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ABSTRACT 

It has been previously shown that the temporal integration of hyperbolic partial differ- 

ential equations may , because of boundary conditions, lead to deterioration of accuracy of 

the solution. A procedure for removal of this error in the linear case has been established 

previously. 

In the present paper we consider hyperbolic p.d.e's (linear and non-linear) whose bound- 

ary treatment is done via the SAT-procedure. A methodology is present for recovery of the 

full order of accuracy, and has been applied to the case of a 4th order explicit finite difference 

scheme. 
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was supported also by AFOSR 93-0090 ARPA grant N00014-91-J-4016 and NSF grant DMS - 9211820 



1. Introduction 

Currently there is a growing interest in long time integration for solving problems in areas 

such a aero-acoustics, electro-magnetics, material-science and others. This necessitates, ([1]), 

working with higher order (4th order accuracy and above) schemes. Often the methodology 

of choice is to semi-discretize the equations by applying a high order (4th and above) spatial 

difference operator and then advance temporally using single level multi-stage Runge-Kutta 

integrators. This raises the question of how to supply boundary values at the intermediate 

stages of the R-K integrations. In the case of hyperbolic p.d.e's that means the imposition 

of the time dependent conditions at the inflow boundary. 

The conventional (and intuitively natural) way of imposing inflow boundary conditions 

at the intermediate stages is to use the "appropriate" value of the boundary data, g(t), at 

each stage. Thus, for example, at a stage corresponding to t + {At/2), one would impose 

g(t + At/2). 
In a previous paper ([2]) , it was shown that the procedure described above, when ap- 

plied to hyperbolic p.d.e's with time dependent b.c.'s, reduces the accuracy near the inflow 

boundary to first order and thus the overall accuracy cannot exceed 0(A.x2). This conclusion 

is independent of the order of accuracy of the spatial difference operator. 

One way of avoiding the dilemma of what boundary values one should supply at the 

intermediate stages, is to advance the R-K integration without imposing any intermediate 

values, but rather obtain the intermediate boundary values from the numerical solution 

operator. However, this approach has the disadvantage of reducing substantially the stability 

limit (e.g., the allowable time step is reduced by a factor 2 in the case of 4th order classical 

R-K with a 4th order spatial derivative operator), hence rendering it less than attractive. 

In ([2]) a general methodology was presented in the case of linear p.d.e.'s for the correct 

imposition of the intermediate stage boundary values so that the scheme recovers its full 

formal accuracy. This was expounded in detail for the case of the classic 4th order R-K 

with a hyperbolic 4th order spatial difference operator. It was also shown there that in the 

non-linear case (e.g. hyperbolic conservation laws) this methodology was applicable to R-K 

integration up to 3rd order . For R-K . methods of 4th order and above we were not able to 

extend the theoretical approach described in ( [2]). 

In this paper we address anew the issue of how to deal with the non-linear case. We 

present a methodology for retaining the full accuracy even in the non-linear case. The 

application of this methodology involved numerical determination of free parameters in con- 

tradistinctsr numerical determination of free parameters in contradistinction to the linear 

procedure described in ([2]). We find for example, that in the 4th order classical R-K integra- 

tor with 4th order explicit spatial derivative operator, the full accuracy is retained without 



any reduction in t he allowable time step. 

The new procedure is demonstrated for hyperbolic problems where the boundary condi- 

tions are satisfied by using the SAT approach ([3]. The motivation for doing so is that the 

SAT procedure is the only one that prevents temporal growth not present in the true solu- 

tion of a system of p.d.e.'s. Section 2 describes how to apply correctly the intermediate SAT 

boundary conditions in the case of a linear problem. In Section 3 we cover the non-linear 

case. 

2. The Linear Case 

In this section we analyze the effect of imposing the inflow boundary conditions in the 

conventional way when the discretization algorithm employs the SAT approach (see ([3]) ). 

The SAT is a penalty type method that was constructed so as to ensure that the numerical 

solution will not include temporal growth which is not of a physical origin. This is achieved 

by mimicking the energy estimate of the p.d.e. 

Recall that we are considering the foflowing hyperbolic problem (see ([3])): 

^ + ^ = 0,    0<.T<M>0 (2.1) 
ot     ox 

u(0,t)=g(t) (2.2). 

The SAT formulation for the semi-discrete version of (2.1) - (2.2), based on a uniform grid, 

is 

^ = ({DV (*)).-l7*^-9^       * = 0,l,...,iV;    t>Q       (2.3) 

where V— [t>o, v\,... , i>/v]T is the semi-discrete approximation that converges to u(x{, t) at 

the spatial grid points .T,- (for stable discretizations); and ^D is the differential matrix rep- 

resentation of the derivative operator (—£;). The vector a depends on the differentiation 

matrix j-D, and on the energy norm used in bounding the error. It is determined as described 

in ([3]); see the discussion after equation (6) therein. 

The demonstration of accuracy deterioration will be shown for the four stage "classical" 

RK algorithm, which is one of the most commonly used RK time advancing schemes. For 

the analysis to make sense we assume that the spatial discretization is at least fourth order 

accurate. 

The above mentioned four stage RK integrator is implemented as follows: 

VW = vW + ^"l-^[«Sn1-^)] (2.4) 



VW = V(n) + ±DVW        *      ? 

y(3) = ]/(«) + \DV(2) - AT a 

(2.5) 

(2.6) 

y(n+i)    _    y(n) + ±j)[y{") + 2V{1) + 2V(2) + V{3)] 
6 

~\ra {[#> - ,(01 + 2 [W -9(i + f)] + 2 [tf> - , (< + f)]       M 

-f[i,J3)-</(* +A*)]}. 

To check for accuracy we substitute for the V(n) the exact values u{xi,t), and in particular 

t>M = gr(f). Note from eq. (2.4), that on the boundary (using the differential equations 

(2-1), (2.2)) 
.  .        AW /»    \ A/ 

(2.8) ^-^-T &')0 "«W + frtO. 
Thus in eq. (2.7), we have for the term y§' -g \t + ^f), 

9W + ys'(()]-«(' + f)=0(A«2). *>-,(< + £)- (2.9) 

Thus l/(n+1) - y(n) is at best 0(A*2), and not 0(A*5) as expected from the R-K scheme used. 

In this linear case, the remedy proposed in the previous paper, ([2]), works here as well. 

In particular, eqs. (2.4) -(2.7) take the following form: 

yd) = v<"> + ±DVM -~ra [v^(t) - g(t)] 

'vP-gW-fg'it) 

y(3) = y(n) + XDy(2) _ XT - vP-g(t)-fg'(t)-^g"(t) 

(2.10) 

(2.11) 

(2-12) 

yn+l     _     yn + AD U/(n) + 2y(\) + 2y(2) + y(3)| 
6     <■ J 

+2 

+ 

/2x      , .     At .. .     Ai2 

4} - *(0 - y </(<)  ■g"{t) 

(2.13) 

(3) /i\ Ai   / ^       " Af       /« 

2  J 4 

It is readily verified that V{n+1) - V(n) = 0(Ai5), as required. 



3. The Non-Linear Case 

For the sake of simplicity we consider first the scalar conservation law p.d.e. 

du     df(u) 

si + 
dx 

= 0,       0 < x < 1;    t > 0 (3-1) 

(3.2) u(0,t)=g(t). 

In general, for any spatial discretization (whether explicit or implicit) the semi-discrete 

form of (3.1)- (3.2) is: 

^ = \DJ{V)-\ra[vo-g{t)]. (3-3) 

Using the notation of reference ([3]), 

D = -P~XQ (3-4) 

where \D is the differentiation matrix representing the differential operator, {—§^)\ com- 

posed of the explicit part Q and the inverse of the implicit part P. For a fully explicit spatial 

differentiation, P = I + B, where B differs from zero only at the two diagonal corners (see 

examples of P and Q in ([4])).. 

The vector <T, again using the notation of [ ], is given by 

a= ha(uo)gooP lH lS (3-5) 

where a(u0) = (§£) _ , and g0o is twice the value of the left upper corner element of HQ. 

For the definition of the matrix H see Assumption I in [1]. The parameter r is determined 

from stability consideration to be r > 1, see ([3]). 

Next we demonstrate that writing the classical 4th order RK for eq.   (3.3), using the 

linear "fix" as in equations (2.10) - (2.13), does not yield the required 4th order accuracy: 

1/(D = V(n) + iDf{Vin)) -±Ta [wJ») _ g{t)] 

VW = V{n) + lDf{yW) -±Ta vP-gM-fg'it) 

y(3) = y(n) + \Df(V{2)) - Ar a vP-g(t)-fg'(t)-^fg"(t) ,(2) 

(3.5) 

(3-6) 

(3.7) 



yln+i)   =   vW + ^D[f(Vn) + 2f(Vw) + 2f(V<2)) + f(Vl3))] 

-±T*{[vin)-9(t)} + 2[vP-g(t)-f9'(t) 

&i i, Af2 

+2\v^-9(t)-^9'(t)-^-9"(t) 
(3.8) 

+ 
Ay2        A/3 

Again, when checking accuracy, we take V(n) = «(a,-,*)» and in particular v0
n = g(t); and 

also lDf(Vn) = -^/(M) + 0(Af4). With these preliminaries we get immediately from 

equation (3.5) 

«?} = «b" - ^l:/(/0o = 9(t) + ~(u)o = 9(t) + %9'(t). 2 ö^v"--"/.   2 aw«-»*-/ ■   2—- (3-9) 

Note that this is the same as in the linear case, see eq. (2.8). Thus with u0
n = g{t) and 

with equation (3.9) we can supply, for the purpose of accuracy checking, the correct values 

of t>(n) and v§\ When we look at eq. (3.6), using the above results, the governing non-linear 

p.d.e., and simple Taylor's expansion, we have: 

y(2)   =   V<n) + -Df V{n) + -Df(Vn) 

2 dxJ '„_ *»/(„) + „<*•) = vr At_d_ 

2 dx* 

At du    n/ .  c. 

~ 2Öx   /lj      2 9«9r    8   \du*)\dtj        V      ; 

2 \0x    2 öf \dxjj 

+ 0(Af3). 
Af 

=   it — 
At 

-ut - —Utt 

So finally we have on the boundary 

A* At2 

(3.10) 

(3.11) 

It follows from (3.11) that the "penalty" term in (3.8) introduces an error of (Af3). Since 

the coefficient of (A/3), [/„„(u«)2]0, cannot generally be expressed as a function of g(t) and 



its derivatives, it is very difficult to remedy the situation. Thus the "linear procedure" fails 

at the third RK stage. 

We now propose a methodology to deal with the RK integration of non-linear hyperbolic 

conservation laws. We first present this procedure in the case of the classic 4th order R-K 

scheme. Our starting point is the observation that the "linear-procedure" yields the required 

accuracy for VQ and VQ . The idea is to use at each stage a linear combination of the "linear" 

SAT, or penalty, terms used (3.5) and (3.6). The 4th order classic RK stages will thus be: 

VW = V(n) + ±Df(Vn) -^aa [v{
0
n) - g(t)] (3.12) 

V™ = VM + ±Df(VM) -\ßv [#> - g(t) - fg'(t)] -^a [4n) - g(t)]       (3.13) 

F(3) = yin) + XDf(VW) -X8a [vin) - g(t)] -Xea [t£> - g(t) - ^-g'(t)} (3.14) 

Vln+i)   =   vW + ^D[f(Vn) + 2f{Vl1)) + 2f(VW) + f(VW)] 

-^^a[vin)-g(t)]--ua v(o]-g(t)-fg'(t) 
(3.15) 

where the free parameters a, ß, 7,8, e, /f, and v will be chosen so as to maximize the allowable 

time step. It is clear from the previous discussion that the system (3.12) - (3.15) maintains 

the 4th order accuracy. There remains the question of whether the CFL stability condition 

deteriorates, in comparison to the conventional application of R-K, equation (2.4) - (2.7). It 

is also clear that the optimal choice of the free parameters a,..., v varies with the spatial 

discretizations (i.e. the differentiation matrix D) and boundary closures. One checks that 

the absolute values of the eigenvalues of the amplification matrix resulting from (3.12) - 

(3.15) should not exceed unity. We carried out this procedure (using Matematica Software) 

in the case of an explicit 4th order algorithm with 3rd order boundary closures. In this case 

// = /, and the matrices P and Q can be found in section (9.1) of reference [3]. With the 

following values of the free parameters, a = ß — — e = 1, 8 = 2, /« = 0, v = 3, 7 = —0.37, 

the CFL condition becomes A < 2.1. This is the same restriction on the time step, A2, as 

one has in the linear problem using the "conventional", i.e. less accurate, boundary values 

with or without the SAT-term. 

4. Conclusions 

In summary, we have in (3.12)-(3.15) a 4th order RK scheme, applied to a non-linear 

p.d.e., which maintains the overall 4th order accuracy without any decrease in the allowable 

time step. The extension to a system of hyperbolic p.d.e.'s is quite straight forward using 

the SAT-system approach delineated in ([3]). 
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