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Amiram Harten, a professor of Mathematics at Tel-Aviv University and a consultant at ICASE, 

died of a massive heart attack on August 5, 1994. He was 47. He was associated with ICASE 

since 1976 and had a great impact on the ICASE program of research in numerical analysis and 

algorithm development. He was an active participant in ICASE activities and visited ICASE at 

least once a year. His last visit to ICASE was during the week of May 22, 1994, when he participated 

in the Parallel Numerical Algorithm Workshop. He planned to come back on August 29, 1994 

to be at ICASE for a month. His untimely passing away is an irreparable loss to ICASE and the 

mathematics community. He will be greatly missed by his friends and colleagues even as 

his influence lives on. 

This report is the written version of his lecture at the Parallel Numerical Algorithm Workshop, 

and it is sadly noted to be his last ICASE report. 
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A Brief Review 
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ABSTRACT 

In this paper we review recent developments in techniques to represent data in terms of its 

local scale components. These techniques enable us to obtain data compression by eliminating 

scale-coefficients which are sufficiently small. This capability for data compression can be 

used to reduce the cost of many numerical solution algorithms by either applying it to the 

numerical solution operator in order to get an approximate sparse representation, or by 

applying it to the numerical solution itself in order to reduce the number of quantities that 

need to be computed. 

^his work was partially supported by the National Aeronautics and Space Administration under NASA 
Contract Nos. NAS1-18605 and NAS1-19480 while the author was in residence at the Institute for Computer 
Applications in Science and Engineering (ICASE), M/S 132C, NASA Langley Research Center, Hampton, 
VA, 23681-0001. 

ill 



1. Introduction 

Fourier analysis, which provides a way to represent square-integrable functions in terms 

of their sinusoidal scale-components, has contributed greatly to all fields of science. The 

main drawback of Fourier analysis is in its globality - a single irregularity in the function 

dominates the behavior of the scale-coefficients and prevents us from getting immediate 

information about the behavior of the function elsewhere. 

The recent development of the theory of wavelets (see [Me] and [Ma]) was a great step 

towards local scale decomposition, and has already had great impact on several fields of 

science. In numerical analysis representation by compactly supported wavelets (see [Da] and 

[CDF]) is used to reduce the cost of many numerical solution algorithms by either applying it 

to the numerical solution operator to obtain an approximate sparse form (see [BCR]), or by 

applying it to the numerical solution itself to obtain an approximate reduced representation 

in order to solve for less quantities (see e.g. [LT], [MR] and [BMP]). The main drawback of 

the theory of wavelets is that it attempts to decompose any square integrable function into 

scale-components which are translates and dilates of a single function. Consequently there 

are conceptual difficulties in extending wavelets to bounded domains and general geometries. 

Furthermore, the uniformity of the underlying wavelet approximation makes it impossible to 

obtain an adaptive (data-dependent) multiresolution representation which fits the approx- 

imation to the local nature of the data. The only adaptivity which is possible within the 

theory of wavelets is through redundant "dictionaries." 

In a series of works [Hl-3] we have studied the question of how to represent discrete data 

which originates from unstructured grids in bounded domains in terms of scale decompo- 

sition. Combining ideas from multigrid methods, numerical solution of conservation laws, 

hierarchial bases of finite element spaces, subdivision schemes of Computer-Aided Design 

and of course - the theory of wavelets, we came up with the more general concept of "nested 

sequence of discretization." Given discrete data which can be associated with a nested 

sequence of discretization we show that it has a multiresolution representation, i.e., a one- 

to-one correspondence between the given data and its scale-decomposition. This framework 

is a generalization of the theory of wavelets in the sense that under conditions of uniformity 

its natural result is wavelets. 

In this paper we review the work in [HY], [AC], [ACD], [H4-5] where the previously men- 

tioned works on numerical solution algorithms with representation by wavelets are extended 

to the more general framework of nested discretization. 



2. Nested Discretization 

In this section we describe the class of discrete data for which we can obtain representation 

in terms of a scale-decomposition. We start with two examples. 

Example 1. 

Let us consider continuous functions / in the interval [0,1] 

/€^=C°[0,1], 

and let {Xk}%=0 be the following nested sequence of uniform grids 

Xk = {*?}/=(» z* = ih, h = 2~kh0, Jk = 2*Jo (2.1a) 

for some integer J0 with h0 = 1/J0. Here k = L is the finest grid and k = 0 is the coarsest. 

Observe that Xk is obtained by dyadic refinement of Xk~1, i.e. 

1 

0,...,Jjfc_i (2.16) 

4-1 = ^(^-l   + Xt'),      »' = 1, • • . , Jjfe-L (2.1c) 

Let us consider now the discrete values vk = {vk}^0 which are obtained from point value 

discretization of / e T in the fc-th grid 

Vi=-{Vkf)i = ftä),    i = 0,...,Jk,0<k<L. (2.2a) 

It follows from (2.1b) that vk~l can be obtained from vk by the decimation 

vi~1=vb    * = 0,...,Jjt_i. (2.26) 

Let Z*-1^;«*-1) denote any continuous function in [0,1] which interpolates v1*'1 at the 

grid points of Xk~1, i.e. 

/fc-1(.r;^-1)ejr=Co[0,l] (2.3a) 

Ik-\xi-1;vk-1) = vt1    for    { = 0,...,^ (2.36) 

e.g. we can take Ik~l(x; vk~l) to be the piecewise-linear interpolation 

Äit-i 

Given u       we can approximate vk by 

/^(x; v*-1) = vk:l + ^-^-(t;?-1 - rjTi1),    for   *?_-' < s < xf"1. (2.4) 

Z*-1^?;!;*-1),    i = 0,...,Jfc. 



Let us denote 

and refer to efc = {ek}^l0 as the prediction error. We observe that 

e^ = 0    for    i = 0,..., Jfc-i 

and denote the interpolation error at the odd grid points of Xk by dk = {d^}^1 

dk =: e%_x = vk
2j_, - /fc-1(^j_1; v

k~%    j = 1, • • •, Jfc-i. 

(2.5a) 

(2.56) 

(2.5c) 

Clearly there is a one-to-one correspondence between vk and {dk, vk 1}: Knowing vk we get 

vk_1 and dk by (2.2b) and (2.5c), respectively. From {dk,vk~1} we recover vk by 

vk
2i = vt\    i = 0,...,Jk-i 

<-i = ^_1(4-i; «fc_1) + 4,  • = 1,..., J*-i. 

(2.6) 

Since ufc_1 can be likewise represented by {dk~1,vk~2} we get that there is a one-to-one 

correspondence between the values of the finest level vL and the sequence of ( JL + 1) elements 

{dL,..., d1, v0} which we denote by VM'■ 

vL^U{dL,...,d1,v°}=:vM. (2.7) 

We refer to vM as the multiresolution representation of vL. It follows from (2.2b) and (2.5c) 

that the direct multiresolution representation (MR) transform vL !-»■ vM can be expressed 

by the following algorithm 

f DO k = L,..., 1 

„*-i _ „,fc (2.8a) 

(2.86) 

*   v*    = «J,-,    t = 0,..., J*-i 

. d) = 4-1 - Jfc_1(4-i; ü*_1)» i = 1» • • •»^-i- 

We denote this transform by M, i.e. 

vM = M • vL. 

Similarly it follows from (2.6) that the inverse MR transform vM *-+ vL can be expressed by 

f DOk = l,...,L 

vk
i = vt\    i = 0,...,Jfc_i (2.9a) 



and we denote 

vL = M~l ■ vM. (2.96) 

We refer to dk as the scale-coefficients of the A:-th level of resolution. For the piecewise- 

linear interpolation (2.4) we get from (2.5c) that 

4 = 4-i-^i-i+^_1); (2.10a) 

in terms of / G T for which vk — Vkf this can be expressed by 

4(/) = -\\fiAi) ~ 2/(xJJ--1) + /(4-2)l- (2-106) 

Hence if f(x) is twice differentiable in [x*lj,x*-1] we get that 

4(/) = -\(htff"(0 &* some £ € (x*:?,**"1) (2.10c) 

and consequently the scale coefficients in a region of smoothness of f(x) tend to zero as 

0((hk)
2) for k —> oo. However at a jump discontinuity «?*(/) is proportional for the size of 

the jump and thus remains 0(1) as k —> oo. 

We can obtain data compression by setting to zero all scale coefficients which fall below 

a prescribed tolerance. Let us denote 

«? = < 
f0    if|rfj|<efc 

(2.11a) 
[ d)   if \dk\>ek, 

and 

vL = M-1-{dL,...,d\v0}. (2.116) 

Based on the analysis in [H3] we get the following bound on the compression error in the 

case of piecewise-linear interpolation: 

Jt=i 

Given any e > 0 we can take 

max \vf-vf\ <£>*. (2.12a) 

)*-L-l 

and thus ensure by (2.12a) that 

sk = 2*-L-1e (2.126) 

ofi<\ ^ " ^ < £- (2-12c) 



Example 2. 

Let us consider absolutely integrable functions / in [0,1] 

feF=L1[0,l], 

and let 

Ck = {<%}&,    <* = (*?-*,*?), (2-13«) 

where {xk} are the gridpoints of Xk in (2.1); observe that 

cf"1 = 4-i u 4- (2-136) 

Let ufc = {uf}f=i be discrete values which are obtained by taking the average over the cells 

in Ck of some function / € T = L1 [0,1] 

„* =: {Vkf)i = rL / fdx, \ck\ = hk,i = 1 Jib, 1 < * < L. 
\ci I •/c< 

(2.14a) 

It follows from the additivity of the integral and (2.13b) that vk x can be obtained from vk 

by the decimation 

vt1 = \«-i + 4), i = 1,• • •, Jk-i. (2-146) 

Let (TZkv
k)(x) denote any function in L^O, 1] which satisfies 

{Vk-Kkv
k)i = ^Jck{Tlkv

k){x)dx = vl    i = l,...,Jfc (2.15) 

e.g. we can take 1Zkv
k to be the piecewise-constant function 

{nkv
k){x) = vk    for    x e ck. (2.16) 

In the context of ENO schemes for the numerical solution of conservation laws we refer to 

Kk as reconstruction from cell-averages and to (2.15) as "conservation" (see [HEOC]). 

Given ufc-1 we can approximate vk by 

vk « (Dk ■ ^fc-iv*-1),- = Ar [(Kk-ivk-1)(x)dx, 
\ci I Jci 

i.e. by first approximating / from vk~x by T^-it;*-1 and then taking cell-averages of this 

approximation over the finer level k. It follows from the conservation property (2.15) that 

the prediction error efc, 

e? = v?-(I>*.'fcfc_1ü*-1),-,    * = 1,...,J* (2.17a) 



satisfies the relation 

Therefore, if we store 

e2i-i + e2i = °    f°r    » = !,..., «4-1 • 

4 = 4,-1      for     i = l,-..,Jy *-l 

we can recover the prediction error ek by 

f   „* - dk 
t-1  — ai 

P
k. — —r]k e2i —      «. 

(2.176) 

(2.18a) 

(2.186) 

and thus get a one-to-one correspondence between vk and {dk,vk~1}.   As in the previous 

example this leads to the multiresolution representation 

vL<^{dL,...,d\v0}=:vM 

where the direct MR transform vM = M ■ vL can be expressed by the algorithm 

DOk = L,...,l 

v.- 1 = ;(«»-i + «2i).   * = l,...,J*_i (2.19) 

d* = vi--i-]^i/c5J_I(^-i^-1)(^)^,   i = l,...,Jifc-, 

and the inverse MR transform vL = M_1 • uM is given by 

f DO k = l,...,L 

DOi = \,...,Jk_1 

4-i = i^i /<>_, (ft*.,«*-1)**)«/* + dk 
(2.20) 

«2* = 2t;?-1 y
2i-l • 

Observe that the last statement of (2.20) is obtained from (2.14b). 

In [HEOC] we showed that any interpolation method (2.3) gives rise to a reconstruction 

from cell-averages (2.15) by the following "reconstruction via primitive function" technique: 

Given cell-averages vk = Vkf in (2.14a) we calculate 

by 

F? = F(x!),     F(x)=ff(y)dy 
Jo 

Fk = 0,    Fk = hkY/v
k,    l<i<Jk, 

3 = 1 

(2.21a) 



and define 
(nkv

k)(x) = j-Ik(x;Fk), (2.216) 

where Ik{x; Fk) is any interpolation of the values Fk = {Ft
k}^0 at the grid points of Xk in 

(2.1a). 
In the previous two examples we have shown how to design MR schemes for discrete 

data vL which is obtained from discretization of functions by point values (Example 1) or by 

cell-averages (Example 2) in the nested sequence of uniform grids of [0,1]. In [H2] and [H3] 

we have presented a more general class of discrete data which can be represented by a scale 

decomposition. This class is characterized by the following notion of nested discretization. 

Definition.   We say that a sequence of linear operators {Dk}f=Q is a nested sequence of 

discretization if 

(i) 
Vk.jr2^V^    dimVk = Jk, (2.22a) 

(ii) 
Vkf = 0 =* ZW = 0 (2.226) 

Here T is a space of mappings and Vk is a linear space of dimension Jk. 

In the next section we show how to obtain multiresolution representation of any discrete 

data vL = VLf, where the scale-decomposition corresponds to the levels of resolution which 

are introduced in (2.22). This is a very general framework which allows for discretizations 

corresponding to unstructured grids in several space dimensions. 

3. General Multiresolution Representation Schemes 

In this section we consider discrete data which is associated with a nested sequence of 

discretization {Vk}^=0 and show how to design schemes for its multiresolution representation. 

First we show that a nested sequence of discretization comes equipped with a decimation 

operator .DjI;-1 which is a linear mapping from Vk = Vk(F) onto Vk~l = Vk-\{T) 

Dk-!    :yk    Onto    yk-l (31a) 

This decimation operator is defined as follows: For any v in Vk there is at least one / € T 

such that Vkf = v; the decimation of v is Vk-\f G Vfc_1, i.e., 

veV
k,v = Vkf,    Dk~1v = Vk-lf. (3.16) 



It follows from (2.22b) that D\ 1 is well-defined by (3.1b), i.e. its definition is independent 

of the particular /. To see that let us take /x and /2 in T such that 

Vkfr =v = Vkf2, 

then by (2.22b) 

0 = Vkh - Vkf7 = Vk{fx - f2) =» 0 = 2>fc_,(/, - f2) = Vk.xfx - Dfc_x/2 

which proves our claim. 

Given vL G VL we can evaluate {vk}^ by repeated decimation 

^^-V,     k = L,...,L (3.2) 

Since (3.1b) implies that 

Dh
k-\Vkf) = Vk_lf   forany/€JF (3.3) 

we get for any / 6 T for which vL = VLf, that vk = Vkf for all k in (3.2). We would like 

to stress the point that, as in (2.2b) and (2.14b) in the previous examples, this decimation 

is done without explicit knowledge of /. 

Since by (2.22a) Vk = Vk(T), it follows that Vk has a right-inverse (at least one) which 

we denote by Hk: 

Kk : Vk -> T,    VkTlk = Ik, (3.4) 

where Ik denotes the identity operator in V*. Since (Kkv
k) € T is an approximation to any 

/ € T for which Vkj = vk, we refer to Kk as a reconstruction of Vk; see (2.3)-(2.4) and 

(2.15)-(2.16) in the previous examples. 

Next we show that any sequence of corresponding reconstruction operators {Rk)l=Q 

defines a MR scheme for discrete data vL in VL. Starting from vk~l in (3.2) we can get an 

approximation to vk by 

vkxVk(Kk_1v
k-1). 

We denote 

P^-VkKk-u    Pk_x:V
k~'^Vk (3.5a) 

and refer to it as prediction operator. It follows immediately from taking / = U^v1"1 in 

(3.3) and using (3.4) that /£., is a right-inverse of the decimation D^1 

DJ"1/?_, = /*_!. (3.56) 

We observe that the prediction error ek 

ek = vk- Pi_xv
k-* = (Ik - Pk_xD

k-')vk (3.6a) 

8 



satisfies the relation 

D\~xtk = Dk
k-

1vk - {D^Pk-Jv"-1 = «fe_1 - v*-1 = 0 

and therefore it is in the null space of the decimation operator 

ek € M{Dk
k~

x) = {v\    ve Vk, Dk~xv = 0}. (3.66) 

It follows from (3.1a) that 
dimJVpJ"1) = Jk- Jk-i (3.7a) 

and hence 
^(^"^^span^}^-1, (3.76) 

where {^J}^"7*-1 is any basis of Af(Dk
k~

1). Therefore the prediction error ek, which is 

described in terms of Jk components in Vk, can be represented by its (Jk - Jk-i) coordinates 

dfein(3.7b) 

ek=    £dkfik=:Ekd
k,    dk=:Gke

k. (3.8a) 
i=i 

Here Gk denotes the operator which assigns to ek € N(Dk
k~
l) its coordinates dk in the basis 

{/J*}/=7J*-1; observe that EkGk is the identity operator in .Af^-1), i.e. 

EkGke
k = ek    for any ekeM{D\-x). (3.86) 

At this point we can show that there is a one-to-one correspondence between vk and 

{dk,vk~1}: Given vk we evaluate 

' r*-i   =   Dk~1vk 

. dk      =   Gk(h - PLiDt'y   ; 

given ufc-1 and dk we recover vk by 

PLxv
k-' + Ekd

k   =   P^DtW + EkGkilk-P^Dt-'y 

=   PliDk
k-
lvk + (h - PLtBJr1)** 

=   vk. 

As in the previous examples this shows that 

vL<±U{dL,...,d\v°}=:vM, (3-9) 



where the direct MR transform VM = M ■ vL is given by the algorithm 

' DO k = L,...,l 

„*-* = D*-V (3.10) 

{ dk = Gk(Ik - P^D'-'y =: G?v" 

and the inverse MR transform vL = M'1 • VM can be calculated by 

DO k = l,...,L 
(3.11) 

vk = P£_iv
k-1+Ekd

k. 

We remark that in multigrid terminology Dk
k~
l is "restriction" and Pk_^ is "prolongation." 

In signal processing D^'1 plays the role of "low-pass filter" while Gf, which is defined in 

(3.10), plays the role of "high-pass filter." 

Example 3. Biorthogonal Wavelets. 

In this example we derive the MR schemes which correspond to the bases of biorthogonal 

wavelets in [CDF]. These MR schemes are obtained from nested discretization of functions in 

Lf0C(K) by taking weighted-averages on a nested sequence of uniform grids of R, as follows: 

1    f°° (x — xk\ 
(T>kf)i = YJ_    ttx^w I ~h~L I dx' ~oc<i< °°> (3.12a) 

where w € £2(R) is a weight-funcntion 

/oo 

w{x)dx = 1 (3.126) 
-oo 

and 

xk = ihk, -oo < i < oo, hk = 2~kh0. (3.12c) 

In order to obtain a nested sequence of discretization we want to choose w(x) so that 

N 

(Vk-1f)i = 1£at{Vkf)2i-t (3.12rf) 

where c^, I = 0,..., N are real numbers. We observe that since 

f(x) = c = constant => {Vkf)i — c    Vi, k 

we have to limit the choice of {etc} by 

N 

X>* = 1. (3.13a) 

10 



From (3.12d) and (3.12a) we get that for any / € Lfoc(R) 

0 
J-oo  [/lfc-1 

W 
X       Xj 

fc-r N 

-—^atw 
X — X 2i-£ 

hk-i    )     hk e=0        \     hk 

this shows that w(x) has to satisfy the functional equation 

N 

)(x) = 2*£j<xtw{2x-l). 

f(x)dx    ; 

w( (3.136) 

This equation has been investigated in [Da] and [CDF] and got the name of "dilation equa- 

tion" in [S]. It is shown there that subject to condition (3.13a) the dilation equation (3.13b) 

has a distribution solution which is determined up to a multiplicative constant and a shift, 

and that w(x) has a support of size N. Furthermore, if 

^2 au - X]au-1 (3.13c) 

then w(x) is also square integrable. 

We make the choice of w(x) unique by imposing (3.12b) and fixing its support in, say, 

[—N, 0]. With this choice of a weight-function, the sequence of discretization in (3.12) is 

nested and its decimation operator is given by 

(Dk
k 

1v)i =: Y^aivu-t = Z)a2t-mUn (3.14a) 

In [Da] and [H3] it is shown that {n]}?^^, 

(^), = (-l),+1a2j-,--i,   -oo<i< 00 (3.146) 

is a basis of ^(D^1) in (3.6b). 

We reconstruct the discretization T>k in (3.12a) as follows: We take a sequence {ße} of 

compact support which satisfies 

Y,t ßu = Yli ßu~\ = 1 

J2e <xeße+2m = t>m,o 

and define 
x — xt- 

k    hk i 

where ip(x) is a solution of the dilation equation 

(3.15) 

(3.16a) 

(3.166) 

11 



which is normalized by 

I if(x)w{x)dx = 1. (3.16c) 

It is easy to see that the corresponding prediction operator P^_j = T>kHk-i is given by 

fcf)i=:Eft-2A (3.17) 
m 

Daubechies' orthonormal wavelets are obtained by imposing the additional condition 

ßt = 2a, 

(see [H2] and [H3] for more details). 

We remark that the "fundamental solution" for the dilation equation (3.13b) with 

on = St,o (3.18a) 

is 

w(x) = 6{x), (3.186) 

where 8(x) is the Dirac distribution (see [S]). In this case (3.12a) becomes the point value 

discretization (2.2a) of Example 1. However, since S(x) is not square integrable, point value 

discretization is excluded from the theory of wavelets. For 

0( =-(Se,o + 6(A) (3.19a) 

we get 
,  v      J   1    -1 <x < 0 

w{x) = < n     .,       . (3.196) ^ 0   otherwise v ' 

which is square integrable, and the discretization (3.12a) becomes the cell-average discretiza- 

tion (2.14a) of Example 2. Observe, however, that the theory of wavelets is for the infinite 

domain R, while our formulation is suitable for both the finite (Example 2) and the infinite 

case (Example 3). Furthermore, unlike the theory of wavelets which uses translates and 

dilates of a single function for both discretization and reconstruction and consequently is 

restricted to uniform grids, our framework of nested discretization allows for general ge- 

ometries. In [H3] and [AH1] we extend the multiresolution representation of cell-averaged 

data in Example 2 to unstructured meshes in bounded domains of Rm,ra > 1, by using 

agglomeration of cells to generate a nested sequence of discretization. 

In [ADH] we consider the case where w(x) in (3.12) is the "hat-function" and show how 

to improve data compression by using adaptive prediction techniques near discontinuities 

and distributions. 

12 



4. Multiresolution Representation of a 2-Dimensional Array 

In this section we consider functions / 

/:[0,l]x[0,l].—> R (4.1a) 

which are discretized on the tensor-product grid 

** = {(*?> *})}&o (4-1&) 

by A- = v& i" r '<*• ** hr)w hr)dx^      (4-lc) 
where {xk} are the one-dimensional gridpoints in (2.1) and w(x) is a weight-function as in 

Example 3; by (3.18) and (3.19) this includes point value and cell-average discretizations. 

Although this case is covered by the general framework in (3.9)-(3.11), it is convenient here 

to represent the two-dimensional array in (4.1) as the iVfc x JVj. matrix Ak, and to use tensor- 

product extension of the corresponding one-dimensional operators to get a MR scheme for 

the input AL. 

Let us denote the matrix representation of the various one-dimensional operators by 

Dk~X —* (D)Nk_1xNk 

(4.2) 
G? = Gk{Ik - Pt.tDf1) — (G^N^.N, = G(I - PD) 

Ek —► {E)NkxNk_1- 

These matrix representations are obtained by taking vk and dk in (3.10)-(3.11) to be column- 

vectors, e.g. 
Nk 

3=1 

where by (3.14a) 

Da = cm-j ; (4.36) 

for simplicity we drop the index k. 

Starting with AL we decimate to get 

Ak~1 = DAkD\       fc = L,...,l; (4-4) 

here (•)* denotes the transpose. Given Ak~l we get an approximation to Ak by 

Ak « PAk~lP* 
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and observe that the prediciton error matrix ek 

ek = Ak- PAk~lP* 

satisfies 

DekD* = 0. 

The dimension of the null space of the decimation operators here is 

Jk - Jk-i = (2Nk_1)
2 - (N^)2 = 3(7Vjt_1)

2 

and we store the scale-coefficients dk in three Nk-i x Nk-i matrices A*, A*, A 

Using the matrix identity 

I = PD + EGD,       GD = G(I - PD), 

we show that if we take Ak and Ak~l from the sequence (4.4) and define 

Ak = GDAk{GD)\       Ak = DAk{GDY,       A* = GDAkD* 

then Ak can be recovered from Ak~1 and the above by 

Ak = PAk~lP* + EAkE* + PAkE* + EAkP*. 

This follows immediately from the identity 

Ak   =   (PD + EGD)Ak(PD + EGD)' = P(DAkD*)P* 

+   E[GDAk(GD)*]E* + P[DAk(GD)']E* + E{GDAkD*)P\ 

We conclude from (4.7)-(4.8) that AL has a multiresolution representation AM, 

where the direct MR transform is given by 

DO ib = /,,..., 1 

Ak~l = DAkD* 

Ak = GDAk{GD)\   Ak
2 = DAk(GDy,   Ak = GDAkD\ 

and the inverse MR transform is 

DO  k = l,...,L 

Ak _ p^k-ip* + EAkE* + p&kE* + EAkP*. 

(4.5a) 

(4.56) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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In Figure 1, which is taken from [HY], we show the result of applying thresholding with 

tolerance s = 10~7 to AM in (4.9) where 

(4.12) 

Here we take NL - 512 and use point value discretization which is reconstructed by a 

sixth-order accurate piecewise-polynomial interpolation with a centered stencil; near the 

boundaries we use one-sided stencils. The rate of compression, i.e. the ratio of (NL)2 to the 

number of entries in AM which are above the tolerance e - 10~7, is 8.57. This example is 

taken from [BCR] where it is done with MR schemes which use Daubechies' wavelets; the 

corresponding rate of compression for wavelets with six vanishing moments is reported to be 

7.33 . 
In Figure 1 we display the results by writing AM in (4.9) as the matrix 

AM = 

**  :  

and marking the entries that are larger in absolute value than 10 7 by a black dot. 

5. Multiresolution Algorithm for Matrix-Vector Multiplication. 

In this section we describe an algorithm to reduce the cost of evaluating the matrix-vector 

multiplication c, 
c = Ab, (5.1) 

where A is a, NL x NL matrix which can be thought of as the discretization (4.1) of some 

piecewise-smooth function, and b is any vector of NL components; note that we do not make 
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any smoothness assumptions on 6. As an example let us consider the case where (5.1) is 

obtained from discretization of the integral transform 

c(x) = J a(x,y)b(y)dy; (5.2a) 

here 

et » c(xf),   An « hL ■ a(xf, xf),   bj » b(xf), (5.26) 

and we want to evaluate (5.1) to a specified tolerance which is taken to be of the order of 

the discretization error in (5.2). 

The basic idea is that the product c = Ab, which is being set up as cL = ALbL, has a 

meaningful analog 

ck = Akb\       k = L-l,...,0 (5.3a) 

corresponding to the k-th grid, and that 

ck = Pck~x + correction, (5.36) 

where P is the matrix representation (4.2) of the one-dimensional prediction operator, and 

the "correction" comes from locations in [0,1] x [0,1] where a(x,y) is still not "sufficiently" 

resolved on the (k - l)-th grid. To obtain (5.3) let us multiply (4.8) by bk to get 

Akbk = PAk-\P*bk) + EAk(E*bk) + PAk(E*bk) + EAk{P*bk), 

from which we see that if we define 

bk-1=P*yt,        k = L,...,l (5.4a) 

and denote 

sk-1=E*b\        k = l,...,L (5.46) 

then we can rewrite the above identity as 

ck = Pck~l + £(A*sfc-x + A^*-1) + PiA^-1). (5.4c) 

Using this observation we get the following algorithm for the approximate (up to a specified 

error) evaluation of the matrix-vector multiplication (5.1): 

(A) Preparation: 

(i) Given A, set AL = A and use the direct MR transform (4.10) to obtain the MR 

representation AM (4.9). 
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(ii) Apply thresholding to AM in order to obtain a sparse representation. 

(B) Multiplication: 

Given any vector b 

(i) Set bL = b 
[ DO  k = L,...,l 

bk~l = P*bk 

3k-i = E*bk 

(5.5) 

(ii) Calculate directly 

c° = A°b° (5.6a) 

(this is done on the coarsest grid). 

(iii) 
DO for  k = l,...,L 

(5.66) 

Set c = cL. 

In the case of pointvalue discretization this algorithm turns out to be identical to the 

multilevel matrix multiplication of Brandt and Lubrecht in [BL]. The algorithm which cor- 

responds to Daubechies' orthonormal wavelets is identical to the "non-standard form" of 

Beylkin, Coifman and Rokhlin in [BCR]. We remark that (5.5)-(5.6) is a slight generaliza- 

tion of the algorithm which was presented in [HY]. 

Based on the analysis in [BCR] we show in [HY] that if the kernel a(x, y) in (5.2a) satisfies 

Ca \dta(x,y)\ < 
\x-y\t+1' 

£ = 0,...,r-l (5.7) 

then outside a diagonal band of width B, the entries of the matrices {A£j^=1 are not larger 

than 0(B~r), where r is the order of accuracy of the reconstruction technique. Since the 

matrices P and E are banded, we get that the complexity of the algorithm in (5.5)-(5.6) is 

0{NL). 
In [HY] we used the above matrix-vector multiplication algorithm to apply the matrix 

in (4.12) to a vector 6 with "randomly generated" components. Using single precision we 

obtained for the case in Figure 1 a relative residual error ||A6-c||/||6|| which was 7.52 x 10-6 

in the l\ norm, and 4.41 x 10"5 in the 4o norm. 
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6. Multiresolution Form of Numerical Schemes. 

In this section we consider the numerical algorithm 

vn+1=Avn+g (6.1a) 

which describes either an iterative procedure or a numerical scheme for the solution of an 

initial value problem. Taking the MR transform of (6.1a) we get 

vtf1 = Mvn+1 = (MAM-x)(Mvn) + Mg =: AsvM + gM; (6.16) 

observe that As = MAM'1, the multiresolution form of the matrix (= operator) A, is 

different from AM, the multiresolution representation (4.9), where A is treated as a two- 

dimensional array and not as an operator. 

From (3.10) we get that MvL can be expressed by 

dk = G?(Z?J+1 • • • Dt1) ■ vL =: Bk
Lv\   k = l,...,L 

v° = (D0
1---Di-1)-vL=:B°Lv

L. 

From (3.11) we get that M~lvM can be expressed by 

L 

£ 
Jt=i 

C£ = (PE-l---P£+1)Ek,        k = l,...,L 

CL _  pL pi 

Using (6.2)-(6.3) to epxress (6.1b) with g = 0, we get 

dk,n+i = Y:Lt=l{B
k

LACf) ■ de* + {Bk
LAC£) ■ v°'n,   k = l,...,L 

vo,n+i = Y$^{BIACZ) ■ de'n + (B°AC£) • t;0-" 

which shows that 

(6.2) 

M-'VM = £ Cjf rf* + Civ0, (6.3a) 

where 

(6.36) 

(6.4a) 

18 



As = 

B\AC\ 

BJrACJ- •   •    • 
Y 

• 
• 
• 
• 

• 
• 

• 
• 

B\ACl 

B\ACl •   •   • 
M 

BlACJ; 

(6.4b) 

B^ACL 

B°LACi 

B\AC\ 

Observe that the block Bk
LAC\ , l<k,£< L, is of size Nk-i x Nt-i. 

In the Appendix we show that Cf = (!?£)* where B[ is given by (6.2) for the dual MR 

scheme; hence 

(6.5) Bk
LACL

t = Bk
LA(Biy 

and each column of {Bk
LA) is dk, the scale coefficients (6.2) of the fc-th column of A, while 

each row of A(Be
L)* is (d1)*, where dl is the column-vector of scale coefficients of the data in 

the £-th row of A which is obtained by the dual MR scheme. 

We remark that when M in (6.1b) corresponds to Daubechies' orthonormal wavelets, As 

is identical to the standard form which was introduced in [BCR]. In this case the MR scheme 

is dual to itself, i.e. Bk
L = Bk

L and therefore M_1 = M*. It was shown in [BCR] that if A is a 

discretization of a Calderon-Zygmund operator, then data compression of each block in (6.5) 

results in a "diagonal" band, the width of which is independent of k and £. Consequently 

applying data compression to As results in a finger-like structure of non-zero entries, and 

their total number is 0{NL log2 N£)- 

In [AC] and [ACD] the standard form of [BCR] was extended by (6.1b) to point value and 

cell-average discretizations. It is shown there that, inspite of the lack of symmetry, the rate 

of compression compares favorably to that of orthonormal wavelets: It is about the same in 

the periodic case, but it is significantly better in presence of boundaries. 

In Figure 2, which is taken from [AC], we show the nonzero entries of As, the multires- 

olution form of the matrix in (4.12). As in Figure 1 we use point value discretization which 

is reconstructed by piecewise-polynomial interpolation, however here NL = 64. 
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The present work extends the scope of application of these algorithms to the general class 

of MR schemes in (3.9)-(3.11). 

7. Multiresolution Application of Operators. 

In this section we describe multiresolution algorithms for the solution of integral equations 

and for the numerical solution of initial-value problems. We shall say that a matrix is T- 

Sparse if it becomes sparse under thresholding, and refer to the number of non-zero elements 

as its T-sparseness. In this language we can express the main result of the previous section 

by saying that the multiresolution form As of Calderon-Zygmund operators is T-sparse and 

that the T-sparseness of As is 0(NL log2 NL). 

7.A. Integral Transforms and Equations. 

In section 5 we described a multilevel algorithm for matrix-vector multiplication (5.1) 

and showed that if it corresponds to a discretization of an integral transform of the form 

(5.2a) with a kernel which satisfies (5.7), then it can be performed in 0(NL) operations. We 

can also evaluate c = Ab from its multiresolution form by 

bM = Mb, 

CM = AsbM, (7.1) 
C= M_1CAf. 

Since the T-sparseness of As is 0(NL log2 NL) this is also the cost of the product ÄsbM', in 

addition we also have to apply the direct MR transform to b and its inverse to cM- Hence, 

unless we are in a special situation in which CM and/or IM are also T-sparse, it is more 

efficient to calculate integral transforms by the multilevel algorithm (5.5)-(5.6). 

A situation of this type occurs in a matrix-matrix multiplication C = AB where both 
A A 

As and Bs are T-sparse 

Cs = MCM~l = (MAM-^MBM-1) = ÄSBS. (7.2a) 

Of particular interest is the case where the T-sparseness of 

M{A)nM~l = (Äs)n (7.2b) 

is uniform in n. In this case (As)n for n = 2m can be computed in m steps of squaring and 

thresholding 

(Äsf = [(is)2*"']2,    * = l,...,m, (7.3) 

where each product above is between matrices with T-sparseness of 0(NL log2 NL). 
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The numerical algorithm (6.1a) can be written as 

n-l 

3=0 

(7.4a) 

or in its multiresolution form (6.1b) as 

n-l 

j=0 

(7.46) 

Following [BCR], [EOZ] and [ACD] we use the following algorithm for the fast evaluation of 

(7.4a) for n = 2m: 

(i) Set 

(ii) 

B = MAM-1 

C = I 

DO  m times 

<   C = tr{C + BC;e) 

B = tr(BB;e) 

(7.5) 

Calculate 

(iii) 

vn = M-1(BMv° + CMg); 

here tr(A; e) denotes the truncation operation 

.   f Aij   if  \Atj\ > e 
[tr(A; £)],,= . (7.6) 

[   0    if  \Aij\ <e 

Fredholm integral equations of the second kind are usually solved by iterative procedures 

of the form (6.1a). In this case the gain in efficiency which is offered by algorithm (7.5) is 

based both on the compression of the operator A by 

A—>tr{Äs;e) (7.7) 

  A 

and using the fact that the T-sparseness of (As)n remains constant as n increases. 
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7.B. Initial Value Problems. 

Consider the evolution equation 

dtu + C(x,dx)u = f(x)   ,x£ti  t>0 .     , 
u(x,0) = u0{x) ^ ' ' 

with boundary conditions, where £ is a differential operator.    An explicit discretization 

typically takes the form (6.1a) 

vn+1 =Avn + g (7.9a) 

where 

v" « u(xj,tn),    gj » Atf(xj), (7.96) 

tn = nAt and {XJ} is a grid in $7. 

It is shown in [EOZ] that using the multiresolution algorithm (7.5) to calculate large- 

time solutions of one-dimensional hyperbolic problems to a fixed predetermined accuracy 

can be reduced from the standard 0((NL)
2
) to 0(^Vx,(log2 ^VL)

3
). For parabolic equations, 

a standard explicit calculation with complexity 0((NL)
3
) can be likewise reduced by (7.5) 

to 0(Ni,(log2 NL)
3
)- The multiresolution algorithm (7.5) in [EOZ] is based on Daubechies' 

orthonormal wavelets. In [ACD] this algorithm is extended to point value and cell-average 

discretizations. 

As an example let us consider the simplest hyperbolic problem 

ut + ux = 0 (7.10a) 

and its solution by the Lax-WendrofF scheme 

<+1 = v? - £(»?+1 - <.i) + £%"+i " 2«f + «?_!) =: (At,»),- (7.106) 

where A = At/hi,. 

The matrix A is a tridiagonal matrix and thus has 3Ni non-zero entries. On the 

other hand As, the multiresolution form of the scheme, has a finger-like structure with 

0(NL log2 NL) non-zero entries. In Figure 3, which is taken from [AC], we show the mul- 

tiresolution form of the Lax-Webdroff scheme for NL = 64. This shows that unlike the 

application to iterative solution of integral equations where (7.7) results in a "compressed" 

representation of the operator, the gain in efficiency in large-time computation of hyperbolic 

problems is only due to the uniform T-sparseness of powers of As, i.e. while (A)n fills up 

linearly in n, the T-sparseness of (As)n remains 0(NL log2 NL) for all n. 

In the following we describe another application of the multiresolution form (6.1b) which 

uses data-compression of the numerical solution vn and the finite-speed of propagation in 
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hyperbolic problems in order to produce a multiresolution analog to adaptive grids. Let 

r.(t;B) = {(i,*)|    \d){vn)\>ek} (7-11«) 

denote the domain in the (j - k) plane which contains all the significant scale-coefficients 

of vn, and let f? denote the domain which is obtained by enlarging Ts(v
n) by adding side- 

neighbors of the cells in Te(v
n) and allowing for a growth of one scale per time-step where 

needed. Due to the finite speed of propagation in hyperbolic problems 

TE(v
n+1) C Tn

e. (7.116) 

Therefore we can set the components of üjj/1 which are not listed in f" to zero, and evaluate 

the product row(As) times ujj^ only for those rows which are listed in f". The computational 

work can be further reduced by taking into account the T-sparseness of v%j. 

This technique can be extended to nonlinear problems.  In [LT], [MR] and [BMP] it is 

shown how to derive a multiresolution scheme for the numerical solution of Burgers' equation 

ut + uux = uuxx,        v > 0 (7-12) 

in which the time-evolution is restricted to the significant scale-coefficients of the numerical 

solution. This numerical scheme is obtained by a Galerkin approach in which the PDE is 

projected on a basis of wavelets. We remark that this Galerkin-type scheme is not suitable 

for the "inviscid" Burgers' equation (v = 0 in (7.12)) in the sense that it generates spurious 

oscillations at shocks, and may even become unstable in some cases - thus some form of 

artificial viscosity is needed. 

In [H4] and [H5] we consider a hyperbolic system of conservation laws 

ut + /(u)* = 0 (7.13a) 

and its numerical solution by any scheme in conservation form 

v?1 = v? - \(fj - fa) (7.136) 

where 

fi = W-K+i, • • • ,■«"+*)    *» some  K > 1, (7.13c) 

and / is the numerical flux function. Observe that the computational task here is the evalu- 

ation of the numerical flux function (7.13c) at all the gridpoints. Using the multiresolution 

form of the numerical scheme (7.13b) with respect to cell-average discretization we derive an 

algorithm for the time-evolution of the scale-coefficients, and show that data compression of 
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the numerical solution can be translated into reduction of the number of flux calculations in 

(7.13c). 

In Figure 4 we show the results of [H5] for the multiresolution form of the Lax-WendrofF 

scheme which is applied to the periodic initial value problem for the "inviscid" Burgers' 

equation. 
ut + uux = 0   , — 1 < ar < 1   ,t > 0 

(7.14) 
u(x,0) = 2 + sin(irx) 

with JL = 256, CFL = 0.8, and tolerance e = 10-3. Figure 4 consists of 3 snapshots 

corresponding to n = 25,150,400 time-steps. In the upper part of each snapshot we compare 

the solution of the MR scheme (circles) to the solution of Lax-WendrofF scheme on the finest 

grid (continuous line), which is computed independently. In the lower part of each snapshot 

we display T£(v
n) (circles) and its corresponding estimate f" (dots). This is done by drawing 

the symbol at (x2]l\, k) in the x — k plane for each (j, k) in the set; note that due to a different 

notation in [H5] Ar = 0 is the finest grid, and k = L = 5 is the coarsest. In the Table we list 

the efficiency (i.e. the ratio between the fine grid calculation of 256 fluxes over the number 

that we actually had to compute) and the difference Em,m = 1,2, oo in the corresponding 

norm between the solution of the MR scheme and the independent finest-grid calculation. 

In [BH1] we extend this technique to the numerical solution of 

ut + divf(u) = 0 (7.15) 

on Cartesian grids, and in [AH2] we generalize it further to unstructured meshes where the 

coarser levels of resolution are obtained by agglomeration of cells. 

8. Conclusions. 

In this paper we reviewed recent developments in techniques to represent data in terms 

of its local scale components. These techniques enabled us to obtain data compression by 

eliminating scale-coefficients which are sufficiently small. This capability for data compres- 

sion can be used to reduce the cost of many numerical solution algorithms by either applying 

it to the numerical solution operator in order to get an approximate sparse representation, 

or by applying it to the numerical solution itself in order to reduce the number of quantities 

that need to be computed. 
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Appendix:   The Dual MR Scheme. 

In this appendix we describe the MR scheme which is dual to the one in (3.10)-(3.11). 
In order to better see the duality we rewrite (3.10)-(3.11) as follows: we express the direct 

MR transform 
{Ala) 

by 

where 

We observe that 

f DO k = L,...,l 

vk-i = Dk-xvk 

dk = G%vk 

G? = Gk(Ik - Pt^Dt1). 

(AAb) 

(Ale) 

Ekd
k € M{Dk

k-
x) => (Ik - Pk_1D

k-1)Ekd
k = Ekd

k 

and therefore we can rewrite the inverse MR transform 

vL = M~xvM 

as 

where 

DO  k = l,...,L 
vk = Pk_1v

k~1 + E£dk 

(A.2a) 

(A.2b) 

E^ih-P^Dt^E,. (A2c) 

To simplify our presentation we shall use the matrix representation of the various operators 

and define 

Dk
k-

l=:{Pl,)\    /£.!=: prr,    G? =:(#)•,    Sf =: (<??)'. (A3) 

Observe that D\rx is a Jfc_i x Jk matrix, P£_x is a Jk x J^-i matrix, Öf is a (Jk - Jk-X) x Jk 

matrix, and Ej? is a Jk x (Jk — Jk-\). With these definitions we obtain the dual MR scheme 
from (A.1)-(A.2) by applying (•) to all the operators, i.e. the direct MR transform of the 

dual scheme 
■ vs = M • vL (AAa) 

is given by 
(DO  k = !,...,! 

I. vk-1 = DT1vk (AAb) 

dk = G?vk 
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where G% is defined in (A.3). The inverse MR transform of the dual scheme 

vL = M-1 ■ vü (AM) 

is given by 
f DO  Jfc = l,...,L 

(AM) 
vk = P^_1v

k-1 + E£dk 

where E£ is defined in (A.3). Observe that the dual of the dual is the original scheme. 

It follows from the above definitions that for 1 < k < L 

c£ = (Pt-i • • • P£
+1

)E[ = [(E£Y(Pl:+lr ■ ■ ■ {PLiYY = [of (^ • • • Dt1))* = (*J)* 

and 

c0
L = PLi ■ ■ • Po = KPoY• • • (Pt-xYY = [5J• • • DL

L-')Y = (B°LY ; 

thus 

M'1 = [MY ■ 

In [H3] we also show that M is associated with discretization T>k and reconstruction TZk 

such that (IZiiVk) : T —>• T is the adjoint of (TZkVk) . 
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Figure 1. Multiresolution representation of the 2-D array 

Figure 2. Multiresolution form of the operator (matrix). 
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Figure 3. Multiresolution form of the Lax-Wendroff scheme, 

(linear advection) 
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Figure 4. Multiresolution application of the Lax-Wendroff scheme. 

(Inviscid Burgers' equation). 
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