
1*1 National Defense
Defence nationale

REAL-TIME DATA STORING PACKAGE
FOR SKYNET TRIALS

by

Capt E.R. Boudriau

V Tf»

I v-A MCl' I .; '5 IOC/
fry: £>; ~ " - ""V \t j-i

t:.j:

I^^äT--*:^

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 94-3

Canada mm w
April 1994

Ottawa

1*1 National Defense
Defence nationale

REAL-TIME DATA STORING PACKAGE
FOR SKYNET TRIALS

by

Capt E.R. Boudriau
MILSATCOM Group

Radar and Space Division

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 94-3

PCN April 1994
D6470 0ttawa

Abstract

A series of week-long experiments on an EHF downlink were conducted by the
MILSATCOM groups at CRC and DREO. The software developed for these
experiments included a reliable and robust data logging package to record the setup
and measurement data required for post experiment analysis. The software provided
the Skynet EHF Trials with a data logging package written in "C" that would interface
with the existing serial communication software. The package was used as a real time
storing device for recording experimental data such as hop power, noise power
spectral density and pointing angles. In addition to data logging, the software had to
provide several date and time references using the zulu time provided by a GOES
satellite clock as the Trials' time reference. The software was loaded in a computer
called Data Logger and was responsible for opening and closing all high and low level
communications with the processors linked to it.

in

j i«G50sion Foi*

WX1S 6RA&I ra
BHC TIB ' Q

J«.3t..lfic;ation_ __

-£—.'

By

ivoUMtiliJcy Ci'&GQ

'KÄS?

•>*

Resume

Les groupes MILSATCOM de CRC et DREO ont effectue une serie
d'experiences d'une semaine sur une liaison satellite-terre EHF. Le logiciel developpe
pour les experiences comprenait un Systeme fiable et robuste d'enrigistrement de
donnees. Le logiciel fournissait aux Essais EHF Skynet un Systeme d'enrigistrement
de donnees ecrit en "C" et etant compatible avec le logiciel de communications
serielles existant. Le logiciel d'enrigistrement de donnees etait utilise comme l'unique
methode d'enrigistrement des differentes donnees experimentales des essais tels que la
puissance des sauts de frequence, puissance de la densite spectrale du bruit et les
angles de positionnement. Le logiciel fournissait aussi plusieurs references de date et
d'heure, utilisant l'heure zulu de l'horloge satellite GOES comme reference pour tous
les essais. Le logiciel d'enrigistrement des donnees fut implente dans le processeur
principal denomme "Data Logger" et fut ainsi responsable de commencer et terminer
les communications avec tous les processeurs qui s'y rattachent.

EXECUTIVE SUMMARY

The MILSATCOM groups at DREO and at CRC have been investigating a
typical EHF satellite communications downlink using a Skynet 4 satellite.

The trials consisted of five separate week-long access periods from May to
October of 93 during which several tests were conducted such as synchronization,
evaluation of ephemeris prediction pointing angles and the characterization of both
antenna patterns and long term link stability. The need for a real time, reliable and
robust data logging package arose from the quantity of experimental data required to
complete the post experiment analysis.

The data logging software was implemented in the main processor, a DELL
486D/50 MHz computer called Data Logger, as the only experimental data recording
device. Using the in-house developed serial communications software, it accepted
status, configuration and result messages from various other processors. The Data
Logger also provided the other experiment processors with a date and time reference
taken via a serial interface with a GOES satellite clock.

The Data Logger routines were designed to minimize the amount of data that
could be lost should the program end prematurely. Overall real-time performance of
the logging software was enhanced by avoiding the normal use of buffering and
caching by the operating system. The logging package performed successfully
throughout the Trials.

Future work could include a more comprehensive error detection scheme, and
sorting capabilities that would improve the post-experiment data analysis.

Vll

CONTENTS

Page

Abstract iü

Resume v

Executive Summary v"

List of Figures and Tables xi

Document Convention xiii

1. Introduction 1

2. Experiment Setup 1

3. System Description 6

4. Logger Main Program 8

5. Data Logger Routines 9

6. Date and Time Stamp Routines 12

7. Testing Procedures 15

8. Conclusion 18

9. References 20

Appendix A DigiChannel PC/8 - 8 serial ports board configuration: A-l
Dip Switches and Jumpers Setting

Appendix B Data Loggger Time Stamp Configuration File B-l

Appendix C Calling Conventions for Data Logger Routines C-l

Appendix D Header Files used in Logger Software D-l

Appendix E Logger Routine Listings E-l

ix

LIST OF FIGURES AND TABLES

Fig. 2.1 Block Diagram of the Experimental Setup

Fig. 2.2 Interconnecting Diagram between Data Logger
and Other Processors

Fig. 3.1 Data Logger Software Outline

Fig. 5.1 Prefixes used in Skynet EHF Trials

Fig. 6.3.1 Time String Format as received from GOES clock

Fig. 7.1 Hookup Schematic for Testing Procedures

Fig. B. 1 LOG.CFG Sample Configuration File

Page

2

4

7

12

14

16

B-2

Table 2.1 Frequencies and types of messages to be recorded

Table 2.2 Serial Port Configuration

5

6

XI

DOCUMENT CONVENTION

This paper uses the following typographic conventions:

Example Description

prefix

STDIO.H Uppercase letters indicate filenames.

writelogO Bold type indicate routine name. Note that calling
conventions and parameters associated with a routine
name are not included unless absolutely necessary.
They are listed in a separate Appendix.

Words in italics indicate placeholders for information
you must supply, such as the prefixes on a message to
be logged.

These subscript characters each represent 1 space to be
supplied. In this example, 5 spaces are needed.

main () This font is used for coding examples and for all listings.

<LF> Angle brackets are used to indicate a control character
< line feed > here as an example.

xm

1 - INTRODUCTION

The MILSATCOM groups at the Defence Research Establishment Ottawa
(DREO) and Communications Research Canada (CRC) conducted a series of five
week-long trials on EHF satellite communications using a Skynet 4 satellite. Several
tests were conducted such as the evaluation of ephemeris pointing angles,
synchronization, Bit Error Testing (BER) testing of commercial Binary Phase Shift
Keying (BPSK) and the evaluation of Frequency-hopped/Digital Phase Shift Keying
(FH/DPSK) BER. A considerable amount of data was recorded to facilitate data
analysis and receiver characterization. In preparation for the experiments, a parallel
hardware/software development was required and was facilitated by the use of several
separate computers. It was found desirable to control the experiment simulators and
processors and to record the required data from a single location. The data collection
and storing package used the serial communications software that was developed to
control all other processors.

The objective of this paper is to describe the Data Logging Package that was
developed for the Skynet 4 Trials. The Data Logger was used as a single source for
data recording and also as the experiment date and time reference for several other
processors used in the experiment.

The data logging routines were written in "C" for compability with already
existing routines and used the serial communications software that was separately
developed to accept status, configuration and result messages from the many
processors used in the Skynet EHF Trials. The routines were designed to minimize
the amount of data that could be lost should the program end prematurely and special
considerations were given to avoid the normal use of buffering and caching by the
operating system. The use of the GOES satellite clock as experiment date and time
reference is also described in this paper.

2 - EXPERIMENT SETUP

2.1 System Overview

The parallel hardware/software development was facilitated by the use of
multiple computers. The Data Logger was developed to provide the unique recording
device used for data collection using the already existing serial communications
software. The software was installed in the main processor called Data Logger and
provided other processors with the experiment data and time reference.

A simplified block diagram of the experiment setup is illustrated in Figure 2.1.
Serial communications links between the Data Logger, the GOES satellite clock and
other processors are shown by dashed lines.

>)f
Antenna
Controller

EHF
Upconverter

A A A
Reference
Generator

Antenna
Processor

Transmit &
FH/DPSK
Processor

BPSK
Modulator

\

Antenna
Controller

X-band
Downconverter

Ephemerls
Processor

■T

I
Receive &

Synchronization
Processor

/v

Data
Generator

GOES
Clock

>
I ^ Data 1^_

J~" w Logger r*
Burst DPSK
Demodulator

Data Erroi
Analyzer

I

BPSK
Modem

Controller

Beacon &
Reference

Downconverter

Beacon &
Reference

Monitor

J BPSK
I Demodulator

Legend: Analog Signal
Digital Signal

Fig. 2.1 Block Diagram of the Experimental Setup.

Computers and in-house developed equipment are highlighted by bold boxes.
The EHF Upconverter, the X-band Downconverter and off-the-self equipment is
identified by normal rectangles.

A Data Generator provided pseudo-random data to the Transmit & FH/DPSK
Processor which performed differential encoding, hop waveform generation and local
or remote control of a variety of continuous wave (CW) and FH/DPSK signals which
would be converted by the EHF Upconverter and then fed to a 1.8m parabolic dish.

A BPSK Modem Controller configured both the BPSK Modulator and
Demodulator and supplied the Data Logger with BER measurements.

A British Skynet 4 satellite provided the satellite link for the experiment. It
filtered, amplified and translated the EHF signal from a nominal uplink frequency of
44.590 GHz to a 7.625 GHz downlink signal which was then transmitted via an earth
coverage horn along with an onboard generated beacon signal.

As the downlink X-band signal was received and converted to a desirable IF
signal and fed to the different processors, a number of messages were being sent to
the Data Logger to be recorded. Envelope and quadrature detection, analog signal
processing, signal capture and digital signal processing were provided by the Receive
and Synchronization Processor. This processor then sent receiver noise spectral
density and antenna scan amplitude measurements to the Data Logger for recording.
For some experiments, the dehopped signal was demomulated by the Burst DPSK
Demodulator which provided the Data Logger with BER measurements.

The power, frequency and nearby noise spectral densities of the reference,
beacon, and beacon-squared signals were continually monitored by the Beacon and
Reference Monitor which received the signal from the Beacon and Reference
Downconverter. Each measurement was then sent to the Data Logger to be recorded.

The GOES satellite clock provided the experiment date and time reference. This
reference was converted by the Data Logger and then fed to the different processors
attached to it at the start of each experiments. Further description of each processor
and. preliminary post-experiment results can be found in [1].

The use of multiple processors for the trials required the addition of a multiple
serial communication ports to the PC hosting the software. The DigiCHANNEL PC/8
RS232, an 8 serial port PC extension board from DigiBoard Inc. was installed into the
Data Logger and configured as shown in Appendix A.

Figure 2.2 shows in more detail the relation between the Data Logger hosting
the software and the stations that send it data to be stored.

GOES Clock

A^

Beacon
Ref.

Monitor

r i

Burst DPSK
Demodulator

L J

Data
Logger

y ^\

Ephemeris
Processor

L J

r ^

Rcvr
& Sync.

BPSK ■

Processor

Moc
Cont

Jem
roller

Fig. 2.2 Interconnecting Diagram between
Data Logger and Other Processors

The serial communications software described in [2] allows all the processors
shown in fig. 2.2 to communicate with the Data Logger via the DigiCHANNEL PC/8
serial board and the two serial ports in the PC hosting the software. The serial
communication software described in [2] was responsible for handling serial ports.

Table 2.1 shows the frequencies and types of messages to be recorded by the
Data Logger.

PROCESSOR
NAME

TYPES OF
MESSAGES

SENT
EVERY

Beacon Monitor

- Receiver power & frequency of
Reference
Signal, Beacon Carrier and
Beacon squared.

- Rcvr, Beacon & Beacon squared
noise spectral density

37 sec

Burst Demodulator - BER error measurements 30 sec to
20 min

Ephemeris Processor
- Ephemeris prediction
- Pointing angles with bias corrections
- Nominal pointing values

10 sec

Synchronization
Processor

- Receiver noise spectral density

- Antenna scan amplitude of estimate
power of CW

15 min

1 hr

BPSK Modem Cont. - BER measurements 30 sec to 20
min

GOES Satellite Clk - Date and Time reference only on request

Table 2.1 Frequencies and types of messages to be recorded.

2.2.
The baud rates and other relevant configuration information are shown in table

DEVICE
NAME

PROCESSOR
NAME

BAUD
RATE

DATA
BITS

STOP
BITS

TIME
OUT
(SEC)

PARITY

COM1 Beacon
Monitor

2400 8 30 N

COM2 Burst
Demodulator

9600 8 10 N

COM4 Ephemeris
Processor

9600 8 10 N

COM5 Synchronization
Processor

9600 8 10 N

COM6 BPSK Modem
Controller

9600 8 10 N

COM10 GOES Satellite
Clock

9600 8 - N

Table. 2.2 Serial Port Configuration.

3 - SYSTEM DESCRIPTION

The data logging software is used to store ASCII data from a number of users
on individual files located on the hard disk. It also supplies several date and time
references. For the Sky net Trials, the software package was written in standard C
using Microsoft C version 7.0 and was installed on a Dell 486D/50 MHz computer
with 8 Mb of RAM and a 320 Mb hard disk. The system operates under DOS version
5.0. Microsoft C version 7.0 was chosen specifically for its capability of by-passing
the operating system cache when storing data on the hard disk. This special option is
described in more detail in section 5.3.2.

The software package is divided into several routines as shown in Figure 3.1.

Initialize
 »

r -. *'

Get Time

i'

Set Local Time

11

Send Time

^ '

Start Timer

/EäNJ fes
^\Keyo^-

^r

no^L Wrap up

yes ^^Timer^\
i r ^\Expired?^^

no X EXIT

^*Message\ ' fX)

"\mceived?/^

yes *

Log message

Figure 3.1 Data Logger Software Outline

The data logger routines were implemented in the main processor and were
therefore responsible for opening and closing all high and low level serial
communications links between the Data Logger and the various processors connected
to it. The routines used in the Data Logger are described in the following section.

4 - LOGGER MAIN PROGRAM

4.1 General

The Logger main program was responsible for interfacing the data storing
routines described in the section 5 with the existing serial communications software.

4.2 Description

The routines that compose the Logger main program are taken directly from the
com.c package described in reference [2]. The main program can be divided into
three separate small sections:

a) Initialization;

b) Data Logging; and

c) Shutdown.

The initialization section is responsible for opening all communications using the
open_com() function, and for initializing the Data Logger with the GOES clock's date
and time that was used as the experiment reference. It also reads the time reference
configuration file and starts the periodic timer.

The Data Logging section is responsible for storing the required data as
described in section 5. If the periodic timer has expired, it also writes an interim date
and time reference in the opened file.

The Shut down section is responsible for closing all opened files using
closelogO described also in section 5 and finally for closing down the communications
using the close_com() routine. The program then exits back to DOS.

5 - DATA LOGGER ROUTINES

5.1 General

The following sections describe the routines that are responsible for storing the
data received from the other processors. Calling conventions and required parameters
are detailed in Appendix C. Definitions can be found in Appendix D.

5.2 openlogO

5.2.1 Description

This routine is called during the initialization period by providing the integer
mlocal representing the logger station number. openlogO is responsible for assigning
and opening the proper files. File names are automatically assigned in accordance
with the following format: FILENAME.EXT where:

FILENAME: User Name as returned by the function stnstr(), from [2],
(4 characters long). In the Skynet EHF Trials,
the station name calling openlog is dlog (Data Logger).

EXT: 000 - 999 (The actual file number)

5.2.2 Automatic File Name Generation

The large number of experiments which require data logging necessitated a
chronological and automatic way of naming each file in order to facilitate the post-
experiment data analysis. To keep the process as simple as possible, the same file
name is used for every experiment and the openlogO routine is responsible for
assigning a different extension number to each file.

The routine starte by looking on the hard disk for the first instance, if any, of
the file dlog.* using the DOS routine _dos_findfirst(). If no dlog.* file exists, the
integer max representing the extension number is set to be 000. If at least one
instance of the file dlog.* is found, the process is repeated using a while loop to find
the next instance of the file dlog.* until the last one is reached, incrementing the
integer max every time an instance is found. When the while loop is terminated, the
integer max represents the new file number to be opened. The maximum number of
files is limited at 1000 (000 to 999). However, should an overflow occur, the
openlogO routine will open another file called DEFAULT.(000 to .999). The
function will then return a warning message with an audible alarm.

The subroutine uses the stream function fopen using the following access modes:

"a+" : Opens for reading and appending, creating the file first
if it doesn't exist;

"b" : Open in binary (untranslated mode); and

ii-ii c" : Enable the commit flag. This option will be discussed in
greater details in section 5.3.2. Also note that this option
is a new feature offered with the C version 7.0.

A structure of type FILE defined in the Header File STDIO.H is associated
with the opened file. All subsequent operations to the opened file are done by
referring to this file pointer. A null pointer value indicates an error. The routine
starts by looking on the disk for the last file stored by the logger.

5.3 writelogO

5.3.1 Description

This routine is responsible for storing on a disk file the ASCII stream that
represented the message to be logged. It also provides several date and time reference
options. Interim date and time references are added to the file every 5 minutes. A
complete description of the interim time reference and other date and time options can
be found in section 6.0.

5.3.2 Robustness

One of the critical factor throughout this work was the robustness of the
software or its ability to minimize the amount of data lost if the program should
terminate abnormally. The data logging routines had to be designed to minimize the
loss of data. The routines were written in C for better compatibility with other
existing routines.

Two different types of input and output (I/O) functions were considered:

a) Unformatted functions such as _read and _write; and

b) Stream formatted functions such as fscanf and fprintf.

The writelogO routine was written using the stream I/O functions because of
their formatting capabilities. Their buffering capabilities were found undesirable and
had to be overcome. Although buffering can significantly improve I/O performance
by transferring a large block of data in a single operation rather than performing many
smaller operations each time a data item is read from, or written to a stream, it causes
some concerns. In write operations, such as fprintf, data is collected in an

10

intermediate storage location, or buffer. The output buffer's contents are written to
the disk only when:

a) The buffer is full or flushed to the operating
system;

b) The stream is closed; or

c) The program is terminated normally.

If the routine "hangs up" or causes the program to terminate abnormally, it will
result in a loss of data since the output buffers may not be flushed. Using the stream
function setbuf or setvbuf allows the programmer/user to specify the buffer size
according to the importance of the experiment data since the buffer size would
represent the amount of data that would be lost if a problem occurred. The buffer
size for the Skynet EHF Trials was determined to be one string of a maximum length
of 220 characters.

It is possible to further reduce the chances of losing data. The stream I/O
function fflush() causes the output buffer's contents to be flushed to the operating
system which can cache the contents before writing to the disk. In the case of a
system failure, all the data cached by the operating system would be lost. This
problem was eliminated by forcing the buffer's contents to be written directly to the
disk. As stated in [3], two options were available:

a) Link the file COMMODE. OBJ to set a global commit flag since the
default setting is "no-commit"; and

b) Set the "c" commit flag with fopen(). This option is a new
feature available only to MS-C version 7.0 or later.

The second option was chosen. Only the files opened with the option "c" will
be affected, preventing any error that could occur if another routine is also working
with its own files. Since the files are opened for appending, the file pointer is
automatically positioned at the end of the file before each write operation, allowing
the user to call the routine several times to store data without having to reposition the
file pointer.

5.3.3 Data string Format

The string received from any processor for logging must be terminated by a null
('\0') character. The string must also be preceded by a two character long prefix and
two spaces. This specification was implemented to simplify the post-experiment
analysis. The two character long prefix is the station identification or the

11

measurement performed. The string format is therefore as follows:

prefix-message to be logged (max length is 220 char) <NULL >

The following figure shows the prefixes used for the Skynet EHF Trials:

PREFIX

BE

EL

EP

ER

FM

FS

LO

RX

DESCRIPTION

BER measurements from the BPSK Modem Controller

Bias Ephemeris angles (local, T-85 antenna) from Ephemeris Pro.

Predicted Ephemeris angles from the Ephemeris Processor

Bias Ephemeris angles (remote, CRC ant.) from Ephemeris Pro.

Frequency measurements from the Beacon Monitor Processor

Frequency status from the Beacon Monitor Processor

Logging messages from the Data Logger

Receiver messages from the Synchronization Processor

Fig. 5.1 Prefixes used in Skynet EHF Trials.

5.4 closelogO

5.4.1 Description

This routine writes the last date and time reference marking the end of the
experiment and closes all files previously opened by the routine openlog().

6 - DATE AND TIME STAMP ROUTINES

6.1 General

The Data Logger was responsible for providing the other processors with a date
and time reference to aid in the data analysis. The time reference is provided by a
GOES Clock through a serial link between the clock and the Logger. The logger

12

initializes its own time and then sends it to the other processors. Several options are
available and the individual time requirements for each stations/processors can be
implemented by simply editing an ASCII file called LOG.CFG which is read during
the initialization phase of the Logger main program as stated in section 4.2.

6.2 readlogO

In addition to providing the user with data storage capabilities, the Data Logger
program also provides each user with the following date and time reference options:

a) BEGIN: Time stamp is sent only at the
beginning of the experiment;

b) PERIOD: Time stamp is updated every 2 hours.
This option was added on after noticing
a variation in the system time of some
of the processors during the long term
trial; or

c) NONE: Time stamp is not sent.

These time flags can be selected by editing an ASCII file called LOG.CFG
which is read at the start of the program by readlogO and cannot be changed once the
program is started. Blank and comment lines starting with the char ';' are ignored.

The routines written to provide all the date and time requirements for the
experiments are described below. A sample configuration file for the Data Logger
can be found in Appendix B.

6.3 gettimeO

The Data Logger initializes its own system date and time by interfacing at 9600
baud with a GOES satellite synchronized clock via a serial RS-232 link and the low
level communication routines puts_low() and gets_low(). The low-level
communications routines are preferred here since the satellite clock does not require
any handshaking.

Initially, the Data Logger sends a string to configure the satellite clock into the
"T" mode to stop the satellite clock from sending its string representing the time
stamp every seconds and consequently jamming one serial port. As described into
reference [4], the satellite clock, when placed in "T" mode, responds only upon
request from the Data Logger by sending a string representing the Julian calendar date

13

followed by the zulu time of the day as shown in Fig. 6.3.1.

<SOH> DDD:HH:MM:SS.SSS <CR> <LF>

<SOH>

DDD

HE

MM

SS

sss
<CR>

<LF>

Or <CTRL-A >, Start of Header Character

Julian Calandar date

2 digits representing the hours

2 digits representing the minutes

2 digits representing the seconds

3 digits representing the milliseconds

Control Return Character

Line Feed Character

Fig. 6.3.1 Time String Format as received from GOES clock.

This string is then converted into the proper DOS format needed by the
functions mktime(), _dos_setdate() and _dossettime(). It is stored into each opened
file to mark the start of the experiment and then sent by the Logger to all user stations
using the routine sendtime().

Note that a "check for exit key" loop was added during the waiting loop in case
the GOES clock aborts abnormally or does not respond to a time request. This loop
enables the operator to bypass the satellite clock time initialization. The Logger will
then supply its own system time to all other processors.

6.4 sendtimeO

This routine initially sends a string representing the experiment system time
reference to all the processors connected to the Data Logger. Each time the two hour-
long periodic timer expires, it then utilizes the time flags read by readlogO to select
only the serial link of the stations that have requested the periodic time update. The
integer "p" used in the routine (as seen in its listing in Appendix E) helps differentiate
between the initialization period which corresponds to "begin" flag and the normal
stage of operation. All time flags can only be changed prior to the start of the Logger
program by editing the ASCII file LOG.CFG.

14

6.5 Periodic Timer

The functions time() and difflime() were used in the logger main program to
calculate a two hour long period. This option was used for some of the experiment
processors to ensure the synchronization between all internal clocks. This simple
method enables the Data Logger to re-initialize each processor's system time. This
was accomplished by adding the following code in the main loop of the Logger
program:

if((elapsed_time = difftime(finish, start)) >= PERIOD {
p++; /* integer "p" incremented to differentiate */

/* between initialization and operation phase */

gettime(); /* re-initialize Data Logger system */
/* time using GOES elk time reference */

sendtime(); /* only sends time to station with */
/* periodic flag enabled */

time(&start); /* reset periodic timer */
}

For increased flexibility and ease of testing, the flag "PERIOD" is placed into
the file DEFINE.H, which can be edited to set the period to the desired amount of
time.

6.6 Interim Time Stamp

A time reference is added to each opened file every five minutes to aid in the
post-experiment data analysis. The five minute period is set using the routine
set_time() provided with the serial.asm program. As documented in [2], the timer
single "tick" occurs every 1/17 second. The timer is set for 5100 "ticks" which is
equivalent to 5 minutes. When the function chk_time(), also provided with the
serial.asm program, reads 0, the five minute period has expired and an interim time
stamp is added to the currently opened file.

7 - TESTING PROCEDURES

7.1 General

The complete Data Logging package was designed so each section could be
tested seperately. Tests were performed using an HP4952A Protocol Analyzer with its
HP18179A RS-232C/V.24 Interface and a Y shaped connector. The flexibility of the
Protocol Analyzer allowed it to be configured to simulate the GOES clock and to

15

monitor at the same time the link between the Data Logger and one peripheral station.

7.2 Testing Procedures

The Data Logger station was first tested with the Protocol Analyzer only which
was configured using the "simulate" portion of its pull-down menu. Several tests
were carried out using the hookup schematic shown in Fig. 7.1.

DELL 486/50

Data Logger

Compaq 386/33
or

GOES Clock

Pod HP1879A

HP Protocol Analyzer

HP4952A

Configuration:

For GOES Clock test: Simulate DTE
For Normal Ops test: Monitor
two-line display: GOES Clk or Compaq shown In reverse video
A^nlchronou«T comms, 9600 baud. 6 data bits, 1 stop bit, no parity

Fig. 71 Hookup Schematic for Testing Procedures

16

Hookup procedures and coding as documented in [5] for the HP4952 is
explained in the following sections.

7.2.1 Simulating and Testing the GOES Clock

The first part of the testing was conducted to verify the compability between the
GOES clock and the Protocol Analyzer configured to simulate a Data Terminal
Equipment (DTE). The HP4952A was simply connected to the Goes clock and the
following code was used:

Simulate DTE

Block 1:
Set Lead DTR On

and then
Set Lead RTS On

and then
Go to Block 2

Block 2:
Send T <CR> <LF> /* Put GOES clock in Time on */

/* request only */
Stop

With the HP4952A configured to match the serial requirements of the satellite
clock (9600 baud, no parity, 1 stop bit) and using the "two Line Display Mode", the
string representing the time reference coming back from the clock was displayed in
reverse video on the HP4952A screen. Having recorded the time string and its
format, the Protocol Analyzer was then hooked up to the Data Logger and using the
same code but by replacing the T command by the actual time string received, the link
between the Data Logger and the satellite clock was established and tested. A NULL
Modem adapter was connected on the link between the Data Logger and the Protocol
Analazer to ensure proper connection.

7.2.2 Simulating and Testing Data Logger Capability

Using the setup in Fig. 7.1, the Data Logger was connected via the HP4952A to
a Compaq 386D 33 MHz computer representing the station Burst Demodulator. With
the Protocol Analyzer configured to the "monitor" menu, it was verified that indeed a
message was being sent from the Burst Demodulator processor to the Data Logger
processor. The Burst Demodulator was using a simplified version of its program
using only the modified checkkeyO routine to send various test messages to the Data
Logger. Resulting opened files in the Logger were then edited to verify if the
message recording was actually performed.

17

Several tests were conducted which included the interim time reference
verification. The modified checkkeyO routine used can be found at the end of
Appendix E.

As seen in Table 2.2, the baud rate between the Beacon Reference Monitor and
the Data Logger had to be reduced to 2400 baud. Several communications problems
were encountered between the two stations. The Beacon Reference Monitor processor
was implemented on a PC AT-286 computer. Its slow processing speed could not
handle a data rate hignher than 2400 baud. No other problems were encountered
between the Logger and any other processor.

7.2.3 Test on Robustness of Logging Software

As stated in the section 4.2.2, one of the critical factors in designing the
Logging package was to minimize the amount of data loss should the program
terminate abnormally. Microsoft C version 7.0 allowed the option of being able to
dump and store data onto the hard disk by skipping the operating system cache
routines. This feature was verified by running the program under Microsoft Windows
version 3.1 using the trace function to execute only one line of code at a time. A
DOS window was also opened to verify that the data was stored immediately
following the command fflush(fp) rather than only when the program terminated as
would be the case without the version 7 option.

Following the successful completion of this test, several other tests were
performed, from shutting the power off to disconnecting the serial link between the
two stations. The amount of data lost never exceeded one string of data.

8 - CONCLUSION

The Data Logger software was successfully implemented on a Dell 486/50 MHz
processor and proved to be very reliable. The routines were simplified as much as
possible to speed up the process but could have easily been modified to include
additional error handling capabilities.

Future work on the Logger package should concentrate on recording error
messages from the Serial Communications routines as they occurred. The writelogO
routine could be modified to perform a series of tests to verify the authenticity of the
incoming data from each processor.

18

The following tests could have been performed:

a) Message Existence;

b) Validation of message; and

c) Error condition and issue of warning messages (see
section C.2.1 in the Appendix C).

To simplify and speed up the storage process, the above tests were left out but
could easily be added to the existing software as part of future experiments.

19

9 - REFERENCES

[1] Update on DREO/Skynet 4 EHF Trials, R. Addison and W.R. Seed,
Defence Research Establishment Ottawa, November 1993.

[2] Real-Time Interprocessor Serial Communications Software for Skynet EHF
Trials, Robin Addison, Defence Research Establishment Ottawa, April
1994.

[3] Microsoft C/C++ Run-Time Library Reference, Microsoft Corporation,
one Microsoft Way, Redmond WA, 1991.

[4] Satellite Synchronized Clock Model 468-DC, Operating and Service
Manual, Kinemetrics, True Time Division, Santa Rosa, CA, 1982.

[5] HP4952A Protocol Analyzer Operating Manual, HP Colorado
Telecommunications Division, Colorado Springs, CO, 1989.

20

APPENDIX A

DIGICHANNEL PC/8 - 8 SERIAL PORTS

BOARD CONFIGURATION: DIP SWITCH AND JUMPER SETTINGS

JUMPER SETTINGS:

There are several jumpers on the PC/8 serial port board. This is the
recorded configuration used in the Skynet EHF Trials:

JUMPER NUMBER SETTING - DESCRIPTION

Jl PIN 1-2 : Odd Interrupt

J2 PIN 1-2 : Odd Interrupt

J3 PIN 1-2 : Odd Interrupt

J4 PIN 1-2 : Odd Interrupt

J5 PIN 1-2 : Odd Interrupt

J6 PIN 1-2 : Odd Interrupt

J7 PIN 1-2 : Odd Interrupt

J8 PIN 1-2 : Odd Interrupt

J9 PIN 2-3 : Board ID # 0

J10 PIN 2-3 : Board ID # 0

J85 ON - IRQ3

J86 OFF - (IRQ5) - Disabled

J87 OFF - (IRQ7) - Disabled

J88 OFF - (1RQ6) - Disabled

J89 OFF - (1RQ4) - Disabled

J90 OFF - (IRQ2) - Disabled

A - 1

DIP SWITCH SETTINGS:

There are several dip switches on the PC/8 serial port board. The Dip
Switch 1 (DS1) is used to set the board's status port address. The following settings
were used for the SKYNET IV Trials:

DS1 SWITCH NUMBER SETTING - DESCRIPTION

1 ON - Switches 1 to

2' OFF - 7 are used to set

3 ON - the board's status

4 OFF - address to 140h

5 ON -

6 ON -

7 ON -

8 ON - Enable board

9 ON -

10 ON - Enable Status Port

The following switches are used to set the I/O port address. Unless
specified, all switches are set to the ON position. These are the exceptions:

DIP SWITCH NUMBER SWITCHES THAT ARE OFF

DS2 (COM1) 2 (100h)

DS3 (COM2) 2,7 (108h)

DS4 (COM3) 2,6 (110h)

DS5 (COM4) 2,6,7 (118h)

DS6 (COM5) 2,5 (120h)

DS7 (COM6) 2,5,7 (128h)

DS8 (COM7) 2,5,6 (130h)

DS9 (COM8) 2,5,6,7 (138h)

A-2

APPENDIX B

DATA LOGGER TIME STAMP CONFIGURATION FILE

B.l Time Stamp Configuration File

This file contains all the time stamp options for each of the processors linked to
the Data Logger. It is read once at the start of the program by the routine readlogQ
and cannot be changed while the program is running.

The configuration file is an ASCII text file that can be edited using any text
editor. Blank lines and comment lines starting with ';' are ignored. Several comment
lines were added at the start of the LOG.CFG file to help the user on how to fill in
the file.

B.2 Time stamp Options

The following options are available:

a) BEGIN : Time stamp is sent only at the beginning of the experiment;

b) PERIOD : Time stamp is updated every 2 hours. This option was
added on after noticing a variation in the system time of
some of the processors during the long term trial; or

c) NONE : Time stamp is not to be sent.

B.3 Sample Configuration File

Page B - 2 shows a sample of the file LOG.CFG as used in the Skynet EHF
Trials.

B- 1

LOGGER SAMPLE CONFIGURATION FILE

Fig. B.l shows an example of the file LOG.CFG.

;Pata Logger Configuration File

; Select desired option by entering 1 below the proper flag,

; none flag must always be 0 unless both the begin and period Hags are 0,
; then it must be I.

; Slatioa/Compurer same are as defined in the COMLH file.

-Station Name begin flag period flag none

BBACONJMON 1
BURSTJ>EMOX> 0
BPHEM PRO , 0
SYNC PRO 1

0 0
0 iiiiiii
1 0
•I1Ä 0

Fig. B.1 LOG.CFG Sample Configuration File.

B-2

APPENDIX C

CALLING CONVENTIONS FOR DATA LOGGER ROUTINES

C.l Calling Conventions

C.l.l int openlog(int origin)

The openlog(int origin) routine is called by simply providing the routine with
the integer representing the Data Logger station number as defined in the program
header COM.H. This integer is provided by the look_com() routine provided by the
COM.C program. Since the files are only opened during the experiment initialization,
only the Data Logger is responsible for opening and closing the files. Users only
need to send a LOG message (type = log) with the string to be stored to the Data
Logger.

C.1.2 int writelog(int type, char *data, int origin, int exist)

The writelogO routine can be called by passing the following parameters:

a) int type : integer representing the message type defined in COM.H;

b) char *data : pointer to the data string to be recorded; and

c) int origin : integer representing the station number.

d) int exist : integer to indicate if there is a message to be logged.

C.1.3 int closelog(void)

No parameters required for calling this routine.

C.2 Expected Returns

C.2.1 int openlogO

The following integers defined in the header file COM.H can be returned by the
openlog subroutine:

a) QUIT : Error and the file could not be opened; and

b) ALL_OK : No error . File was opened successfully.

C - 1

C.2.2 int writelogO

The following integers defined in the header file COM.H can be returned by the
writelogO routine:

a) COMM_ERR : Returned if error, invalid message or
originator is detected; and

b) ALL_OK : Data was properly recorded. No
error occurred or was detected.

C.2.3 int closelogO

The following integer defined in the header file COM.H can be returned by the
closelogO routine:

a) ALL_OK : No error; and

b) QUIT : Error occurred. Some files may still be opened.

The Logger routines served only as a data recording device for the duration of
the EHF Skynet Trials. In order to simplify the routines as much as possible, the
expected return values were seldom verified or tested and no immediate actions were
taken as a result of one of those return values. Future work could include the reading
of the return values to simplify the debugging process should the program end
abnormally.

C-2

APPENDIX D

HEADER FILES USED IN LOGGER SOFTWARE

DEFINE.H

The header files DEFINE.H and COM.H contain all definitions and decleration used in the
Data Logger package. COM.H is the header file of the serial communications software that can be
found in [4].

Return Definitions
'/

#define ALL_OK
#define OVERFLOW
#define MAX_SIZE_NAME
#define DEFAULT_NAME
#define DIR
#define PERIOD

0 /*
5 /*
30 /*
"default" /*
".\\" /*
2000 /*

No problem occurred */
Number of files exceeded */
Max lenght for file name */
File name used if overflow */
storage directory */
time updated every 2 HR */

/*
Include Files

'/

#include "stdio.h"
#include "time.h"
#include "stddef.h"
#include "dos.h"
/include "stdlib.h"
/include "string.h"

String return functions
'/

char *stnlstr(int n,char *string);
char *messtr(int n,char *string);
char *stnstr(int n,char *string);

/*
Integer return functions

'/

int openlog(int origin);
int writelog(int type, char *data, int origin, int exist);
int closelog(void);

D - 1

/*
Declaration of External Variables
 */

extern int msg_type, msg_existence, originator;
extern FILE *fp;
extern char name[15], text[];
extern char mtype[15];

D - 2

COM.H

This is the header file of the serial communication software that
can be found in [4].

#define HEAD VERSION "V02Jun93.01"

Station name definitions

#define
#define
#define
#define
#define
#define
#define
#define
/define
/define
/define
/define
/define
/define

BAD_STATION -1
UNKNOWN_ID 0
DATA_LOGGER 1
BEACON_MON 2
BURST_DEMOD 3
TX_PROC 4
EPHEM_PROC 5
SYNC_PROC 6
CRC_ANTENNA 7
T85_ANTENNA 8
NSTATION 9
LENSTN 4
LOW BASE 20

*/

/*
/*
/*
/*
/*
/*
/*
/*
/*
A*
/*
/*
/*

Station name or number not valid
Station name garbled or not sent
Data Logger & Exp. Controller
Beacon & Reference Monitor
Burst DPSK Demodulator Host
CRC Transmit Processor
Ephemeris Processor
Synchronization Processor
CRC Antenna Controller Host
T85 Antenna Controller Host
Number of valid stations
Length of station name field
Base number used for low-level ports

SNAMES "unkn"," dlog", "beac", "bdem", "txpr", "ephm",
"sync","crca","t85a"

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/define LNAMES "unknown", "data_logger", "beacon_mon",
"burst_demod", "tx_proc",\
"ephem proc","sync_proc","crc_antenna","t85_antenna"

Receiver status definitions

/define NO_MESSAGE 0
/define VALID_MSG 1
/define COMM_ERR 2
/define QUIT 3

*/

/* No message ready received
/* Valid message received
/* Communications error occurred
/* Exit program reguested

*/
*/
*/
*/

Message type definitions

/define BAD MESSAGE -1 /*
/define ACK 0 /*
/define NAK 1 /*
/define COMMAND 2 /*
/define CONFIGURE 3 /*
/define LOG 4 /*
/define STATUS 5 /*

Message is invalid
Ack message
Nak message
Command message
Configuration message
Log message
Status message

*/
*/
*/
*/
*/
*/.

*/

D

#define
#define
#define
/define
/define
/define
/define

POINT
MOD_POINT
TIME_STAMP
ERROR
NMESSAGE
LENMSG
MNAMES "ack

"log

/* Initial pointing information
/* Modified pointing info
/* Time stamp
/* Error condition message
/* Number of message types
./* Length of message type field

6
7
8
9
10
6
","nak ","comd ","config",
", "status","point ","modpnt",

it

*/
*/
*/
*/
*/
*/

"time ","error

/'
Error check definitions

/define NO_ERROR
/define TOTAL
/define CONSEC
/define BREAK

0
1
2
3

'/

/* No error occured ' */
/* Too many total errors occurred */
/* Too many consecutive errors on 1 port*/
/* Control-Break or Control-C occurred */

Low-level "get" return definitions

/define BAD_DEST
/define NO_DATA
/define ALL OK

•/

-2 /* Destination number is invalid
-1 /* No data is available
0 /* Normal return

*/
*/
*/

/'
High-level communications routines

/* open_com opens all high and low level communications
/* get_com gets one message, if available, returns status
/* send_com sends one message
/* look_com determines port number given station name
/* ready_com checks to see if port is ready to send message
/* config_com overrides default SERIAL.CFG name
/* flush_com resets errors on a channel
/* close_com closes all high and low level communications

int open_com(void);
int get_com(int *ctype, int *cfrom, char *cdata);
int send_com(int dest,int mtype,char *string);
int look_com(char *stn);
int ready_com(int dest);
void config_com(char *string);
int flush_com(int dest);
void close_com(void);

*/
*/
*/
*/
*/
*/
*/
*/

D - 4

/*
Low-level communications routines
 */

/* These routines need high-level "open_com" and "close_com" */
/* before use */

/* getc_low gets one character */
/* gets_low gets one string terminated by the parameter */
/* putc_low puts one character */
/* puts_low puts one string
/* look_low determines destination number given station name

/

int getc_low(int dest);
int gets_low(int dest,int term,char *string);
int putc_low(int dest,int c);
int puts_low(int dest,char *string);
int look_low(char *stn);

/*
String return functions
 */

/* In all cases the function points to string containing */
/* the answer */

/* stnstr returns the station string for the given ID number */
/* stnlstr returns the long station for the given ID number */
/* messtr return the message type for the given type number */

char *stnstr(int n,char *string);
char *stnlstr(lnt n,char *string);
char *messtr(int n,char *string);

D - 5

APPENDIX E

LOGGER ROUTINE LISTINGS

/* LOGGER VERSION 2.0 */
/* JUNE 93 */
/* */
/* */

/*
Include Files
 */

/include <bios.h>
#inelüde "com.h"
/include "define.h"
/include <dos.h>
/include <time.h>
/include <conio.h>

/*
Local Routines

'/

void pabort(char *msg);
void gettime(void);
void sendtime(void);
int checkkey(int mdest);
int checkmsg(void);
int readlogcfg(void);

/* Print message, close file, and exit
/* Get Date & Time Stamp from Goes Clock
/* Send time to stations requesting it
/* Check and action key presses
/* Check for receive messages and others
/* Read "LOG.CFG" file to set up time
/* stamp requirements

*/
*/
*/
*/
*/
*/
*/

/* '
/* '
/*______- LOGGER VERSION 2.0 - JUNE 93
/*
/*

*/
*/

■*/

■*/

struct tm jday, today;
struct _dostime_t newtime;
struct _dosdate_t newdate;
time_t now, clock_time;
int txdest;
int begin[10]; /*
int period[10]; /*
int none[10]; /*
int p; /*
char user[200]; /*

*/
*/

time stamp flag = time at beginning
time stamp flag = periodic update
time stamp flag = no time stamp req */
integer index variable for time update*/
station names in "log.cfg" */

E - 1

void main(void)
{ int xnlocal; /* Station number of local station */

int ndest- /* Port number for desired destination */
char string[220]; /* String buffer to hold station name */
int t, clock_setting, clock_return;
char time_stamp[50], format_ack[50];
char time_buffer[100];
char date buff er [40]; „„„,, .,
char control[4]; /* To store the Control char "SOH" */
time_t start, finish;
double elapsed_time, result;
unsigned loop;

printf("LOGGER V2.0\n");

/* Open all communications */

if ((mlocal=open_com()) == BAD_STATION)
pabortf"Error in com_open");

printf(»Local station is %s\n",stnlstr(mlocal,string));

/* Read "LOG.CFG" to set up all time stamp requirements */

if(readlogO 1= 0) pabort("Error reading log.cfg");

/* Send time and date stamp from Goes to stations */

p _ !• /* BEGIN stage only */
gettimeO; /* Get time from Goes Clock */
sendtimeO; /* Send it to stations requesting it */
time(Sstart); /* Start periodic time update timer */

/* Open log */

if ((t=openlog(mlocal)) != ALL_OK) {
printf("Crash in open_log: value=%d\n",t);
close_com();
exit(l);

}

/* check keypress (send msg to •ndest■) and receive msg */

while (checkkey(ndest) == 0) {

ifa(elapseftime = difftime(finish, start ,) >= PERIOD) {
p = p + 1; /* PERIOD stage only */
gettimeO; /* Get time from goes Clock */
sendtimeO; /* Send it to stations requesting it */
time(&start);/* reset periodic time update timer */

if (checkmsgO != 0) break;

/* Check log */

if ((t=closelog()) !=ALL_OK) {
printf("Crash in close_log: value=%d\n",t) ;
close_com();
exit(l);

}

close_com();
exit(O);

/* checkkey */
/* */
/* Description: Checks to see if a key has been pressed and */
/* performs the necessary action such as sending */
/* various messages or exiting */
/* Uses •bioskeybrd• to see if a key has been pressed. */
/* control-C/break is not done here, but reported by */
/* checkmsg */
*

/* Returns: (int) 0 for normal return */
/* l for exit from main program due to */
/* keypress */
/* m: (int ndest) destination port number for msg */
/* Out:
/*

*/
*/

int checkkey(int ndest)

int c; /* Character from the keyboard */
int d;
char msg[220];

if (bios keybrd(_KEYBRD_READY) != 0) {/* Was a key pressed ? */
c = _biös_keybrd(_KEYBRD_READ) & OxOFF; /* Get the char */
switch (c) {

case 'm' :
case 'M':

d=0;
while ((d<l) !| (d>4))

printf("\n Enter TX_PR0C CW mode selection\n"
» l=2MHz_Low 2=2MHz_Ctr 3=60MHz_Ctr 4=:CW_0ff :");

scanf ("%d",&d) ;
}
sprintf(msg,"%d",d) ;

(void) send_com(txdest,CONFIGURE,msg);
printf("\n\n TX_PROC CONFIGURE mode %d sent\n",d);
break;

E - 3

}

case
case
case
case
case
case
return(1)
default:
break;

'E'
•q'
•Q'
•x!

•X»

}
return(0)

/* e,E,q,Q,x,X = quit */

/* Otherwise ignore */

/*:

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

checkmsg

Description: Checks with communications routines for:
- receive messages from any link
- communications errors
- aborts from control-C/break

Returns:

In:
Out:

(int) 0 for normal return
1 for exit from main program due to comm
errors or control-C/break

:*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
•*/

int
{

checkmsg(void)

int mstat;
int mtype;
int mfrom;
char mdata[220];
char string[220]

/*
/*
/*
/*
/*
/*

Message status - valid, error or quit
Message type number
Message from station number
Message data
String buffer, used for name, type or
error

mstat = get com(&mtype,&mfrom,mdata) ; /* Check for message
if (mstat == VALID_MSG) { /* Message available
writelog(mtype,mdata,mfrom,VALID_MSG); /* Log message
printf(" from %s ",stnstr(mfrom,string));
printf("(%s): \»%s\"\n",messtr(mtype,string),mdata);
else if (mstat == COMM_ERR) { /* Comms error
printf("— Communication error with %s: %s\n",

stnlstr(mfrom,string),mdata);
else if (mstat == QUIT) { /* End main program
if (mtype == TOTAL) { /* Too many errors

printf("Too many communication errors\n");
} else if (mtype == CONSEC) { /* Too many in a row

printf("Too many consecutive communication errors with
%s\n", stnlstr(mfrom,string));

E - 4

}

}

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

} else if (mtype == BREAK) {
printf("Break detected\n")

}
return(1);

}
return(0);

/* Control-C/Break

/*
/*
/*

pabort

/* Description: Print error message, close file and abort
/*
/* Returns: — no return, aborts —
/* In: (char *msg) Pointer to error message string
/* Out: — no return, aborts —
/*

:*/

*/
*/
*/
*/
*/
*/
*/
-*/

void pabort(char *msg)
{

printf("%s\n",msg);
close_com();
exit(0);

E - 5

*/
*/
*/
*/
*/
*/
*/
*/
*/

/* opanlog */

/* Description: Automatically name, number and open proper file

/*
/* Returns: integer corresponding to one of the return
/* definition
/* /* in: (int n) station number
/* out: (int n) corresponding return message

/*
/*

/*
Include Files
 */

#include "com.h"
/include »define.h"

int msg_type, msg_existence, originator;
FILE *fp;
char name[15];
char mtype[15];

int openlogtint origin)
{ char full_name[MAX_SIZE_NAME], buffer[MAX_SIZE_NAME], **bidon;
char base_name[MAX_SIZE_NAME];
char dbuffer[9], tbuffer[9];
struct _find_t c_file;
int max;

set time(10, 5100); /* start timer #10-5 minutes */
stnstr(origin, name); /* get user name /
strcpy(full name, DIR); /* file path /
strcpy(base_naroe, name); /* user name is file name
strcat(full_name, base_name);
strcat(full_name, ".*");

/* look if file [user].000 was previously stored by this user */

iff dos findfirst(full_name, _A_NORMAL, &c_file) == 0)
max =~strtol(strchr(c_file.name, '.') +1, bidon, 10);

/* if yes, new file is [user].001 */

/

else
max = -l;

k/ /* look for last file number opened by this user

while(dos findnext(&c file) == 0)
if(strtöl(strchr(c_file.name, '.') +1, bidon, 10) > max)

E - 6

/* new file number is last file number + 1 */

max = strtol(strchr(c_file.name, '.') + 1, bidon, 10);

/* check for overflow, sound alarm if yes */

if(max >= 999) {
printf("\aMaximum number of file reached for

base name: %s.\n", base_name);

/* if overflow, file name becomes [default].000 */

printf("using base name: %s\n", DEFAULT_NAME);
max = -1;
strcpy(full_name, DIR);
strcpy(base_name, DEFAULT_NAME);
strcat(full_name, base_name);
strcat(full name, ".*");
if(dos_findfirst(full_name, _A_NORMAL, &c_file) == 0)

max = strtol(strchr(c_file.name, '.') +1, bidon, 10);
else

max = -1;
while(dos_findnext(&c_file) == 0)
if(strtol(strchr(c_file.name, '.') +1, bidon, 10) > max)

max = strtol(strchr(c_file.name, '.') + 1, bidon, 10);
strcpy(full name, DIR); /* file path */
strcat(full_name, DEFAULT_NAME); /* filename = default */
sprintf(buffer, ".%03d", ++max);
strcat(full_name, buffer);
printf("%s\n", full_name);

/* opens default file */

if((fp = fopen(full_name,"abc+")) == NULL) {
printf("cannot open log file\n");
return(QUIT);

fprintf(fp,"\nL0 Initial Time Stamp is: %s
%s\r",_strdate(dbuffer), _strtime(tbuffer));

return(ALL_OK);
}

else {
strcpy(full_name, DIR); /* file path */
strcpy(base_name, name); /* filename = user */
strcat(full_name, base_name)f
sprintf(buffer, ".%03d", ++max);
strcat(full_name, buffer);
printf("\nfile opened: %s\n", full_name);

E - 7

/* opens proper file */

if((fp = fopen(full_name;"abc+")) == NULL) {
printf("cannot open log file\n");
return(QUIT);

fprintf(fp,M\nLO Initial Time Stamp is: %s
%s\r",_strdate(dbuffer) ,_strtime(tbuf fer)) ;

return(ALL_OK);
}

E - 8

/*= " = ~ " write log */

/* • * /
/* Description: Store data given the pointer to a string */

I*
I* Returns: integer corresponding to one of the return */ /

*/
/* definition

/* *'/
/* In: (int n) message type number /
/* (char *string) pointer to data string /
/* (int n) station number */
/* (int n) message existance */
/* out: (int n) corresponding return message */

/*
/*

/*
Include Files

*/

•*/

#include "com.h"
#include "define.h"

int writelog(int type, char *data, int origin, int exist)

{

char dbuffer[9], tbuffer[9]; /* date & time stamp buffer */
int i,j,n; /* integer index variables */

/* check for timeout */

if((chk_time(10) == 0)) { . -
fprintf(fp,"\nLO interim time stamp is: %s

%s\r'_strdate(dbuffer) , _strtime(tbuf fer)) ;
set_time(10,5100); /* reset timer to 5 min */

}
i = exist;
j = type;
n = origin;

/* verify if msg to be logged */

if(i == VALID_MSG) { if(n == TX_PROC) {
fprintf(fp, "\n%s\r", data);
fflush(fp);
return(ALL_OK);
}

/* verify if not error msg */

■i f ("i =^ ERROR) {
fprintf(fP/"\nEl**

*******************\r");
E - 9

fprintf(fp,"\nE2 Error Time Stamp is: %s %s\r",
strdate(dbuffer), _strtime(tbuffer));

fprintf(fp,"\nE3 Error was made by station: %s\r",
stnlstr(origin,name));

fnrintff fp,"\nE4 Message was: %s\r", data);
fprintf(fp,»\nE5 ***************************************

******************\r");
fflush(fp);
return(COMM_ERR);
}

/* Log all other messages */

fprintf(fp, "\n%s\r", data);
fflush(fp);
return(ALL_OK);
}

E - 10

/* closelog */
/* *'
/* Description: Provide last time stamp and close all opened */
/* files */
/* *7
/* Returns: integer corresponding to one of the return */
/* definition */
/* */

/* in: " *{
/* Out: (int n) corresponding return message */
/*
/*

*/
*/

/*
Include Files
 */

/include "com.h"
#include "define.h"

int closelog()
{

char dbuffer[9], tbuffer[9];

fprintf(fp,"\nLO Finish time stamp is : %s
%s\r",_strdate(dbuffer) , _strtime(tbuffer)) ;

fprintf(fp,"\n%s \r"," ") ;

/* close all opened files */

if(_fcloseall() == 0) {
printf("\nError occured. Some files might still be opened.");
return(QUIT);

return(ALL_OK); /* files were closed successfully */

E - 11

I^~ ~ gettime */
*/

/* Description: Get date & time from Goes Clock. Converts it and */
/* stores it into time_stamp J

/* */
/* Returns: - *,
/* in: - */
/* out: - /,
/* */
/*

/*
Include Files
 */

#include "com.h"
#include "define.h"

char time_stamp[50];
struct tm jday, today;
struct _dostime_t newtime;
struct _dosdate_t newdate;
time_t now, clock_time;
int txdest;

void gettime(void)
{

charging[220]; /* String buffer to hold station name */
int t, clock_setting, clock_return;
char time_buffer[100];
char date buff er [40]; „«««11 */
char cont?ol[4]; /* To store the Control char »SOH« */
time_t start, finish; /* Periodic time update variables */

/* select the link to «goesclock" (COMA) */

if((ndest = look low(»goes_clock»)) == BAD_STATION) {
printf("System date and time will not be updated. \n);

else if((ndest = look_low(»goes_clock»)) != BAD_STATION) {

/* Request time from Goes Clock using the "T" command */

if((clock setting = puts_low(ndest, "T")) == ALL OK)
DrintfT"\nT clock trigger was sent to goes clock.\n),

while((clock_return = gets_low(ndest, '\n-, time_stamp))

printf("\rwaiting for Goes_Clock to return time stamp...");

E - 12

/* Check for exit key while waiting for time clock */

if(checkkey(ndest) != 0) {
close_com();
exit(l);
}

}
}

/* converts time stamp to proper DOS format and set DOS */
/* time and date */

/* Converts the Julian date to find equivalant date and month */

sscanf(time_stamp, "%ls%d:%d:%d:%d:%2d", &control,
&jday.tm_yday, &newtime.hour, &newtime.minute,
&newtime.second, &newtime.hsecond);

/* set year to 1993, month to January, day to 01, */
/* adjust new day. *'

today.tm_year = 93;
today.tmjmon = 0;
today.tm_mday = 1;
today.tmjmday = (0 + jday.tm_yday);
if((clock_time = mktime(Stoday)) != (time_t)-l) {
printf("\nConverting goes_clock time format—\n");
}

else
perror("mktime failed ");

newdate.day = today.tmjmday;
newdate.month = today.tm_mon + 1;
newdate.year = today.tm_year + 1900;
newdate.dayofweek = today.tm_wday;
_dos_setdate(Snewdate);
_dos_settime(&newtime);
printf(M%s\n", _strtime(time_buffer));
printf('^sXn", _strdate(date_buffer));

/* Fill up timestamp buffer to be sent to all station */

sprintf(time_stamp, "%d %d %d %d %d %d %d %d»,newdate.dayofweek,
newdate.day, newdate.month, newdate.year,
newtime.hour, newtime.minute, newtime.second,
newtime.hsecond);

}

E - 13

/* sendtime */

I* Description: Sends time & date stamp to stations who have */
/* requested it /
/*
/* Returns: -
/* In:
/* Out:
/*
/*

*/
*/
*/
*/
•*/

/*
Include Files
 */

#include "com.h"
#include "define.h"

extern char time_stamp[50];
int txdest; . _,. , . . .
int p. /* integer index variable for periodic update */
int begin[10];
int period[10];
int none[10];
struct tm jday, today;
struct _dostime_t newtime;
struct _dosdate_t newdate;
time_t now, clock_time;

void sendtime(void)
{

int ndest; /* Port number for desired destination */
char string[220]; /* String buffer used to hold station name */
int t, clock_setting, clock_return;
char time_buffer[100];
char date buffer[40];
char control[4]; /* To store the Control char "SOH" */
time_t start, finish; /* Periodic time update variables */

/* Select the link only if station time stamp flag are set */
/* and if look_com does not return BAD_STATION */

/* select the link to «station[l] = beaconjnon" (COM 1) */

if(((p == 1) && (begin[l] == 1)) i! ((p >= 2) &&
(period[l] == 1))) {

if ((ndest=look_com("beacon_mon"))==BAD_STATION) {
printf("Not able to update the Beacon Monitor system

time\n");

E - 14

else {
send_com(ndest, TIME_STAMP, time_stamp);
printf("Time_stamp sent to Beacon Monitor\n");

}
checkmsg();
}

/* Select the link to «station[2] = burst_demod" (COM 2) */

if(((p == 1) && (begin[2] == 1)) || ((p >= 2) &&
(period[2] == 1))) {

if ((ndest=look_com(,,burst_demod"))==BAD_STATION) {
printf("Not able to update the Burst Demodulator system

time\n");
}

else {
send_com(ndest, TIME_STAMP, time_stamp);
printf("Time_stamp sent to Burst Demodulator\n");

}
checkmsg();
}

/* Select the link to 'station[3] = tx_proc" (COM 3) */

if(((p == 1) && (begin[3] == l)) j j ((p >= 2) &&
(period[3] == 1))) {

if((ndest=look_com("tx_proc"))==BAD_STATION) {
printf("Not able to update the CRC transmit Processor

system time\n");
}

send_com(ndest, TIME_STAMP, time_stamp);
printf("Time_stamp sent to Transmit Processor\n");

}
checkmsg();
}

/* Select the link to 'station[4] = ephem_procH (COM 4) */

if(((p == 1) && (begin[4] == 1)) !! ((P >= 2) &&
(period[4] == 1))) {

if ((ndest=look_com("ephem_proc"))==BAD_STATION) {
printf("Not able to update the Ephemeris Processor system

time\n");
}

else {
send_com(ndest, TIME_STAMP, time_stamp);
printf("Time_stamp sent to Ephemeris Processor\n");

}
checkmsg();
}

E - 15

/* select the link to ■station[5] = sync_proc" (COM 5) */

if(((p == 1) && (begin[5] == 1)) j| ((p >= 2) &&
(period[5] == 1))) {

if ((ndest=look_com("sync_proc"))==BAD_STATION) {
printf("Not able to update the Synchronization Processor

system time\n");
}

else {
send_com(ndest, TIME_STAMP, t ime_stamp);
printf("Time_stamp sent to Synchronization Processor\n");
}

checkmsg();
}

/* Select the link to 'station[6] = crc_antenna" (COM 6) */

if(((p == 1) && (begin[6] == 1)) j | ((p >= 2) &&
(period[6] == 1))) {

if ((ndest=look_com ("crc_antenna")) ==BAD_STATION) {
printf("Not able to update the CRC Antenna system time\n")
}

else {
send_com(ndest, TIME_STAMP, time_stamp) ;
printf("Time_stamp sent to CRC Antenna\n");
}

checkmsg();
}

/* Select the link to 'station[7] = T85_antenna" (COM 7) */

if(((P == 1) && (begin[7] == 1)) j | ((p >= 2) &&
(period[7] == 1))) {

if ((ndest=look_com("t85_antenna"))==BAD_STATION) {
printf("Not able to update the T-85 Antenna system

time\n");
}

else {
send_com(ndest, TIME_STAMP, time_stamp) ;
printf("Time_stamp sent to T-85 Antenna\n");
}

checkmsg();
}

}

E - 16

/*
/*
/* Description:
/*
/*
/*
/*
/* Returns:
/*
/*
/*. Ii»:

/* Out:
/*

readlog

Read LOG.CFG and determine the time stamp flags
for each station, station flags are stored in
a bi-dimensional array [station[i], begin[i],
period[i], none[i]] where l <= i <= NSTATION.

0 : LOG.CFG was sucessufully read
1 : Error occured.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

-*/

/*
Include Files

'/

#include "define.h"
#include "com.h"

#define ENDFILE -2

char user[200];
int begin[10];
int period[10];
int none[10];

int readlog()
{

FILE *logcfg;
char line[220];
char lstline[220];
int In;
int i ;

/* File stream for LOG.CFG
/* Line being processed

/* Line number of Line being processed
/* Integer index variable

/* Open LOG.CFG and get a non-blank line.
/* Comment lines are ignored

/* open LOG.CFG */

if((logcfg = fopen("log.cfg", "r")) == NULL) {
printf("Cannot open log.cfg\n");
return(1);

*/
*/

*/
*/

*/
*/

/* Get time flags for each station & store them in cfg table

In = 1;
while(fgets(line, 220, logcfg) != NULL) {

E - 17

/* Ignore comment and blank lines */

if(line[0] == ';') line[0] = ' \0';
else if(isspace(line[0])) line[0] = ' \0';

else -f
sscanf(line, "%s %d %d %d", &user, &begin[ln],

&period[ln], &none[ln]);
ln++ ;

}

printf("\nnumber of lines read in log_cfg: %d", In);
return(0);
}

E - 18

This is the modified checkkey routine as used during
the testing procedures.

/*== */
/* checkkey */
/* */
/* Description: Checks to see if a key has been pressed */
/* and performs the necessary action such as */
/* sending various messages or exiting */
/* Uses •bios_keybrd' to see if a key has */
/* been pressed. */
/* Control-C/break is not done here, but */
/* reported by checkmsg */
/* */
/* Returns: (int) 0 for normal return */
/* 1 for exit from main */
/* program due to keypress */
/* in: (int ndest) destination port number for */
/* messages */
/* Out: - */
/* */

int checkkey(int ndest)
{

int c; /* Character from the keyboard */

/* Is a key pressed ? */
/* Get the character */

if (_bios_keybrd(_KEYBRD_READY) != 0) {
c = _bios_keybrd(_KEYBRD_READ) & OxOFF;
switch (c) {

case '1*: /* 1 = Send message 1 */
printf("Sending message l\n");
send_com(ndest,COMMAND,"Check buffer");
break;

case '2': /* 2 = Send message 2 */
printf("Sending message 2\n");
send_com(ndest,STATUS,"Buffer OK too");
break;

case '3': /* 3 = Send message 3 */
printf("Sending message 3\n");
send_com(ndest,STATUS,"Do a third");
break;

case '4': /* 4 = Send message 4 */
printf("Sending message 4\n");
send_com(ndest,STATUS,"Quarter");
break;

E - 19

case 'e':
case 'E':
case 'q':
case 'Q': /* e,E,q,Q,x,X = quit */
case 'x':
case 'X1:

return(1);
default: /* Otherwise ignore */

break;
}

}
return(0);

20

UNCLASSIFIED -53-
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Establishment sponsoring
a contractor's report, or tasking agency, are entered in section 8.)

Defence Research Establishment Ottawa
Ottawa, Ontario
K1A0Z4

2. SECURITY CLASSIFICATION
(overall security classification of the document
including special warning terms if applicable)

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

Real-Time Data Storing Package for Skynet Trials (U)

4. AUTHORS (Last name, first name, middle initial)

Capt E.R. Boudriau

5. DATE OF PUBLICATION (month and year of publication of
document)

April 1994

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc.)

58

6b. NO. OF REFS (total cited in
document)

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

DREO Technical Note

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.

EHF SATCOM, Radar and Space Division, Defence Research Establishment Ottawa
Ottawa, Ontario, K1A 0Z4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant)

Project D6470

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10a. ORIGINATOR'S DOCUMENT NUMBER (the official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DEEO Technical Note 94-3

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(X) Unlimited distribution
() Distribution limited to defence departments and defence contractors; further distribution only as approved
() Distribution limited to defence departments and Canadian defence contractors; farther distribution only as approved
() Distribution limited to government departments and agencies; further distribution only as approved
() Distribution limited to defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). however, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

Unlimited Announcement

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM RA.W (21 Dec 92)

-5 A- UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

A series of week-long experiments on an EHF downlink were conducted by the MILSATCOM groups at CRC and DREO.
The software developed for these experiments included a reliable and robust data logging package to record the setup and
measurements data required for post experiment analysis. The software provided the Skynet EHF Trials with a data logging
package written in "C" that would interface with the existing serial communication software. The package was used as a
real time storing device for recording experimental data such as hop power, noise power spectral density and pointing angles.
In addition to data logging, the software had to provide several date and time references using the zulu time provided by a
GOES satellite clock as the Trials' time reference. The software was loaded in a computer called Data Logger and was
responsible for opening and closing all high and low level communications with the processors linked to it.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Date Logging
Skynet Trials

UNCLASSIFIED
SECuRrrv CLASSIFICATION OF FORM

