already been described in the preceding section and deals with the start of the CHI wiggler 
experiment. This was presented in the last section in the interests of a more coherent 
presentation. The two other projects involve a fundamental mode ubitron and a harmonic 
ubitron. Each one will now be discussed in turn. 

A. The Fundamental Mode Ubitron 

The fundamental mode ubitron experiment in Code 6840 at NRL employs a well- 
known helical wiggler/axial guide field configuration and an electron beam (230 kV/100 A) 
propagating through a cylindrical waveguide. The experiment has a been conducted largely 
by D. Pershing of MRC and R. Jackson of NRL with H. Freund providing the theory 
support. The experiment is designed for long pulse operation (« 1 u,sec) with a rep rate of 
several Hz. The ubitron was operated as a Ku-band amplifier. This experiment has been 
under study for several years, and the start predates this contract. SAIC has been providing 
theoretical support for this experiment over its complete lifetime under the aegis of several 

13 



consecutive contracts. Recently, the experiment has come to fruition and recorded an output 
of approximately 4.2 MW at 16.6 GHz. Given the pulse time and rep rate, this represents 
an average power of 36 W, which is the record high average power for a ubitron/FEL to 
date. 

Two papers describing the experiment have been published/submitted in refereed 
journals during the contract: Nucl. Instrum. Meth. [vol. A304, p. 127 (1991)], and Nucl. 
Instrum. Meth. [submitted in 1994]. These papers are included in Appendices XVI and 
XVII. 

The earlier paper recorded gains of the order of 16-20 dB and the theory was in 
some agreement with the results. However, there were some unsatisfying discrepancies. At 
that time, the self-fields had not been included in the simulation. Inclusion of these effects 
resulted in much better agreement, as described in the second paper in Appendix XVII. 
There are still some uncertainties; however, we feel that they can be largely accounted for 
by two effects. The first is the uncertainty in the calibrations for the beam voltage and the 
wiggler and guide field amplitudes. It has been found in both theory and the experiment 
that the output power is extremely sensitive to variations in these parameters, and a few 
percent change in any of them can result in substantial variations in the power. Hence, this 
uncertainty can explain a large part of the discrepancies that still remain. The second is that 
the effect of reflections in a long pulse system like this can also affect the output power by 
causing an effective increase in the drive power. This is important in the current experiment 
since there is not enough drive power to run the ubitron to saturation. The specific level of 
these reflections is not known with certainty, but only a percent or less of total reflection 
would be required to account for a substantial variation in the output. Together, these two 
uncertainties can account for a large measure of any discrepancies between the theory and 
the experiment. 

One notable success in the theory is the prediction of beam loss. There was 
substantial beam loss observed in the ubitron which increased monotonically with output 
power. After inclusion of the self-fields in the simulation, the theory has been shown to 
closely predict this scaling of beam loss with output power [see Fig. 7 in Appendix XVII]. 

B. The Harmonic Ubitron 

The harmonic ubitron experiment in Code 6840 at NRL was conducted largely by 
H. Bluem of the University of Maryland as a thesis project. Also represented on the 
experiment were R. Jackson, V. Granatstein, and D. Pershing, and H. Freund provided 
theory support. The results of this experiment were published in Phys. Rev. Lett. [vol. 67, 
p. 824 (1991)] and is included in Appendix XVIII. This experiment differed from the 
fundamental mode ubitron in that it employed a planar wiggler and a rectangular 
waveguide. Also, since it operated on a harmonic interaction in the Ku-band, the beam 
voltage was much less than the nominal 200 kV used in the fundamental mode ubitron. 

The experiment used a 100 kV/7 A beam and found gains of the order of 7 dB at 
frequencies in the range of 14-15 GHz. This was a second harmonic interaction making use 
of the periodic position interaction. This experiment marked the first experimental 
demonstration of this interaction in a ubitron, and we note that the nonlinear theory was in 
substantial agreement with the experimental observations. Once again, we attribute the fact 
that the simulation was able to treat this new interaction mechanism without modification to 
the non-averaged nature of the electron dynamics. 
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IV. SUMMARY AND DISCUSSION 

The preceding contents of the final report represent the technical work performed 
under this contract, and the 18 Appendices include the refereed papers either published or 
submitted for publication during the contract term. However, this does not include a list of 
invited and contributed papers presented at conferences (which may be published in such 
non-archival formats as conference proceedings). In this regard, three invited papers were 
presented during the contract period, and more than 35 contributed papers were presented 
at a variety of professional conferences. In addition, Dr. Freund, in collaboration with Dr. 
R. Parker of NRL, has written a chapter on Free-Electron Lasers for inclusion in the 
Encyclopedia of Science and Technology [Academic Press, San Diego (1992), vol. 98, p. 
523]. 

15 



APPENDIX I 

Thermal Effects on the Linear Gain in Free- 
Electron Lasers 

H.P. Freund, R.C. Davidson, and D.A. Kirkpatrick 
IEEE J. Quantum Electron. 27, 2550 (1991) 



IF.KK JOURNAL OF Ot ASTl'M H.KTROMCS. VOl.    ;7. NO    i;. DhO'MRI-R  NMi 

Thermal Effects on the Linear Gain in Free-Electron 
Lasers 

H. P. Freund. R. C. Davidson, and D. A. Kirkpatrick 

Abstract—The effect or an axial energy spread on the linear- 
ized gain in free-electron lasers is considered for configurations 
which employ both helical and planar Higgler fields. The anal- 
ysis includes collective effects and is valid for either the Raman 
or high-gain Compton regimes. A thermal function is obtained 
which applies to both the helical and planar wiggler configu- 
rations at the fundamental, and which is generalized to treat 
the thermal effect on the harmonics for a planar wiggler. It is 
assumed that the displacement of the electron beam from the 
axis of symmetry for a helical wiggler, or the plane of symme- 
try for a planar wiggler, is much less than the wiggler period, 
and an idealized one-dimensional model is considered. The 
electron-beam model used to describe the axial energy spread 
is based upon the assumption of a monoenergetic beam which 
exhibits a pitch angle spread. This is described in the analysis 
by the inclusion of nonvanishing components of the canonical 
momenta in the single-particle trajectories of the electrons, and 
the specific distribution used is that of a Gaussian spread in the 
canonical momenta. The linearized Vlasov-Maxwell equations 
are then used to derive the dispersion equations, including col- 
lective Raman effects, for both the helical and planar Higglers. 
The analysis treats the interaction at the fundamental reso- 
nance frequency in the case of the helical wiggler, and a general 
thermal function is derived which describes the effect of the 
axial energy spread. The planar wiggler configuration admits 
interactions at odd harmonics as well as the fundamental, and 
a general dispersion equation is derived which includes the 
thermal effect at each harmonic as well as the fundamental. In 
addition, the nonvanishing canonical momenta results in an os- 
cillation in the axial velocity at »he wiggler period which gives 
rise to emission at all harmonics. This effect is included in the 
analysis for the planar wiggler configuration. 

I. INTRODUCTION 

AN IMPORTANT issue in the generation of coherent 
radiation at short wavelengths from the free-electron 

laser (FEL) is the effect of a beam thermal spread on the 
interaction. Indeed, in many cases, the thermal spread 
available from various electron-beam sources constitutes 
the essential limiting factor for many FEL applications. 
In this paper, we address the question of the effect of an 
axial energy spread upon the linear gain of the FEL at 
both the fundamental resonance frequency and at harmon- 
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ics of the fundamental. Coherent harmonic radiation is an 
important approach to the reduction in the beam energy 
required to achieve short-wavelength operation, and has 
been observed in the laboratory over a wide spectral range 
[ l]-[5]. The question of the effect of beam thermal spread 
upon the gain at the harmonics, therefore, is of particular 
importance. 

Theoretical analyses of harmonic radiation in FELs 
have dealt with both the linear [6]-[9] and nonlinear [ 10]- 
[16] interactions. Results of these analyses indicate that 
substantial gains and efficiencies are possible for the har- 
monic interactions, but that the sensitivity of the interac- 
tion to the beam thermal spread increases with harmonic 
number. Hence, the beam quality required for coherent 
emission rises dramatically at the higher harmonic num- 
bers. Analytical formulations of the interaction which in- 
clude thermal effects have considered both a distribution 
in the pitch angle spread [8] and the axial velocity, typi- 
cally specified by a Gaussian (9], [ 17]. In the former case 
dealing with the pitch-angle spread, the effect of three- 
dimensional wiggler geometry has been included via be- 
tatron oscillations arising from the wiggler inhomoge- 
neity; however, the analysis is restricted to the low-gain 
Compton regime. The formulations in the latter case de- 
scribe a beam with an energy spread but a vanishing emit- 
tance (or pitch-angle spread), and treat either harmonic 
emission from a planar wiggler configuration in the high- 
gain Compton regime [9] or the fundamental interaction 
in a variety of operating regimes [17]. In addition, non- 
linear analyses and simulation of both the fundamental 
and harmonic interactions for a planar wiggler configu- 
ration in the high-gain Compton regime in three dimen- 
sions have been presented [10], [12], [14] which include 
both the effects of a pitch-angle spread (for a monoener- 
getic beam) and the wiggler inhomogeneity. 

In contrast with the preceding work, our purpose in this 
paper is to develop a unified formulation of thermal ef- 
fects on the linear gain in both the high-gain Compton and 
collective Raman regimes. We assume that the beam is 
monoenergetic but characterized by a pitch-angle spread, 
and treat both the fundamental (for both helical and planar 
wigglers) and harmonic (for a planar wiggler) interac- 
tions. In order to treat this problem analytically, we shall 
impose an idealized one-dimensional approximation in 
which we neglect the wiggler inhomogeneity, and treat 
the pitch-angle spread by the inclusion of nonvanishing 
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canonical momenta in the single-panicle trajectories As 
such, we assume that the electron displacements from 
either the axis (helical wiggler) or plane (planar wiggler) 
of symmetry are much smaller than a wiggler period In 
practical terms, this implies that the bulk transverse ve- 
locity associated with the pitch-angle spread be much less 
than the wiggler-induced transverse oscillation. 

The effect of the pitch-angle spread is twofold. In the 
first place, the resultant axial energy spread acts to de- 
grade the interaction, and a general thermal function 
which describes this effect for both the helical and planar 
wigglers is derived for the interaction at the fundamental 
resonance. The effect of the axial energy spread on the 
odd harmonics excited in planar wiggler configurations is 
also described, and a generalized thermal function is de- 
rived for the linear gain at the harmonics. In the second 
place, the pitch angle spread induces an oscillation in the 
axial velocity which can also act to excite harmonic ra- 
diation, and this is treated for the case of a planar wiggler 

Indeed, for many classes of electron beam, the source 
of the axial energy spread is predominantly the pitch-an- 
gle spread rather than a spread in the total energy   For 
example, electron beams produced by MIG and Pierce 
guns are accelerated by voltages of up to several mega- 
electronvolts and focused, prior to injection into the in- 
teraction region, either by shaped electric or magnetic 
fields. The coils and/or electrodes which produce the ex- 
ternal fields in these guns must be carefully designed in 
order to offset the effects of the self-electric and magnetic 
fields of the beam. While the accelerating voltage may 
vary over the duration of the beam pulse, the electrons are 
instantaneously characterized by a largely monoenergetic 
distribution. However, the focussing process itself gives 
rise to a pitch-angle spread due to a variety of causes (such 
as field imperfections, shot noise, and self-field effects of 
the beam). Similar effects are found in a variety of accel- 
erating mechanisms, and the description of the axial en- 
ergy spread as arising from a pitch-angle distribution 
rather than a spread in the total energy, is appropriate to 
a wide range of FEL designs. 

The organization of the paper is as follows. A summary 
of the single-particle orbits in both helical and planar wig- 
glers is given in Section II. The general formalism used 
to derive the linear growth rates for helical and planar 
wigglers is described in Section HI. Sections IV and V 
include the linear stability analyses for the helical and 
panar wigglers. respectively. In the case of helical wig- 
glers, the effect of an axial energy spread is included only 
upon the growth rate at the fundamental. In this case a 
general thermal function is derived which describes the 
axial thermal effect upon the instability. In the case of 
planar wigglers, the analysis includes the effect of the ax- 
ial energy spread upon the fundamental and the harmon- 
ics. Here we observe that one effect of the axial energy 
spread derived by means of a nonvanishing canonical mo- 
mentum is to give rise to growth at both even and odd 
harmonics. A summary and discussion is given in Section 

2«! 

II. SINGLE-PARTICLE ORBITS 

The physical configurations we consider in this paper 
are those of a relativistic electron beam propagating 
through either a helical or a planar wiggler within the con- 
text of the idealized, one-dimensional limit. As such  we 
implicitly assume that the displacements of the electron 
beam from the axis or plane of symmetry are much smaller 
than the wiggler period (i.e., kwr « 1). The helical wig- 
gler field is assumed to be generated by a bifilar helical 
current winding which produces a field of the form 

BH = BK(ex cos kn.z + e, sin kwZ) (1) 

in the idealized limit, where B„ denotes the wiggler am- 
plitude, and kw is the wiggler wavenumber (s 2r/\ 
where K is the wiggler period). The representation for'a 
planar wiggler in the idealized limit is given by 

Bw = B„.iy sin kK.z. (2) 

Since x and y are ignorable coordinates in the idealized 
representation for the wiggler fields, these components of 
the canonical momenta (denoted by Px and Px) are con- 
stants of the motion. In addition, the total energy is also 
a conserved quantity. As a result, the single-particle or- 
bits in a helical wiggler are given by 

and 

Px - Px + pw cos kwz 

Py - Py + p„ sin kMz 

P: = Jp\ ~ 2p»(Pr cos kwZ + Py sin kuZ) 

(3) 

(4) 

(5) 

where y m (l + p2/m;r:)l/: is the relativistic factor cor- 
responding to the total electron energy and momentum p 
P« - ymrt'n: *'„• * -n„/*„ is the wiggler-induced ve- 
locity. ß„ * \eBw/ymec\, m, is the electron mass, c is 
the speed of light in vacuo, and /»j m p1 - p[ - p] - 
P; defines the bulk axial momentum. Observe that the 
magnitude of both the transverse and axial components of 
the velocity are constant in the limit in which both P, and 
Py vanish, and the orbit describes a helix which is in phase 
with the wiggler field and characterized by an axial mo- 
mentum pt « (p- -piy/2m 

The single-particle orbits in the idealized planar wig- 
gler are given by (3) for the x component of the momen- 
tum 

Py = /\ (6) 
and 

where 

ft - ^pi ~ ;A>H cos 2kwZ - 2pwPx cos kvZ     (7) 

*l - p- - \pl -P\-P) (8) 

for a planar wiggler. Since the y component of the mo- 
mentum is constant, the magnitude of the transverse wig- 
gler-induced velocity in a planar wiggler oscillates at the 
wiggler period. This results in an oscillation in the axial 
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momentum and velocity as well, which broadens the 
wave-panicle resonance, and gives rise to harmonic in- 
teractions. In addition, the principal resonance and cou- 
pling coefficient are determined by the bulk transverse ve- 
locity (v± > = !•„■/v2. This reduces the effective wiggler 
field with respect to the helical wiggler. 

The assumption of small displacements from either the 
symmetry axis (for a helical wiggler) or plane (for a planar 
wiggler) is equivalent to the condition that |rH/r„| « 
1. It is also evident from (5) and (8) that the existence of 
a nonvanishing canonical momentum introduces an oscil- 
lation into the axial velocity in the case of both helical 
and planar wigglers, which can also give rise to har- 
monic emission when V±  *  iV, where Vx  m (/>; + 
Py)  7v», is the velocity which corresponds to the trans- 
verse canonical momenta. In most FEL experiments 
however, Vx « lv. and the effect of a nonvanishing 
canonical momentum is largely on the broadening of the 
wave-particle resonance and the consequent degradation 
of the interaction strength. It should be remarked that this 
inequality is identical to that required in order to neglect 
the effect of betatron oscillations and wiggler inhomogen- 
leties. Hence, in the remainder of this paper we will dis- 
cuss the effect of the axial momentum spread due to a 
nonvanishing canonical momentum on the gain at the fun- 
damental in both helical and planar wiggler FEL's and 
on the gain in planar wiggler FEL's at harmonics of the 
fundamental. 

III. GENERAL FORMULATION 

In this section, we derive the general formalism for ob- 
taining the linearized dispersion equation for the FEL in 
the idealized one-dimensional representation within the 
context of a linearized Vlasov-Maxwell formalism. The 
Vlasov equation in the combined wiggler and electromag- 
netic fields is 6 

v ■ V 
-(' 

1 
6E(z, t) + - v 

x \Bw(z) + 6B(z, t))) • v fhiz, p,t) = 0   (9) 

where fbiz, p, t) is the distribution function of the electron 
beam, SE(Z, t) and 6B(z, t) denote the fluctuating electric 
and magnetic fields of the wave, and 

.   B d a 

°Pi dpy      * dp. (10) 

The Vlasov equation is linearized by expanding the dis- 
tribution in powers of the fluctuating fields. To this end 
we ™*Mz, P, t) = Ftiz, p) + Sfb(z, p, t) where Fb and 
öfb are the equilibrium and perturbed components of the 
distribution, and it is assumed that the perturbed distri- 
bution is of the order of the fluctuating fields and \6fb\ 
« \Fb\. The equilibrium distribution must satisfy the 
lowest order Vlasov equation 

d 
V--vxBj(z) Fb(z,p) = 0.   (11) 

This is satisfied for any equilibrium distribution which is 
a function of the constants of the motion. As discussed in 
Section II. these constants are the total energy (or mo- 
mentum) as well as the canonical momenta for both hel- 
ical and planar wigglers in the one-dimensional represen- 
tation: hence, we may express the equilibrium distribution 
in the form Fb(z. p) = Fh(Px, />,, p). Correct to first order 
in the fluctuation fields, the perturbed distribution satis- 
fies 

- + V.V--VX Bjz) ■ Vp &Mz, p. t) 

= e [6E(z, t)+l-vx SBlz, t)\ • VpFh.    (12) 

The perturbed Vlasov equation may be solved by the 
method of characteristics in which we integrate 

&Mz, p, riz)) = e f— Jo v.(z') 
«£(C, T{Z')) 

1 
+ - viz') x 8B(z. riz')) V» (13) 

over the unperturbed trajectories under the assumption that 
the perturbations are negligibly small at time t = 0. Ob- 
serve that we treat the case of spatial growth and have 
adopted Lagrangian coordinates in which viz) denotes the 
unperturbed velocity of an electron as a function of the 
axial position, and 

riz) * t0 + 
Jo r-(c') (14) 

represents the time it takes an electron to reach a partic- 
ular axial position after crossing the z - 0 plane at time 
'o- 

The solution to the perturbed Vlasov equation is solved 
m conjunction with Maxwell's equations. We choose to 
deal with the scalar 6<piz, t) and vector potentials 8AJz. 
0 in the Coulomb gauge. Note that since we treat a one- 
dimensional model, the scalar and vector potentials de- 
scribe plane waves. Hence, the vector potential represents 
a purely transverse electromagnetic wave. In terms of this 
representation. Maxwell's equations are 

(V,-?PK--T"' 
and 

Mi*-+*'* 

(15) 

(16) 

Observe that the scalar potential is described in terms of 
the z component of Ampere's Law rather than with Pois- 
son's equation. The perturbed source current is given in 
terms of the perturbed distribution function as follows: 

hj{z 
m, J 

dP-p*fbiz,p,t).        (17) 
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The dispersion equation governing the growth and/or 
damping of the electromagnetic field is obtained by the 
simultaneous solution of (13), (15), and (16) 

Since the FEL operates by means of an axial bunching 
mechanism ,t is the axial velocity spread which is mosl 
important. As a consequence, in the treatment of thermal 
effects on the linear stability properties we shall impose 

Lnr !S?Cat,0n ?at "* dectron **"" is monoenergetic 
but exhibits a pitch-angle spread. The effect of the pitch- 
angle spread is to include velocity spreads in both the ax- 
ial and transverse directions, and may be described by a 
distribution function of the form [18] 

W„ Py, P) = nbG±(Pt, #y & up _ po)     (18) 

where nb denotes the bulk ambient density, and G (P 
P?) represents the transverse distribution. For conve" 

SSTflTfc   fT* *" *"transveree distribution 
takes the form of a Gaussian 

2553 

and 

£>. m i I" d., exP (iuHz, z')) 
P Jo p Jo "£') 

x(-cpz(z') — Mz') 

2_ 
TAP2 G,(/>„ />,.) = ~ exp (-P2

± /A/»2)        (19) 

Tn^H AX ", * + P" Md AP rePresents ** thermal 
spread^ An alternate distribution which includes the ef- 
fects of both emittance and Betatron oscillations has also 
been developed [19]. 

IV. HELICAL WIGGLER CONFIGURATIONS 

«.mJ^01? ?* CaSC °f a heUcaI wi88,cr under *e as- sumption of plane-wave solutions, the vector and scalar 
potentials for a wave with angular frequency u are of the 

MAz, t) = liAjz) exp (-iut) + c.c.       (20) 
and 

Vfe, /) = j6£fc) exp (-iut) + c.c. (21) 

After transformation to the basis 

*± m id, ± to,) (22) 

which is convenient for the description of left- and right- 
hand circularly polarized electromagnetic waves, the L- 
turbed distribution function can be written as 

Wz, P, Hz)) m &fb(z, p) exp (-/wTfe)) + cc     (23) 

where 

+ iu[p-(z') SAM') + pM') 6AM')l)      (26) 

where p± . Px + Py, r(z, z') m T(z) - T(z'), and 

w"± ■ 1 (&*,*/&?,) (27) 

denotes the amplitudes of the circularly polarized electro- 
magnetic waves. 

The source current 

*/(z. ') - [*7+fc)*+ + 6/_W*_ + 6jz(z)i] 

• exp (-/ur) + c.c. (28) 

folfoewsnnined ^ mCanS °f thC P6""^ distribut*on as 

m, J dPxdPydp-f-6fb(z,p)'P± 

yPz 

(29) 
The interaction principally couples the space-charge and 

thf.lft \ 7CU,a?y P0'3^ m0des; hence- wc neg'ect 
Uie left-hand circular polarization state. Therefore, the or- 
bit integrals can be written as 

and 

D± = &4±(0) exp (iur(z, 0)) - 6At(z) 

n _ ym'c f: 

~~~p~ Jo *' CXP [kn{z' z')] 

(30) 

[• •|-£w> + f'-*u, (31) 

+D-(£-'£HI] 
The orbit integrals in (24) are defined as 

The Lagrangian time coordinate which appears in the or- 
bit integrals can be evaluated using the single-particle tra- 
jectories in (3)-(5), and we obtain 

*rt'^-«-)-^ 

(24) 

P' ,p exp (icJTfe, ;')) / , ,    *\    „    ■ 
Jo * 51) (lw " "*'> ä?j «^fcO 

• (sin *B.z - sin *„*') 

PwPy 
+ k^H (COS *BZ ~ C0S kwZ '>] (32) 

(25) 
«Z laZ °f 0rder ^ Pl P'"> /Pt- In the eVa,uatio„ of the source currents, we substitute for the perturbed dis- 
tribution function and integrate by parts ,„> and P 
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Hence 
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and 

6jAZ)= i^c\dP'dPydpw.   (2 + ^) D+ 6J:(Z) * i P**A.W «p (ikwZ) j dPx dPy dp 

• Ffc(/>x, Pv, ;>) 

7<«-a',)d7n(/>*,/'',/') 

(33) 
and "S^I ^^V4P 

mek v,    d 
u - kVtTp 

X 
y 

' Fb(Pi, Py, P) (40) 

7o ■ (1 + pl/m)c2)"\ vtm (pi- pi)/y0mt, and ßl 
■ vw/v\. Note that vt and vw now denote the axial and 
transverse velocities for the steady-state trajectory corre- 
sponding to 7o- 

,j., The derivatives of the distribution with respect to p 
.... which appear in the above expressions for the source cur- 

wnere we observe that from the single-particle trajectories     rents may be integrated by parts and the results substituted 
' d 

h(P„Py,p) 

and 

(wx 
+ iw)p+ = (35) 

(36) 

into Maxwell's equations to give 

J-kW-4U_vW-*c>       \ 
•ro V       c2 (« - kvt)

2 ni>) 

_     <4 vw ck(ck - wßt) 

The orbit integrals may be evaluated using the single- 
particle trajectories. We retain only the lowest order con- 
tributions due to Px and Py in the steady-state trajectories; 
hence, these contributions appear principally in the reso- 
nance condition. We consider the high-gain regime in 
which 

2y0 c   (« - kvt) f no wo) 

&Uo) 

(41) 

and 

and 
&4+(z) - &4+(0) exp (-ik+z) 

&Hz) - ß£(0) exp (-ikz). 

[(« - to,)2 - ^| no] WO) 

where we identify * - *+ + kw from the wavenumber 
(37)     matching condition, /Ss ■ v./c, y\ m (l - v\/c2)~\ 

Under these conditions, the axial orbit integral can be ao-     T*JP defi"cs *e thermaI function which arises ft0™ 
proximated as Uie Gaussian distribution in the canonical momenta. This 

r thermal function is defined as 

P   L 
Wz')-^ - ^&4+(z') 

u - kVt      c 

exp (tf^z') OJ 

no» fli -fcxP(f)£,(n] 
for the argument 

(38) w - (k + ikj^,. 

where K, ■ Pt/y0me is the axial velocity corresponding 
to the generalized steady-state trajectory. In addition, we     where 
retain only the term which varies as exp (ik+z) in D+. 
Hence, the source currents can be written as 

&J+(z) s ~ 6AM) \dPxdPydp [-£- fl + &) 

v2m2 
-2 (»2        A 
2 (p " "V 

£.(i) 
Jf        f 

(43) 

(44) 

(45) 

- 2^" P^z) exp (-flU) J dPx dPy dp 

7(w - kVt) dp Fb{P„P,,p), (39) 

denotes the exponential integral function defined over the 
domain |arg fl < *. 

The dispersion equation which results from this for- 
mulation is 
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&-rÄ«a~=K« si^feäftiessss 
ST, IT n0ntnV,aI 0fder in "•/c-In order t0 vet- 
Z S! h,s^Pers;on .^«ation reproduces that found in 
the idealized beam limit, we observe that lim,, 0 Irt = 
«• Expanding the exponential integral function in the 
asymptotic limit, therefore, we find that lim4,,07W) = 
1  and that the ideal beam dispersion equation is re- 

*/«?; I\T' CAffCCt/S beC°me d0minam whenev" Im 
t. „v I ^H) *L t''/l'»' Where ^ "^number is to 
it ft na ? ,!' ?* "* growth rate in the jdeal beam 
hT,A    /     bas,s

B°//
the

2Pe««rbed trajectories, it is clear 

lÄrAP/2pi hence' *""»» effe- «»■ 

in the high-gain Compton regime, and 

(47) 

(48) 

forn i" '? D/(ht
+ Re 4) * 0067% <where Im */*» 

example. This yields an estimate of AP/Pn * 3 7« 
which is in reasonable agreement with the numerical so^ 
lution for the growth rate shown in the figure  The fre- 
quency at which peak growth is found drops approxi- 
mately 2% over this range. PP 

V. PLANAR WIGCLER CONFIGURATIONS 

In this case, the interaction occurs principally for plane 
waves polarized in the direction of the wiggler-induced 
oscillation and the vector and scalar potentials for a wave 
with angular frequency w are of the form 

and 

M(z. t) = \6Aiz)*, exp (-/a>r) + c.c.        (49) 

fy(z, t) = \6ftz) exp (-iut) + c.c. (50) 

The analysis is similar to that described for the helical 
wiggler configuration. As in the case of the helical wig- 
gler analysis, the perturbed distribution function takes the 
form 

«*■«-£[*£♦ A ±j Fb(P„ Py, p)    (51) 

where the orbit integrals are defined as 

* Jo *    zjF)— r - v:(z) I?)SA(z,) 

in the collective Raman regime. 
The effect of the thermal spread on the linear growth 

rate „ threefold. In the first place, the wider range of™! 
velocities introduced thereby results in a broader reso- 

creTses'TS" ^ ^ "* UnStaWe fre^Uency band in- creases. In the second place, the fact that the bulk axial 
velocity decreases means that the center frequency of the 
gain band also decreases. In the third place, the peak 
growth rate decreases with increasing AP. Each of £e 
properties is illustrated in Fig. 1 i„ wnich we so,ve (46) 

numencally for the growth rate, and plot the magnitude 
of the growtf. rate M , function of ^ * 

SÄ =    °K' 7° = 2957' 3nd w*/c*- - 0 1. Observe that the growth rate peaks for |Im k\/kK « 0.011 in the 
absence of the thermal spread, anddecreases by over , f"      exn r „     , 
100% as the thermal spread increases to AP/Pl) J5% D. * l- \ dz- **P («"<z, z'_ 

The detailed variation in the peak growth rate and the P   ° "^ 
frequency corresponding to peak growth as a function of 
AP <s illustrated ,„ Fig. 2. As shown in the figure, the 
peak growth rate remains relatively constant for AP/Pf) 

< 2% and decreases rapidly thereafter. As a conse- 
quence, thermal effects become dominant for AP/Po > 
3%. We expect that for thermal effects to be important 

and 
(52) 

')) 

-Vjz') — Sftz') + iwPt{z') 6A(z') (53) 

directly :0g
(r T(Z'1 0bserVethat°^ay be integrated 

A - -6A(z) + 5/1(0) exp (iwriz, 0)).        (54) 



The source current 

6J(z. t) = \6j,iz)tÄ + Sj.(z)e.] exp (-/«/> + c.c.    (55) 

is determined by integration over the perturbed distribu- 
tir\n tion 

dp - Sf„ 
y 

p . ^ . — e, + e. 

Substitution of the perturbed distribution yields, after in- 
tegration by pans over Pr, 

iJAz) = ^\dPx dPv dp P- \± (h D\-P-±D± 

W„ /\. P) 
and 

&l(z) = - \dPxdPfdpP- 

(57) 

W*. />v, P). (58) 
The orbit integrals Dx and D. which appear in the source 

currents represent an integration over the unperturbed 
electron trajectories in the planar wiggler. The character- 
istic trajectories in a planar wiggler differ from those in a 
helical wiggler in that the magnitudes of the axial and 
transverse velocity components are not constant but, 
rather, oscillate at harmonics of the wiggler period. This, 
in turn, introduces harmonic components into the dynam- 
ics of the interaction. In particular, we observe that in a 
planar wiggler the Lagrangian time variable characteristic 
of the electron trajectories is of the approximate form 

" vl    1 
(59) 

where it is assumed that both vw < Vt and Px < /»,. Ob- 
serve that existence of a nonvanishing canonical momen- 
tum introduces an oscillation at the wiggler period into 
the trajectory. 

We express the vector and scalar potentials by appli- 
cation of Roquet's theorem for periodic systems in the 
form 

&4(z)=    S   &4„ exp (i*„2) 
■ « — OB 

and 

&&Z) =    S   6£a exp (ik,,z) 

(60) 

(61) 

where k„-k + nkw. Since the gain is exponential in this 
regime, we may neglect the initial value contributions to 
the orbit integrals. In the analysis of the thermal regime 
the dominant contribution of the axial thermal spread oc- 
curs within the resonance condition. Hence, if we restrict 
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the analysis to the resonance associated with the Doppler 
upshift in frequency then the source currents can be ex- 
pressed in the form 

2 • 

&J'iZ)   ~   ~9^Tr      E      6Än CXp (ik„Z) 

• WdPtdPrGjP^PjjUbt) 

.   u2 -c2kUl+2m+l 

(«-*..+/-2»-i^y 
2 a» 

+ 16^..,..?-. *"*» CXP (Ä-,2)^ 

■P»0i> -/„♦ 102)] 

l'w ( ^<i + / + 2m — W — 

(w-*. + / + 2»^)2 (62) 

and 
2 • 

X    \)dPxdPyGx(PX,Py)J
2{b, 

 u  
(« - kK+l+2mVt) 

.2 

"16^7 ,,.£-. "•- ■ exP V*.MM 

• VJb2) - J» + ,(b2)] 

x )\dP*dP>G^p*<P>)Jhbx) 

V* Uir + / + 2m ~ « -| j 

'      (»-*-+/ + 2«^)2 (63) 

where K, and v, are the bulk axial velocities with and 
without the pitch angle spread, respectively, and J, de- 
notes the regular Bessel function of the first kind. In ad- 
dition 

*> 
«   vwPx 

k»Vt y% pt 
(64) 

(65) 

(66) 
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and wc have made use of the Bessel function relations 
2n 
7'»«-/,-itt+/„_,« (67) 

exp (ib sin 6) = ^ J„(b) exp (/„<?).        (68) 

The integrals over the canonical momenta in (62) and (63) 

tZ anr'T? KSing thC tranSVeRe district on fun - "on, and we find that in the limit in which P± « p. 
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equalion which resu|B is expressed        ^^ 

»! - cV,_. - a 

where 

dP*dPyGAPx,Py) 
J}(b,) il 7}(0 

(« - *K,)2 " (W - ^ 

1.2    I»2I «öD 

and we write that 

exp (-z) 

To«, fu 

h    - J!LV*AP    1/2 01 r/2cos$. 

(69) 

(70) 

(71) 

(72) 

7o, 

If we now select a specific harmonic (i.e., for fixed / 
and m). then the coupled mode equationsmay batten 

<« - WW - A 7}(r„/+ta) 
To 'T! &«Jm(b2) 

• (a2 - c2k2 u» T/V \ \a      CAr^'+2*--7}(fn+/+2m)J.    (76) 

This dispersion equation which includes the effect of an 

o hat
eS EFfor a p,anar confi8uratio« K2£ SwS^^JS"^«* CaSC f0ra he,icaI w*g- 

thfr nT  ?' ,ThC d,ffcrcnces "re as stated previously fn 
qua* fr^v8 er aTÜUdC U rcplaCCd «* * ™° <"£ 
Ef       }       e> 2) thc osci»^on in the axial velocity 
introduces modifications in AT<*\b2) and jhb\  anH 
harmonic amplification is found in the one-dimensiona 
formulation. The effect of the pitch-angle spreTd on th' 
axial velocity is the source of the /th harmonTcomribu 

tion 7). In order to describe this effect in more detail we 
assume that *, « , which is valid as , ^ ™ 
As a result, we expand x        p" 

■ -^-.«r— (,.,, - .3)       **> ■ e^®" (£)"£)" z' cos2' #. 

• [JJb2) -/m + I(62)] (73) 
and 

.2        ,2,.2 <4 w    " ^-,  ~ vl 
i{1-*?«^ 

As a consequence 

T, 

(77) 

«2 - k2 /-2 

<« ~ k»*,*^)2 r'<f-/*2-))J&<,-, 

= -^i— *»f» 
T2^7/(f«H./ + 2«) 

where 

2-Ko (« - *„+/+2mi>,)2 

(74) 

fn + / + "t + / + 2m 
7o^ /    w2 \ 
ar     \*<.W + 2m / 

«»< I2J fej U7 f 

■«pwjf-ra^Sa-iy.   (78) 

Sion Tn7h       ? T °f ^ «Ponential integral mnction. To this end we observe that 

= (-i)'f/+ln-(f + /) 

(75) 

The dispersion equation is found by requiring that the de 
terminant of the coefficients vanish Therefore   fofa" 
specific choice of harmonic interaction, thfd^rL 

where 

0, 

2  2       (-1)   "/In!^"" 
*-2»-o*!(/-/fc)!()t_2 -«)!• 

(79) 

/<2 

/&2. 

(80) 
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As a consequence 

• {(-D'f'*'[] -(f+ /) 

• cxp(f)£,(nj + t/,(J)}. (8i) 

We observe that for / = 0 the planar wiggler thermal func- 
tion reduces to that found for the helical wiggler (43), 
i.e., 

7i,(f)s fll -fexp(f)£,(f)]. (82) 

This will reproduce a thermal response for the interaction 
at the fundamental which is similar to that found for the 
helical geometry 

The general dispersion equation (76) has been solved 
numerically for a case which illustrates the relative growth 
of the fundamental and the third harmonic. In general, 
strong harmonic amplification requires a relatively large 
oscillation in the axial velocity; hence, the growth rate at 
the harmonics increases rapidly with QM,/c*„.. Indeed, the 
growth rate at the harmonics as predicted by (76) can be 
larger than that at the fundamental when Qw/ckw exceeds 
unity. However, this is an unjustifiable conclusion based 
upon the present type of formulation. It is important to 
bear in mind that the analysis cannot be applied for arbi- 
trarily large values of this parameter because 1) the ideal- 
ized one-dimensional model breaks down when the dis- 
placement of the electrons from the plane of symmetry 
becomes large, and 2) the Lagrangian time coordinate (14) 
has been integrated in (59) under the assumption that vw 

« v,. Therefore, the analysis of cases in which Q /ck 
is greater than unity requires a fully three-dimensional 
analysis. We restrict the numerical analysis herein to the 
case for which Qw/ckw = 1. This is a physically interest- 
ing case which is at the fringe of the range of validity of 
the formulation, and will serve to clearly illustrate the re- 
lationship of the harmonics to the fundamental. In addi- 
tion, we shall assume that y0 = 2.957 and ub/ckw = 0 1 
as well. It should also be remarked that in order"for the 
thermal effects to result in substantial growth at the even 
harmonics, AP/p0 must be of the order of unity as well 
Since this is unreasonably high for any well-designed ex- 
periment, we shall ignore this effect henceforth, and con- 
centrate on the emission at the odd harmonics. 

The magnitude of the growth rate is plotted as a func- 
tion of frequency in Fig. 3 for the fundamental and the 
third harmonic. The fundamental exhibits a peak growth 
rate of |Im k\/kw « 0.065 at a normalized frequency of 
w/ckw * 1.55. In contrast, the magnitude of the growth 
rate at the third harmonic is |Im k\/kw * 0.012 at a fre- 
quency of u/ckw « 4.80. Observe that both the magni- 
tude and bandwidth of the harmonic is reduced relative to 
the fundamental. 

The effect of the thermal spread on the fundamental and 
the third harmonic is shown in Fig. 4. Here we plot the 
normalized growth rate (defined as the ratio of the maxi- 
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Fig. 3. Graph of thegrowih rale versus frequency for the fundamental and 
third harmonic interactions. 
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Fig. 4. Variation of the normalized growth rates it the fundamental and 
third harmonic with the axial momentum spread. 

mum growth rate for a specific value of AP/p0 to the 
maximum growth rate for AP/p0 = 0) as a function of 
AP/Po for the fundamental and third harmonic. Observe 
that thermal effects are expected to become important on 
the fundamental when Av9/v, » |Im k\/(kw + Re k) « 
0.025, which corresponds to AP/p0 * 22* (recall that 
Avjvt * AP2/2pl). This is in substantial agreement 
with the results shown in the figure. For the case of the 
harmonics, thermal effects are expected to become im- 
portant at a much reduced thermal spread [7], [10]- spe- 
cifically, when Av,/v, * |Im*|/[(l + 2m)*„ + Re*]. 
For the third harmonic in the present example A vt/v, * 
|Im k\/(3kH + Re k) « 0.0015. This corresponds to 
AP/po * 5.5%, which is also in good agreement with 
the calculation. 

VI. SUMMARY AND DISCUSSION 

In this paper, we have developed a self-consistent for- 
mulation of the linear gain in both helical and planar wig- 
gler configurations in the presence of an axial energy 
spread derived from a beam pitch-angle spread. Such a 
beam may be thought of as monoenergetic but with a non- 
vanishing emittance. The analysis included collective Ra- 
man effects for both the helical and planar wiggler sys- 
tems, and described the gain at harmonics in the case of 
a planar wiggler. General dispersion equations were de- 
rived, and solved numerically, for each wiggler configu- 
ration which included a general thermal function which 
described the effect of the pitch-angle spread. 
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The conclusions from the analysis are consistent with 
those found prev.ously on the basis of an analytic model 
of thermal effects due to an energy spread [7] and a non- 
incar simulation using the pitch-angle spread model [13], 

[14]. Specifically, that the gain at the harmonics is more 
sensitive to the effects of a thermal spread than is the fun- 
damental In particular, the thermal effect becomes im- 
portant when At/,/*, , |Im kl/[(l + 2m)k   + 

In addition. ,t is clear that the thermal effect itself can give 
nse to amplification at the even as well as odd harmonics. 
wET'-n thlS,process retlui"* a large energy spread 
whKhw.ll result ,„ relatively low growth rates, and is no, 
likely to be of practical use. 
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The Relationship Between Optical Guiding and the 
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Abstract-The relationship between the relative phase and 
optical guiding in the free-electron laser is studied. The relative 
phase in this case is defined as the shift in the wavenumber from 
the vacuum value integrated over the interaction length. In 
terms of the optical guiding of the signal in free-electron lasers, 
the relative phase must be positive in order for refractive guid- 
ing of the signal to occur. The relative phase is studied from 
the standpoint of the linear stability analysis in both the high- 
and low-gain regimes, and the qualitative implications in each 
of these regimes of the relative phase on the refractive guiding 
of the signal are identical. Specifically, the relative phase is 
found to be negative at the low-frequency end of the gain band. 
The relative phase increases with increasing frequency over this 
bands until it turns positive at a frequency approximately 10% 
below the frequency of peak gain. Thus optical guiding is in- 
dicated over a large portion, but not all, of the gain band. A 
quantitative measure of the optical guiding of the signal is ob- 
tained by an analytic formulation of the guiding of the signal. 
This formulation is based upon a separable beam approxima- 
tion in which the evolution of the signal is determined by a 
Green's function analysis. The specific example of interest in- 
volves the low-gain regime prior to saturation. In this case, it 
is shown that the analytic result is in substantial agreement with 
the calculation of the relative phase. 

1. INTRODUCTION 

OPTICAL guiding during the course of the interaction 
in free-electron lasers refers to the self-focusing of 

the electromagnetic wave by the electron beam [1]-[12]. 
Optical guiding of the signal occurs by two related mech- 
anisms referred to as gain and refractive guiding. Gain 
guiding describes the preferential amplification of radia- 
tion in the region occupied by the electron beam. There- 
fore, an optical ray will undergo amplification as long as 
it is coincident with the beam. If it propagates out of the 
beam, then the interaction will cease. Refractive guiding 
describes the focusing (or defocusing) of the radiation by 
means of the shift in the refractive index due to the di- 
electric response of the electron beam. In particular, if the 
wavenumber is shifted upward due to the interaction with 
respect to the vacuum state, then the phase velocity of the 
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wave decreases and the beam acts as an optical guide. It 
should be remarked, however, that gain and refractive 
guiding are intimately linked and are not independent pro- 
cesses. 

The process of refractive guiding is related to variation 
in the relative phase, since this quantity measures the shift 
in the wavenumber due to the dielectric effect of the beam. 
As shown in the nonlinear simulations of both the helical 
and planar wiggler configurations the relative phase de- 
creases with axial position at the low-frequency portion 
of the gain spectrum [13]-[15]. This decrease occurs be- 
cause the dielectric shift induced by the beam reduces the 
wavenumber below that of the vacuum state, and corre- 
sponds to a defocusing of the signal. As the frequency 
increases, however, the downshift in the wavenumber de- 
creases until a critical frequency is reached at which the 
relative phase remains approximately constant. This cor- 
responds to a wavenumber which is comparable to the 
vacuum state, and for which there is no refraction of the 
signal. The frequency at which this is found is, typically, 
below the frequency of peak growth rate. For frequencies 
higher than the critical point, the relative phase increases 
with axial position, corresponding to the guiding of the 
signal. 

The organization of the paper is as follows. The behav- 
ior of the relative phase as determined from a linear the- 
ory of the interaction mechanism is described in Section 
II. The configuration we employ is that of a planar wig- 
gler model in the idealized one-dimensional limit. In this 
regard the shift in the wavenumber in the high-gain re- 
gime is calculated by the numerical solution of the dis- 
persion equation. This formulation is capable of treating 
both the collective Raman and the high-gain Compton re- 
gimes. In the low-gain regime, the relative phase is cal- 
culated on the basis of the evolution of the untrapped elec- 
tron trajectories in the ponderomotive potential. It should 
be noted that the results of each of these treatments are in 
qualitative agreement with the description of either guid- 
ing or defocusing described above. The evolution of the 
wavefront is determined analytically in Section III on the 
basis of a separable beam model [8]-[ll]. In this case, 
we assume that the electron trajectories are given in the 
idealized one-dimensional limit. This is valid as long as 
the electron displacement from the symmetry plane is less 
than the wiggler period. In addition, it is assumed that the 
cross-sectional profile of the beam is cylindrically sym- 
metric and determined by a Gaussian decrease in the den- 
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sity. The radiation field is modeled by the injection of an 
optical Gaussian mode whose subsequent evolution can 
be calculated by means of a Green's function. The inte- 
gration of the kernel is accomplished for parameters con- 
sistent with the low-gain regime, and the results are shown 
to be m substantial agreement with the behavior of the 
relative phase. A summary and discussion is given in Sec- 
tion IV. 

II. OPTICAL GUIDING AND THE RELATIVE PHASE 

The physical basis of the optical guiding mechanism 
can be best understood in terms of the behavior of the 
relative phase, which is defined as the integrated differ- 
ence between the wavenumber in the interaction region 
and the free-space wavenumber. This can be understood 
most clearly on the basis of the idealized one-dimensional 
analysis. We first consider the high-gain regime. Under 
the assumption that \vw/v, | « 1, the dispersion equa- 
tions for both the helical and planar wiggler geometries 
can be expressed as 
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where w and k are the angular frequency and wavenumber 
of the electromagnetic wave, y0 denotes the relativistic 
factor corresponding to the bulk energy of the beam, v, 
is the bulk axial velocity of the beam y,   ■   (l   - 
vi/c')~,/2, ub is the beam plasma frequency, and 

'0* 
-j-, helical wiggler 

planar wiggler 
(2) 

denotes the bulk wiggler-induced transverse velocity cor- 
responding to Qw m eBJy0mtc for a wiggler amplitude 
B and wavenumber kw. In order to illustrate the refractive 
shift m the wavenumber, we transform the wavenumber 
in (1) to &k = * - u/c, which measures the shift from 
the vacuum wavenumber. Note that the bulk axial veloc- 
ity is given by v,/c = 1 - 7o~* - „*/c2. Under the 

assumptions that |5*| « k» - (V - «J/7o)'/2/c> and 

<•>*/> o « «, the dispersion equation can be written in 
the form of a cubic equation 

W*-*o) Sk2vJ - 2Ao> bkvi 

- (*»' - 4) \ ToYf/. = "2c2 y0 *" (3) 

where Ao» - (1 - „,/c)w _ kwVl 

The solution to (3) for the real (solid line) and imagi- 
nary (dashed line) parts of 6k as functions of frequency is 
shown/2in Fig. 1 for y0 = 3.5. vjc = 0.05, and 
<«V7o   ckw - 0.1. The frequency corresponding to the 

Fig. 1. Graph showing «he growth rate'fdashed line) ,„d u* shift in tne 

wavenumber (sol.d line) as functions of frequency. 

peak growth rate for this choice of parameters is w/ck 
* 21.6. It is clear that the wavenumber is shifted down- 
ward from u/c in the absence of the wiggler (i e   6k < 
0) for frequencies below u>/ckw s 21.5, which is'below 
the frequency of peak growth. In contrast, for frequencies 
above this critical value, including at peak growth, the 
wavenumber is shifted upward from the vacuum wave- 
number. Hence, the qualitative behavior for the wave- 
number in the idealized one-dimensional analysis is the 
same as that from the three-dimensional nonlinear for- 
mulation. The conclusion to be drawn from these results 
is that the refractive effect of the wave-particle interaction 
in the wiggler can either guide or defocus the electromag- 
netic wave depending upon the interaction frequency 

In order to understand the process of optical guiding in 
the low-gain regime, we consider an analysis of the evo- 
lution of the relative phase in an idealized one-dimen- 
sional model in which the vector potential of the optical 
signal is represented in the form 

&A(z, t) = 6A(z)ix cos (u>(z/c - t) + A<f>(z)) (4) 

where A* denotes the relative phase, and both A* and the 
amplitude 6A are assumed to be real. The wiggler field is 
assumed to be given by the idealized one-dimensional 
representation in which Bw = Bwi, sin kwz. Substitution 
or tftis form for the vector potential into Maxwell's equa- 
tions yields an equation of the form 

«*(*) 6A(z) cos [w(z/c - t)] + -^ 6A(z) 
dz 

• sin [u(z/c -t)] = — 6JX {5) 

where 6JX denotes the source current, 6k m d[6<l>]/dz de- 
notes the perturbed wavenumber, and it is assumed that 
10*1 « u/c. Note that second-order derivatives of the 
amplitude and phase have been neglected in (5) Multi- 
plication by cos [U(z/c - /)] and subsequent averaging 
of the resulting equation over a wave period yields 

8*S^Jo     **y*«M*/c-/)].        (6) 
Under the assumption that vx * vw cos kwz, therefore, the 
perturbed wavenumber becomes 

2uc c 6a (7) 



where 4> denotes the ponderomotive phase, ub is the beam 
plasma frequency, ba ■ tbA/mrc

2 is the normalized am- 
plitude, and the average is taken over the initial phase. 
Observe that the corresponding equation for the small-sig- 
nal gain is obtained by multiplication by sin \u>(z/c — 
')]• 

The phase average may be determined by solution of 
the pendulum equation in the untrapped limit. The evo- 
lution of the ponderomotive phase in the combined elec- 
tromagnetic and magnetostatic fields is governed by the 
nonlinear pendulum equation 

£ 
X2* = K2 sin ij/ (8) 

where 

fcüV/«2 

f«27o7i/3i' (9) 

In the linear regime, the solutions describe untrapped tra- 
jectories which may be determined by a perturbative so- 
lution to (8). In this case we expand ^ = ^0 + Afc + 
5\p, where ^0 is the initial phase 

A* 
t>l \       cj 

+ JL (10) 

describes the mismatch parameter, and it is assumed that 
|6^/iA | « 1. To lowest order in the perturbation, there- 
fore, the pendulum equation can be expressed in the form 

d2 

—i6t&K2sm(+0 + Ate). (11) 

Subject to the initial conditions that S\p (z = 0) =0 and 
dS\p(z - 0)/dz = 0, this equation has the solution 

A:
2 

W s - ^p [s«n Wo + Afc) - sin ^ + Afc cos *0]. 

(12) 

As a consequence 

<cos * > = 2^p H - cos Afc - Afc sin Afc]    (13) 

and 

<sin \ff) & ~J7p ^sin ^ - Afc cos Afc].      (14) 

Hence, the perturbed wavenumber is given by 

• [1 - cos Afc - Afc sin Afc].      (15) 

The relative phase is found by integration of (15) over 
axial position; hence, the relative phase at the end of the 
wiggler (i.e., z = L) is given by 
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Fig. 2 The relative phase as a function of frequency within the gain band 
as calculated from the idealized one-dimensional model of the low-gain 
regime. 
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_   »lu? vi 

»67o7Jf f 2v\ &k2L2 

1 + cos ML - —- sin AkL 
L AJkL (16) 

The relative phase has been evaluated for a choice of 
parameters in which y0 = 10, vw/c = 0.05, ubhl,2ckw 

= 0.1, and a wiggler with L = 10X», in length, and the 
results are illustrated in Fig. 2. The gain band for this 
choice of parameters ranges over u/ckw * 180-200, and 
a peak gain of approximately 20% is found at u/ckw * 
192. As shown in the figure, the relative phase is positive 
at the high-frequency portion of the gain band which in- 
cludes the frequency of peak gain. 

HI. THE SEPARABLE BEAM LIMIT 

The fundamentals of the optical guiding process can 
best be understood in terms of a separable beam approx- 
imation [8]-[ll] in which the wiggler-driven source cur- 
rent is decomposed into a product of functions depending 
upon radius and axial position. Hence, the electron beam 
is assumed to be cylindrically symmetric. The electron 
trajectories are treated in the context of an idealized one- 
dimensional approximation of the planar wiggler geome- 
try. This model has the considerable advantage of allow- 
ing an analytic solution for the radiation spot size, and is 
generally valid as long as the beam radius is much less 
than either the spot size of the radiation and the wiggler 
period. 

The idealized planar wiggler geometry implies that the 
interaction will be with a cylindrically symmetric plane 
polarized wave in which the vector potential of the elec- 
tromagnetic field is expressed in the form 

6A(r, z, t) = \&A(r, z)lx exp [iw(z/c - t)) + c.c.    (17) 

for an angular frequency u and wavenumber u/c. Sub- 
stitution of this form of the vector potential into Max- 
well's equations yields a dynamical equation of the form 

8» ,, 
= — w*(r, z) exp [-iu(z/c - t)] (18) 
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where the source current is defined as -    c     . 
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Equations (20) and (22) can be combined to yield 
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where //(;) denotes the Heaviside function, and v . 
«w*/f. As a consequence, the average field can be « 
pressed as *" 
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■ f*o*<exp(-iV)> - &j<expOV))! 

(38) 
Observe that we have omitted the terms in 5a* V2 ba - 
öaV&a* since they will vanish upon integration over ra- 
dius. Integration of (38) over both axial position and ra- 
dius, therefore yields 

(32) 

If the homogeneous solution is given in terms of a Gauss- 
ian beam which is focused down to the minimum spot size 
at z = u. then [16] 

pb I drr l&Kr, z)\2 

*(r.a-*2Ü^(L±*^M 
1 + 2iz/zo (33) H-«3 

rl *2 

1 + -| + 4 ^ + Gfe) n Zo 

where fc0 is real and denotes the initial amplitude of the 
field. r0 denotes the Gaussian radius of the beam, and z* 
* u>n/c denotes the Rayleigh length. As a consequence 

where 

(6ah(r, Z)>r = ¥°  
Gfc) s - 

1+^ + 2/i 
''o Zo 

(34) 

4fe3  
l*1ol\v\ v\ dB 

vl d sin 6 
~6 

(39) 

(40) 

An effective/oewms/actor may be defined in terms of 
this average field in the form 

2  f" 
pb }0 drr l&Kr. z)\2 

is the expression for the power gain in the idealized one- 
dimensional formulation of the fundamental interaction in 
the low-gam regime, * - «/c, and $ m Mz/2 Com- 
bining (33)-(35) and (39), we find that the focusing-factor 
over the total length of the system L may be approximated 
in me form 

(35) *(£)£ 1 

Since the homogeneous solution for the vector potential 
describes the propagation of the signal in the absence of 
the beam, the focusing factor measures the evolution of 
the radiation spot size relative to the difTraction of the 
Gaussian beam in free space. 

The denominator can be determined by energy conser- 
vation arguments. Returning to the dynamical equation 
for the field (20), we observe that 

L       ro        Zo 
+ (KL) 

(41) 

|S(£)|2 

Observe that m the limit in which the interaction van- 

i «.I" m absence of either the ***m or the wig- 
gler field) the gain also vanishes and the focusing factor 
describes the free-space diffraction of the optical beam 

WD s 1 

"fc ♦*;£)*■ 
rl Z2

0 

(42) 

"to 
= "P~ ß*> ff 

exP (-r2/rl) &* <exp (-#)>    (36) 

Hence, the effect of the interaction upon the diffraction of 
the optical beam can be effectively measured by a nor- 
malized focusing factor defined as 

and 
5K(L) 

5(L) 
(43) 

«■fa-^4" 

= T2" &° ^ exP l-r*/rl) 6a <exp (ty)>.        (37) 

Subtracting the second equation from the first, we find 
that 

Hence, when ff„(L) > 1 the diffraction of the signal is 
slower than in the free-space limit, and the signal is ef- 
fective guided. Conversely, when 9„(L) < 1, the diffrac- 
tion is more rapid than in free space. It is important to 
remark at this point that the focussing factor as deter- 
mined by the separable beam analysis implicitly includes 
the effects of both gain and refractive guiding. 

The specific example under consideration is that of a 
system for which vw/c = 0.05, Ub0/y0^ckw = 0.1, and 
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Fig. 3. Illustration of the nomulized focussing factor for representative 
parameters in the low-gun regime. 

To = 10. Further, it is assumed that there are 10 wiggler 
periods within the interaction length (i.e., L/\w = 10), 
Kfb - 0.1, and that the optical beam radius is focused 
down to the beam radius upon the entry to the wiggler 
(i.e., rb = r0). Observe that this choice of parameters 
corresponds to that used in the calculation of the relative 
phase in the idealized one-dimensional regime shown in 
Fig. 2. The peak gain in the idealized one-dimensional 
limit for this choice of parameters over length L is of the 
order of 20% and occurs for u/ckw * 191.7. The focus- 
ing-factor at z - L associated with this choice of param- 
eters is shown in Fig. 3 for frequencies within the gain 
band. It is evident that the indicated diffraction of the ra- 
diation found on the basis of the calculation of the relative 
phase and the separable beam limits is qualitatively sim- 
ilar. That is, that the diffraction is slower than the free- 
space value for the low-frequency portion of the gain 

The separable beam model can also be used to analyze 
optical guiding in the high-gain regime [9], [11J. The dis- 
persion relation is obtained from (26) and the one-dimen- 
sional equation of motion by looking for solutions which 
grow exponentially in axial position. Rather than repeat 
the derivation here, we merely quote the result. First, we 
note that in the Compton regime (1) can be rewritten as 
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IV. SUMMARY AND DISCUSSION 

A great deal of work has been devoted to the question 
of optical guiding in free-electron lasers [1]-[12]. The 
principal thrust of the present work has been to clarify the 
connection between the relative phase, which measures 
the shift in the wavenumber induced by the free-electron 
laser interaction, and the optical guiding of the signal. In 
this regard, we have evaluated the relative phase within 
the context of a linear theory of the interaction in both the 
high- and low-gain regimes. The qualitative conclusions 
drawn from this analysis indicate that optical, or at least 
the refractive, guiding of the signal does not occur over 
the entire gain band. In particular, we find that the relative 
phase is negative indicating that a defocusing of the signal 
should occur at the low-frequency portion of the gain 
band. As the frequency increases, the relative phase also 
increases, however, until a critical frequency is reached 
at which the relative phase vanishes. This point typically 
is found to occur at a frequency approximately 10% be- 
low the frequency of maximum growth rate. For still 
higher frequencies, the relative phase is positive and some 
guiding of the signal should occur. 

The qualitative estimates of refractive guiding based 
upon the relative phase are compared with a more quan- 
titative analysis of the diffraction of an optical Gaussian 
mode by means of a Green's function solution of Max- 
well's equations in the low-gain regime under the as- 
sumption of a separable beam approximation. In this case, 
a focusing factor was derived which measures the diffrac- 
tion of the signal due to the interaction relative to the dif- 
fraction in free space. It is important to note here that this 
Green's function approach implicitly includes both gain 
and refractive guiding. The results of this analysis are in 
substantial agreement with the qualitative conclusions 
based upon the behavior of the relative phase, and indi- 
cate that a small degree of guiding is possible even in the 
low-gain regime. 

[»-<* + *.W = -^-ft 
2      2 wkjc 

7o *J ~ «7c2 (44) 

Inclusion of the effects of diffraction modifies this result, 
and we find that 

[a - (k + kw)vt]
2 

- IT —j E 
c     7o     c 

where E{v) is defined as 

E(v) 
4xi Jo 

(*2 - a>2/c2) 

exp(-ivx) 

1 + ix 

(45) 

(46) 

Observe that (45) reduces to (44) in the limit in which 
\r-h[k~ - u2/c2]\ « 1 where diffraction is unimportant. 
Solutions for growth rates and filling factors in the high- 
gain limit obtained from (45) can be found in [11]. 
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A selteonsistent analysis of wiggler-field errors in free-electron lasers is described using the three- 
dimensional simulation code WIGGLIN. A random variation is chosen for the pole-to-pole wiggler ampli- 
tude, and a continuous map is used between the pole faces. On average, increases in the root-mean- 
square value of the field causes a decrease in the interaction efficiency; however, this is relatively benign 
for the specific case studied, and particular error distributions can result in efficiency enhancements. 

PACS numberts): 41.60.Cr, 05.40.+j, 52.65.+ z, 52.25.Sw 

Free-electron lasers (FEL's) have operated over wave- 
lengths from microwaves [1,2] to the infrared [3,4] and 
visible spectra [5]. The FEL operates by the coherent ax- 
ial bunching of electrons in the ponderomotive wave 
formed by the beating of the wiggler and radiation fields. 
The interaction is extremely sensitive to the axial energy 
spread of the electron beam, and an energy spread of 1% 
or less [6] is sufficient to cause substantial reductions in 
the efficiency due to the detuning of the wave-particle res- 
onance. 

A related effect is caused by random wiggler-field er- 
rors. Wigglers can easily exhibit a random rms fluctua- 
tion of 0.5% from pole to pole [7]. This yields a velocity 
fluctuation which causes a phase jitter that also detunes 
the wave-particle resonance. The purpose of this paper is 
to explore the effects of wiggler errors on FEL perfor- 
mance, and to compare the effects of wiggler errors with 
those of an axial energy spread. To this end, a self- 
consistent treatment of random wiggler errors has been 
incorporated into the three-dimensional nonlinear simu- 
lation code WIGGLIN [8]. 

The effects of random wiggler errors have been studied 
using a random-walk model for the electron trajectories, 
and their effects upon both spontaneous emission [9] and 
the linear gain [10,11]. Nonlinear modeling of wiggler 
field errors has been based [11-14] upon the inclusion of 
an analytic model of the random walk in a wiggler-period 
averaged formalism of the electron trajectories. In con- 
trast, no average over a wiggler period is performed in 
WIGGLIN, and no explicit assumption of the random walk 
is included. 

Consideration of the effects of wiggler errors shows 
that any perturbation induced in one of the pole pieces 
will induce a series of correlated changes in the field over 
several adjacent wiggler periods.  This effect has been 

measured in the laboratory on a prototype planar wiggler 
design [15]. Here, an error was introduced by reducing 
the gap spacing between one set of pole pieces. An axial 
scan of the on-axis field showed that the error propagated 
through ±1 wiggler period (±2 pole pieces for this 
design) with an increase in amplitude at the adjacent 
poles of «55% and at the next poles of »10%. The am- 
plitude and extent of these correlations are dependent 
upon the detailed design of any given wiggler, and can be 
substantial. Thus the question of the nature of "random" 
errors in wiggler magnets requires further study. As a 
first step, a continuous mapping of random field errors 
from pole to pole has been included. The effects of corre- 
lated errors will be dealt with in later studies for specific 
wiggler designs. 

The WIGGLIN formulation [8] includes the simultane- 
ous integration of a slow-time-scale formulation of 
Maxwell's equations for an ensemble of TE and TM 
modes of a rectangular waveguide i-a/2<x<a/2, 
~b/2<y <b/2), as well as the complete Lorentz force 
equations for an ensemble of electrons. We emphasize 
that no average of the orbits equations is imposed. The 
wiggler model includes an adiabatic entry taper which de- 
scribes the injection of the beam into the wiggler, as well 
as a model for the description of the wiggler-field errors. 
As a result, the initial conditions on the electron beam 
are specified at the entrance to the wiggler, and the subse- 
quent evolution of the electromagnetic field and the elec- 
tron beam are integrated in a self-consistent manner. 
Thermal effects are included under the assumption that 
the electron beam is initially monoenergetic but with a 
pitch angle spread to describe the axial energy spread. 

The configuration employed is that of a planar wiggler 
with parabolic pole faces for enhanced focusing [1], and 
can be represented as 

Bw(x)=[BJz)+ABJz)] cosk,„z e,sinh 
kwx 

V2 
sinh 

—V2e.cosh 
KWX 

~V2 
sinh 

Ky 
+e>)cosh 

ku,x 
cosh Ky 

V2 

Ky 
Vi. 

sinA:„,z (1) 
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where *„ denotes the wiggler wave number for a wiggler 
period ku, Bw(z) and ABJz) denote the systematic (i.e., 
nonrandom) and random variations in the amplitude, re- 
spectively. The systematic variation in the wiggler ampli- 
tude is assumed to be 

Bjz)= 
:_2 fi„,sin 

4N W 

Bw  »    ^wK <Z  , 

,   0<z<Nwkw 
(2) 

which describes the adiabatic entry taper over N   wiggler 
periods. " 

The random component of the amplitude is chosen at 
regular intervals using a random number generator, and a 
continuous map is used between these points. Since a 
particular wiggler may have several sets of pole faces per 
wiggler period, the interval is chosen to be Az = \ /N , 
where Nf is the number of pole faces per wiggler period. 
Hence a random sequence of amplitudes {AB„ j is gen- 
erated, where A2?n=A2?u,<nAz). The only restriction is 
that ABW =0 over the entry taper region [i.e., AB„ =0 for 
0<n<\+NpNw] to ensure a positive amplitude. The 
variation in ABJz) between these points is given by 

ABU, (n Az+6z)=AB„ + (AB„ +, - AB„ )sin2 ■tr hz 

2 AT 

(3) 
where 0 < hz < Az. In the rest of this paper it shall be as- 
sumed, for simplicity, that Nf = 1. Note that it is possible 
to model the efTects of pole-to-pole variations in specific 
wiggler magnets with this formulation. 

The configuration under study is one in which a 3.5- 
MeV, 850-A electron beam with an initial radius of 1.0 
cm propagates through a rectangular waveguide [a =9.8 
cm,  b =2.9 cm]  in the  presence of a  wiggler with 
*f-3.72  kG, kw=9.& cm, and Nw = 5.   Hence the 
wiggler parameter aw  [=eBul/mec

2kw)=3.404.   This 
corresponds to an experiment at Lawrence Livermore 
National  Laboratory   [16],  and  comparisons  between 
wiGGLlN and the experiment show good agreement [8]. 
WIGGLIN has also been validated by comparison with a 
fundamental  and  second-harmonic   free-electron   laser 
(FED experiment [17,18].  Resonant interaction occurs 
with the TEo„ TE2„ and TM2I modes at frequencies of 
30-40 GHz, and the efficiency decreases with increasing 
frequency across this band.   For an  ideal beam and 
wiggler [i.e., Ayz=0 and ABw=0] the efficiency falls off 
from a maximum ,= 12.38% at 30 GHz to a minimum 
of 7*3.58% at 40 GHz.   A frequency of 34.6 GHz 
(17—8.57%) is selected for the comparison. 

The effect of the axial energy spread is illustrated in 
Fig. 1 in which the extraction efficiency is plotted as a 
function of Ay,/y0 (for ABw=0). Note that the initial 
drive powers in the modes were chosen to be 50 kW in 
the TEQ, mode, 500 W in the TE21 mode, and 100 W in 
the TM2, mode, and that the saturation length varies 
with Ayz. As shown, the efficiency decreases gradually 
with the axial energy spread (due to the relatively high 

a= 9-8 cm; 6 = 2.9 cm;/=34.6 GHz 
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c 

Ü 
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TE01 50.000 
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FIG. I. Variation in the saturation efficiency as a function of 
the initial axial energy spread. 

a) for Ay2/y0<3%, at which point the efficiency has 
fallen to 5.45%. 

Random wiggler fluctuations can take many different 
forms for a fixed rms value. It is most natural to consider 
a random fluctuation which is relatively uniform over the 
interaction   region   (i.e.,   <ABw)=0);   however,   other 
configurations are possible.   For example, fluctuations 
where the wiggler field is always greater (or less) than the 
systematic value for fiu, are possible, as is one in which 
ABW is very large over a small range and zero elsewhere 
These are only limited examples, and a thorough analysis 
necessitates a  large number of simulation  runs with 
different random wiggler fluctuations to obtain adequate 
statistics.   Typical  runs for WIGGLIN on a CRAY-2 
supercomputer are * 14 s for Ay, =0. Hence it is possi- 
ble to make a sufficient number of runs (i.e., if the mean 
efficiency has converged to within 1%) to obtain good 
statistics. 6 

The effect of random wiggler errors is shown in Fig 2 
where the efficiency is plotted versus the rms wiggler er- 
ror (for Ay,=0). The dots represent the average 
efficiency over the ensemble of random fluctuations, and 
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FIG. 2. Variation of the saturation efficiency as a function of 
the rms magnitude of the wiggler-field error. 
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FIG. 3. The wiggler field as represented by au. as a function 
of axial position for <A5U./Bu.)mi= 3% and a saturation 
efficiency of »? = 10.27%. 

the error bars denote the standard deviation. As shown, 
the average efficiency is relatively insensitive to wiggler 
errors for (A£u, /Bu )mi < 5%, although the standard de- 
viation increases with the rms error. For this example, 
the effect of a given {&BW /Bw )„„ is much more benign 
than for a comparable Ayz /yo- 

Particle loss was not found to be a problem for the 
range of (ABW /Bw )„ shown in Fig. 2. As a result, we 
conclude that the random-walk model is not appropriate 
for the treatment of wiggler errors. An explanation for 
this is that, although the wiggler amplitude may vary in a 
random manner from pole to pole, the field varies in a 
continuous fashion. As a result, regardless of the detailed 
model of the wiggler, electrons do not experience sudden 
random impulses but, rather, follow meandering field 
lines through the wiggler. 

Observe that the efficiency increases relative to the 
ideal wiggler case for some particular wiggler error distri- 
butions. In order to understand this, recall that the 
efficiency varies across the frequency band. This tuning 
can also be accomplished by variations in the wiggler 

magnitude, and an increase (decrease) in the mean Bu can 
be expected to result in an increase (decrease) in the 
efficiency as long as the chosen frequency remains in the 
resonant bandwidth of the interaction. Another way in 
which the form of the error distribution can affect the 
efficiency is if the field exhibits a bulk taper either upward 
or downward over the interaction region. A downward 
(upward' taper can be expected to increase (decrease) the 
efficiency. In order to illustrate this, consider the case for 
which (bBu/Bw)m=3%. Wiggler error distributions 
which give rise to T?= 10.27% and 5.92% (compared to 
77 = 8.57% for an ideal wiggler), respectively, are shown 
in Figs. 3 and 4. The average au. for each of these cases is 
close to the systematic value of 3.404; however, the field 
exhibits a downward taper in Fig. 3 and an upward taper 
in Fig. 4. 

In general, the statistical distribution of the efficiency 
differs from the normal distribution, and the standard de- 
viation must be used with some caution. For example, 35 
runs were generally required to obtain adequate statistics, 
and the probability histogram is shown in Fig. 5 for 
(A5u,/Bu.)nns = 3%. Here, the skewness =-0.41 and 
the kurtosis =0.92, indicating a distribution skewed 
below the mean and more peaked than the normal distri- 
bution. 

In summary, a self-consistent analysis of the effect of 
random wiggler errors on the saturation efficiency of the 
FEL has been presented in which no a priori assumption 
of a random walk of the electron orbits has been imposed. 
For the specific parameters under study, the results indi- 
cate that the effects of random wiggler errors are relative- 
ly benign, and particle loss was not found to be a prob- 
lem. Indeed, some error configurations chosen at random 
were found to result in efficiency enhancements due to 
effective increases. It is important to note here that ex- 
perimental quantification of these issues is difficult to ob- 
tain. While measurements for (AU„, /Bw )ms are possible 
to achieve with some accuracy, there is always a greater 
uncertainty as to beam quality.   Hence it is difficult to 
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FIG. 4. The wiggler field as represented by au. as a function 
of the axial position for (&Bu./BJmi=l% and a saturation 
efficiency of ij=5.92%. 
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FIG. 5. Probability histogram of the number of simulation 
runs vs the saturation efficiency for ibBK/BK ),„,,=3%. The to- 
tal number of simulation runs in this sample is 35. 
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determine the relative importance of wiggler errors in the 
laboratory. The results of the present work, however 
suggest that wiggler errors may not constitute a serious 
issue for FEL design. 
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Wiggler imperfections in free-electron lasers 

H.P. Freund *\ R.H. Jackson 
Naval Research Laboratory, Wathmium, DC 20375, USA 

A self-consistent 3-D analysis of wiggler imperfections in FELs is described using the WIGGUN simulation code. W1GGLIN 
treats the electron dynamics using the 3-D Lorentz force equations, and does not rely on a wiggler-averaged formalism. In the 
P1"" wiMJer «n«481 «"»«'. I»«« «he divergence and the axial component of the curl vanish identically while the transverse 
components of the curt are small. In describing wiggler imperfections, a random variation is chosen for the pole-to-pole variations 
in the amplitude and a continuous map is used between the pole faces. The average efficiency, as well as the standard deviation 
about the average efficiency, is determined by using an ensemble of different randomly chosen wiggler variations with a fixed rms 
value. The specific parameter» chosen correspond to the 35-GHz ELF experiment conducted at Lawrence Lrvermore National 
Laboratory, however, the fundamental physics is relevant to a wide range of FEL experiments. On average, increases in the field 
imperfections cause a decrease in toe efficiency; however, this is relatively benign and is certainly a much less severe constraint 
than that imposed by electron beam quality considerations. In addition, particular error distributions can result in efficiency 
enhancements. 

L Iotrodactkm 

The frec-eiectron laser (FEL) operates by the co- 
herent axial bunching of electrons in the ponderomo- 
ove wave formed by the beating of the wiggler and 
radiation fields. The interaction is extremely sensitive 
to the axial energy spread of the electron beam, and an 
energy spread of a percent or less is often sufficient to 
cause substantial reductions in the efficiency due to 
the detuning of the wave-particle resonance. A related 
effect is caused by random wiggler field imperfections. 
Wiggler» can easily exhibit a random rms fluctuation of 
0.5% from pole to pole [1} This yields a velocity 
fluctuation which causes a phase jitter that also de- 
tunes the wave-particle resonance. The purpose of this 
paper is to explore the effects of wiggler errors on FEL 
performance, and to compare the effects of wiggler 
errors with those of an axial energy spread. To this 
end, a self-consistent treatment of random wiggler 
errors has been incorporated into the 3-D nonlinear 
simulation code WIGGUN [231. 

The effects of random wiggler imperfections have 
been studied using a random walk model for the elec- 
tron trajectories, and their effects upon both sponta- 
neous emission [9] and the linear gain [4,5]. Nonlinear 
modeling of wiggler field imperfections has been based 
[5-9] upon the inclusion of an analytic model of the 
random walk in a wiggler-period averaged formalism of 

* Corresponding author. 
1 Permanent address: Science Applications International 

Corp, McLean, VA 22102, USA. 

the electron trajectories. In contrast, no average over a 
wiggler period is performed in WIGGUN, and no 
explicit assumption of the random walk is included. 

Consideration of the effects of wiggler errors shows 
that any perturbation induced in one of the pole pieces 
will induce a series of correlated changes in the field 
over several adjacent wiggler periods. This effect has 
been measured in the laboratory on a prototype REEL 
planar wiggler design (10} Here, an error was intro- 
duced by reducing the gap spacing between one set of 
pole pieces. An axiel seas of the cn-axis Seid showed 
that the error propagated through ± 1 wiggler period 
(±2 pole pieces for this design) with an increase in 
amplitude at the adjacent poles of » 55% and at the 
next poles of • 10%. The amplitude and extent of 
these correlations are dependent upon the detailed 
design of any given wiggler, and can be substantial. 
Thus, the question of the nature of "random" imper- 
fections in wiggler magnets requires further study. The 
effects of correlated imperfections will be dealt with in 
later studies for specific wiggler designs. 

2. The mathematical fcrmulatioa 

The WIGGUN formulation [24] includes the si- 
multaneous integration of a slow-time-scale formula- 
tion of Maxwell's equations for an ensemble of TE and 
TM modes of a rectangular waveguide [-a/2 SJT s 
a/2, -6/2 £ y s 6/21 as weB as the complete Lorentz 
force equations for an ensemble of electrons. The 
wiggler model includes an adiabatic entry taper which 

0168-9002/94/$07.00 O 1994 - Elsevier Science B.V. All rights reserved 
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describes the injection of the beam into the wilier, as 
well as a mode! for the description of the wiggler field 
imperfections. As a result, the initial conditions on the 
electron beam are specified at the entrance to the 
wiggler, and the subsequent evolution of the electro- 
magnetic field and the electron beam are integrated in 
a self-consistent manner. Thermal effects are included 
under the assumption that the electron beam is initially 
monoenergetic but with a pitch angle spread to de- 
scribe the axial energy spread. 

The effect of wiggler imperfections using the WIG- 
GLIN formulation has been studied in an earlier work 
using a wiggler model for a planar wiggler based upon 
parabolic pole faces which is both divergence- and 
curl-free for the case of a uniform wiggler. However, 
the divergence and curl for this model were nonvanish- 
ing for the case of a nonuniform wiggler. Thus, random 
imperfections on a short length scale can result in 
significant deviations from the self-consistent wiggler 
model even for relatively small wiggler fluctuations. In 
order to remedy this deficiency, we reconsider the 
effects of random wiggler imperfections in this paper 
using an improved planar wiggler model in which [12] 

■ / J •   •.        cos*.*   d 1 

[ X Isinh kmy- Y{k*y) dJ     1   d 
2kl    dx* U.dx I J-=7*W. 

(1) 

I- 
f.   . cos*.*   d 1 

v, i    L .       *.y $">i> *.y d* 1 
x|cosh*wv r^-J*«,).   (2) 

2* dxJ 

*«.,(*) -Bw(z) cos *„* sinh kmy 

Y(Kv) /.    l   dM d* I 

(3) 

where Bm{z) denotes the axial variation in the wiggler 
amplitude, **.,)■*., cosh *.y-«nh *.,. and 
X(x) m l + (x/a,)^/2. Here a, and m are arbitrary 
and are used to denote the wiggler gradient in the 
^•direction. 

The wiggler amplitude is decomposed into system- 
atic and random components as follows 

*.<*)-#„■»<*) + **.(«). (<) 

where 

WO- hm 
*.; 

Osz£tfwAw, 
(5) 

describes the systematic component. The random com- 
ponent of the amplitude. AÄ»(z), is chosen at regular 
intervals using a random number generator, and a 
continuous map is used between these points. The 
systematic variation m the wiggler amplitude given in 
Eq. (5) describes an adUbatic entry taper over AT 
wiggler periods, and allows us to self-consistentry de" 
scribe the injection of the beam into the wiggler. In the 
description of the random variation, we note that a 
particular wiggler may have several sets of pole faces 
per wiggler period, each of which may vary in a ran- 
dom fashion. Hence, the interval between the random 
fluctuations in the amplitude is chosen to be Ar - 
A./Wp, where Np is the number of pole faces per 
wiggler period. A random sequence of amplitudes 
l&BJ u then generated, where AÄ, ■ AB.OiA,). The 
only restriction is that we require AÄ.-0 over the 
entry taper region [i.e, A4,-0for0s«sl + ALAL J 
to ensure a positive amplitude. The variation in AÄ (z) 
between these points is given by * 

A5»(nAx + 8x) - A*. + [AB^, - AÄJ 

(* »z 

-(«)■ 
(«) 

where OsÄzsAz. Note that it is also possible to 
model the effect» of the measured pole-to-pole varia- 
tions in specific wiggler magnets with this formulation. 

Both the divergence and the z-component of the 
curl vanish identically for arbitrary choices of B (z) 
for this model of the field. In addition, the transverse 
components of the curl are given by 

ivx'.li- *„ABW, (7) 

subject to the assumptions that kmat <\,tt /y. < i 
and kmRh < 1 where .J-eff./ir.m.c1] denotes the' 
wiggler parameter, and Rb is the beam radius. Hence, 
these contributions remain small as long as the nm 
level of the wiggler imperfections are small. 

3. Numerical analysts 

The configuration under study is one in which a 3.5 
MeV/850 A electron beam with an initial radius of 1.0 
cm propagates through a rectangular waveguide (a - 
9.8 cm, b - 2.9 cm) in the presence of a wiggler with 
Ä.-3.72 kG. A.-9.8 cm, and Nm-5. This corre- 
sponds to an experiment at LLNL (13J, which mea- 

m 
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lured an output power of approximately 180 MW over 
a saturation length of 13 m. 

Comparisons between WIGGLIN in the absence of 
wiggler imperfections and the experiment show good 
agreement. Resonant interaction occurs with the TE01, 
TEJI and TM2, modes at frequencies of 30-40 GHz, 
and the efficiency decreases with increasing frequency 
across this band. For an ideal beam and wiggler (i.e.. 
Ay, - 0 and A Bw - 0] the efficiency falls off from a 
maximum q * 12.4% at 30 GHz to a minimum of 
n « 3.6% at 40 GHz. A frequency of 34.6 GHz (ij * 
6.9%) is selected for the comparison. 

In Fig. 1 we plot the evolution of the tout power in 
all the modes and the power in the TE0, mode at 34.6 
GHz for the choice of Ay,/y0 " I-5*- Note that the 
axial energy spread is known to be less than 2% 
through electron spectrometer measurements of the 
beam. The initial drive powers in the modes were 
chosen to be 50 kW in the TE0, mode, 500 W in the 
TE2) mode, and 100 W in the TM2, mode. Observe 
that although the TE0, mode is overwhelmingly domi- 
nant at the start of the interaction, it accounts for only 
about 60% of the signal at saturation. This is due to 
the fact that the TE2, mode had the higher growth 
rate. The oscillation in the power occurs at a period of 
A./2 and is due to the effect of the lower beat wave 
between the wiggler and the radiation field [131 
Agreement between the simulation and the experimen- 
tal measurement is good. The peak saturated power 
found in simulation is approximately 190 MW, which 
falls to approximately 180 MW when averaged over the 
lower beat wave, which is in good agreement with the 
measurements. In addition, the saturation length is 
found to be approximately 1.45 m which is also dose to 
the experimental value. Finally, we note that WIG- 
GUN has also been validated by comparison with a 
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fundamental and second harmonic FEL experiment 
[Ml 

The effect of the axial energy spread is illustrated in 
Fig. 2 in which the extraction efficiency is plotted as a 
function of Ay,/y0 (for AÄ.-0). Observe that the 
saturation length varies with Ay, and that this figure 
represents the efficiencies at saturation. As shown, the 
efficiency decreases gradually with the axial energy 
spread due to the extremely high value of the wiggler 
parameter (a. • 3.4) for this experiment. Note that the 
decline in the efficiency with the axial energy spread 
was found to be more rapid with the parabolic pole 
face wiggler mode [23] than with the present model, 
although good agreement with the experiment is also 
found for the parabolic pole face model with Ay,/y0 

- 1.5%. This is due to the fact that the gradient in the 
wiggler in the direction of the bulk wiggler-induced 
transverse motion is higher for the parabolic pole face 
model. 

Random wiggler fluctuations can take many differ- 
ent forms for a fixed rms value. It is most natural to 
consider a random fluctuation which is relatively uni- 
form over the interaction region [i.e. <A£„> - 0J; how- 
ever, other configurations are possible. For example, 
fluctuations where the wiggler field is always greater 
(or less) than the systematic value for Bm are possible, 
as is one in which ABw is very large over a small range 
and zero elsewhere. These are only limited examples, 
and a thorough analysis necessitates a large number of 
simulation runs with different random wiggler fluctua- 
tions to obtain adequate statistics. The.effect of ran- 
dom wiggler errors b shown in Fig. 3 where the effi- 
ciency is plotted versus the rms wiggler error (for 
Ay,-0) for Np -1 The dots represent the average 
efficiency over the ensemble of random fluctuations, 
and the error bars denote the standard deviation. A 
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Fig. 3. Variation of the saturation efficiency at a function of 
the rms magnitude of the wiggler field imperfection. 

total of 35 runs (for 35 different random distributions 
in the wiggler fluctuation distributions) was found to 
give convergence to within • 1%. As shown, the aver- 
age efficiency is relatively insensitive to wiggler errors 
for (A0./*w)nils4%, although the standard devia- 
tion increases with the rms error. For this example, the 
effect of a given (AB./0.),., is much more benign 
than for a comparable Ayt/y0. Particle loss was not 
found to be a problem for the range of (&£./£»),,» 
shown in Fig. 3. 

The effect of variations in the number of pole faces 
per wiggler period is shown in Fig. 4 for (AÄ./B.),,. 
- 2%. Note that the choice of N9 -1 is primarily of 
mathematical interest only as most actual wiggler de- 
signs have more than one pole face per wiggler period. 
As is evident in the figure, the efficiency is relatively 
insensitive to the number of pole faces per wiggler 
period, although a very weak relative minimum is found 
for Np - 2. It should be noted that this relative mini- 
mum was found to be more pronounced in Ref. [11] in 
which a parabolic pole face model was used for the 
wiggler field. Although the general conclusion that the 
effect of the wiggler field imperfections is much weaker 
than a corresponding axial energy spread is found for 
both wiggler models, we attribute the greater variation 
in the efficiency with Np for the parabolic pole face 
wiggler model to be due to the fact that this model was 
neither curl- nor divergence-free under variations in 
the amplitude. 

Note that the efficiency increases relative to the 
ideal wiggler case for some particular wiggler fluctua- 
tion distributions. Variations in the efficiency can oc- 
cur due to a retuning in the average wiggler magnitude, 
and an increase (decrease) in <A0„> can be expected 
to result in an increase (decrease) in the efficiency. 
Another way in which the form of the error distribu- 
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Fig. 4. Variation of the saturation efficiency as a function of 
the number of pole faces per wiggler period. 

tion can affect the efficiency is if the field exhibits a 
bulk taper either upwards or downwards over the inter- 
action region. A downward (upward) taper can be 
expected to increase (decrease) the efficiency. In order 
to illustrate this, consider the case for which 
aBm/Bm)tm-4% and /Y,-l. The wiggler fluctua- 
tion distribution which gives rise to ij -9.13% (com- 
pared to a mean • *&2%) is shown in Fig. 5. The 
average «„ for this case is dose to the systematic value 
of 3.4; however, the field exhibits a bulk downward 
taper which acts to enhance the efficiency. In addition, 
the minimum efficiency case was found to exhibit a 
bulk upward taper in the wiggler field. 

In general, the statistical distribution of the effi- 
ciency differs from the normal distribution, and the 
standard deviation must be used with some caution. 
The probability histogram showing the breakdown in 

3.0 
1 9zA   ,3 17 21 

Fig. 5. Plot of the fluchunom in the wiggler parameter which 
give rise to aa increased efficiency. 
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6 7 8 
Efficiency (%) 

Fig. 6. Probability histogram of the number of simulation runs 
«ersus the saturation efficiency for (Afiw/Bm)mt «2% and 
AL - 2. The total number of simulation runs in this sample is 

35. 

important to note here that experimental quantifica- 
tion of these issues is difficult to obtain. While mea- 
surements for (\B^/BJm are possible to achieve 
with some accuracy, there is always a greater uncer- 
tainty as to beam quality. Hence, it is difficult to 
determine the relative importance of wigglcr errors in 
the laboratory. The results of the present work, how- 
ever, suggest that while wiggler imperfections may pro- 
vide a more severe constraint for short wavelength 
FELs than the present case studied, wiggler imperfec- 
tions constitute a less serious issue for FEL design 
than does the problem of beam quality. 
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the 35 runs used to obtain the bulk efficiency to within 
approximately 1% is shown in Fig. 6 for {bBm/Bm)m 

-2% and Np
mZ Here, the skewness « -0.87 and 

the kurtosii «0.74 indicating a distribution skewed 
below the mean and more peaked than the normal 
attribution. In general, we find that the probability 
histograms are skewed below the mean. However, the 
distribution is not always more peaked than the normal 
distribution, and the kurtosis can be either positive or 
negative depending upon both (&BV/Bw)m and N 

p.' 
Hence, the actual statistics of the wiggler imperfections 
must be studied on a case-by-case basis. 

j 4 Summary and discsssies 

In summary, a self-consistent analysis of the effect 
of random wiggler imperfections on the saturation effi- 
ciency of the FEL has been presented in which no a 
priori assumption of a random walk of the electron 
orbits has been imposed. For the specific parameters 
under study, the results indicate that the effects of 
random wiggler errors are relatively benign, and parti- 
cle loss was not found to be a problem. Indeed, some 
imperfection configurations chosen at random were 
found to result in efficiency enhancements due to 
effective increases. Hence, we conclude that wiggler 
imperfections are not a major factor below a certain 
level (depending upon the specific parameters). It is 
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Tunability of tapered free electron lasers * 
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Free electron laser amplifiers are tunable sources under development as high power, high frequency radiation sources for 
magnetic fusion applications. High efficiencies can be achieved by varying the wiggler field strength and/or the wiggler period. In 
addition to the requirement of high efficiency, the free electron laser must be tunable for electron cyclotron heating and current 
drive applications in magnetic fusion devices. Although the tunability of free electron lasers is well established, the tunability of a 
tapered free electron laser amplifier has not been studied. In this paper we present an investigation of the tunability of a tapered 
wiggler free electron laser amplifier operating in the neighborhood of 94 GHz. The configuration of the free electron laser is one in 
which a sheet electron beam propagates through a rectangular waveguide in the presence of a planar wiggler field with tapered 
period. We found that the tapered free electron laser amplifier is tunable over a reasonably wide range of frequencies by small 
adjustments in the energy and current of the electron beam. 

1. Introduction 

A prime characteristic of free electron lasers (FELs) 
is their ability to be tuned over a broad frequency 
range by simply changing the beam voltage. A number 
of schemes have been suggested to achieve high elec- 
tronic efficiencies. One of the most promising schemes 
involves tapering of the wiggler amplitude and/or the 
wiggler period [1]. Designs of tapered wiggler FELs 
have been optimized for maximum efficiency at a par- 
ticular frequency of operation. Therefore, wide tunabil- 
ity of a tapered wiggler FEL is not obvious. 

The purpose of this paper is to address the question 
of the tunability of a tapered wiggler amplifier. In 
particular, we are interested in how the efficiency 
varies with the frequency of the drive signal in a 
tapered wiggler FEL amplifier optimized to operate at 
a specific frequency. In addition, we address the re- 
lated question of the required tuning of the beam 
voltage and/or current to maintain a relatively con- 
stant efficiency over a broad range of frequencies. 
These issues have not been adequately addressed in 
the literature, and are of interest in applications of 
high power FELs to electron cyclotron resonance heat- 

* This work is supported by US Department of Energy. 
* * Corresponding author. 

1 Science Application International Corporation, McLean, 
VA 22102, USA 

ing and current drive for thermonuclear fusion applica- 
tions. 

2. Design of a tapered FEL amplifier 

The specific parameters used herein correspond to 
the University of Maryland short period, sheet beam 
FEL experiment [2-9]. In this experiment, an electron 
beam O.i cm thick and 2.0 cm wide, having a current of 
about 10 A and a voltage of about 500 kV, is injected 
into a rectangular waveguide (4.0 cm-032 cm) placed 
inside a magnetic wiggler. The amplitude of the mag- 
netic wiggler field is flw « S.l kG and the period Aw * 
0.96 cm. The corresponding normalized wiggler param- 
eter a„ - qBm/mc2km (where q and m are the elec- 
tron charge and mass, respectively, c is the speed of 
light, and kw - 2ir/A„ is the wiggler wavenumber) is 
less than unity. 

The enhancement of the efficiency in a tapered 
wiggler FEL is accomplished by reducing the resonant 
energy for the interaction as the electron beam loses 
energy to the wave. The resonance for a wave with 
frequency w and wavenumber Jk, in a planar wiggler in 
which am « 1 is given approximately by 

Yr 
1+4/2 

!-*?/<*, + *„) (1) 

where y, denotes the relativistic dilation factor, and 
the wavenumbers in the waveguide are related via 

0168-9002/94/$07.00 C 1994 - Elsevier Science B.V. All rights reserved 
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<o2/c2 m k\ - k2 + K2, for a cutoff wavenumber *„,. In 
order to maintain the resonance as the beam loses 
energy, at fixed wavelength A - 2v/k, the wiggler 
taper must vary with the energy loss as 

Ay,       A-,   [ 2AÄ AA, 
(2) 

where we have assumed that kt» kw, «„ for simplic- 
ity. It is evident, therefore, that high efficiencies can 
only be achieved in systems in which am ■« 1 by taper- 
ing of the period. It is this scheme which we shall 
investigate in this paper. 

Specifically, we assume that starting at some dis- 
tance z0 the rate of change of the wiggler wave num- 
ber is constant, namely 

MO- 
MO) if   z<z0, 
km(0)+b(z-z0)    if   z>z0, 

(3) 

where kw(Q) is the wiggler wave number in the unta- 
pered region, and z0 is the axial distance at which the 
tapering starts. As described in ref. [71 with a short- 
period wiggler the wiggler strength depends on the 
wiggler period via the following relation: 

MO-MO) cosh[*w(0)S/2] 

cosh[*w(*)6/2]' 
(4) 

where S is the gap spacing (we assume that the gap 
spacing is equal to the waveguide thickness). We solve 
the FEL equations for different values of the parame- 
ters zQ and b. The optimum tapering parameters yield 
maximum efficiency. The FEL amplifier equations con- 
sist of the wave equation and the particle motion 
equations. In this paper, we limited ourselves mainly to 
the one-dimensional model. In the Appendix, we pre- 
sent the final form of the equations we used in our 
analysis. 

We introduced into the ID particle motion model a 
spread in the particle injection angle. This mimics the 
effects of the radial variation of the wiggler field for 
the beam with finite size. In this case, the particles are 
injected with non-zero perpendicular momentum, p\ 
*p2B2, where 6 is the injection angle and p is the 
total initial particle momentum. This will introduce 
spread in the axial velocity according to 

g^!     l+(p\M2c2) + 0-5a~ (5) 

We assume that the distribution for 0 has the Gaussian 
form, f(6)~e~2 exp(-0/0)2, where 0 is the charac- 
teristic spread in the injection angle. We estimated 
that for the parameters of the Maryland FEL experi- 
ment the ID model with 6 ■ 2*-4° would mimic well 
the interaction process. The angular spread has been 
estimated on the basis of the betatron motion due to 

the transverse wiggler inhomogeneity and the finite 
size of the beam. To confirm this result, we also 
employed the 3D FEL simulation code WIGGLIN 
[8,9] under the assumption of the injection of a finite 
size beam with a zero initial axial energy spread. WIG- 
GLIN includes three-dimensional wiggler effects in a 
self-consistent manner, and the finite size beam as- 
sumption introduces the transverse particle motion due 
only to wiggler inhomogeneities. The results of the 
WIGGLIN simulation indicate a saturated power RF 
of approximately 245 kW for a uniform wiggler. The 
ID simulation indicates a saturated power which de- 
creases from 290 kW to 163 kW as 6 increases from 2° 
to 4s. Hence, the ID simulation is in substantial agree- 
ment with the 3D simulation code WIGGLIN for the 
presumed angular beam spread corresponding to the 
betatron motion of the beam. 

In the ID simulations we assumed that 1 kW of 
power in the TE0, mode is injected into the rectangu- 
lar waveguide. The tapering parameters were opti- 
mized to yield maximum FEL efficiency for an injected 
signal at 94 GHz. We found that for a 200 cm long 
wiggler the maximum efficiency is achieved at beam 
voltage V- 476.8 kV and tapering parameters z0 - 74.5 
cm and b - 0.021 cm-2. The beam current was fixed at 
10 A. The results of the simulation indicate an opti- 
mum output power of about 540 kW for an interaction 
efficiency of 11.3%. We now turn to the question of 
the tunability of this design. 

to H 100 
frequency (GHz) 

110 

Fig. 1. Output power versus frequency for a tapered short 
period wiggler sheet beam in the University of Maryland FEL 
amplifier. The tapering parameters are optimum for opera- 
tion at 94 GHz. The total length of the wiggler is 200 cm. The 
wiggler strength in the untapered section is 5.1 kG and the 
wiggler period is 0.96 cm. The length of the untapered section 
is 74.5 cm. The injected power is 1 kW. The circle symbols 
correspond to simulations with a beam current of 10 A. The 
diamond symbols correspond to simulations in which the 
efficiency was optimized with respect to beam current in 
addition to the beam voltage. The first two diamonds corre- 
spond to a beam current of 12 A and the remaining diamonds 

correspond to a beam current of 13 A. 

IV. THEORY 



236 B. Lerush el at. /Nucl. Intlr. and Meth. in Phys. Res. A 341 (1994) 234-237 

(00 

4»» 

^ 
£    4M 
o 

♦ 
• > 

M 
w   4M ♦ 

1 • 
■8    4(0 
> 

♦ • 
47« 

• • 

M W 100 

frequency (GHz) 
106 

Fig. 2. The optimum beam voltage corresponding to the data 
shown in Fig. 1. 

3. Tunability of a tapered FEL amplifier 

For the tunability studies we fixed the aforemen- 
tioned tapering parameters in the case of 94 GHz 
injection frequency. We also fixed the beam current, 
the length of the wiggler, and the injected power. The 
simulations were then performed for a given wiggler 
design with an injected signal at different frequencies 
and optimized for beam energy. Fig. 1 shows the out- 
put power versus frequency and Fig. 2 gives the corre- 
sponding beam voltage versus frequency tuning curve. 

Fig. 1 shows the variation in the output power 
versus frequency for two cases. The circles correspond 
to the output power at fixed current and optimum 
beam voltage, while the diamonds show the output 
power subject to both voltage and current optimiza- 
tion. It is evident from the figure that the variation in 
power over the frequency band is relatively mild at 
fixed current. The variation in beam voltage with fre- 
quency used to generate Fig. 1 is shown in the circles 
in Fig. 2. However, when the current optimization is 
performed as well, then the output power variation 
across this frequency band is negligible. The specific 
currents used in this case are: at 85 and 90 GHz the 
current was 12 A, and at 94-105 GHz the current was 
13 A. Observe that the corresponding voltage tuning 
for the currents is shown by the diamonds in Fig. 2. 

4. Summary 

The results of our study clearly illustrate that ta- 
pered FEL amplifiers are tunable sources for all prac- 
tical purposes. We performed simulations to determine 
the tunability characteristics of a tapered FEL ampli- 
fier. In the computation, we used the parameters of 
the University of Maryland short period wiggler FEL 
experiment. We found that in this FEL a tunability of 
about 25% can be achieved without significant reduc- 

tion in the output power. This is particularly important 
for applications in which the radiation source is re- 
quired to operate at high efficiency. For example, the 
tunability requirement for some fusion applications is 
on the order of 5% for a source with multi-megawatt 
output power at frequencies around 150 GHz. This can 
be met by using a tapered FEL amplifier. 

It should be noted that there are discrepancies 
between the ID analysis and the 3D WIGGLIN simu- 
lation of the tapered wiggler configuration. In this 
regard, we observe that there is an optimum slope for 
the taper in any nonuniform wiggler configuration, 
since at extremely high degrees of taper the beam 
cannot remain in the bucket. The discrepancy at this 
time seems to lie in the fact that the 3D model predicts 
an optimum taper which is much less than that seen in 
the ID model although both models are consistent 
with the simplified bucket efficiency predicted from 
Eq. (2). This issue is currently under study and will be 
discussed at length in a future publication. The prelim- 
inary results seem to indicate that the 3D model pre- 
dicts a transverse spreading of the beam at high power 
level which results in enhanced detrapping of the beam. 
This enhanced detrapping then acts to limit the ex- 
tracted power and forces a reduction in the optimum 
slope of the taper. 

Appendix 

In this appendix, we present the FEL amplifier 
equations in ID approximation which we used to per- 
form our analysis. The equations for particle phase 
^ •■ (*, + km)z - a>t and energy ymc2 are 

d7-/ü7)r—J* (AU) 

and 

dy 

dz        y,{z)ßtt(z)       v ' 
(A.lb) 

where af — qA,/mc2 is the normalized signal field 
amplitude M, signal field vector potential). The cou- 
pling coefficient has the form 

C(0-H'o(«(OWi(«(0)]. 
where 

(A.2) 

«(*)' 
■1(0 

4(l + 0.54(z)) 

and J0, /, are ordinary Bessel functions. The wave 
equation is 

d«. /       gam(z)C(z)      , 
— - -i2ir— .■■■.. ,(e '*),     (A.3) 
dz «A M»)Sr,(OMO 
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where 7A - mc3/q - 1.7 x 10* (A), / is the beam cur- 
rent, 5 is the waveguide area, the brackets < • • • > 
represent an average over initial particle phases, and g 
is a normalized factor for transverse average of the 
radiation profile 

■2 

'-'-y- k(*Jl dxx, 

where a, is the peak signal amplitude at x ± - 0. Note 
that the ratio gSb/S serves as the beam filling factor, 
where Sb is the beam area. For TE0, mode in the 
rectangular waveguide g = 2. 

Eqs. (A.1MA.3) are the model equations which 
have been used in our analysis. 
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Nonlinear theory of slow-wave ubitrons/free electron lasers 
H.P. Freund ' 
Naval Research Laboratory, Washington, DC 20375, USA 

A three-dimensional nonlinear formulation of a slow-wave ubitron /fr«. »I««-!»,., i.„  • _, -^ 

complete Lorentz force equations for the electron traiectori« lZTJZJ?7 , K,Ua,,ons are solved ,n «"Junction with the 

Ubitrons and free electron lasers have been con- 
structed with a wide range of waveguide and optical 
geometries [1-8]. In the bulk of these cases, the electron 
beam interacts with a supraluminous wave in which the 
resonant wavelength scales inversely as the square of 
the beam energy. In many cases, however, this imposes 
too high a requirement on the electron beam energy, 
and methods for reducing the beam energy requirement 
have been eagerly sought. One technique is to pursue 
the interaction at harmonics of the resonant frequency. 
Unfortunately, the harmonic interaction poses difficul- 
ties in that (1) some method of suppressing the funda- 
mental interaction must be found, (2) there is some 
penalty to be paid in terms of reductions in both the 
gain and efficiency at the harmonics, and (3) the re- 
quirements of high beam quality become progressively 
more severe as the harmonic number increases. In this 
article, therefore, an alternative method of reducing the 
beam energy requirement is studied; specifically, the use 
of a dielectric liner to slow the phase velocity of the 
wave. The interaction that results can be either with a 
supraluminous or a subluminous wave, but in either 
case the beam energy required for interaction at a given 
frequency is reduced. 

The configuration employed is that of a single- 
frequency amplifier in which a relativisüc electron beam 
propagates through a dielectric-lined rectangular wave- 

1 Permanent   address:   Science   Applications   International 
Corp., McLean, Virginia 22102, USA. 

0168-9002/91/S03.50 C 1991 - Elsevier Science Publishers B.V. 

guide in the presence of a planar wiggler field. The 
waveguide is characterized as shown in fig. 1 in which 
the dimensions of the outer walls are at x - 0. a and 
y- ± ib. The dielectric is aligned parallel to the long 
(i.e.. x) axis of the waveguide with a thickness 4 and an 
inner surface at y - ±d. where d - \b - 4. The wiggler 
field model is chosen to describe the effect of parabolic 
pole faces for enhanced focussing [1,9], i.e., 

K-*w(0{«w(*wr)[^ sinh(*„x/v/2) sinh(kmy/</2) 

+iy cosh(*wx/»/2) cosh(*w.y/v/2)] 

-Jii, sin(*w*) cosh(*wVV^") 

Xsmh(kwy/j2)}, (1) 

where kw (*2v/Xw, where Xm denotes the wiggler 
period) is the wiggler wavenumber. and Bw{z) describes 
the amplitude. The wiggler amplitude is allowed to vary 
slowly in z as follows: 

*.{*)> 
!*. *J(kwz/4Nv), 
B„, 

0<z<Nv\m, 

KK<*<z0> 

(2) 

in order to describe (1) the injection of the beam 
through an adiabatic entry taper over Nw wiggler peri- 
ods, and (2) the efficiency enhancement by means of a 
tapered wiggler amplitude (in which tw describes the 
slope of the taper). This wiggler model is both curt- and 
divergence-free for a uniform wiggler amplitude, and we 
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Fig. 1. Schematic illustration of the configuration of the dielectric-lined waveguide. 

implicitly assume thai the gradients imposed by the and 
amplitude tapering are small (i.e., Nm » 1 and c„ <K 1) 
Observe that the orientation of this wiggJer model im- &B(x i) 
plies that the direction of the transverse wiggler-induced 
oscillations are aligned parallel to the dielectric Uner 
This was chosen, along with the enhanced focussing 
provided by the parabolic pole faces, in order to mini- 
mize loss of the beam to the dielectric. 

The electromagnetic field is represented by means of 
an expansion in terms of the vacuum modes (i e   in the 
absence of the electron beam) of the waveguide The 
standard TE and TM modes of a rectangular waveguide 
do not exist in the presence of the dielectric liner 
Instead, there are normal modes which are either trans- 
verse electric (LSE) or transverse magnetic (LSM) with 
respect to the >-axis in the present configuration [10]. am f dz-k  (n _ 
We focus on the LSE modes since only this polarization J° 
presents an electric field component which is aligned 
with the bulk wiggler-induced transverse velocity The 
electric and magnetic fields of these modes can be 
represented in the form 

£kiM„\-n-Z;H(y)ix sin(l-nx/a) 
1.1 l aKln 

xsina-(l + £l)z>*(yK 
Xcos(Hx/a) sin a - l~z,

l„(y)i! 

X cos( ivx/a ) cos a ■I 

8£(or. ,) - - j EH-ZfcOok «•(/«/«) sin a 
l.n I 

/,ff    - 1 Y^ ', sin( Nx/a ) cos a , (3) 

(4) 

where we assume that the amplitude t>Alm and the 
wavenumber *,„ are slowly-varying functions of z. and 
the phase is given by 

(5) 

There are even and odd modes which are differentiated 
by the dispersion -equations and the transverse mode 
patterns Zn(y). For the even modes, the dispersion 
equation is 

*'«tan «A.*-«;, cot ic/,4, (6) 
where 

in the dielectric, and 

3 */* + T-   + 

(?) 

(8) 
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in the vacuum. The transverse variation for these modes 
is given by 

fsin K;„(\b -.)•). 

z,„(.»-W:r 
"/'„ cos«;^ 

"/„   s»n */„<* 
cos *,„>•. 

sin «/„(^fc + j). 

d<y< ib. 

-d<y<d, 

-\b<y< -d. 

(9) 

For the odd modes, we have the dispersion equation 

(10) 

d<y< \b. 

-d<y<d, 

-\b<y< -d. 

(11) 

The dynamical equations which govern the evolution 
of the slowly varying amplitude and wavenumber are 
obtained by substitution of the representation of the 
electric field, eq. (3), into Maxwell's equations 

and the transverse mode structure 

fsin K;„($b-y). 

-sin K;„(lb+y), 

(-"^) 
5£(x, r)-r(r-8£(x./)) 

4» a,,,       . .__W(X,0, 

where the source current is given by 
W(x. ,) 

* ~e"bjjJ äPo »2oFi>(Po)f f dx0 dy0 o± 

(12) 

(*o- *b)//    d'o°«('o)*(*: *o. *>• 'o- Po) r '-T/2 

X«(xA -xx(2; JC0, y0, t0. p0)] 

^S[I-T(Z: X0, y0. t0, p0)] 

K(«: •«o. >o- 'o- Po)\ 

where rl0 is the initial axial velocity. p0 is the initial 
momentum. A% is the cross-sectional area of the wave- 
guide. 7- L/o,0 (where L is the length of the system), 
and o„, a±, and F„ describe the distribution of the 
initial conditions of the beam. 

Substitution   of   the   field   representation   into 
Maxwell's equation yields 

(,+&)(7-*-*N 

(14) 
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and 
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2  *,„ + 
/V 

a2k,„   dr :&
ain 

C       fln 

<■'*       (liix\   . hi 
— cos —   sin a r— sin e.       \  a   I ak,„     \ 

hx_ 
a cos or 

(15) 

after averaging over a wave period and neglecting sec- 
ond-order derivatives of the amplitude and phase, where 
8fl/»E'^i>,f!. u>\^Aite2nh/me. nb denotes the 
ambient beam density. G, - 5 when / - 0 and unity 
otherwise. 

(16) 

for the even modes, and 
„2 sin 

sin 
i2«;,,4/       SMlK,„d\     Al,     sin 2K',„A \ 
?*,A    2*lKd )+ dy-~2^j~y 

(17) 

for the odd modes. The averaging operator in eqs. (14) 
and (15) is defined over the initial conditions of the 
beam, and includes the effect of an initial momentum 
spread by means of the distribution function 

^h( Po) - A exp[ - ( p.0 - pof/üp}] 

*HpZ-pio-P?o)H(p,ol (18) 
where p0 and bp. describe the initial bulk momentum 
and momentum spread, H(x) is the Heaviside function, 
and the normalization constant is 

(13) ^■{«J[",<»AO««P[-(AO-A))VAA2]}    .      (19) 

Observe that this distribution describes a beam which is 
monoenergetic but with a pitch-angle spread which is 
equivalent to an axial energy spread of 

Ay.. l  
y°  "        fi+2(yg-l)*i/pt ' (20) 

where y0 * (1 + p$/m2
tc

2)l/2. As a result, the averaging 
operator takes the form 

x«p[ ~(P,o - A)a/Afl?]/2* d^0 o„(*0) 

XffA 
d*o«»Ä»x(*o. *)(•••)•      (21) 
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100 r  / =5.1 GHz 
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50 r   " 

ü *> 100 ISO 200 
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Fig. 2. Graph of the evolution of the power in the LSE01 mode 
as a function of axial distance. 

In order ,o complete the formulation, we must specify 
the orbit equates for «he electron ensemble. SincTwe 
deal wtth an ampler model, we integrate the complete 
hree-d.mens.onal Lorenu force equations in  r   No 

Smed" *~ ^ ~ ' «■* **<* 
The numerical example we consider deals with a 

wavegulde with dimensions . - 9.8 cm. * - 2.9 cmld 
* - 0.5 cm, and the dielectric constant is < - 4 2 which 
corresponds to boron nitride. The wiggler field haTa 

r - , lr~      m Md increases ,0 a «"»«ant value 
wLder ZZT an,emry ,aper region Which » ^e 
Ä^r?S '"   englh   We assume an id^ (i*. 
f 35 Miv        PCnC" e,eCtr0n beam ** an «ergy o 
cm   Ü   ' a "T °f 10 ^ Md ** a «*«« of 0.25 
cm. This example corresponds to a resonance ,t a 
^quency of 5.1 GHz in the LSE01 mode which is sti« 

,?liSupra,ununous «"»«e. but has a phase velocity 
we 1 below «ha, of the TE01 mode in the JLjrfS 

£wer S rf h "*"*•«* *">ws to a r£k 
power level of approximately 324 MW for a saturation 
efficiency of 24.15*. The oscillaüon seen in the p^r 

effect of the lower beat wave upon the interaction in 
PW wtggler configurations [11). No attemp, hTye" 
been made to optimize these parameters 

cJe^TT',? "f^ formu,ation and simulation 
code has been developed which is capable of treating 
the interaction between a relativistic electron beaT^J 
a planar wtggler field in the presence of a didecSiS 
rectangular waveguide. Note that a dielectric liner t 

only one way of slowing the wave, and that alternative 
techniques .„elude , variety of slow-wave sSu 1 
mc ud.ng gra,ings and rippled wal. geometries"*T 
^.e s owmg high gain and eff.c.ency 1S givcn for £ 
case of the resonant tnteraction of the LSE0I mode in 

rtm T 7n°US rCRimC AUh0Ugh ,Ws d- -« "P 
SI« W!Ve (WhiCh  USUa"v dcnot<* a *ub- 
h^minous wave,, there is still a substantial advantage ,o 

ÜSf" aCh!C^ *<* ^-„cy operation 
relatively lower voltages than would be possible in the 

«JnTJs a fdeCtriCK HOWCVer- f"™»»««Ä extend his analysis to the subluminous regime Finally 
a s,ou.d also be remarked that this formulati™* 
capable of treating the Cherenkov maser interaction fo" 
subluminous waves as well by the simple expedient o 
Icttmg the wiggler field amplitude vanish. 
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High efficiency operation of Cherenkov masers 

H.P. Freund ' and A.K. Ganguly 
Naval Research Laboratory, Washington, DC 20375, USA 

A nonlinear s.mulation of the Cherenkov maser amplifier is presented for a configuration in which an electron beam propagates 
through a d.electnc-l.ned cylindrical waveguide. The parameters used correspond to an expenment at General Dynamics which 
measured a total efficiency of 11.5% at 8.6 GHz. The simulation is in agreement with this bu« indicates that the system was too short 
to reach saturation and that an efficiency of 30* would have been possible for a longer system, and the performance is not 
significantly degraded by thermal spreads up to 20$. 

The Cherenkov maser has been demonstrated over a broad spectral range and operates by means of an 
interaction between an energetic electron beam and a subluminous electromagnetic wave Cherenkov 
masers have been operated at 100 kW power levels at 1 mm wavelengths [1-3], at 200 MW power levels at 
8 cm wavelengths [4] as well as wavelengths as short as in the far-infrared at 100 u.m [5] In the present 
work, we describe a comparison between a nonlinear formulation of the Cherenkov maser amplifier [6] and 
an expenment conducted at General Dynamics [7]. This experiment achieved a total output power of 280 
MW at a frequency of 8.6 GHz. The nonlinear theory is in substantial agreement with the experimental 
measurements for the quoted beam and waveguide parameters, but indicates that the experiment was too 
short to reach saturation and that a total output power in the neighborhood of 800 MW could have been 
achieved w.th a longer system. The response of the system to the beam thermal spread is also remarkable 
in that the gain and saturation efficiency are not substantially degraded by energy spreads as high as 20% 

The configuration employed in the analysis is that of an electron beam propagating through a 
cylindrical, dielectnc-lined waveguide. We use Äg and Rä to denote the inner radii of the waveguide and 
dielectric liner (with a dielectric constant of e) respectively. The boundary conditions imposed on the 
electromagnetic field are satisfied by expanding the field in terms of the normal modes of the cold 
waveguide. The beam interacts with the parallel component of the electric field and couples primarily with 
the TM modes. We make the further assumption of azimuthal symmetry, and represent the field as an 
expansion of the TM0B modes of the vacuum waveguide [8] for which 

«£(,./)- -££«4, Zln(r)er sin an + jLZi)„(r)e: cos a„ 

x / 2 
i 8*('-')=-I*n(l-^|8/ro„ZlB(r)^sinan, 

(1) 

(2) 

where 8/Jün measures the amplitude and has the dimensions of a vector potential, « and k   denote the 
frequency and wavenumber, and " 

an^fdz'k„(z')-ut, 
Jn (3) 

is the phase of the TM0„ mode. Both the amplitude and the wavenumber are assumed to be slowly varying 
functions of z in the sense that both vary slowly with respect to the wavelengths of interest. The radial 

Permanent address: Science Applications International Corp., McLean, VA 22102, USA. 
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dependence of these eigenmodes is given by (/- 0, 1) 

Zln{r) = 
aM<r)+bnY,{K'nr),    Rd<rzRt. 

613 

(4) 

where Jn and Y„ represent the regular Bessel and N,„m,n„ ,      ■ 
funcnon of the first kind, and Neumann functions, /„ denotes the modified Bessel 

a. - M*<[%Il(*.RMiKM _ I0(K„Rd)yl(<Rd^ 

^■■iw'Ä-fe/,(,t-Ä-^^-)-/.(«-^)/I(.:Ad)]. 
Both «c and ,; are analogues of the cutoff wavenumbers and are defined by 

(5) 

„2        Kn-K„, 

in the vacuum, and 

«2 

<— =*2 + r'2 

(6) 

(7) 

IÄÄÄÄÄ £S£££ f T(6) Md (7) denotes <hc ~- — equation [1-5] for this configuration is ^ fOT ^ waven™ber. The vacuum dispersion 

O(KM   "" 1'»(^)^)-/o(«X)y0(^-0- (8) 
which in combination with eqs. (5) and (6), relates u and k 

beam is described by y m    M aspersion of each mode in the presence of the electron 

KM/,.: 

A:.2 

and 

^ " %Wa°" ' ~ 77 ^lh * "" + £'.< V> cos *„), 

(9) 

(10) 

4.« 
<-l 

'i2(".*-)-^/o2(«„Äd) 

+ ^^4.(*,,*d)/1(K,,/{d) 

(") 
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The neglect of beam space-charge modes from the formulation is valid as long as (1) ub •*: «, and (2) the 
exponentiation time is much less than the period of the beam-plasma wave. 

The averaging operator is defined over the initial conditions of the beam, and includes the effect of an 
initial momentum spread by means of the distribution function 

F0(Po) - A exp[-(A.0- p0)
2/Ap-]s(pi - p\0- p}0)H{pz0), (12) 

where p0 and bp: describe the initial bulk momentum and momentum spread, H(x) is the Heaviside 
function, and the normalization constant is 

A = j *jf " d/>,o exp[ - (p.0 - p0f/Ap}] J    . (13) 

Observe that this distribution describes a beam which is monoenergetic but with a pitch-angle spread 
which is equivalent to an axial energy spread of 

/l+2U2-l) 
A> 

(14) 

(15) 

where y0 * (1 +pl/m\czy/2. As a result the averaging operator takes the form 

<(" ■)} ■ **j c d*°r dp:° ß:° expi ■(p:° ■ 'O)VM 

■'0 •'0 

where *0 (= - w/0) is the initial phase, *, * tair'dWfco). &O * v:0/c, and ot(+0) and ox(r0) describe 
the initial beam distribution in phase and cross section. 

In order to complete the formulation, the electron orbit equations must also be specified. Since we are 
interested in amplifier configurations, we integrate the complete Lorentz force equations in z using an 
axial guide magnetic field to provide for the confinement of the beam, and the electromagnetic field given 
in eqs. (1) and (2). 

This formulation is compared with an amplifier experiment at General Dynamics [7] which employed 
an intense relativistic electron beam (788 keV and 3.1 kA) produced by a cold "knife-edge" cathode which 
resulted in an annular beam with a mean radius of approximately 1.15 cm and a thickness of 2 mm. After 
correction for the space-charge depression, the beam energy is of the order of 736 keV. No diagnostic 
measurement of the beam quality (ie., thermal energy spread) was made. The dielectric-liner was Stycast 
(e = 10) with a radius /?, - 1.74 cm and Rd = 1.47 cm. The dielectric had a 3.3 cm taper at both ends to 
suppress oscillation, and a uniform central region which was 23.9 cm in length. Beam transport was 
accomplished with a 15 kG solenoid. The amplifier was driven by a 100 kW input signal which was 
tunable over the band from 8.4-9.6 GHz. At these frequencies only the TM0, mode can interact with the 
beam. A total gam of 34.5 dB (1.44 dB/cm over the uniform dielectric) was observed at a power level of 
approximately 280 MW (for an efficiency of 11.5%), with an uncertainty of approximately 3 dB. 

The simulation is in reasonable agreement with the observations, and shows that the power has not 
saturated over the 23.9 cm length of the uniform dielectric. As a result, the power predicted in simulation 
shows a substantial sensitivity to the specific choice of any parameter which modifies the linear gain. In 
particular, the simulation exhibits a large sensitivity to the thickness of the dielectric. For example a 
power level of approximately 60 MW over the 23.9 cm length is predicted in simulation for Rd - 1.47 cm 
However, there is an uncertainty in the dielectric thickness of the order of ±0.005 cm due to the 
fabrication process [9}. If we choose Äd - 1.475 cm corresponding to a thinner dielectric, then the power 
found in simulation over this length rises to approximately 131 MW, which is within the experimental 



HP Freund. AK Ganguly / Cherenk,*- musers 

TMf ( Mod* <R  = 1.74 cm; R< = ,.475 cm; e =10) 
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uncertainty. This parametric sensitivity is largely confined to th. 1 ■    ~ 
substantially altered by variations in Rd o^Z^^^^Z^ ^ ^^ P°wer is *» 
approximately 600 to 620 MW as the inner radius of fh^i? V^ "* Sa,Uraled Power rises from 
the larger figure for *d IS In lMJZ^t^^^'^tnaljr?t0lA1i^^ 
experimental uncertainty, we shall use this valuTL«Lh intf      ,0"S ?* " Wi,hi" the ran*e of 

The gain band found in simulation covers ^e ranTo?7 8 8   GH^T^'5- 
an .deal beam (i.e., Aye = 0) increases from 16 4^8 Olfa.« . ^ ***** at Sa,uration for 

of the evolution of the power and gain versus axial dil^ W'oximately 30.3% at 8.8 GHz. A graph 
The power saturates at 620 MW £ a ^XSS^ fST" ", % ! * * ^^ °f 86^ 
average gain over is in the neighlniriKKKlTlilT^^0; ** " ^^ °f 3"*« — ^ 
with the observations. dB/Cm- These f,8ures «« in reasonable agreement 

ÄrtSS:r^ ££-* ' P,OUed VCTSUS <he — i- 
This high tolerance for the energy spread! »TeTSe h?/h «, l'^ SpreadS 3S l*h « »-**• 
experiment. Since this mechanism re^ on the Chernov n^fT T1°™* ** thiS in,cnsc «« 
become important when Avb/vb » fa k Z * In ,hk ~      £   " WhlCh " " *c- * «• *™» effects 

TM#, Mode « = 1.74 cm; R, = 1.475 cm; t = 10) 
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electron beams, the Cherenkov maser is an attractive competitor for gyrotrons. free electron lasers and 
rela mstic klystrons for a w,de variety of applications. In particular, the potentiality of producing 
single-mode powers in excess of 700 MW at frequencies in the neighborhood of 9 GHz compares favorably 
with recent results obtained with relativistic klystrons [10.11]; however, unlike the relativistic klystron the 
Cherenkov maser is easily scalable to higher frequencies. We anticipate that the level of performance 
demonstrated herein at 8.6 GHz can be achieved at frequencies as high as 35 GHz as well. It should be 
remarked that Cherenkov masers based upon dielectric liners can exhibit both dielectric and mechanical 
breakdown at high power levels, and that these effects may have operated to limit the power and/or pulse 
length in the experiment at General Dynamics [9]. However, this configuration represents only one 
approach to the interaction, and other slow wave structures may be used to overcome these difficulties In 
general this device falls into the category of relativistic intense-beam traveling wave tubes (TWTs) and 
similar levels of performance have been obtained using a rippled wall slow-wave structure in 'both 
backward wave oscillators [12] and TWT amplifiers [13]. 

Acknowledgements 

This work was supported by the Office of Naval Research and the Office of Naval Technology. 

References 

[1] K.L. Fetch. K.O. Busby, R. Layman and J.E. Walsh, Appl. Phys. Leu 38 (1981) 601 
[2] S. Von Laven, J. Branscum, J. Golüb, R. Layman and J.E. Walsh. Appl. Phys. Lett. 41 (1982) 408 
[3] E.P. Garate. R. Cook. P. Heim, R. Layman and J.E Walsh. J. Appl. Phys. 58 (1985) 627 
[4] W. Main, R. Cherry and E.P. Garate, Appl. Phys. Leu. 55 (1989) 1498 

S JiEp ^al5h,,C HA lhtU8IlneSSy; R-Jjyman- G D«"°K. G.P. Gallerano and A. Renieri. Nucl. Instr. and Mein. A272 (1988) 132 
[6] H.P. Freund and A.K. Ganguly, Phys. Fluids B2 (1990) 2506. 
[7] W. Main. E.P. Garate, R. Cherry and J. Weatherall. submitted to Phys. Fluids. 
[8] R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York 1961) chap 5 
[9] w. Main, personal communication. ^^' 

[10] MA. Allen et al.. SLAC Pub. nos. 4801 and 5070 (1989). 
[11] M. Friedman, JA. Krall, Y.Y. Lau and V. Serlin, Rev. Sei. Instr. 61 (1990) 171 
[12] D. Shiffler, J.A. Nation and G. Kerslick, IEEE Trans. Plasma Sei PS-18 (1990) 546 

[13] Y. Carmel, K. Minami. R.A. Kens. W.W. Destier. V.L. Granatslein. D. Abe and W.L Lou, Phys. Rev. Lett. 62 (1989) 2389. 



APPENDIX VIII 

The Nonlinear Analysis of Self-Field Effects in 
Free-Electron Lasers 

H.P. Freund, R.H. Jackson, and D.E. Pershing 
Phys. Fluids B 5, 2318 (1993) 



The nonlinear analysis of self-field effects In free-electron lasers 
H. P. Freund.** R. H. Jackson, and D. E. Perching"' 
Naval Research Laboratory, Washington, D.C 20375 

(Received 15 February 1993; accepted 26 March 1993) 

A model of the self-fields associated with the charge density and current of the electron beam is 
incorporated into three-dimensional nonlinear formulations of the interaction in free-electron 
lasers for both planar and helical wiggler configurations. The model assumes the existence of a 
cyhndrically symmetric electron beam with a flat-top density profile and a uniform axial 
velocity, and the self-electric and self-magnetic fields are determined from Poisson's equation 
and Ampere's law. Diamagnetic and paramagnetic effects due the electron beam interaction with 
the wiggler field are neglected; hence, the model breaks down when the wiggler-induced 
transverse displacement is comparable to the beam radius. The nonlinear formulations are based 
upon the ARACHNE and WIOGLIN codes, which represent slow-time-scale formulations for the 
evolution of the amplitudes and phases of a multimode superposition of vacuum waveguide 
modes. The electron dynamics in these codes are treated by means of the complete 
three-dimensional Lorentz force equations, and the representations for the self-fields are 
incorporated directly into this formulation. The results of the simulations are compared directly 
with an experiment at Lawrence Livermore National Laboratory based upon a planar wiggler 
and experiments at the Massachusetts Institute of Technology and the Naval Research 
Laboratory, which employed helical wigglers. These experiments employed intense electron 
beams with current densities of 200-1200 A/cm2 and comparable space-charge depressions of 
Arieif/yo=0-53%-0.78% across the beam. The simulations are in reasonable agreement with the 
experiments, and indicate that the self-fields tend to (1) reduce saturation efficiencies and (2) 
enhance beam spreading depending upon the magnitude of external beam focusing. 

I. INTRODUCTION 

Free-electron laser (FEL) experiments that operate in 
the millimeter and submillimeter wave bands generally use 
intense-beam accelerators such as modulators,1 pulse-line 
accelerators,2"* and induction linacs.7,8 These intense-beam 
experiments have often operated in the collective Raman 
regime in which the space-charge potential from the elec- 
trostatic beam-plasma waves is dominant over the ponder- 
omotive potential due to the beating of the wiggler and 
radiation fields. However, the direct current (dc) self- 
electric and self-magnetic fields due to the charge and cur- 
rent densities of the beam are typically assumed to be neg- 
ligible in most theoretical treatments of these experiments. 
In this paper, we describe a nonlinear treatment of the FEL 
interaction, which includes a model of the dc self-fields of 
the beam in the formulation. 

The dc self-fields have been treated in one-dimensional 
analyses of FEL's in both linear theory910 and by means of 
a nonlinear particle-in-ceU simulation.10 Our goal in the 
present work is to develop a nonlinear model of dc self- 
fields in FEL's in three dimensions. Of course, the most 
general treatment of dc self-fields arises in the context of a 
fully three-dimensional particle-in-cell simulation of the 
FEL. In many cases, however, this poses an insurmount- 
able computational obstacle. Instead, we have constructed 
a model of the dc self-fields, which is incorporated into 

"Permanent address: Science Applications International Corp., McLean, 
Virginia 22102. 

"Permanent address: Mission Research Corp., Newington, Virginia 

slow-time-scale simulation codes for both helical and pla- 
nar wiggler geometries.1'"" These slow-time-scale formu- 
lations require considerably less computer time than a cor- 
responding particle-in-cell simulation, yet are capable of 
accurate point-by-point descriptions of FEL experiments. 
These nonlinear formulations, including the dc self-fields, 
are compared with intense-beam experiments using a pla- 
nar wiggler at the Lawrence Livermore National 
Laboratory,' and helical wigglers at the Massachusetts In- 
stitute of Technology' and the Naval Research 
Laboratory.1 

The organization of the paper is as follows. A descrip- 
tion of the self-field model and the slow-time-scale formu- 
lation is given in Sec. II. Section III is devoted to the 
numerical analysis of the experiments at LLNL, MIT, and 
NRL. Results indicate that the dc self-field effects in these 
experiments provide for a reduction in the interaction ef- 
ficiency relative to that computed without the self-fields as 
well as enhanced beam spreading. However, the overall 
results are within the experimental uncertainties in the 
measurements of the output power. A summary and dis- 
cussion is given in Sec. IV. 

II. THE MATHEMATICAL FORMULATION 

An electron beam in a physically realizable FEL is 
born and accelerated and/or transported for some distance 
before it enters the wiggler. Various focusing schemes are 
often employed to transport the beam to the wiggler, which 
can rely upon external magnetic (typically either solenoids 
or magnetic quadrupoles) or electric fields. In addition, 
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many experiments employ some form of beam scrapin* 
(sometimes referred to as emittance selection) to ensure a 
beam with a small axial velocity spread.2-« Hence, the elec- 
tron beam, and the self-fields, can exhibit a complex struc 
ture at the entrance to the wiggler, and a complete treat- 
ment of the initial conditions and self-fields in the electron 
beam> in a FEL would require a full-scale particle-in-cell 
simulation for each specific configuration, including the 
accelerator and beam transport system as well as the FEL 
Such an end-tc-end simulation is beyond the scope of this 
paper Instead, we develop a model of the self-fields in an 
FEL based upon the simplest treatment of the self-fields in 
an electron beam derived from an idealized model of a 
beam with uniform, azimuthally symmetric profiles in both 
the density and velocity. This describes the case of the 
injection of a uniform parallel-propagating beam 

In such a case, the beam density is given by nJr) =n„ 
for F<J?J «nd zero otherwise, where Rb denotes the beam 
radius; then the self-electric field, Ew, is determined by 

proximation for the self-magnetic field. In this case the 
self-magnetic field is determined by Ampere's law,    ' 

1 9       „ 4« 
(6) 

hence, 

m. »w—£«fr*. (7) 

1 d     «,» 
-Jr (r£<«>) = -Anen„{r), 

which has the solution 

(i) 

(2) 

where * and m, are the electronic charge and mass, and 
<ob=4veinb/mt is the square of the beam-plasma fre- 
quency. Energy conservation for this configuration is given 
by the sum of the kinetic and potential (due to the self- 
electnc field) energies. Within the beam, the Lorentz force 
equations yield 

7t{r-&)=*> (3) 

where y is the relativistic factor. This results in a space- 
charge depression in the kinetic energy across the beam 
which may be expressed as 

4 

where c is the speed of light in vacuo and ß sv/c 
The nonlinear formulation for the analyse of self-field 

effects in FEL's described in this paper is based upon a 
generahzation of the three-dimensional nonlinear simula- 
üon codes ARACHNE»» and WIGGLIN*» for FEL ampli- 

k 1*eSe
1
codes rePrescnt slow-time-scale formulations, 

where the electromagnetic field is expanded in a superpo- 
S!t!0n ,°™f tranSVCTSe dectric (TE) ™» transverse mai 
neue (TM) modes of either a cylindrical or rertangular 
waveguide, and the spac«harge field describing the beam- 
plasma modes is expanded in a superposition of the Gould- 
Tnvelpiece modes of the beam. Note that the space-charge 
field associated with the Gould-Trivelpiece mode is dis- 
tinct from the self-electric field. Slow-time-scale equations 
TO ™     TlUtim rf ** -»PKt-de and phase of each 
TE, TM. and Gould-Trivelpiece mode due to the interac- 
tion with the beam and wiggler/axial guide field These 
equations are integrated simultaneously with the three 
dimensional Lorentz force equations in the complete en- 
semble of electromagnetic, electrostatic and magnetostatic 
fietts. We emphaaze that no averaging procedure is im- 
posed on the orbit equations. 

There are two major distinctions between ARACHNE 
and «nun The first is that ARACHNE deals with ah* 
liad wiggler/axial guide field and a cylindrical waveguide, 
while WIOOLIN deals with a planar wiggler and a reSan 
gular waveguide. Hence, the external fields used in 
ARACHNE are given by 

y(r)=ro+^(^_ÄJ). 
(4) 

J»_Eq (♦). Yo denotes the kinetic energy at the edge of the 
beam or, alternatively, the total energy. 
c ,JThc

1
k>west"older «Presentation for the self-magnetic 

field u obtained under the assumption that the beam prop- 
agates paraxially with T«,A for r<R>, and zero other- 
wise. This assumption requires that the space-charge de- 
pression across the beam be small. Observe from (4) that 
the space-charge depression in the kinetic energy at the 
center of the beam depends upon «JäJ^C» and is proper- 

(8) 

tional to the total beam current through 

B«(x) = ^)8J+B.(»), 

where the wiggler field is 

B10(x)=2^(z)[/;U)ircos^-(i/A)/lU)e,sin^ 

+/ia)«,sin;rJ, (9) 

and /, and I\ denote the modified Bessel function of the 
first kind and its derivative, Asi» v=fl_i- , J-  :. «u **..«nmb„ ,_ÜJJü[^5^ 
tude is assumed to vary adiabatically as 

Ar, idf 

7b 
=5.88X10 ,-s h 

(5) BJz) = 

where the beam current Jt is in amperes. For the specific 
cases under consideration here AY^/Yo < \%t md the „,. 
sumption of a uniform axial velocity provides a good ap- 
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Bw;   z>NJLm. 
(10) 

The planar wiggler used in WIOGLIN (no axial guide field » 
included) is of the form14" ^ " 
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BwJx) = BJz)t sin kj— 
coskj d 

z*»™) kwBw(z) i 

Y(kjf) d2 \  1   d I . u ,        Y(kj) d*\   1   d 

(11) 

x(cosh^ 55~ss)xU)i(12) 

(Y(kyy) 
sinh itj» —£— 

(      *  *\ ^1 
(13) 

where the amplitude £„(z) is given by Eq. (10), 
y(*^)s*^ cosh *,,j>-sinh *,,>>, and X{x)m\ + (x/ 
ax)

2m/2. Observe that the bulk direction of wiggler motion 
for this model is in the x direction. The use of a wiggler 
model with an adiabatic entry taper for both the helical 
and planar wigglers allows us to self-consistently describe 
the injection of the beam into the wiggler. In addition, the 
wiggler amplitude in this model increases with increases in 
displacement from the axis of symmetry and provides for 
an additional focusing force on the beam. 

The second major distinction between ARACHNE and 
WIGGLIN is that the Gould-Trivelpiece space-charge 
modes are not included in WIGGLIN. AS will be discussed 
in detail later, this does not constitute an important restric- 
tion for the case presently under consideration. 

The equations governing the evolution of the TE 
modes in a rectangular waveguide, as used in WIOOLIN,12,13 

are given here for the sake of clarity. A detailed derivation 
of the corresponding equations for the TM modes may also 
be found in Refs. 12 and 13, and the TE and TM modes 
and Gould-Trivelpiece modes in a cylindrical waveguide 
are treated in Refs. 11 and 13. The electromagnetic field in 
a rectangular waveguide of dimensions — a/2<x<a/2 and 
—b/2<y<.b/2 is represented as a superposition of the TE 
and TM modes of the vacuum waveguide. Hence, the vec- 
tor potential of the TE modes is given by 

6A(x,r)= X '&<^U)e^,(*j')cos 0^(2,0,      (14) 

where the phase for frequency a and wave number k^, is 
given by 

a^,(z,/)= f dz* ku{z)-ot, 
Jo (15) 

the summation 2' indicates that both / and n are not both 
zero, 

(16) 

is the cutoff wave number, X=x+a/2, Y=y+b/2, and 
the polarization vector is 

hrX\ nv fhrX\     fnvY\ 

hr       ,  (hX\      fnirY\ 
 e-sin — cos —— . 

*tf> '     I a }     \  b  } (17) 

It is implicitly assumed that the amplitudes and wave num- 
bers vary slowly in z over a wave period. 

The slow-time-scale equations governing the evolution 
of the amplitudes and wave numbers of each of these 
modes are obtained by substitution of the field representa- 
tion into Maxwell's equations and averaging those equa- 
tions over a wave period. This effectively removes the fast- 
time-scale oscillation from consideration, and results in 
two second-order equations for the amplitudes and phases, 

d2 d1 it? \ 

(18) 

and 

(19) 
where Sa^me bA^mf and Fum\, when either /=0 or 
n=0, and unity otherwise. As mentioned previously, sim- 
ilar equations apply for the TM modes in a rectangular 
waveguide, as well as for the TE and TM modes and 
Gould-Trivelpiece modes in a cylindrical waveguide. 

These equations are equivalent to a calculation of the 
average i'SE^ for each mode. The averaging operator 
that appears in (18) and (19) is defined over the initial 
conditions of the beam upon entry to the wiggler (at z—0), 
and includes the effect of a momentum spread by means of 
the distribution 

Ft(po) =A exp[ - (fco-*,)*/Lp\] 

X«(*O-J5 o-J&>*(Ao>. (20) 

where A, and Lp, denote the bulk momentum and the axial 
momentum spread, respectively, H denotes the Heaviside 
function, and the normalization constant is 

|Ef 'J>-(-^r)] 
-1 

(21) 

Observe that this distribution describes a 'monoenergetic 
beam with a pitch-angle spread. The axial energy spread 
associated with the distribution is related to the momen- 
tum spread via 

^ 1 

r*      Vi+2(ri-i>(4ft/A)' 
(22) 

where y0= 1 +/§/mJe*. As a result, the averaging operator 
takes the form 
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X /_/*>"« <*>>/ / *b«to*i (Jon) 

X(-). (23) 
where Ab is the initial cross-sectional area of the beam 

phÜT-w ^ W*l
I*

lhe of ■* Ponderomotivc' 
£j£.V°"^CL^>stan"WAoJ.anda,, and o^ de- 
scribe the untial beam distribution in phase L cross" sec 

k m^m0devinlCraCtS *"»»*** wM» *e electrons and 
irP H r ** LOrCntZ f°rCe e"Uations » «* Whined staic and fluctuating fields, which, in the present analysis, 
mcludes the self-electric and self-magnetic fieldsTfTe 
beam- As mentioned previously, a complete self-consistent 
analys« of self-fields in FEL's requires a full-scale, «W 
dunensional particle-in-cell simulation. This necessitates a 
significantly greater computational investment than the 
slow-time-scale formulation, and is beyond the scope of 

ttn SET ^Ti WC ShaD "* thC SÜnP,ificd op- tion of the self-fields given in Eqs. (2) and (7) by allowing 
for the motion of the beam centroid in «he wfggler^ 
using an average axial velocity in the self-magnetic field 
£ .«suit, the self-electric and magnetic fieldfare rq, re 

Ew = 
mt 

-2J«>lUx- (x))ix+ 0>-<y))i,) (24) 
and 

m. 
BW*-2?^*>^-0'»**-C*-<x»«rJ. (25) 

Given these self-fields, as well as the external fields speci- 
fied earlier for the axial guide and wiggler fields, the Lor- 
entz force equations take the form 

d e 

^5»—•<«W+«)--fX(JWi+Bii+BW+ffl), 

(26) 
where 6E and 5B represent the aggregate electric and mag- 
neto fields from each TE, TM, and Gould-Trivelpiece 

It is hnportant to observe that several implicit assump- 
tions underlie this approximation for the sdf-fields in the 
wiggler. The first is that even while the beam d^nsTty is 
assumed* be a uniform flat-top profile with a circular 
cross section upon entry to the wiggler. it does not neces- 
sarily remain either uniform or circular during the course 
of the mteraction. This distortion of the beam in the wig- 
gfcr has been well documented for both helical"» and 
Planar wigglers*» under the neglect of the self-fields. The 
second »that the self-magnetic field has been derived 2 

ÄÄi? »     maafT °f Unifonn P"*^ motio" of the beam. However, the effect of the wiggler is to induce 
a bulk transverse wiggle motion and a velocity shear due to 
the wiggler inhomogeneities, and these distortions to the 
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STlTET f" % ** SeIf-ma«netic fcM » the wig- gler. n order to esümate the magnitude of this effect, con- 

tio„\ LTJT^ thl1Wet^rdcr -Educed Z. tion m an idealized one-dimensional helical wiggler in the 
source current for the self-magnetic field. This results in a 

Ap^nd^V0 ** S*lf",nagnetiC fie,d °f the form (see the 

*^"9+^n^B«.     (27) 

where t^meB^Ytftfi. The second term can describe ei- 
ther «hamagnetic [d,, < *„«,, Jorparamagnetic[Cl0>k^u 1 
corrections to the wiggler fi'eld,' JutTn^igib/e 1 long ai 
^wHi>2\vw/vi I. where vw is the wiggler-induced trans- 
verse velocity. Hence, Eqs. (24) and g) repre^t TZL 
sonable approximation for the self-fields in the wiggler as 
tong as the transverse electron displacement dueto the 
wiggler is less than the beam radius. 

HI. NUMERICAL ANALYSIS 

th, US** °ITPlCd aO0hncaT ^««tial equations for 
the fields and the electrons is solved numerically for Z 
amphfier configuration in which a single wave of frequency 

dectron beam The solution to this initial value problem 
can be accomplished by a variety of different algorithm*! 

Runge-Kutta techniques. The advantage of the Adams- 
Moulton techmque is that it is mo« stable t£uTti£ 
Runge-Kutta algorithm; however, this occurs at üTprac! 
ücal cost of a greatly increased memory reqJremen^Tn 

practice, ,t is found that the fourth-orderRu^Kmta- 
CM techmque leads to no serious numerical L£SL 
and is employed here. "»«wuiues 

sen to 'JZ*?.?***0™ m ** ww,^ide mod« « cho- sen to model the mjection of each mode at the same fre- 
quency with some arbitrary power level and with a wave 
number  equal   to  that  of the  vacuum  value   fie 

«the start of the wiggler. the growth rate of each mode is 
£»assumed to be zero initially. The initialization offe 
Gould-Trivelmece modes for the helical wilder/ 
cyhndncal waveguide configuration is accomplished^«« 

plEP? — «v***1« *** ^ «rtW Particfe 

mJ?l™m ?** °f ^ dectron boun « chosen to 
model the injectm of a monoenergetic, unifonn. axisym- 
metnc electron beam with a flat-top density profilefor 
ro<Rbi hence. <r, =1 for -*<*„<*, and a, =1 for 
r0<Rr The effect of the self-dectric field on the initial 

Sir^rT *■ sPace-char*e action de- 
senbed in Eq. (6). where Yo describes the total energy that 
is the initial kinetic energy at the edge of the beanT Ä7a 
result, we scale the initial momentum, 

Ro('b) «Po^l 

where 

, ( 
Ar('o)(2yo+Ay(;-o)] 

(28) 
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«i 
Ay(»b>*£j (*$-*»>. (29) 

and |Po|Vw^c2=yg-1. Thus, the initial kinetic energy of 
the particles increases with radius from the beam center. 
The particle averages, as well as the initial particle loading, 
are performed by an nth-order Gaussian quadrature in 
each of the initial degrees of freedom (i.e., r0, 80, ip0, p^, 
#o)- A more detailed description of the numerical proce- 
dures is given in Refs. 11-13. 

It is important to observe here that no attempt is made 
to match the beam into the wiggler in order to achieve a 
beam envelope with a relatively constant radius through- 
out the wiggler. We treat a simpler model in which a 
paraxially propagating beam is injected into the wiggler, 
and the subsequent motion is calculated for the assumed 
electrostatic, magnetostatic (including the self-magnetic), 
and electromagnetic fields. 

The effect of the self-electric and self-magnetic fields 
are studied for parameters consistent with two 35 GHz 
amplifier experiments corresponding to planar and helical 
wiggler configurations and with a 16 GHz amplifier exper- 
iment using a helical wiggler. The planar-wiggler experi- 
ment was conducted at Lawrence Livennore National Lab- 
oratory and employed a 3.5 MeV/850 A electron beam 
with an initial radius of 1 cm propagating through a rect- 
angular waveguide (J=9.8 cm and *=2.9 cm) in the pres- 
ence of a planar wiggler with a period of 9.8 cm and an 
entry taper of one wiggler period in length. The wiggler 
was generated by a stack of electromagnets, which could be 
adjusted to produce fields of more than 4 kG in magnitude. 
Additional beam focusing in the experiment was accom- 
plished with an external quadrupole field; hence, the self- 
fields may have been less important in the experiment than 
indicated in the simulation. However, it is found that the 
results of the simulation with or without the self-fields are 
in agreement with the measurements to within the experi- 
mental uncertainties. The first helical wiggler experiment 
we describe is located at the Massachusetts Institute of 
Technology6 and employed a 750 keV electron beam, with 
an initial beam radius of 0.25 cm. The beam current that 
could propagate through the system varied with the axial 
magnetic field up to a maximum of approximately 300 A. 
The beam propagated through a cylindrical waveguide 
with a radius of 0.51 cm in the presence of a helical wiggler 
field (Bu<\.% kG, A„=3.14 cm), with a six period entry 
taper and an axial guide field of up to 12 kG. Experiments 
were conducted with the axial guide field oriented both 
parallel and antiparallel to the bulk streaming of the elec- 
tron beam. The second helical wiggler experiment is lo- 
cated at the Naval Research Laboratory1 and employs a 
250 keV/100 A electron beam with an initial beam radius 
of 0.4 cm. The wiggler field has a period of 2.54 cm, and an 
entry taper region of five wiggler periods in length, an exit 
taper of three wiggler periods in length, and an amplitude 
variable up to 500 G. The axial guide field can be varied up 
to a field of 3.2 kG. This is an amplifier experiment at 
frequencies in the range of 12-20 GHz, which employs a 
waveguide with a radius of 0.815 cm; hence, the primary 
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interaction is with the TE„ mode. It should be noted that 
although the beam parameters were very different in these 
experiments, the magnitudes of the space-charge depres- 
sion across the beam in each case are similar, and we find 
that Ay«,f/y0=:0.64% in the LLNL experiment, 
ArWy0=:0.78% in the MIT experiment (at a current of 
300 A), and ArMlf/y0~0.53% in the NRL experiment. 

In order to evaluate the effect of the self-fields in the 
context of this formulation, we shall compare the experi- 
mental measurements with the results of WIGGLIN and 
ARACHNE, both with and without the inclusion of the self- 
field models. 

A. The planar wiggler configuration 

The amplifier experiment at LLNL was driven by a 
magnetron that produced approximately 50 kW at a fre- 
quency of 34.6 GHz. At this frequency, the waveguide is 
overmoded and the power was predominantly injected into 
the TEQ,, TEJ, , and TM2, modes, although the TEQ, mode 
was dominant. The experimental results indicated that sat- 
uration occurred at a power level of approximately 180 
MW over a length of 1.3 m (including the entry toper). 
The bulk of the output signal was found to be in the TEQ, 

mode, but there was also substantial power in the TE21 and 
TM21 modes as well. As mentioned earlier, the space- 
charge (i.e., Gould-Trivelpiece) waves were not important 
for this experiment. The primary reason for this is that, for 
these beam parameters, Landau damping of the space- 
charge waves ensures that the space-charge waves do not 
reach sufficiently high amplitudes to affect the 
interaction. "-17 

In comparing the results from WIGGLIN with the ex- 
periment, we must make assumptions as to (1) the initial 
power levels in each of the three relevant waveguide 
modes, and (2) the initial axial energy spread of the beam. 
Experimental measurements' indicate that the bulk of the 
injected power was in the TEQ, mode and that the initial 
power in the TE^ mode was approximately 1% that of the 
TEQ, mode. The power in the TM2I mode was found to be 
still lower than that of the TEj, mode. Hence, these modes 
are initialized at power levels of 50 kW in the TEQ, mode, 
500 W in the TEj, mode, and 100 W in the TM2, mode. 
Direct measurements of the initial axial energy spread of 
the beam" with an electron spectrometer were able only to 
place an upper bound on the initial axial energy spread of 
approximately 2%. 

In the absence of the self-fields, WIGGLIN provided 
close agreement with the experimental observations for the 
choice of Ay/y0= 1.5%, which is within the bound set by 
the experimental measurements. A plot of the growth of 
the signal versus axial distance for these parameters is 
shown in Kg. 1, showing both the total power and the 
power in the TEQ, mode. Observe that although the TEQI 

mode is overwhelmingly dominant at the start of the inter- 
action, it accounts for only about 60% of the signal at 
saturation. This is due to the fact that the TEj, mode had 
the higher growth rate. The oscillation in the power occurs 
at a period of kjl and is due to the effect of the lower beat 
wave between the wiggler and the radiation field.12,13 
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Agreement between the simulation and the experimental 
measurement is good. The peak saturated power found in 
simulation is approximately 190 MW, which falls to ap- 
proximately 180 MW when averaged over the lower beat 
wave. The saturation length is found to be approximately 
1.45 m. 

The interaction efficiency is relatively insensitive to the 
initial axial energy spread for AY/Yo<2% in the absence of 
the self-fields; however, this is not the case when the self- 
fields are included in the simulation. The reason for this is 
that effect of the self-fields and that of an initial axial en- 
ergy spread both act to increase the spreading of the beam 
RecaU that the axial energy spread is due to a pitch-angle 
spread; hence, increases in the axial energy spread imply 
increases in the transverse momenta of the beam As a 
result, the combined effects of the self-fields and an increas- 
ing axial energy spread can act to enhance beam loss to the 
waveguide walk as well as to decrease the coupling be- 
tween the beam and the waveguide modes. This is illus- 
trated clearly in Fig. 2, in which we plot the variation in 
the efficiency as a function of the initial axial energy 

(o - 9.8 cm; b = 2.9 cm; /=34.6 GHz) 

£ 

-in. 

: 
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/»*8»A 
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- 

0.0 0.5 

Axial Energy Spread (%) 
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FIG. 2. Plot of the efficiency versus the initial axial energy soread hnth 
with and without the self-Held,. *" V^ b0ÜI 
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RG^EvoIution of the power versus «U diunce in the presence of 

spread both with and without the inclusion of the self- 
fields. As shown in the figure, the efficiency decreases from 
about 7 12% to 6.35% as the axial energy spread^« Up 
to 2% In contrast, when self-fields are included, the effi- 
ciency falls off rapidly for AY/Yo>0.5%. Note that the 
initial increase in the efficiency with the axial energy spread 
for Ari/y0<0.25% is due to the shift in the tuning of the 
interacüon with changes in the energy spread. This effect 
has be«, discussed in the literature,"and is due to the fact 
that the increase in the axial energy spread effectively re- 

lT,?e aTgC Streaming ve,ocity of »>* beam. This 
shifts the gam band, and can increase the efficiency at fixed 
frequencies, although the maximum efficiency across the 
gain band decreases. 

It is clear from Fig. 2 is that the power measured in the 
experiment can be recovered from the simulation for 
Ay,/ro<0.5%, which is within the experimental uncer- 
tainty^The general conclusion to be drawn from this is that 
the effect of the dc self-fields on the interaction can £ 
significant, but that in this case they are smaller than the 
effect of the uncertainties in the initial axial energy spread 
despite the use of a high current beam 
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FIG. 4. Beam cross section at the entrance to the wiggler. 
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FIG. 7. Beam cross section at ;>99.8 cm without self-fields. 

The evolution of the power as a function of axial dis- 
tance subject to the inclusion of the self-fields is shown in 
Fig. 3 for the choice of an initial axial energy spread of 
0.3%. This is chosen for illustrative purposes since the 
saturated power in the TE01 mode is relatively unchanged, 
in comparison with the results shown in Fig. 1. In this case, 
a peak saturated power level of approximately 175 MW 
(falling to s 165 MW when averaged over the lower beat 
wave) was found over a saturation length of about 1.45 m. 
Hence, the result of the inclusion of the self-fields is a 
reduction of approximately 8% in the total saturated 
power, and somewhat less of a reduction in the growth 
rate. Recall that no additional focusing due to a magnetic 
quadrupole field is included in WIGGLIN; hence, the effects 
of the self-fields seen in simulation may be greater than in 
the experiment However, given the experimental uncer- 
tainties in the power measurements and the fact that only 
an upper bound of 2% is known regarding the initial ««itl 
energy spread of the beam, the results from WIOGUN ei- 
ther with or without the self-Selds are coosisient with the 
experimental measurements. 

It is important to observe, as mentioned previously, 
that the saturated power in the TEQ, mode both with and 
without the self-fields is of the order of 125 MW; hence, the 

reduction in the total saturated power is due largely to a 
decline in the power in the TEj, (and to a lesser extent the 
TM21) mode. A detailed analysis of the electron dynamics 
is required in order to explain why the TEj, and TM2i 
modes are more sensitive to the self-fields for these param- 
eters. In either case, the initial cross section of the electron 
beam is chosen to model the injection of a cylindrical pen- 
cil beam. The initial loading of the electrons by means of a 
ten-point Gaussian algorithm in r0 and 0O is shown in Fig. 
4. Note that (1) the nonuniform spacing between the elec- 
trons is characteristic of the Gaussian algorithm that com- 
pensates by the assignment of different weights to each 
electron, and (2) that the noncircular envelope is an arti- 
fact due to the scale on the plot. 

In the absence of the self-fields, the beam undergoes 
complex motion, which includes the bulk wiggler-induoed 
transverse oscillation, betatron oscillations due to wiggler 
inhomogeneities, and responses to the electromagnetic 
fields. Figures 5-8 show the evolution of the beam cross 
section over approximately one wiggler period in the linear 
stage of the interaction well before saturation, without the 
inclusion of the self-fields. The inclusion of the self-fields 
can be expected to alter the beam trajectories to some de- 
gree depending upon the magnitude of the fields. One im- 
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FIG. 6. Beam era« section at x-96.7 cm without self-fields. 
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FIG. 9. Beam cross section it r=93.6 cm with self-flelds. 

portant effect is the spreading of the beam induced by the 
sdf-electnc field. Figures 9-12 show the beam cross section 
over the same range, with the self-fields included. It is clear 
that the beam distortion due to the action of the wiggler 
radiation, and self-fields is complex. However, the princi- 
pal effect that can alter the interaction with the TE,, and 
I Mj, modes is the spreading induced in beam cross section 
«nthex direction under the action of the self-dectric field 
ine TEQ, mode will be relatively insensitive to this varia- 
tion since this field is uniform in the x direction; hence, 
rdatively little variation in the saturated power in tS 
mode is expected. In contrast, since the TE,, and TM„ 
modes vary in *, any beam spreading in this direction due 
to the action of the self-fields can be expected to impact the 
saturated power—in this case to reduce it. 

Energy conservation is preserved to good accuracy 
whether or not self-fields are included in the simulation 
although the potential energy due to the seif-electric field 
must be included in the calculation. In the absence of the 
self-fields, the relative difference between the energy lost by 

nfj ™0nS "d that **»* b* ** »«•*» » within 
0.1%. When self-fields are included, however, the discrep- 
ancy increases, and energy conservation is good to within 
l%. The reason for this increased discrepancy is that the 

FIG. 11. cross section at ;»99.g cm with self-flelds. 

self-field model implicitly assumes a cylindrical beam, 

IT ^^ distortions due to ** «ction of the wiggler 
and self-fields results in a more complex shape. However, 
the inaccuracies introduced by the distortion of the beam 
cross section are relatively small for the present case since 
energy conservation is still preserved to within 1%. 

B. Tho helical wriggler configuration 

The MIT amplifier experiment was driven by a mae- 

^G^TEST1 ÜT w!kw at a *«""* *f 
33.39 GHz._ The TE,, mode was the only wave mode, given 
the waveguide radius, which could resonantly interact with 
the beam; however, this experiment operated in the Raman 
regime and the Gould-Trivelpiece modes must be in- 
cluded. In practice, it was found20 that only the lowest- 
order Gould-Trivelpiece mode (for arimuthal mode num- 
öer 1=0, and radial mode number »= 1) was required to 
obtain reasonable agreement between ARACHNE and the 
experiment in the absence of self-field effects. The experi- 
ment operated in three regimes corresponding to an axial 
magnetic field which was aligned either parallel or antipar- 
allel (or reversed field) to the wiggler and the streaming^ 

1.00 

FIG. 10. Beam cross section at *-93.7 cm with self-flelds. 

2325       Phys. Fluids B. Vol. 5, No. 7. Jury 1993 

1 i ' ' ■ ■ i- 

z- 102.9 cm 

■■V»'V* - . •  .»► ._•        , ■- 

L._t 

-2.5        -1.5       -0.5        03 
x (cm) 

IJ 2.5 

FIG. 12. Beam cross section at *-102.9 cm with sdf-Selds. 

Freund, Jackson, and Penning       2325 



u 

£ 

10« 

10" 

10* 

i i_u 4>H«JV vf\, - o.j i ».iii, j - JJ.J'J on»., /•„ =• 6.D IL v> > 

»~  ! 

/* = 330 A 
fi. = 1.55 kG 
/>,„ = 10 kW 

**/vt = 750 keV 
-* /      Ä» = 0.25 on 

/i, = 300 A 
o\,= 1.47kG 
/",,, = 8.5 kW 

60 

fiu = -10.92 kG 
A» = 3.l8cm 
N.=6 

120 
Axial Distance (cm) 

180 

V4»750keV 
/t«90A 

Kh * 0.25 cm 
4r/)b"6.4* 

Ä0«4.06kG 
Ä„ = 0.63kG 
^s: 3.14 cm 

tf_ = 6 

40 80 120 160 
Axial Distance (cm) 

200 

FIG. 13. Tbc evolution of the power versus axial position as determined 
with ARACHNE and from the experiment (dots) for the reversed-field 
configuration. 

FIG. IS. The evolution of the power as determined with ARACHNE and 
from the experiment (dots) for the group I case with and without the 
self-fields. 

the electron beam. In the parallel orientation of the mag- 
netic field, two regimes are found, which are referred to in 
the literature as either group I for which (l0<kj»\] or 
group II for which tl0>kjui , and the experiment was 
operated for axial fields in both regimes. The third operat- 
ing regime is the reversed-field case. The maximum oper- 
ational output power was found to occur in the reversed- 
field case in which 61 MW, Output powers of the order of 
5 MW was obtained in either the group I or group II cases. 
Detailed descriptions of the comparison of ARACHNE with 
this experiment in the absence of self-fields can be found in 
Refs. 20 and 21. 

The first case we consider here is that of a field- 
reversed configuration, in which the nominal experimental 
magnetic field parameters were an axial field magnitude of 
10.92 kG and a wiggler field of 1.47 kG. The transmitted 
current for these field parameters was 300 A (±10%), 
and the axial energy spread of the beam is assumed to be 

1.5%, as indicated in the experiment. These parameters 
represent the case of the peak power observed in the ex- 
periment of 61 MW. 

The comparison of the experiment and ARACHNE in 
the absence of self-fields is shown in Fig. 13, in which the 
power is plotted as a function of axial position, and in 
which the dots represent the power as measured in the 
experiment. As shown in the figure, ARACHNE was used for 
two sets of parameters. The first corresponds to the nom- 
inal experimental values given above, and the second cor- 
responds to the upper limits on the (1) current, (2) wig- 
gler field, and (3) input power (due to the experimental 
uncertainties) of 330 A, 1.55 kG, and 10 kW, respectively. 
As is evident in the figure, the agreement between the ex- 
perimental measurements and ARACHNE is good, and vir- 
tually all the data points fall between these two curves. The 
saturated power for these two choices of the current, wig- 
gler field, and input power differ only marginally and are 
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FIG. 14. The evolution of the power as determined with ARACHNE and 
from the experiment (dots) for the reversed-field configuration subject to 
the inclusion of the self-fields. 
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dacrepancy between ARACHNE and the experiments that 
usmg the axial energy spread of 1.5% nomm^^t 

ZSm T* m PrediCted effidend« «»«* 
It '„*? for *c "v««ed-field case. The assump^on* 
muxh^gher «x»l energy spread, are required to obtauT 
reasonable agreement with the measured power The r*7 
son for this discrepancy remains uncertain^ £  Z 

STin^H ,*' CBÖ,°* to^wiggJcrthat results in 
die increased axial energy spread for these cases. Be that as 
« may we shall employ axial energy „«ads of approJT 
mately 6.4% in these cases, whichpSvS^da^eTem" 
between the simulation and the measured Jowen 

The results for the power as calculated with ARACHVP 

3S*f* -«*■ ■ dotted vet,TS 
position in Fig. 15 along with the experimental data (rZ 

Ay/Xo-6.4%. It is evident from the figure that the results 
ta..AMCHNB with and without the Aids arecatet 
the expenmental measurement, and he within the exntrt 
mental uncertainties in the power measurement      * 

Similar conclusions are found for the group II case 
how„ in Fig. 16, although it is noted that wWle th" s^ 

ulation . in agreement with the output power measured™ 

TE„ Mode(Ä, = o.8I5cm;/= IÖGHzj/^SkW) 

1     .—r-r-T-p 

30 ! 
250 keV 

/»»100A 
** = 0.4cm 

4r/ro=o.3% 
\ *» = 300G 

^       ^ = 2.54cm 

2-3 2.4 2.5 
Axial Magnetic Field (kG) 

venu, A. uU nu«„«k field h fc aSSÄS*"^ 

is ^^"^«»»»»«centiy been redesigned and 
»presently m the construction/shakedown phase. It 
makes u* of a 250 keV modulator capable of pacing 
S;««8 of 100 A, and the electron £nh2 
signed to produce a beam with a radius of 0 4 cri and ™ 

by abifila,-helicalcoil with a period of 2.54 cm anT.^ 

eSt^ol oflv^'T0^ ^"^ ****> «trance „d 
£?? .      three Wiggler P"^ «Pectively. in 

St»TEES*? * ^ up^~" "™teiy X« o. In addition, the aual guide field can K- 
vaned up ^ 3.2 kG. This a,^ operaoTm"^gnTupl 
«gime. The experiment is configured as an amplifier driven 
by a magnetron, which produces up to 5 vit*££Z 

wTvSudTni
ro,n !i* GHZ- HeDCe' *« * cuX 

Swfth ^4rad,^°ff815 «* the »teraction is solely with the TE„ mode. Observe that the snace-ch«™» 

b^n current ° eXPeranCntS- ^^ *« much ^ 

eratio" °« ^S11"18? ^ eXperimeat' we «onsider op- eration at 16 GHz and use the following model for tC 
wggler field amphtude in Eq. (9) for the Meal J^ 

0<z<5A„, 

BJz) = Bu;   5Aw<z<3VL,., 

w(^>); 3(Ull><z<33ylll 

(30) 

2327 Phys. Fluids B. Vol. 5. No. 7. July 1993 

Simulations wiAout the inclusion of the self-fields indicate 
that extremely high efficiencies are possible. Botih Ae 2n 
«ency and beam transmission are plotted „fo„cZ,; 
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amplitude of 300 G. It is clear that^ S"^ 
over a wide range from 3%-33% as the JSSe&S 
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FIG. 18. Plots of the variation in the efficiency and beam transmission 
versus the axial magnetic field in the presence of the self-fields. 

increases from 2.2 to 2.6 kG. However, the beam transmis- 
sion falls precipitously with the increase in the efficiency 
from a value of about 99% at an axial field of 2.2 kG to 
approximately 5% at an axial field of 2.6 kG. This decline 
in the beam transmission is due to two factors. The first 
factor is that the loss of up to 30% of the beam energy to 
the TEn mode implies that the beam undergoes massive 
deceleration, which is accompanied by an increase in the 
radius of the wiggler-induced trajectory. The second factor 
is that the high-power electromagnetic wave arts to kick 
the beam away from the axis. It should be noted that, as in 
the case of the group I and II regimes in the MIT 
experiment,20,21 saturation in the NRL experiment occurs 
due to beam loss rather than the more familiar phase trap- 
ping of the beam in the ponderomotive potential formed by 
the beating of the wiggler and radiation fields. Operation 
with acceptable levels of beam loss, therefore, should re- 
strict the experiment to efficiencies below approximately 
20%. 

As might be expected, the effect of the self-fields can 
act to enhance the beam losses. The effects of the self-fields 
are more pronounced in this experiment than in the previ- 
ously analyzed MIT experiment since the space-charge de- 
pressions are comparable for the two experiments, but the 
beam voltage and axial guide field is lower in the NRL 
experiment The efficiency and beam transmission are plot- 
ted in Fig. 18 as functions of the axial guide field for a 
wiggler amplitude of 300 G, subject to the inclusion of the 
space-charge fields. It is evident from the figure that for 
strong axial guide fields in excess of approximately 2.5 kG 
the efficiency and beam transmission do not differ greatly 
from those found in the absence of the self-fields. This is 
because the axial field acts to confine the beam against the 
spreading induced by the self-fields. In contrast, both the 
efficiency and beam transmission are substantially less than 
that found in the absence of the self-fields for weak axial 
guide fields below about 2.3 kG. In the intermediate regime 
for axial guide fields in the range of 2.3-2.5 kG, however, 
the beam transmission is enhanced relative to both the 
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weak and strong guide field cases. This occurs for two 
reasons. The first is that the axial guide field is strong 
enough to provide appreciable confinement of the electron 
beam. The second is that the self-fields are strong enough 
to cause a reduction in the interaction efficiency; hence, the 
beam has not lost enough energy and the radiation has not 
gained enough energy to kick the beam appreciably toward 
the wall. As a result, we expect that operation with axial 
guide fields in the neighborhood of 2.4 kG for a wiggler 
field of 300 G is preferred, and will result in efficiencies of 
approximately 10%-15%. 

IV. SUMMARY AND DISCUSSION 

The nonlinear formulation of the interaction in FEL's 
with dc self-fields presented in this paper is based upon an 
idealized model in which a uniform paraxially propagating 
beam is injected into either a planar or helical wiggler. The 
model of the dc self-fields is derived from Poisson's equa- 
tion and Ampere's law for this idealized beam, and has 
been,em.pioyed Previously i» toe study of orbital chaos in 
FEL's. ~ 4 The subsequent beam evolution is followed by 
the integration of the Lorentz force equations in the com- 
bined dc self-fields, the magnetostatic wiggler and axial 
guide field, and the oscillating electromagnetic fields asso- 
ciated with the waveguide and Gould-Trivelpiece modes. 
The nonlinear formulation is applied to the study of three 
experiments using both planar and helical wiggler geome- 
tries and currents ranging from 100-850 A, but which all 
had similar space-charge depressions in the kinetic energy 
across the beam 0.53%<Ay-B/y0<0.78%. 

The   nonlinear  formulation   and   simulation   code 
WIGGLIN for the planar wiggler configuration is applied to 
the study of the self-fields for parameters that nominally 
correspond to a 35 GHz FEL amplifier experiment at 
LLNL. The difference lies in the fact that a magnetic quad- 
rupole field was used in the experiment to provide for ad- 
ditional focusing of the beam, but was not incorporated 
into the simulation. As a result, the effect of the self-fields 
is expected to be more pronounced in simulation than in 
the experiment. Be that as it may, however, the principal 
result of the simulation is that the experimental uncertain- 
ties in the power measurements and in the initial axial 
energy spread of the beam have a greater impact on the 
interaction efficiency than the effect of the dc self-fields, 
despite the relatively high current beam used in the exper- 
iment The most important uncertainty here is in the axial 
energy spread, which is known only to within an upper 
bound of approximately Ay/yoS2%. For appropriate 
choices of the initial axial energy spread, WIGGLIN is found 
to be in agreement with the power and growth rate mea- 
surements in the experiment either with or without the 
inclusion of the self-fields. Additional conclusions from the 
simulation are that the additional beam spreading induced 
by the self-fields (1) renders that interaction more sensitive 
to the effect of the initial axial energy spread, and (2) is 
relatively less important for the TEo, mode, which is uni- 
form in the direction of the bulk wiggler-induced oscilla- 
tion than for the TEj, and TM21 modes, which are not 
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AJU^TtT 1
f0nnftk)n -* *«"W« code 

£?^TJ *?** WIggler «Nations is applied to 
*£"** -Mdd effect, in «pendent, .t &" 

m^*.h     IS* °f "* $Ünul,,tion for *» MU experi- sri^sr?agrcemcnt * *• *-«•*»—s ££L7£ ? •? relatively ^ ^p-** for «to «- 
This is attributed to the enhanced focusing due to both the 
hehcal wiggler .„d ^ stroaxial *      (j£?kO) 

the setf-fields are found to have a significant inWon 
both the beam transmission and the interaction «££ 
^d^rdLfie,dS W0W*PP">*»«ely2.4-2.5 koS 
gtude fieUls above this value, the interaction efficiency" 
only shghtly reduced by the effect of the dc *ff 
ti. . A f"*1? concIusion' therefore, from this analysis is 
that the dc self-fields can have a substantial r^oT^ 
operation of FEL's, but that the impact can tadS2£ 
JJ-JJI. the oratory due to JE^SÄT 

We look for solutions of the form 

^-irtocoaOl^-*), 

*•" = ^sin^-fl) + B$(r), 

Substitution of (A6) into (A5) yields 

*«/"•*«+ Br= n, 
c 

k B--R _4irw* 

(A5) 

(A6) 

(A7) 

(A8) 
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APPENDIX: ANALYTICAL MODEL OF THE SELF- 

«w A"*0™ detaÜCd analytictI modd for *e self-magnetic 
£AKT" **(4) k obtoined»*' * «££ üonthat the beam current is determined from the electron 

STf "^ "* fidd A «^«sionaTC! sentation for the external fields including both annual 
guide magnet* field and a helical wiggler field is gTveTby 

^(^^B^+BJ^cosk^+^änk^).        (Al) 
This wiggler field admit, a d. of steady-state helical tra- 
jectones, for which 

▼U) =«„(«, cos kj+t,»b kj) +P| ttt {A2) 

where the transverse and axial components of the velocity 
are determined by the simultaneoiu\oh7tion of 

"■   Oo-kv! (A3) 
and 

The last of these equations implies that 

j^)—4"* -re* 

and 

£<'*#)-*„ rfr 

(A9) 

(A10) 

(All) 

Äg^f EqUmt,0° (A,0) - * ■"'■— ^ 
ft _m'    2   "• 

2«   * c (A12) 

The^requirement that the divergence of this field vanishes 

id     .      i . 
75 *>**>-; *#+*J>.a (A13) 

Elimination of BtUtd fusing Eqs. (A7) and (All) giv« 

y^i^-tt-?^. (A14) 
The simplest solution to Eq. (A14) is 

*+<-(.-#>. (A4) 

^ll"*"'? ,*^W"^- Using «"• «P««ntation for 
m •Ar*'* *-•"* *"** ^ - *• written 

rd$a* 'dt*** =-~"»W«'.cos(*^-e), 

-Ir  ...    *»» 

which implies that 

(A15) 

(A16) 

and 

i,=o. 
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Nonlinear Simulation of a High-Power, 
Collective Free-Electron Laser 

H. P. Freund and A. K. Ganguly 

Abstract— A comparison is described between the three- 
dimensional nonlinear analysis and simulation code, ARACHNE, 
and a recent 33.4-GHz, collective, free-electron laser amplifier 
experiment at MIT. The experiment has demonstrated power 
levels of 61 MW (« 27% efficiency) without recourse to tapered 
magnetic fields, using a 750-keV/300-A electron beam with 
a nominal axial energy spread of 1.5% propagating through 
a cylindrical drift tube in the presence of a helical wiggler 
(£(u < 1.8 IcG, Xw — 3.18 cm) and an axial guide magnetic 
field (Bo < 12 kG). Significant differences in the character of 
the emission were found based upon the direction of the guide 
magnetic field. When the wiggler and guide fields were parallel, 
observed power levels reached approximately 4 MW for both 
the strong and weak guide field regimes, but vanished in the 
neighborhood of the magnetic resonance (when the Larmor and 
wiggler periods are comparable). In this case, resonance refers to 
the enhancement of the transverse wiggle-induced velocity, and 
the reduction in the emission is due to the fact that the electron 
beam cannot propagate in this regime due to orbital instabilities. 
However, the maximum power was observed in the reversed 
field case when the wiggler and guide fields were antiparallel. 
In this case, no resonant enhancement in the transverse velocity 
is expected to occur; however, a significant reduction in the 
output power was found to occur in the neighborhood of 
the antiresonance. The ARACHNE simulation is in substantial 
agreement with the experiment. In the reversed field case, the 
simulation shows peak power levels of 60 MW at the nominal 
axial energy spread of the experiment, as well as providing good 
correspondence with the power reduction at the anti-resonance. 
The source of this power reduction appears to be a previously 
unsuspected effect on the electron orbits due to the wiggler 
»homogeneity. Agreement with the much lower power levels 
found when the wiggler and guide fields are parallel, however, 
requires the assumption of a substantial increase in the energy 
spread of the beam. 

I. INTRODUCTION 

THE free-electron laser (FEL) has demonstrated operation 
over wavelengths extending from microwaves (1]-(18] 

through the optical spectrum [19]-[29]. Free-Electron Laser 
experiments have been conducted with electron beams pro- 
duced by virtually every type of accelerator, including radio- 
frequency linacs, microtrons, storage rings, electrostatic ac- 
celerators, induction linacs, pulse-line accelerators, and mod- 
ulators. High energy/low current accelerators (i.e., RF linacs, 
storage rings, microtrons, and electrostatic accelerators) are 
typically employed at wavelengths in the infrared or shorter 
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wavelengths, and the maximum efficiencies achieved are of the 
order of 4%, even using tapered wiggler designs [24]. [25). 
In contrast, low-energy/high-current electron beams (from 
induction linacs, pulse-line accelerators, and modulators) are 
employed at longer wavelengths in the microwave or mil- 
limeter wave regime. In the past, the optimal performance 
demonstrated in this regime is represented by efficiencies 
of the order of approximately 12% for a uniform wiggler 
configuration (1J, [6], and approximately 35% for the case 
of a tapered wiggler [10]. 

The present paper is concerned with the theoretical de- 
scription of a recent experiment conducted by Conde and 
Bekefi [30], [31] at the Massachusetts Institute of Technology 
(MIT), which demonstrated a peak efficiency of approxi- 
mately 27% at a frequency of 33.4 GHz using a uniform 
wiggler configuration. The above-mentioned tapered wiggler 
experiment achieved a 35% efficiency at the same frequency 
using a 3.5-MeV/850-A electron beam produced by the ETA 
induction linac at the Los Alamos National Laboratory (LLNL) 
in conjunction with a planar wiggler with a tapered am- 
plitude [10]. In contrast, the MIT experiment employed a 
750-keV/300-A electron beam produced by a pulse-line ac- 
celerator in conjunction with a uniform helical wiggler/axial 
guide field configuration. This latter configuration has been 
used in the past to produce a 35-GHz FEL amplifier; however, 
the maximum efficiency obtained was of the order of 7% 
with a tapered axial magnetic field [4]. In addition, the 
maximum efficiency in the MIT experiment was observed 
when the wiggler and axial guide magnetic fields were directed 
antiparallel to each other. This reversed-field geometry is a 
previously untried configuration. Hence, this experiment has 
broken new ground in the performance of FEL amplifiers, and 
illustrates some novel aspects in the interaction physics of 
the FEL 

For convenience, we refer to the three-dimensional non- 
linear simulation code used to analyze this experiment as 
"ARACHNE." This code was first developed to treat the 
case of FEL amplifiers in the high-gain Compton regime 
[32]-[36] in which the coupling with the fluctuating beam 
space-charge waves can be ignored. However, ARACHNE was 
subsequently extended to treat the collective Raman regime 
[37] and has been benchmarked, with good results, against two 
earlier FEL experiments at MIT [12], [16], as well as against 
a series of experiments at the Naval Research Laboratory [17]. 
The ARACHNE code represents a slow-time-scale formulation 
in which the electromagnetic field is expanded in terms of a 
superposition of the vacuum TE and TM modes of a cylindrical 
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wavcgu.de. The space-charge field is expanded in terms of 
a superposition of the Gould-Trivelpicce modes [38] of a 
beam propagating through the waveguide in the absence of 
he wiggler field. A series of slow-time-scale equations are 

then derived for the evolution of the amplitude and phase of 
each TE, TM, and Gould-Trivelpiece mode in the presence 
of the interact™ with the electron beam in the wiggler 

These equations are then integrated simultaneously witTthe 
three-dimensional Lorentz force equations for the electrons 
m the complete ensemble of electromagnetic, electrostatic, 
and magnetostatic fields. We emphasize that while Maxwell's 
equations are averaged over the wave period in order to 
denve the slow-time-scale equations for the field amplitudes 
and phases, no averaging procedure is imposed on the orbit 
equations  It will be demonstrated that this is an essential 
fea urc of the formulation required to explain many aspects 
of the experiment. v 

The organization of the paper is as follows. A brief descrip- 
tion of the experiment is given in Section II. Section III is 
devoted to a brief description of the single-particle orbit dy- 
namics in a combined helical wiggler/axial guide field system 
and the associated implications for the FEL interaction. A more' 
complete description of the ARACHNE formulation is given 
m Section IV The detailed comparison with the experiment is 
presented m Section V, which is divided into two subsections 
dealing with the parallel and antiparallel alignment of the 
wiggler and guide magnetic fields. A summary and discussion 
is given in Section VI. 
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II. EXPERIMENTAL DESCRIPTION 

In this section, we provide a brief description of the ex- 
periment for purposes of comparison. The interested reader 
s referred to the original paper by Conde and Belcefi [30], 
31] for a complete description. The basic configuration is 

that of an amplifier in which a weakly relativistic electron 
beam is injected into a cylindrical waveguide in the presence 
of both a helical wiggler field and an axial guide solenoidal 
field. The wave-particle interaction is with the fundamental 
1 Jn mode of the waveguide at a frequency of 33.39 GHz 
which corresponds to the frequency of the magnetron used to 
drive the amplifier. 

J£L?55? um * 8CDCratCd by a Physics «'«national 
r*Z      T.by mCaDS °f fie,d cmission ^m * graphite 

750 keV (±50 keV). The quality (i.e., the emittance and 
energy spread) of the beam delivered to the interaction region 

anöT ™''Si ^^ *" beam Wkh 3 **« «"Ate anode. This technique was originally pioneered at the Naval 

bvTh?^A<>ra,0ry f°r "* iD ■" reL «P6« ^ven 
the h M BAj^rator [3], [4]. In the MIT experiment, 
the shaped anode-cathode geometry results in a beam with a' 
radius of 0.25 cm (corresponding to the radius of the anode 
aperture) and an axial energy spread estimated to be approxi- 

„n2    ±f%' ™S enCr*y sPread co"«Pon5s to a 
normalized RMS beam emittance of e„< 4.4 x l0-> cm-rad 

The current available using this configuration was of the 
order of 300 A(±30 A) as delivered to £ *££ «gfon 

* ■  ■     i i i 

«W50keV 
*»«1.47kG 
*»*> 3.18 an rV„»6 

J 

2 4 6 8 io 
Reversed Axial field (kG) 

^LiL^!?1" «fWation as a function of the axial mide field 
reversed-field configuration (data courtesy of Conde Z Bctai p?j. for the 

(31]). 

whtrcTd^0 ^ Wig8'!r- H0Wem' * am0Unt °f <™ which could be propagated through the wiggler/guide field 

SSST c^«based u^thc "«A ^tto ü-ajeetones. Current propagation data indicated quite different 
results depending upon the orientation of the axial S 
field The results found for the current propagated ^oaSt 
wiggler as a function of the magnitude of L^SÄeW 
for onenutions m which the guide field is directed paral, 
and ant^le« (referred to as the reversed-field configuration to the WIggjcr m shown h Rgs 1 ^ *"    «> 

each case, the amount of current which could bf propagated 

guide field An exception to this, however, was found when 
*e guide field was oriented parallel to tne wiggle" in the 
vtcnity of the magnetic resonance at which the l2n» i£ 
-oaated with the guide field is comparable to ™££ 
pmod. In this case, there is a well-known instability in the 
eletron traces which prevents propagation of the * m 

wSler rLril fidd-revcreed «e when the Larmor and 
wiggler periods were comparable. For convenience we shall 
refer to this as the antiresonance. 

r 



The explanation for this antiresonant effect was discovered 
independently by Chu and Lin [39], who found that the 
inhomogeneity in the wiggler field introduces a sinusoidal 
driving term to the electron orbit equations. This term arises 
from the fact that an electron on a helical orbit centered off the 
axis of symmetry experiences a sinusoidally varying wiggler 
field which acts to drive the electrons at a period close to 
the wiggler period. Hence, this effect becomes important for 
electron beams which are big enough that a substantial fraction 
of the electrons are located relatively far from the symmetry 
axis. In addition, it is resonant for axial fields close to the 
antiresonance. We shall discuss this in more detail during the 
comparison of the simulation with the power measurements, 
since the orbital irregularities introduced by this effect have a 
significant impact on the growth of the signal. 

The wiggler field is produced by a bifilar helix with a period 
of \u. = 3.18 cm, a length of 50Att„ and an adiabatic entry 
taper which is six wiggler periods in length. The wiggler 
amplitude was continuously adjustable up to an amplitude of 
approximately 1.8 kG. The axial guide field could be adjusted 
up to a maximum amplitude of almost 12 kG. 

The beam propagated through a cylindrical waveguide of 
0.51 cm in radius, which provided for a wave-particle res- 
onance with the fundamental TEn mode in the vicinity 
of 35 GHz. The FEL was operated as an amplifier, and a 
magnetron which produced approximately 17 kW (±10%) at a 
frequency of 33.39 GHz was used as a driver. Since the output 
from the magnetron was linearly polarized, this corresponded 
to approximately 8.5 kW in the right-hand, circularly polarized 
state which was capable of interacting with the helical wiggler 
geometry. 

This constitutes a summary of the experimental configu- 
ration which is relevant to the discussion of the theoretical 
analysis, further discussion of such aspects of the experiment 
as the input coupler and the detection system are not directly 
relevant to the discussion in this paper, and the interested 
reader is referred to Conde and Bekefi [30], [31] for a complete 
presentation. 

The output from the amplifier showed the greatest efficiency 
for the field-reversed configuration. In this case, a peak power 
of 61 MW for a conversion efficiency of 27% was found for 
a wiggler-field magnitude of approximately 1.47 kG and an 
axial magnetic field of 10.92 kG. The current which could be 
propagated in these fields was near the maximum of 300 A. 
The output power for the field-reversed configuration also 
showed a severe decrease in the vicinity of the antiresonance, 
dropping by more than three orders of magnitude. The power 
observed when the axial magnetic field was oriented parallel 
to the wiggler was much less than for the field-reversed 
configuration, and showed a maximum measured power of 
approximately 4 MW. Details of the output power spectra will 
be presented in the comparison with the theoretical results. 

III. SINGLE-PARTICLE DYNAMICS 

Before we describe the nonlinear simulation, it is useful to 
summarize the essential properties of the single-particle orbits 
in FEL configurations, which consist in a combination of a 

helical wiggler and an axial guide magnetic field. The three- 
dimensional representation of the magnetostatic fields for this 
geometry in cylindrical coordinates is [40] 

B-xi (*) = Boiz 

+ 2BW IlWtrCosx - -T/i(A)e*siin + /i(A)e,sinx 

(1) 

where B0 and flu. denote the axial and wiggler field am- 
plitudes, A = kwr, x = 6 - ku.z, ku.( = 2:r/Au.) denotes 
the wiggler wavenumber, and /„ and /; denote the modified 
Bessel function of the first kind of order n and its derivative, 
respectively. 

The dynamics of electrons in these combined fields have 
been discussed in both one [41], [42] and three dimensions 
[40], [43], [44]. The fundamental equations governing the 
electron trajectories can be most simply analyzed in the 
coordinate frame which rotates with the wiggler field and is 
defined by the basis vectors: ei = ezcoskwz + Cysmkwz, 
h = -ex sin ku.z + e„ cos ku.z, and e3 = i2. We shall 
henceforth refer to this as the wiggler frame. In this coordinate 
frame, the three-dimensional Lorentz force equations can be 
expressed as [43] 

v'l = -(flo - fc«,t>n + 2fiu,/i(A) sin xh>2 

+ n«,r3/2(A) sin 2* (2) 

h = (fto - *uf|| + 2Qwh(A) sin x)vi 

- ft«-i>3[/i(A) + J2(A) cos 2*] (3) 

i>3 = ftu-t>2[/i(A) + /2(A) cos 2X] - fitt.t>i/2(A) sin 2*. (4) 
A = ku,(vi cos x + V2 sin x) (5) 

and 

X = ~tf2 cos X - v sin x ~ At>3) (6) 

where fi0.«. = eß0,,«77mec,-y = (l - v2/<?)~in 

These equations exhibit a class of steady-state helical tra- 
jectories which may be found by requiring the derivatives in 
(2)-(6) to vanish. This implies that vi = vw, v2 = 0, w3 = vn, 
X = ±T/2, and A = A0, where vn is constant, A0 = Tvw/v^, 
and 

vw = 
2nu.vlli1(x0)/x0 

fio-*uV||±2nu)/j(A0)' 
(7) 

In addition, we must require that vw and V|( satisfy the energy- 
conservation requirement which implies that 

These equations constitute a set of two transcendental equa- 
tions for vw and V|( as functions of the parameters which define 
the fields and the total energy. 

We first consider the solution of these equations in the case 
in which the axial guide fields are directed parallel to the 
wiggler field. A solution for the axial velocity as a function 
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of the magnitude of the axial guide field is shown in Fig 3 
for parameters consistent with the experiment. This consists 

0 6   k
bGamandT °\ *° ** ' "»" «M «P^ £63 kG and a wiggler period of 3.18 cm. As shown in this 

figure there are two distinct regimes which are referred to i 
Group    when fi0 < M|) fa the weak-guide field regTme an" 
Group II (when fi0 > M|) in ^ „J^-Ut fiewTerime 

case tor axial fields between approximately 5-8 kG In this 
regime the transverse velocity becomes large, which requ« 
the axial velocity to decrease. The dashed Tines in theTure 
denote unstable trajectories 8 re 

The stability of the Group I and II orbits can be determined 
by a perturbation analysis [43] i„ which we write T   = 

I"- A  111 1    2^r "» + **'* = ±*/2 + «X. and 
abüs bv m       / re!Ult' WC may isoIate the P^urbed vari- 

he L™ f°Urth- Md ^^ **«« 1— 

l        4 6 8 »0        12 
Reversed Magnetic Field (kG) 

Fig. 4.   Plot of the axiaJ velocity ve«us .he magnitude of the axia! guide field 
•n the reversed-field orientation. ^     M* 

and 

where 

(9) 

(10) 

Beam nation of the definitions of n* shows that ft*  > 0 
Orbital instability occurs whenever ß* < 0 which k VL 
shown by the dashed lines fa Figs. 3~and 4 ^ "* 
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IV.   THE THEORETICAL FORMULATION 
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Together, these two simplifications result in both a substantial 
increase in the step size and a reduction in the number of 
electrons in the simulation with respect to the requirements of 
a full-scale particle-in-cell simulation. Hence, the numerical 
requirements for the simulation of an FEL amplifier are rela- 
tively modest. Typical run times for the cases presented herein 
are in the range of 5-10 min. on a Cray-2 supercomputer. 

The electromagnetic field in this formulation is represented 
in terms of a superposition of the TE and TM modes of the 
vacuum waveguide. Note that this does not violate the single- 
frequency assumption, since the wavenumbers of the modes 
which are included in the superposition will vary depending 
upon the specific cut-off frequencies. One restriction, however, 
which is imposed is that only propagating modes (in which 
the cutoff frequency is lower than the wave frequency) can 
be included in the formulation. The space-charge field is rep- 
resented in terms of a superpostion of the Gould-Trivelpiece 
modes (at the same frequency as the electromagnetic wave) 
for a beam which completely fills the waveguide [38]. Observe 
that the transverse variation of the axial electric field of the 
Gould-Trivelpiece modes is identical to that of the TM modes 
of a cylindrical waveguide. The fundamental assumption in 
the case of both the electromagnetic and electrostatic field is 
that while the transverse mode structure is determined by the 
waveguide or the beam conditions, the amplitude and phase 
vary slowly (with respect to the wave period) in the axial 
direction due to the interaction with the electron beam. Since 
both the fluctuating electromagnetic and electrostatic fields are 
at the same frequency, the dynamical equations for both cases 
can be averaged over the wave period in order to obtain the 
equations for the slow variations. 

In order to complete the formulation, the orbit equations for 
an ensemble of electrons must be specified. For this purpose 
we employ the three-dimensional Loremz-force equations. 
This requires the integration of the electron trajectories in the 
complete set of electrostatic (Gould-Trivelpiece modes), mag- 
netostatic (wiggler and axial guide fields), and electromagnetic 
fields (TE and TM modes of the waveguide). It is important 
to bear in mind that it is not necessary to perform an average 
of these equations, since the Lorentz force equations are 
inherently slowly varying for waves in near-resonance with the 
beam. The generality of this formulation of the electron orbits 
is a crucial feature which permits the simulation to describe 
not only the primary oscillation induced by the wiggler, but 
also Lannor effects due to the presence of the axial field 
and Betatron oscillations and guiding-center drifts due to the 
wiggler inhomogenieties. This is the critical requirement in 
the simulation of the field-reversed configuration near the 
antiresonance. 

The initial conditions on the electron beam are chosen to 
describe the beam as it is prior to the entry into the wiggler. 
We assume a uniform distribution in both inital phase and cross 
section. The beam is assumed to have a flat-top density profile 
for simplicity. The effect of an axial energy spread is included 
by means of a momentum space-distribution function which is 
monoenergetic, but displays a pitch-angle spread. The wiggler 
field model includes the adiabatic entry taper from zero to a 
fixed value, and ARACHNE then describes the self-consistent 

injection of the electron beam into the wiggler. This procedure 
has a practical advantage, since it is easier to determine the 
characteristics of the electron beam prior to the injection into 
the wiggler. 

The initial conditions imposed on the TE and TM modes are 
that the initial amplitude of each mode is chosen to reflect the 
injected power into the system, and the initial wavenumber 
corresponds to the vacuum value appropriate to the mode. 
ARACHNE then determines the self-consistent evolution of 
both the amplitude and wavenumber due to the dielectric 
effect of the beam in the wiggler. The initial growth rates 
are assumed to be zero, since the wiggler field is initially zero 
as well. 

The initialization of the Gould-Trivelpiece modes is ac- 
complished by evaluation of the appropriate initial phase 
averages of the electron beam. Note that the assumption of a 
uniform electron beam implies that the phase averages which 
appear in Poisson's equation will initially vanish. However, 
the use of a discrete ensemble of electrons introduces a small 
numerical error into the initial phase averages (i.e., (sin <p) and 
(cos <p)). We find that in practice, the use of these numerical 
uncertainties for the phase averages in Poisson's equation 
to select the initial amplitudes and wavenumbers smooths 
the initial transients associated with the subsequent phase 
bunching of the electron beam. 

Within the context of this initialization scheme, ARACHNE 
subsequently self-consistently integrates the dynamical equa- 
tions for the field amplitudes and phases of each of the 
electromagnetic and electrostatic waves included in the simu- 
lation in conjunction with the Lorentz force equations for the 
electron ensemble (which typically includes 9600 electrons). 
Since the complete Lorentz force equations are used, this 
permits the self-consistent description of the effects of the 
injection of the beam into the wiggler, the bulk wiggler 
motion, Lannor motion, the effects of wiggler inhomogenieties 
(i.e., Betatron motion and the associated guiding-center drifts, 
velocity shear effects, orbital instabilities in the Group I and 
II regimes, etc.), and harmonic interactions. Of the greatest 
significance to the current experiment, however, it is the 
implicit inclusion of the antiresonance phenomena in the 
reversed-field configuration. 

V. THE EXPERIMENTAL COMPARISON 

The experiment has been operated with the axial magnetic 
field oriented both parallel and antiparallel with the wiggler 
field, and we shall discuss the comparison with each of 
these regimes separately. Features common to both regimes, 
however, involve the choice of various system parameters 
as well as the initialization of the modes included in the 
simulation. 

Features common to all cases studied derive from the 
geometry of the system. Specifically, we take the waveguide 
radius to be Rg = 0.51 cm, the wiggler period to be Xw = 
3.18 cm, and the wiggler entry taper as Nw = 6 wiggler 
periods in length. In addition, while the beam current varies 
with the magnitude of the axial guide field, the beam energy 
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is 750 keV and the radius is fixed at the aperture of the anode 
to Rb = 0.25 cm. 

Since the frequency of the amplifier experiment is fixed by 
the 33.39-GHz magnetron, the beam energy of 750 keV and 
waveguide radius of 0.51 cm insures that a resonant interaction 
is possible only with the fundamental TEn mode of the guide. 
Since the magnetron produces approximately 17 kW with a 
linear polarization, we assume that only half of this power 
is available with the correct circular polarization to interact 
with the beam. Hence, the initial power of the TEn mode 
is chosen to be 8.5 kW. The collective Raman interaction 
in an FEL couples the TE„ mode, in principle, with each 
of the Gould-Trivelpiece modes having an azimuthal mode 
number of / = 0 [37J. In practice, however, we find that 
inclusion of only the lowest-order radial mode is required 
to give reasonable agreement with the experiment. Note that 
the axial electric field of this mode has the same transverse 
variation of the TM0i waveguide mode. Hence, the following 
simulations have been performed using only one waveguide 
mode and one Gould-Trivelpiece mode. 

A. The Reversed-Field Configuration 

The first case we consider is that of a field-reversed con- 
figuration in which the nominal experimental magnetic field 
parameters were an axial field magnitude of 10.92 kG and a 
wiggler field of 1.47 kG. The transmitted current for these field 
parameters was 300A(±10%) and the axial energy spread 
of the beam is assumed to be 1.5%, as indicated in the 
experiment. These parameters represent the case of the peak 
power observed in the experiment of 61 MW. 

The comparison of the experiment and ARACHNE is shown 
«n Fig. 5, in which we plot the power as a function of 
axial position, and in which the dots represent the power 
as measured in the experiment. As shown in the figure, 
ARACHNE was used for two sets of parameters. The first 
corresponds to the nominal experimental values given above, 
and the second corresponds to the upper limits on the (i) 
current, (ii) wiggler field, and (iii) input power (due to the 
experimental uncertainties) of 330 A, 1.55 kG, and 10 kW, re- 
spectively. As is evident in this figure, the agreement between 
the experimental measurements and ARACHNE is good, and 
virtually all the data points fall between these two curves. 
The saturated power for these two choices of the current, 
wiggler field, and input power differ only marginally and are 
close to the 61 MW measured in the experiment. The principal 
difference is in the saturation length, which is due to a small 
discrepancy in the growth rates for these two cases. 

The interaction efficiency in this case is approximately 27% 
which is far above that found in the laboratory previously 
for uniform wiggler configurations and is comparable to the 
maximum efficiency obtained for a tapered wiggler configura- 
tion [10). It should be noted, however, that efficiencies of this 
magnitude have been predicted in previous simulations using 
ARACHNE for uniform wiggler configurations [32], [36] and 
is comparable to that which is expected due to the phase 
trapping of the electron beam in the ponderomotive wave 
formed by the beating of the wiggler and radiation fields. The 
efficiency estimated by this technique represents the energy 
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lost by the electron as the axial velocity decreases by an 
amount At, = 2(r, - vpb), where vph = u/(k + kw) is the 
phase velocity of the ponderomotive wave. Here, (uj.k) are 
the angular frequency and wavenumber of the electromagnetic 
wave, and kw is the wiggler wavenumber. The phase-trapping 
estimate for the efficiency can be expressed in the form: 

***** 

The   inclusion   of   Raman   effects   in   this   estimate   is 
accomplished by the choice of the appropriate frequency and 
wave number in the phase velocity of the ponderomotive 
wave. ARACHNE includes collective Raman effects and for 
the example shown, results in a normalized wavenumber of 
*/*„, as 2.98 for the TEU mode at a frequency of 33.39 GHz 
(ie., u>/ckw as 3.5). As a consequence, the phase velocity of the 
ponderomotive wave is vph/c   as   0.879.  Note that this 
wavenumber differs from the normalized wavenumber for a 
vacuum TE„ mode for which k/kw as 2.985, and that the 
dielectric loading of the waveguide due to the interaction 
in either the Raman or Compton regimes is included in 
ARACHNE. In addition, the axial electron velocity for the 
steady-state orbit in this field configuration is vz/c as 0 911 
which gives 7» as 5.89. As a result, the estimate of the phase- 
trapping efficiency is approximately 34%. It is important to 
recognize that estimates such as this must be employed with 
caution and should be taken in the present case to indicate the 
possibility of high-efficiency operation. However, it should 
also be noted that while the estimate is higher than that found 
in either the simulation or experiment, it does not include the 
effects of an axial energy spread. 

The variation in the output power over an interaction length 
of 150 cm as a function of the magnitude of the reversed 
magnetic field is shown in Fig. 6. Again, the dots represent 
the experimentally measured power, and the curve is the 
result from ARACHNE. The current used in the simulation 
for each value of the axial field corresponds to the transmitted 
current shown in Fig. 2. Agreement between the experiment 
and theory is good across the entire range studied. Of particular 
importance is the sharp decrease in the output power in the 

/• 
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vicinity of the antiresonance at axial field magnitudes between 
approximately 7-8.5 kG. 

The source of this antiresonant decrease in the interaction 
efficiency is the irregularities introduced into the electron 
trajectories by the transverse inhomogeniety in the wiggler. 
For this particular example, the radius of the wiggler-induced 
motion (i.e., the radius of the helical steady-state trajectory) is 
approximately 0.04 cm. However, the beam radius is 0.25 cm 
in this experiment. As a consequence, the electrons at the 
outer regions of the beam are quite sensitive to the wiggler 
inhomogeniety and experience a sinusoidally varying wiggler 
field during the course of their trajectories. These effects are 
implicitly included in the ARACHNE formulation, and we can 
illustrate their effect on the electron beam by examining the 
orbits of selected electrons in the simulation. 

The first case we shall consider is that of a electron which is 
located near the center of the beam upon entry to the wiggler 
for a reversed axial field of 7.2 kG, which is in the center of 
the antiresonance region. The evolution of the trajectory in the 
transverse plane is shown in Fig. 7, in which the jaggedness 
is a artifact introduced into the figure by plotting only every 
tenth point in the integration. The orbit shown in the figure 
exhibits the expected spin-up of the electron trajectory due to 
the adiabatic injection into the wiggler field, and the electron 
executes a near-helical steady-state orbit upon transition to the 
uniform-wiggler region (i.e., after the six wiggler periods of 
the entry taper region). The principal characteristics of such 
an orbit are the regular wiggler-induced transverse velocity, 
which mediates the interaction, and a near-uniform axial 
velocity, which permits the resonant wave-particle interaction 
to occur over an extended interaction length. This behavior is 
also found for electrons at the center of the beam for axial 
fields away from the antiresonance. The differences occur 
principally for the edge electrons. 

In order to show the nature of these differences, we focus 
on a characteristic electron which is initially located at the 
edge of the beam (x « 0.25 cm and y as 0) upon entry to the 
wiggler. The cross-sectional evolution of the trajectory of such 
an electron for a reversed axial field of 10.92 kG is shown in 
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Fig. 8.   The cross-sectional evolution of the trajectory of an electron injected 
at the edge of the beam for an axial field far from the antiresonance. 

Fig. 8. This case is not in the vicinity of the antiresonance, and 
the orbit illustrates several features. The predominant feature 
is the aforementioned spin-up of the electron due to the bulk 
wiggler motion. However, the electron also executes slower 
motion which corresponds to Betatron and Larmor motion due 
to the wiggler inhomogeneity which manifests as a guiding- 
center drift in the counter-clockwise direction. This orbit is 
fairly regular and does not result in any significant degradation 
in the interaction efficiency (see Fig. 5). 

However, the situation is quite different for an edge elec- 
tron in the vicinity of the antiresonance. The cross-sectional 
evolution of such a trajectory is shown in Fig. 9 for an axial 
field magnitude of 12 kG. The orbit in this case exhibits the 
initial spin-up due to the bulk wiggler action, but subsequently 
undergoes what appears to quite irregular motion. The effect 
of this motion on the axial momentum is shown in Fig. 10, 
in which we plot the axial momentum versus axial position 
for the central and the edge electrons. It is clear from this 
figure that the axial momentum exhibits regular oscillations 
about the bulk value for the central electron, but not for 
the edge electron. In the latter case the motion exhibits far 
more structure, reflecting the Betatron and Larmor motions as 
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Fig. 10. The evolution of the axial momentum versus axial position for 
electrons injected at the edge of the beam and the center of the beam in the 
vicinity of the antiresonance. 

well as sudden transitions. Similar behavior is found for the 
transverse components of the momentum as well. These rapid 
and large variations in the axial momentum are the major cause 
of the degradation in the interaction efficiency, since they act 
to disrupt the resonant wave-particle interaction. 

The fundamental physics of this antiresonant process [39] 
can be understood by means of a relatively simple treatment 
of the single-particle orbit dynamics. In. order to accomplish 
this, we return to the formulation presented in [43]. In this 
treatment, the electron position and velocity are written as 
x = ic+Xosc. where the subscript c denotes the guiding-center 
position, and "osc" denotes the various oscillatory motions. 
Under the assumption that the guiding-center position is fixed 
(i.e., t; = vOK), expansion of the orbit equations (2)-(4) about 
the guiding-center position results in the following equations 
for the electron velocity (where we drop the subscript "osc" 
for convenience): 

»'i = - (fio - kwv3)va + n„,»3/2(Ac) sin 2Xc (16) 

«2 = (flo - kwv2)v2 - n^f/nfAc) cos 2xc] (17) 

»3 = ft^f/ofAc) + 72(AC) cos 2xc] 

- ttwVityXc) sin 2\c (18) 

where (re, 9C) denote the guiding-center position in cylindrical 
coordinates, and Ac = kwre and *c = 0C - kwz. If we now 
expand about the steady-state orbits via vt = vw + 6Vl.v2 = 
6v2, «3 = »ii + 6v3, where 

v,„ = 
n„,«ii 

-/o(Ac) (19) fio - kwv\ 

then the equations for the perturbations are 

6vi = - (fio - kwv{l)6v2 + nu,V|,/2(Ac) sin 2*f   (20) 

6v2 = (fio - *«,»n)fo>i - ^ Q06v3 

- towVuhlK) cos 2xc (21) 
6v3 = flw6v2I0(Xc) - QwvwI2(Xc) sin 2Xc- (22) 

Note that we have also neglected terms which vary as 6vI2(Xc) 
under the assumption that Ac < 1 as well. In this representa- 
tion, the electrons execute a helical trajectory centered about 
the guiding center. In addition, this representation is quasi- 
ideahzed in the sense that the transverse velocity includes 
three-dimensional effects only in the inclusion of the 70(AC) 
function, which describes the effect of the off-axis increase 
in the magnitude of the field at the guiding center. These 
equations may be reduced to a set of second-order differential 
equations: 

(£♦«) 

= nwi2(xc) 
V\\(Q0-3kwv\i)cos2Xc 

»II f flo - 3*^11 + -£- J sin 2xc 

-t»n(fi0-3A;u,f>||)cos2xc 

where 

n2
r = (fi0 - k "r4(i+t)n°~ kwt>n 

(23) 

(24) 

Observe that fii corresponds with fi? in the limit in which 
wu,/»|j « 1, and this set of equations shows the orbital 
instability which is expected for the Group I orbits when 
ilr < 0 (note that there is no orbital instability for the Group II 
orbits in the idealized representation or for the field-reversed 
configuration), and it will also show the antiresonant effect. 
To see the latter, we can generate the particular solutions of 
these equations, which are 

6vi 
6v2 

Sv3 

n«,i»||/2(Ac) 

(«o + Ml)(«o - 3fctti;(|) + g. n0(n0 - k u.t»||j 

( 

(ßo-3fc„,t>||)cos2x, 

fio - 3kwv\> + 
< 

fio)sin2xc 

.    ~l^(no-3A:li;t»||)cos2^e 

(25) 



In the limit in which •*/»» « i (which is appropriate 
for this experiment), these particular solutions reduce to the 
simpler form: 

TEii Mode (Ä, ■ 0.51 cm;/« 33.39 GHz) 

6vi _ n„.t»||72(Ar) 
(n0 + ku.vi 1) 

cos2xc 
v

s™2\c 

.-t^cos2xc. 
(26) 

which clearly show the antiresonant enhancement in the per- 
turbation when n0 * -*„.«„. However, since the particular 
solution also depends upon /2(AC), this effect will not become 
appreciable unless the electron guiding-center is located rela- 
tively far from the symmetry axis. This perturbation describes 
an oscillation at the wiggler period in artesian coordinates 
which can become large near the antiresonance. Indeed, this 
is the period of the rapid oscillation shown in the axial 
momentum of the edge electron in Fig. 10. Note, however 
that this antiresonant enhancement in the perturbation is not 
as serious a problem for beam transport than the Group I and 
II orbital instabilities which occur when the axial guide field 
is oriented parallel to the wiggler field. 

This simplified perturbation analysis suffices to illustrate 
the basic physics of the antiresonant effect, but does not 
describe either the nonlinear effects associated with the large- 
amplitude perturbations at the antiresonance or the effect of 
the fluctuating fields. These effects, however, are implicitly 
included in ARACHNE. 
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B. The Group I and II Regimes 

The agreement between ARACHNE and the experimental 
measurements in the Group I and II regimes is not as good as 
that found for the reversed-field configuration. In the cases in 
which the axial guide field in oriented parallel to the wiggler 
field, we find that a much larger energy spread than that 
estimated for the experiment is required in order to account for 
the measured power levels Indeed, we find that the assumption 
of an energy spread of 15% results in efficiencies comparable 
to that found for the field-reversed configuration, and we 
note that the efficiency predicted in simulation does not vary 
appreciably for either orientation of the magnetostatic fields 
for comparable beam-energy spreads. In order to account 
for the Group I data we must assume an energy spread of 
approximately 6.4% to account for the measured power The 
Group II data are more difficult to explain. The assumption 
of a comparable energy spread of 6.4% results in reasonable 
agreement for the power at the end of the interaction region 
but not for the detailed evolution of the signal (i.e., the 
launching loss and the instantaneous growth rate) during the 
course of the interaction. 

We have no definitive explanation for this discrepancy, but 
merely suggest that there might be some misalignment or other 
beam-transport problem from the gun to the wiggler which 
is exacerbated by the orientation of the axial guide field A 
possible source for such a discrepancy could be the existence 
of irregularities in the wiggler field upstream from the entrance 
due to the sudden termination of the coils. Such irregularities 
might give rise to orbital instabilities for a parallel alignment 
of the wiggler and axial guide fields which result in enhanced 

emittance growth. A detailed evaluation of these suggestions 
however, can only be accomplished by means of a thorough 
analysis of the experimental configuration. 

With ail of this in mind, we plot the evolution of the power 
versus axial position as measured in the experiment and as 
determined with ARACHNE in Fig. 11 for wiggler and axial 
guide fields of 0.63 and 4.06 kG, respectively, and for axial 
energy spreads of 1.5 and 6.4%. These fields correspond to 
Group I operation, and the transmitted current is 119 A As 
shown in this figure, ARACHNE is in substantial agreement 
with the experiment for the presumed energy spread of 6.4% 
both as regards the linear growth rate and the saturation 
efficiency. 

Comparison of ARACHNE with experiment in the case of 
wiggler and guide fields of 0.63 and 10.92 kG, respectively 
and a transmitted current of 300 A is shown in Fig. 12 Again' 
we plot the results from ARACHNE for energy spreads of both 
1.5 and 6.4%. This case corresponds to Group II parameters 
and shows rough agreement in the case of a 6.4 % energy 
spread for the power (« 4 MW) and saturation efficiency, 
but not the growth rate. In contrast, the growth rate (but not 
the saturation efficiency) found in the experiment is in rough 
agreement with that found in ARACHNE for the case of a 
1.5% energy spread. However, the launching loss observed in 
the experiment is much higher than that seen in simulation 
as evidenced by the fact that there is negligible growth in the 
observed power until after an axial position of 70 cm after the 
wiggler entrance. 

A summary of the comparison between ARACHNE (for 
axial energy spreads of both 1.5 and 6.4%) and the experiment 
as a function of the axial fields magnitude is shown in Fig. 13 
for the choice of transmitted current as shown in Fig. 1. it is 
clear from this figure that the agreement between ARACHNE 
and the experimental measurements is better for the case of 
Group I parameters than for the case of Group II parameters 
at high axial fields. In the low axial field Group I regime the 
agreement is quite good for the presumed 6.4% energy spread 
Quantitative agreement for the Group n regime is not as good- 
however, ARACHNE does predict the existence of variations' 
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o X?^gl"S,0groW-^°n,yexP,anati0"«CMsu^ge for these discrepancies is the existence of problem, i„ rh 

One further point which merits discussion is the relative 
efficiencies found for the GrouD I anrf n «„■        „ e 

experiments at the Naval lÄ iSi^Tt 7™ 
higher efficiencies for Group Ä5Ä 
In addition, extremely high efficiencies of the orderTS 
have been predicted for Group H operation at 35 PH 
mg ARACHNE [36]. However, in Mh of t ^ ^ the* 
h.gh efficiencies resulted from operation in thMZLST 

range of axial magnetic fields for which* J~L Jt^T 
ejection of the beam into the w^tf^^^ 
rn=me„te reported for «he pi «5£«^2 " 
*» negative-mass regime. Hence, i, is not surprising that bo h 

There are two significant new results represented in ,h* 

teraction efficiency with a uniform-wigeler design   WH? 

efficiencies of this magnitude are expeSd 0n ^basTs oJ 
both simple phase-trapping arguments^, detailed numen« 
simulations, this is the first time such effidenc« havToTn 
demonstrated in the laboratory. The second « the exfste^ce 

Tnis hadJ,rleSOnamdegradali0n in the «P«CeS^ Jhis had been previously unsuspected, and the experiment 
demonstration of the «ff«* i.M il    • experimental 
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A recent free-electron laser amplifier experiment conducted at the Massachusetts Institute of 
Technology [M. E. Conde and G Bekefi, Phys. Rev. Lett. 67. 3082 (1991)] has demonstrated 
high-power  operation  without   recourse  to  a   tapered   wiggler   field.   The  experimental 
configuration consisted in the propagation of an intense electron beam (750 keV/300 A with a 
nominal axial energy spread of 1.5%) through a cylindrical waveguide in the presence of both 
a helical wiggler (*„<1.8 kG and A„=3.18 cm) and an axial guide magnetic field (B0<. 12 kG) 
The experiment operated with the axial guide field oriented both parallel and antiparallel to the 
direction of the wiggler field, and the maximum efficiency was obtained for the antiparallel (i e 
reversed-field) configuration. The reversed-field case demonstrated an output power of 61 MW 
at 33.39 GHz for an efficiency of approximately 27%. The performance in the more usual 
parallel alignment of the fields was much less and peak power levels of only about 4 MW were 
obtained for both the weak (group I) and strong (group II) field regimes of the axial guide field 
A detaüed analytical characterization of this experiment has been presented in a previous work 
[H. P. Freund and A. K. Ganguly, IEEE Trans. Plasma Sei. PS-20, 245 (1992)] in which 
substantial agreement was found between the theory and the experiment for the reversed-field 
configuration. However, some discrepancies existed for the group I and H cases, and it was 
conjectured that some problem with beam transport existed for these configurations which led 
to an increased beam energy spread. In this paper, the question of beam transport in this 
experiment is analyzed. It is shown that beam transport is not a problem for the reversed-field 
configuration. However, substantial beam losses are found in the group I and II regimes both 
in the entry toper region of the wiggler and due to high-power electromagnetic waves 

I. INTRODUCTION 

Recently, a free-electron laser (FEL) experiment at 
the Massachusetts Institute of Technology (MIT) re- 
ported high efficiencies without recourse to the use of a 
tapered wiggler field.u The basic configuration is that of 
an amplifier in which a weakly relativistic electron beam is 
injected into a cylindrical waveguide in the presence of 
both a helical wiggler field and an axial guide solenoidal 
field. The wave-particle interaction is with the fundamen- 
tal TE„ mode of the waveguide at a frequency of 33.39 
GHz, corresponding to the frequency of the magnetron 
used to drive the amplifier. The experiment operated with 
the axial guide field oriented both parallel and antiparallel 
to the direction of the wiggler, and the maximum efficiency 
was obtained for the antiparallel (i.e., reversed-field) con- 
figuration. The reversed-field case demonstrated an output 
power of 61 MW at 33.39 GHz for an efficiency of approx- 
imately 27%. The performance in the more usual parallel 
alignment of the fields was much less and peak power lev- 
els of only about 4 MW were obtained for both the weak 
(group I) and strong (group II) field regimes of the axial 
guide field. A detailed analytical characterization of this 
experiment has been presented in a previous work13 in 
which substantial agreement was found between the theory 
and the experiment for the reversed-field configuration. 
However, some discrepancies existed for the group I and II 

"Permanent address: Science Applications International Corp., McLean. 
Virginia 22102. 

cases, and it was conjectured that a problem with beam 
transport existed for these configurations which led to an 
increased beam energy spread. In this paper, we further 
analyze the question of beam transport through the 
wiggler/axial guide field in this experiment. Before pro- 
ceeding further, however, a brief description of the exper- 
iment is in order. 

The electron beam in the experiment was generated by 
a Physics International Pulserad 110A using field emission 
from a graphite cathode, and the beam energy used in the 
experiment is 750 keV (±50 keV). The quality (i.e., the 
emittance and energy spread) of the beam delivered to the 
interaction region is controlled by scraping the beam with 
a shaped graphite anode. This technique was originally 
pioneered at the Naval Research Laboratory for use in a 
FEL experiment.4 In the MIT experiment, the shaped 
anode-cathode geometry results in a beam with a radius of 
0.25 cm (corresponding to the radius of the anode aper- 
ture), and an axial energy spread estimated to be approx- 
imately Ay^/yos 1.5%. This energy spread corresponds to 
a normalized rms beam emittance of f,,<4.4xl0~2 

cm rad. The current available using this configuration was 
of the order of 300 A (±30 A) at the entrance to the 
wiggler. However, the amount of current which could be 
propagated through the wiggler/guide-field configuration 
varied based upon the stability of the electron trajectories. 
Current propagation data indicated quite different results 
depending upon the orientation of the axial guide field. 

The wiggler field was produced by a bifilar helix with a 
period of y„=3.18 cm, a length of 50A„, and an adiabatic 
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entry taper which is six wiggler periods in length. The 
wiggler amplitude was continuously adjustable up to an 
amplitude of approximately 1.8 kG. The axial guide field 
could be adjusted up to a maximum amplitude of almost 12 
kG m either the parallel or reversed-field orientation. 

The beam propagated through a cylindrical waveguide 
of 0.51 cm in radius, which provided for a wave-particle 
resonance with the fundamental TE„ mode in the vicinity 
of 35 GHz. The FEL was operated as an amplifier, and a 
magnetron which produced approximately 17 kW 
(±10%) at a frequency of 33.39 GHz was used as a 
driver. Since the output from the magnetron was linearly 
polarized, this corresponded to approximately 8.5 kW in 
the right-hand circularly polarized state which was capable 
of interacting with the helical wiggler geometry. 

The output from the amplifier showed the greatest ef- 
ficiency for the field-reversed configuration. In this case, a 
peak power of 61 MW for a conversion efficiency of 27% 
was found for a wiggler-field magnitude of approximately 
1.47 kG and an axial magnetic field of 10.92 kG. The 
current, which could be propagated in these fields, was 
near the maximum of 300 A. The output power for the 
field-reversed configuration also showed a severe decrease 
m the vicinity of the antiresonance, dropping by more than 
three orders of magnitude. The power observed when the 
axial magnetic field was oriented parallel to the wiggler 
was much less than for the field reversed configuration, and 
showed a maximum measured power of approximately 4 
MW, 

The organization of the paper is as follows. A brief 
description of the nonlinear formulation used to describe 
the experimental configuration is given in Sec. II. Beam 
transport through the wiggler in the reversed-field config- 
uration is described in Sec. III. The case of beam transport 
for parallel orientation between the wiggler and axial guide 
fields is discussed in Sees. Ill and IV for the weak (group 
I) and strong (group II) axial guide-field regimes, respec- 
tively. A summary and discussion is given in Sec. V. 

II. THE THEORETICAL FORMULATION 

For the sake of brevity, we do not provide a discussion 
of the detailed dynamical equations employed in the non- 
linear formulation here. Rather, we give a summary of the 
essential properties of the formulation, and refer the inter- 
ested reader to Refs. 5-11 for a complete derivation and 
description. For the sake of convenience, we shall refer to 
the   nonlinear   formulation   and   simulation   code   as 
ARACHNE.5-11 

The ARACHNE formulation represents a slow-time- 
scale description of a steady-state FEL amplifier in three 
dimensions. To this end, it is assumed that only a single 
frequency propagates and, therefore, Maxwell's equations 
can be averaged over a wave period. This results in two 
related simplifications of the numerical problem. Specifi- 
cally, (1) that the fast-time-scale oscillation is removed 
from the problem and only the slow-time-scale growth (or 
damping) of the wave need be resolved, and (2) that only 
an electron beamtet (i.e., a group of electrons which enter 
the interaction region within one wave period) needs to be 

1870       Phys. Fluids B, Vol. 5. No. 6, June 1993 

included in the simulation. Together, these two simplifica- 
tions result in both a substantial increase in the step size 
and a reduction in the number of electrons in the simula- 
tion with respect to the requirements of a full-scale 
particle-in-cell simulation. Hence, the numerical require- 
ments for the simulation of a FEL amplifier are relatively 
modest. 

The electromagnetic field in this formulation is repre- 
sented in terms of a superposition of the TE and TM 
modes of the vacuum waveguide. Note that this does not 
violate the single-frequency assumption, since the wave 
numbers of the modes which are included in the superpo- 
sition will vary depending upon the specific cutoff frequen- 
cies. One restriction, however, which is imposed is that 
only propagating modes (in which the cutoff frequency is 
lower than the wave frequency) can be included in the 
formulation. The space-charge field is represented in terms 
of a superposition of the Gould-Trivelpiece modes (at the 
same frequency as the electromagnetic wave) for a beam 
which completely fills the waveguide." Observe that the 
transverse variation of the axial electric field of the Gould- 
Tnvelpiece modes is identical to that of the TM modes of 
a cylindrical waveguide. The fundamental assumption in 
the case of both the electromagnetic and electrostatic field 
is that while the transverse mode structure is determined 
by the waveguide or the beam conditions, the amplitude 
and phase vary slowly (with respect to the wave period) in 
the axial direction due to the interaction with the electron 
beam. Since both the fluctuating electromagnetic and elec- 
trostatic fields are at the same frequency, the dynamical 
equations for both cases can be averaged over the wave 
period in order to obtain the equations for the slow varia- 
tions. 

In order to complete the formulation, the orbit equa- 
tions for an ensemble of electrons must be specified For 
this purpose, we employ the three-dimensional Lorentz 
force equations. This requires the integration of the elec- 

5" ,tra^Ct0ricS m  ^ «^P1^ •* of electrostatic 
(Gould-Tnvelpiece modes), magnetostatic (wiggler and 
axial guide fields), and electromagnetic fields (TE and TM 
modes of the waveguide). It is important to bear in mind 
that it is not necessary to perform an average of these 
equations, since the Lorentz force equations are inherently 
slowly varying for waves in near resonance with the beam 
The generality of this formulation of the electron orbits is 
a crucial feature which permits the simulation to describe 
not only the primary oscillation induced by the wiggler 
but also Larmor effects due to the presence of the axial field 
and Betatron osculations and guiding-center drifts due to 
the wiggler inhomogenem«. This is the critical require- 
ment in the simulation of the field-reversed configuration 
near the antiresonance. 

The initial conditions on the electron beam are chosen 
to describe the beam as it is prior to the entry into the 
wiggler. We assume a uniform distribution in both initial 
phase and cross section. The beam is assumed to have a 
flattop density profile for simplicity. The effect of an axial 
energy spread is included by means of a momentum space 
distribution function which is monoenergetic but displays a 

H. P. Freund       1870 



pitch-angle spread. The wiggler field model includes the 
adiabatic entry taper from zero to a fixed value, and 
ARACHNE then describes the self-consistent injection of the 
electron beam into the wiggler. This procedure has a prac- 
tical advantage, since it is easier to determine the charac- 
teristics of the electron beam prior to the injection into the 
wiggler. 

The initial conditions imposed on the TE and TM 
modes are that the initial amplitude of each mode is chosen 
to reflect the injected power into the system, and the initial 
wave number corresponds to the vacuum value appropriate 
to the mode, ARACHNE then determines the self-consistent 
evolution of both the amplitude and wave number due to 
the dielectric effect of the beam in the wiggler. The initial 
growth rates are assumed to be zero, since the wiggler field 
is initially zero as well. 

The initialization of the Gould-Trivelpiece modes is 
accomplished by evaluation of the appropriate initial phase 
averages of the electron beam. Note that the assumption of 
a uniform electron beam implies that the phase averages, 
which appear in Poisson's equation, will initially vanish. 
However, the use of a discrete ensemble of electrons intro- 
duces a small numerical error into the initial phase aver- 
ages (i.e., <sin <p) and <cos <p)). We find that, in practice, 
the use of these numerical uncertainties for the phase av- 
erages in Poisson's equation to select the initial amplitudes 
and wave numbers smoothes the initial transients associ- 
ated with the subsequent phase bunching of the electron 
beam. 

Within the context of this initialization scheme, 
ARACHNE subsequently self-consistenth/ integrates the dy- 
namical equations for the field amplitudes and phases of 
each of the electromagnetic and electrostatic waves in- 
cluded in the simulation in conjunction with the Lorentz 
force equations for the electron ensemble (which typically 
includes 9600 electrons). Since the complete Lorentz force 
equations are used, this permits the self-consistent descrip- 
tion of the effects of the injection of the beam into the 
wiggler, the bulk wiggler motion, Larmor motion, the ef- 
fects of wiggler inhomogeneities (i.e., betatron motion and 
the associated guiding-center drifts, velocity shear effects, 
orbital instabilities in the group I and II regimes, etc.), and 
harmonic interactions. 

Features common to all cases studied herein derive 
from the geometry of the system. Specifically, we take the 
waveguide radius to be R,=0.51 cm, the wiggler period to 
be Aw=3.18 cm, and the wiggler entry taper as Nw=6 
wiggler periods in length. In addition, while the beam cur- 
rent varies with the magnitude of the axial guide field, the 
beam energy is 750 keV and the radius is fixed at the 
aperture of the anode to Rb=0.2S cm. 

Since the frequency of the amplifier experiment is fixed 
by the 33.39 GHz magnetron, the beam energy of 750 keV 
and die waveguide radius of 0.51 cm ensures that a reso- 
nant interaction is possible only with the fundamental TE,, 
mode of the guide. Further, since the magnetron produces 
approximately 17 kW with a linear polarization, we as- 
sume that only half of this power is available with the 
correct circular polarization to interact with the beam. 
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Hence, the initial power of the TE,, mode is chosen to be 
8.5 kW. The collective Raman interaction in a FEL cou- 
ples the TE,, mode, in principle, with each of the Gould- 
Tnvelpiece modes having an azimuthal mode number of 
/=0. In practice, however, we find that inclusion of only 
the lowest-order radial mode is required to give reasonable 
agreement with the experiment. Note that the axial electric 
field of this mode has the same transverse variation as the 
TMQ, waveguide mode. Hence, the following simulations 
have been performed using only one waveguide mode and 
one Gould-Trivelpiece mode. 

III. THE REVERSED-FIELD CASE 

As discussed Ref. 3, the first case we consider is that of 
a field-reversed configuration in which the nominal exper- 
imental magnetic-field parameters were an axial field mag- 
nitude of 10.92 kG and a wiggler field of 1.47 kG. The 
transmitted current for these field parameters was 300 A 
(± 10%), and the axial energy spread of the beam is as- 
sumed to be 1.3% as indicated in the experiment These 
parameters represent the case of the peak power observed 
in the experiment of 61 MW. 

A   detailed   comparison   of  the   experiment   and 
ARACHNE for this case is given in Ref. 3 and shows a 
saturated power of 16 MW in good agreement with the 
experiment. Analysis of beam transport through the wig- 
gler in this case indicates that no loss of the beam to the 
waveguide walls occurs. The reason for this is that the 
effect of the reversed field is to reduce the magnitude of the 
wiggler-induced transverse velocity relative to that found 
for the parallel orientation which results in a correspond- 
ing reduction in the displacement of the beam from the axis 
of symmetry. However, this conclusion is not universally 
valid for the reversed-field configuration, and we find that 
reductions in the level of beam transport occur when the 
Larmor period associated with the reversed axial field is 
comparable to the wiggler period. This so-called antireso- 
nance also results in substantial reductions in the output 
power of the FEL 

ARACHNE and the experimental results are in agree- 
ment as to the existence of a marked reduction in the sat- 
uration efficiency near the antiresonance (see Fig. 6 in Ref. 
3) at axial field magnitudes between approximately 7-8.5 
kG. The cause of this decrease in the efficiency is the trans- 
verse inhomogeneity in the wiggler.3" For this particular 
example, the radius of the wiggler-induced motion is ap- 
proximately 0.04 cm while the beam radius is 0.25 cm. As 
a consequence, electrons at the outer regions of the beam 
are quite sensitive to the wiggler inhomogeneity, and expe- 
rience a sinusoidaDy varying wiggler field during the 
course of their trajectories. The effect of these orbital ir- 
regularities is twofold. In the first place, substantial oscu- 
lations are found in the axial velocity3 which act to degrade 
the wave-particle resonance driving the interaction. In the 
second place, these irregularities lead to increased loss of 
the electron beam to the walls of the waveguide. The effect 
of the oscillating axial velocity has been extensively dis- 
cussed in Ref. 3, and we shall focus attention here on the 
question of particle loss. 
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initial beam current and the power versus axial position near the antires- 

We now consider an axial field of B0= -7.2 kG which 
is in the center of the antiresonant region. The current at 
the entrance to the wiggler in this case is approximately 
248 A and the wiggler field magnitude is Bw= 1.47 kG. We 
first treat the case of an ideal beam in which the initial (i.e., 
at the entrance to the wiggler) axial energy spread is zero, 
and plot the evolution of the power and the transmitted 
current versus axial position in Fig. 1. It is clear from the 
figure that substantial particle loss is found over the course 
of the interaction. Virtually no particle loss occurs in the 
entry taper region (i.e., the first 19 cm of the wiggler), but 
is rapid thereafter. Saturation at a power level of approxi- 
mately 10 kW occurs after a distance of approximately 85 
cm at which point 50% of the beam has been lost to the 
waveguide wall. The total beam loss over the full 150 cm of 
the interaction region is predicted to be approximately 
60%. 

If we consider the more realistic case in which the 
initial axial energy spread of the beam is 1.5%, then we 
find that these results are not substantially altered. The 
beam transmission and power versus axial position for this 
case is shown in Fig. 2. Again, we find no particle loss in 
the entry taper region, but rapid loss thereafter. Saturation 
at a power level of slightly less than 10 kW occurs after a 
distance of approximately 90 cm. Beam loss at this point is 
approximately 60%, and total beam loss over a 150 cm 
interaction length is approximately 70%. Thus the effect of 
the realistic choice in the axial energy spread results in a 
small decrease in the saturated power and a somewhat 
more rapid loss of the beam. 

III. THE GROUP I CASE 

As shown in Ref. 3, the agreement between ARACHNE 
and the experimental measurements in the group I and II 
regimes is not as good as that found for the reversed-field 
configuration. In the cases in which the axial guide field is 
oriented parallel to the wiggler field, a much larger energy 
spread than that estimated for the experiment is required 

1872       Phya. Fluids B. Vol. 5. No. 6. June 1993 

in order to account for the measured power levels. Indeed, 
we find that the assumption of an energy spread of 1.5% 
results in efficiencies comparable to that found for the field- 
reversed configuration, and we note that the efficiency pre- 
dicted in simulation does not vary appreciably for either 
orientation of the magnetostatic fields for comparable 
beam energy spreads. In order to account for the group I 
dato we must assume an energy spread of greater than 6% 
to account for the measured power. The group II data are 
more difficult to explain and will be discussed in the fol- 
lowing section. 

We have no definitive explanation for this discrepancy, 
but merely suggest that there is some misalignment or 
other beam transport problem from the gun to the wiggler 
which is exacerbated by the orientation of the axial guide 
field. A possible source for such a discrepancy could be the 
existence of irregularities in the wiggler field upstream 
from the entrance due to the sudden termination of the 
coils. Such irregularities might give rise to orbital instabil- 
ities for a parallel alignment of the wiggler and axial guide 
fields which result in enhanced emittance growth. A de- 
tailed evaluation of these suggestions, however, can only be 
accomplished by means of a thorough analysis of the ex- 
perimental configuration. 

With all of this in mind, we plot the evolution of the 
beam transmission and power versus axial position as mea- 
sured in the experiment and as determined with ARACHNE 

in Fig. 3 for wiggler and axial guide fields of 0.63 and 4.06 
kG, respectively, and for an axial energy spread of 6.25%. 
These fields correspond to group I operation, and the ini- 
tial current at the entrance to the wiggler is assumed to be 
90 A. Note that this initial current differs from that used in 
Ref. 3 (i.e. which was 119 A) due to a further refinement 
m the current measurements used in the experiment.'4 As 
shown in the figure, ARACHNE is in substantial agreement 
with the experiment for the presumed energy spread of 
6.25% both as regards the linear growth rate and the sat- 
uration efficiency. 
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It is evident from Fig. 3 that a substantial fraction of 
the beam is lost in the entry taper region, but that little 
beam is lost thereafter until the electromagnetic power 
reaches a level of approximately 4-5 MW after which beam 
loss occurs at a faster rate. This implies that the saturation 
mechanism is not phase trapping in the ponderomotive 
wave, as in the reversed-field example at B0= -10.92 kG. 
Rather, saturation occurs in this case through loss of the 
beam to the waveguide wall. 

This effect of saturation by particle loss is more evident 
if we consider the case of an ideal beam with an initial 
energy spread ^Y/YO=0. The evolution of the transmitted 
beam and the power as a function of axial position for this 
case is shown in Fig. 4. In this case, since the initial axial 
energy spread is zero, the entire beam is transmitted 
through the entry taper region. The power is then seen to 
grow exponentially until it reaches a level of approximately 
10 MW, after which beam loss is rapid. Saturation is found 

at a power level of approximately 16 MW, at which point 
the bulk of the beam has been lost to the waveguide wall. 

An intermediate case is shown in Fig. 5 corresponding 
to an initial axial energy spread of AyJ/y0=3.5%. In this 
case, a small fraction of the beam is lost in the entry taper 
region after which the power grows exponentially. During 
this phase of the interaction the loss rate of the beam is 
relatively small. However, the loss rate of the beam in- 
creases sharply when the power level reaches approxi- 
mately 8-9 MW. Subsequent beam toss is both rapid and 
massive culminating in the loss of 78% of the beam over an 
interaction length of 150 cm. The ultimate saturated power 
in this case is approximately 11 MW. 

A summary of the effect of the initial axial energy 
spread upon both the saturation efficiency is shown in Fig. 
6. It is evident from this figure that the beam transmission 
increases and the saturation efficiency decreases with in- 
creases in the initial axial energy spread. This is a novel 
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result since the initial axial energy spread (which is as- 
sumed to be due to a pitch-angle spread) causes an increase 
in the transverse electron velocities at the entrance to the 
wiggler. This, in turn, gives rise to increasing electron dis- 
placements from the symmetry axis. In most cases studied, 
therefore, the effect of increasing the initial axial energy 
spread is a reduction in the beam transmission. In the 
present case, however, the wall radius is sufficiently greater 
than the beam radius that beam loss is not primarily due to 
this energy spread-induced loss mechanism. Instead, since 
increases in the beam loss rate are correlated with increases 
in the saturation efficiency, it may be concluded that beam 
loss is due to the effect of the high-power TE„ mode. Since 
the magnitude of this mode is greatest along the axis of 
symmetry and decreases to zero at the waveguide wall, it 
has the effect of driving the beam away from the axis to- 
ward the wall. 

The fact that massive beam loss resulting in the satu- 
ration of the power occurs in the group I case but not in 
the reversed-field case can be attributed to the fact that the 
wiggler-induced transverse velocity is higher for the group 
I, as opposed to the reversed-field example. Therefore, the 
wiggler-induced beam displacement from the axis of sym- 
metry is higher for the group I case which, in turn, results 
in a greater sensitivity by the beam to the effects of a high- 
power electromagnetic wave. Note also that the wiggler- 
induced displacement from the symmetry axis is greater 
near the magnetic resonance for the group I (and, for that 
matter, the group II) case; hence, the beam loss rates will 
also be more sensitive to the high-power electromagnetic 
waves for the group I and II regimes in the vicinity of the 
resonance. 

Of course, the issue of beam loss due to the electron 
displacement from the symmetry axis is related to the issue 
of the effect of the initial beam radius on the saturation 
efficiency and beam transmission. In order to illustrate this 
effect, the variation in the efficiency and the beam trans- 
mission is plotted versus the initial beam radius in Fig. 7. 
As shown in the figure, the efficiency decreases monoton- 
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ically with increasing beam radius for 0.15 cm<*4<045 
cm. This decrease in the efficiency is due primarily to the 
fact that a smaller beam is less sensitive to wiggler inho- 
mogenem« and so exhibits a smaller variation in velocity 
(and, hence, the wave-particle resonance) across the 
beam. However, the effect of the variation in the initial 
beam radius on the beam transmission is more complex 
and is controlled by two competing effects. On the one 
hand, the increasing beam radius means that a relatively 
greater fraction of the beam is closer to the wall. On the 
other hand, the decrease in the efficiency means that the 
high-power electromagnetic wave will be less effective in 
driving the beam toward the wall. In view of this, the 
increase in the electron displacements in the initial beam 
radms over 0.15 cm<*5<0.20 cm shown in Fig. 7 is still 
too small to cause significant beam loss and the increase in 
the beam transmission is due to the decrease in the TE„ 
mode power. As the initial beam radius increases further 
however, the increasing electron displacements from the 
symmetry axis become more important, and the beam 
transmission falls until *4~0.35-0.40 cm. As the initial 
beam radius increases further, the substantial decreases in 
the TE„ mode power cause a small increase in the beam 
transmission until the initial beam radius begins to ap- 
proach the wall radius. 

IV. THE GROUP II CASE 

The group II data are more difficult to explain than the 
group I case. The assumption of a comparable energy 
spread of 6.4% results in reasonable agreement for the 
power at the end of the interaction region, but not for the 
detailed evolution of the signal (i.e., the launching loss and 
the instantaneous growth rate) during the course of the 
interaction. 

Comparison of ARACHNE with experiment in the case 
of wiggler and guide fields of 0.63 and 10.92 kG, respec- 
tively, and a transmitted current of 300 A is shown in Fig 
8 in which we plot the evolution of the transmitted current 
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and the power both from ARACHNE and from the experi- 
ment (shown by the dots). This case shows rough agree- 
ment in the case of a 6.4% energy spread for the power 
(sr4 MW) and saturation efficiency but not the growth 
rate. In addition, the launching loss observed in the exper- 
iment is much higher than that seen in simulation, as evi- 
denced by the fact that there is negligible growth in the 
observed power until after an axial position of 70 cm after 
the wiggler entrance. Beam loss is not found in simulation 
to be a major factor for this case until a power level of 
approximately 4 MW is reached, after which beam loss 
occurs at a very rapid rate. Hence, beam loss appears to be 
the saturation mechanism for this case, as well as for the 
group I cases. 

The case of an ideal beam for these group II parame- 
ters reveals very different behavior, as shown in Fig. 9 in 
which we plot the evolution of the power versus axial po- 
sition for an ideal beam with an initial energy spread 
Ar/Xo^O- Hence, the power saturates at a power level of 
approximately 37 MW over a distance of 150 cm. The 
transmitted beam as a function of axial position is not 
plotted in the figure because no beam is lost. Hence, satu- 
ration in this case is due to phase trapping in the ponder- 
omotive wave. 

An intermediate case is shown in Fig. 10 which corre- 
sponds to an initial axial energy spread of AyJ/y0=3.0%. 
In this case, no beam is lost in the entry taper region and 
exponential growth is found up until the power level 
reaches approximately 10-20 MW. Subsequent beam loss 
is rapid, but the saturated power level is comparable to that 
shown in Fig. 9 for the case of an ideal beam. We conclude 
that for this case beam loss can contribute only partially to 
the saturation mechanism unless the initial axial energy 
spread exceeds 3%. 

V. SUMMARY AND DISCUSSION 

In this paper, we have presented an analysis of beam 
transmission in a high-power collective FELU which op- 

erated with both parallel and reversed guide field configu- 
rations. Beam transmission was not found to be a problem 
in the reversed-field configuration unless the magnitude of 
the guide field was in the vicinity of the magnetoresonance 
for which the Larmor period associated with the guide field 
is comparable to the wiggler period. However, beam trans- 
mission was a problem for the parallel orientation of the 
wiggler and guide magnetic fields. 

In the case of group I parameters (i.e., weak axial 
magnetic fields), ARACHNE was found to be in substantial 
agreement with the experiment under the assumption of an 
initial axial energy spread of 6.25%. However, the princi- 
pal saturation mechanism was found to be beam loss which 
occurs when the wave power reaches approximately 10 
MW. This was found to be the case for all values of the 
initial axial energy spread. The case of group II parameters 
(i.e., strong axial magnetic fields) was more difficult to 
characterize. It was found that a choice of an initial axial 
energy spread of 6.44% resulted in good agreement with 
the measured power, but not the measured growth rate. In 
addition, the initial launching loss found in the experiment 
was much greater than that predicted in simulation. 
Hence, there are many unanswered questions regarding 
group II operation in this experiment. Be that as it may, 
however, particle loss was not found to be a major problem 
in the group II regime until the initial axial energy spread 
exceeded 3%, after which it was a contributing, but not the 
sole influence on the saturation mechanism. 
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Space-charge effects in free-electron lasers 
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The questions of the importance and proper description of space-charge effects in free-electron lasers are addressed. The 
collective Raman regime occurs in free-electron lasers when the electron charge density is sufficiently high that the space-charge 
potential associated with the beam space-charge waves becomes dominant over the- ponderomotive potential. The theoretical 
nonlinear treatment of collective effects in three-djmensions is discussed, and four intense electron beam experiments are analyzed 
with the objective of determining the importance of Raman effects on the interactions. Three of these experiments used a helical 
wiggler and an axial guide field, while the fourth used a planar wiggler. For each of these experiments, the usual well-known 
Raman/Compton criterion predicts that space-charge effects will be important. However, a three-dimensional analysis of these 
experiments indicates that only two of these experiments were in the Raman regime. Three essential conclusions are drawn. First, 
the usual Raman/Compton criterion which was derived via an idealized one-dimensional analysis must be used with caution since 
three-dimensional effects can alter the relative importance of the ponderomotive and space-charge potentials. In addition, 1) the 
Raman shift in the resonance condition must be greater than the FEL linewidth, and 2) Landau damping of the space-charge waves 
must be small in order for space-charge effects to be important. 

The free-electron laser (FEL) operates subject to 
two mechanisms. In the Compton regime, the electron 
beam interacts with the ponderomotive potential 
formed by the beating of the wfggler and radiation 
fields. For high currents, the electrostatic potential due 
to the beam space-charge waves is dominant over the 
ponderomotive potential, and the interaction proceeds 
by stimulated Raman scattering of the negative-energy 
space-charge wave off the wiggler. Of course, there is 
also an intermediate regime in which both of these 
mechanisms are operative. However, some controversy 
still exists as to the transition between these regimes, 
and as to the importance of space-charge effects in 
various FEL experiments. The purpose of this paper is 
to explore the nature of the Raman interaction by 
studying the importance of space-charge effects in a 
selection of FEL experiments [1-4]. 

The Compton/ Raman transition was first studied 
with an idealized one-dimensional formulation [5], for 
which the condition required for the dominance of the 
Raman regime is 

*»b v! vl 
ckw       8 c2 (1) 

where o>£ - 4irc2/ib/y0me is the square of the plasma 
frequency, nb is the ambient beam density, y0 is the 
relativistic factor corresponding to the bulk beam en- 

1 Permanent  address:  Science  Applications  International 
Corp., McLean, Virginia 22102, USA. 

ergy, and y*"(l -vf/c2)-1 for a bulk axial velocity 
v,. In addition, vw ■ -dm/km is the transverse 
wiggle-velocity, where fl„ ■ eBm/y0mec for a wiggler 
amplitude Bw, and *v is the wiggler wavenumber for a 
period A w. For a planar wiggler, the rms wiggler ampli- 
tude must be used in vm. While this criterion (1) is 
widely used in characterizing FEL experiments, its 
application to a real system is clouded by several 
factors. Firstly, the boundary conditions imposed by 
the drift tube walls reduce the effective plasma fre- 
quency. Secondly, the bulk characteristics of the elec- 
tron oibits are modified by wiggler inhomogeneities, 
beam thermal effects, and the use of an axial guide 
magnetic field. Planar wiggler configurations introduce 
further difficulties since, in contrast to a helical wig- 
gler, the axial and transverse electron velocities are 
oscillatory. Due to these difficulties, a full dimen- 
sional nonlinear analysis is often required to character- 
ize space-charge effects in any given experiment. 

A second criterion required for space-charge effects 
to be important is that the Raman frequency shift be 
comparable to or greater than the linewidth. The phys- 
ical interpretation of this criterion is that the wiggler 
must be long enough for several plasma oscillations 
during the course of the interaction. Of course, realis- 
tic 3-dimensional effects can be expected to modify this 
condition as well. 

Finally, a third criterion required for space-charge 
effects to play an important role is that Landau damp- 
ing of the space-charge waves due to the thermal 
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Table 1 
A summary of the operational parameters for the experiments under consideration 

Fajans et al. [1] 

Vb [MeV] 
MA] 
«bio»] 
B. [kG] 
/.[cm] 
B0[kG] 
P[MW] 
ij[%] 
/[GHz] 
/„ [GHz] 

f/h 
-b /(<*•> 
<T?/tt(i£/ea) 
Raman 

Orzechowski et al. [2] Kirkpatrick et al. [3] 
0.155 
4.1 
0.25 
0.176 (H) 
3.3 
1.45 
0.08 

12 
9318 
0.72 

0.077 
0.069 
0.0023 

yes 

3.6 
850 

1.0 
3.6 (P) 
9.8 

N/A 
185 

6 
34.6 
2.2 

0.063 
0.25 
0.33 

no 

Conde and Bekefi [4] 

2.3 0.75 
930 300 

0.41 0.25 
1.275 (H) 147(H) 
3.14 3.18 

N/A -10.92 
18 61 
0.8 27 

470 33.4 
5.5 5.2 

0.012 0.156 
0.25 035 
0.079 0.01 

no yes 

spread of the beam must be small. In general, Landau 
damping of space-charge waves is important for wave- 
lengths less than the Debye length. 

In order to elaborate on the importance of space- 
charge effects in FELs, we shall consider four experi- 
ments. The operational frequencys of these experi- 
ments extended from 9 to 500 GHz, and the beam 
parameters ranged from currents of 4 to 900 A and 
energies ranging from 150 keV to 3.5 MeV. Three of 
the experiments [13,4] employed a helical wiggler and 
two also used an axial guide field [1,4]. Of these two, 
one used a guide field oriented parallel with the wig- 
gler [1], while the other used a reversed-guide field 
orientation [4]. The remaining experiment used a pla- 
nar wiggler configuration [21 Thus, these experiments 

cover a wide range of parameter space. It is interesting 
to observe that only two of these experiments were 
unequivocally in the Raman regime, and that these 
were the two with the lowest currents. A summary of 
these experiments is given in table 1. 

The experiments are analyzed using the 3-dimen- 
sional nonlinear simulation codes ARACHNE [6] and 
WIGGLIN [71 which are slow-time-scale formulations 
where the electromagnetic field is expanded in a super- 
position of the TE and TM modes of either a cylindri- 
cal or rectangular waveguide, and the space-charge 
field is expanded in a superposition of the Gould-Tri- 
velpiece modes of the beam. Slow-time-scale equations 
govern the evolution of the amplitude and phase of 
each TE, TM, and Gould-Trivelpiece mode due to the 

y - 1 + rtfe/me* 
R* 1. Variation in the output phase versus beam energy as determined in the experiment [1] and with ARACHNE [61 TE, 

(Ä,-1.27cm; P*-27kW(lin.)). ' 
mode 

DC RAMAN FEL THEORY 
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interaction with the beam and wiggler/axial guide 
field. These equations are integrated simultaneously 
with the 3-dimensional Lorentz force equations in the 
complete ensemble of electromagnetic, electrostatic, 
and magnetostatic fields. We emphasize that no aver- 
aging procedure is imposed on the orbit equations. 
This is an essential feature of the formulation required 
to explain many aspects of the experiments, including 
the behavior of the electron trajectories in the re- 
versed-guide field configuration and the accurate de- 
scription of the bulk motion of the electron beam in 
the planar wiggler configuration. The distinctions be- 
tween WIGGLIN and ARACHNE are 1) that 
ARACHNE deals with a helical wiggler/axial guide 
field with a cylindrical waveguide, while 2) WIGGLIN 
deals with a planar wiggler with parabolic pole faces 
and a rectangular waveguide, and 3) that the Gould- 
Trivelpiece space-charge modes are not included in 
WIGGLIN. As shall be shown later, this last distinc- 
tion is no impediment as space-charge effects were not 
important to the single planar wiggler experiment un- 
der consideration. The four experiments under consid- 
eration deal with both helical and planar wiggler con- 
figurations; hence, ARACHNE has been used to ana- 
lyze the experiments described in refs. [13,4] while 
WIGGLIN was used to analyze the experiment de- 
scribed in ref. [2]. 

The first experiment conducted [1] was an amplifier 
driven by a traveling wave tube. As shown in table 1, 
criterion (1) places this experiment in the Raman 
regime, as was also demonstrated by the observation 
that the gain scaled as the fourth root of the current 
[8J. Further, the wiggler length of * 150 cm permitted 
5-6 plasma oscillations over the course of the interac- 
tion. Finally, the low energy spread (Ayz/-y0 « 0.3%) 
minimized the effect of Landau damping. Note that at 
4.1 A this experiment had the lowest current in the 
group. A comparison of the variation in the phase of 
the output signal with beam energy from the experi- 
ment and as determined with ARACHNE is shown in 
fig. 1. The phase measurement is equivalent to a tuning 
curve which is the most sensitive test of the space- 
charge effect (as opposed to absolute power measure- 
ments). It is evident in the figure that substantial 
agreement exists between the experiment and 
ARACHNE; hence, we conclude that the collective 
interaction is treated correctly in this formulation. 

The second experiment is the ELF experiment [2] 
which operated as a 35 GHz amplifier driven by a 50 
kW magnetron with a planar wiggler and a rectangular 
waveguide. As shown in table 1, this experiment is 
transitional between the Compton and Raman regimes 
on the basis of the idealized criterion (1), and it might 
be expected that space-charge effects play some role. 
However, the calculated linewidth [9] is • 15 GHz 
which is much greater than the plasma frequency (• 2.2 
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Fig. 2. Comparison of the tuning curves for the ELF experi- 
ment [2] shown as circles and WIGGLIN over a 2 m interac- 

tion length. 

GHz). In addition, the axial energy spread (Ay^/y,, s 
2%) yields a Debye length of * 0.8 cm. This is compa- 
rable to the space-charge wavelength of «0.8 cm; 
hence, the space-charge waves are strongly damped 
[10]. This issue, therefore, is not whether this experi- 
ment is in the Raman regime (it is not), but the extent 
to which space-charge effects were important. This 
question can be addressed by comparison of WIG- 
GLIN with a detailed experimental spectrum. 

Such a comparison is shown in fig. 2 where we plot 
output power after 2 m as calculated by WIGGLIN 
(for three choices of the axial energy spread) with an 
experimentally measured tuning curve [2]. Note that 1) 
since the experiment was a 34.6 GHz amplifier driven 
by a magnetron, the tuning is accomplished by varying 
the magnetic field, and 2) saturation was found to 
occur over a length of 1.4 m. In view of the latter point, 
a detailed comparison of the spectral width is not valid 
because sidebands are expected to result in spectral 
broadening after saturation, and WIGGLIN does not 
include sidebands in the formulation. Be that as it may, 
the agreement between the spectral peak predicted by 
WIGGLIN and found in the experiment is excellent 
and does not vary greatly with the choices of axial 
energy spread. The agreement between these peaks 
from WIGGLIN and the experiment is * 30 G, which 
is within the experimental uncertainty. As a result, it is 
concluded that space-charge effects did not play a role 
in this experiment. 

It should be remarked for comparison purposes that 
the FRED simulation code was also compared with 
this spectral data [11]. The principal differences be- 
tween WIGGLIN and FRED are 1) that FRED uses a 
field solver rather than a modal superposition, 2) that a 
wiggler-averaged  orbit   approximation   is   made   in 
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FRED, and 3) that the approximation for space-charge 
is treated differently than by the Gould-Triveipiece 
superposition used in ARACHNE. The results of this 
comparison between FRED and the spectral data arc 
that FRED is detuned from the experiment by «1% 
without space-charge, and the inclusion of the space- 
charge is necessary for agreement with the data Since 
this contrasts with W1GGLIN, it is of interest to con- 
sider the source of the discrepancy. 

The use of a field solver as opposed to a modal 
superposition is not expected to result in a significant 
discrepancy between these formulations. Since WIG- 
GLIN is in agreement with the spectral data without 
the explicit inclusion of space-charge effects, it is rea- 
sonable to suppose that the principal source of the 
discrepancy lies in the wiggler-averaged orbit approxi- 
mation used in FRED but not WIGGLIN, and not in 
the space-charge algorithm. Thus, consider the limits 
of accuracy imposed by the orbit average. 

Since the axial velocity in a planar wiggler is oscilla- 
tory, the tuning will be sensitive to this average. This is 
typically done with a Bessel function correction factor 
that is derived under the assumption of a sinusoidal 
variation in vt. However, the variation in v, is given by 
an elliptic function for large displacements of the orbit 
from the symmetry plane of the wiggler. Furthermore 
in a 3-dimensional analysis the magnitude of the wig- 
gler varies over an electron orbit, which also acts to 
break the sinusoidal variation in vt. Each of these 
effects limit the accuracy of the wiggler-averaged orbit 
approximation. In addition, the effect of a large ampli- 
tude electromagnetic wave (i.e., near saturation) is 
included in the transverse components of the electron 
trajectories in WIGGLIN (but not FRED), and is 
observed to modify the electron orbits. Hence  we 

"? ™^the d,'screPancv between the spectral data 
and FRED anses from the wiggler-averaged orbit ap- 
proximation. This discrepancy is to within  « 7% in 
Bm, which is equivalent to an * 3.5% error in v   For 
most purposes, this is a reasonable approximation,' and 
agreement between FRED an the experimental data 
has been typically good. However, we conclude that the 
wiggler-averaged orbit  approximation   is not  good 
enough to resolve the importance of space-charge ef- 
fects in the ELF experiment. 

The third experiment was a superradiant amplifier 
(i.e the signal grew from noise) employing a helical 
wiggler without an axial field [3]. As shown in table 1 
tlm experiment k expected to be in the Raman regime 
on the basis of the idealized criterion (1). However the 
hnewidth of50 GHz was much greater than the plaint 
frequency. The beam energy spread of Ay,/y0 - 0 25% 
was consistent with an analysis of the gun geometry 

ARACHNE. Hence, the Debye length here is « 0.09 
cm while the space-charge wavelength is «0.06 cm, 
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and we expect that space-charge waves will be damped 
and that Raman effects will be unimportant. This cont 
elusion is supported by ARACHNE. The output power 
versus frequency from ARACHNE and the experiment 
is shown in fig. 3. Evidently, ARACHNE accurately 
reproduces the observed spectrum. It should be noted 
that the space-charge waves can be disabled in 
ARACHNE, and that the predicted spectrum it unaf- 
fected by the inclusion of space-charge waves. We 
conclude that 3*Iimensional affects (such as the plasma 
frequency reduction and realistic orbits) modify the 
idealized criterion (1). ^^ 

The fourth experiment [4] operated as an amplifier 
As shown m table 1, this experiment is also tatne 
Raman regime based on criterion (1). In addition, the 
wiggler length of -150 cm permitted 28-29plasma 
oscillations during the course of the mteractioTFT 
nally, the Debye length for this experiment was - 0 M 

?n^l,eth«WaVC,fn*thofÜ,espace-cnar«ew«ve««» 
- U.B0 cm. Hence, Landau damping of the space-charce 
waves is not important. Hence, we expect this experi- 
ment to be m the Raman regime, and this conclusion is 
supported by simulations with ARACHNE which shows 
good agreement with the experiment [12]. A maximum 
power of «61 KfW was found for a reversed-guide 
field orientation. A comparison of the evolution of the 
power versus axial position as determined in the exper- 
iment and computed with ARACHNE is shown in fit, 
4. Two curves from ARACHNE are shown correspond- 
ing to the nominal experimental parameters (A «300 
A B.-U7 kG, and P^-SS kW) as well as the 
upper limits due to experimental uncertainties. It B 

evident from the figure that ARACHNE is in agree- 
ment with the experiment to within the experimental 
uncertainty. Note that this agreement cannrtTo£ 
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tained with ARACHNE if the space-charge modes are 
disabled. 

In conclusion, we have examined the detailed effect 
of space-charge on four experiments with the purpose 
of determining criteria for the importance of Raman 
effects on the FEL interaction. In the first place, it is 
concluded that the wiggler-averaged orbit approxima- 
tion can lead to a sufficiently large error in the bulk 
axial velocity that no reliable determination of the 
importance of space-charge effects can be made. It is 
also concluded that the idealized Raman criterion (1) 
must be used with caution since 3-<limensional effects 
alter the relationship between the ponderomotive and 
space-charge potentials. It should be pointed out here 
that improved models of the interaction in the linear 
regime have been developed which treat the Raman/ 
Compton regime with more precision than is given in 
the one-dimensional Raman criterion (1). For example, 
a complete three-dimensional solution to the eigen- 
value problem posed by the propagation of a thin 
electron beam through a cylindrical waveguide in the 
presence of a helical wiggler and an axial guide field 
has been developed [13], and successfully applied to 
the analysis of a Raman FEL [8]. Similar analyses have 
also been conducted using a hybrid one-dimensional 
electron orbit/three-dimensional waveguide  model 
[14]. Unfortunately, while such models are in good 
agreement with FEL experiments, they are often too 
complex to yield a simple Raman/Compton criterion. 
In addition, two other criteria must be considered as 
well. Specficalry, 1) the Raman shift in the resonance 
condition must be greater than the FEL linewidth, and 
2) Landau damping of the space-charge waves must be 
small in order for space-charge effects to be important. 

It should be noted that an alternate approach to the 
development of a usable Raman/Compton criterion is 
to use an ad hoc model for such factors as the space- 
charge reduction factor for the plasma frequency or 
the filling-factor of the beam and radiation. However, 
these descriptions must be used with some caution. For 
example, it was shown that the beam space-charge 
wave itself can be driven unstable for helical wiggler/ 
axial guide field configurations in the strong guide field 
regime [15]. Hence, the inclusion of the wiggler dynam- 
ics can have a significant dielectric effect on the 
space-charge wave which must be included in any self- 
consistent estimate of the effects of the plasma reduc- 
tion factor. Further, attempts to include the effects of 
the filling-factor must also be approached with caution 
due to the optical guiding of the radiation. For these 
reasons, it was judged preferable to employ the simpli- 
fied one-dimensional form for the Raman/Compton 
criterion in this work. 
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The coaxial hybrid iron (CHI) wiggler * 

Robert H. Jackson ••, Henry P. Freund «. Dean E Pershin« » i M T        • S 

A winter design bat been developed which ii <«I.M. .« 
•«PUnce, and excellent transverse focusing «nd be!« nrLl        ""^ "ith ^ fcW "»««wie. high beam «rre„, 
-Ji of . coui., ^ngcnen, of ^JS^SS^SZTT^ "^ «^ M»rid iron a« ASS 

periodic field. FEL configurations using this wilder d«i.n i»T*      ,ote.noKW &W which results in . cylindricillv svmn-trir 
- reUtiveb, compact system. ^£jSZZ2£X£ ?£&Z^££»*Z «ÄgSE 

1. Introduction 

Free«lectron Users (FELs),re attractive as tunable 
««rces of coherent radiation. However, the voltages 

I   pre«nüy required for radiation are often beyond ihe 
dearablc üm,t for many applications. Harmonic opera- 
toMU] and small period wiggle [3-10] .«two 
Wroaches being tested for reduced voltage (or en- 
h«ced frequency) operation. Each has advantages and 
daadvMtages depending on the parameters and per 
^»ce reo.uremenu of the particular application^ 
«>«enx By utilizing micro-wigglers (Aw < 5 mm), FEL 
opmtmg voltages can be reduced (a JÄlTm h, re- 

difficulty with this appro** lies in fabricating smaH 
penod wipers which will provide high field sfreTgS 
and umformtty with reasonable gap spacing ,„d g^od 
beam focusmg. Several micro-wigglcr configuraSons 
have been proposed and investigated [3-101 Each 0 
£ese configurations ha, a*»^ „„ disaov^gel 
u, the areas of achievable field strength and un,W 
^.bncauon, control tuning, cost, and be« «££ 
tance and focusing. The coaxial hybrid iron (CHI) 
w«ler design presented in this paper has a „umberof 

»£~£»» Mi«« R«^ Corp., Newin,««, 

1 l£w^*^"**,mi'0*»*«> 
O16MO02/94/W7.O0 C 1994 - Ehevier Seien«, ft V An 
SSDi 0168-9002(93)E090i.4^^ ' *" nghU w,e'VBd 

ST&i" *" weas for ** ^h*fr<- 
1 CHI wiggler configuration 

,     * «"»««ted by munersing a periodic array of 
ferromagnetic material in a solenoid.? mag^L«? 

«t by geometric factors and saturation of the ferny 
magnetic material. The strengths of this arranged 
are simpbcity and the relative ease of genSb™ 
»MU fields. Disadvanuges JS7& 5 
öd« component in the axial field within the stnjct^ 

tudes away from the symmetry axis, and potentiallS. 

field gradient effects. In addition, although the wigrier 

oTsitifti        ^^ V°"a«es ««""ficantly wX out sacrificing gam and power. 

«iJJüI ?" t!tt,er dcsi«n «"««»»es many of these 

IS?'1** Md «""-'«"»magnetic rings 
wrth the centrel poroon of the coax shifted relative to 
«he outer by one half period, see Fir 1. The entire 
arrangement is then immersed in *mLSS/tSi 
resuhing in . periodic «dial magnet* fi^nT? 
reduced solenoid.1 field with a loTlpS riptfe 
and alternating gradients. One period in the CH"S 

one ferrom^netic and one no,. This accounts fon£ 

periods. Dtsks and rings of magnetic and non-magnetic 
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materials only fractions of a millimeter thick can be 
fabricated with very high precision. Slacks of such disks 
can be brazed or otherwise formed into mechanically 
robust wigglers. The most obvious materials for the 
construction of the ferromagnetic disks are iron allow 
However, other materials which have beneficial mag.' 
netic properties (e.g. high saturation field at cryogenic 
temperatures) could be used. The non-ferromagnetic 
disks can be fabricated from a wide range of materials 
(or combinations of materials) including non-magnetic 
metals, ceramics, plastics, air, superconducting mated- 
als, etc. The two different rings which make up a 
period need not be identical in thickness, height, or 
shape. Also, it is possible to use different ring proper- 
ties for the central element as long as the period 
remains the same. The key to the enhanced perfor- 
mance of the CHI wiggler is the addition of the central 
element. The reasons for this will be discussed below 
(A linear wiggler system utilizing immersed shifted iron 
poles has been under investigation by a group at Stan- 
ford University, see ref. [12] for details.) 

3. Analytic field approximation 

An analytic representation for the CHI wiggler field 
can be obtained by the »olution of Laplace's equation 
•ubject to the appropriate boundary conditions at the 
surfaces of the magnetic and «»-magnetic rings. A 
complete derivation of this representation will be Sen 
m detail m a future work [131 and we merely «tatfS 
re*dt here. The CHI wiggler field is azimuth^! 
metric. The radial and axial component« of this field 
«re given by " 

B,(r,z)-2B0t •**"* 
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and 

»-1 G0(M««. Mfe) 
J'"(M„,/2),,,, 

+*i(*.')/0(Mi.)] 

'    (M*/2) 
*[A(*.0*o(M„„) 
+*.(*.r)/0(*itÄout)]Jt 

cos *.z 
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R«. 1. Schematic of the CouW Hybrid iron (CHI) wiggler 
geometry. 

fieut rtL*""^ ** iVera«e «Mnitude- of the axial field.« the coax»! gap, *,.,,* J-2„/AJ.4   „<, 
A. denote the width of the rings on the mn« rtd £ 

Observe that for most applications A « A    -1/2- 

t££ ** **"'fie,d —■* «*«■«-' 
S£f i?22 fW " " *' 3 are ,hown '" ** 2 and 3 where the field amplitudes within the coaxS g^are 

•wth/A» - 05. The plots «how field cofnoonent J 

M bjck  being the outer radius of the central piece, Z 
front  being the inner radius of the outer i*~™S 

field component. h«e go«, fo^,,-    prM)eni^   "J" 
mner and outer coaxial «„rfaces. Also^oalfieE 

Better beam focusing and transport characteristics. A 
relative* large «ection of the^d-gap «S^t 
reasonably uniform rad U and axial field strSn. Sus 
Üie beam writ have less velocity spread inducedI bv 
mtnnsic «ggler field gradient n£ rJTSSLS 
Jj«fcr high power FELa employing J^S 

4. Performance characteristics 

(2) 

11* POISSON codes were used to examine the 

"S™ t? ** ** *"" caibon «eel was used) A 
ÄeTeS.'S "** lHowed ««* * CHI 
r^S^T? ^^* "Bd Variati0° <* « n"»ber of pa. 

elsewhere [13.141 Both the radial and «dal field« JE 
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the gap were calculated and compared with the ana- 
lytic results. Both qualitative and quantitative agree- 
ment is excellent, and the results are substantially the 
same as shown in Figs. 2 and 3. Magnetic flux line plots 
from simulations of the CHI wiggler show the enhance- 
ment caused by the center element. The central rings 
act to pull the flux lines down as the upper rings pull 
the flux lines up resulting in strong radial fields at the 
edges of the rings. These radial fields are two times 
larger than without the central rings when measured at 
the same radius. (The difference is even larger if the 
field is measured at the peak field radius of the TEB1 

waveguide mode where the electron beam would be 
placed.) In addition, field perturbations due to end 
effects are much lower in the CHI wiggler configura- 
tion. 

The aspect of wiggler performance of most interest 
is the dependence of the peak radial field on various 
geometric and operational parameters. An operating 
curve for a CHI wiggler with a gap to period ratio of 

OS is shown in Fig. 4. This figure plots radial field 
amplitude against applied solenoidal field, i.e. the 
solenoidal field which would exist in the absence of the 
CHI wiggler structure. The radial field increases lin- 
early with the applied solenoidal field until the ring 
material begins to saturate around 8 kG. In this linear 
range, a substantial fraction, about 36%, of axial field 
is converted into radial field. As the applied field is 
further increased, the wiggler field amplitude levels off 
and then decreases slowly. The peak wiggler field gen- 
erated is substantial, - 3.2 kG, and. it should be noted. 
K fully compatible with dc operation. Numerous simu- 
lations have shown that the initial slope of the CHI 
wiggler performance curve is dependent on details, but 
the peak is mainly determined by the coaxial gap to 
period ratio and the saturation field of the ring mate- 
rial. 

The variation of the peak field with respect to two 
CHI wiggler geometric parameters is shown in Figs. 5 
and 6 for gap to period ratio and magnetic ring width 

Radius/^ M 
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Fig. 6. Peak radial wiggler field at a function of normalized 
central element pole thickneu (outter ring width/A. - 0.5, 

gap/A. - 0.5, field measured in the middle of gap). 

to period ratio respectively. Fig. 5 shows the expected 
exponential drop in field strength as the gap/period 
ratio increases. A pole width/period ratio of 0.5 was 
assumed. For small gap values, corresponding to high 
beam energy or long wavelength radiation, extremely 
high fields are possible, approaching 14 kG. The effect 
of variation of the magnetic ring thickness, central ring 
elements only, is shown in Fig. 6 for a gap/period 
ratio of 0.5. A peak occurs when there is a small axial 
overlap of the outer and inner magnetic rings, i.e. the 
inner magnetic rings are slightly wider than one half 
period, ring-width/A.-0i5. For smaller gaps, the 
peak field is achieved with greater pole overlap, e.g. at 
gap/A. - 0.25 peak field is achieved at ring-width/Aw 

- 0.6. These results also apply to width variation of the 
outer rings or to simultaneous variation of both inner 
and outer rings. Other factors such as ring height, etc. 
have been varied with similar results. 

Although the CHI parameters at which the peak 
field is achieved are highly dependent on particulars, 
the peak value is almost independent of any factors 
other than the relative gap size and ring material 
magnetic saturation characteristics. In all calculations 
performed to date, the peak field has fallen somewhere 
in the 3.2-3.3 kG range for low carbon steel rings with 
gap/A» - 0.5. Rings constructed from the best avail- 
able iron alloys (Hiperco or Permendur) would in- 
crease the maximum wiggler field by up to 20%, i.e. to 
approximately 4 kG. Note that variations of the period, 
gap, material, ring height, applied axial field, etc. pro- 
vide ample opportunities for tapering and tuning of 
CHI wiggler fields. 

5. Summary and discussioa 

The CHI wiggler configuration has several advan- 
tages for applications in FEL systems. It is a simple. 

low cost wiggler structure which is easy to fabricate 
and assemble, and is capable of producing multi-kilo- 
gauss fields even at millimeter wiggler periods. Be- 
cause cooling considerations involve only the solenoid, 
CHI wigglers are compatible with dc, ac and pulsed 
operation. The "effective" wiggler field amplitude is 
tunable over a broad range in both the linear and 
saturated domains (in the latter due to gyroresonance 
effects, see ref. (14p The CHI configuration also pro- 
vides a number of parameters which can be axialry 
tapered to control or enhance various FEL interaction 
characteristics. In addition, the coaxial nature of the 
CHI configuration greatly increases the level of beam 
current which can be propagated with sufficient quality 
for the FEL interaction. 

To be sure, the CHI wiggler also has potential 
disadvantages such as mechanical support of the cen- 
tral element, increased mode competition and uncon- 
ventional beam and resonator geometries. Although 
these details must be addressed, they do not appear to 
be insurmountable. With proper attention to details, 
CHI wigglers will enable the development of compact, 
low voltage FELs able to deliver high power at mil- 
limeter and IR wavelengths. 
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A three-dimensional nonlinear formulation of a free-electron laser based upon a coaxial hybrid 
iron (CHI) wiggler is described. The CHI wiggler is created by insertion of a central rod and 
an outer ring [composed of alternating ferrite and dielectric spacers in which the ferrite 
(dielectric) spacer on the central rod is opposite to the dielectric (ferrite) spacer on the outer 
ring] along the axis of a solenoidal. An analytic model of the CHI wiggler is developed which 
is in good agreement with the Poisson/Superfish group of codes. The free-electron laser (FEL) 
formulation is a slow-time-scale analysis of the interaction of an annular electron beam with the 
CHI wiggler in a coaxial waveguide. The electromagnetic field is represented as the 
superposition of the vacuum transverse electric (TE), transverse magnetic (TM), and 
transverse electromagnetic (TEM) modes of the waveguide, and a set of nonlinear second-order 
differentia] equations is derived for the amplitudes and phases of these modes. These equations 
are solved simultaneously with the three-dimensional Lorentz force equations for the combined 
magnetostatic and electromagnetic fields. An adiabatic taper is used to model the injection of the 
beam, and an amplitude taper is included for efficiency enhancement Simulations are presented 
for Ka-, Ku- and W-band operation. Multimode operation is also studied. The results indicate 
that operation over a wide bandwidth is practical with the CHI wiggler, and that the bandwidth 
in the tapered-wiggler cases is comparable to that for a uniform wiggler. Therefore, relatively 
high field strengths can be achieved with the CHI wiggler at shorter wiggler periods than is 
possible in many other conventional wiggler designs. 

I. INTRODUCTION 

The free-electron laser (FEL) has demonstrated oper- 
ation over virtually the entire electromagnetic spectrum.1"5 

The FEL operates by means of the beating of a periodic 
magnetostatic field (called a wiggler) and an electromag- 
netic field to produce a slowly varying ponderomotive 
wave in phase with the electron beam. The wavelength A of 
the resonant electromagnetic wave depends both upon the 
beam energy and the wiggler parameters approximately as 
A= (1 +o*,)Aw/2y$, where A„ is the wiggler period, y0 >» 
the bulk relativistic factor of the beam, and 
aws0.O934B,^w for a RMS wiggler amplitude Bw in kG 
and a wiggler period in cm. Further, in the exponential 
Compton regime in which the collective space-charge ef- 
fects of the beam are negligible, both the gain and satura- 
tion efficiency scale as <#Vy0. Hence, the wavelength, 
gain, and efficiency of the interaction all decrease as the 
beam energy increases for fixed wiggler parameters. A 
great deal of effort has been devoted, therefore, to the de- 
sign of short period wigglers in order to operate at short 
wavelengths with low beam energies. However, this is an 
ultimately self-defeating process, since reductions in the 

"Permanent address: Science Applications International Corp., McLean, 
Virginia 22102. 

"Permanent address: Mission Research Corp., Newington, Virginia 
22122. 

"Permanent address: University of Maryland, College Park. Maryland 
20742. 

wiggler period often result in a corresponding reduction in 
the wiggler amplitude as well with a deleterious impact on 
the efficiency and gain of the FEL. 

It is our intention in this paper to analyze the perfor- 
mance of a FEL amplifier based upon a coaxial hybrid 
wiggler.6 This novel wiggler design is based upon a config- 
uration in which a central rod and a coaxial ring of alter- 
nating ferrite and dielectric spacers is inserted into a sole- 
noidal magnetic field. Further, in this design the ferrite 
(dielectric) spacers on the central rod are aligned opposite 
to the dielectric (ferrite) spacers on the outer ring. For 
convenience, we refer to this design as the coaxial hybrid 
iron wiggler, or CHI wiggler for short A schematic illus- 
tration of this configuration is shown in Fig. 1. The geom- 
etry of this design produces an azunuthally symmetric pe- 
riodic field in which, for a fixed period, the amplitude can 
be increased by the relatively simple expedient of increas- 
ing the strength of the solenoid. Since solenoidal magnets 
are readily available with amplitudes of many tens of tesla, 
the CHI wiggler is capable of producing relatively high- 
amplitude but short period wiggler fields. It is important to 
observe that the radial component of the field in the CHI 
wiggler has a minimum at the center of the gap; hence, the 
field tends to focus the electron beam against the effects of 
self-field-induced spreading. In addition, the azimuthal 
symmetry of the field in the CHI wiggler results in a bulk 
wiggler-induced transverse velocity in the azimuthal direc- 
tion; hence, the beam interaction is strongest for electro- 
magnetic waves with an azimuthal component. 

The organization of the paper is as follows. An analyt- 
ical representation of the CHI wiggler is derived in Sec. II, 
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Dielectric -*j       |*_ ^ 

FIG. l. Schematic illustration of the CHI wiggler configuration. 

ISH ^?Ty- uHowever'fa most "«** «Mm. this is oftset by the fact that shorter wiggler periods typically re- 
sult in lower wiggler amplitudes and increased wiggler field 
gradients. This is not necessarily the case for the CHI wu- 
gler, since high wiggler amplitudes can be achieved by us- 

E^TST S°!ü10id- ^ DOte *« the »resonance 
Z^S ? ^"^ ",d "^ «"»P01™* can enhance the FEL mteraction as well. 

In a source-free region the divergence and curl of the 
magnetic field vanish, and the field in coaxial gap of the 
CHI wiggler can be found by solution of Laplace's equa- 

V2B(r,z)=0, (1) 

for the appropriate boundary conditions. Since the geom- 
etry is aomuthally symmetric, we assume that 

*(v) = Br(rj)ir+B,(rj)i„ (2) 
based upon a solution of Laplace's equation and boundary 
conditions appropriate to the coaxial geometry of the CHI 
wiggler. This analytic representation is in substantial 
agreement with results of a simulation of the CHI wiggler6 

using the Poisson/Superfish group of codes (see Ref. 7 for 
a discussion of the algorithm employed by these codes) A 
nommear formulation of the interaction of the beam and 
the CHI wiggler with the transverse electric (TE), trans- 
VerSe ^?edc (TM)' ■*■ transverse electric and mag- 
SÜ^i^i m0deS °f a "^ ™"*uide is derived in 
sec. HI. In this section a slow-time-scale formulation of the , r    , 
dynamcal equations for the electromagnetic fields is de-      BAv)   —~-(r^-R r,0    l L    1    * ) 
nved for the coaxial waveguide geometry. These equations I W'> d\V^) "? +jyJJ & *M =0, 
must be solved simultaneously with the Lorentz force 
equations for the electron trajectories in the combined 
fields of the CHI wiggler and the TE, TM, and/or TEM 
»<*«<* the wavegmde. A numerical andysis of the gam f    1     d I   d \       l     * 
and saturation efficiency for various representative sets of      ^v) Jzw 5 VlrZ^ l+TTTzU« -0 
parameters is described in Sec. IV, and a summary and l l '   Z'W ^ J 
discussion is given in Sec. V. 

where B,{r*)=R,(r)Rt{z), and *,(V) =Z,{r)Z (z) 
Each wjggler period, denoted by Au, corresponds to the 
combmed length of one ferrite and dielectric spacer, and 
we assume that the length of each spacer is kjl. As a 
result, the wiggler field exhibits an axial periodicity of the 
form B V) =B(rj+NAw), where JVis an integer. Finally, 
we shall use R* to denote the radius of the central rod, and 
«out for the inner radius of the outer ring 

Substitution of this field into Laplace's equation yields two equations: ' 

and 
(3) 

II. THE CHI WIGGLER 

The CHI wiggler is formed by the insertion of a central 
rod and a coaxial ring of alternating ferrite and dielectric 
spacers within a solenoidal magnetic field. A schematic 
illustration of this configuration is shown in Fig  1 The 
arrangement of the ferrite and dielectric spacers are such 
that the fernte (dielectric) element on the central rod is 
opposed to the dielectric (ferrite) element on the outer 
nng. The magnetic field produced by this arrangement is 
azunuthally symmetric, and the radial component of the 
fie d has a minimum in the center of the gap. Hence, the 
field provides a focusing force on the electron beam. Ad- 

Äe"fieW;USing b PTOVided by ** bVSk "* comPonent 

The ease of construction of this design permits the 
development of wigglers with extremely short periods by 
the simple expedient of using thin dielectric and ferrite 
spacers The advantage of a short period wiggler is that 
relatively low beam energies are required for resonance at 
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(4) 
Since the radial and axial components of the fields should 
independently vanish, we use nkJm2m/Aj as the sepa- 
ration constant where n is an integer, and write 

\d?+77r{"2,c2"+?)]w=<>. 
and 

(d?+-rTrnl*>)z'{r)=Q- 
Equations (5)-(7) have the general solutions 

2x{z) =Aa cos nku?+ Bn sin nkj, 

**(*) =*m cos nk^+ Bm sin nkjc, 

Zr(r)=C„/0(«V) + DMnkj), 

*,(/■)=CJX (nkj) + DJix (nks). 

(5) 

(6) 

(7) 

(8) 
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Under the requirement that V«B«0, the coefficient! sat- 
isfy A„,Cm+B„Cm=0, MjCm-AJCm-Q. A„Dm 

-B*,D»=0, and BmDm+AmDmmQ. As a result, the 
field may be written as a sum over spatial harmonics, 

m 

B,(rj) = Bo+ I [Vo(»V)+CA(»M] 

Xcosln^r-r,)] (9) 

and 

»-1 

Xsin[iiA:w(z-z„)]. (io) 

The relations between the remaining coefficients can be 
determined by application of the boundary conditions. We 
now assume that the effect of the ferrite spacers results in 
a step function in the axial field at r=Rh and R^, such 
that BI(Rklj) = Bin and *,(*„«,*)=*„,, along the sur- 
face of the dielectric and zero along the surface of the 
ferrite. Therefore, for the n=0 spatial harmonic, 

A^-J^AJtf*,.,»)-^ (11) 

and 

*„&>=)    dzB.iR^*)** *•*&<* 
(12) 

This implies that B^B^IB^. We can now Fourier 
decompose the n> 1 spatial harmonics. Under the assump- 
tion that the dielectric spacer along the surface of the cen- 
tral rod is found over the first half-period of the wiggler, we 
find that 

^o(»M«)+CJ^o(n*wÄiB) 

(13) 

where we choose z„=0 under the assumption that the first 
spacers are half the typical length. This implies that the 
dielectric spacer is found over the second half-period of the 
wiggler along the outer ring; hence 

4So("M«>+CJ^inkJt^) 

(14) 

Using Eqs. (13) and (14), we can now write the field 
in the form 

1048      Phys. Plasmas, Vol. 1, No. 4, April 1994 

HO. 2. mustntion of the ndul component of the CHI wijgJer. 

Bz(r^) = Bo+Bu X co&{nkj) 
»-I 

GlnkJlntjikJlJ (15) 

and 

B,(rj)=Bw X sind!*,,«) 
•-I 

[SJl(nks) + TKKl(nks)} 

<7(«Mo*t«*Jtta) 
where fws2^,, 

<XM) «/o(£)*o(£) -/„(£ )Ab(£), 

(16) 

(17) 

s'm fc)™!?) ^"Mi.) +*o(»Mo«) ]. 
(18) 

and 

T.= (^)«n(y)Uo(»M»)+/o(«Mo«)J. (19) 

This field has the form of a superposition of an axial guide 
field and an azimuthally symmetric wiggler with a large 
number of odd spatial harmonics. 

The CHI wiggler field described in Eqs. (IS) and (16) 
represents a reasonable approximation to the realistic field 
within the limits of the assumptions made in solving La- 
place's equation. The radial and axial components of the 
field normalized to B0 are shown in Figs. 2 and 3 for 
&aa/A-w= 1'0 and Jti/AM,=0.5 using the fundamental and 
third spatial harmonic components, and is in good agree- 
ment with the solution for the field obtained in this geom- 
etry using the Poisson/Superfish group of codes.6 The ef- 
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6A^- l^(z)[zHKlnr)irCOSajm 
m«l 

/ 

"01 "-«1»* tt.u-1 «w»,0,tt, CHI „^ 

(21) 

and the dispersion of the modes is given by 
(22) 

"»• THE NONLINEAR FORMULATION 

s«der propagation within a *££%2^"t.'* 
and outer radii a and b, respect!£* t Wtb ""*' 
arc neglected in the ^^Z^"*' f ^ 
long as a»*/«* <vV/S    i!   g    ^' ^ « valid as 

the beam, and J^l$?Jfci£t*^ *** <* 
velocitv ,     « i.    ^7  }       for a buIk streaming velocity „„ . Space-charge effects can also be nadec^Mf 
(1) the wavelength is less than the Debve iVniiT   w u 
space-charae wave* «r» ...K-   *! *   ,ength ""d tne 
or (2) theL7;ir0f

SSt^ong■L,Dd- *"*"*> 
plasma frequency  ™~eU,tfTact,on * ^««er than the 
^hargleS^^^f the »^«t of     fc 

current el^tron^T« * ^ f<>r rdative,y *■*"      by 

ditio^^Tth0! *r ä 
the *■?* * 

satisfied by an expansion ofTl^T, * wave«uide ««• be 
superpose 3T£'ÄISTS^J"?*" 
waveguide. As such, theSector' J2L2?1 "?" °f *» 
» cylindrical coordinates «     ^    ^ ^ * "P"88* 

(23) 

-ve\S^ffaSum^erVe *T * "*— - 
length. Th^sTÄ1Ven0HVary?,0W,yinZ0Vera *av- 
equations, which « * ^^ °f the ^P««« 

J7(^) r'<**> -JHtäJb) r,(KuK) =o, 
for the TE modes, and 

J,(Klnfi) 7,0^) _y/(/f4iiA) r/(^} ^ 

(24) 

for the TM modes, where J *„A v \   "' U5) 

Bcssel and H^Ä^^* «T- 
lanzation functions are comooMd of i ' ""^ P°" 
the Bessel and NeumaTEns^,     ^ Wmbination8 <* 

where (26) 

A/m=| 
TE modes, 

TM modes. 
(27) 

The vector potential for the TEMmnj • ltM m<*fc is given simply 

*A(*.')=^(/)-«rcosa. r (28) 

Since the TEM mode is not cut off th* w 
Phase are given by <o=ck, and "* dlSpcrsion «* 

^)=|o^(z)/_lZ/U/^sm^ 
Jo 

*(*')-*>/. 
(29) 

+2/ (i<imr)$e cos a/m], 

for the TE modes, 
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(20) 

Asm the case of the TE and TM modes, the amnKt,,« , 
wave number of the TEM mode is mJZZ**"« 
m z over a wavelength. ^ slow'y 

The dynamical equations for the amDlit.,H-      , 
Phases of each mode are obtained by *££%£* 
ficW representations into Maxwell's equations 2*.? 
perfonmng an orthogonalization in r ana" «£J5 *" 
average over the wave period. Derivations of th^ j£ 
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uons lor cylindrical and rccungular waveguides have been 
described in detail,' and the derivation for the coaxial 
waveguide follows analogously. The dynamical equations 
that result are 

£+(£-*i.-«L)]*. <lm 

Vg \ 

+J^TZl(*lm')<XXaim), 

=?ffto\WvZ'Mcosa4" 
Vg \ 

—|^ZJ(*fc/)sinafc,K 

for the TE modes, 

="?    \ N" 
Z

' 
(W)COS

 
a/m 

Vg      I 

]*>*] KhS 
■ZtK^smctb, 

+jfZ/<Kto^)sroato,\, 

KEIMST*. 

+i—r —ZK*^)«» at- 

-^/(«wJcosotaK 

for the TM modes, and 

rrf2   /*>2   -\i    *>l #-<? 

(30) 

(31) 

(32) 

(33) 

^+l?-^J]&,=?Älnl^ \^| ««)• 
(34) 

(35) 

for the TEM mode. In Eqs. (30)-(33), Sa^se M,Jmf 
is the normalized amplitude of the modes, and we have 
defined the TE/TM mode coupling coefficients as 
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^(A'-a2) 

^lmb
i-hzi(Klmb)-(Kiy-P)ZJ(Klma) '' 

H,-m{    TE modes, 

l^27W>-«iÄW>; ™™*« 
(36) 

The electron beam is assumed to be monoenergetic with an 
axial energy spread determined by an initial (i.e., at z=0) 
pitch angle spread, and the averaging operator is defined 
over the initial beam parameters, 

xJJ d**dy<Pi (Wo) 

xj'^^oy (•••), (37) 

where AgWsvtf-a1) is the cross-sectional area of the 
waveguide, ß^sv^/c for the initial axial velocity V& 
0o=tan~ (Pj/pa), {p^p^jt^) denote the initial beam 
momenta, PQ and Ap, denote the initial total momentum of 
the beam and the initial axial momentum spread, respec- 
tively, ifo( s -ota, where % is the time at which the par- 
ticle crosses the *=0 plane) is the initial ponderomotive 
phase, ox and o( are the initial distributions of the beam 
in cross section and phase, and 

H*rMT)p (38) 

is a normalization constant. This results in an axial energy- 
spread given by 

*r,_l 1  

ro ^1+2(^-1) (AM*)' 
(39) 

The equations for the fields must be solved simulta- 
neously with the orbit equations for an ensemble of elec- 
trons. Since this is an amplifier formulation, we integrate 
the complete three-dimensional Lorentz force equations, 

»« £ »- -« SE-- ▼* (B^+fiB), (40) 

for each electron, where B„, is the magnetostatic field due 
to the CHI wiggler, and 5E and SB denote the aggregate 
electromagnetic fields for all the wave modes, 

* an noki or 

and 

6B=    X    VX5Afa. 
■D 

(41) 

(42) 
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Further, the electron coordinates obey the equations 

"'*'-">» 

v>dz6=-rv°> 

(43) 
Pa 

(44) 

and 

(45) 

for the ponderomotive phase. 
By specifying the initial beam conditions to the en- 

trance of the wiggler and integrating the complete Lorentz 
force equations, we obtain the advantage of modeling the 
motion of the beam into the wiggler. This descri^any 
»crease m the effective beam emittance due to the injection 
mechanism in a self-consistent way. For this purpose we 
mode, the adiabatic injection region by means tfa^r* 
wiggler amplitude. In addition, we also consider ampE 
Upenng for the purpose of efficiency enhancement "in or! 

cL, «f „ i-   6) WC aSSUfflC ^ "* OVe"" COeffi- 
?ari« as C COmponent of «* »agnetostatic field 

'*(1+^)&4;   TM modes,    (47) 
©A*2        /M 

218~?-&1°(-j;   TEMmode. 

»d'ttetLwtT T*™.UC Ch08Cn by ** vacuum «■* 
2£ zeT^^T^ °C ^ C"1 -«gl« is aL ini- 
t7™«f ^v      UUÜal State of ^ e,ect"» b«m is chosen 
5£?S£ TS00of a condnuous' •**■■«*££ with a uniform density and annular cross section, so that 
«I =1 for -»<*,<» and c, = 1 for ÄmJB<r<Ä 

radii of tTST* 7 ah0 Ch00SC *' ^ ^ outer 

wTv^ „        T881" to C0iacae ^ a»0*« of the waveguide; hence, *b=a and ^=4. While we shall be 

TSS^.    **   ^^^    resonance8   fie 
»a (*+*„ w, J m this paper, both the first and third soa- 

Sy^ ature^r Ü,teraCti0n ^ * «~* ^ 
A. Ku-band operation 

\2*°*>i&} «^.. 
)2A>;     ^uAu,<2<2o, (46) 

IZ^bfl+^^z-^)];   ^>2Ö( 

where ^ denotes ^ number rf 

entry taper region, and eu is the normalized slope of the 
taper for purposes of efficiency enhancement 

IV. NUMERICAL ANALYSIS 

The dynamical equations for the particles and fields 
are solved for an amplifier configuratioVü! whicTseveS 
modes may propagate at a fixed frequency to. The numer 
^treatment involves the solution of WT+WM ordinary 
differential equations (where NT is the total JumbTof 
electrons and N is the total number of modeTaT» 
»Ori value problem, and we use a Runge-Kutta-Gill £ 

Ä?      .T"??" GaUSSiM *»**« » ^of 
n tlT£        ,    ^ reUltS fa ** "« of 100° Nicies 

P^!eS.when the "^ ener«y spread is nonzero. 
The initialI conditions on the fields are chosen to model 

the injection of an arbitrary power level for each mod^We 
note here that the time-averaged Poynting flux in GW for 

-t Turner m tCrmS °f thC «* «"»"— - 
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The first case we consider deals with a 200 kV/100 A 
electron beam with inner and outer radii of R . = 1 9 * 
and\R =2.3 cm propagating through a coaxal wave 
guide, with .-1.4 cm and 4=2.8 cm. The SSJZZ 
charactenzed by a solenoidal field ctM^lj6*£*£ 
^„,=2.54 cm, and an overall length of 35 wWW ~T^T 

««Id .1 the omw of d.e pp of apprai^, J28? 

ft=0.685 For ttee pmmelers, <Vc*„-o.OS7 wLh 

11.WJ OHz. As will be discussed, this is much lower than 
either the resonant frequency or bandwidth of the intend 
Jon. and we are fully justified in the neglect of theSeT 
öve space^harge modes in the analysis. 

r IPÜ 
TE2I ?** for ^ wave«uide » «sonant in the 

A, band with frequencies in the range of 15-19 GJfc in .11 
cases, we shall assume that the drive power is 1 kW^T 
variation in the TEo, mode gain as a function of frequencv 
« shown in F,g. 4 for the case of an ideal bS^S 
Ay,=0. It is evident from the figure that the gain is rda 
lively constant at approximately 30 dB from 13-17 OH," 
and falls off rapidly at the edges of the band We «Z 
examine the variation in the gain at the center of this banrf 
(i.e., at 15 GHz) in more detail. and 

The evolution of the power as a function of axial dis- 
tance is shown in Fig. 5 for the case of the ideal beam Th 
power is seen in the figure to remain relatively const*,,? 
over the initial ten wiggler periods, which includes the «i 
try taper region, and to grow exponentially thereafter A 
rapid oscillation is also found to occur with a period'  f 
*u/2, which corresponds to the lower beat wave inter«? 
tion. Such an oscillation has also been found to occurT«* 
Planar wiggler FEL's.» An output power of approSelJ 
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FIG. 4. Plot of the pin as a function of frequency over a fixed length of 
35 wiggler period*. 

1.05 MW is reached at the end of the interaction region for 
an overall efficiency of 5.3%, but saturation is not found 
and more power can still be extracted with a longer wig- 
gler. 

The variation in the average beam velocity over the 
interaction length is shown in Figs. 6-8. The evolution of 
the average axial velocity is shown in Fig. 6. The injection 
of the beam is clearly indicated by the initial decrease of 
the axial beam velocity over the first five wiggler periods, 
which corresponds to the increasing transverse compo- 
nents of the velocity due to the wiggler. The average ve- 
locity remains relatively constant thereafter until zx25Xw, 
after which the rapid decrease in the axial velocity is due to 
the extraction of energy from the beam. The bulk of the 
transverse motion due to the wiggler is in the azimuthal 
motion of the beam, which is shown in Fig. 7. Again, the 
"spin-up" of the beam in the entry taper region is clearly 
shown along with the primary oscillation at the wiggler 
period. The RMS component of the azimuthal velocity of 
approximately (ve)/cs:0.l. The average radial velocity is 
shown in Fig. 8, and is seen to be substantially smaller than 
the azimuthal component 

TEo, Mode (a = 1.4 cm; b = 2.8 cm; / = 15 GHz) 

107 t .'i 

■ iii11i■iiii■■■ i < .... i .... i ....' 

5       10       15      20      25      30      35 
l/k 

FIG. 6. Evolution of the average axial velocity of the beam. 

Figures 6-8 for the evolution of the average beam ve- 
locity show existence of velocity components at higher har- 
monics of the wiggler period. This is shown more clearly 
by taking fast Fourier transforms of the average velocity 
components. The Fourier transform of the average axial 
velocity is shown in Fig. 9 and indicates the existence of a 
second harmonic component, which is some 50 dB below 
the amplitude of the average velocity. This second har- 
monic component is due to the fact that, as in the case of 
planar wigglers, the magnitude of the transverse velocity is 
not constant The Fourier transform of the azimuthal ve- 
locity is shown in Fig. 10, and the predominant oscillation 
is clearly at the fundamental wiggler period. However, 
smaller oscillatory components are also seen at the second 
harmonic and at the subharmonic, although these compo- 
nents are about 35 dB lower than the bulk wiggler oscilla- 
tion. Similar behavior is seen for the average radial veloc- 
ity, as shown in Fig. 11. In the case of the average radial 
velocity, however, the subharmonic is relatively larger than 
for the average azimuthal velocity. 

As in the case of more conventional FEL designs, the 
interaction efficiency is very sensitive to the axial energy 
spread of the beam.9 Observing that the resonance condi- 
tion is ©ja (k+kw)vt, thermal effects become important 
when At/,/v,srIm */(Re k+kw). In the present case, 
<Im *)/tB=0.015 and <Re *> A^sO.88; hence, we expect 
that thermal effects will be important when At//t/, 

10» 

fio»l.6kC    i 
^, = 2.54 cm   ' 
Nw = 5 

1  '   ■   ■   ■   t  .   .   .   .   t   .   f 

i 

0        5       10      15       20      25      30      35 
t/X 

1 i ■ ' ■ ■ i ■ ' ■ ■ i ' ' ' ' i i ' ' ' i i i i i | 

FIG. 5. Evolution of the power at a function of axial distance for an 
ideal beam. 

FIG. 7. Evolution of the average azimuthal velocity of the beam. 

1052       Phys. Plasmas, VoL 1. No. 4. Apr! 1994 
Freunde*«/. 



FIG. 8. Evolution of the avenge radial velocity of the beam. 

äO.80% and Ay/y0~0.74%. The variation in the output 
power as a function of the initial axial energy spread is 
shown in Fig. 12. It is evident in the figure that there is a 
rapid decrease in the output power as the axial energy 
spread increases from zero. This decrease remains rela- 
tively linear untfl thermal effects become important, after 
which the power decreases somewhat less rapidly. Overall, 
however, the output power decreases by more than an or- 
der of magnitude as the initial axial energy spread increases 
to 1.5%. * "«we» 

We now turn to the study of efficiency enhancement 
with a tapered field. Note that with a drive power of 1 kW 
and a configuration of 35 wiggler periods in length with a 
five wiggler period entry taper this system did not reach 
saturation at 15 GHz. Allowing for an arbitrary length, we 
find that saturation in the case of an ideal beam with 
Ayf=0 occurs at z/AKx:40 at a power level of 1.8 MW, 
which corresponds to an efficiency of i7=r9.0%. This satu- 
ration efficiency can be enhanced by tapering of the ampli- 
tudes of the bulk axial component of the CHI wiggler or 
the amplitude and/or period of the periodic components of 
the CHI wiggler. This can be accomplished by tapering the 
solenoidal field or varying the thickness and width of the 
spacers. Of course, the specific design of the tapered com- 
ponents in any given system can result in a field tapering in 
which the amplitude of the bulk axial field as well as the 
amplitude and period of the periodic component of the 

o. 
E 
< 
V 

■c a 

FIG. 10. Fast Fourier transform of the average azimuthal veJociry. 

CHI wiggler vary in complicated ways. The description of 
any specific tapered configuration, therefore, requires the 
detaded description of each of these components. For sim- 
plicity, however, we shall assume that the solenoid and 
spacer dimensions are chosen in such a way that only the 
amplitude of the periodic component of the CHI winder 
vanes, as given in Eq. (46). 

The basic physical mechanism underlying the tapered- 
wiggler interaction depends upon the fact that the elec- 
trons decelerate in the axial direction as they lose energy to 
the wave. If the wiggler is tapered, it is possible to «accel- 
erate the electrons and so prolong the resonant interaction 
and extract more energy from the beam. The specific per- 
formance of a tapered wiggler configuration, however, de- 
pends upon numerous considerations. For example, the 
start-taper point must be chosen to correspond to the po- 
sition at which the bulk of the beam becomes trapped in 
the ponderomotive well. A choice of the start-taper point 
Jiat is either too early or too late results in a degraded 
performance. In addition, the slope of the taper must be 
chosen properly to counter the rate of deceleration of the 
beam. Finally, the magnitude of the efficiency enhance- 
ment depends upon the magnitude of the wiggJer-induced 
transverse velocity. 

As shown in Fig. 6, the average axial electron velocity 
begins to decrease rapidly for z/Aw~2S, which corre- 

-<n u ■ ■ i i i i i , i ,      ■■■-,,!, 
0.0       0.5        1.0        1.5       2.0 

*/* 
2.5       3.0 

FIG. 9. Fast Fourier transform of the average axial velocity. 
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FIG. 12. VtriMion in the output power as * function of the initial axial 
energy spread of the beam. ^^ 

sponds to the trapping of the beam in the ponderomotive 
potential, and we find that the optimal start-taper point for 
the TEQ, mode interaction discussed above occurs for a 
start-taper point of VA*ä 13. Similarly, the optimal slope 
of the taper is found to be ew~ -0.002. A comparison of 
the evolution of the power with axial position for these 
tapered-wiggler parameters and for the uniform wiggler is 
shown in Fig. 13 for the case in which the wiggler ampli- 
tude is tapered to zero. The maximum efficiency found 
with the tapered wiggler in this case is «=10.3%. This 
corresponds to a by-1.3% due to the tapered wiggler 

The reason for this relatively small efficiency enhance- 
ment is that the wiggler-induced transverse velocity is also 
small. The bulk transverse velocity for the CHI wiggler is 
directed in the azimuthal direction, and, as shown in Fig. 
7> <v«>RMS/cs0.1. However, the efficiency enhancement 
predicted from an idealized one-dimensional model of the 
tapered-wiggler interaction is given by9 

A,*-^ %*§^ 
(48) 

TE„, Mode (A= 1.4cm; £> = 2.8cm;/=15GHz) 

uniform wiggler 
i i i I i i i i t.*fT   I ■ ' ■ ■ i i I i i i i I i i i 

Sgur.JontUti0n " *■ "— for '"* Untf0nn - •*»-*W« 
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a = l .4 cm; b = 2.8 cm; Pm = l kW; /.„ = 35^ 
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FIG. 14. Gains for the TE„. TE,,, TE,,, and TE«, modes for the ume 
beam, wiggler, and waveguide parameters as shown for the TEo, mode in 

The maximum tapered-wiggler extraction efficiency is 
found for; A Ja/*.. -1 and is An^yg ^ w^ For 

this specific example (see Fig. 6), <t/,)/c=0.69; hence 
Yi sl.9 and A^-l.oSfc. This is in reasonable agree- 
ment with the simulation. 

The TEQ, «node is the dominant mode for the CHI 
wiggler interaction because it is polarized in the azimuthal 
direction, which corresponds to the predominant direction 
of the wiggler-induced transverse motion. However the 
resonance condition can be satisfied for other modes as 
well. Of these, the TEM mode has a resonance at a fre- 
quency of approximately 26 GHz for these beam and wig- 
gler parameters. However, the TEM mode couples to the 
radial component of the velocity, and, as indicated in Fig. 
8» <»V>RMS/CsO.04, which is much less than the azimuthal 
velocity. Hence, the gain found in simulation for the TEM 
mode is negligible. The TM modes are also polarized pre- 
doimnantly in the radial direction, and these modes are 
also found to have negligible gain for these beam, wiggler 
and waveguide parameters. However, the TE modes can' 
result in gain at other frequencies. 

We restrict the discussion to the high-frequency upper 
intersections between the TE mode dispersion curves and 
the beam resonance line. For the specific choice of param- 
eters used to study the TEo, mode, there are four other TE 
modes that can interact resonantly with the beam. These 
are the TE„ mode, which has an intersection with the 
beam resonance line at a frequency of approximately 25.4 
2u v IÜ?1 m0de * * fre9uencv of approximately 24.8 
OHz, the TEj, mode at a frequency of about 23.5 GHz, 
and the TE4, mode at a frequency of about 21.6 GHz. It 
should be remarked at this point that our single-mode anal- 
ysis of the TEo, mode is valid, since the resonant frequen- 
cies for these modes are much higher that the 13-18 GHz 
found for the TEo, mode. 

A summary of the variation of the gains of these modes 
with frequency is shown in Fig. 14, corresponding to the 
same beam, wiggler, and waveguide parameters used in 
Fig. 4. It is evident from the figure that the gain for each of 
these modes is in the neighborhood of 12-15 dB which is 
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FIG. 15. Evolution of the power for a multimode TE„/TEj, 

much less than the 30 dB found for the TE,,, mode The 
reason for this is that while the TEo, mode is polarized 
entirely in the aamuthal direction, the TE,, modes have a 
component in the radial direction and thus couple less 
strongly to the beam for a given set of wiggle parameters. 
Note that each mode was considered individually in the 
analysis in Fig. 14. However, there is some overlap be- 
tween the TE„ and TEj, modes at approximately 25 GHz 
and between the TEj, and TE3, modes at approximately 24 
GHz. In these frequency regions, therefore, a multimode 
analysis is required. 

In order to examine the issue of multimode operation 
we now consider the growth of the TE„ and TEj, modes at 
25 GHz and the TEj, and TE31 modes at 24 GHz. The 
beam, wiggler, and waveguide parameters are the same as 
used previously, but we now initialize each mode at 500 W 
rather than the 1 kW used for the single-mode analyses. 
The results for the TEn and TEj, modes at 25 GHz are 
shown in Fig. 15, and indicate that the TE„ mode sup- 
presses the growth of the TEj, mode. A similar suppres- 
sion of the higher-order mode is seen in Fig. 16 for the 
TEj, and TEj, modes at 24 GHz. 
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FIG. 16. Evolution of the power for a multimode TEJ./TEJ, 
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FIG. 17. Evolution of the power with anal poaition at 35 GHz. 

B. /(«-band operation 

K J^^ndcwweconsideri8thatofoperationinthe 
Ka band. The electron beam parameters in this case are 
assumed to have an energy of 230 keV, a current of 40 A 
and inner and outer radii of 0.814 and 0.986 cm, respec- 
T^'StS? ***" " characterized by a solenoidal 
field of 5 2 kG, a period of 1.09 cm, and an entry taper of 
five wiggler periods in length. The gain band is extremely 
broad and amplification is found for operation in the TE» 
mode over the frequency range from 28 through 46 GHz 
with inner and outer radii of 0.6 and 1.2 cm, respectively, 
further, we shall assume an input power level of 1 kW in 
all subsequent simulations. 

The evolution of the power as a function of axial po- 
sition is shown in Fig. 17 for the case of an ideal beam lit 

? IC°1 "? 0peration at 35 GHz **" « »P«t powerof 
1 kW. As shown in the figure, saturation occurs at a power 
kvel of approximately 768 kW for an efficiency of s!35% 
The saturation point occurs at */A„,~47.6; hence, the av- 
erage gam over the uniform wiggler region is approxi- 
mately 0.62 dB/cm. PP 

The 35 GHz example is near the center of the gain 
band and is close to the peak efficiency. The maximum 
efficiency (at varying axial distances) is plotted as a func- 
öon of frequency in Fig. 18. As shown in the figure, am- 
plification is found  for frequencies ranging from  28 
through 47 GHz, with the maximum efficiency of approx- 
imately 9.4% found at 33 GHz. This does not, however 
correspond to the peak gain. The variation in the gain with 
frequency is illustrated in Fig. 19. Two peaks are clearly 
evident, corresponding to the high- and low-frequency in- 
tersections between the TEo, mode dispersion curve and 
the beam resonance line. The low-(high-) frequency max- 
imum occurs at 30 GHz (43 GHz) with a gain of approx- 
imately 0.82 dB/cm (0.71 dB/cm). Clearly, this represents 
an extremely broadband interaction. 

The sensitivity of the interaction to the axial energy 
spread is shown in Fig. 20 at a frequency of 35 GHz It is 
clear from the figure that the efficiency decreases from the 
peak of 8.57% to approximately 2.84% for an axial enerev 
spread of 1.0%. While this may seem to be a steep deem? 
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FIG. 18. Variation in the efficiency with frequency. 

it should be recognized that designs of electron guns that 
produce axial energy spreads of less than 0.5% are fairly 
standard at these voltages and has been achieved in several 
experiments to date.""13 Therefore, the peak efficiencies 
predicted in simulation should be achievable in the labora- 
tory. 

We now turn to the question of efficiency enhancement 
with a tapered field. As discussed previously, the efficiency 
enhancement is sensitive to both the slope of the taper and 
to the start-taper point. In particular, the start-taper point 
must be chosen to correspond to a point after which the 
beam has become trapped in the ponderomotive potential 
but before the beam has had a chance to execute one-half 
of its osculation within the potential well. This corresponds 
to a point before saturation is reached. In order to deter- 
mine the optimal start-taper point, therefore, we consider 
the variation in the average axial velocity of the beam with 
axial position. This is shown in Fig. 21 for the case of the 
uniform wiggler interaction at 35 GHz. The figure illus- 
trates the decrease in the axial velocity over the injection 
process during the first five periods of the entry toper re- 
gion, as well as the decrease in the axial velocity after the 
beam becomes trapped at z/A9iz3Q. It is clear from the 
figure that saturation is found for z/Aw^47; hence the 
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FIG. 19. Variation in the gam with frequency. 
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FIG. 20. Variation in the efficiency with an axial energy spread. 

start-taper point must be chosen within the range 
30<z/A.w<4T. Note that the oscillations in the average ax- 
ial velocity for z/Aw>40 correspond to the oscillations of 
the beam in the ponderomotive well. A more precise de- 
termination of the optimal start-taper point must be deter- 
mined by simulations with a tapered wiggler. 

We now consider operation at 35 GHz and assume 
that we have an ideal beam with a vanishing axial energy 
spread. The optimal start-taper point for this case is found 
to be z/Auz:42.2, and the optimum slope is e„sr -0.0005. 
The evolution of the power for this tapered wiggler field is 
shown in Fig. 22 along with the result for the untapered 
wiggler for comparison. As shown in the figure, the output 
power can be substantially enhanced for this example with 
a tapered wiggler, and the maximum output power rises to 
approximately 1.41 MW at z/Xws22S. This corresponds 
to a maximum efficiency of 15.3%. Thus, in contrast to the 
Ku band example, the higher wiggler field used in this case 
permits a larger efficiency enhancement 

As illustrated in Figs. 18 and 19, the uniform-wiggler 
interaction has an extremely broad bandwidth. In contrast, 
it is generally believed that the bandwidth for a tapered- 
wiggler interaction must be narrow, due to the sensitivity 
of the efficiency enhancement to the start-taper point and 
the slope of the taper. While this belief may hold in specific 

0.64 ' ' ■ ' ■ i i '' i i ' i i ■ i .... i .... i , . . 
0 10        20        30        40        50        60 

zfi. 

FIG. 21. Evolution of the average axial velocity of the beam. 
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FIG. 22. Evolution of the power for . upered wig^er. 

cases, it is not generally valid. Indeed, the tapered-wiggler 
interaction can exhibit a broad bandwidth. In order toil- 
lustrate this, we take the optimized tapered-wiggler inter- 
acüon at 35 GHz, as shown in Fig. 22 as a stanSg point, 
and consider a tapered-wiggler amplifier with the «me 
parameters and a length of z/A„=235 (corresponding to 
the peak m the output power at 35 GHz). The essential 
purpo« here is to consider a tapered-wiggler amplifier op- 
tunized for operation at 35 GHz, «id to study the variation 
in the output power as the drive frequency is varied 

The variation in the output power with frequency for 
this example is shown in Fig. 23. It is clear from this figure 
hat the bandwidth of the tapered-wiggler interaction for 

this example is comparable to the uniform-wiggler case 

™? fX7£,°™er,thi8 mtiK band varies ***** approxi- 
mately 750 kW-1.4 MW. However, if the band is restricted 
slightly to between 31-11 GHz, then the output power 
vanes over a much smaller range of from 1.2-1 4 MW 
Thus, we conclude that using a tapered wiggler in this 
device will not compromise the bandwidth. 

C. IP-band operation 

u, J11? ^ ^ mder «»deration " operation in the 
»'band at frequencies between approximately 80 and 100 
OHz. For this purpose, we assume the electron beam is 
characterized by an energy of 500 keV, a current of 50 A. 
and inner and outer radii of 0.4 and 0.5 cm, respectively: 
The CHI wiggler has B0=6.0 kG and has a period of 0 9 
cm with a five wiggler period entry taper and inner and 
outer radu of 0.311 and 0.622 cm, respectively. It should be 
remarked here that this produces a periodic wiggler field of 
approximately 3 kG at the center of the gap. While this 
constitutes a high-amplitude wiggler field, it should be 
noted that simulations with the Poisson code indicate that 
wiggler fields as high as 3.5 kG at the center of the gap are 
possible using standard low carbon steel. Hence, this rep- 
resents a conservative choice for the wiggler field, which 
has been made to ensure that no beam intercepts the wave- 
guide walls. 

The mode of interest here is again the TE«,, mode, and 
we assume the drive power is 1 kW. Wave amplification is 
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TEo, Mode (a = 0.6 cm; b = \2 cm; Pk = lkW) 

35 40 45 
Frequency (GHz) 

^2^f*" fa *• "^ "— — ****** •« • 

found over a frequency band of from approximately 70 

At1,!5 ?£ *%"+ *» P^ «*«- «re found 
m the »-band from 80-100 GHz. This is illustrated in F,g 
24, ,n which we plot the variation in the saturation effi- 
«ency (over a variable interaction length) with frequency 
for an ideal beam with A*-a As is evident in thefigure, 
the maximum efficiency for this choice of parameters^ 
approxunately 10.3% at . frequency of 85 GHz fo7a£ 
output power of almost 2.6 MW. However, the efficiency 
vanes relatively little over the entire W band and^e in- 
teraction exhibits a bandwidth of about 33% 

at 85WGHrVh°CUS ? ^ iteraCti0n * «fc *** «■*** at 85 GHz. The evolution of the power with axial distance 

^t<T^ShOWnuin Fifr 25» ""I «Poneatial growth is 
evident, starting at the end of the entry taper rerion and 
eluding out to the saturation poinlZ ^K 
thatttaigives a total interaction length of only50 cm The 
decline in the efficiency with increases in the initial axial 
energy spread of the beam is much less severe in this case 
than in the two preceding examples due to the relatively 
larger w«gler strength. A plot of the decline in the inter* 
action efficiency with increases in the axial energy spread is 
shown » Fig. 26. A, shown in the figure, 2?efficiency 
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FIG. 24. Virution of the efficiency with frequency in the IP band. 
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FIG. 25. Evolution of the power with axial position at 80 GHz. 

decreases by less than a factor of 2 as the axial energy 
spread increases to somewhat beyond Ay/y0=;1.25%. 
Thus, good operational efficiencies are expected for axial 
energy spreads less than approximately 0.5%. 

We now turn to the case of a tapered wiggler. As men- 
tioned above, the performance of a tapered wiggler ampli- 
fier is sensitive to both the start-taper point and the slope of 
the taper. Optimization of the interaction efficiency for the 
case of operation at 80 GHz indicates that peak efficiency 
is found for a start-taper point at Zf/XwzzS2 and a slope of 
«„,=: —0.003. A plot of the evolution of the power with 
axial distance for this case is shown in Fig. 27. For this 
choice of parameters, it is evident that the output power 
peaks at approximately 4.2 MW over a total length of 88 
wiggler periods. This translates into a total wiggler length 
of only 79 cm, including the five wiggler period entry taper 
region. 

The variation in the output power as a function of 
frequency over the FPband is shown in Fig. 28. The choice 
of parameters here is made to optimize the device for op- 
eration at 80 GHz. Hence, we have chosen a start-toper 
point of V^u.=52, a slope of ew= -0.003, and a total 
length of 88 wiggler periods. As shown in the figure, the 

FIG. 27. Evolution at the power with axial distance for an optimized 
taper at 85 GHz. 

curve of the efficiency versus frequency is double peaked. 
The larger peak is, as might be expected, at 85 GHz and 
the secondary peak is at the upper end of the FT band at 95 
GHz, representing an output power of about 3.5 MW. 
Hence, we conclude that it is possible to design a W-band 
MW amplifier using the CHI wiggler. 

V. SUMMARY AND DISCUSSION 

In this paper, we have presented a complete analytical 
description of a FEL amplifier based upon the CHI wig- 
gler. The nonlinear analysis makes use of an analytical 
representation for the CHI wiggler derived in Sec. II, 
which is, despite certain idealizations made in the interests 
of achieving an analytic representation, in close agreement 
with the results of nonlinear magnetics code calculations.6 

The nonlinear FEL simulation represents a slow-time-scale 
model for the self-consistent evolution of the TE, TM, and 
TEM modes of a coaxial waveguide along with the trajec- 
tories of an ensemble of electrons. It should be emphasized 
that no wiggler-period-averaging process is applied to 
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smooth the orbital dynamics. Hence, we treat the full par- 
tide dynamics and model the injection of the beam into the 
wiggier. 

Three specific examples have been discussed corre- 
sponding to amplifier operation in the K„, K., and W 

ulaüons have been performed primarily for cases in which 

iLTS^" f *' TE°' »«* °f the coaxial wave- 
guide^ üiough multimode operation in the Ku band is also 
studied. For multimode operation, it was found that the 
lower-order mode had the effect of suppressing the higher- 
order mode for each specific case studied. Operation over a 
wide bandwidth is found to be practical for the CHI 
wiggfcr-based FEL's for both the uniform and tapered- 
wiggler examples. i« wi- 

lt is of particular interest to observe that the band- 
width of the interaction for a tapered wiggier is found to be 
comparable to that of the uniform wiggier. This is in con- 
trast to the commonly accepted belief that the sensitivity of 
the tapered-wiggler interaction to the start-taper point and 
the slope of the taper would result in a narrow bandwidth. 
We note here that this conclusion that the tapered-wiggler 
interaction does not necessarily sacrifice bandwidth holds 
for other wiggier designs as well, and is not confined to the 
CHI wiggier. In support of this, we refer the interested 

I^^a^^byU^'r^Mdcato*^thetr 
aMity of a tapered-wiggler FEL based upon a planar wig- 

Our overall conclusion is that the CHI wiggier repre- 
sents a design in which the limitations of conventional wig- 
gle« to reach high field strengths at short wiggier periods 

SST" t°r,e **T m C™ "«^ ^ore. permits the construction of high-frequency FEL amplifiers 
at relatively low beam voltages. In addition, it should also 
be noted that the CHI wiggier contains substantial compo? 

Z,t ™ odd harmonics; principally at the third har- 

ttaSJE^ ^|
h*monic "»PO«* was included in 

tte amiulation stud«, in this paper, we did not study the 
Ami harmonic FEL resonance with the beam. We expect 
Ajttta wdl permit still further reduction, in the beat 
whage requirement, for high-frequency operation; how- 
ever, this issue is now under study. 
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A FREE-ELECTRON LASER FOR CYCLOTRON RESONANT 
HEATING IN MAGNETIC FUSION REACTORS 

H.P. Freund,t M.E. Read 
Physical Sciences, Inc., Alexandria, VA 22314 

and 

R.H. Jackson, D.E. Pershing,tt and J.M. Taccetti§ 
Naval Research Laboratory, Washington, D.C. 20375 

ABSTRACT 

A G-band free-electron laser designed for plasma heating is described using a 

coaxial hybrid iron (CHI) wiggler formed by insertion into a solenoid of a central rod and 

an outer ring of alternating ferrite and nonferrite spacers positioned so that the central ferrite 

(nonferrite) spacers are opposite the outer nonferrite (ferrite) spacers. The CHI wiggler 

provides for enhanced beam focusing and the ability to handle intense beams and high 

power CW radiation. Simulations indicate that a power/efficiency of 3.5 MW/13% are 

possible using a 690 kV/40 A beam. No beam loss was found in simulation. 

^Permanent Address: Science Applications International Corp., McLean, VA 22102. 
ttPermanent Address: Mission Research Corp., Newington, VA 22122. 
§Permanent Address: University of Maryland, College Park, MD 20742. 



Sources of plasma heating for thermonuclear fusion reactors employ both ion and 

electron cyclotron schemes. Electron cyclotron heating requires approximately 20 MW of 

CW power at frequencies of 140-280 GHz depending upon whether the fundamental or 

second harmonic resonance is utilized.1 No source currently under consideration, or even 

anticipated, is expected to produce the full power requirement in a single module, and a 

system composed of several sources is envisioned. In this paper, we describe the design of 

a G-band (140-150 GHz) free-electron laser (FEL) amplifier based upon a coaxial hybrid 

iron (CHI) wiggler2-3 which can meet these requirements. 

 -—■ 

~~Z-   Solenoid   ZZ 
__— '                                        ■—-—__ 

Ferromagnetic 

a 

i I       %       I Waveguide v        R, 

-H    h-V2 R in 

Non-Ferromagnetic 

Fig. 1 Schematic illustration of the CHI wiggler configuration. 



The CHI wiggler is produced by insertion into a solenoid of a central rod and an 

outer ring composed of alternating ferromagnetic and non-ferromagnetic (or dielectric) 

spacers. A schematic representation of the structure is shown in Fig. 1. The position of the 

spacers is such that the ferrite (nonferrite) spacers on the central rod are opposite the 

nonfenite (ferrite) spacers on the outer ring. The field is cylindrically symmetric and 

exhibits rriinima in the center of the gap providing for enhanced beam focusing. 

The CHI wiggler has two major advantages for the application of interest. First, 

even a small amount of beam loss in a high power CW design can result in catastrophic 

failure. For example, the average beam power under discussion is = 28 MW, and a beam 

loss of 1% implies that 28 kW is dissipated in the drift tube walls. This poses a difficult 

design problem. Hence, the favorable focusing properties of the CHI wiggler are ideally 

suited to high power CW applications. Indeed, no beam loss was observed in simulation. 

Second, short wiggler periods are desireable to minimize the required beam energy, while 

high wiggler fields are required for high gains. This is difficult to achieve in conventional 

wiggler designs. However, high fields at short wiggler periods can be achieved with the 

CHI wiggler by using narrow spacers and a ferrite with a high saturation level in a strong 

solenoid. Hence, a CHI wiggler-based FEL is capable of producing high power at the 

required wavelengths with a relatively low energy beam. 

An analytic form for the CHI wiggler field can be found by solution of Laplace's 

equation V2B(r,z) = 0 for appropriate boundary conditions. The solution is cylindrically 

symmetric and has the form2-3 

Bz(r,z) = BQ + BW L cos («*„*) L J , 

and 

Br(r,z) = Bw V sin (nk„z) A— —A , (2) 

where Bw = 2% G(|,£) = /o(^o(0 - /o(0*o(£), 

5-s (Ä)sin (x) N"W + *o(«*JU] . 0) 

(1) 



and 

Tn a (^) sin (^) [l0(nkjin) + hink^j] . (4) 

This solution is in substantial agreement with the results of the Poisson/Superfish family of 

magnetics codes.4 

We consider propagation within a coaxial waveguide with inner and outer radii a 

and b respectively. Space-charge effects are negligible as long as C0b/ckw < Yz^v^/S}^2, 

where CO/, denotes the beam plasma frequency, vw is the bulk transverse wiggler velocity, 

)t) is the bulk relativistic factor of the beam, and yz = (1 - vi\2/c2)~m for a bulk streaming 

velocity v\\. Space-charge effects can also be neglected if (1) the wavelength is less than the 

Debye length and the space-charge waves are subject to strong Landau damping, or (2) the 

bandwidth of the interaction is greater than the plasma frequency. These conditions for the 

neglect of space-charge effects are valid even for relatively high-current electron beams.5 

The boundary conditions of the fields at the coaxial waveguide walls (inner radius a 

and outer radius b) are satisfied by a superposition of the TE, TM, and TEM modes of the 

waveguide which constitute a complete and orthogonal set of basis vectors. The interaction 

strength depends both upon the wave-particle resonance and upon the polarization of the 

moeds. The CHI wiggler induces an oscillation which is predominantly in the aziumthal 

direction; hence, the modes with the highest gains are those which are largely polarized in 

that direction. For the present case, the predominant resonance is with an azimuthally 

polarized TEoi mode. The other modes are farther from resonance and have less favorable 

polarizations. Hence, we limit the discussion here to the case of the TE modes. As such, 

the vector potential can be expressed in cylindrical coordinates as3 

ma 

8A(x,r) = £<X4,m(z) 
/ = 0 
ffl-1 

-jcTFzkKlmr) ersin alm + Z'iK^r) egcos ata ^lm' 
(5) 

where the phase for angular frequency co and wavenumber jfc/m is 

a^Fdz'ktoizl + ie-cot , (6) 



where oß = c2kim
2 + c2Kim

2 for a given cutoff K/m. The amplitudes and wavenumbers are 

assumed to vary slowly in z over a wavelength. The cutoffs are given by solution of the 

dispersion equation Jf(Kima)Yi(Ktmb) = Ji(Kimb)Yi(Kima), where 7/ and Y\ denote the 

regular Bessel and Neumann functions, and Z/(KT/mr) s J[(K[mr) + AimYi(Kimr), where 4/m 

= -J{{Kimb)IY{{Klmb). 

The dynamical equations for the modes in coaxial waveguides have been described 

in detail,3 and the results for the TE modes are 

dz2    [c2       ""      ta 

,2 

Sa,„ = Im ■ 

-   C2",n, ( if] ICJ Z'( **»r) Sln "'- + |7i Z''( 'W) C0S «A- )   ' (7) 

2*£ ^ (*£& J = ^tf/m /J^J ^Z,{Klmr) cos a/m - ^ Z,'(Klmr) sin a,A ,      (8) 

where &/m s eöAim/mgC2 is the normalized amplitude of the modes, and 

= 2*i(fr2-a2)  
'""    (^2-/2)Z^J>)-(Kia2-/2)Z?(K/mfl) ' "Im-,. J  . 2       r2x^r2/„    n       /._2   _2        i2srr2/_-       v    ' W 

The beam is assumed to be monoenergetic with an axial energy spread determined by an 

initial [i.e., at z = 0] pitch angle spread, and the averaging operator is defined over the 

initial beam parameters 

xjj <My<><7x(*b.ya)J_ äyf0an(y/0) (•••) , (10) 

where Ag is the cross-sectional area of the waveguide, jSjo = VZQ/C for an initial axial 

velocity v$, fa = tan^ipyo/pxo), (PxO,PyO,pzo) denote the initial beam momenta, po and 

Apz denote the initial total momentum of the beam and the initial axial momentum spread 

respectively, yb [= - a*o, where *o is the time at which the particle crosses the z = 0 plane] 

is the initial ponderomotive phase, o± and Oj| are the initial distributions of the beam in 

cross-section and phase, and 



As K      dpA expH/7,0 - po) 2/Ap2
z] 

Jo 

-i 

ni) 

is a normalization constant. 

The field equations must be solved simultaneously with the orbit equations for an 

ensemble of electrons. We integrate the complete 3D Lorentz force equations for each 

electron in the aggregate fields of the CHI wiggler and electromagnetic fields for all the 

wave modes. No orbit average is imposed, and we treat the injection of the beam into the 

wiggler. This describes any increase in the effective beam emittance due to the injection 

mechanism. For this purpose, we model the adiabatic injection region by means of a 

tapered wiggler amplitude. In addition, we also consider amplitude tapering for the purpose 

of efficiency enhancement. In order to describe these effects within the CHI wiggler model, 

we assume that the overall coefficient of the periodic component of the field varies as 

2fioSin2(^-j     ;z<AUw 

Bw = { 2B0 ',NwAw<z£z0  - (12) 

2B0[\ + kw£w(z-z0)]; z >z0 

where Nw denotes the number of wiggler periods in the entry taper region, and ew is the 

normalized slope of the taper for purposes of efficiency enhancement. 

The wiggler amplitudes and periods which can be achieved are determined using the 

POISSON codes.4 To this end, we specified vanadium permendur spacers and found that a 

6 kG solenoid saturates the ferrite for spacers with inner and outer radii of a = 0.7 and b = 

1.5 cm, and a wiggler period of Xw = 1.5 cm. We also assume that a and b are the inner 

and outer radii of the waveguide. Using these dimensions, we operate with a 10 kG 

solenoid which provides a maximum periodic field of 4 kG and a uniform axial field 

component of ~ 6 kG. Note that a magneto-resonant enhancement in the gain and efficiency 

is also present when the Larmor period associated with the uniform axial field component is 



close to the wiggler period. We assume that Nw = 5 to preserve the initial beam quality 

through injection. 

Since FEL performance is critically dependent upon beam quality, we must have an 

electron gun which produces an annular beam with a low energy spread. The design tool 

we used for this is the EGUN code.6 Since operation in G-band is desired, we chose an 

electron beam voltage in the neighborhood of 690 kV and a current of 40 A. Assuming that 

the inner and outer radii of the beam at the exit of the gun were 1.05 cm and 1.15 cm 

respectively, it is possible to design a gun which produces an axial energy spread of 

substantially less than 0.1%. The results from the gun calculation were used as initial 

conditions in the FEL simulation. 
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Fig. 2 Efficiency and saturation distance versus frequency at 690 kV. 

We first address the interaction for a uniform wiggler, and consider the case of an 

ideal beam in which the axial energy spread Ayz = 0. We also deal with the TEoi mode at 

an injected power of 1 kW. The efficiency and saturation distance versus frequency are 

plotted in Fig. 2. It is clear that the efficiency decreases with frequency over the resonant 



band from 140-150 GHz. Observe that the maximum efficiency occurs at the minimum 

minimum resonant frequency and does not correspond to the peak gain. This is a common 

feature of the interaction in FELs,7 and stems from the fact that the efficiency varies with 

the difference between the beam velocity vb and the phase velocity of the ponderomotive 

wave formed by the beating of the wiggler and radiation fields [Av = vb - co/(k +kw)]. 

Since the saturation distance is relatively constant over the range of 142-147 GHz, the peak 

gain of » 0.5 dB/cm occurs at « 142 GHz for an efficiency of « 2.2%. As such, we 

assume a frequency of 142.5 GHz in the remainder of the paper. It is possible, however, to 

retune to higher frequencies using higher voltages or shorter wiggler periods. 

Before proceeding to the study of the tapered wiggler interaction, we turn to the 

effect of the axial beam energy spread. The variation in the efficiency as a function of Ayz is 

shown in Fig. 3. Observe that the efficiency falls from about 2.24% to 2.10% as the axial 

energy spread increases to 0.10%. This is a relatively modest decrease in efficiency, and a 

beam quality within this range has been demonstrated in the gun design code. 
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Fig. 3 Variation in the efficiency and saturation distance versus beam thickness. 



Finally, it is important to note that no beam loss was found in the simulation prior 

to saturation for the uniform wiggler cases studied. 

Turning to a tapered wiggler, it should be noted that there is an optimum both in the 

start-taper point and in the slope of the taper. Optimizing in both of these parameters, we 

find that for 1 kW input power the optimal start-taper point is ZQIK = 46 and the optimal 

slope is ew - -0.001. The evolution of the power with axial distance for this choice is 

shown in Fig. 4 for the cases of an ideal beam [Ayz = 0] and for AyJ-fo = 0.2%. Note that 

the interaction length is ~ 200/U, which is the length required to taper the wiggler amplitude 

to zero [note that the uniform axial field component does not vanish]. It is clear that the 

efficiency does not change greatly with the decrease in beam quality over this range, and 

rises to over 13% for an output power of better than 3.5 MW. 
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Fig. 4 Evolution of the power with axial position for two choices of the energy spread. 

The bandwidth of the tapered wiggler interaction is quite large. Consider the case of 

the optimum parameters for the interaction at 142.5 GHz, including the total length of the 

system. The bandwidth is determined by the response of this system at different drive 
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frequencies. In Fig. 5 we plot the tapered efficiency versus frequency. It is evident that the 

efficiency remains high over a frequency range of - 142.5-160 GHz, for a large 

instantaneous bandwidth. This agrees with an earlier study using a simpler FEL model.8 

Finally, note that despite the extended interaction length for the tapered wiggler cases 

shown, no beam loss was found in simulation for any of these parameters. 
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Fig. 5 The bandwidth for the tapered wiggler interaction. 

Our results can be summarized rather simply. In the first place, no beam loss was 

found to occur for either the uniform or tapered wiggler runs. This is required for the 

design of a CW device. In the second place, the efficiencies were found to be fairly high. 

The tapered wiggler interaction produced efficiencies of 13-14%. These conclusions hold 

for both an ideal beam and for one with the more realistic beam energy spread of < 0.2%. It 

should be remarked that such beams are quite reasonable with careful gun design. 

The major source of concern is the length of the interaction. At 200 wiggler periods 

in length, the support of the central rod becomes a serious issue. However, we feel that it is 

not insurmountable, and can be addressed in several ways. Firstly, a vertical mount is 
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necessary in which the central rod is supported from the top by the collector. Secondly, it is 

not necessary to taper the wiggler to saturation. A shorter tapered wiggler would sacrifice 

some power but facilitate the support of the central rod. Lastly, this design is for an 

amplifier configuration; however, an oscillator can also be constructed which would be 

more compact without sacrifice of efficiency. The only drawback to an oscillator would be 

a narrower bandwidth. Tuning of an oscillator would have to be accomplished by varying 

the voltage, and whether the bandwidth would be sufficiently narrow to impair the device's 

usefulness depends upon the Q factor of the cavity. This is an area of future study. Note, 

however, that we do not expand the bandwidth to be less than that of the current generation 

of gyrotrons which are used for this purpose. It should be emphasized that this study 

represents an initial design only, and higher gains and shorter lengths are likely with proper 

optimization of parameters. Preliminary estimates of the efficiency and interaction length 

made on the basis of simple scaling laws7 indicate that it should be possible to shrink the 

interaction length by = 50% with only a minor reduction in the efficiency using a somewhat 

shorter wiggler period and a beam with a lower voltage but a higher current. Operation 

closer to the magneto-resonance is also an attractive means of achieving this goal. 

Cooling is not expected to be a major problem even for long pulse/CW operation 

since this is a low loss mode. Estimates indicate that loading on the central rod is = 10 

W/cm2 at a power of 5 MW, and that the loading on the outer conductor is even less. As a 

result, cooling would be required only near the end of the interaction region using relatively 

narrow water passages in the rod. 

In summary, the CHI wiggler based FEL is attractive for a high power CW 

radiation source. It is a robust design in which high efficiencies are possible over a wide 

parameter range, and the required beam quality is well within current gun technology. 

Finally, overall system efficency can be substantially increased by incorporation of 

depressed collectors for energy recovery. 
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ABSTRACT 

Design and performance calculations for a Coaxial Hybrid Iron (CHI) wiggler free- 

electron laser configuration are presented. The capability of generating high fields at short 

periods, as well as good beam focusing properties, make it a desirable configuration for 

high power coherent radiation sources in relatively compact systems. In addition to a 

description of the geometry, numerical calculations detailing the magnetostatic wiggler 

fields, the beam dynamics, and interaction of the beam with electromagnetic waves in Ka- 

band (26-40 GHz) will be presented. Key considerations for the experimental design will 

be outlined and discussed. 
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INTRODUCTION 

Fast-wave interaction devices, i.e. gyrotrons and FEL/ubitrons, have many 

attractive properties for the generation of high power, high frequency microwaves. 

However, practical devices have been elusive because of magnetic field, voltage, and size 

requirements. For FEL/ubitrons the disadvantage can be partially overcome by the 

utilization of short period (Xw < 5 mm) magnetic wigglers. Several micro-wiggler 

configurations have been investigated, each having its own advantages and disadvantages 

in the areas of achievable field strength and uniformity, ease and cost of fabrication, 

control, tuning, and beam acceptance and focusing (see (1), (2), and references therein). 

The coaxial hybrid iron (CHI) wiggler is a short-period compatible configuration 

which offers several advantages relative to the above issues. This paper will present design 

and performance calculations for a CHI wiggler based Ka-Band FEL amplifier under 

development at the Naval Research Laboratory. The goal is an output power of 100 kW at 

35 GHz while reducing the voltage to approximately 150 kV. 

CHI WIGGLER CONFIGURATION 

The CHI wiggler consists of alternating rings of ferro- and nonferromagnetic 

materials, surrounding a central rod consisting of cylinders of the same materials as the 

rings but shifted axially by half a period. As shown in Fig. 1, a wiggler period consists of 

only two ferromagnetic pieces (an inner cylinder and an outer ring) along with their 

respective non-ferromagnetic spacers. The width of the two ferromagnetic pieces need not 

be the same, as long as the combined length is the same for both inner and outer sections. 

This entire structure is placed inside a solenoid (the axes of the solenoid and the wiggler are 

coincident) and causes a deformation of the solenoidal field into a combination of periodic 

radial and axial components. Having the magnetic field source external to the wiggler offers 

advantages for coil cooling and field tapering. Large wiggler fields are possible while 

maintaining a relatively simple and low-cost design. 



The electron beam is annular and travels down the gap between the outer rings and 

the central piece. The radially undulating magnetic fields cause this annular beam to wiggle 

azimuthally. The electrons may then exchange energy with coaxial modes which contain an 

azimuthal electric field component, for example the TEoi mode. 

ferromagnetic 

non-fefromagnetic 

Fig. 1 CHI wiggler geometry. 

The magnetic fields in the gap can be found analytically by solving Laplace's 

equation with the boundary conditions that the axial component of the magnetic field be 

zero along the faces of the ferromagnetic pieces and some constant value Bz along the faces 

of the non-ferromagnetic ones. The resulting equations for both the axial and radial 

components of the field (and accompanying figures) are described in earlier publications.1-2 

In essence, the radial component varies sinusoidally along the axial direction and has a 

minimum at the center of the gap. The axial component consists of a constant term and 

oscillating terms which are small at the gap center. 

MAGNETOSTATIC WIGGLER ANALYSIS 

The magnetic field profile of a CHI wiggler may be modified by changing or 

tapering several parameters of the basic configuration. Multiple variations of the basic CHI 

wiggler geometry were studied in a parametric search aimed primarily at finding the 

configuration which produced the highest periodic field. This search also detailed ways in 

which the magnetic fields may be tailored by varying the parameters of the geometry. These 



parametric variations were performed by running computer simulations with the POISSON 

codes. The ferromagnetic material was assumed to be low-carbon steel, and the B-H table 

provided with the codes was used. 

A schematic of the "standard" configuration used in the simulations is shown in 

Fig. 2. Only one quarter of the actual wiggler is input because the codes take advantage of 

its symmetry about the axis (bottom edge) and right edge. Notice that this configuration 

also allows study of the entrance fields. Parameters varied on the standard configuration 

include: gap height; inner pole height, width, taper angle; outer pole height, width, taper 

angle; and axial phase offset of inner and outer pieces. 
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— FieldUnaCirt • 

^ ES ^ E3 El >( 

Fig. 2 Standard POISSON input file for the magnetostatic field study. 
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Fig. 3 Peak radial magnetic field versus gap height. 



Sample results are shown in Figs. 3-4. Fig.3 shows the dependence of the 

maximum radial magnetic field on the gap height, and Fig. 4 shows how varying the height 

of the outer rings can be used to change the value of the peak radial field. These and other 

results show that variations of pole shapes increased the peak radial field by only a few 

percent, and also show various ways to taper the field. 

1 15 2 
Pole Height/Xw 

2.5 

Fig. 4 Peak radial field versus the height of the outer rings. 

BEAM DYNAMICS 

The dynamics of electrons in the CHI fields were also studied both analytically and 

computationally. For the analytic solution, it was assumed that the particle did not stray far 

from the gap center-its original position (i.e. Sr « XJ. The simplified forms used for the 

fields were: 

Br = Bwsink^ , 

(1) 
Bz = Bo » 

In the above equations K = 2TE/AH, and Bw and B0 are constants. Assuming a constant bulk 

axial velocity vn and solving the equations of motion to lowest order in wiggler amplitude, 

one obtains the quasi-steady-state solutions: 



ve = 
BUßJß0)B7 

vr = 

[B2
0-{ßJßo)2B2\ 

BQBW 

V\\ cos *** . (2) 

Bt-{ßJß0fB
2

T\ 
v\\si" Kz . (3) 

where ß = U|/c, BT is a constant field in the axial direction, called the transition field, and 

is given by: 

Br = nf-rßolcw, (4) 

where y is the relativistic factor and fo is the magnitude of the total particle velocity (a 

constant) in units of c. The transition field is a constant value of the axial field which 

delineates the transition from group I orbits to group II orbits as Bz is increased. These 

equations describe an electron performing an elliptical orbit in the r-0 plane (with a period 

equal to the wiggler period) while streaming at a constant axial velocity. These results are 

analogous to those of a simplified planar wiggler field with a constant axial guide field.3 

Using energy conservation and the quasi-steady state solutions for v0 and vr 

obtained above, one may obtain a quartic polynomial in vn, which may be solved 

numerically. The existence of a constant field in the axial direction causes the transverse 

velocities to increase about a certain resonant value of the axial field. The azimuthal 

component of the velocity (Eq. 2) (as well as the radial component) is seen to depend 

strongly on this gyroresonance effect, from the fact that the fields are squared in the 

denominator. 

A figure of merit of the strength of the wiggler is a (the ratio of azimuthal to axial 

velocity). A plot of a against the applied field is given in Fig. 5 showing the gyroresonant 

gap. Fig. 5 shows the sensitivity to the applied field, as seen from the width of this gap. 

Notice that orbits below BT (Group I) are more sensitive as Bz approaches BT than those 

above BT (Group II). This sensitivity indicates that tapering of parameters will be very 



important for achieving maximum performance. It also shows the enhancement possible in 

the interaction due to the existence of the axial field. In preparing this figure, single and 

multi-particle three-dimensional orbits were simulated using TRACK-3, a trajectory 

integrator. The fields were calculated using the analytic solutions1 with the field increasing 

adiabatically in the entrance into the wiggler. Results of the simulations agree very well 

with analytic values away from the gyroresonant gap, as the electron remains very near the 

wiggler gap center. 

04  • 

X « 1               1 
- 

* XSMULATIOII 

• THEOHT 

0.25 • 
K • 

a   n» . 
* 

0.19 • 

•    ) 
K 

> X     ' 

1 

> 
«f 

B*/Br 

Fig. 5 Variation of a versus the applied field for BJBT = 0.135 (comparison of theory 
and TRACK-3 simulation results). 

An examination of the trajectories shows a drift in the 0-direction, but this is 

acceptable in the CHI FEL case since it remains in the interaction region due to the 

cylindrical geometry. Calculations have shown that this drift can be explained using 

Busch's theorem and depends on the entrance conditions used in the simulation. Actual 

CHI wiggler axial fields decrease in magnitude at the entrance into the wiggler (due to the 

iron pieces), and may partially cancel out this drift. Future plans include running 

simulations with PIC (particle in cell) codes utilizing 2-D simulations of the CHI wiggler 

field including entrance conditions. 



THE EXPERIMENT 

The experiment to be built at the Naval Research Lab will be a CHI wiggler FEL 

operating as an amplifier at a frequency of 35 GHz in Ka-Band. The principal goal of the 

experiment is to operate at lower voltages while still generating high power, high frequency 

microwaves. Current plans call for operation at approximately 150 kV with an output 

power of 100 kW. 

The major components of the FEL are the gun, the wiggler section (including the 

solenoid and the waveguide), the beam collector, and the input and output couplers. The 

gun will operate at around 150 kV and produce a 10 A annular beam for the CHI wiggler. 

The wiggler assembly will be placed horizontally within the bore of an existing 

superconducting magnet. The central rod of the wiggler will be supported by radial struts 

located near the gun and the collector. The coaxial waveguide consists of the (electroplated) 

faces of the inner and outer pieces of the wiggler. This waveguide will contain a central 

sever to reduce if reflections. The diameter of the wiggler, and therefore of the waveguide, 

is limited by the bore of the magnet, 6.4 cm, and places a lower bound on our operating 

frequency. The wiggler will have a period of about 1 cm and will be about 60 periods in 

length. 

A SLAC klystron gun will be modified to produce the necessary annular beam. The 

superconducting magnet, with an axial field of up to 30 kG, will permit an extensive study 

of the full performance range of the CHI FEL. The bore size of the magnet is 6.4 cm and 

its total length is 78.3 cm. 

Preliminary calculations using untapered configurations (using a previously 

described nonlinear three-dimensional slow-time-scale formulation2) have shown gains on 

the order of 0.3 dB/cm and efficiencies in excess of 10 % in this frequency range. Studies 

are currently under way to lower the voltage required while still retaining performance. 

Figure 6 shows the gain profile for a specific set of parameters, for which a saturated gain 

of about 30 dB (0.26 dB/cm) with a gain bandwidth of around 20% was achieved. In this 



figure, Rmin and Rmax are the inner and outer radii of the coaxial waveguide (i.e. the 

wiggler gap), and Nw is the number of adiabatic entrance periods. It must again be stressed 

that these results are very preliminary since optimization of parameters was not performed. 
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Fig. 6 Preliminary simulation results for a Ka-Band 
amplifier utilizing a coaxial TEoi mode. 

SUMMARY AND CONCLUSIONS 

The above results indicate interesting potential for high frequency amplifiers based 

on the CHI wiggler configuration. Work is in progress on the design of a CHI wiggler 

ubitron amplifier in Ka-band. A Pierce-type electron gun is being modified to produce a 

hollow beam for the device, which will have a period of about 1 cm and will consist of 

about sixty periods with a central sever. An existing superconducting magnet (Bz < 30 kG) 

will be used to produce the axial field in order to allow exploration of the full performance 

range of the CHI wiggler. 

This work was supported by the Office of Naval Research. 
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Improved amplifier performance of the NRL ubitron 

D.E. Pershing \ R.H. Jackson, H. Bluem 2 and H.P. Freund 3 

Vacuum Electronics Branch. Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375. USA 

Improved amplifier performance of the NRL Ku-band ubitron is reported following several experimental modifications The 
major modification ,s the substitution of a higher-current (100 A), higher-quality electron gun for the original modified SLAC 
klystron gun (250 kV 37 A). The experimental configuration is otherwise unchanged: a solid, unifomvdensity electron beam 
propagatmg trough a heucal wiggler/axial guide field configuration, interacting with a co-propagating circularly polarized TF.. rf 
wave. With these changes small-signal gains of 23 dB have been observed in the 12.6-17.5 GHz frequency range Good agreement 

COOTRACHNE ,ed *** *" ** Km8n TCeime *" be" ^^"^ "Sin8 * three-wi«»Icr nKXiel in the 3D nonünear FEL 

1. Introduction 

The Vacuum Electronics Branch of the Naval Re- 
search Laboratory has an ongoing program to evaluate 
the potential of the ubitron/FEL interaction as a high- 
gain, high-power, broad-bandwidth micro- or millimeter 
wave source. Moderate gain Operation of the NRL 
ubitron has been previously reported using a modified 
SLAC klystron gun [1,2]. An improvement in the gain 
has been observed following the installation of a higher- 
current, higher-quality electron gun [3]. The maximum 
gain for a uniform axial field is 20 dB, and substantial 
gain has been measured over the 12.6 to 17.4 GHz 
frequency range. Gain is found to be limited by the 
onset of a high-power oscillation. The oscillation can 
reach high power levels («700 kW) and is dependent 

Permanent address:  Mission Research Corporation, 8560 
3 Cinderbed Rd.. Suite 700, Newington, VA 22122, USA. 

Permanent address: Laboratory for Plasma Research, Uni- 
versity of Maryland. College Park, Maryland 20742, USA. 
Permanent   address:   Science   Applications   International 
Corp., McLean, Virginia 22102, USA. 

on the wiggler field. Power is also dependent on the 
axial field profile and trim coil current. In addition, it 
exhibits oscillation thresholds dependent upon both 
beam voltage and wiggle velocity. Both amplifier and 
oscillator experimental measurements are compared with 
a fully three-dimensional nonlinear simulation of this 
configuration using the code ARACHNE [4-7]. 

2. Experimental configuration 

The present amplifier configuration is shown in fig. 
1. The electron gun is on the left. All current emitted 
from the gun is magnetically focused and injected into 
the interaction region; no beam scraping is used. A 
solenoidal field, generated by 14 individual coils, is used 
for beam confinement and transport. Following the 
direction of beam propagation, the major components 
are: resistive injected-current monitor, modified four- 
port turnstile junction input coupler, double taper, fluid 
cooled bifilar helix (repetitively pulsed), resistive trans- 
mitted current monitor, beam collector, four-port out- 
put coupler, and a combination water load/calorimeter. 

ELECTRON OUN 
MTCH COOLED SOLENOID 1 DC )     CUWENT MONITOR 

Fig. 1. Schematic illustration of the NRL ubitron. 
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The input coupler generally launches a LHCP TE„ 
fundamental mode wave into the interaction region, 
although it can also launch a linearly polarized wave if 
desired. The output coupler employs both broadwall 
and narrow-wall ports for TE/TM mode selection pur- 
poses. Essentially all of the injected and amplified rf 
power is absorbed in the water load/calorimeter. The 
parameter range over which the ubitron has been oper- 
ated is: 190 < Vb < 250 kV, 65 < /„ < 94 A, 1.8 < B < 
2.9 kG,  Bw<575 G, and  12.6 </< 17.4 GHz. The 
wiggler field has a 2.54 cm period with effectively 10 
periods in the uniform region and 4 and 5 periods in the 
entrance and exit tapers, respectively. The device is 
typically repetitively pulsed in the 3-6 Hz range. 

3. Experimental results and comparison with theory 

Ubitron amplifier performance has been measured 
as a function of several independent variables: rf 
frequency, wiggler field, beam voltage, and axial field. 
Most measurements are in the small-signal regime- 
saturation was not reached. The major performance 
results discussed below are gain vs frequency and wig- 
gler field. 

The RHCP wiggler field is generated by a multiple- 
turn bifilar helix electromagnet with radially tapered 
entrance and exit sections which was wound on an 
aluminum form in anticipation of dc operation. How- 
ever, due to cooling problems, the wiggler is operated in 
a   repetitively   pulsed   mode   to   achieve  high   field 

strengths. As shown in fig. 2, the resulting transverse 
field profile was measured only on-axis. Due principally 
to magnetic diffusion effects, the field profile departs 
considerably from the ideal profile, which would consist 
of a smooth adiabatic increase in transverse field fol- 
lowed by a constant transverse field region and then an 
adiabatically decreasing field. 

In addition to the reduced performance that could 
be expected from this wiggler profile, comparison be- 
tween experiment and theory is complicated due to the 
difficulty in modelling this field. Since only the on-axis 
transverse field profile was measured, insufficient data 
were obtamed to directly incorporate the measured pro- 
file into the simulation. For simulation purposes, there- 
fore, the wiggler field is approximated as the superposi- 
tion of the fields of three ideal bifilar helices of different 
amplitude and period. The fit is also shown in fig. 2 
and comes reasonably close to replicating the fine struc- 
ture in the uniform field region. 

The small-signal gain is shown in fig. 3 for the 
following parameters:  Vb - 232 kV, /„ - 85 A   B - 
2.51 kG, Bm - 294 G, and Pm « 150 W. The solid Une 
represents simulation results in the Raman regime from 
the code ARACHNE for axial energy spreads of 0 and 
0.25%. For this set of parameters, velocity spread has 
uttle effect on gain. The simulation results are in good 
agreement with the average measured gain, but are less 
accurate concerning the detailed profile. Contributing 
factors to this discrepancy are the wiggler field model, 
detailed beam characteristics not included in the code 
and treatment of ac space charge in the code 

> 
E 

41 a. m 

Fig. 2. Comparison of the measured transverse 
on-axis wiggler field and the three-wiggler model used in simulation. 
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The saturation behavior has not been measured due 
to an rf oscillation that limited the maximum gain to 
approximately 20 dB. This value was measured at 14.8 
and 16.6 GHz for different combinations of Vh, Bt, and 

Bw. Insufficient rf drive power was available to achieve 
saturation at this level of gain. The maximum power 
measured in the amplifier mode was 200-300 kW using 
a uniform Bz field. However, approximately 23 dB of 
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III. RAMAN EXPERIMENTS 



130 D.E. Penhing et al. / Improved amplifier performance of the NRL ubitron 

gain has been measured using a nonuniform B2 field. 
Bandwidth in the small-signal regime exceeds 25*, and 
the calculated peak gain/wavelength is approximately 
1.6 dB/X. 

To further characterize ubitron performance, the gain 
dependence on wiggler field was measured and calcu- 
lated for a second set of parameters and is shown in fig. 
4. In this case, the simulation and measurements are in 
good agreement for the wiggler field required to gener- 
ate maximum gain. However, the values of that maxi- 
mum gain differ significantly. Discrepancies between 
experiment and theory are due to the same factors listed 
above. 

4. High power oscillation 

In an attempt to increase amplifier gain by increas- 
ing the wiggler field, an oscillation was observed that 
limited maximum gain, and which reached power levels 
of approximately 700 kW (corresponding to an ef- 
ficiency of 3%) at a frequency of approximately 17.4 
GHz. Severe beam disruption also occurred at high 
power levels. Identification of the oscillation mecha- 
nism remains elusive at this time. Experimental evi- 
dence points to either a fundamental ubitron oscillation 
with the TE„ mode, or a second harmonic ubitron 
interaction with the TE21 mode. This ambiguity results 

from inadequate diagnostics to discriminate between 
TE modes. The principal characteristics of the oscilla- 
tion are: 

(1) The oscillation requires the wiggler field, and is 
not strongly dependent on the axial field; hence it is not 
a cyclotron maser. The oscillation would have to switch 
between the 2nd, 3rd and 4th gyrotron harmonics to 
maintain either a TE2„ or a TE„ intersection near 18 
GHz for the parameters at which oscillation was ob- 
served. 

(2) Oscillation power is dependent on the axial field 
profile, wiggler field amplitude, and on gun trim coil 
current. Measurements of oscillator power dependence 
on wiggler field is shown in fig. 5 for two axial field 
profiles. The compression Bz profile has the effect of 
slightly reducing the beam diameter in the wiggler re- 
gion. The maximum power in this case is considerably 
reduced from the maximum power measured with a 
uniform Bt, for nominal values of trim current, al- 
though the oscillation will start at a lower wiggler field. 
Measurements of oscillator power vs trim coil current 
for both field profiles show a strong linear reduction in 
oscillator power with increasing trim current. 

(3) High output power is possible. However, at high 
power levels, considerable pulse-to-pulse amplitude 
fluctuations were observed, not correlated to macro- 
scopic parameter variations. Both output coupler/ diode 
detector and calorimetric power measurements were 
made. 
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(4) The oscillation frequency, which typically differs 
trom the amplifier frequency, is near the TE2) mode 
cutoff. A wavemeter was used for this measurement. 
The oscillation does not appear to be a typical feedback 
oscillation at the driven frequency, but grows from 
noise on the beam at 17.4 GHz. Examination of uncou- 
pled dispersion curves for both TE„ and TE21 combi- 
nations show possible intersections near 17.4 GHz. 

(5) An oscillation threshold exists at an on-axis 
velocity ratio, independent of the axial field over the 
range of 1.9 to 2.9 kG. The wiggler field required to 
initiate the oscillation was measured for a variety of 
beam voltages and axial field values and/or profiles. 
Although the initiation wiggler field spans the range of 
250 to 300 G, the on-axis v±/vn is found to be ap- 
proximately 0.13, computed in each case for an ideal 
wiggler field and a uniform axial field of the measured 
values. 

(6) No oscillation occurs for beam voltages below 
approximately 200 kV - independent of the wiggler 
field magnitude. At this voltage, the second harmonic 
TE2, interaction occurs at a frequency of 18.7 GHz 
which is considerably higher than observed. However, 
there is no TE„ mode intersection at all at this voltage. 

(7) Output coupler characteristics eliminate the pos- 
sibility of a TM interaction. 

The  amplifier  code  ARACHNE  (including   the 
three-wiggler model), was employed to model the inter- 
action. In order to obtain a second harmonic ubitron 
interaction with the TE2) mode the waveguide radius 
was increased from 0.815 to 0.844 cm in order to lower 
the cutoff frequency below the measured 17.4 GHz 
oscillation frequency. Simulation results are presented 
in   fig.  5,  showing  the  computed   oscillator  power 
(saturated amplifier power) as a function of wiggler 
field for a uniform 2.76 kG axial field. The shape of the 
curve is in reasonable agreement with measured data, 
lending credence to the hypothesis that this is a second 
harmonic interaction with the TE2, mode. The maxi- 
mum computed oscillator power (intracavity) is ap- 
proximately 1.5 MW, also in reasonable agreement with 
the estimated maximum oscillator output power of 700 
kW. Calculations of the saturated amplifier power for 
the TE„ mode using ARACHNE (with the nominal 
waveguide radius of 0.815 cm) are on the order of 4-5 
MW. This is considerably higher than the measured 
value. 

Factors favoring the TE„ interpretation are: (1) the 
measured frequency is consistent with a TE„ intersec- 
tion for the nominal waveguide radius, (2) the voltage 
threshold is consistent with no TE„ intersection for 
those parameters, and (3) no mode conversion is re- 
quired for the free propagation of the signal. Arguments 
against the TE„ interpretation are less well founded on 
explicit observations: (1) measurements of component 
return loss using linear polarization do not show large 

reflections at 17.4 GHz. reflectivity is actually higher 
near 17.8 GHz, (2) the reason for the power sensitivity 
to trim coil current is not clear, and (3) the measured 
power level appears to be considerably lower than pre- 
dicted by simulation. 

The primary factors leading to a TE:, interpretation 
of the observed oscillation characteristics are: (1) The 
reflectivity is high near cutoff which facilitates oscilla- 
tion. (2) the dispersion curve intersection frequency is 
fairly  constant,   not  highly  dependent  on  external 
parameters, (3) operation near cutoff is also consistent 
with pulse-to-pulse power fluctuations and power sensi- 
tivity to trim current, and (4) the observed power is 
consistent with the expected saturation level based on 
simulations. The primary factors against a TE21 inter- 
pretation are related. While it is possible that the dis- 
persion curve is altered in such a manner to reduce the 
cutoff frequency from the vacuum value of 17.8 to 17.4 
GHz in the interaction region, TE21 propagation be- 
yond the beam collector is not possible without mode 
conversion, since 17.4 GHz is below the vacuum wave- 
guide cutoff. 

5. Summary 

Amplifier performance of the NRL ubitron has im- 
proved following the installation of a higher-current, 
higher-quality electron gun. A gain of 20 dB has been 
measured, corresponding to a peak gain/wavelength of 
1.6 dB/A. The maximum output power is 200-300 kW. 
3D nonlinear simulations of the ubitron configuration, 
including a three-wiggler model, are in reasonable 
agreement with measured data. Small-signal bandwidth 
has been measured to exceed 25%. However, saturation 
has not been achieved due to gain limitations caused by 
the onset of a high power oscillation. The oscillation 
can be fairly powerful: approximately 700 kW has been 
measured. The oscillation mechanism has not been con- 
clusively identified at this time. A major component 
redesign is currently under way in order to improve the 
wiggler and to enhance the diagnostics available for 
distinguishing between TE modes. 
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ABSTRACT 

Operation of the Naval Research Laboratory Ku-band ubitron has successfully 

demonstrated a high power/efficiency and broad bandwidth capability. This device 

employs a helical wiggler/axial guide field configuration with a 212-255 kV/67-100 A 

electron beam and wiggler and guide magnetic fields of 175-320 G and 1.75-2.54 kG. 

Performance levels achieved at 16.6 GHz can be summarized as a peak power of 4.2 MW 

for an efficiency of 17.5% and a gain of 29 dB, and an instantaneous bandwidth of 22%. 

Substantial beam loss was observed. The specific loss rate was correlated with output 

power, and reached a level of 50% beam loss at the 4.2 MW level. Nonlinear simulations 

of the experiment are in good agreement with these observations. 
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I. INTRODUCTION 

With several modifications to the previous design,1 the NRL ubitron has 

demonstrated operation as a high power, broad band, and efficient amplifier with a 

maximum output power of 4.2 MW for an efficiency of 18%, a 29 dB gain, and a large 

signal bandwidth (not saturated) greater than 22%. The experiement met the performance 

goals for the fundamental mode amplifier; specifically, an output power of 1-5 MW, an 

efficiency greater than 15%, a large-signal gain of 25-30 dB, and a large-signal 

bandwidth greater than 20%. Experimental results are in good agreement with theoretical 

predictions using the 3-D nonlinear code ARACHNE.2'4 It is important to note in this 

regard that, in contrast to earlier devices operating in the Raman regime,3 the DC self- 

fields of the beam played an important role in the interaction. 

The fundamental mode amplifier reported here is only one of several experiments 

in the NRL ubitron program which includes integrated theory, simulation, design, 

fabrication, and testing whose objective is the determination of the potential of the 

ubitron/FEL as the basis for a new class of high-power, broad band, micro- and 

millimeter wave amplifiers. Experiments include the fundamental mode amplifier, a 

harmonic amplifier using rectangular waveguide and a linear wiggler,5 and a reduced 

voltage ubitron using the CHI wiggler.6'7 Three dimensional theories and simulation 

codes have been developed for these and other interaction geometries. 

n. EXPERIMENTAL RESULTS 

A summary of the basic parameters and recent alterations in the experiment is 

reported here. An extensive description of other experimental aspects is given in ref. 1. 

The wiggler is a pulsed bifilar helix with a period of 2.54 cm and an overall length 33 

wiggler periods. Of this length, the first five and the last three wiggler periods represent 

an adiabatic entrance and exit. Amplification was measured over the following parameter 

ranges: wiggler amplitude « 175-320 G, axial field « 1.75-2.54 kG, beam voltage « 212- 



254 kV, and beam current = 67-100 A. The beam radius upon wiggler entry is = 0.4 cm 

and the waveguide radius is 0.815 cm. The FWHM of the beam pulse is ~ 2.4 ^s, with a 

flat top of = 1 |is. Operation is largely in the TEn mode at Ku band (12.4-18 GHz). The 

experimental configuration is shown in Fig. 1 with the major components identified. Note 

that the solenoid is split to accommodate a gate valve separating the gun and the 

interaction/diagnostics sections which necessitated additional solenoid coils to maintain 

the field profile. Vacuum pumping has been added to the calorimeter to accommodate 

any additional gas loading caused by beam loss in the interaction region. 

INJECTED CURRENT MONITOR BEAM COLLECTOR 

GATE VALVE FLUID COOLED BIFIL AR TRANSMITTED CURRENT MONITOR 
HEUX WIGGLER (pulsed) 

TO VACUUM 

PUMP 

Fig. 1 Illustration of the experimental configuration. 

Amplification has been measured over a wide parameter range. Although the 

nominal beam and axial field values are 250 kV/100 A and 2.2 kG, these do not 

necessarily represent the optimal parameter range, and equivalent output power has been 

obtained for several different parameter sets. The maximum power measured to date is 

4.2-4.5 MW at a frequency of 16.6 GHz. Typical waveforms showing the essential 

characteristics of ubitron operation are given in Fig. 2. In this case, an output power of = 

4.5 MW (4.2 MW from calorimeter) was measured for a 245 kV/94 A beam, with axial 

guide field and wiggler field amplitudes of 2.47 kG and 270 G, respectively. This 

represents a gain of 29 dB and an efficiency 18%. 
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1 2 
Time (fis) 

Fig. 2 Typical waveforms. 

It is important to observe the presence of beam loss on the rising and falling edges 

of the voltage pulse as well as high beam loss during the interaction. This will be 

discussed later in more detail. Note that the ripples on the two beam current traces are not 

physical, but are due to current monitor ringing. It should also be noted that the output 

power shown in the figure does not represent saturation of the interaction. Indeed, for 

most parameters we have been unable to drive the system to saturation. 

The ubitron has also demonstrated a wide instantaneous bandwidth. However, 

there are two factors which render this measurement difficult. Specifically (1) the 

modulator exhibits a slow time scale voltage drift, and (2) in order to accommodate high 

input power, the phase splitting circuitry utilizes two sets of short slot hybrids to cover 

most of Ku band and several hours are required switch between the them. Hence, the 

bandwidth measurements are not always made with the identical parameters; however, 

the measurements are indicative of ubitron bandwidth potential. Fig. 3 shows the 

bandwidth characteristics for a case in which the output power exceeds 600 kW. This 

represents a bandwidth in excess of 22%. 
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Fig. 3 Ubitron bandwidth characteristics. 

The NRL ubitron exhibits a high degree of sensitivity to variations in the beam 

voltage and the axial and wiggler magnetic fields. An example of the sensitivity of the 

output power to beam voltage is shown in Fig. 4. Output power for this case is seen to 

reach a maximum in excess of 4 MW at a beam voltage of 245 kV, and to increase from 

2-4 MW as the voltage increases about 4.5% from 234-245 kV. This sensitivity points to 

the need for very tight modulator voltage control. Similar sensitivity to variations in the 

axial and wiggler magnetic fields are also seen. In order to illustrate the sensitivity of the 

interaction to variations in the axial magnetic field, we consider a 250 kV/83 A beam 

with a wiggler field amplitude of 275 G. Experimentally, the output power is found to 

vary from 2-4.4 MW at 16.6 GHz as the axial magnetic field increases from 2.4-2.54 kG. 

Observe that the output power nearly doubles for an axial field increase of only about 

5.5%. Somewhat less sensitivity is measured for wiggler field variations. With a 247 

kV/83 A beam and an axial magnetic field of 7.6 kG, the output power increases from 0.4 

to 2.6 MW at 16.6 GHz as the wiggler field increases from 160-280 G (i.e., a field 

increase of ~ 25 % is required to double the output power). Part of the sensitivity to the 



parameters arises because the system is not driven to saturation; hence, small changes in 

the growth rate can result in relatively large variations in the output power. 
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Fig. 4 Variation in the output power with beam voltage. 

III. COMPARISON WITH THEORY 

A key feature of the NRL ubitron program is the integration of theoretical, 

computational, and experimental efforts which leads to the development and validation of 

a detailed and precise design and simulation capability. To demonstrate this capability, 

we of course need to compare experimental measurements with theory. We use the 3-D 

nonlinear simulation code ARACHNE, which in its latest version3-4 includes both RF and 

DC beam space charge effects, under the assumption of an initial axial energy spread of 

1.5 %. It is also important to bear in mind that, as pointed out in ref. 3, the inclusion of 

the DC space-charge fields are important for the current experiment 

In general, we find that experimental performance generally follows theoretical 

predictions as far as trends with wiggler field, axial field, beam voltage, and beam 

transmission are concerned. However, we usually measure somewhat higher power than 

predicted theoretically. Typically, we find that an approximately 5 % increase in both the 



7 

wiggler and axial magnetic fields in ARACHNE over the experimental calibration results 

in good agreement between theory and experiment. Note that this is slightly outside our 

estimated 2-3 % experimental uncertainty. Although this is not a large discrepancy, it is 

an issue that is still under investigation, and there are several possible factors which 

contribute to the discrepancy. On the theoretical side, possible reasons for the discrepancy 

include unavoidable differences between the experimental implementation and theoretical 

model, such as mechanical and field misalignments or actual injected beam conditions. 

Although these factors would normally have a deleterious affect on output power, we 

cannot rule these out as possible contributing factors. Experimentally, the presence of 

internal reflections could increase the effective input power, and thereby increase the 

output power over that expected for a single pass amplifier. In addition, although the 

solenoid and wiggler fields were carefully measured with calibrated diagnostics and 

compared with simulations prior to assembly, a final confirmation of the field calibrations 

must await the ultimate dismantling of the apparatus. 

The first comparison between theory and experiment deals with the dependence of 

output power on input power. To this end, drive curves at 16.6 GHz are shown in Fig. 5 

from the experiment and from ARACHNE for a 244 kV/82 A electron beam and for 

wiggler and axial guide magnetic fields of 231 G and 2.47 kG, respectively. Power 

measurements are higher than predicted by ARACHNE for single pass amplification, but 

the system is not driven to saturation. In order to explain the discrepancy, we first assume 

the presence of a small amount of internal reflections which can increase the output 

power over that computed for single pass amplification. Note that the beam flat top is 

about 1 \is wide and the distance from the input coupler to the calorimeter is ~ 125 cm. 

Hence, more than 100 round trip bounces of the radiation are possible during the beam 

pulse and even a small degree of reflection can substantially alter the output power. In the 

case shown, an assumed total reflection coefficient of 0.65% resulted in good agreement 

between the simulation and the experiment. However, based on cold tests and some 



reflected power during operation, we expect the round trip reflections of the order of 0.1 ■ 

0.3% at 16.6 GHz. Therefore, we expect that other factors must be involved. 
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Fig. 5 Drive curve showing the output power and gain as a function of the input power. 
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Fig. 6 Variation in the output power with beam voltage for several values of wiggler amplitude. 



The dependence of the output power on beam voltage for several values of the 

wiggler field is shown in Fig. 6. The data for this figure are unfolded from a series of 

acquired waveforms and presented as output power vs. beam voltage, where each point 

represents a digitized value. The simulation results from ARACHNE are shown with the 

solid curves, with the curve thickness matching the corresponding point thickness of the 

experimental measurement for a given wiggler field. Good agreement is shown in the 

voltage at which the peak output power occurs and in the overall voltage dependence. 

However, as mentioned above, both the wiggler and axial magnetic field values used in 

the simulation were 5 % higher than the experimental values. 

In view of these two comparisons, it is our expectation that the discrepancy 

between theory and experiment can, in many case, be accounted for by the assumptions 

of (1) a small degree of internal reflections, and (2) a recalibration in the magnetic field 

levels. 
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Fig. 7 Variation in beam loss with output power. 

One final issue which is important in a production device is the beam loss. Both 

simulation and experiment have shown high beam loss in the interaction region at 

multimegawatt power levels. This is demonstrated in Fig. 7 in which we plot the variation 
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in beam loss with output power for a variety of different beam, wiggler and axial field 

parameters. The solid triangles in the figure represent data collected from experimental 

runs in which the variation in output power versus wiggler amplitude was studied. 

Similarly, the solid circles (diamonds) represent data collected from studies of the 

variation in the output power versus the axial guide field (beam voltage). The hollow 

triangles represent ARACHNE simulations of output power dependencies on wiggler and 

axial guide fields. The solid line is simply a smooth fit to all of these points. It is evident 

that the fraction of transmitted beam falls fairly uniformly with output power and reaches 

about 50% transmission at a 4 MW power level. Observe that all the points from both the 

experiment and the simulation cluster fairly closely about the fitted curve, and represents 

good agreement between the theory and the experiment 

Although this degree of beam loss is clearly undesirable for high duty factor 

operation, it does not necessarily result in tube damage. The NRL ubitron was 

disassembled after many hours of operation at 6 pps and examined for damage in the 

wiggler region. None was found. This not to say that the current loss is not a potential 

problem; rather, that the beam loss is sufficiently distributed axially to result in little or 

no tube damage. This effect could probably be reduced by simply reducing the initial 

beam diameter, or operation further from gyroresonance. 

IV. SUMMARY 

In conclusion, results from the NRL ubitron experiment demonstrate that the 

performance potential of the ubitron/FEL has been realized. A configuration using a 

fundamental mode circularly polarized rf wave and a helical wiggler results in a relatively 

compact, high power, and efficient amplifier with wide instantaneous bandwidth and 

without the necessity of wiggler field tapering. Performance levels compare quite 

favorably with those from other pulsed, high power microwave amplifier designs. 
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In general, there is good agreement between theory and experiment considering 

output power dependence on beam voltage, wiggler field, and axial field. Both theory and 

experiment show a high degree of output power sensitivity to beam voltage and axial 

magnetic field. Some differences exist, with the experimental power levels typically 

higher than predicted. Work is underway to determine the source of this discrepancy. At 

the present time, we are examining the questions of internal reflections, magnetic field 

calibrations, and beam modelling as sources of the discrepancy. Further attention to the 

beam loss issue is required for higher duty factor operation. Future work will include 

more extensive measurements of noise and phase characteristics, as well as utilization of 

our theory/design capability for designs at higher frequency and lower voltage regimes. 
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The first experimental demonstration of a harmonic free-elec.ron-laser amplifier utilizing a periodic 
posmon mstab.l.ty «described for a planar wiggler configuration. The interaction occurs at the even 

J-TM? «!?„fBBSTOBU,\ A maximUm gai" 0f 7 dB was obscrvcd over • fluency band ranging 
. ,     1, ™C cx"er,mcntal resulls are «""P»red with predictions from the three-dimensional 

simulation code W.GOL.N w.th excellent agreement. Improvements due to a tapered wiggler for this in- 
teraction are discussed. w 

PACS numbers: 42.5S.Tb 

The free-electron laser (FED dates back over three 
decades [1,2], and has been intensively studied for over a 
decade. Recently, harmonic generation has become an 
important topic for either extending the frequency range 
of fixed-voltage facilities or reducing the beam voltage 
required at a given frequency. Reduced beam voltage 
would have a significant impact on potential applications. 
This paper describes the first measurement of even- 
harmonic amplification utilizing a periodic position insta- 
bility [2,3]. 

For conventional planar-wiggler FELs the interaction 
occurs at the fundamental and the odd harmonics [4-11], 
due to the velocity harmonics present in the unperturbed 
undulations of the electrons. These harmonics are pres- 
ent even for ideal wigglers with perfect beam injection, 
and give rise to the periodic velocity instability of the 
FEL.   The even-harmonic interaction considered here, 
however, requires no higher velocity harmonics.  Rather, 
it depends on a synchronism in the electron position with 
respect to an antisymmetric radiation field. The interac- 
tion can occur with either a transverse or axiai electric 
field. The transverse field must be odd in the direction of 
the wiggle motion, and the axial field must be even for 
the respective interactions to occur.   For a second- 
harmonic interaction, the radiation goes through two cy- 
cles as the electron beam traverses one wiggler period kw. 

For the transverse interaction, the on-axis electric field 
is zero, and the field peaks oft* axis. Considering only the 
central part of the beam, the essentials of the transverse 
interaction are shown in Fig. 1(a) where the electron 
motion is greatly exaggerated and the transverse profile 
of the field is included (in this case, the TEn rectangular 
waveguide mode). As seen in the figure, the electron will 
always be in either a decelerating or a zero electric field. 
Although a particle displaced from the horizontal center 
of the beam will be in an accelerating field a portion of 
the time, the bulk of the beam will be in a decelerating 
field most of the time, leading to a net amplification. The 
axial interaction is shown in Fig. Kb), again for the cen- 
tral part of an on-axis beam. The transverse profile in 
this case represents the axial field of the TMM mode. 
Here, even the central particle sees both an accelerating 
and a decelerating field. The electron is in a decelerating 

field on axis where the field is at its maximum and the ax- 
ial velocity at a minimum, and in an accelerating field off 
axis where the field is reduced and the axial velocity is 
maximum. However, the transverse variation of the elec- 
tric field is greater than the transverse variation of the ax- 
ial velocity. This results in a stronger interaction on axis 
which, again, leads to net amplification. 

Although the axia! and transverse interactions have 
been considered separately in the preceding paragraph, it 
is difficult to completely separate the two interactions. In 
fact, computer simulations indicate that the overall per- 
formance at the second harmonic is improved when the 
two interactions are combined. Simulation also shows 
that the second-harmonic periodic position interaction 

Transverse Interacting 

electron beam transverse position (direction 
of velocity is indicated by arrows) 

Axial Interaction 

RF wave dependence 

transverse dependence 
of axial field 

FIG. I. Physical representation of the periodic position in- 
teraction. 
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can have a stronger growth rate than the fundamental 
interaction, and is a significantly stronger interaction 
than the third-harmonic FEL interaction for the current 
range of experimental parameters. The remainder of this 
paper includes a description of the experiment, as well as 
a comparison with simulation results using the three- 
dimer.s.onal  nonlinear  FEL  amplifier code  WIGGLIN 

The experimental configuration is described in Ref [9] 
The drive frequency was between 12 and 18 GHz.  The 
experiment used a cylindrical electron beam tunable in 
voltage from about 30 to 250 kV, with a 100-kV nominal 
operating voltage for the second-harmonic interaction 
The beam voltage was measured as the output voltage of 
the modulator using a capacitive voltage divider   The 
current was measured at the gun with a current trans- 
«ormer, and at two downstream locations with resistive 
current monitors.   One measurement was taken before 
the input coupler region and the other just after the in- 
teraction region.  The wiggler consisted of a permanent- 
magnet-assisted electromagnet with a period of 3 cm and 
an amplitude variable over 670-1300 G.   This corre- 
sponds to a large perturbation of the electron motion at 
hese low voltages, and the ratio of transverse to axial ve- 
ocity ,s in the range of 0.23-0.43.  The pole pieces ex- 

tended partially down the sides of the waveguide to pro- 
vide w.ggle-plane focusing, and resulted in a very flat 
profile near the center of the waveguide with the field ris- 
ing sharply near the wall. 

The experiment operated as an amplifier in an over- 
sized waveguide (3.485x1.58 cm) with the input signal 
injected using a novel coupler capable of launching the 
TEo, and TE/TM,, modes.  These are the lowest-order 
modes with the odd transverse symmetry necessary for 
the periodic position  interaction.   Simulations of this 
coupler suggest there was a 9 to 1 split between the TE„ 
and TM„ modes with very little power in other modes. 
The output rad.at.on was analyzed via mode-selective 
output couplers, and the microwave power was measured 
with calibrated detectors a« each of the output co„p^ 
™? K By.?0mPa"n« the signals from the output couplers 
and by utilizing the uncoupled dispersion curves, the in- 
teraction was positively identified as a second-harmonic 
.nteraction with the 1,« modes.  The input couplers 
also switched to launch the TE*. mode (the lowe'st-orde 
mode for the FEL interaction) to verify that no interac 
tion occurred at these parameters 

Gain due to the second-harmonic periodic position in- 
teraction was measured at beam voltages of 78-106 kV 
and currents of 6-10 A (measured downstream from the 

I^äW™* 
con,rasts whh»»' 

erartion fL     kV«n<««» for the fundamental in- 
£s ofl2 5   ATH ffeqUenuCy- 0pera,ion at fr- eies of 12.5-16.5 GHz was achieved by both voltaee and 
w-ggler-field tuning.   The maximum oC^ed gam was 
approximately 7 dB. The measured gain spectrum will £ 
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presented later in comparison with the theoretical anal- 
ysis. The interaction could not be saturated at this value 

1?7 7? '* aVailaWe drive P°wcr- but thc ™*imum unsaturated efficiency obtained was 1 1 % 

, ^I^A^I 
alS° °CCUrrcd at beim vo,ta«<* of 115- 

130 kV (depending on the wiggler strength) which had a 
significant effect on the transported beam current, reduc- 

2,    iaS mUCh aV2% 3nd indicatin« a stro"8 fac- tion    The measured frequency was 10.4 GHz, corre- 
sponding to the cutoff frequency of the 1,1 modes.  An 
uncoupled dispersion analysis indicated the oscillation 
S K backward-wave «cond-harmonic periodic position 
instability.  This was supported by the observation of a 
higher power exiting the input coupler than was mea- 
sured at the output couplers. The measured power exit- 
ing from the input coupler was 41.5 kW, corresponding to 
an efficiency of over 3%. The actual power inside the de- 
vice was uncertain due to the unknown response of the in- 
put and output couplers at 10.4 GHz for the TE„ and 
TMi, modes. Although the fraction of the total power 
that was actually coupled out from the input coupler is 
unknown, the apparent strength of this oscillation indi- 
cates the potential of the periodic position interaction 

I he experiment was not optimized for the second- 

.a
aZ°n,C PCn.°d,C P08*0" int™«™ The primary limi- 

tations were electron-beam generation and injection The 
electron gun was designed for a different experiment, and 

mlhTS,lg and l:anSPOrt SyStCms were d^«d to match the beam to the wiggler. A good match was dif- 
ficult to achieve as the beam was transported from a 

»Sof tt,d»int0 thC ?'anar Wi«,er' ai* a -Ä-I portion of the beam was lost in the transition. The prob- 
lems ,n the transition region also resulted in a larger than 
desired beam diameter. Because of the nature o? the in- 
terac ion, an increasing portion of the beam becomes 
«« -ally noninteracting as the beam diameter increases, 

2£ ST!'»  ?a,n-,naddition-a,argcdiametera,s° 
.?l v   •       * ,arge «"«'"-induced velocity spread 

which limits the operating efficiency. P 

The experimental observations were compared with 
simulations using W,GGL,N, which includes'the si2 

M£Z£ gra,,0n °f a s,ow-time-^le formulation of 
Maxwells equations as well as the complete Lorentz- 
force equations for an ensemble of electrons. No average 

■Ini H ?Tti0nS ls t**0™*- As such, W,GGL.N 
mphctly .„eludes both the well-known odd harmonic in- 
eraction in a planar wiggler and the periodic position in- 

teraction. No further fundamental modificaSn is e- 
quired to mode, the experiment. In this formulation the 
electrons are assumed to be initially monoenergetic but 

sprtd £rk spread ,hat describcs an a*iai «S 
The wiggler model describes an inhomogeneity in the 

wggle direction (i.e.. the x axis). The meaTured field wal 

ZlrltZ ab°Ur *? ^^ "*■ and rosc -»VE toward the edges of the interaction region. As such, we 
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employ the following wigglcr model [14]: 

cosAi.r  d 
\i\nhkuy _ y(Ky)  d

2 

2k2    dx2 

_ kwysMik^y d2 

2k2       7? 

*» dx 

Xix), 

X(x), 

(I) 

(2) 

(3) 

where *..(*) describes the axial variation, *..«2*AW. 

wf    v-,°tCS thc Variation in thc wi««lc Plane, and 
n^W-^aKh^-sinh*,^.  This field is not self- 
consistent in that it is divergence-free but not curl-free 
However, the approximation is good as long as Bw(z) and 
Alar) vary slowly compared with Xw. 

We choose Bw(z) to describe both the adiabatic injec- 
tion of the beam into the wiggler over Nw wiggler periods 
and the downstream taper of the wiggler for efficiency 
enhancement. Hence, 

**<*)- 

Bw sin \kwzl4Nw),  0 < z < AU», 
Bw,  NHXK <Z < ZO. 

*.1l+'*«.«,.(*-z0)l,  z0<z. 
(4) 

where fiH is the wiggler magnitude in the uniform region, 
and e. denotes the normalized taper. The variation in x 
is described for the general case by a polynomial 

*(*)-!+Itx/a,)2"', (5) 

where o, denotes the scale length for variation of the 
field, and m is an integer. As ax^ «o this reduces to a 
wiggler with flat pole faces. A comparison of the actual 
field with X(x) as used in the code (a quartic with m-2 
and a, -1.4938) is shown in Fig. 2, and it is clear that 
the approximation gives a reasonable fit to the data. 

The specific parameters used for comparison are a volt- 
age and current of 99.4 kV and 6.6 A with a beam radius 

ft« h'■ iiiniliiiilli,,1,,,,i....i..,■!,,,,: 
-2.0 -1.0 o.O 1.0 2.0 

Transverse Position (cm) 

FIG. 2. Comparison of the measured transverse wiggler vari- 
ation and the quartic representation used in WIOCLIN. 
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of 0.4 cm. The wiggler was characterized by *, -| 295 

uLu  7,.?1"' I" input taper of **-3. ™d a total 
udg^ ( ,m-,BOtrVhe ^ and ™" modes « in- cluded (at a ratio of 9 to 1) with a total input power of 

JW W. Figure 3 contains a comparison of the observa- 
hons with results from W.GGL.N over the unstable band 
for Ar,/yo-0.0%, 0.025%, and 0.05%. The experimental 
points over the frequency band fall, for the most part, be- 

inronMCU^eSrePreSenting Cnergy $Preads of °025% and 0.05%. This is in good agreement with the estimated 
energy spread based upon trajectory calculations of the 

KJm*    bSCrVe th3t ,he "°Wer has not *«™* 
1L7 ?n ^ CaSCS  At M 4 GHz<the saturated gain is 

atu"      df °Ver T- f0r An/y°"°' Which '*" 
Sj/Jb-iwST * »PProximately 50*. for 

The effect of a tapered wiggler is shown in Fig. 4 for 

«h.^     .*•*"° 8nd fc""000081  ■"» enW enhancement ,s sensitive to the start-taper position, which 

Zl£ °^ t0 ,h! P01"1 at Which the •«" «*«>">« trapped in the ponderomotive potential formed by the 
beating of the wiggler and radiation fields.  For this ex- 

Only the total signal and the TE„ mode are shown in the 
figure^ and the large oscillations in the total power are 
caused by the TM„ mode. It is evident that the saturat- 
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ta«lS 1 JimU,ftJOn °f lhe <»"« vs a*ia' «•*■■« for a upered-wiggler interaction. 

ed efficiency can be increased relative to that of the 
*2rK^ «* present parameter by aN 
most threefold through the use of a tapered wiggJer 

«»summary the first experimental demonstration of a 
harmomc penod.c position amplifier has been achieved 

dlntaTppT T * at ,he CVen harmonics of^S 
riTan^Lr 'T™ ^^ j" P'anar-wiggler- 
recfcngular-waveguide geometry where modes exisfwkh 

exDetfm
Srmetry ^ thC Wigg,er *»»»** P'ane Se experiment permitted positive identification of the in 

cracting modes, and the experiment waseeT tot in" 
dose agreement  with predictions from  the WKGUN 
sjmufation   code.    Improvements   i„   thinSon 

This  work  was supported   by   the  Office „r  w 

Research and the Office of NavalVechnobgy " 

'"'Permanent address. 
Rouge. LA 70803. 

""'Permanent address: 

Louisiana State University, Baton 

Corp.. McLean, VA 22^"" APP,iCaU°nS 'mCrnalional 

^'Permanent address: Mission Research Corp.. New.ng.on, 

"ä^JäT 
Un,versi,y of Maryiand- «■** 

1,1 HSSISJ
10

"' 
and R N-Whi,churst-J A^' ^ 

WJMMI. PhiHips. IRE Trans.  Electron Deviccs 7> 23, 

131 Ü5S.TÄÄ c Davics-,EEE Trans E,ect™ *-# 
l4,

098?).CO,SOn' ,EEE J   QUantUm  E,CC,ron   ,7-  ,417 

f5,dBonGpa?;.Y- ^tT'S J M °r,ega- C Ba2i" M. Billar- don. P. Ellaume, M. Bergher. M. Velehe and Y P^mff 
Phys. Rev. Leu. 53. 2405 (1984) "^ # 

171 ^M)86"10" 8nd J' M- J- MadCy' Ph>S- Rcv A 39. ,579 
t8JLr.n

WdT^rL C HaynCS- °- W  Fc,dma"- W. E. 
RT^ä   

,ns,rum Meth^ph- • 
W ,H„HBv T 5. " JaCkSOn> D E- Pershing. J- H  Booske 
^A»^-,nstrum --^^ 

ll"Ä«^fLCta*--,,-,,h--"*»■«*. A 
",J MeL^P^p8 *fVUSh< T- M  Anlon*n- *.. and N      • 
f 101 u L J*PhyS ReV- ^ *• ,442 (1991). 2,i;2iSr,uem',ndCLC^^R^ 
l!2 rli F.reUnd- Phys Rev- A 37' 337» 0988). 
H4J T. M. Antonsen. Jr. (private communication). 

827 


