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ABSTRACT 

This report discusses the implementation of one of the best digital cyclic spec- 

trum (CS) algorithms derived so far, the Strip Spectral Correlation Algorithm (SSCA). 

Some theoretical background and a detailed description of the SSCA are provided. An 

analysis of the SSCA is performed and an algorithm for mapping the SSCA output is 

formulated. The cyclic feature function (CFF) is defined as a means to detect the cyclic 

features from the SSCA. Results of the SSCA encoded in C are then reported. Three 

BPSK signals and two additive white Gaussian noise (AWGN) signals are used to verify 

the validity of the SSCA. Three-dimensional plots and two-dimensional plots of the CS 

and CFF respectively are presented to the reader. Finally, some benchmarks on a SUN 

computer for the SSCA are provided for reference. In brief, the CS and CFF estimated 

with the SSCA prove to be valuable tools for analyzing second-order cyclostationary com- 

munication signals and, by making extensive use of the FFT, to provide robust, reliable, 

and accurate results more efficiently than typical CS direct estimation methods. 

RESUME 

Ce rapport traite de la mise en oeuvre de l'un des meilleurs algorithmes elabores a 

ce jours pour ce qui est de l'estimation complete du spectre cyclique (SC) d'une sequence 

numerique, soit l'algorithme SSCA. Les bases theoriques et la description detaillee du 

SSCA sont fournies. L'analyse du SSCA est effectuee et un algorithme destine a reordonner 

les resultats du SSCA est formule. La fonction de caracteristique cyclique (CFF) est 

definie et employee afin de detecter les caracteristiques cycliques ä partir de l'algorithme 

SSCA. Les resultats du SSCA code en langage C sont ensuite rapportes. Trois signaux 

BPSK ainsi que deux signaux composes de bruit blanc Gaussien additif sont utilises pour 

verifier la validite du SSCA. Les representations graphiques en deux et trois dimensions 

respectivement du CFF et du SC sont presentees au lecteur. Finalement, des points de 

reperes en ce qui concerne le temps d'execution du SSCA sur un ordinateur SUN pour 

les parametres utilises sont fournis a titre de reference. En bref, le SC et le CFF estimes ?r 

a l'aide du SSCA constitue assurement des outils importants pour l'analyse de signaux \?f 

cyclostationnaires de deuxieme ordre et, par une vaste utilisation de la FFT, le SSCA per- p^ 

met de produire des resultats robustes, fiables et precis de facon beaucoup plus efficace ja  

que d'autres methodes numeriques plus directes d'estimation du SC. 
m. 
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EXECUTIVE SUMMARY 

Athough much superior to ordinary spectral analysis, cyclic spectral analysis 

requires considerably more complex and time-consuming computations to produce an es- 

timate of the entire cyclic spectrum (CS). An estimate of the entire CS is required when 

a priori information on signal cycle frequencies is not available. In this case, detection 

of cycle frequencies possibly through the CS is crucial to any cyclostationary property 

exploiting methods for several applications encountered in typical military surveillance 

system such as, for example, signal detection and classification, signal's parameter esti- 

mation, time-difference of arrival estimation, adaptive spatial filtering, direction finding 

and signal extraction. Based on either a frequency or time-smoothing approach, efficient 

algorithms for estimating the cyclic spectrum of discrete-time domain signals have been 

devised during the last decade or so. This report discusses the implementation of one of 

the best digital CS estimation algorithms derived so far, the Strip Spectral Correlation 

Algorithm (SSCA). 

Following a review on the theory of spectral correlation for cyclic spectral analy- 

sis of discrete-time signals, the SSCA is derived. The detailed description shows that the 

SSCA essentially reduces in complexity to a two-dimensional FFT of size NxNp and that 

it is suitable for parallel architectures. Parameters TV, denoting the observation time, and 

Np, specifying the number of samples considered in the channelizer, determine a number of 

CS estimate attributes such as the frequency resolution A/, the cycle frequency resolution 

Aa, and the time-frequency resolution product AfAt. All the steps required to imple- 

ment the SSCA are clearly explained. An analysis of the SSCA reveals its computional 

requirements. The accuracy of the estimates are also considered and an algorithm for 

mapping the SSCA output is provided. Additionally, the cyclic feature function (CFF) 

is defined as a means to detect the cyclic features from the SSCA. Results of the SSCA 

encoded in C are then reported. 

Theoretical CSs are derived for three BPSK signals using various parameters and 

two additive white Gaussian noise (AWGN) signals. Three-dimensional plots of the CS 

and two-dimensional plots of the CFF of various combinations of these signals along with 

various algorithmic parameters are realized with the ssca program and presented to the 

reader. Specifically, the effect of varying the observation time and the frequency resolution 

are observed on one BPSK signal and one AWGN independently. Then, the CS and CFF 

of combinations of the signals under investigations are studied while keeping all SSCA 

parameters fixed.   Cyclic features are detected based on the CFF. These experimental 



results show that all major cyclic features, corresponding directly or indirectly to signal 

features (e.g. carrier frequency and baud rate in this case), are successfully detected 

even in highly corrupted conditions where conventional analysis would have failed to 

discriminate the signals. Finally, some bechmarks on the SUN computer for the SSCA 

are provided for reference. 

In brief, the CS and CFF estimated with the SSCA prove to be valuable tools for 

analyzing second-order cyclostationary communication signals and, by making extensive 

use of the FFT, to provide robust, reliable, and accurate results more efficiently than 

typical CS direct estimation methods. This suggests further work to apply the SSCA 

to off-air data and possibly implement the algorithm in a popular digital signal multi- 

processor board such as a C40 board. 

VI 
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1.0    INTRODUCTION 

Cyclic spectral analysis (CSA) as a general tool for signal analysis has been shown 

to be much superior to more conventional spectral analysis [1]. However, it is recognized 

that the computation of the entire cyclic spectrum (CS) is considerably more complex and 

time-consuming than the computation of the conventional power spectral density (PSD). 

The estimation of correlation between spectral components of signals as compared to 

only computing the spectral components themselves makes the CSA a computationally 

complex mechanism mainly because of the potentially large number of correlation com- 

putations involved. With the growing importance of CSA for many applications (cf.[2]), 

a search to derive efficient algorithms for computing the cyclic spectrum has been taking 

place over the last decade or so. These CS estimation algorithms divide mainly into two 

subgroups: the frequency-smoothing (FS) algorithms and the time-smoothing (TS) algo- 

rithms. More lately, algorithms merging the two methods have been used and are referred 

to as hybrid-smoothing algorithms [3]. These will not be discussed in this report. 

Focusing on the problem of computing the entire CS, TS algorithms result in 

more computationally efficient algorithms than those involving FS.1 Based on an analysis 

of the performance of the currently existing TS algorithms (in [4] and [3]), one particular 

TS algorithm called the Strip Spectral Correlation Algorithm (SSCA) has been chosen 

for implementation. 

This report looks at the implementation of the SSCA for the computation of 

the entire CS. But first, some background on CS estimation for discrete-time signals is 

required. 

2.0    BACKGROUND 

In this section, the theory of spectral correlation necessary for CSA of discrete- 

time signals is reviewed. Fundamentally, there are two possible approaches for developing 

the theory of CSA: the probabilistic approach (cf.[5]) and the deterministic approach 

(cf.[6]).2  Here, the deterministic framework is chosen because of its greater tractability 

1Note that if the CS is required for only few values of known cycle frequency, FS algorithms can be 
computationally superior. 

2In the deterministic framework, time averages are used as opposed to ensemble averages for the 
probabilistic framework. 



and its natural link to practical problems [2] (e.g., signal processing of discrete-time 

communication signals for various applications). 

The cyclic autocorrelation function of a discrete-time sequence x(n) is defined 

as 

RaM = Ä 2JVTI ^ l*(n + Ve~JMn+k)] [*(")ejWr • (!) 

The sequence x(n) is said to be wide sense cyclostationary if and only if R"(k) ^ 0 for 

some a. The CS S£(f) is simply the Fourier Series Transform (FST) of R°(k), i.e., 

£*(/)=  £ R*Me-^k. (2) 
k=—oo 

Defining a as the cycle frequency and / as the spectral frequency, S%(f) can 

give rise to a three-dimensional plot with the three axes being: either \S°(f)\ or /£"(/), 

/, and a. In general, S"(f) is complex-valued. 

2.1    Basic Frequency-smoothing Approach 

The FS approach for computing S°(f) is based on the double limit 

s*w = ln£%os:*<{nJ)A^ (3) 

where 

SZJn, /W = -±j j^J X*(n, F + a/2)*At(n, F - */2)dF (4) 

is the frequency-smoothed cyclic periodogram and 

»H—5- 

^(n,/) = -J-    £    x(m)e-^»r- (5) 
A* m=n—r 

is referred to as the complex demodulate of x(n), a discrete-time signal sampled at 

/. = 1/T. Hz. 

S° t(n, /)A/ is the result of correlating spectral components of x(n) over A/ Hz 

(i.e., averaging in frequency). The quantities A/ and At are respectively called the fre- 

quency and time resolution of the estimate. Note that S°At(n, /)A/ is used for estimating 



S°(f) and a reliable estimate would have a large resolution product At A/. 

2.2    Basic Time-smoothing Approach 

Using the TS approach, S"(f) is also expressed as a double limit 

S?(/)= lim Jm S:T(n,f)At (6) 
J —+00 At—*00 

n+A« 
where 

At 

is the time-smoothed cyclic periodogram and 

„,1-T 

S:T(n,f)At = ^    £    XT(mJ + a/2)X}(m,f-a/2) (7) 

*r(n,/) = ^    j;   x(m)e-^^ (8) 
T 

is another form of the complex demodulate of x(n) for a smaller time duration since 

T< At. 

The TS cyclic periodogram S^T(n,f)At is used to estimate S°(f). As can be 

seen from (7), S"(n,f)At is, in fact, the discrete time-average of spectral correlation 

components of x(n) over a time At. In this case, the frequency resolution is A/ = 1/T. 

2.3    Comments on Both Approaches 

Some comments with respect to both approaches have to be made. 

1. The order of the double limit used to compute S%(f) is not interchangeable. 

2. It has been shown in [6] that FS and TS approaches are equivalent if and only if 

A*A/ > 1, i.e., 5-At(n,/)A/ » ^r(n,/)At for AtAf > 1. 

3. The condition AtAf >• 1 is essential in order to obtain reliable estimates. 

4. The particular choices of AtAf and A/ depend on the signals under investigation 

(signals environment) and the degree of reliability which is needed. 



Generally speaking, the goal is to find an efficient algorithm for high AtAf. In 

[4], it is shown that the SSCA (a TS algorithm) is one of the best derived so far for 

AtAf > 128, A/ > 1/32, and with a small Act (the cycle frequency resolution). 

3.0    THE STRIP SPECTRAL CORRELATION ALGORITHM 

This section describes and analyses the SSCA. 

3.1    From the Basic Time-smoothing Approach to the SSCA 

Using a data tapering window a(r) of length T = NPTS seconds, the complex 

demodulate of x(n) can be re-expressed as being 

XT(n,f)   =      £    a(r)x(n-r)e-j2^n-r^ (9) 
l-JVp 

2        X 

£   a(r)x(n + r)e-j2*'rT> 
-Afp 

e -j2-irfnT3 (10) 

where T3 is the sampling period. The term in brackets represents the centered Fast Fourier 

Transform (FFT) of x(n) using a window a(r). Note that A/ = Aa = fs/Np (where 

Aa = j, is the bandwidth of the input filters). Correlating the complex demodulates for 

a time At = NT3 seconds, the TS cyclic periodogram is then given by 

—-l 

S:T(n,f)At=    £   Xx(n + m,/ + |)j^(n + m,/-|)<7(m) (11) 
171= sr 

where g(m) is another data tapering window of length At. As mentioned earlier, for 

S%T(n,f)At to be a reliable estimate of 5°(/), AtAf > 1 (i.e., At > T) is required. In 

the limit (i.e., At —* oo followed by A/ -* 0), if a(n) and g(n) are normalized such that 

£a2(n) = £>(n) = l, (12) 
n n 

then S:T(n,/)Al = £«(/) [3]. 

In order to extend (11) to transform the averaging operation into an FFT , the 



product sequence must be frequency shifted by an amount 7 (i.e., from a to a + 7). The 

result is then 

S:T
+>,/)At=   £   XT(n + mJ + ^X*T(n + m,f-^)g(rn)e-^mT>.      (13) 

m=—5* 

Using (13), one can find that A/ = Aa — \~f\ with (|-y| < Aa), a non-uniform frequency 

resolution since several values of 7 are usually required. If 7 = qAa, then (13) becomes 

—-1 
2 -;2^"»i 5£+,A«(n)/.)A<=     ^    XT(n + mJ.fc)x.(n + m?/j)^(m)e^?-, (14) 

which is an N-point centered FFT. Note that fk = k(fs/Np), k = -Np/2, ..., (A^/2) - 1, 

represents several frequencies for a complete coverage of the bifrequency plane (/, a). To 

relate fj and a,- to fk and //, the following relations are needed: 

and 

ai = fk-fl = (k-l)(J^j . (16) 

For the Strip Spectral Correlation Algorithm (SSCA) [3] [4] [7] [8], one has to set 

at- = fk, fj = (/jt — qAa)/2 and replace X^(n, /;) by the unfiltered signal x*(n) in (14)3 

such that 

—-1 

S^L!!LZJ!*°\     =   £   XT(n + m,fk)x*(n + m)g(m)e=J2^.        (17) 
V Z /At       m=-% 

This allows A/ as well as AtAf to be uniform, a highly desirable feature for the estima- 

tor. The points estimates produced by (17) will lie along the frequency-skewed family of 

lines a = 2fk — 2/ to result in a strip for each /*.  The following applies to the SSCA 

3 Note that this is done at the expense of minor degradation in output signal-to-noise ratio (cf.[7]). 
The estimate obtained in (17) is equivalent to (14) only if A/At > 1, condition which is essential to have 
a reliable estimate anyway. 



implementation: 

A/ = 1//VP, Aa = 1/At = 1/iV, AfAt = N/Np, a(0) = J>(n) = 1, (18) 
n 

and 

a   =   fk + qAa,   k = -&   ..., ^ - 1 (19) 

A - gAa /V TV 
/ = —2—' ^-y-'T"1- (20) 

Note that if the cross-cyclic spectrum (say between x(n) and y(n)) is required instead 

of the auto-CS, then x*(n + m) in (17) simply becomes y*(n + m). In addition, if the 

conjuguate auto-CS and conjuguate cross-CS are desired, simply replace x*(n + m) and 

y*(n + m) by x(n + m) and y(n + m) in (17) respectively. It has been pointed out in [9] 

that since one of the channels is unfiltered, the complex demodulates have to come in at 

full rate, i.e. without decimation. It is, however, proposed in that particular paper to 

decimate the complex demodulates in order to reduce the number of input channelizers 

by incorporating a hold operation at the end of every channelizer. This method has been 

tried here by the author and it was found that the hold operation was introducing false 

cyclic features which, on the other hand, could possibly be predicted. The technique 

will not be discussed further in this paper but merits some considerations as it saves 

computation time and storage space. 

3.2    SSCA Description 

Based on (10) and (17) and assuming a single processor, the algorithm can be 

formulated in the following steps. 

Step 1    Data collection: 

• Collect a block of data of N + Np samples, i.e., x(n), n = 1, 2, ..., N + Np . 

Step 2   Compute N JVp-point FFTs of sub-blocks of x(n): 

• Define a(r) for r = 1, 2, ..., Np to be an JVp-point data-tapering window (e.g. 

rectangular, Hamming, Hanning, Kaiser ...). 



1 
• For n = 1, 2, ..., N, r = 1, 2, ..., Np, and k = -^, ..., ^ - 1, compute 

xT(n, k) = FFTSivp {a(r)x(n + r - 1)}                          (21) 

where FFTSTVP is the iVp-point centered FFT operation (i.e., with the zero 

frequency in the k = 0 bin). 

Step 3 Compute the weighted product from (17): 

• Define g(n) for n = 1, 2, ..., N to be a TV-point data-tapering window (e.g. 

as above). 

• For n = 1, 2, ..., N and k = —^, ..., -f — 1, compute 

corrected FFT» «a in (10) 
*- 

Xg(n, k) = xT(n, k)e J   ("P '  x* (n + ^ g(n) .                  (22) 
**'                                                    weights 

product 

Step 4 Compute the spectral correlation function: 

• For q = -f, ..., f - 1, k = -^, ..., ^ - 1, and n = 1, 2, ..., N, compute 

Sx(q,k) = FFTSN{Xg(n,k)}                               (23) 

where FFTSjv is the iV-point centered FFT operation (i.e., with the zero fre- 

quency in the q = 0 bin). 

Step 5 Map Sx(q,k) onto S?(.f): 

• The mapping4 is performed using the equations 

{«:$+"*               (24) 

where / and a are normalized with respect to fs = 1, i.e., 

- 0.5 </< 0.5 and - 1 < a < 1.5                            (25) 

4This mapping is absolutely required for plotting and interpreting the cyclic spectrum. 
5 Note that,    really,    fmi„ < f < fmax   where   fmin = -0.5 + ^   and   fmax = 0.5 - ^   while 

"min < Q < (>mat where am<„ = -1 and amar = 1 - ^— ^. 

7 



This algorithm (as described from Step 1—5) can also be expressed in terms of 

matrix operations (or array processing). One possible formulation is presented below. 

Step 1   Given the input data vector x= [ x(l)   x(2)   •••   x(N + Np) 1, create the 

NxNp input data matrix X where 

X = 

x(l)        x(2) 

x(2)        x(3) 

x(Np) 

x(Np + l) 

x(N)   x(N + l)   ■■•   x(N + Np) 

(26) 

Step 2   Compute the JVp-point window row-vector a =    a(l)   a(2)   • • •   a(Np) 1 and 

create A (an NxNp matrix) formed by TV rows of a. Knowing A, compute XA = X 0 A 

where 0 denotes the Hadamard product (i.e., element by element matrix multipli- 

cation). Then, compute 

XAT = MFFTSTVP {XA} = 

FFTSATp{xai} 

FFTS,vp{xa2} 

FFTSJV, {xa*} 

where 

XA = X 0 A = 

xax 

xa2 

and FFTSjVo is as defined before. 

(27) 

(28) 

lT 
Step 3   Compute the TV-point window column-vector g = [ ^r(l)   g(2)   • • •   g(N) 

and create G (an NxNp matrix) formed by Np columns of g.   Also, create the 

exponential matrix E as follows: 

E = 

e-?£,N    e-%+l,N 

e£E_i2 2 » 

e^-l,N 

(29) 



where e*,n = e 3 ' "p      for k = -^, ..., ^ - 1 and n = 1, • • •, N.  Then, create 

X* which is defined as: 

X* = 
z*(^ + 2)     **(^ + 2)    •••    x*(f + 2) 

s*(^ + tf)   x*(^ + N)   ■■■   x*(& + N) 

(30) 

where x*(n) is the complex conjugate of x(n). Finally, compute 

Xg=XAT0E0X*, (31) 

also an NxNp matrix. 

Step 4   The cyclic spectrum in matrix form (but without mapping) is found to be 

Sx = MFFTS7v{Xg} , (32) 

an NxNp matrix where each element is denoted sXk    for —f^ < k < -£■ — 1 and 

Step 5   The last step is to map the elements of the matrix Sx onto S%(f), i-e., sXk   =$> Sx(f) 

where a and / are related to k and q as in (24). 

As can be seen, this is a highly parallel algorithm suitable for implementation 

using parallel architectures. However, the mapping may not necessarily be a trivial task 

(see next section). 

Although this paper does not intend to go into the details of a hardware archi- 

tecture using VLSI technology, a block diagram of the implementation of the SSCA is 

presented in Figure 1. This provides a succinct and complete visual form of the SSCA. 

3.3    SSCA Analysis 

The analysis of the SSCA can be based on two different aspects: the computa- 

tional requirements and the accuracy of the estimates. The problem of mapping associated 

with the SSCA is treated separately. 
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Table 1: SSCA Computational Requirements. 

Operation 

#of 

Cmplx Mltply Cmplx Addtn 

#of 

Real Mltply Real Addtn 

Window a(n) NP - 2NP - 

JVp-point FFT %log2Np JVplog2iVp 2Np\og2Np 3JVplog2JVp 

Down-convert+product 2NP - 8NP 47VP 

Window g(n) N - 2N - 

TV-point FFT flog2JV iVlog2JV 2N\og2N 3iVlog27V 

3.3.1    Computational Requirements 

Analyzing the SSCA in terms of computational requirements boils down to an- 

alyzing the number of various arithmetic operations required for each steps of the algo- 

rithm. Note however that the analysis is made with respect to sequential computations 

requirements. 

Assuming a(r) and g(n) are already defined before the beginning of the algo- 

rithm, the number of arithmetic operations required for each step (ignoring the mapping 

operation) would be as given in Table l.6 Note that the arithmetic operations under in- 

vestigation are complex multiplications and complex additions which are transposed into 

real multiplications and real additions in the two last columns. 

Denoting the total number of real multiplies and additions for the single-processor 

as C'm and C*a respectively, then the computational requirements are found to be 

C;m = F(2 + 21og2F) (33) 

and 

C;a = ^(4 + 31og2F), (34) 

where F = N • Np.
7  Now, for a multi-processor architecture (although not necessarily 

6A radix-2 FFT algorithm is used. 
7For the single-processor, the first three operations in Table 1 are performed N times and the last 

two, Np times. 
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optimized), the computational requirements are 

CZ = Ap (10 + 2 log2 Np) + N (2 + 2 log2 A) (35) 

and 

C™ = Ap (4 + 3 log2 Np) + A (3 log2 TV) (36) 

where C^ and C™ are the multi-processor equivalent of C*m and C'a. Note that if x(n) is 

assumed to be a real signal, these figures will go down. Clearly, the possibility of using a 

parallel architecture with the SSCA reduces considerably the computational requirements. 

3.3.2    Accuracy of the Estimates 

The accuracy of the SSCA for estimating the cyclic spectrum is related to the 

parameters A, Np, and the type of data tapering window chosen, i.e., a(n) and g(n). The 

frequency resolution, A/, the cycle frequency resolution, Aa, and the resolution product, 

AfAt are all specified in terms of A and Ap as stated in (18). However, the choice 

of a(n) and g(n) will impact on the accuracy of the point estimates. Essentially, the 

bandwidth of a(n) is assumed to be Aa = 1/AP (assuming /s = 1) and the bandwidth of 

g(n), Ag = 1/A. The kernel transform associated with the SSCA is found from (17) and 

is given by [3] [4] [8] 

M(a, f) = G(a - a0)A (/ - /o + ^») , (37) 

where £?(•) and A(-) are the Fourier Transforms of g(n) and a(n) respectively. Also recall 

that 

°-T, + Ji (38) 

*-W,-M (39) 

where k = -Np/2,..., Np/2 - 1 and q = -A/2,..., A/2 - 1 (again assuming fs = 1). As 

a result, A (f — /o + ^^J is a strip approximately Aa wide along the line a — 2fk — 2/ 

(where fk = k/Np). This implies that all point estimates have a constant frequency 

resolution of A/ = Aa. In addition, they also possess a constant cycle frequency resolution 

which is determined by G(a), i.e., Aa = 1/A. 

12 



In practice, a(n) or g(n) will never produce perfect bandpass filters and some 
parameters such as bandwidth and attenuation are always associated with practical filters. 

A judicious choice for the best windows to use is easier to make by experimentation. The 

family of Kaiser windows allows (via the parameter ß) various attenuations and therefore 

constitutes a good choice for experimentation. As a general conclusion coming out of these 

investigations, it is important that a(n) has a large attenuation while g(n) has a small 

bandwidth characteristic. Since both attenuation and bandwidth are intimately related, 

obtaining a larger attenuation is equivalent to trading-off the bandwidth (i.e., getting a 

larger bandwidth) and vice-versa. As a result, a{n) will have a large attenuation but also 

a large bandwidth and g(n) a small bandwidth but also a small attenuation. 

3.3.3    Mapping Associated with the SSCA 

One important issue of the SSCA concerns the mapping operation as briefly 

explained in Step 5. This will now be discussed in more depth. 

Before going into the details of the algorithm required for the mapping, the 

region of support for the cyclic spectrum in the bifrequency plane is first examined. This 

is done by visualizing the mapping of k and q onto / and a in Figure 2. In Figure 2(a), 

TV = 32 and Np = 8 are used and therefore k = —4, ..., 3 and q = —16, ..., 15. Each 

point in this bifrequency plane represents a point estimate and is located at the center of 

a rectangle having widths Aa = 1/NP on the /-axis and Act = l/N on the a-axis. Note 

that / is minimum at q = 15 (= y — 1) and k = —4 (= -y*), and is maximum at q = —16 

(= —y) and k = 3 (= -*■ — 1), while a is minimum at q = —16 and k = —4, and is 

maximum at q = 15 and k = 3. As can be seen, each negative-slope diagonal corresponds 

to a strip for a particular value of k (the bottom diagonal being k = —Np/2 and the top 

one k = Np/2 — 1). Each strip contains all the q values starting from the top of any strip 

at q = —N/2 to q — N/2 — 1 at the bottom. Figure 2(b) shows the mapping for higher 

N and Np, providing smaller Aa and Aa (i.e., higher frequency resolutions). Some useful 

observations are noted: (1) all the point estimates having the same value of a will form 

the continuous spectrum related to this particular cycle frequency (recall that the cyclic 

spectrum is discretely distributed along the cycle frequency); (2) geometrically, the region 

of support is found to be a diamond (with the range of a being twice that of /) in the 

bifrequency plane; and (3) this diamond is not perfect in the sense that the corners of 

the diamond clearly do not align. The coverage on the negative and positive frequency is 

not the same but, nevertheless, as N and Np goes to infinity, it tends to cover almost the 
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same region on both sides. 
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Figure 2: Mapping Visualization. 

An algorithm for implementing the mapping operation is derived in Figure 3. 

To start with, the algorithm assumes that Sx(q,k) (from Step 4) has been computed 

and is available. Then, a good strategy for storing that data for any further use (as for 

plotting or analysis) is to store the points estimates for each a. Therefore, the output 

data format is chosen to be as follows: a global header, followed by a slice header (for 

each a) and the points estimates values for this slice with this latter process repeated 
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Begin 

'Initialization' 

Om« = ü-(l/Np)-(l/2N))-f. 
Ohmn = (-IM« 
U. = (0.5-(l/2Np))-f. 
W. = (-0.5 + (l/2N)>f. 
num_slice=2N 
count = 1 
max_num_f = NP 

surf_type = 1 (real) or 2 (cplx) 

, 'StoringgioSaifuadtr' 

STORE: surfjype 
num_slice, own, otnux 
max_num_f, fcmn, fmu 

^Loop initialization' 

num_f = l 
unin = fnux = 0 

<x = -l,f = 0 

'Startingd-bop' 

End 

, 'Storing süutuader' 

STORE: (a-f.) 
num_f, (fmiirfs), (fmn-fs) 

'Starting f-loop' 

k = ((a/2) + f>Np 
q = ((a/2)-f)-N 

a = a + (l/N) 
count = count +1 

'Storing oitsüavaht' 

STORE: S«(q,k) 

f = f + (l/NP) 

num f=num f+1 

num_f=num_f-l 
fmin = fmin + (1/Np) 

fcnin = fmm-(05/N) 

fmax = imtx + ((numj - 1)/Np) 

Figure 3: SSCA Mapping Algorithm. 
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Global Header 

surfjype (type of all the points estimates (1) REAL or (2) COMPLEX) 
mim_slice, On», Omx (# of slices, the minimum and maximum value of a) 
maxnumj, fm», fan (max # of points of one particular a, 

the minimum and maximum value off on the overall graph) 

Slice #1 

a (the particular value of a for this slice) 
mrmj, fimv W (# of points for this slice, the minimum and maximum value 

off for Ulis slice) 
S*(fiM>)... JMW) (all the points estimates for this slice)          

Slice #num slice 

a (the particular value of a for this slice) 
ntrmj, fan, W (# of points for this slice, the minimum and maximum value 

off for this slice) 
S»(M... Sxftmx) (all the points estimates for this slice)  

Figure 4: Output Data File Format. 
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for all slices (see Figure 4).8 The algorithm maps the points estimates using this format 
and thus enters a loop for each value of a (the a-loop) and then an inner-loop (the f- 

loop) for each value of / possible according to this particular a. It takes into account all 

useful geometrical information found from the region of support investigation above and 

represents an effective way of mapping the data. Note however that if visualization of 

the CS is not required, then a very simple skew storage mechanism would align all points 

estimates with respect to a only.9 

3.4    Cyclic Feature Estimation with SSCA 

The CS constitutes a nice tool for spectral analysis of second-order wide sense 

cyclostationary signals. However, it is often necessary to only identify the cyclic features. 

In fact, all signal processing methods exploiting cyclostationary properties of signals (eg 

cyclic direction finding methods) require at least reliable estimates of the signal of inter- 

est's cyclic features in order for them to be useful. One can derive the second-order cyclic 

features from the CS estimate such as the one produced with the SSCA. 

With the SSCA, the number of point estimates in the CS is N x Np but the 

cycle frequency resolution is equal to -^ x f3 Hz. The maximum number of points used for 

detecting cyclic features should therefore be no greater than N in the case of real signals 

and 2N — jf- for complex signals. Such functions are defined below. 

The simplest function is the max-cut function, defined by the author to be 

MAX(a) ^ max [|S£(/)|a] . (40) 

It retains the maximum magnitude squared of each a-cut.   The max-cut function can 

easily be modified into 
'MAX(a)" 
MAX(O) 

which is hereinafter referred to as the normalized log max-cut (NLMC) function. It is 

easily seen that 

LM(0) = 0 (42) 

LM(a)^101oglo (41) 

8This output data file format is used as an input by the plot-sxaf program to plot the cyclic spectrum. 
This software is sold by Statistical Signal Processing Inc. (SSPI). 

9This could be the case for example when hardware implementation is required and that the cyclic 
spectrum is used to detect cyclic features. 
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and furthermore 

LM(a) < 0 (43) 

since MAX(O) should be greater to or equal to MAX(a). Even though these functions 

could be successfully used in practice to detect cyclic features, the best theoretical function 

(or measure) is called the cycle-frequency decomposed measure of degree of cyclostation- 

arity and is given by [10] 

^^ «v>     l/~in/r\l2    ir poo     I DO /     M^    ' *        ' 

An estimate of this measure found from the CS estimate given by the SSCA is defined 

here to be 

D{a) * w{a). Zf Iff (/)] (45) 

where w(a) denotes a weighting function of a. This weighting function takes into consid- 

eration the reliability of the CS measurement at a. Using 

.      numf(a) .    . 
™(a) = if (46) numf(0) 

with numf(a) denoting the number of point estimates computed at a, the effect of the 

varying number of points along a introduces a false relationship between the cyclic feature 

strengths. Specifically, going from a = 0 to a = ±1, the cyclic features strength would 

decrease even if they should be equal in reality. A way of avoiding this is to make sure the 

signal does not have any frequency component higher than fs/4 or lower than —fs/A and 

consider the CS cuts only from a = — fs/2 to a = f3/2, therefore making the number of 

points to be added for each cut constant. This is equivalent to interpolating the signal by 

two and considering only the SSCA points estimates lying within the rectangular region 

fs/2 < a < f„/2, — fs/4 < f < fs/4. Consequently, w(a) = 1. This method however will 

double the number of points to be considered in the SSCA and complicates the realization 

of the algorithm. The author has tried another way of estimating DCSa with the SSCA 

points estimates. Since DCSa is resulting from a ratio of infinite integrals, it could easily 

be seen as a ratio of the averaged power at each cut and the averaged power at a = 0. 

To realize this, we simply have to set 

.  .      numf(0) ,._, 
w(a) = j^ . 47 

numf(a) 
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Nevertheless, this estimate suffers from reliability problems as we approach a = ±/s since 

less points are taken into account in the averaging operation and that the feature will get 

amplified by noisy points. As a result, the estimate using 

w(a) = 1 (48) 

seems to be the compromise. From a cyclic feature detection point of view, this last 

estimation method will be adequate and reliable but if someone is looking for feature 

strength relationships, a method similar to the one described above and using interpolation 

may be required. 

Again, this measure can be represented in dB by taking the logarithm, i.e. 

LD(a) = 101ogloD(a) (49) 

equivalently _, 

LD(a) = 101oglo 

iere C is given by 

C=101oglo £|£(/)| 

- C (50) 

(51) 

This measure provides a more reliable function for studying the signals cyclic features 

distribution and should, as the NLMC function, always be smaller or equal to 0 (LD(a) < 

0). As a result, LD(a), hereinafter referred to as the Cyclic Feature Function (CFF), is 

preferred. 

4.0    RESULTS OF THE SSCA ENCODED IN C 

The algorithm explained in the last section has been encoded in the C language 

on a SUN IPX computer. The program is called ssca and its usage is given as follows: 

ssca [options] filenamel [filename2] 

The filenamel is the name of the source file containing the block of samples of 

the signal to be analyzed. The second optional file name, filename2, is required only when 

the cross-correlation cyclic spectrum is computed. The different options that can be used 

are listed in Table 2. 
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Table 2: Options for the ssca Program. 

Options Description 

-a value specifies the amount of attenuation (in dB) for the 1st Kaiser window (Np 
samples long) - [Default =4» 96.0 dB] 

-b value specifies the amount of attenuation (in dB) for the 2nd Kaiser window (N 
samples long) - [Default =» 20.0 dB] 

-C computes the conjuguate cyclic spectrum 

-c computes the cross-correlation cyclic spectrum (filename2 must be specified in 
this case) 

-f char specifies the format of the data to be produced in the output files (if char = a, 
the output is ASCII and if char = b, it is binary) - [Default =>■ b] 

-help displays information on how to obtain on line help 

-M in addition to the cyclic spectrum output, also outputs the maximum value of 
the cyclic spectrum for each cycle frequency in a separate output file (using 
extension .max) 

-N value specifies the number of data samples being analyzed (i.e., N samples) - [Default 
=» 1024] 

-P value specifies the number of data samples used in the channelizer (i.e., Np samples) 
- [Default =► 8] 

-o file specifies the output file name - [Default => surf_out] 

-d in addition to the cyclic spectrum output, also outputs the degree of cyclo- 
stationarity for each cycle frequency in a separate output file (using extension 
.int) 

-z in addition to the cyclic spectrum output, also outputs the value of the cyclic 
spectrum at the zero frequency (or closest to zero) for each cycle frequency in 
a separate output file (using extension .zero) 

-s value decimates the number of output spectrum cut to value cuts without affecting 
the resolution. - [Default =» 1024] 
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Table 3: Signals Parameters (for fs = 100kHz). 

Signal Keying Rate Carrier Frequency Pulse Type q(t) Bandwidth Power (dBW) 

A 4800 bauds 23 kHz rect BL 4*4800 0.0 

B 10000 bauds 23.5 kHz rect BL 3*10000 0.0 

C 9000 bauds 29.5 kHz rect BL 2*9000 0.0 

NO — — — /./2 0.0 

N5 — — — fs/2 5.0 

Using the ssca program, this section will compare cyclic spectrum results with 

theoretical expectations. Note that the program used to display the 3-dimensional spec- 

trum is called plot_sxaf and is sold by Statistical Signal Processing Inc along with another 

type of cyclic spectral estimation algorithm using direct frequency-smoothing. 

4.1    Signal Descriptions 

The type of signal used for the analysis is the popular Phase-Shift Keying (PSK) 

modulated signal. Specifically, binary PSK (BPSK) modulated signals are used with 

additive white Gaussian noise (AWGN). A BPSK signal can be mathematically described 

in terms of pulse-amplitude modulation (PAM) as 

x(t) = a(t) cos (2irfct + <f>0) , 

where the signal envelope a(t) is given by 

oo 

a(t)=   J2  anq(t - nTK - t0) 

(52) 

(53) 

Note that an is a binary sequence (±1), q(t) is a finite energy keying envelope, and 

TK = 1/fx is the symbol period expressed in seconds/symbols.10 Table 3 and Table 4 

describe three BPSK and two noise signals under investigation, along with their specific 

parameters. 

10 Note that 1 baud corresponds to 1 symbol/sec. 
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Table 4: Normalized Signals Parameters (f3 = 1Hz). 

Signal Keying Rate Carrier Frequency Pulse Type q(t) Bandwidth Power (dBW) 

A 0.048 0.23 rect BL 4*0.048 0.0 

B 0.1 0.235 rect BL 3*0.09 0.0 

C 0.09 0.295 rect BL 2*0.1 0.0 

NO — — — /./2 0.0 

N5 — — — fs/2 5.0 

4.2    Theoretical Expected Results 

The theoretical CS of a BPSK signal is well known [11] and is derived below. 

We have 

R"(r)   =   (*(* + r/2)x(t - r/2)e-^ai) 

=   (a{t + r/2) cos [2vfe(t + r/2) + fo] a(t - r/2) cos [2TTfc(t - r/2) + <j>o] e"j2,ra') 

=    (a(t + T/2)a(t - r/2)i [cos(27r/cr) + COS(4TTfet + 2<f>0)} e~i2irat^ 

=   (|«(< + r/2)a(t - r/2) cos(27r/cr)e-
j2™^ 

+ (^a(t + T/2)a(t - r/2) cos(47r/c* + 2<f>0)e-j2™t} 

=   ^(r)-cos(27r/cr) 

+ (la{t + r/2)a(t - r/2) • i ±£ e'^J 

=   |i?(T)-cos(2T/eT) 

+I (a(* + T/2)a(i - r/2)e-i2,r<a-2/e>V'2*» + a(< + r/2)a(t - T/2)e"-''2,r<a,+2/e>te-'2*>) 

=   ^(r)-cos(27r/cr) + ^-^(r).e^ + ^:+2^(r).e-^ (54) 

where R%{T) is the cyclic autocorrelation of the PAM signal a(t). Using the cyclic Wiener 

relation, one can find the CS of x(t) by Fourier transforming R%(T), i.e., 

W)   =   ^W(T)} (55) 
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= \ [w - fc)+s:(f+fc)+sr2Hf) ■ ^° + 5rf2/c(/) • e-™°]. 

For a(i) as expressed in (53), its CS is found to be 

S"a(f) 
±Q(f + a/2)Q*(f - a/2)Sa(f + a/2)e-«   , a = p/TK 

(56) 
0 , otherwise 

wherep is an integer, Q(f) = T {q(t)}, Sa(f) = £fc=_oo Ra(k) exV{-j2irkfTK) and Ra(k) = 

< ük+nO-n > (discrete-time average of the sequence over n).11 Using these results, we can 

then express S°(f) as 

%(/) = 

i[W-/2)Q*(/-/i)5„(/-/2) 

+Q(f + h)QV + fi)Sa{f + /i)] • e-j2*at0 , a = p/TK 

. +W + /i) W - /i)&(/ + /1)e->^°+2*'l] • e-*™*'   , a = ±2/e + p/TK 

(57) 

where 

/i   =   fc + a/2 

h   =   /c-a/2. 

This is the general expression for the CS of a BPSK modulated signal as expressed in (52) 

and (53). 

The actual choice of q(t) (i.e., a band-limited rectangular pulse) is given by 

or equivalently 

q(t) = rectrK(*) * hlp(t) 

QU)^M?IM.HM) 
717 

(58) 

(59) 

where rect:rK(<) is defined as being the rectangular pulse of time duration TK and hip(t) is 

nNote that for {an} = ±1 and independently identically distributed (i.i.d.), S„(f) = 1. 
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the impulse response of the filter band-limiting the signal having Hip(f) as its frequency 
response. Replacing Q(f) in the expression for the CS gives 

saAf) = 

e— >2jrat0 

47* 
sinMf-f2)TKUmMf-h )TK) 

*(/-/2M/-/I) 

■Hlp(f - f2)Hlp(f - h)Sa(f - h) 

I smMf+h)TK)-smMf+h)TK) 

■Hlp(f + h)Hlp{f + f2)Sa(f + /0] , a = p/TK 

e-j27rat0 

4TK 

sin(n( f-h )TK)-sinMf+h )TK) 
■x(S-hXJ+h) 

■Hlp(f - h)Hlp{f + f2)Sa(f - f2) • ei(^o+2^o) 

I 8in(7r(/+/1)ry)-gm(*(/-/1)rK) 
"•" Hf+h)-Af~h) 

•Hip(f + h)Hlp(f - /x)5Q(/ + A) • e-*4^°+2*°)]   , a = ±2/c + p/TK 

0 , otherwise 

(60) 
and furthermore, choosing the sequence {a(n)} of ±1 to be independently identically 
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distributed (i.i.d.) causes Sa(f) = 1, and therefore S"(f) reduces to 

saM) = 

e->2"ato   [8m(*(/-/2)rK)-sin(1r(/-/l)TK) 
4TK      [ *(/-A)ir(/-/l) 

•Hh{f ~ h)Hlp{j - h) 

■ sin(^(/+/1)ry)-8in(7r(/+/2)TJf) 
"•" *(/+/i M/+/a) 

■^(/ + /i)^p(/ + /a)] , a = p/TV 

<  £■ -^""O   r8in(7r(/-/2)rJC)-gin(7r(/+/2)ry) 

■Hlp(f - f2)Hlp(f + f3) ■ e^^+^o) 

I 8in(7r(/4-/i)TAr)-Bin(7r(/-/1)Ty) 

■^(/ + hWiAf ~ h) ■ e-^^+2<t>o)]    t a = ±2/c + P/TK 

(61) 

0 , otherwise 

This last expression shows that the BPSK will have spectral correlation components at 

a = P/TK and a = ±2/c + P/TK (for any integer p). In addition, the CS should look 

like a sine-squared function at a = 0 (/ = ±/c) and a = ±2/c (/ = 0), band-limited by 

the bandwidth of the filter. For p / 0, the CS more or less corresponds to spectral 

correlation due to the pth lobe of the spectrum. Since the number of lobes is band-limited 

to the bandwidth of the filter, the number of spectral correlation terms will be reduced 

accordingly. The expected cyclic features for each signal as described in Table 4 are shown 

in Table 5.12 

4.3    Experimental Results 

In this section, the CSs of the various generated signals (A, B, C, NO, and N5) 

are computed using the ssca program. The effects of varying some parameters in the 

algorithm are investigated. All CS 3D-plots only show |5"(/)| on a linear scale. The /- 

axis and a-axis appear on the left and right side of the graph respectively. Also note that, 

12In the table, / denotes the center frequency at which a cyclic feature is present. 
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Table 5: Theoretical Signals Cyclic Features Distribution. 

Cyclic 

Feature A B C 

a = 0 / = ±0.23 / = ±0.235 / = ±0.295 

a = ±p/TK a = ±0.048 • p a = ±0.1-p a = ±0.09 • p 

f = ±0.23 / = ±0.235 f = ±0.295 

a = ±2/c a = ±0.46 a = ±0.47 a = ±0.59 

/ = 0 / = o / = o 

a = ±2fc + p/TK a = ±0.46 ± 0.048 • p a = ±0.47±0.1-p a = ±0.59 ± 0.09 -p 

/ = 0 / = 0 / = o 

since the option -s 512 has been used to reduce the large number of points generated 

by the algorithm, the number of output cuts has been decimated to 512 cuts for each 

reported result. 

The effect of varying the observation time (JV) on the CS of signal A is shown 

in Figure 5. First, increasing the observation time increases the strength of the spectral 

correlation terms, provided the signal is present for the entire observation time (which 

is the case here). Second, since Np is kept fixed in this case, increasing N corresponds 

to increasing AtAf (= N/Np). Figure 5(a) clearly shows undesired spectral components 

(due to measurement unreliability). Starting from (c) (AtAf = 16384/64 = 256), the CS 

appears free of these unwanted components and therefore seems to be a reliable measure- 

ment (qualitatively). 

Even though the CS 3D-plot is a useful for spectral analysis of cyclostationary 

signals, another plot derived from the CS and more suitable for cyclic features detection 

has been defined in an earlier section. This function, the CFF (=LD(a)), estimates the 

cycle frequency-decomposed measure of the DCS or equivalently represents the cyclic 

feature strengths in dB distributed over a. This function was produced with the ssca 

program by using the option -d. As shown in Figure 6, the CFF graphs (using the same 

parameters conditions as the previous figure) provide better pictures for studying the 

cyclic features along a.13  The spectral shape however is lost.  In this section, the CFF 

13The CFF graphs show a dashed line arbitrarily set to -40 dB representing the minimum value for a 
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(a) A (AT=1024, Wp=64) (b) A (JV=4096, Np=64) 

(c) A (AT=16384,7Vp=64) (d) A (7V=32768, Np=64) 

Figure 5: CS of a BPSK Signal: Varying the Observation Time. 
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Figure 6: CFF of a BPSK Signal: Varying the Observation Time. 
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is used in order to more easily appreciate the distribution of cyclic spectral correlation 

components along the cycle frequencies. Each feature reveals itself as a discrete peak at 

a specific a corresponding to the theoretical value mentioned earlier for signal A. The 

measurement noise is visible on each graph and clearly decreases from (a) to (d) such 

that peaks exhibit higher SNR. 

Next, the effect of varying the frequency resolution A/ = l/Np on signal A is 

studied in Figure 7 and Figure 8. Using A/ = ^, ^, ^, and | in (a), (b), (c) and (d) 

respectively, a loss in frequency resolution appears in the CS (from (a) to (d)). On the 

other hand, the product AtAf is increased. However, there should be some constraints 

imposed on A/, i.e., for a BPSK signal having keying rate l/TA, 

*f<m- (62) 

In Figure 8(d), for example, A/ = | = 0.125 and 1/2TA = 0.048/2 = 0.024 and therefore 

A/ > 1/2TA- As can be seen, this situation turns out to be undesirable since the baud rate 

feature decreases in strength and a highly distorted relationship between cyclic features 

arises. 

Figure 9 to Figure 12 demonstrate the same varying parameters as for signal A 

but applied to a WGN signal NO. As observed, increasing the observation time without 

changing the frequency resolution reduces the noise measurement and its variance. As 

seen, the number of false detected features greatly reduces from (a) to (d). In general, the 

CFF inherently takes a specific shape such that the function clearly depicts a higher noise 

measurement variance as we approach a = ±1 and the feature strengths decrease from 

(a) to (d). This particular shaping of the CFF is due to the region of support which was 

shown to be a diamond and therefore contains fewer points to rely on at the extremes. 

The effect of reducing the frequency resolution is studied in Figure 12. Due to the signals 

under investigations, N and Np have been chosen to be 32768 and 64 respectively for all 

subsequent figures. 

The CS and CFF of all noise-free BPSK signals are shown in Figure 13 and 

Figure 14 respectively. In (d), all signals have been combined and despite the fact that 

it is not possible to detect the 3 signals and their parameters by only analyzing the 

conventional PSD (at a = 0), investigations of the CS or CFF reveal every signals' 

peak to be considered. The dotted lines on the graphs appear on peaks which have been detected using 
a detection algorithm derived by the author. Quantitative results are provided in Appendix A. 
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(a) A (W=32768,JVp=64) (b) A (JV=32768, JVp=32) 

(c) A (JV=32768, Np=16) (d) A (AT=32768, Np=8) 

Figure 7: CS of a BPSK Signal: Varying the Frequency Resolution. 
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Figure 8: CFF of a BPSK Signal: Varying the Frequency Resolution. 
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(a) NO (AT=1024, Np=64) (b) NO (AT=4096, Wp=64) 

(c) NO (JV=16384, Np=64) (d) NO (#=32768, Np=64) 

Figure 9: CS of Noise: Varying the Observation Time. 
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Figure 10: CFF of Noise: Varying the Observation Time. 
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(a) NO (W=32768, ATP=64) (b) NO (iV=32768, Np=32) 

(c) NO (#=32768, JVp=16) (d) NO (JV=32768, Np=8) 

Figure 11: CS of Noise: Varying the Frequency Resolution. 
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Figure 12: CFF of Noise: Varying the Frequency Resolution. 
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(a) A (b)B 

(c)C (d) A+B+C 

Figure 13: CS of Various BPSK Signals Using iV=32768, Np=U. 
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Figure 14: CFF of Various BPSK Signals Using JV=32768, Np=U. 
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parameters (see Table 10 of Appendix A). The effect of adding noise to these signals is 

studied from Figure 15 to Figure 18. Again, as the results tabulated in Appendix A 

quantify, all major features can still be detected. This undoubtly demonstrates the high 

degree of robustness and precision of the CS (or CFF) tools for analyzing cyclostationary 

communications signals. 

4.4    SSCA Benchmarks on a SUN IPX 

The computation time required for a SUN IPX to perform the SSCA using 

specific parameters are reported in Table 6 for reference. All timings are accurate to 

within 1 second and do not include the first and last steps of the algorithm which read 

the data, form the windows coefficients, and map and store the output. Note however 

that the time needed for these steps is relatively negligible. 

Table 6: Results of SSCA Benchmarks on a SUN IPX. 

N Np AtAf Time (sec) 

1024 8 128 <1 

1024 16 64 1 

1024 32 32 2 

1024 64 16 4 

4096 64 64 14 

8192 64 128 30 

16384 64 256 77 

32768 64 512 169 

32768 32 1024 81 

32768 16 2048 41 

32768 8 4096 20 
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(a) A+NO (b) B+NO 

(c) C+NO (d) A+B+C+NO 

Figure 15: CS of Various BPSK Signals in Noise NO Using iV=32768, Np=64. 
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Figure 16: CFF of Various BPSK Signals in Noise NO Using JV=32768, Np=6A. 
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(a) A+N5 (b) B+N5 

(c) C+N5 (d) A+B+C+N5 

Figure 17: CS of Various BPSK Signals in Noise N5 Using iV=32768, Np=U. 
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Figure 18: CFF of Various BPSK Signals in Noise N5 Using #=32768, Np=6A. 
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5.0    SUMMARY AND CONCLUDING REMARKS 

This report discussed the implementation of an efficient algorithm, the SSCA, for 

estimating the entire cyclic spectrum of discrete-time domain signals. Following a review 

on the theory of spectral correlation for cyclic spectral analysis of discrete-time signals, 

the SSCA was derived. The detailed description of the SSCA showed that it mainly 

reduces in complexity to a two-dimensional FFT of size NxNp and that it is suitable for 

parallel architectures. Parameters N and Np specify a number of CS estimate attributes 

such as the frequency resolution A/, the cycle frequency resolution Aa, and the time- 

frequency resolution product AfAt. All the steps required to implement the SSCA were 

clearly explained. An analysis of the SSCA revealed its computational requirements. The 

accuracy of the estimates were also considered and an algorithm for mapping the SSCA 

output was provided. Additionally, the cyclic feature function (CFF) was defined as a 

means to detect the cyclic features from the SSCA. 

Results of the SSCA encoded in C were then reported. Theoretical CSs were 

derived for three BPSK signals using various parameters and two additive white Gaus- 

sian noise (AWGN) signals. Plots of the CS and CFF of various combinations of these 

signals along with various algorithmic parameters were realized with the ssca program 

and presented to the reader. Specifically, the effect of varying the observation time and 

the frequency resolution were observed on one of the BPSK signal and one of the AWGN 

signal independently. Then, the CS and CFF of combinations of the signals under inves- 

tigation were studied while all SSCA parameters were kept fixed. Cyclic features were 

detected based on the CFF. These experimental results show that all major cyclic fea- 

tures corresponding directly or indirectly to signal features (e.g. carrier frequency and 

baud rate in this case), were successfully detected even in highly corrupted conditions 

where conventional analysis would have failed to discriminate the signals. Finally, some 

benchmarks on the SUN for the SSCA were provided for reference. 

In conclusion, the CS and CFF estimated with the SSCA have proven to be 

valuable tools for analyzing second-order cyclostationary communication signals and, by 

making extensive use of the FFT, to provide reliable and accurate results more efficiently 

than typical CS direct estimation methods. Based on these results, it is anticipated that 

the SSCA will be coded in a multi-C40 processors board in a near future and will be 

processing off-air data. Cyclic spectral analysis of live data composed of various modu- 

lation types signals will then be performed and the practical usefulness of the SSCA will 

be assessed. 
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APPENDIX 

A.O    CYCLIC FEATURE DETECTION RESULTS 

These results were found based on the Cyclic Feature Function (CFF) as defined 

in the main body of the report. A cyclic feature detection algorithm has been applied to 

the CFF producing tables of detected cyclic features. Each table shows the cyclic feature 

value a, its strength in dB, and to which signal feature it corresponds. The term FALSE 

means that the feature does not correlate with any signal's cyclic features. The detection 

algorithm used is not described here but is a fairly straightforward manner of detecting 

the features based on the CFF. Only results of the SSCA using TV = 32768 and Np = 64 

are tabulated. 

Table 7: A (#=32768, iVp=64), 21 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.04800 -11.31 -0.04800 -11.31 fkA 

0.09601 -18.17 -0.09601 -18.17 VkA 

0.14401 -33.48 -0.14401 -33.48 3Ax 

0.31601 -35.39 -0.31601 -35.39 2/c^ - 3/*^ 

0.36401 -22.83 -0.36401 -22.83 VcA - 2fkA 

0.41199 -16.43 -0.41199 -16.43 2fCA - fkA 

0.45999 -4.08 -0.45999 -4.08 VcA 

0.50800 -14.34 -0.50800 -14.34 VcA + hA 

0.55600 -20.17 -0.55600 -20.17 VcA + VkA 

0.60400 -34.42 -0.60400 -34.42 VcA + VkA 
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Table 8: B (#=32768, iVp=64), 15 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.10001 -10.00 -0.10001 -10.00 fkB 

0.20001 -25.80 -0.20001 -25.80 VkB 

0.26999 -28.36 -0.26999 -28.36 VcB - 3/fcB 

0.37000 -12.81 -0.37000 -12.81 2/CB - fkB 

0.47000 -3.03 -0.47000 -3.03 VcB 

0.57001 -13.26 -0.57001 -13.26 VcB + fkB 

0.67001 -29.30 -0.67001 -29.30 VcB+VkB 

Table 9: C (#=32768, JVp=64), 9 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.09000 -10.24 -0.09000 -10.24 fkc 

0.50000 -13.06 -0.50000 -13.06 2 fcc - fkc 

0.59000 -3.20 -0.59000 -3.20 Vcc 

0.67999 -13.84 -0.67999 -13.84 Vcc + fkc 
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Table 10: A+B+C (iV=32768, Np=64), 35 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.04800 -18.15 -0.04800 -18.15 fkA 

0.09000 -18.61 -0.09000 -18.61 hc 

0.09601 -24.83 -0.09601 -24.83 VkA 

0.10001 -19.25 -0.10001 -19.25 hB 

0.20001 -35.28 -0.20001 -35.28 VkB 

0.27000 -37.50 -0.27000 -37.50 VcB - 2/fcB 

0.36401 -29.65 -0.36401 -29.65 VoA - 2fkA 

0.37000 -21.84 -0.37000 -21.84 2fcB - fkB 

0.41199 -23.10 -0.41199 -23.10 2fCA - fkA 

0.45999 -10.75 -0.45999 -10.75 VcA 

0.47000 -12.26 -0.47000 -12.26 2fCB 

0.50000 -20.49 -0.50000 -20.49 2 fcc ~ fkc 

0.50800 -21.21 -0.50800 -21.21 VcA + fkA 

0.57001 -22.37 -0.57001 -22.37 2fcB + fkB 

0.59000 -11.61 -0.59000 -11.61 Vcc 

0.67001 -39.48 -0.67001 -39.48 2fcB+2fkB 

0.67999 -22.36 -0.67999 -22.36 2 fcc + fkc 
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Table 11: A+NO (#=32768, A^=64), 15 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.04800 -13.53 -0.04800 -13.53 hA 

0.09601 -21.15 -0.09601 -21.15 VkA 

0.36401 -25.66 -0.36401 -25.66 VcA - VkA 

0.41199 -18.59 -0.41199 -18.59 2fCA - fkA 

0.45999 -6.57 -0.45999 -6.57 VcA 

0.50800 -16.66 -0.50800 -16.66 2fcA + fkA 

0.55600 -22.35 -0.55600 -22.35 VcA + 2fkA 

Table 12: B+NO (#=32768, Np=64), 14 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.10001 -13.57 -0.10001 -13.57 fkB 

0.20001 -27.66 -0.20001 -27.66 VkB 

0.37000 -16.05 -0.37000 -16.05 2fcB - fkB 

0.47000 -6.69 -0.47000 -6.69 VcB 

0.57001 -17.10 -0.57001 -17.10 2fcB+fkB 

0.66999 -30.82 -0.66999 -30.82 FALSE 

0.73911 -34.07 FALSE 
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Table 13: C+NO (JV=32768, Np=6i), 9 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.09000 -13.33 -0.09000 -13.33 fkc 

0.50000 -15.96 -0.50000 -15.96 2/cc ~ fkc 

0.59000 -6.27 -0.59000 -6.27 2/cc 

0.67999 -16.90 -0.67999 -16.90 2/cc + fkc 
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Table 14: A+B+C+NO (iV=32768, iVp=64), 31 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.04800 -19.28 -0.04800 -19.28 fkA 

0.09000 -19.35 -0.09000 -19.35 fkc 

0.09601 -25.77 -0.09601 -25.77 VkA 

0.10001 -20.54 -0.10001 -20.54 fkB 

0.36401 -30.09 -0.36401 -30.09 VcA - 2fkA 

0.37000 -23.14 -0.37000 -23.14 2fcB - fkB 

0.39948 -32.17 -0.39948 -32.17 FALSE 

0.41199 -23.80 -0.41199 -23.80 2/CA - fkA 

0.45999 -12.02 -0.45999 -12.02 VcA 

0.47000 -13.75 -0.47000 -13.75 VcB 

0.50000 -21.61 -0.50000 -21.61 2 fcc - fkc 

0.50800 -21.79 -0.50800 -21.79 VcA + fkA 

0.57001 -23.99 -0.57001 -23.99 2fcB + fkB 

0.59000 -12.70 -0.59000 -12.70 Vcc 

0.67999 -23.34 -0.67999 -23.34 2 fee  + fkc 
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Table 15: A+N5 (JV=32768, Np=U), 15 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.04800 -17.87 -0.04800 -17.87 fkA 

0.09601 -24.95 -0.09601 -24.95 VkA 

0.36401 -27.89 -0.36401 -27.89 VcA - VkA 

0.41199 -22.47 -0.41199 -22.47 2fcA - fkA 

0.45999 -11.54 -0.45999 -11.54 VcA 

0.50800 -21.32 -0.50800 -21.32 2fCA + fkA 

0.55600 -25.68 -0.55600 -25.68 VcA + 2fkA 

Table 16: B+N5 (JV=32768, Np=64), 9 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.10001 -19.07 -0.10001 -19.07 fkB 

0.37000 -21.53 -0.37000 -21.53 2/CB - fkB 

0.47000 -12.15 -0.47000 -12.15 VoB 

0.57001 -21.65 -0.57001 -21.65 2fcB + fkB 
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Table 17: C+N5 (W=32768, Np=M), 9 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.09000 -18.75 -0.09000 -18.75 fkc 

0.50000 -21.52 -0.50000 -21.52 2fee - fkc 

0.59000 -12.17 -0.59000 -12.17 Vcc 

0.67999 -21.54 -0.67999 -21.54 Vcc + fkC 

Table 18: A+B+C+N5 (#=32768, JVp=64), 27 Features Detected. 

a Value (dB) a Value (dB) Feature 

0.00000 0.00 0 

0.04800 -21.62 -0.04800 -21.62 fkA 

0.09000 -21.70 -0.09000 -21.70 fkc 

0.09601 -26.59 -0.09601 -26.59 VkA 

0.10001 -23.22 -0.10001 -23.22 fkB 

0.37000 -24.94 -0.37000 -24.94 2fcB - fkB 

0.41199 -26.79 -0.41199 -26.79 VcA ~ fkA 

0.45999 -14.57 -0.45999 -14.57 VcA 

0.47000 -16.26 -0.47000 -16.26 VcB 

0.50000 -24.36 -0.50000 -24.36 2 fcc - fkc 

0.50800 -24.55 -0.50800 -24.55 VeA + fkA 

0.57001 -26.13 -0.57001 -26.13 2/cB + fkB 

0.59000 -16.03 -0.59000 -16.03 Vcc 

0.67999 -25.18 -0.67999 -25.18 Vec+fkc 
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