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Many algorithms that compute acoustic or electromagnetic fields scattered by surfaces of 
revolution require fast evaluation of the azimuthal Fourier components Gm of the Green's 
function for the Helmholtz equation in three dimensions. In this paper we derive a recurrence 
relation for the functions Gm and obtain explicit formulae for their partial derivatives. These 
observations significantly reduce the complexity of the computation of the scattered fields 
generated by axisymmetric scatterers. 
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1 Introduction 

Numerical evaluation of scattered fields generated by surfaces of revolution requires 

fast and accurate computation of individual azimuthal Fourier components Gm of the 

free-space Green's function for the Helmholtz equation, and their partial derivatives 

(see, for example, Harrington and Mautz [9], Medgyesi-Mitschang and Putnam [11], 

Govind, Wilton, and Glisson [7], Berton and Bills [3], Gedney and Mitra [5], Bon- 

nemason and Stupfel [4], Grannel, Shirron, and Couchman [8]). The functions Gm 

are defined in (10) below. 

In this paper we derive a recurrence relation for the functions Gm which (unlike 

three-term recursion formulae for most classical special functions) turns out to involve 

five terms. In addition we obtain explicit formulae expressing partial derivatives of 

these functions through linear combinations of Gm-s. Such properties of the sequence 

{Gm} are analogous to that of classical special functions and orthogonal polynomials 

(see, for example, Abramovitz and Stegun [1]), and, similarly to these classical objects, 

provide for fast and accurate computation of an individual Gm and any of its partial 

derivatives. 

The plan of the paper is as follows. In Section 2 we introduce basic notation and 

definitions. In Section 3 we obtain the generating functions for the sequence {Gm} 

and an auxiliary sequence {Qm} (see its definition in (13) below). In Section 4 we 

derive the recurrence relation for the functions Gm. In Section 5 we express partial 

derivatives of Gm as linear combinations of these functions. In Appendix we express 

certain infinite series involving functions Gm in a closed form, and obtain expansions 

of these functions in terms of spherical Bessel functions. 

2 Notation and Definitions 

The free-space Green's function for the three dimensional Helmholtz equation ip sat- 

isfies the equation 
4-7T 

AiH*V = -y«(|r-r'|), (1) 



where 8 is Dirac's delta function, r and r' are vectors in R , 

fcd^f27r/A, (2) 

and A is the wavelength. 

The solution of (1) satisfying the outgoing radiation condition is given by the 

formula 

lK*|r-r|)=     {k]r_r>l)    ■ (3) 

Formulae (l)-(3) can be found (in a slightly different form) in Chap. 7 of Tikhonov 

and Samarskii [13]. 

In polar coordinates 

r = (P,<M,    r' = (p\d>',z% (4) 

we have 

A:2|r-rf = a-&cos(<£-<£'), (5) 

where 

a
däk*ip2 + (Py + (z-z'n (6) 

and 

b^2-k2-p-p'. (7) 

Note that for any real p, p', z, and z', 

a>b. (8) 

Combining (3) and (5) we have 

exp(z(a-&cos(0-<//))1/2) 

^|r - r'l} =        (a-6cos(^-W/2 (9) 

The functions Gm are defines as Fourier coefficients of (9) with respect to the 

azimuthal angle <j> and have the form 

,.  /.2ff /-27r exp (i(a — bcos (f))1/2) 
Gm{a,b) = l    rl>(k\*-*'\)'exp{irnm = JQ > _ bcos ^i/a       'exPN^ 

(10) 



Obviously, for any a > b and integer ra, 

Gm(a,b) = G.m(a,b). (11) 

It follows from (10) that 

exp (i(a — bcosS)1/2)        1      °° 
>      , I^T^ = f   E   Gm(a,6)exp(«m^). (12) (a-ftcos^)1/» 271-„t^ 

We will also consider the sequence of functions {Qm}, that for any integer m and 

a > b are defined by the formula 

Qm(a, b) =        exp (i(a — bcos </>)1/,2J • exp(im<f>)d<f), (13) 

which implies that 
I oo 

exp(i(a-6cos(/>)1/2) = —   J2   Qm(a,b)exp(im<j>). (14) 
"     m=—oo 

3    The Generating Functions 

The main result of this section is Theorem 3.1 below where we obtain the generating 

function G for the sequence {Gm} and the generating function Q for the sequence 

{Qm}. It is well known that generating functions are normally used for the derivation 

of recurrences and certain other properties of classical special functions and orthog- 

onal polynomials (see, for example, Chap. 7 of Lebedev [10], Chap. 11 of Seaborn 

[12]). The corresponding computations for the sequence {Gm} require analysis of two 

generating functions G and Q, which is a departure from the standard scheme for 

classical special functions where usually only one generating function is involved. 

We define the generating function P for a certain sequence {Pm} in a standard 

way, i. e. as a function whose Laurent expansion 
oo 

P(x,t)=      £     Pm(x)-tm (15) 
m=—oo 

converges uniformly in a certain ring of the complex t-plane. 

Theorem 3.1. Let for any a > b the functions G and Q be defined by the formulae 

exv(i(a-b(t + t-l)l2fl2) 
G(a,b,t) = 2*' ,       ,7      '1/a      > (16) (a-6(t + <-i)/2) _l\/o\l/2 



and 

Q(a, 6, t) = 2TT • exp (i(a - b(t + r1)^)1'2) . (17) 

Then 
oo 

G(a,b,t)=   £   Gm(a,6)-r, (18) 

and 
oo 

Q(a,M)=   E   Qm(a,6)-r. (19) 
m=—oo 

77ie series (75j and fiPj converge uniformly in any domain lying entirely within the 

ring 

t-<\t\<t+, (20) 

where 

i_«nrc-i-(c-'-i)
1/2, ,+ ^c- + (c--i)

1/2, (2i) 

and 

cd=-. (22) 
a 

Proof. Since the quadratic equation 

a-b{t + r1)/2 = 0 (23) 

has the roots *_ and t+, it is easy to see that the functions G and Q are analytic 

in the ring (20). By Laurent's theorem each of them has a Laurent expansion that 

converges uniformly in any domain that lies wholly in this ring. Now we obtain the 

formulae (18) and (19) by substituting 

t = exp(^) (24) 

into (12) and (14), respectively. • 

Remark 3.1. Obviously, the functions G and Q are connected via the relation 

GMt)= (a-b(t + t-*)/2y^ [Z5) 

which follows from (16) and (17). • 



4      The Recurrence Relation for the Functions Gm 

The main result of this section is the recurrence relation for the functions Gm. Namely, 

in Theorem 4.1 below we show that for all a > b and \m\ > 1, 

aGm(a, b) - ^ {Gm+l(a, b) + Gm-i{a, b)) - fim(Gm+1(a, b) - Gm-i(a, b)) + 

/*r m\m + 

where 

-4TG-+»(0' 6) - -^T-TG^ b) + ~^Gm-2(a, b)) = 0, m + 1 nr — 1 m — l ) 
(26) 

^m d=f -?-. (27) 
4m 

We begin with two preliminary results summarized in Lemma 4.1 and Corollary 4.1 

below. 

Lemma 4.1. For any integer m and a > b, 

Qm(a, b) = ipim{Gm+1 (a, b) - Gm_x (a, b)). (28) 

Proof. The combination of (16) and (17) yields 

dQM'*) = JA . (i _ r2) • G(a,M)- (29) 

Substituting (18) and (19) into (29) we have 

£   gm(a,fe)-m-r-1 = -j   £  (Gm(a,6)-Gm+2(a,6))-r. (30) 
m=-oo m=-oo 

Equating the coefficients of equal powers of t in (30) we immediately obtain (28). • 

The following corollary is an immediate consequence of the formula (28). 

Corollary 4.1. For any integer \m\ > 1, 

Qm+1{a, b) - Qm-i(a, b) = 

iflm (mTTGm+2(a' h) " J~-IGTO(°' h) + m^TGm-2(G'b)) ■ '       (31) 

Theorem 4.1. For any a> b and \m\ > 1 the relation (26) holds. 



Proof. We start with the identity 

(a - h-{t + r1)) ■ G(a,b,t) =(a- h-{t + r1))     ■ Q(a,b,t), (32) 

which is an immediate consequence of (25). Differentiation of (32) with respect to t 

in combination with (25) yields 

-».(,_r').C(.,M)+(.-^ + r-)).»^ = 

- j • (1 - r2) • G(a, 6,() - j ■ (1 - r2) ■ Q(a, h,t). (33) 

Substituting (18) and (19) into (33) we have 

b       °° 
—A-   E  (Gm(a,6)-Gm+2(a,6)).r + 

m= —oo 

£    fa • 777 • Gm(a,6) - ^ • (Gm+1(a,b) + Gm^(a,b))) ■ tm~l = 
m— — oo 

ib       °° 
-T-    E   (Qm(a,&)-Qm+aM)Hm. (34) 

m—~ oo 

Equating the coefficients of equal powers of t in (34) and using (31) we immediately 

obtain (26). • 

Remark 4.1. An important for applications property of any recurrence relation is 

its numerical stability, i. e. the sensitivity of the (m + n)-th term of the sequence 

(m = 0, ±1, ±2,..., n = 0, ±1, ±2,...), computed via n steps of recursion, to small 

perturbations of its m-th term (see, for example, Chap. 9 of Abramovitz and Stegun 

[1]). A somewhat involved analysis shows that (26) is stable for both upward and 

downward recurrences if 

1 < m < r_, (35) 

is stable for downward and unstable for upward recurrences if 

r_ <m < r+, (36) 

and is unstable for both upward and downward recurrences if 

m > r+. (37) 



In (35)-(37), 

r-*^)1",    r+«(£)      , (38) 

where *_ and <+ are denned in (21). The proofs of these results will be reported 

elsewhere. • 

Remark 4.2. Simple analysis indicates that in the region (37) the functions Gm are 

almost always (numerically) small. In fact, the definition (10) and Riemann's lemma 

yield 

lim Gm(a,b) = 0. (39) 
m—*oo 

Combining formulae (9.3.1) and (10.1.1) of [1] with (67) and (68) of Appendix it is easy 

to show that the decay of functions Gm for m satisfying (37) can by approximately 

described by the formula 

Gm(a,b) ~ f^-)    • (4°) 

Therefore the functions Gm in the region (37) are small unless r+ & r., i. e. when 

a m b. • 

5    Partial Derivatives of the Functions Gm 

In this section we show that partial derivatives of functions Gm can be expressed via 

linear combinations of these functions. 

Lemma 5.1. For any a > b, 

ö^ = 2.^.(,+/).a^) + 2.^.,'.£^),      (4i) 

ant 
ÖG»M) = 2 . fca. (z _ ^ . ÖG^_ (42) 

dz da 

Furthermore, for any integer m, 

dGm(a, b) 1 fdGm+1(a,b)     dGm-i(a,b) 
db 2 I da da 

+ <^"-H">";   . (43) 



Proof. The formulae immediately follow from (6) and (7). The formula (43) can be 

easily obtained by substituting the expansion (18) into the obvious relation 

_1 ,     dG(a,b,t)  dG(a,b,t) (u) 

2'[  +      >'       da        ~        Ob       ' [    ' 

and equating the coefficients of equal powers of t. • 

Throughout the proofs of Lemma 5.2 and Theorem 5.1 below we will write for 

brevity 

Xm^^4^- (45) oa 

Lemma 5.2. For any a > b and n > 0, 

aXn - bXn_i = pn, (46) 

where 

pn ^ (n - 1/2) • Gn(a, b) - l- ■ im ■ (Gn+1{a, b) - Gn-i(a, b)). (47) 

Proof. Substituting the expansion (18) into the obvious relation 

b dG(a,b,t)      dG(a,b,t) 
_2'(1~'    }"        da        =        dt       ' (48) 

and equating the coefficients of equal powers of t we have 

±Gn(a,b) = nn-(Xn+i-Xn-1). (49) 

Next, differentiation of (32) with respect to t yields 

G(a, 6, t)+(a- b-(t + r1)) • dG^b^ = lG(a, b, t) + l-Q(a, 6, *).       (50) 

Substituting the expansions (18) and (19) into (50) and equating the coefficients of 

equal powers of t we have 

aXn - 
h-{Xn+, + Xn-i) + \ ■ Gn(a,b) = l- ■ Qn(a,b). (51) 

Combining (28) and (51) we obtain 

- -Gn(a,b)- -fin(Gn+i(a,b) - G„_i(a,6)) = aXn - i;{Xn+\ +Xn_i).        (52) 



Now (46) is an immediate consequence of (49) and (52). 

Theorem 5.1. For any a> b and m>2, 

dGm-2{a,b) 

where 

da m(a2-fe2)2 + a4-&4' 

Am    =    (2ma2 - (m - l)b2) ■ {bpm-x + apm)- 

a2 ■ (m - 1) • (bpm+1 + apm+2) -f 4 • (m2 - 1) • a4 • sm, 

(53) 

(54) 

sm   <¥   ±-h{Gm+,{a,b)-Gm^{a,b)\ 

and fim andpm are defined in (27) and (47), respectively. 

Proof. Differentiating (26) with respect to a we obtain 

Gn(a, 6) + aXn - - (Xn+i + Xn-i) - Vn(Xn+i - Xn-i) + 

(55) 

Vn .i_l_^_4l^x. + -^^,)=o. 
n + 1 nl - 1 n -1 

Substituting (49) and (52) into (56) we have 

1     y 2n    y  4.     1     X      -, 
n-\ n' -1 rc + 1 

(56) 

(57) 

where sn is defined in (55). 

The combination of (46) for n = m - 1, m, m + 1 and m + 2 with (57) for n = m 

yields the following system of linear equations: 

aXm-\ — bXm-2 — Pm-ii 

aXm — bXm-i = Pmi 

aXm+i — bXm = Pm+i ■> 

aXm+2 — bXm+i = Pm+2, 

1      y 2m     v     ,       1      y        _c 
m — 1 m2 - 1 m +1 

(58) 



Evaluating Xm-2 from (58) and using the definition (45) we obtain (53)-(55). • 

Remark 5.1. Clearly, for all integer m and a > b any partial derivative dk+lGm/dpkdzl 

(k, I = 0,1,2...) can be expressed as a linear combination of a finite number of func- 

tions Gm, which is a consequence of (11), (41)-(43), and (53)-(55). • 

6     Conclusions 

We have demonstrated that the functions Gm satisfy a recurrence relation and showed 

that their partial derivatives can be expressed via linear combinations of these func- 

tions themselves. Such properties of the sequence of functions {Gm} are similar to 

that of all the families of classical special functions and orthogonal polynomials. 

The use of the recurrence (26) significantly reduces the complexity of the numer- 

ical computation of the scattered fields generated by surfaces of revolution. As was 

observed by many authors such computations can be reduced to the solution of M 

integral equations on the generating curve of the scatterer (see, for example, [7]). 

Here M ~ k is the number of nonvanishing (with the given accuracy) azimuthal 

Fourier components of the incident field computed on the surface of the scatterer, 

and k is defined in (2). After appropriate discretization these integral equations are 

reduced to a sequence of linear systems with dense matrices Z^ (m = 0,1, ...,M). 

Any element of these matrices Z-™' is a linear combination of a finite number of the 

functions Gm and their partial derivatives, with the arguments of these functions p, 

z, p', and z' belonging to the mesh on the generating curve of the scatterer (see, for 

example, [3], [5]). 

It is well known that evaluating the matrix elements Z}™' consumes a major 

portion of the CPU time (see, for example, [5]). Indeed, simple arguments based on 

the Nyquist theorem show that the number of elements in Z^ is at least 0(N2), 

where N is the size of the scatterer in wavelengths. Note that N ~ k, which is a 

consequence of (2). The computation of one Z>™' requires O(N) operations which 

immediately follows from (10).   Therefore the CPU time T\ for computing all the 

10 



matrix elements has the estimate 

Tx = 0 (M ■ TV3) . (59) 

Next, solving the linear system for every m by means of some iterative technique 

normally requires application of the system's matrix to a certain sequence of vectors 

(see, for example, Chap. 10 of Golub and Van Loan [6]), i. e. can be done for 0(N2) 

operations. Thus the CPU time Tsot for solving the M linear systems has the estimate 

Tsol = 0(M-N2). (60) 

Comparing (59) and (60) we see that the complexity of computing the scattered field 

is dominated by the cost of generating matrices Z^ (m - 0,1,..., Af) and thus has 

the CPU time estimate T\. 

Now we turn to estimating the CPU time for the generation of the matrix elements 

by means of (26); this method consists of two stages. On the first stage we must 

evaluate the starting values of the recursion, i. e. O (N2) elements of the four initial 

matrices, which requires 0 (N3) operations. On the second stage we compute all other 

matrices using the recursion (26) which requires 0 (M ■ N2) operations. Therefore 

the CPU time T2 of computing the matrices by means of (26) has the estimate 

T2 = 0 (N3
) + 0(M-N

2
). (61) 

Obviously, now the CPU time estimate of the computation of the scattered field has 

the form (61) which immediately follows from (60) and (61). 

For large-scale problems we have iV > 1 and M > 1, which in combination with 

(59) and (61) yields 

T2 < Tx. (62) 

Currently a fast algorithm for generating matrices Z(m) using (26) is being imple- 

mented and the corresponding results will be reported at a later date. 
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8    Appendix 

In Appendix we discuss certain consequences of the formulae (10) and (12). 

Theorem A.l. For any a > b, 

°°                                                ~                            exp (i(a - b)1/2) 
£   Gm(a,b) = G0(a,b) + 2,£Gm(a,b) = 2T I v '     ^ (63) 

m=-oo m=l \a       ") 

°° °° exp (i(a + b)1/2) 
£   (-l)mGm(a, b) = g0(«, &) + 2 £ (-l)mgm(a, 6) = 2TT        

V V '    > ,   (64) 
m = -oo m=l v      '     / 

oo oo 4    2 

£   |Gm(ö,fe)|2=|Go(a,6)|2 + 2j:|Gm(fl,6)|2 = ——-—. (65) 
m = -oo m=l Va ° / 

Proof. Formulae (63) and (64) immediately follow from (12) after substituting (f> = 0 

and <f) — IT, respectively. The formula (65) is easily obtained by applying Parseval's 

theorem to (12) and using the relation 

p*        d<j>        = 2TT 

Jo    a-bcos<f>      (02_ 62)i/2•• \ox>) 

Theorem A.2. For any a > b and integer I > 0, 
oo 

G2l{a, b) = 2z £(4n + 1) ■ A(n - /) • A(n + /) • ;'2n(r_) • h£>(r+), (67) 

oo 

G2/+1(G,6) = 2zX(4n + 3) • A(n - /) • A(n + / + 1) ■ j2n+1(r_) • h$>+1{r+),       (68) 

where and j and h^' are spherical Bessel functions of the first and third kind, respec- 

tively, r+ and r_ are given in (38), and A is defined by the formula 

Proof. Combining formulae (10.1.1), (10.1.45), and (10.1.46) of [1] we have 

exp (i(a — bcosd))1/2) °° 

(a-6cosfl*/2        = \?0
(2" + !) ••?"(r-) * ^r+) • P"(C0S^' <70) 

where Pn are Legendre polynomials. Following Alpert and Rokhlin [2] we can write 

for any integer p > 0 

P2p(cos <£) = - £(2 - 60g) ■ A(p - 9) • A(p + ?) • cos(2<^), (71) 
%=o 

12 



and 

P2p+1(cos ^) = - f>(p - 9) ■ A(p + g + 1) • cos((2g + l)<f>), (72) 
V q=Q 

where Snm is Kronecker's delta.  Now substituting (70), (71), and (72) into (10) we 

immediately obtain (67) and (68). • 

The formula (67) for / = 0 is given in [3]. 

Remark A.l.   Obviously, the function A is closely related to the beta function B 

(see, for example, Chap. 6 of [1]). In fact, comparing the formula (6.2.2) of [1] with 

(69) we have 

m = 
B^2\ (73) A{ >     r(i/2) 

Note, that the function A satisfies the recurrence relation 

A(0) = T(l/2) = 7T1'2,    A(n + l) = A(n).^±i^    for all n = 0,1,...,        (74) 

which is an immediate consequence of (69). • 
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