
1*1 National Defense

Defence nationale

REAL-TIME INTERPROCESSOR
SERIAL COMMUNICATIONS SOFTWARE

FOR SKYNET EHF TRIALS

by

Robin Addison

19941212 060
DEFENCE RESEARCH ESTABLISHMENT OTTAWA

REPORT NO. 1227

Canada July 1994
Ottawa

1*1 National Defense
Defence nationale

REAL-TIME INTERPROCESSOR
SERIAL COMMUNICATIONS SOFTWARE

FOR SKYNET EHF TRIALS

by

Robin Addison
MILSATCOM Group

Space Systems and Technology Section
Radar and Space Division

Accesion For"

NTIS CRA&l if "~1
DTIC T/;R
Unanncurcsd

1 1
D

Jus'u cation ,

-~'J

Di,i i, ■■ . /

.—_„„„

Di£.t

Ali

! .,-;■

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
REPORT NO. 1227

PCN
041LM

July 1994
Ottawa

Abstract

The Skynet EHF (extremely high frequency) Trials consisted of several week-long accesses over
Skynet 4A during 1993. The whole link (from transmitting ground terminal to Skynet to receiving
ground terminal) was used to simulate an EHF downlink from a payload to a ground terminal. Use of
the Skynet satellite allowed the experimentation at EHF with the ground terminal and payload simulators
over a link that had real satellite effects such as link degradations caused by satellite motion and weather.
To conduct the trials, it was recognized that many tasks needed to be active at once: pointing of antennas,
monitoring power levels, synchronization, data communications and result logging. To shorten
development time and simplify integration requirements, a distributed multiple computer processing
system was chosen.

This paper describes the communications software which provided the services necessary for the
distributed processing used in the trials. The challenge was to develop a system that was easy to integrate
with the user software as well as to ensure that the communications hardware and software did not
conflict with special purpose boards in the various computers. For simplicity, stop-and-wait ARQ
(automatic repeat request) protocol was used for high-level message passing. Low-level communications
services that do not require handshaking, were also provided for equipment control. The communications
software package met these challenges and after extensive testing, was proven to provide the necessary
communications among all the processors and special devices of the distributed system.

Resume

Les essais Skynet en EHF (extremement haute frequence) consistant en plusieurs penodes
d'utilisation d'une duree d'une semaine chacune, ont eu lieu en 1993. Un lien unidirectionnel satellite-
terre a €t€ simule" par un lien compose" d'une station terrestre emettrice, remplacant la charge utile, d'un
satellite, et d'un station terrestre räceptrice. L'utilisation du satellite Skynet a permis ä CRDO (Centre
de recherche pour la defense, Ottawa) de faire des experiences sur certains problemes de communications
par satellite comme les degradations causees par le mouvement du satellite et les conditions
m&eorologiques. Pour les essais, il a 6t6 necessaire de faire plusieurs täches en meme temps:
modification des azimuts des antennes, mesurage des niveaux des signaux, synchronisation en espace,
temps et frequence, communication des donnes, et enregistrement des resultats. Un Systeme de traitement
distribu6 a 6t6 choisi pour minimiser le temps de developpement necessaire.

Ce rapport d£crit le logiciel pour les communications entre les ordinateurs durant les essais Skynet
en EHF. Le deTi 6tait de developper un Systeme de communications qui serait facile ä integrer avec les
logiciels rösidents et les cartes installees dans les ordinateurs. Le protocole "stop-and wait ARQ" a &6
choisi pour les communications de haut niveau entre les processeurs. Chaque message doit Stre recu et
sa reception accused avant la transmission du prochain. Les services de communications de bas niveau
ont 6t6 fournis pour le contröle des instruments. Le logiciel pr&ente" dans cet ouvrage a atteint son but
en fournissant les communications entre les ordinateurs et entre les diff£rents instruments utilises pour
les essais Skynet en EHF.

in

Executive Summary

The Skynet EHF (extremely high frequency) Trials consisted of several week-long accesses over
Skynet 4A during 1993. The whole link (from transmitting ground terminal to Skynet to receiving
ground terminal) was used to simulate an EHF downlink from a payload to a ground terminal. Thus,
the transmitter was acting as the payload and the receiver was acting as the ground terminal. Use of the
Skynet satellite allowed the experimentation at EHF with the ground terminal and payload simulators over
a link that had real satellite effects such as link degradations caused by satellite motion and weather.

To conduct these trials, it was recognized that many tasks needed to be active at once: pointing
of antennas, monitoring power levels, synchronization, data communications and result logging. To
shorten development time, rather than integrating these tasks into one big multi-tasking computer, a
distributed processing system was chosen. This allowed each of the processes to be developed
independently and ensured that the many specialized hardware boards would not conflict with one-
another. Though the tasks were split into multiple platforms, it was still necessary for them to be able
to intercommunicate.

Asynchronous communications software is described which provided the services necessary for
the distributed processing used in the trials. The challenge was to develop a system that was easy to
integrate with the user software and to ensure that the communications hardware and software did not
conflict with special purpose boards in the various computers. Two types of services are provided: high-
level communications involving robust message handling with error free transmissions and low-level
communications for controlling equipment.

For simplicity, stop-and-wait ARQ (automatic repeat request) protocol is used for high-level
message passing. Each message must be received properly and acknowledged prior to the next message.
Lost or corrupted messages are retransmitted until received without errors. To simplify debugging, but
at the expense of efficiency, only printable characters are used for the messages and framing.

Because the communications software took control of all serial ports, low-level communications
services which do not require handshaking were provided for equipment control. This facilitated the
development of user software to command equipment such as antenna controllers through a serial port.

The software was developed using Microsoft C 6.0 on a Dell 433E running DOS 5.0 (Disk
Operating System version 5.0) and the real-time hardware interface portion was written in assembly
language. The communications software runs on any PC (personal computer) compatible computer
though AT-class machines cannot operate their serial ports at the highest speeds.

The communications software met the challenge and, after extensive testing, was proven to
provide the necessary communications among all the processors and special devices of the distributed
system.

Table of Contents

Abstract iii
Resume" iii
Executive Summary v
Table of Contents vii
Notational Conventions ix
Acknowledgments xi

1. Introduction 1
1.1 Background 1
1.2 Skynet EHF Trials 1
1.3 Outline 3

2. Protocol Design 5
2.1 Introduction 5
2.2 Commercial Software vs In-house Development 5
2.3 Network 5
2.4 Protocol Definition 6
2.5 Stop-and-wait ARQ 7
2.6 Implementation 9

3. Software Design 13
3.1 Introduction 13
3.2 Real-time Software 13
3.3 Low-level Communications 16
3.4 High-level Communications 16

4. Testing 21
4.1 Method 21
4.2 Problems Discovered 21
4.3 Usage Problems 22
4.4 Results 22

5. Conclusions 23
5.1 Summary 23
5.2 Future Work 23

Appendix A: Communications Software User's Guide 25
Appendix B: Communications Software Programmer's Reference 41
Appendix C: Real-time Software Programmer's Reference 61
Appendix D: Communications Software Listing 79
Appendix E: Real-time Software Listing Ill

References 133

vii

Notational Conventions

The following notational conventions are used to aid in the specification of syntax as distinct from
the normal text:

COM.C

TO=COMl

opencom

numberjarors

{A |B}

CR

A

int c = 0;

Filename

Literal - type exactly as shown

Software routine

Item to be filled in/replaced with a value

Choose one (and only one) of the members of this group

Control characters (CR = carriage return, LF = linefeed)

Literal space

Software listings

IX

Acknowledgments

I would like to thank the people at Defence Research Agency in the United Kingdom for their
support and the use of the Skynet 4A satellite. Without the use of the EHF facility on the satellite,
arranged through TTCP STP-6 (The Technical Cooperation Program, Technical Panel S6) working group,
this project would never have been realized.

XI

1. Introduction

1.1 Background

The MILSATCOM (military satellite communications) group at DREO (Defence Research
Establishment Ottawa) and the Satellite Applications and Projects Directorate at CRC (Communications
Research Centre) have been engaged in the study of EHF (extremely high frequency) frequency-hopped
satellite communications for several years. Both groups provide support to the EHF SATCOM Project,
a 48 million dollar project. Approximately 80% of this project is devoted to an EHF system simulator
designated FASSET (functional advanced development model of a satellite system for evaluation and test)
developed in industry. To analyze aspects of frequency hopping communications and synchronization,
other than those used in FASSET, payload and ground terminal simulators have been developed in-house.

It became known, through participation in TTCP STP-6 (The Technical Cooperation Program,
Technical Panel S6) workshops, that the EHF portion of Skynet 4A was available to other TTCP
participants for experiments. Upon acceptance of the Canadian proposal for the Skynet EHF Trials by
the British, the ground terminal and payload simulators were modified to allow the Skynet 4A satellite
to be used as an EHF to X-band bent-pipe repeater. This allowed the experimentation at EHF with the
simulators over a link that had real satellite effects such as link degradations caused by satellite motion
and weather.

1.2 Skynet EHF Trials

The Skynet EHF Trials consisted of several week-long accesses over Skynet 4A during 1993.
The transmitter was situated at CRC and the receiver at DREO. The whole link (from CRC to Skynet
to DREO) was used to simulate an EHF downlink from a payload to a ground terminal. Thus, the
transmitter at CRC was acting as the payload and the receiver at DREO was acting as the ground
terminal. Skynet was used to introduce real satellite effects (such as doppler) to the link.

From the beginning, it was recognized that many tasks needed to be active at once: pointing of
antennas, monitoring power levels, synchronization, data communications and result logging. To shorten
development time, rather than integrating all these tasks into one big multi-tasking computer, a distributed
processing system was chosen. This allowed each of the processes to be developed independently - often
by different people. It also ensured that the many specialized hardware boards would not conflict with
one-another as they could be put in different computers. Though the tasks were split into multiple
platforms, it was still necessary for them to be able to communicate. Using existing ground terminal
equipment, it was not possible to co-locate the transmitter and receiver. This separation of 1 km between
the two further complicated the inter-processor communications.

1.2.1 Skynet EHF Trials Block Diagram

Fig. 1. shows the Skynet EHF trials block diagram. Normal rectangles represent off-the-shelf
equipment and custom circuitry whereas the rounded rectangles indicate computers and processors hosts.
Between boxes are three types of lines indicating the flow of information: data/control flow is
represented by thin lines with small arrowheads, analog/RF (radio frequency) connections are represented
by thick lines with hollow arrowheads and asynchronous serial communications are represented by the
dashed lines with solid arrowheads. It is these asynchronous serial communication links that are provided

by the software documented herein.

Skynet 4A

Simulated Payload id *4

Antenna
Controller

EHF
Upconverter

A A A
Reference
Generator

Antenna
Processor

Transmit &
FH/DPSK
Processor

\
%

Simulated Ground Terminal

Antenna
Controller

X-band
Down converter

Ephemeris
Processor I

Receive &
Synchronization

Processor

BPSK
Modulator

Data
Generator

Satellite
Clock

Data
Logger

"XT

Burst DPSK
Demodulator

Data Error
Analyzer

BPSK
Modem

Controller

v
-►!

Beacon &
Reference

Downconverter

Beacon &
Reference

Monitor

BPSK
Demodulator

Fig. 1. Skynet EHF trials block diagram.

1.2.2 Normal Signal Flow

The primary signal flow starts at the ground terminal that is acting as the payload. Pseudo-
random data from the Data Generator is passed to the Transmit & FH/DPSK Processor (FH/DPSK is
frequency-hopped differential phase-shift keying) which performs data modulation and provides the
frequency hopped pattern to the EHF Upconverter. Here, the hopping signal is combined with a
reference signal provided by the Reference Generator (this signal is monitored at the receiver and is used
to separate real uplink effects from that of the real downlink). This composite signal is then transmitted
at EHF to Skynet 4A. On-board the satellite, the signal is translated and retransmitted at X-band.

The other ground terminal (which is acting as the ground terminal for the experimental link)
receives the X-band signal and then processes it through the X-band Downconverter. The resultant
downconverted signal is fed to the Receive & Synchronization Processor for synchronization processing
and the signal is also passed on, with clocking, to the Burst DPSK Demodulator. The demodulated data
is then fed into to Data Error Analyzer for bit-error-rate (BER) measurements. In the case of digital

voice, the Data Generator and the Data Error Analyzer were replaced with vocoders. The X-band
downlink also contains the translated reference signal and a satellite beacon which are downconverted by
the Beacon & Reference Downconverter and then measured by the Beacon & Reference Monitor.

1.2.3 Channel-characterization Signal Flow

To characterize the channel, unhopped BPSK (binary phase-shift keying) was used. This was
done on the transmit side by replacing the hopped signal with an unhopped BSPK signal from a
commercial satellite modem. After downconversion on the receive side, the signal is split off and fed
to a similar unit for demodulation. These modems have built-in BER measurement capability. The
modems are configured and monitored by the BPSK Modem Controller.

For antenna pointing information, the ephemeris information is generated by the Ephemeris
Processor. For antenna scans, the pointing information is passed to the Receive & Synchronization
Processor, modified with scan information, and then returned to the Ephemeris Processor. Antenna
pointing is done by the receive Antenna Controller which is commanded by the Ephemeris Processor.
The Ephemeris Processor also remotely commands the Antenna Processor on the transmit side, which
in turn commands the transmit Antenna Controller.

1.2.4 Data Logging

Central to the whole system is the Data Logger. This computer logs data and status from five
processors. It also gets the time from the GOES (Geostationary Operational Environmental Satellite)
Satellite Synchronized Clock. Measurement data is sent from the Beacon & Reference Monitor several
times each minute. The Ephemeris Processor routinely sends the pointing and predicted doppler values
to the Data Logger. The Receive & Synchronization Processor sends raw synchronization data as well
as synchronization performance measurements. Both the BPSK Modem Controller and the Burst DPSK
Demodulation send BER measurements to the Data Logger.

1.2.5 Serial Communications

There are two types of asynchronous serial communications used for the experiment. Low-level
asynchronous serial communications, involving simple character/string reads and writes to devices, are
used in two cases. Low-level communications are used by the Transmit Antenna Processor to control
the Antenna Controller and by the Data Logger to get the time from the GOES Satellite Clock. All other
serial communications (shown by dashed lines) in the block diagram are high-level communications using
automatic-repeat-request (ARQ) error control. High-level communications only occur among
computers/processors.

1.3 Outline

This report first examines the trade-offs and design of the protocol for high-level communications
involving robust message passing. The next chapter deals with the design and implementation of the
software. The last chapter of this report covers the testing and problems that were uncovered during its
use.

A substantial portion of this report is contained in various appendices. Appendix A contains the
user's guide to the communications software, both high and low-level. It includes a program example

that exploits several features of the communications software. Appendix B contains the programmer's
reference for the communications software. These two appendices together provide all the necessary
information for a programmer to use the communications software.

The real-time assembly routines, which control the various aspects of the hardware, are
documented in Appendix C. These routines can be used separately to allow interrupt driven
communications callable from C language. Finally Appendix D and E contain the software listings for
the communications software and real-time routines respectively.

2. Protocol Design

2.1 Introduction

The implementation of the communications software depended on several factors: availability
of commercial software, ease of programming, ease of debugging, performance of links, topology of the
links and, most importantly, requirements of the experiment. In the following sections, these aspects will
be examined in detail and the final selection will be outlined. The theory portion of this section draws
heavily on [1].

2.2 Commercial Software vs In-house Development

There are several communications packages for inter-computer communications available on the
market. The advantages and disadvantages of using a commercial package or developing in-house
software are presented in the table below:

Development
Method

Advantages Disadvantages

Commercial
Package

- Very little or no development - Uncustomizable
- Cannot be debugged/altered
- May not work with other realtime tasks
- Must be selected with care to ensure necessary
features are available
- May require special (and expensive) hardware

In-house
Development

- Can be customized
- Can be debugged/altered - programmer is
available to integrate it with other tasks

- Long development time
- Complexity of development is proportional to
sophistication of the network

Since the software was to be integrated with other real-time software (such as analog-to-digifal
board drivers, digital signal processor interfaces and instrument bus controller drivers) it was decided to
use in-house development. The availability of the source code and the ability to modify the interface and,
in some cases, to accommodate unusual or undocumented features of other real-time driver software were
the key deciding factors.

2.3 Network

The topology and interconnect method among the computers has a major effect on the
development time and complexity. The methods considered were a local network (for example using
ethernet), a star topology where all stations are connected to one hub that passes messages between
stations and a point-to-point network where there is a dedicated link for every communication between
computers.

Some of the various options using the easiest available medium are presented in the table below
along with their advantages and disadvantages.

Topology Medium Advantages Disadvantages

Local network
(bus or ring)

Ethernet
(or others)

- high speed and throughput
- easy to add or remove stations

- excessive complexity for in-house
development

Star Serial - minimize the number of links required
- speed is a function of the serial link

- hub station has to handle all traffic
- requires a hub (ie: an extra computer)
- serial can be slow

Point-to-point
interconnect

Serial - no routing required by any station
- easy to add or remove stations/links
- speed is a function of the serial link

- many links are required
- serial can be slow

Since simplicity and flexibility were more important than performance, the point-to-point
interconnect topology was selected using the standard serial ports available on personal computers.

2.4 Protocol Definition

A commercial software package would include a defined protocol for communications. Since the
communications software was to be developed in-house, an appropriate protocol had to be selected. The
key points considered are detailed below.

2.4.1 Error Control

Some method is required to correct errors or to allow retransmission of data in the event that an
error occurs. Forward error correction (FEC) codes introduce redundancy in the data to allow the
receiver to correct errors. This technique requires an encoder and decoder - relatively complex to
implement. Another technique is to use error detection coupled with automatic-repeat-request (ARQ).
This scheme uses a check value appended to the transmitted message. This check is verified at the
receiver and if the verification fails, errors are detected and retransmission of the erroneous message is
requested. The latter scheme, using a checksum, was chosen because of ease of implementation.

2.4.2 Flow Control

To ensure that the receiver does not lose any data when the transmitter is sending data quickly,
flow control is required. This can be accomplished by several methods including:

• Polling: The transmitter polls the receiver to see if it is ready
• Ready: The receiver indicates that it is ready for data
• Interrupt: The receiver interrupts the transmitter when there is too much data

Stop-and-wait includes a form of the Ready flow control because the receiver, upon receipt of
a message, does not acknowledge it until ready for the next message. Stop-and-wait flow control was
chosen because it is well integrated with the ARQ scheme for error control.

2.4.3 Control/Data Discrimination

In any protocol, it is necessary to distinguish between control messages (such as Ack, Nak and
routing) and user data messages. This can be done by keeping all control information in headers, by

using special codes to indicate control messages or by using a different medium. For the serial
communication system, it was decided that all user data messages will be prefixed with a header (which
includes some control information) and that strictly control messages would not have this header. To
distinguish between control and user data messages, the header will use characters that cannot occur in
the control messages.

2.4.4 Character vs Bit-oriented Protocol

Bit-oriented protocols are more efficient than character-oriented protocols because only the
number of bits needed are used whereas character-oriented protocols must use an integral number of bytes
as the minimum allocation. When using asynchronous character-oriented serial ports, however, it is much
simpler to use a character-oriented protocol. Because simplicity was more important than efficiency, a
character-oriented protocol was selected. To simplify debugging, this protocol was further restricted to
using only printable characters.

2.4.5 Synchronous vs Asynchronous

Synchronous serial communications is more efficient than asynchronous serial communications
because of the capacity needed for start and stop bits in asynchronous communications. The disadvantage
of synchronous serial communications is that a clock signal is required along with the data to clock the
data bits. Asynchronous serial communications was chosen because it is simpler to wire and is commonly
used on personal computers.

2.4.6 Frame Synchronization

It is important for the receiver to recognize the beginning and end of a message frame. The
delimiter of the header indicates the start of the message (though this same character could be included
in the data portion). To delimit the end of a message frame, carriage return/linefeed was used. These
control characters cannot occur in the data portion so they provided an unambiguous indication of the end
of the frame. The end of one frame also marks the beginning of the next because asynchronous
communication does not have idle characters between messages.

2.4.7 Addressing

Given point-to-point topology wherever communications are required, there is no need for
addressing of the messages (since any message received on a specific link can only come from the station
at the other end of the link). It is possible that, in a future system, the complexity of a full point-to-point
connection may prove to be impractical. In that case, it would be desirable to have addressing
information to allow messages can be passed on by intermediate stations. To allow for expansion,
addressing information was included in the message header.

2.5 Stop-and-wait ARQ

One method of error control on a communication link is ARQ. In this scheme, the transmitter
sends a message with some form of checksum which is received and then verified. If the verification is
successful, the message is acknowledged. If the verification fails, the receiver requests retransmission
of the message. Common ARQ schemes are: selective repeat, go-back-N and stop-and-wait. Selective
repeat, the most efficient, allows the transmitter to continually transmit messages without pausing for

acknowledgments and only the messages in error are retransmitted. In go-back-N, the transmitter
continually transmits, but if an error occurs in a message, the transmitter must go back to that message
and retransmit it and all succeeding messages. The simplest and least efficient form of ARQ is stop-and-
wait ARQ where the transmitter sends only one message at a time and must wait for acknowledgement
prior to transmitting the next message. Stop-and-wait ARQ was chosen for high-level communications.

2.5.1 Normal Messages

Fig. 2. shows the information flow for normal message transmissions and the cases where a single
error occurs. The normal message case shows the transmitting station (Tx) sending message #0 (MsgO)
to the receiving station (Rx). It takes a certain time to send the message, Rx processes the message
checking for errors and then responds with the appropriate acknowledgement for message #0 (AckO).
Some time later, Tx has another message, message #1, and the same sequence occurs.

© ®

y*si \

Normal Message Message Ack Ack
Messages Corrupted Lost Corrupted Lost

Fig. 2. Normal and single-error cases for stop-and-wait ARQ.

It is necessary that the acknowledgement number (but not negative acknowledgments) be matched
up to the message number to distinguish between duplicate messages and lost messages. For
stop-and-wait ARQ, it is only necessary to have two numbers to resolve the ambiguity - in the case of
the diagram they are 0 and 1.

2.5.2 Single Errors

There are two cases of single-error events. A transmission could be corrupted (in which case the
receiver gets some data, but with invalid framing or erroneous checksum) or a transmission could be
missed completely. When the transmitted message is corrupted, the receiver first detects and reports a
corrupted message. The receiver then responds with a negative acknowledgement (Nak). Upon receipt
of the Nak, Tx reports an error condition (now both Tx and Rx have reported the corruption) and

8

retransmits the message. When the valid message is received, the appropriate Ack is generated by Rx.
Once the Ack is received by Tx, the message has been passed error free and the protocol is complete.

When the entire message is lost, Rx sees no data at all and therefore, there is no Ack (nor a Nak)
sent by Rx. Tx after having sent a message only waits for a limited time for the acknowledgement and
after this period times-out, reports a message lost and retransmits the message. Rx responds with Ack
and the message has been passed error free.

If the Ack is corrupted, Tx reports the error, responds with a Nak and then Rx reports an error
and retransmits the Ack resulting the message being passed error free. If the Ack is lost completely, Tx
times-out, reports the error and retransmits the message. Rx then receives a duplicate of a valid message
so reports this error, acknowledges and then discards the duplicate message. Once again the message has
been passed error free and without duplication.

2.5.3 Other Problems

2.5.3.1 Loss of Message Number Synchronization

Another event that could occur is the loss of synchronization between message number and
acknowledgement number. In the case that the message or ack received is not the one expected, the
receiver reports the error and switches the expected number to be in synchronization with the received
message number. This event occurred often in the trials when the software on one machine was reset
without resetting the connected machines. After one error report, the machines are back in
synchronization.

2.5.3.2 Message or Ack Ambiguity

Another problem could occur when both stations are transmitting a message to each other at the
same time. One station transmits a long message so the message is still being sent after the incoming
short message has been received. After the long message has been sent, an acknowledgment to the
received short message is transmitted. If the other station then sends a Nak (because of an error), there
exists an ambiguity. The error could be caused by a corrupted long message or by a corrupted Ack for
the short message. Since the long message originator cannot determine which caused the error, both the
Ack and the long message are retransmitted. This will result in either a duplicate message error or and
extra Ack error, but both the long and short messages will have been passed error free.

2.5.3.3 Multiple Errors

All other events require at least two errors to occur, and even in the case of multiple errors, the
stations will remain synchronized. It is possible, with multiple errors, to lose a message without having
detected the loss. But given the robustness of the physical link, such a sequence of errors are most
improbable.

2.6 Implementation

Given that stop-and-wait ARQ is used for the protocol, the implementation details must be
determined. In this section, first the factors affecting the implementation will be detailed, followed by
the details of the format of messages.

2.6.1 Factors Affecting Implementation

2.6.1.1 Minimum Content of Message

Stop-and-wait protocol requires a message number (0 or 1) to distinguish between duplicate
messages or loss of synchronization and also requires a checksum for error detection. User message data
is an essential part of the message.

2.6.1.2 Message Numbering

To resolve ambiguities, two message numbers (0 and 1) are needed for stop-and-wait ARQ.
Rather than including a message number field in the message headers and acknowledgements, the message
numbering was implemented using the case (lower or upper) of key letter(s) to designate message number
0 or 1. For the message header, the case of the 'h' used in the checksum was set. For the
acknowledgement, the case of the three letters were set. It is recognized that this implementation is a
little cryptic, but it allowed for easy parsing of received messages and acknowledgments. A better
implementation would have been to include a message number field in the header and acknowledgements.

2.6.1.3 Desirable Fields

For future expandability, possibly involving routing in a complex network, it is desirable to have
the source and destination station names in the message header. It would be desirable to have a message
type field to streamline the processing of messages.

2.6.1.4 Debugging Aids

This communications system was needed to support the Skynet EHF Trials - it was not an end
to itself. Thus, it was desirable to minimize the development time, possibly at the expense of efficiency.
To simplify debugging, the following features were selected:

• Printable character messages ending with carriage return and linefeed

This choice ensures that a dumb terminal and a protocol analyzer could be used to debug
the protocol. The negative aspects are that using only printable characters is inefficient
for throughput (not a problem in this application) and that there are restrictions on the
characters which can be included in the message.

• Allow the checksum to be omitted

The receiver will not validate the checksum if it is "XX" instead of a hexadecimal
number. During debugging, when it is desirable to generate a message by hand, one
does not have to compute the checksum (a tedious and error prone task).

2.6.1.5 Fixed or Variable Length Fields

To simplify parsing, fixed length fields are desirable. This is true for the message text field, but
such a restriction might impose undue constraints on the variety of messages, so a compromise was
chosen. This compromise was to have fixed length header and a variable length text field.

10

2.6.2 Control Messages

The only valid control messages are listed below. ACK and ack acknowledge the receipt of a
message with no errors and the case of the ACK/ack matches the case of the 'h' on the checksum of the
transmitted message. Nak is used to request the retransmission of the message because of errors.

ack CR LF
ACK CR LF
nak CR LF

where CR LF is a carriage return and a linefeed to terminate the message

2.6.3 User Message Format

To pass data between machines, the user message is used. The two forms of the user message
are given below (one with user message data and one with a null message):

[from_station > tojstation ; roessagejype ; checksum] CE LF
[from_station > to_station ; messagejype ; checksum] , message_data CR LF

where:
[] delimit the header
> ; separators within the header

A space character " " is only included when there is message data
CR LF carriage return and linefeed to terminate the message

fromjstation station field identifying the source of the message (see the table on the next page
for valid station names); this field is 4 characters long

tojstation station field identifying the destination of the message (see the table on the next
page for valid station names); this field is 4 characters long

messagejype message type field (see table below for valid message types); this field is 6
characters long and is blank filled if the message type is less than six characters

llilliilp three character field comprised of two characters of hexadecimal checksum then
an 'h' or 'H' (the case of the 'h' indicates whether "ack" or "ACK" is required)

me$sage_data optional variable-length message data, up to 199 characters plus the null
terminator. If there is no data, then the preceding space is omitted. Message
data should not include any control characters, especially not the carriage return
and linefeed used to terminate a message.

Examples (checksums are only for illustrative purposes, they have not been calculated):

[synodlog;log ;4Dh] Spatial scan complete at 10:51
[ephm>crca;point ;A2H] 10:58 12 Mar 93, Az=122.45, El=12.60, R=36132.8
ttxpr>sync;status;22h]

11

Value

Station Field
Description Value

Message Type Field
Description

dlog Data Logger & Experiment Controller comd Command message

beac Beacon & Reference Monitor config Configuration message

bdem Burst DPSK Demodulator Host log Log message

txpr CRC Transmit Processor status Status message

ephm Ephemeris Processor point Initial antenna pointing information

sync Synchronization Processor modpnt Modified antenna pointing information

crca CRC Antenna Controller Host time Time of day message

t85a T85 Antenna Controller Host error Error condition message

2.6.4 Hardware Considerations

The communication system was implemented on the asynchronous serial ports of a PC (personal
computer). Most computers involved only required one or two serial ports to be fully connected, but
several computers needed more ports, one as high as eight ports. Ports beyond three were supplied using
the Digiboard DigiCHANNEL PC/8 eight-port serial board. For three or fewer ports, the standard
COM1, COM2 and COM3 ports were used. When installed, the Digiboard used different addresses for
COM3 and COM4 (along with special addresses for COM5 to COM10) and the software had to adapt
to the two hardware configurations.

To simplify the serial port interconnect, handshaking lines were not used (transitions were
ignored). Only transmit data, receive data and signal ground are required.

12

3. Software Design

3.1 Introduction

The following sections provide the details of the communications software design as well as the
implementation. The software is contained in two different files: COM.C contains the C language
routines that provide high and low-level communications, and SERIAL.ASM contains all the real-time
routines that provide basic interrupt-driven services for the hardware. First the real-time software will
be discussed followed by low-level and high-level communications services.

3.2 Real-time Software

DOS (Disk Operating System) does not provide interrupt driven communications through the
serial ports. The only way to have the necessary control and response time for the communications
software was to provide interrupt driven communications in assembly language. Once interrupts proved
necessary for serial ports, a further requirement to ensure that interrupts were tidied up prior to exit
forced the use of critical event trapping (control-C presses and critical error exits). As well, timeouts
required for the high-level protocols necessitate interrupt driven timer routines. These routines were
written to provide the minimum required service with a fast response time (more sophisticated service
is to be provided by high-level language routines). SERIAL. ASM contains all of the real-time services
written in assembly language.

3.2.1 Serial Ports

To ensure rapid response, interrupt driven communications were used. [2] was used as the basis
for a single-port interrupt service routine. There were several small bugs in the code shown in [2] which
had to be corrected. To provide service for multiple serial ports, it was necessary to extend the interrupt
service routine. In addition to separate buffers with pointers, separate settings for the ports and separate
status flags, it was also necessary to service the different IRQs (interrupt request) used. A further
complication entered because there were two possible types of hardware that used different addresses and
IRQs for COM3 and COM4.

All services provided are C-callable. They include setup and restoration of the interrupts,
configuration of the serial ports, reading and writing to the serial ports and getting the composite status
of the serial ports. More internal details are provided for each service and the service routine below.

3.2.1.1 Open Serial Ports

Each call to open_ser opens one serial port. The routine first checks the board type parameter
to see if Digiboard or standard addresses are in use. In the latter case, the IRQ number and port address
table used for setting up serial ports are modified (from the Digiboard defaults) to reflect the standard
values. At this stage, all interrupts are disabled until vector manipulation is complete at the end of this
routine. The routine then checks to see if the port has already been opened - if so, an error is generated
and the routine returns. The serial port hardware is then cleared and initialized. Next the routine checks
to see if the interrupt is already in use (each IRQ could have multiple serial ports using it) - if not, the
interrupt vector is setup. Finally, the interrupt controller is reset and interrupts are re-enabled.

13

Configuring the serial port is then accomplished using the routine setjer. This routine is used
to configure a serial port's baud rate, bits/character, stop bits and parity. The four characteristics are
combined into one 8-bit configuration byte. When invoked, this routine breaks up the configuration byte
to load up the hardware registers.

3.2.1.2 Close Serial Ports

A call to closejer closes one serial port. If the port was not opened, then this routine returns
immediately with no error. When the port is open, this routine disables the serial port hardware and then
checks to see if any other port is using the IRQ. If not, then the vectors are restored to their original
values.

3.2.1.3 Composite Status of the Serial Ports

The composite status of all the serial ports is available using the routine statjer. This status has
several bits that report problems with the serial ports. They include: interrupt called but no serial port
generated the interrupt, a RS-232 handshaking line changed state despite this interrupt being disabled,
a UART (universal asynchronous receiver/transmitter) error or break occurred despite being disabled,
receive and transmit buffer overflows and finally transmit buffer not empty. The last three bits are
composite status in that they represent the "OR" of the states of all of the active ports. In other words,
if one of these bits is set then at least one of the serial ports had the associated problem.

3.2.1.4 Receiving Data from Serial Ports

Data received is stored in the receive ring buffer by the interrupt service routine. Upon being
called by a C program, readjer first compares the get and put pointers to determine if there are any
characters in the receive ring buffer (if there are no characters then the routine does an error return).
When there is data, the next character is removed from the ring buffer and returned to the calling routine.

3.2.1.5 Transmitting Data Out of the Serial Ports

When the routine write jer is called to send a character out of a serial port, the transmit ring
buffer is checked to see if any characters are still queued. If so, or if the transmitter is not ready, then
the current character is added to the buffer which will be emptied one character at a time upon transmit
buffer empty interrupts. When saving the current character in the transmit ring buffer, the routine also
checks to see if the buffer is full - in which case the transmit buffer overflow bit is set in the composite
status. If the ring buffer is empty and the transmitter is ready, then the character is sent right away to
the serial port.

3.2.1.6 Serial Port Interrupt Service Routine

The serial port interrupt service routine handles both IRQ3 and IRQ4, the two interrupts used by
serial ports. Within the interrupt service routine, there are four types of interrupts serviced: control line
change, transmit buffer empty, receive character available, and break/UART error event. Of these,
control line change and break/UART error should not occur (because they should be masked) and are
serviced by clearing the interrupt and setting the appropriate error bit in the composite status.

14

The service routine is only invoked by a serial port event - it is never called by another routine.
Upon being invoked, serint first saves all the current context by pushing all the registers that it uses on
the stack. The service routine examines all the in-use serial ports and services any of them that have the
interrupt bit set. This means at least one serial port is serviced but not more than the number being used.
If no in-use serial ports are found with their interrupt bit set, then the service routine sets the invalid
interrupt bit of the composite status and exits. Once an in-use port with the interrupt bit set is found, the
interrupt identification register is used as an offset for a jump table to the appropriate interrupt type.

For transmit buffer empty interrupts, the service routines checks for characters available in the
transmit ring buffer. If available, one character is sent out the serial port. Otherwise, no action is taken.

For receive character available, the service routine first ensures that there is space available in
the receive ring buffer. If not, the receive buffer overflow bit is set in the composite status. When there
is space, the character is added to the receive ring buffer.

Prior to returning from the interrupt, the interrupt controller (as distinct from the serial port
hardware) is given the appropriate command to clear the interrupt or interrupts that occurred. As noted
before, the interrupt service routine, once invoked, services all used serial ports that have an interrupt
condition. Then the context is restored by popping the used registers from the stack.

3.2.2 Control-C/control-break Handler

DOS normally handles control-C and control-break keypresses by aborting the program, closing
open files and then returning to the DOS prompt. DOS does not restore most interrupt vectors as part
of this operation, so DOS is likely to crash if a program using interrupts is allowed to be aborted by
control-C or control-break. It is necessary for the user software to be able to trap these keypresses. The
hearts of the control-C and control-break handlers (breakJnt and ctlcjnt) were taken from [2]. Once
either keypress occurs, the software sets a flag indicating that a control-C or control-break was pressed.
The user software check this flag by making periodic calls to press_break. The user software can either
ignore the keypress or can restore interrupts followed by an exit. C-callable routines are supplied
(openbreak and closejbreak) that trap these keypresses and restore the DOS handler.

3.2.3 Critical Error Handler

Critical errors are severe errors that occur with the peripherals of the computer (such as the
floppy disk drive or printer). One example of a critical error is trying to read a floppy disk when there
is no disk in the drive. When a critical error occurs, DOS provides the standard prompt describing the
critical error and allowing the user to specify the action "Abort, Retry, Ignore or Fail." If the user
specifies "Abort", the program is aborted and control returns to the DOS prompt. Unfortunately, there
is no user abort routine to allow interrupts to be restored prior to returning to the prompt, so DOS will
likely fail at this point. The user software must trap the critical errors and service them; if "Abort" is
chosen, then the user software must restore the interrupts prior to returning control to DOS.

The critical error handler (critjiand) was only slightly modified from the one given in [2]. Upon
critical error, the user is prompted with a non-specific "Critical Error Occurred: Abort, Retry, Ignore,
Fail?". If the user chooses "Abort", then all the interrupts are restored through hard coded calls to the
appropriate close routines. Once this is done, control is returned to DOS to finish the abort processing.
If any other value is chosen, then control is returned to DOS for finish the appropriate processing (for

15

example upon user selecting "Retry" then DOS retries the operation) and once the operation is complete,
DOS returns control to the user software (but not for "Abort").

C-callable services are provided for setup and restoration (open_crit and close_crit) of the critical
error handler. If software is written that uses any other interrupt, then changes must be made to the
critical error handler. The appropriate close must be added at the end of the critical error handler which
must then be reassembled.

3.2.4 Timers

Stop-and-wait ARQ requires the ability to wait a period of time after a message is sent before it
is declared lost and retransmitted. To provide this facility, a timer interrupt service routine was written.
Upon interrupt, the routine decrements all the timers once until they have reached zero. The DOS
16.7 Hz timer interrupt was redirected to this timer interrupt service routine. A separate routine
examines the remaining count to check for expiry of a timer.

The routines provided are C-callable and allow setup and restoration of the timer interrupt vector
(openjime and closejime) as well as routines to set the individual timers {setJime) and to check them
for expiry (chkjime). chkjime actually returns the remaining count (which is zero on expiry). The
timer number used matches the serial port number used. Since there is no COMO, timer 0 is extra and
can be used in the user software as a general purpose count-down timer.

3.3 Low-level Communications

Low-level communications are provided by the routines getcjow, getsjow, putcjow, and
putsJowthdX get or put characters or strings to the serial ports. Each of these routines, when called, first
determines the serial port that matches the low-level station, putcjow and putsjow send out the
character or string using calls to writejer (described previously in section 3.2.1.5). getsjow, using calls
to readjer, retrieves characters and puts them in a holding buffer until the specified terminator is
reached. If the terminator is not yet reached and there are no characters available, the routine returns
a status value that indicates that a string is not yet available. A later call will finally retrieve the
remaining characters (including the terminator) and return them to the calling routine. The routine
getcjow, first checks this holding buffer for characters - if found, a character is removed from the
holding buffer and returned. If the holding buffer is empty, the routine uses readjer to get a character.
The routine returns this character or no data available.

3.4 High-level Communications

This section describes some of the details of the high-level communications software. First,
enabling and disabling communications will be examined, then the software involving receipt and
transmission of high-level messages will be described. Finally, some of the important variables and data
structures will be detailed.

3.4.1 Enabling and Disabling.Communications

The routine opencom is used to enable high and low-level communications. First the data
structures are initialized and the configuration file is read using the internal routine readjconflg. This

16

internal routine opens and reads the configuration file, setting up the serial port data structures as each
link declaration is processed. Once opencom enables the critical error handler, control-C/control-break
handler and the timers, all the serial ports declared in the configuration file are opened using a separate
openjer for each link. Finally, the serial port parameters obtained from the configuration file are used
to set up the serial port hardware using calls to setjer.

The routine close_com closes all the serial ports using calls to closeser and then disables the
timers. Finally, the DOS handlers for control-C/control-break and the critical error are restored.

3.4.2 Receiving Messages

Messages are received by calls to getjcom which first checks for any control-C/break keypresses
or too many errors (total or by link) and returns if either of these are detected. Otherwise, getcom then
calls the internal routine getmess once for every active high-level port, getmess moves characters from
the ring buffer, via calls to getline, which in turn calls the real-time routine readjer, and places them
into the receive message buffer. Characters are removed up until the message terminator is received.
The resultant string is classified as short (for control messages) or long (for user data). Long strings are
then checked for header integrity and the checksum is verified. This results in the message being
classified as one of: valid message, bad message, Ack or Nak. The Ack is further verified to ensure
that it is appropriate for the transmitted message, if not, it is declared to be an invalid Ack. The class
of message received then serves as the input for transitions in the receiver state machine. The next
sections will detail the receiver state machine and each of the possible states.

3.4.2.1 Receiver State Machine

Fig. 3. shows the receiver state diagram for high-level protocol. There are four possible states
shown by the filled-in circles. The arrows show the state transitions which occur normally as a result
of received data. Sending a user message or obtaining a receiver timeout can also cause state transitions.
The reason for the transition is shown in bold whereas italics are used for the action taken on transition.

3.4.2.2 Ready State

The Ready state is the most commonly used state in the receiver. This is the start-up state and
the state used while waiting for messages. As long as valid messages are received (and none sent) the
receiver stays in this state. There are only two ways to leave this state. If an invalid (corrupted) message
is received in the Ready state, a Nak is sent and the receiver changes to the Nak Sent state. The
transition to the Message Sent state occurs, not through the received data, but through the transmitter
when a message is transmitted.

3.4.2.3 Nak Sent State

The Nak Sent state is distinguished from the Ready state by the timeout. On timeout, the Nak
is retransmitted and the timeout is restarted. On receipt of a valid message, the receiver returns to the
Ready State. If further corrupted messages are received, the Nak is retransmitted and the state does not
change.

17

Valid Message

'Send Ack

Nak, Timeout or Bad Message

ResendNak\

Send Message

Invalid Ack

Bad Message
Send Nak

Invalid Ack

Timeout
esend Message

Nak or Timeout
Resend Message

Nak or Bad Message

Resend Message
Resend Ack

Fig. 3. High-level protocol receiver state diagram.

3.4.2.4 Message Sent State

The Message Sent state is entered by the user transmitting a message. Message transmission is
only permitted when the receiver is in the Ready state. Upon transmission, the receiver is put in the
Message Sent state. While in this state, a timeout waiting for the Ack is set. Upon receipt of a Nak or
on expiry of the timeout, the transmit message is resent and the timeout restarted. If a valid message is
received in this state, the transition to the Message and Ack Sent state occurs.

3.4.2.5 Message and Ack Sent State

The Message and Ack Sent state is an infrequently used state. To get into this state, a message
must be transmitted and another valid one received and acknowledged prior to the Ack of the transmitted
message. In this state, there is ambiguity if a Nak is received - it is not possible to know if the Nak is
in response to a problem with the acknowledgement or with the original message (which could have been
lost). In the case that a Nak is received, both the Ack and the transmit message are resent - resulting in
at least one duplication at the far end, but no losses. This state functions otherwise as the Message Sent
state.

18

3.4.3 Sending Messages

Messages are sent using the routine send_com which frames the message, sets the checksum and
then checks to see if the receiver is in the Ready state (which ensures all previous messages have been
successfully transmitted). If so, the routine sendstr is used to send the string using calls to the real-time
routine writejer. Also the countdown timer is started for the timeout using settime and the receiver
state is changed from Ready to Message Sent.

3.4.4 Internal Data Variables

3.4.4.1 Station Numbers

The number used internally for the stations is based upon the definitions given in the COM.H file.
Each high-level station is assigned a fixed number within the range: 1 up to but not including
LOW_BASE. A value of 0 is used to indicate a bad station. Any value greater or equal to LOWBASE
is the station number for a station on a low-level link. Low-level stations are the sum of LOWBASE
and an index. This index corresponds to the order that the low-level link declarations occur in the
configuration file (0 is the index for the first low-level link).

3.4.4.2 Serial Port Numbers

The values used for serial port numbers internally correspond to the associated COM port
number. Therefore, the serial port number for COM2 is 2. The range is 1 to 10.

3.4.4.3 Message Numbers

The message numbering scheme involves only two numbers 0 and 1. They correspond in the
message frame to 'h' and 'H' respectively. For acknowledgments, the numbers correspond to 'ack' and
'ACK' respectively.

3.4.4.4 Active Port Structure - s

The structure s details the active links for both high and low-level communications. It is indexed
by position in the configuration file and has one member for each link. For each link, the following
information is stored: the station number at the far end of the link, the serial port number and the serial
port settings (such as baud rate).

3.4.4.5 Serial Port Structure - p

The structure p details the serial ports and is indexed by the serial port number (1 to 10). This
structure only contains useful information for serial ports used in high-level communications links. For
each serial port, the following information is stored:

• state of the receiver
• station number at the far end of the link
• number of consecutive errors
• maximum allowable number of consecutive errors
• number of ticks before timeout

19

• message number expected for the next receive message
• pointer for the receiver buffer
• holding buffer for the receiver
• previous received message string (for duplicate message detection)
• message number for the next transmit message
• previously transmitted message string (for retransmission)

20

4. Testing

4.1 Method

The development of the communications software required the use of multiple stations. Initially,
one end of the link was the development computer and the other was the HP 4952A Protocol Analyzer.
The analyzer was set up to send messages and also to respond with acknowledgments to messages sent
from the computer.

Once the software was basically working, two computers were connected each running an early
version of the program SER_DEMO (given as the example program in the Communications Software
User's Guide found in Appendix A). This program reports all messages received and any
communications errors. It also generates messages at the press of a key. The next step in the testing was
to connect three computers together and send messages to one computer at the same time. No problems
were found.

Practical testing was done during verification of the beacon monitoring and data logging software
- where the communications software was integrated with user programs. The Beacon & Reference
Monitor, monitoring the satellite beacon, was configured to send the measurement results routinely to the
Data Logger. An overnight run was conducted to test the RF hardware and the two computers with their
associated software. This test highlighted some problems with the initial version of the communications
software and its usage.

4.2 Problems Discovered

There were times during the testing where multiple communications errors occurred followed by
an exit when too many errors were counted. The problem turned out to be with the Beacon & Reference
Monitor which was a slower AT-class computer. This computer did not have the processing power
necessary to service all the communications at 9600 baud at the same time as performing its primary
function. By reducing the baud rate to 2400, this problem was alleviated. This could have also been
rectified by replacing the AT-class machine with a 386 or 486 computer.

Another problem with communications was discovered where both lost messages and duplicate
messages were occurring. It turned out that several of the measurements done by the Beacon &
Reference Monitor over GPIB (general purpose instrument bus) were taking as long as 15 seconds (during
which there could be no calls to getjcom to process the handshaking). This was fixed by extending the
timeout period for the link to 30 seconds at both the Data Logger and the Beacon & Reference Monitor.

Later, during the trials, the Data Logger occasionally stopped servicing one of the links. This
turned out to be a problem with the interrupt service routine. The same interrupt service routine is
invoked for all links and it was coded to look only for the first link needing service. This caused a
conflict when more than one source of interrupt occurred simultaneously (the Data Logger had a large
number of links). To correct this problem, the interrupt service routine was modified to ensure that all
links (not just the first) that needed servicing were serviced.

21

4.3 Usage Problems

During integration prior to the trials, two usage problems were brought to light. They were
sufficiently common that future versions of the software should try to alleviate or at least provide
notification of these problems.

The first problem was an insufficient number of calls to get_com which processes the messages.
This resulted in messages or acknowledgements being lost and later duplicated. The root of the problem
was usually a time critical area in the user software that was waiting for some other hardware event. It
was very easy for the user to create a program with a loop waiting for a certain bit to be set without
calling getjcom within this loop. If this waiting period was longer than the timeout, a problem occurred.
The solution to this problem was to ensure that get_com was called in all waiting loops.

The other problem resulted in general communications or framing errors on a link. This was
caused by the user including carriage returns and linefeeds in the message itself (this often occurred when
the same message sent to the Data Logger was also sent to the local computer display which requires the
linefeed). The linefeed would cause a premature detection of the end of message. This problem could
also occur when other control characters are embedded in the message because these characters are
discarded at the receiver prior to computing the checksum (which would then fail).

4.4 Results

After correcting the problems within the communications software found prior to and during the
trials, and correcting the problems in the user software, the communications software performed
successfully for the rest of the trials. Both the high and low-level communications provided the necessary
services for the users to allow communications among the distributed processors and to allow control
specific hardware devices. During these trials, the communications software serviced 8 high-level
interprocessor links and 3 low-level computer to instrument links.

It should be noted that AT-class machines cannot run high-level communications at 9600 baud
or faster because of processing limitations inherent in these slow machines. 386 and 486-based machines
can handle multiple links at 9600 baud without problems and are better suited to the tasks required for
the Skynet EHF Trials.

22

5. Conclusions

5.1 Summary

The Skynet EHF Trials involved multiple computers which had to intercommunicate. The
communications software presented in the previous chapters provided the communications services
necessary for the distributed processing used in these trials. The challenge was to develop a system that
was easy to integrate with the user software as well as to ensure that the communications hardware and
software did not conflict with special purpose boards in the various computers.

For simplicity, stop-and-wait ARQ protocol was used for high-level message passing. This
provided robust message handling and error-free transmissions. To simplify debugging, but at the
expense of efficiency, only printable characters were used for the messages and framing. Also, low-level
communications services that do not require handshaking were provided for equipment control. The
software was developed in the C language with the real-time hardware interface portion written in
assembly language.

The communications software presented met the challenge and, after extensive testing, was proven
to provide the necessary communications among all the processors and special devices.

5.2 Future Work

In hindsight, improvements could be made to the communications software in three main areas:
detection of usage problems, flexibility and better software approaches. The following sections describe
these areas in more detail.

5.2.1 Detection of Usage Problems

Carriage returns, linefeeds or other control characters in a high-level message should be detected
prior to attempting to send the message. This could be done simply at the start of send_com, and if
control characters are detected in the string, there should be an error return from send_com.

The time between calls to getcom could be monitored by the extra timeout counter (timer 0 is
available) to ensure that long periods between calls to getjcom are reported right away. This timer
should be set for a timeout period of one-tenth of the smallest timeout for all links (or possibly to a user
specified value from the configuration file). When getcom is called and this timer has expired, an error
message should be given such as "The time between calls to getjcom is too long." This timer would be
restarted at each call to getcom.

5.2.2 Flexibility

The current communication software specifies, in the header file COM.H, the valid long and short
station names. This system worked for the Skynet EHF Trials because the names did not change. If it
is desired to have a different configuration, men the header file must be changed and the user and
communications software must be recompiled. It would be more flexible if the valid station names were
contained in some type of setup file and read at execution time. In this case, all stations must have the
same setup file.

23

5.2.3 Better Approaches

Certain aspects of the program were designed early on in the development stage and proved to
be cumbersome or cryptic later. The first instance of this is the composite status for the real-time serial
port routines. This status returns only the combined status of all ports when an individual port status
would be more useful. This is most important for status items such as buffer overflows. The other
aspect of the status is that it was never used by the high-level communications software. This status
should be examined each time get_com is invoked and if necessary the error message should be returned.
Also, for low-level communications the status should be checked before sending data to ensure there is
room in the buffer.

The last problem is the method of generating message numbers are used for messages and
acknowledgements. The method of using the case of the letters to indicate the message number is cryptic.
It would be better to have a message number field and to include message number with the
acknowledgment.

24

Appendix A

Communications Software User's Guide

1. Introduction

This appendix describes the use of the communications software. First high-level then low-level
communications are covered. Next the serial port configuration file used by the communications software
is documented. Finally a programming example using high-level communications is provided. The
interface details of each of the communications software routines are given in Appendix B:
Communications Software Programmer's Reference.

2. High-level Communications

High-level asynchronous serial communications involve robust message handling with
confirmation of reception at the far end of the link. The handshaking is handled by the software - the
user is only responsible for specifying the destination, message type and message data. The following
sections will detail the information necessary to send a message as well as the information available on
receipt of a message. Then the communications errors and communications termination will be detailed.

2.1 Enabling and Disabling High-level Communications

High-level asynchronous serial communications (as well as low-level serial communications) are
enabled by the routine open_com. This routine reads the configuration file, sets up the message handling
routines and takes over the serial ports specified. No communications can occur until this routine is
called. It is only necessary to call it once regardless of the number of links in the configuration file.

Prior to termination of the user program, it is important that the routine close_com be invoked
to remove all the message handling routines and to free up the serial ports. If this routine is not invoked,
the computer will likely hang upon exit from the user program.

2.2 Sending Messages

To send a high-level message, one uses the routine sendjcom along with several parameters:
destination station number, message type number and message data. The destination station numbers are
defined in COM.H. Keywords for valid station numbers are:

DATALOGGER Data Logger & Experiment Controller
BEACON_MON Beacon & Reference Monitor
BURSTDEMOD Burst DPSK Demodulator Host
TXPROC CRC Transmit Processor
EPHEMPROC Ephemeris Processor
SYNCPROC Synchronization Processor
CRC_ANTENNA CRC Antenna Controller Host
T85 ANTENNA T85 Antenna Controller Host

25

The station number can also be obtained from the routine look_com by giving the long station name as
a string.

The message type numbers are defined in COM.H and specify which type of message is to be
sent. The message type is distinct from the message data which contains a string. Keywords for message
type numbers must be one of the following:

COMMAND Command message, used to start/stop another processor or request status
CONFIGURE Configuration message, to choose setup or process for another processor
LOG Log message, to be stored in the log file
STATUS Status message, response to command (if necessary)
POINT Initial antenna pointing information, generated by the ephemeris processor
MOD_POINT Modified antenna pointing information, modified by the sync processor
TIME_STAMP Time of day message, time of day distributed by the logger
ERROR Error condition message, error to be stored in the log file

The message types and any associated responses used must be agreed upon by the two stations
on the link. For example, the Sync Processor would send a Command message to the Tx Processor to
initiate a certain type of transmit waveform. The Tx Processor would respond with a Status message to
indicated that the transmit waveform was now valid.

Message data consists of a variable length string, formatted as specified by the experiment and
is an optional parameter. If there is no data, a null string should be passed to the routine.

2.3 Receiving Messages

Messages are obtained by the routine get com with a return of VALIDMSG. This routine also
handles the handshaking, so it must be called repeatedly. If the routine is not called after a message
comes in, there will be no handshaking and a timeout error will be generated at the other end of the link.

When a message is received, the message type, message data and the source station are returned
by this routine. The message type and valid stations were shown in the previous section. The message
data is contained in a null-terminated string and in the event of no message data, the string will be a null
string.

2.4 Communication Errors

Communication errors such as lost messages are reported in getjcom using the COMM_ERR
return value. The return parameters provide the communications error number, the station at the far end
of the link that had the communication error and the error text. See the Communications Software
Programmer's Reference in Appendix B for more details of the C program interface. The following table
provides details for each error including likely causes and remedies.

Note that there should not be any errors in normal operation. Using proper connectors and
keeping the line lengths within the RS-232 standard should provide error-free transmissions. If errors
do occur, it is usually an indication that something is wrong with the hardware setup.

26

En-
No

COM.H
Define

Error Text Cause Remedy

1 CPTACK Ack corrupted A nak was received in response to the
previously transmitted ack

- Check timeout and
get_com call frequency
- Check connections

2 CPTNAK Nak corrupted A nak was received in response to the
previously transmitted nak

- Check timeout and
get_com call frequency
- Check connections

3 CPTRXA Receive message or
ack/nak corrupted

An unrecognizable string was received
May be one of:
- errors in framing
- bad checksum
- from station does not exist or is the wrong
one
- to station does not exist or is the wrong one
- message type is invalid
- garbage on the line

- Check timeout and
get_com call frequency
- Ensure there are no
control characters in the
message strings
(especially '\n','\r')
- Verify station names in
configuration file
- Check connections

4 CPTTXA Transmit message
or ack corrupted

A nak was received after both and ack and a
message were transmitted (in response to
either one)

- Check timeout and
get_com call frequency
- Check connections

5 CPTTXM Transmit message
corrupted

A nak was received in response to the
previously transmitted message

- Check timeout and
get_com call frequency
- Check connections

6 EXTACK Extra ack received An ack was received when none was needed - Check timeout and
get_com call frequency

10 LSTACK Ack lost, duplicate
message

The latest receive message number is out of
sync with the expected message number and
the message is the same as the previous one -
this is a duplicate message

- Check timeout and
get_com call frequency
on the other end of the
link

11 LSTNAK Nak lost A nak was sent and no response was received
prior to timeout

- Check timeout and
get_com call frequency
on the other end of the
link

12 LSTRXM Receive message
lost

The latest received message number is out of
sync with the expected message number and
the message is different from the previous
one - a message must have been missed

- Check timeout and
get_com call frequency
on local station

13 LSTTXM Transmit message
lost

A message was sent and no response was
received prior to timeout

- Check timeout and
get_com call frequency
on the other end of the
link

The most common source of problems is the frequency with which calls are made to get_com.
Since this routine provides all the handshaking, if it is not called often enough, then messages are not
acknowledged within the timeout period of the sending station. The routine get_com does not require
a lot of processing power enabling the user to call it frequently with minimal effect on the primary task

27

of the computer. For more details on get_com, see the Communication Software Programmer's
Reference in Appendix B.

A related problem is when the host computer does not have sufficient processing power to service
the serial ports at full speed. In that case, the solution is to lower the baud rate of the serial ports, reduce
the number or length of messages, and to minimize the number of ports to be serviced concurrently.

The next most common source of problems is the use of control characters in the message string.
Since the high-level protocol framing uses control characters to denote end-of-message, the incorporation
of control characters in the user string will cause the protocol to terminate prematurely the receive
message. To send a two-line message, first split it into two one-line messages and send them with two
separate calls to send com.

2.5 Termination

The routine get_com can also request program termination by the returning of QUIT. The
termination type and sometimes the originator number are available. Keywords for the termination types

are:

TOTAL Too many total errors occurred (sum of all errors on all links)
CONSEC Too many consecutive errors on any one link (the originator specifies which link

had too many errors)
BREAK Control-C or control-break was pressed

The user software can ignore this request, but with either of the communications error
terminations, high-level communications is no longer effective because it is continuously tied up reporting
errors The routine flushjcom may be used to reset a link after too many consecutive errors, but should
only be called once the reason for the errors is removed. The control-C/control-break keypress can be
used to exit the program or the user software can ignore these keys if an user initiated abort is not
desired.

Another source of termination which is beyond user software control, is the Abort selection upon
a critical error. Critical errors are operating system errors such as no floppy disk in the drive when
trying to read a directory. Because the operating system does not return control to the user software upon
the selection of Abort (as opposed to Retry, Ignore or Fail), these critical errors are trapped by the
communications software. There, a simplified critical error handler checks for the Abort response and
if selected, does the equivalent of close_com automatically prior to the return to DOS.

3. Low-level Communications

Low-level communications involve the sending and receiving of individual characters or character
strings There is no handshaking, error control or flow control. It is meant primarily for controlling
peripherals (such as an antenna controller) using the serial ports. Low-level communication routines were
added to the communications software package because direct programming of the serial ports would
conflict with high-level communications controlling of the serial port interrupts. The following sections
detail the enabling and disabling of low-level communications, sending data, receiving data and
termination.

28

3.1 Enabling and Disabling Low-level Communications

Low-level communications (as well as high-level communications) are enabled by the routine
open_com. This routine reads the configuration file and sets up the serial ports as specified. No
communications can occur until this routine is called and it is only necessary to call this routine once
regardless of the number of links in the configuration file. The routine close_com must be called prior
to termination to free up the serial ports. If this routine is not invoked, the computer will likely hang
upon exit from the user program.

3.2 Sending Data

To send single characters out a serial port, the routine putclow should be used. This routine
will send any one character out the serial port. If it is desired to send a string, the routine puts low can
send a null-terminated string. If it is necessary to send a null as part of a string, then the string should
be broken down into string, null character and string. These then should be sent out using calls to
putsjow, putcjow and putsjow respectively.

3.3 Receiving Data

Single characters can be received from the serial port using the routine getclow. This routine
will obtain the next character from the ring buffer regardless of value. To obtain a terminated string
from a serial port, the routine getsjow can be used. This routine allows the user to specify the string
terminator and then retrieves all characters up to (but excluding) the specified terminator. The string
terminator cannot occur within the string.

3.4 Low-level Termination

The routine getjcom, while normally only used for high-level communications, can be used to
detect user termination requests via control-C and control-break keypresses. All other features of
getcom are not used for low-level communications. The only possible returns are NOMESSAGE (no
keypresses) and QUIT (termination request). The parameter associated with QUIT can have only one
value: BREAK to indicate that control-C or control-break has been pressed. The other values for this
parameter can only occur in high-level communications.

The user software can ignore this termination request with no consequences to the
communications software, but it is better to respond to the users attempt to exit the program. Prior to
termination of the program, it is important that close_com be invoked to restore interrupt vectors.

Another source of termination, beyond the user software control, is an Abort selection by the user
in response to a critical error. Critical errors are operating system errors (such as no floppy disk in drive
or printer not ready). Because the operating system does not return control to the user software upon
the selection of Abort (but it does for Retry, Ignore or Fail) these critical errors are trapped by the
communications software. There, a simplified critical error handler checks for the Abort response and,
if selected, does the equivalent of close_com prior to the return to DOS.

29

4. Serial Port Configuration File

This file contains the declarations necessary to specify completely all the communications links
for the local computer including all connected stations. It is read once at the start of the program and
cannot be changed while the program is running. SERIAL.CFG is the default name for this file, but
another filename can be specified using the routine configcom.

The configuration file is an ASCII text file, that can be edited using any text editor. Case is
unimportant. Blank lines and comment lines (any line starting with an ";") are ignored. Leading or
trailing tabs and spaces are ignored, but cannot occur inside keywords or values. The configuration file
consists of keywords (and their associated values), comments and blank lines. The following are valid
keywords:

Keyword Declaration Type Description

FROM Local Station Local station name

BOARDTYPE Local Station Serial board type

MAX ERROR Local Station Maximum total errors for abort

TO Link High-level link connected station name

LOW LEVEL Link Low-level link connected station name

BAUD Link Baud rate

BITS Link Number of bits per character

CONSECUTIVE Link Consecutive errors for abort

PARITY Link Parity type

PORT Link COM number

STOP Link Number of stop bits

The order of the keywords is important within the file. The local station declaration must precede
any link declarations. Within the link declarations (and after the link connected station name) any order
can be used for the link parameters (such as baud rate and parity). The Local Station Declaration defines
the local station and thus cannot be omitted. The link declarations define communications links to various
other computers or serial devices. There can be no, one or up to ten link declarations. The serial port
configuration file must have the following form:

Local Station Declaration
Link Declaration
ilii::iii;Ia|alo|

30

4.1 Local Station Declaration

The local station declaration defines the local station, specifies the serial board type and sets the
maximum number of communication errors before aborting. The keywords used are FROM,
BOARD_TYPE and MAXERROR. The format for the declaration is:

Local Station Name
Local Station Parameters

4.1.1 Local Station Name (FROM)

The local station must be named as one of the predefined computers (Data Logger & Experiment
Controller, Beacon & Reference Monitor, Burst DPSK Demodulator Host, CRC Transmit Processor,
Ephemeris Processor, Synchronization Processor, CRC Antenna Controller Host or T85 Antenna
Controller Host.) This line must be the first line of the Local Station Declaration and hence will be the
first (non-comment) line in the file. There can only be one local station, so there is only one such
declaration allowed. This declaration cannot be omitted. The format of this declaration is given below:

FROM={DATA_LOGGER | BEACONJV10N | BURSTDEMOD | TX_PROC | EPHEM_PROC |
SYNCPROC | CRC_ANTENNA | T85_ANTENNA}

4.1.2 Local Station Parameters

The local station can be qualified by two parameters: the type of serial board used and the
maximum number of errors before aborting. Both of the parameters have defaults and can be omitted.
The order of the parameters is unimportant.

4.1.2.1 Serial Board Type (BOARDJTYPE)

The Digiboard Digichannel PC/8 eight-port serial board was used on most computers. This board
had slightly different characteristics for the use of COM3 and COM4 compared to standard PC serial
ports. This declaration allows the board type to be specified (default is the Digiboard).

BOARD_TYPE= {STANDARD | DIGIBOARD}

4.1.2.2 Maximum Number of Errors (MAX ERROR)

If the total number of communication errors received from the links exceeds the maximum
number of errors, the communications software causes the program to abort. This ensures that software
or hardware problems are recognized and can be acted upon. In normal operations, there should be no
communication errors. This value, number_errors, must be greater than 0 and less than 30000. The
default value is 100.

MAX ERROR=jiiföii8(^si8öitB:

31

4.2 Link Declaration

The link declaration consists of several lines describing the connected station and the parameters
of the serial link. Included are the keywords TO, LOW_LEVEL, BAUD, BITS, PARITY, PORT, STOP
and CONSECUTIVE. There can be from zero to ten link declarations. The format for link declarations
are:

Connected Station Declaration
Link Parameters

4.2.1 Connected Station Declaration

There are two types of links: high-level links involving robust message handling between
computers, and low-level links for a computer to drive a serial device such as a clock or antenna
controller. Either type of declaration must precede all of the associated serial port parameter declarations.
Succeeding connected station declarations are treated as separate links.

4.2.1.1 High-level Connected Station Name (TO)

For high-level communications this connected station declaration must be used. The declaration
defines the computer at the far end of the link (Data Logger & Experiment Controller, Beacon &
Reference Monitor, Burst DPSK Demodulator Host, CRC Transmit Processor, Ephemeris Processor,
Synchronization Processor, CRC Antenna Controller Host or T85 Antenna Controller Host.) The format
of the declaration is given below:

TO= {DATALOGGER | BEACON_MON | BURST.DEMOD | TX_PROC | EPHEM_PROC |
SYNCPROC | CRC_ANTENNA | T85_ANTENNA}

4.2.1.2 Low-level Connected Station Name (LOW_LEVEL)

If robust message handling is not desired, low-level links can be created to support
communications with serial devices. This declaration defines a reference name for the far end of the link
that is used later for low-level communications routines. The reference name given must be unique. The
format of the declaration is given below:

LOW_LEVEL=tpfowce.*»«»

4.2.2 Link Parameters

These declarations define the serial port to be used and specify the parameters for asynchronous
communications - including baud rate, parity, number of bits per character, number of stop bits and
maximum number of consecutive errors. With the exception of the serial port to be used, all parameters
have a default value and are optional. The order of the declarations within this section is not important.
Keywords should not be used more than once per link, because the second occurrence overrides the first.
This section is finished at end-of-file or where there is subsequent connected station declaration.

32

4.2.2.1 Baud Rate Declaration (BAUD)

This keyword specifies which of the valid baud rates are to be used for the serial port. It is an
optional declaration and if it is not present, the baud rate defaults to 9600.

BAUD={110 | 150 | 300 | 600 | 1200 | 2400 | 4800 ! 9600}

4.2.2.2 Bits Per Character Declaration (BITS)

This declaration controls the number of bits per character for asynchronous serial
communications. The default value is 8 bits per character. This declaration is optional.

BITS={5 | 6 | 7 | 8}

4.2.2.3 Maximum Number of Consecutive Errors Declaration (CONSECUTIVE)

This declaration defines the maximum number of consecutive errors on the link. This is the
number of errors that occur in a row without any intervening valid messages. In normal operation, there
should be no errors. An abort caused by too many consecutive errors is usually indicative of a hardware
fault on the line or that the software at the connected station is not operating properly. The number of
errors, nuroberjjrrors, must be between 1 and 10000. The default value is 10.

CONSECUTIVE=munber_«iort

4.2.2.4 Parity Declaration (PARITY)

This declaration controls the parity bit, if used. The valid values allow no parity (all bits are
data), even parity or odd parity. This declaration is optional and if it is not present, the default value is
no parity.

PARITY={NONE | EVEN | ODD}

4.2.2.5 Port Declaration (PORT)

This declaration defines the port to be used and must be present in a link declaration. If it is not
present, an error occurs. Each link must use a different serial port, so no two links can have the same
port declaration. The valid values include COM ports 1 to 10. In the case of the tenth port, the
hexadecimal notation is used giving COMA. AUX is a synonym for COM1.

COM1 and COM2 ports are as defined for normal PCs. The other eight ports use the default
address/interrupt definitions of the DigiBoard DigiChannel PC/8 eight-port serial board. (For PC
versions of COM3 and COM4 use the BOARD TYPE declaration.)

The program takes complete control of the serial port declared using the PORT keyword, so it
is important that there are no conflicts with the operating system, serial printers, other communication
software, networking software or serial mice.

PORT={COMl ! COM2 | COM3 | COM4 | COM5 | COM6 | COM7 | COM8 | COM9 | COMA | AUX}

33

4.2.2.6 Stop Bits Declaration (STOP)

This declaration defines the number of stop bits transmitted. The selection of 1.5 stop bits is only
available when there are five bits per character (1.5 bits is converted to 1 bit for other character lengths
and 1 stop bit is converted to 1.5 bits for five bit characters). This declaration is optional and the default
value is one stop bit (1.5 stop bits for five bits per character).

STOP={l | 1.5 | 2}

4.2.2.7 Timeout Declaration (TIMEOUT)

This declaration defines the period to wait before declaring timeout for a high-level link. This
is the time that, after sending a message, the sending station waits for the acknowledgement. This time
should be greater than the longest period in which the receiving station does not service high-level
communications (through calls to getjcom). The number of seconds for the timeout, timeout_seconds,
must be between 1 and 100. The default value is 2 seconds.

TIMEOUT=tim«out_»econd8

4.3 Sample Configuration File

Below is a sample configuration file for the Burst DPSK Demodulator Host. The local computer
is BURST_DEMOD (FROM), the high-level link connected station is the Data Logger and Experiment
Controller over COM2 (PORT) at 9600 (BAUD) with 8 bits per character (BITS), no parity (PARITY),
one stop bit (STOP), allowing a maximum of 10 (CONSECUTIVE) communication errors in a row and
with a timeout 5 seconds (TIMEOUT). A second link allows the computer to control the Comstream
Satellite PSK Modem using low-level communications.

SERIAL.CFG

Serial port configuration file for the modem host

FROM=BURST_DEMOD
BOARD_TYPE=DIGIBOARD
MAX_ERROR=500

;To Data Logger & Experiment Controller
TO=DATA_LOGGER

P0RT=C0M2
BAUD=9600
BITS=8
PARITY=NONE
ST0P=1
CONSECUTIVE=10
TIMEOUT=5

;To Comstream Modem
LOU LEVEL=COMSTREAM

PORT=COH3
BAUD=9600
BITS=8
PARITY=NONE
STOP=1

34

4.4 Configuration File Errors

The following table lists all the error that can occur when the configuration file is being read.
Also listed are the suggested remedies.

Configuration File Error Remedy

Board type definition must follow FROM A BOARD_TYPE definition was found in a link declaration.
BOARD_TYPE must be part of the local station declaration.

Cannot open exwifiguretion^filename The configuration file does not exist or is locked.

Comm parameters without TO or LOW_LEVEL Link parameters are found not preceded by TO or LOW_LEVEL.

Consecutive errors must be in range 1-10000 Ensure number for CONSECUTIVE is within 1 to 10000

Found a definition not preceded by FROM FROM must be the first keyword in the configuration file

Low-level port name not unique Two or more LOW LEVEL declarations used the same name.
Choose unique names for each low-level link.

Maximum error must follow FROM A MAX_ERROR definition was found in a link declaration.
MAX ERROR must be part of the local station declaration.

Maximum errors must be in range 1-30000 Ensure number for MAX_ERROR is within 1 to 30000

Maximum number of ports exceeded More than 10 link declarations were found. No more than 10 links
per computer are supported.

Multiple FROM definition Only one local station declaration is meaningful.

No FROM definition found No local station declaration was found. FROM is must be included.

No PORT definition found
No PORT definition found for last TO

Link declaration did not include a PORT definition. PORT must be
included in each link declaration.

Redefinition of serial port Link declaration included a PORT definition that has already been
used by another link. Each link declaration must have a unique port.

Timeout must be in range 1-100 Ensure number for TIMEOUT is within 1 to 100 (this is in seconds)

Unrecognized baud rate The number for BAUD was not one of the valid choices. See 4.2.2.1.

Unrecognized bits/character The number for BITS was not one of 5, 6, 7 or 8.

Unrecognized board type The value for BOARD_TYPE was not STANDARD or DIGIBOARD.

Unrecognized definition Unrecognized keyword was found.

Unrecognized FROM station The value for FROM was not one of the valid choices. See 4.1.1.

Unrecognized parity The value for PARITY was not one of NONE, EVEN or ODD.

Unrecognized port type The value for PORT was not one of the valid choices. See 4.2.2.5.

Unrecognized stop bits The value for STOP was not one of 1, 1.5 or 2.

Unrecognized TO station The value for TO was not one of the valid choices. See 4.2.1.1.

35

5. Example Program - SER DEMO

This section details a program demonstrating the use of the communications software. The
program SER_DEMO was used (with minor modifications) to test the high-level communications software
and is a useful example of the use of the routines. In the following paragraphs, the program will be
detailed, the compiling and linking of the program will be presented and finally the program's listing will
be given.

5.1 SERDEMO Description

The program was first developed to test high-level communications so it includes the ability
to report all received messages and the ability to send messages at a keystroke. The program reports all
errors and can exit on a keypress.

The main program first starts communications with a call to open_com. If any error occurs
in the configuration file or setting up of the serial ports, the program exits with the error message
"Error in open_com." (This is accomplished using a routinepabort which prints out a message, closes
the communications using close_com and the aborts using exit). Once the communications software is
started, the program prints out the name of the local station - in the case of the sample configuration file,
it would be "burst_demod."

Next the main program looks for a link with the station "datajogger" using lookcom. If the
station is not defined in a high-level declaration within the configuration file, this routine will return an
error which is then reported by "Bad station lookup."

The principal portion of SER_DEMO is the loop where keypresses and communications are
checked. The routine checkkey acts upon keypresses and the routine checkmsg checks and displays
received messages, communications errors or control-C/control-break termination requests.

5.2 Compiling and Linking SER_DEMO

The software was compiled using Microsoft C 6.0 under DOS 5.0 using the small memory
model. The program (and communications software) was compiled and linked using the NMAKE utility.
The make file (SERDEMO.) is given below:

ser_demo.exe: ser_demo.obj com.obj serial.obj
link ser_demo+com+serial;

ser_demo.obj: ser_demo.c com.h
- cl /c ser_demo.c

com.obj: com.c com.h
cl /c com.c

serial.obj: serial.asm
masm serial;

36

5.3 SER DEMO Listing

^include <conio.h>
#include "com.h"

/*
Local Routines

.... . */

*/
*/
*/
*/
*/

.... . i
int checkkey(int mdest); // Check and action key presses
int checkmsg(void); // Check for receive messages and others
void pabort(char *msg); // Print message, close file, and exit

void main(void)
<

int mlocal; // Station number of local station
int ndest; // Port number for desired destination
char string[220]; // String buffer used to hold station name

printf("SER_DEMO V1.1\n");

// Open all communications
if ((mlocal=open_com())==BAD_STATION) pabortC'Error in open_com");
printfC'Local station is %s\n",stnlstr(mlocal,string));

// Select the link to the data logger
i f ((ndest= Iook_com("datalogger"))==BAD_STATION)

pabörtC'ßad station lookup");

// Check for keypress (send messages to 'ndest') and receive messages
while (checkkeyCndest) == 0) {

if (checkmsgO != 0) break;
J

close com();
exit(0);

>

—* /
/* checkkey
/*
/* Description: Checks to see if a key has been pressed and performs the
/* necessary action such as sending various messages or exiting
/* Control-C/break is not done here, but reported by checkmsg
/*
/* Returns: (int) 0 for normal return
/* 1 for exit from main program due to keypress
/* In: (int ndest) destination station number for messages
/* Out:

- /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

int checkkeyO'nt ndest)
{

int c; // Character from the keyboard

if (kbhitO != 0) { // Is a key pressed ?
c = getchO; // Get the character
switch (c) {

case '1': // 1 = Send message
printfC'Sending message" 1\n");
send_com(ndest,COMMAND,"Check buffer");

1

37

break;
case '2':

printfC'Sending message 2\n"); // 2 = Send message 2
send_com(ndest,STATUS,»Buffer OK too");
break;

case '3':
printfC'Sending message 3\n");
send_com(ndest,STATUS,"Do a third");
break;

// 3 = Send message 3

case '4':
printfC'Sending message 4\n");
send_com(ndest,STATUS,"Quarter");
break;

case 'e':

// 4 = Send message 4

case 'x':
case 'X':

return 1;
default:

break;

// e,E,q,Q,x,X = quit

// Otherwise ignore

return 0;

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

checkmsg

Description: Checks with communications routines for:
- receive messages from any link
- communications errors
- aborts from control-C/break

Returns:

In:
Out:

(int) 0 for normal return
1 for exit from main program due to comm
errors or control-C/break

int checkmsg(void)

int mstat;
int mtype;
int mfrom;
char mdata[220];
char string[220];

// Message status - valid, error or quit
// Message type number
// Message from station number
// Message data
// String buffer used to name, type or error

mstat = get com(&mtype,&mfrom,mdata); // Check for message
if (mstat == VALID_MSG) { // Message available

printfC' from %s ",stnstr(mfrom,string));
printf("(%s): \"%s\"\n",messtr(mtype,string),mdata);

> else if (mstat == COMM_ERR) t // Communications error
printfC'-- Comm error with %s: %s\n",stnlstr(mfrom,string),mdata);

> else if (mstat == QUIT) < // End main program
if (mtype == TOTAL) < // Too many errors

printfC'Too many communication errors\n");
> else if (mtype == CONSEC) { // Too many in a row

printfC'Too many consecutive communication errors with %s\n",
stnlstr(mfrom,string));

} else if (mtype == BREAK) { // Control-C/Break
printfC'Break detected\n");

>
return 1;

>
return 0;

38

/* pabort */
/* */
/* Description: Print error message, close file and abort */
/* */
/* Returns: --no return, aborts -- */
/* In: (char *msg) Pointer to error message string */
/* Out: --no return, aborts -- */
/* */

void pabort(char *msg)

printf("%s\n»,msg);
close_com();
exit(O);

39

40

Appendix B

Communications Software Programmer's Reference

1. Introduction

This appendix provides all the use and interface details for the communications software. The
routines are listed alphabetically with the parameters, return values, usage, errors, program fragment
providing and example of use and any related routines. The following section provides a functional list
of the routines. For more detailed information on use of the whole package, see Communications
Software User's Guide in Appendix A.

2. Use of the Routines

All the routine declarations and definitions are made in the header file COM.H which must be
included in the user program. The routines were compiled with Microsoft C 6.0 under DOS 5.0 using
the small memory model. The C calling convention is used for all routines. The routines can be grouped
into three categories: control routines, high-level communications routines and low-level communications
routines. The categories are detailed below.

2.1 Control Routines

These routines are used to enable and disable high or low-level communications. They are
usually invoked only once in a program. They include the following routines

close_com Close communications, restores interrupt vectors
configcom Overrides the default configuration file name (use prior to open_com)
openjcom Enables communications as specified in configuration file

2.2 High-level Communications Routines

These routines are used during high-level communications which involves robust message
handling with error-free messages and message acknowledgement using stop-and-wait ARQ. The
following routines are used in high-level communications:

flushcom Resets a communication link after too many errors
getjcom Gets an available message from any link, checks for errors and terminal

conditions (also provides the handshaking, so it must be called repeatedly)
lookcom Provides the station number given the high-level link station name
messtr Provides the message type string given a message type number
ready_com Checks to see if a link is ready for sending
sendjcom Asynchronously sends a message to the selected destination
stnlstr Provides the long station name given the station number
stnstr Provides the short station name given the station number

41

2.3 Low-level Communications Routines

These routines are used during low-level communications which involve the sending and receiving
of individual characters or character strings. There is no handshaking, error detection or translation
involved. These routines are meant primarily for instrument control or to allow custom protocols to be
implemented. They are necessary to allow use of serial ports serviced by the communication software
but not used for high-level communications. Included are the following routines:

getclow Gets a character from a link
getsjow Gets a terminated string from a link
looklow Provides the station number given the low-level link station name
putcjow Send a character to a link
putsjow Send an unterminated string to a link

Note the get_com, while being a high-level routine, can be used in a strictly low-level system to
detect the terminal condition of control-C/control-break being pressed. It has no other effect on low-level
links.

3. Note on Program Fragments

With each routine description in the pages that follow, an example program fragment is included
to illustrate the routine's use. It should be noted that despite appearances, these are not complete
programs. The declarations necessary to understand the example are included at the beginning of the
code. In many cases, opening and closing of services is omitted from the program fragments but must
be included in a complete program.

42

cIose_com

Description: Closes all high and low-level communications including the restoration of all interrupt
vectors for the serial ports, timers, control-C/control-break handlers and critical error
handler.

Declaration: void close_com(void)

Parameters: none

Returns:

Use:

none

This routine must be called prior to program exit to restore the normal interrupt and
critical error handlers for use with DOS. If it is not called, DOS will most probably
hang up - there is also a chance that files could be corrupted. The programmer must
ensure that this routine is called for normal exits, error exits and even for program
aborts.

In the event of a critical error (such as floppy disk read) where Abort is chosen as a
response, the critical error handler will automatically restore the vectors before returning
control to DOS. This is because DOS does not return to the program when Abort is
chosen.

Errors: none

Example:

int mlogger; // Logger station number

if

}
if

}

((mlocal=open_com()) == BAD_STATION) {
printf("Error in starting comms in open_com.\n");
// No close_com here because the open was unsuccessful
exit(l);

((mlogger=look_com("data_logger")) == BAD_STATION
printf("Cannot find link for data logger\n");
close_com();
exit(l);

) {

while (send_com(mlogger,LOG,"This is a test message") != 0);
while (ready_com(mlogger) != 0);
close_com();
exit(O);

// Wait for message to be sent

Related Routines: open_com

43

configcom

Description: Overrides that default name (SERIAL.CFG) of the configuration file with a user specified
name. Valid for high or low-level communications.

Declaration: void config_com(char *string)

Parameters: char *string Pointer to the name of the configuration file (input)

Returns:

Use:

none

Errors:

This routine is used to allow different configuration files to be used by different programs
running in the same directory. By calling this routine prior to open_com a different
configuration file or drive and path can be chosen. Without this routine, openjxm looks
for SERIAL.CFG in the default directory.

The name of the configuration file can be any DOS filename including file extension and,
if desired, path and drive specifications. It is recommended, but not essential, that the
extension" .CFG" be used for all such filenames. The filename must be a null-terminated
string.

There is no return and therefore no error return. If the filename specified is not a valid
filename, then the subsequent call to openjcom will return BADSTATION.

Example:

int mlocal;

config_com("C:\EHF\NEWFILE.CFG");

// Station number of local station

// Use C:\EHF\NEWFILE.CFG instead of
// SERIAL.CFG in default directory

if ((mlocal=open_com()) == BADJSTATION) {
printf("Error in starting comms in open_com.\n);
exit(l);

}

Related Routines: openjcom

44

flush com

Description: Resets a link including the link consecutive error count and the total error count for all
links. Used on high-level links but no effect on low-level links.

Declaration: int flush_com(int dest)

Parameters: int dest Destination station number for the link obtained using look_com (input)

Returns: Integer, one of:
0 Link successfully reset
1 Bad station number

Use: This routine, not meant for general use, resets a link including: state, consecutive error
count, receive & transmit buffers, receive & transmit ack flags and receive & transmit
old message buffers. As well, the total error count for all links is reset.

This routine reinitializes a link and can be used to restart a link that failed because of too
many errors. Generally, if a link receives too many errors, than the condition generating
these errors (software at the far end faulty or not running, insufficient frequency of calls
to getjcom, poor choice of timeouts, control characters in message text, cables
disconnected) must be corrected before using this routine. Because of this fact, it is
unlikely that calling this routine, except under operator control, will provide any useful
results.

This routine was developed because one cannot call opencom to restart communications
without closejcom which would disable all communications.

Errors: The destination station number is not valid (use lookjcom to get the valid number)

Example:

int mlogger; // Logger station number

if ((mlogger=look_com("data_logger")) == BAD_STATION) {
printf("Cannot find link for data logger\n");
exit(1);

}
if (flush_com(mlogger) != 0) {

printf("Cannot reinitialize data logger link\n");
exit(1);

}

Related Routines: none

45

getcom

Description: Gets any high-level message available, processes all incoming data and performs
handshaking, checks for errors and terminal conditions. This routine must be called
periodically for high-level communications to work.

Declaration: int get_com(int *ctype, int *cfrom, char *cdata)

Parameters:

Returns:

Use:

int *ctype
int *cfrom
char *cdata

Pointer to received message, error or termination type (output)
Pointer to originating station (output)
Pointer to buffer, at least 200 characters long, contains the received
message or the communications error message (output)

See table below for more details.

Integer, one of:
NO_MESSAGE
VALIDMSG
COMM_ERR
QUIT

No messages available (any necessary processing occurred)
Valid receive messages returned in parameters
Communication error message returned in parameters
Terminal condition occurred, no more communications
and an orderly shut-down (close_com) should be done

This routine must be called frequently during the execution of the user program to ensure
that all high-level processing occurs (it is not compulsory for low-level communications
but if called, it can report control-C and control-break key presses). The time between
calls should be at no greater than l/lO* of the shortest timeout period (the default is
timeout is 2 s). This routine should not be called until after openjcom.

All of the high-level processing occurs in this routine: checksum processing and protocol
handling as well as terminal condition detection. This routine is designed to be called
repeatedly and does not take an excessive amount of processing time. If it is not called
often enough, errors in handshaking occur usually noticed by messages or acks lost
followed by duplicate messages or extra acks.

The following table summarizes the use of the parameters for the various return types:

Return Value •ctype ♦cfrom ♦cdata

NO MESSAGE unused unused unused

VALID MSG Message Type Originator Message Data

COMM ERR Error Number Originator Error Text

QUIT Termination Type Originator
(only for maximum
consecutive errors)

unused

Message type is the type of message, as specified by the header and will be one of
COMMAND, CONFIGURE, LOG, STATUS, POINT, MOD_POINT, TIME_STAMP

46

Errors:

and ERROR. The text of the message type is available using the routine messtr.

The originator is the station number of the station at the far end of the link. The text
name of this station is available using the routines stnstr or stnlstr.

The message data is a standard null-terminated string giving all the data portion of the
message (the header is not included). For messages with no data (just header) this will
be a null string.

Error number is the number of the error message. It is used internally and is not
recommended for the user. Error text contains the textual error message including any
parameters. It is a null-terminated string.

The termination type is one of:
TOTAL Too many total errors occurred (sum of all errors on all links)
CONSEC Too many consecutive errors on any link (originator specifies

which link had too many errors)
BREAK Control-C or control-break key occurred

This routine has no error returns itself, though a normal return can indicate a
communications error. For high-level communications errors, see Communications
Software User's Guide in Appendix A.

Example:

int mstat;
int mtype;
int mfrom;
char mdata[220];
char string[220);

// Message status - valid, error or quit
// Message type number
// Message from station number
// Message data
// String buffer used to name, type or error

mstat = get_com(&mtype,£mfrom,mdata); // Check for message
if (mstat == VALID_MSG) { // Message available

printf(" from %s ",stnstr(mfrom,string));
printf("(%s): \"%s\"\n",messtr(mtype,string),mdata);

} else if (mstat == COMM_ERR) { // Communications error
printf("— Comm error with %s: %s\n",stnlstr(mfrom,string),mdata);

} else if (mstat == QUIT) { // End main program
if (mtype == TOTAL) { // Too many errors

printf("Too many communication errors\n");
} else if (mtype == CONSEC) { // Too many in a row

printf("Too many consecutive communications errors with %s\n",
stnlstr(mfrom,string));

} else if (mtype == BREAK) { // Control-C/Break
printf("Break detected\n");

}
close_com();
exit(l);

Related Routines: send_com, getcjow, getsjow

47

getclow

Description: Gets a single character, if available, from a low-level link

Declaration: int getc_low(int dest)

Parameters: int dest The sending station number at the other end of the link as obtained from
lookjow (input)

Returns: Integer containing the character received. If no characters are available, NO_DATA is
returned. BAD_DEST is returned if the station number is not valid.

Use- This low-level link routine is the simplest way to get a character from the serial link.
It checks to see if any characters are stored in the interrupt service routine s ring buffer
and returns a character if available. No protocols are used nor do any translations occur.

Errors- The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure the lookjow routine is used to get the station number.

Example:

int c. // Character received
int mmodem; // Comstream Modem station number

if <<mmodem=look low(-comstream")) == BAD_STATION) {
printf("Cannot find port for Comstream Modem.\n),
close_com();
exit(l);

c = qetc low(mmodem); it
printf("The character received from the modem is %c\n ,c),

Related Routines: putcjow, getsjow, get_com, lookjow

48

getslow

Description: Get a terminated string from a low-level link

Declaration: int gets_low(int dest, int term, char *string)

Parameters: int dest Sending station number as obtained from lookjow (input)
int term Terminating character for the string (input)
char *string Pointer to buffer to receive the string (output)

Returns: Integer, one of:
ALL_OK Valid string returned in buffer
NO_DATA No data available
BAD DEST The station number is not valid

Use: This routine retrieves a string from the serial link specified. The characters are removed
from the interrupt service routine's ring buffer and stored until the terminator is reached
(while returning NO_DATA) and then the whole string, less terminating character, is
returned. The received string is stored with a null terminator and is no longer than 200
characters.

Errors:

If the terminator does not exist in the receive ring buffer, then getsjow will return
NO_DATA. A later call to getsjow will can retrieve the data if the terminator is
subsequently present in the ring buffer or the routine getcjow can be used to get at the
characters one at a time.

The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure the lookjow routine is used to get the station number.

Example:

char inline[220]; // Input line buffer
int mmodem; // Comstream Modem station number

if ((mmoden^look^owC"comstream")) == BAD_STATION) {
printf("Cannot find port for Comstream Modem.\n");
close_com();
exit(1);

}
c = gets_low(mmodem, '\n', inline) ;
printf("The line received from the modem is %s\n",inline)

Related Routines: putsjow, getcjow, get_com, lookjow

49

look com

Description: Provides the station number given the long station name for a high-level link

Declaration: int look_com(char *stn)

Parameters: char *stn Pointer to station name (input)

Returns:

Use:

Errors:

Integer station number for the station name. If the station name is not recognized,
BADSTATION is returned.

This routine is used to get the station number for high-level communications prior to
using the routine send_com. It first determines if the station name is one of the valid
names: DATALOGGER, BEACON_MON, BURST_DEMOD, TX_PROC,
EPHEMPROC, SYNC_PROC, CRC_ANTENNA or T85_ANTENNA. Then it checks
all the links defined by the configuration file and determines if the station name occurs
in one of the link definitions (in other words that station is connected to this computer).
If all checks out, then the station number is returned.

The station name string is a null-terminated string where case is unimportant. It must
be free of blanks and control characters.

A return value of BADSTATION can be caused by:
- a spelling error in the long station name
- blanks or control characters in the long station name
- giving the station name of a low-level link (use looklow instead)
- an attempt to use the short station name (4 characters) instead of the long one
- the configuration file does not define a link to the given station name

Example:

Int mlogger; // Logger station number

if ((mlogger=look_com("datalogger")) == BAD_STATION)
printf("Cannot find link for data logger\n");
exit(1);

}

{

Related Routines: lookjow, send_com, stnlstr, stnstr

50

look low

Description: Determines the station number given a low-level link station name

Declaration: int look_low(char *stn)

Parameters: char *stn Pointer to low-level station name string (input)

Returns: Integer station number associated with the station name. If the station name is not
recognized, BAD_STATION is returned.

Use: This routine is used to get the station number for low-level communications prior to using
any of the following routines: getcjow, putcjow, getsjow or putsjow. It checks the
name against all of the names used in the low-level declarations in the configuration file.

The station name string is a null-terminated string where case is unimportant. It must
be free of blanks and control characters.

Errors: A return values of BADSTATION can be caused by:
- a spelling error in the station name
- blanks or control characters in the station name
- giving a station name for a high-level link (use look_com instead)
- the configuration file does not define a link to the given station name

Example:

int mmodem; // Comstream Modem station number

if ((mmodem=look_low("comstream")) == BAD_STATION) {
printf("Cannot find port for Comstream Modem.\n");
close_com();
exit(l);

}

Related Routines: lookcom, getcjow, putcjow, getsjow, putsjow

51

messtr

Description: Provides a message type string for a given message type

Declaration: char *messtr(int n, char *string)

Parameters: int n Message type number obtained from get_com (input)
char *string Pointer to the buffer to contain the message type string (output)

Returns:

Use:

Errors:

Pointer to the buffer that contains the message type string. This pointer is identical to
the parameter. There is no error return.

When provided with a message type number, as returned by get_com, this routine returns
the message type as a fixed-length null-terminated string. The string is entirely in lower
case with training blanks to make 6 characters.

Note that there is no validation of the message type number, so a bad message type can
cause unknown results.

None, but the use of an invalid message type number can cause unpredictable results.

Example:

int mstat;
int mtype;
int mfrom;
char mdata[220);
char string[220];

// Message status - valid, error or quit
// Message type number
// Message from station number
// Message data
// String buffer used for name or type

mstat = get_com(&mtype,&mfrom,mdata); // Check for message
if (mstat == VALID_MSG) { // Message available

printf(" from %s ",stnstr(mfrom,string));
printf("(%s): \"%s\"\n",messtr(mtype,string),mdata);

}

Related Routines: getcom, stnstr, stnlstr

52

opencom

Description: Opens all high and low-level communications including set-up for control-C and critical
error trappings. Reads in all the configuration information from the configuration file.

Declaration: int open_com(void)

Parameters: none

Returns: Integer station number of the local station. If an error occurred, BADSTATION is
returned.

Use: This routine should be called only once prior to any communications, high or low-level.
The ports cannot be reconfigured by a later call - in fact a second call will always result
in an error.

The routine sets up the serial ports, timers, enables serial port interrupts and redirects the
control-C/control-break and critical error handlers. The interrupts and handlers must be
restored by using close_com prior to ending the program or DOS will likely hang up.

This routine reads in the configuration file to determine the settings for the serial ports.
This file defaults to SERIAL.CFG in the default directory but any name specified by a
prior call to config_com can be used.

When successfully invoked, this routine prints out a two line header that indicates the
board type used, the name of the configuration file and the software versions of COM.H,
COM.C and SERIAL.ASM

Errors: A return value of BADSTATION can be caused by
- the configuration file can not be opened (doesn't exist or is already in use)
- an error in occurred in the configuration file (supplementary message will be displayed)

Example:

int mlocal;
char string[220](

// Station number of local station
// String buffer used to hold station name

if ((mlocal=open_com()) == BAD_STATION) {
printf("Error in starting comras in open_com.\n");
exit(l);

}
printf("Local station is %s\n",stnlstr(mlocal,string));

Related Routines: closecom, configcom

53

putcjow

Description: Send a character out a low-level link

Declaration: int putc_low(int dest, int c)

Parameters: int dest
int c

Returns:

Use:

Errors:

Receiving station number as obtained from lookjow (input)
Character to be sent (input)

Integer, one of:
ALLOK

BAD DEST

The character was successfully passed to the serial port interrupt
subroutine to be transmitted on the next interrupt
The receiving station number is not valid

This routine is the simplest way to send a character out a serial link. It loads the
character into the serial port interrupt service routine's ring buffer to be sent out on the
appropriate interrupt. No protocols or translations are used.

Note that it is possible to put characters into the ring buffer faster than the service routine
can service them. In general, no more than 500 characters should be put into the ring
buffer without ensuring that they have been sent. This could be by using some special
protocol (such as a response to a command), using a time delay (baud rate/10 gives the
number of characters per second) or by examining echoed characters.

The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure the lookjow routine is used to get the station number.

Example:

int c;
int mmodem;

// Character to be sent
// Cornstream Modem station number

if ((mmodem=look_low("comstreamM)) == BAD_STATION) {
printf("Cannot find port for Comstream Modem.\n");
close_com();
exit(1);

}
printf("Enter character to be sent to the modem?");
c = getch();
putc_low(mmodem,c);

Related Routines: getcjow, putsjow, sendcom, lookjow

54

putsjow

Description: Sends an unterminated string out a low-level link

Declaration: int puts_low(int dest, char *string)

Parameters: int dest Receiving station number as obtained from lookjow (input)
char *string Pointer to string to be sent (input)

Returns: Integer, one of:
ALL OK The string was successfully passed to the serial port interrupt

subroutine to be transmitted in sequence
BAD_DEST The receiving station number is not valid

Use: This routine takes a null-terminated string and sends it out the low-level link less the null
termination. If terminations are required as part of the protocol (such as a linefeed at the
end of the line) then the terminating character must be included in the string. The string
is loaded into the serial port interrupt service routine's ring buffer to be sent out on the
appropriate interrupts. No protocols or translations are used.

Because this routine take a null-terminated string as input, it cannot be used to send a
null. If it is desired to send a null within or at the end of the string, a separate call to
putcjow must be made to send the null.

As with the routine putcjow, it is possible to put characters into the ring buffer faster
than the service routine can service them. In general, no more than 500 characters
should be put into the ring buffer without ensuring that they have been sent out. This
could be by using some special protocol (such as a response to a command), using a time
delay (baud rate/10 gives the number of characters per second) or by examining echoed
characters.

Errors: The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure that the lookjow routine is used to get the station number.

Example:

char s[220];
int mmodem;

// String to be sent to the modem
// Comstream Modem station number

if ((mmodem=look_low("comstream")) == BAD_STATION)
printf("Cannot find port for Comstream Modem.
close_com();
exit(l);

}
printf("Enter string to be sent to the modem?");
scanf("%s",s);
puts_low(mmodem,s);

{
\n");

Related Routines: getsjow, putcjow, send_com, lookjow

55

readycom ____

Description: Checks to see if a high-level link is ready for sending.

Declaration: int ready_com(int dest)

Parameters: int dest Destination station number for the link obtained using lookjom (input)

Returns: Integer, one of:
0 Link is ready for sending
1 Link not ready because the link is still transmitting or bad station number

Use: This routine checks to see if the transmit buffer for the link is available. Normally, this
routine is passed a legal destination station number so the not-ready return means that the
previous message is still being transmitted or is waiting for an ack. Because of a possible
requirement for retransmission, the buffer must hold any outgoing message until the ack
is received.

This routine is most often used prior to program termination to ensure that all outstanding
messages have been sent and acknowledged prior to exiting. Similar return values can
be obtained from the routine send_com if one is only waiting to transmit the next
message.

Errors: A return of link-not-ready can occur if one of the following:
- the link is not ready because the preceding message has not yet completed the
transmission or handshaking
- the destination station number is not valid (use look_com to get the valid number)

Example:

int mlogger; // Logger station number

if ((mlogger=look_com("datalogger")) == BAD_STATION) {
printf("Cannot find link for data logger\n");
exit(l);

while (send com(mlogger,LOG,"This is a test message") != 0)
checkisgO; // Check break and get com

while (ready com(mlogger) != 0) // Wait for message to be sent
checkmlgO; // Check break and get_com

// (checkmsg is documented on page 38)

Related Routines: send_com, \ook_com

56

send com

Description: Asynchronously sends one high-level message to the selected destination if it is ready.
It formats the message and ensures reliable transfer with stop-and-wait ARQ.

Declaration: int send_com(int dest, int mtype, char *string)

Parameters:

Returns:

Use:

Errors:

int dest
int mtype
char *string

The destination station number as obtained from lookcom (input)
The message type number (input)
Pointer to the message text, null string for header only (input)

Integer, one of:
0 Normal return, no error
1 Message not sent because of link not ready or illegal destination number

This routine formats the message by putting originator, destination, message type and
checksum in the header and adding on the message text and delimiters. It then places the
outgoing message in the buffer, begins to send it and returns. The remaining
transmissions and handshaking take place under interrupt control and through repeated
calls to get_com to process the handshaking.

Normally, this routine is passed legal destination numbers, so the message-not-sent return
value is indicative of the link not ready. This is because either the preceding message
has not yet finished transmission or the ack is still outstanding. Because of a possible
requirement for retransmission, the buffer must hold any outgoing message until the ack
is received. The message-not-sent return value of this routine can be used to wait for the
link to be ready, or ready_com can be used to simply check for the ready state.

The message type must be one of: COMMAND, CONFIGURE, LOG, STATUS,
POINT, MODPOINT, TIMESTAMP or ERROR. The message text must be a
null-terminated string no longer than 199 characters but may be a null string. The
message text must not contain any control characters, especially not linefeeds or
carriage returns which are used as message delimiters in high-level protocol.

A return of message-not-sent can occur if one of the following:
- the link is not ready because the preceding message has not yet completed the
transmission or handshaking (ready_com can be used to check readiness of link)
- the destination station number is not valid (use lookcom to get the valid number)

Example:

int mlogger; // Logger station number

if ((mlogger=look_com("datalogger")) == BAD_STATION) {
printf("Cannot find link for data logger\n");
exit(1);

}
while (send_com(mlogger,LOG,"This is a test message") != 0)

Related Routines: get_com, putcjow, putsjow, look_com, ready_com

57

stnlstr

Description: Provides the long station name for a given high-level station number

Declaration: char *stnlstr(int n, char *string)

Parameters int n Station number for the high-level link (input)
char *string Pointer to the buffer to contain the long station name (output)

Returns: Pointer to the buffer that contains the long station name. This pointer is identical to the
parameter. There is no error return.

Use: When provided with a high-level station nuniber, as returned by lookjom, this routine
returns the long (variable length) station name in a null-terminated string. This name is
entirely in lower case. This routine is often used when outputting the details of a
received message from get_com. For a short (4 character) fixed-length name, use stnstr.

This routine only works for high-level link names. Low-level link names must already
be known within the program so there is no equivalent routine for low-level link names.

Note that there is no validation of the station number, so a bad station number can cause
unknown results.

Errors: None, but the use of an invalid station number can cause unpredictable results.

Example:

int mlocal;
char string[220];

// Station number of local station
// String buffer used to hold long station name

if ((mlocal=open_com()) == BAD_STATION) {
printf("Error in starting comms in open_com.\n")
exit(1);

printf("Long station is %s\n",stnlstr(mlocal,string));

Related Routines: stnstr, messtr, look_com

58

stnstr

Description: Provides the short station name given the station number for a high-level link

Declaration: char *stnstr(int n, char *string)

Parameters: int n Station number for the high-level link (input)
char *string Pointer to buffer to contain the short station name (output)

Returns: Pointer to the buffer that contains the short station name. This pointer is identical to the
parameter. There is no error return.

Use: When provided with a high-level station number, as returned by look_com, this routine
returns the short (4 character) station name in a null-terminated string. This name is
entirely in lower case and relatively cryptic - its primary use is in message headers of the
high-level protocol. For a more understandable name use stnlstr.

This routine only works for high-level link names. Low-level link names must already
be known within the program so there is no equivalent routine for low-level link names.

Note that there is no validation of the station number, so a bad station number can cause
unknown results.

Errors: None, but the use of an invalid station number can cause unpredictable results.

Example:

int mlocal;
char string[10];

// Station number of local station
// String buffer used to hold short station name

if ((mlocal=open_com()) == BAD_STATION) {
printf("Error in starting comms in open_com.\n");
exit(1);

}
printf("Short station is %s\n",stnstr(mlocal,string));

Related Routines: stnlstr, messtr, look com

59

60

Appendix C

Real-time Software Programmer's Reference

1. Introduction

This appendix provides all the use and interface details for the real-time routines used by the
communications software. These routines provide control of the hardware that is not easily done in a
higher level language. Although they were designed to support the communications software, they are
also of use for other programs to provide interrupt driven serial communications, timer support and
control over user initiated aborts through control-C/control break and critical error trapping.

Since these are assembly language routines, there is no header file associated with their
declarations. To use these routines in a C program, function prototypes must be used based on the
declaration given for the specific routine in the following pages.

The routines, in the file SERIAL.ASM, were assembled using Microsoft Assembler 5.10 under
DOS 5.0 and are based on the small memory model. To use the large memory model, they must be
reassembled with different stack parameter offsets. See the "Memory Model Size" section in the
declaration area of the SERIAL.ASM program listing.

These routines are grouped into four categories: serial port, timer support, control-C/control-
break trapping and critical error trapping. These four categories are independent and stand-alone with
the exception of the critical error handler, which, upon detection of Abort, shuts down the other three
services. Each category is detailed below.

2. Serial Port Routines

These routines allow interrupt driven serial port communications. Unlike the DOS and BIOS calls
which only provide polled communications, these routines receive and transmit data on an interrupt basis
so they do not tie up the processor when waiting for data. Simple character read and write services are
provided along with opening, closing and configuring the serial ports. A composite status (an ORing
operation for the errors from all ports, ex: if the transmit buffer overflow bit is set then at least one port
had a transmit buffer overflow) is also available. The software supports up to ten ports and can easily
be extended with recompilation. The serial port routines are:

closejer Closes a serial port and restores interrupts
openjer Opens a serial port
readjer Reads a character from a serial port
setjser Sets the baud rate, bits, stop bits and parity of a serial port
statjser Returns the composite status of all serial ports
verser Return the version number string for the serial port software
write ser Sends a character to a serial port

61

3. Timer Routines

The timer routines provide eleven countdown timers used mostly by the communications software
for measuring timeouts. They can also be used for general purpose delays of up to 30 minutes. Routines
are provided to open, close, set and check the remaining count for a timer. Each timer counts down to
0 and remains there. The timer routines are:

chkjime Returns remaining number of ticks for a countdown timer
close Jime Closes all countdown timers and restore interrupts
open time Initializes and enables all 11 timers
set Jime Sets the tick count for a countdown timer

4. Control-C/Control-Break Detection Routines

These routines allow the trapping of control-C and control-break. If a user presses either of the
key combinations, DOS normally aborts the program and returns to the prompt. Software using
interrupts must restore them prior to exiting, so trapping control-C/control-break keypresses allow the
programmer to do a clean exit rather than the abort forced by DOS. Routines are provided to open, close
and to check for the control-C/control-break keypresses. The control-C/control-break detection routines
include:

close_break Restores DOS control-C/control-break handler
openjbreak Enables trapping of control-C/control-break
press_break Checks to see if control-C/control-break was pressed

5. Critical Error Handler Routines

These routines allow critical errors to be trapped and, upon abort, the interrupts restored prior
to control being returned to DOS. Critical errors usually deal with printers or disk drives (for example
"Drive Not Ready" when there is no floppy in the drive). Without trapping critical errors, the user could
abort the program without allowing the interrupts to be restored.

The handler installed by these routines, upon abort, closes serial, timer and control-C/control-
break. The close routines associated with the services are robust and work even if the associated service
has not been enabled. It is this hard-coding of closures that makes these routines specific to the rest of
the SERIAL.ASM routines. If other interrupts are to be closed, this must be added to the code of the
critical error handler.

The critical error handler routines are:

closecrit Restores DOS critical error handler
open_crit Enables trapping of critical errors

62

chk time

Description: Returns number of ticks remaining in countdown timer

Declaration: int chk_time(int timer)

Parameters:

Returns:

Use:

int timer Countdown timer to be set with a valid range of 0-10

Integer, one of:
1 to 32767 Number of ticks remaining in countdown
0 Timer countdown complete
-1 Timer number out of range

This routine is used to check for completion of the countdown timer. The user software
should be checking until the value returned is 0. Note that once the timer reaches 0, it
remains there so this routine only guarantees that the timeout period has been exceeded.
The amount that it has been exceeded depends on the frequency of calls to this routine.

Errors: Timer numbers must be within the range 0-10.

Example:

open_time();
set_time(6,50);
while (chk_time(6) != 0);
close_time();

// Set timer 6 for 50 ticks (3 s)
// Wait for 3 s

Related Routines: set time

63

close_break

Description: Restores default control-C/control-break handler

Declaration: void close_break(void)

Parameters: none

Returns: none

Use: This routine disables control-C/control-break trapping and restores the DOS default
handler. The routine first checks to see if trapping was enabled (by an earlier call to
openjbreak). In the case that trapping was not previously enabled this routine just exits.

Errors:

Example:

none

open break();
while (press_break() == 0); // Wait for break to be pressed
close break();

Related Routines: openjbreak, pressjbreak

64

close_crit

Description: Restores system critical error handler

Declaration: void close_crit(void)

Parameters: none

Returns:

Use:

Errors:

Example:

none

This routine disables critical error trapping and restores the DOS critical error handler.
It is used just prior to exiting to DOS by a program that uses interrupts. This routine
must be called last, after all other interrupts have been restored by closing.

none

// Critical error use the normal DOS handler
open_crit();

// Critical errors are now trapped

close_crit();
// Critical errors use the normal DOS handler

Related Routines: opencrit

65

close ser

Description: Closes serial port by restoring interrupts

Declaration: int close_ser(int port)

Parameters: int port Serial port to be disabled with a valid range of 1-10 for COM1-COM10

Returns: Integer, one of:
0 Successfully closed
1 Port could not be closed

Use: This routine should be called prior to exiting for each port that was used. Once called,
the interrupts for that port are disabled and if no other active ports are using that vector,
the vector is restored.

After all ports are closed (therefore all interrupts have been restored) then close_crit
should be called to restore the default critical error handler.

With a valid port number, one is guaranteed that the port is closed after the call - either
it is closed with the call or was already closed. So if it is not known which ports are
active, then the programmer can close all ports and disregard the return value.

The port cannot be closed if:
- the port number is out of the range 1-10 for COM 1-COM 10
- the port is already been closed or was never opened

Errors:

Example:

int i;

for (i=l;i<=10;i++)
close_ser(i)

close_crit();
exit(0);

// Integer index

// Close all ten ports
// Restore default critical error handler

Related Routines: openjer

66

close_time

Description: Disables all countdown timers and restores interrupts

Declaration: void close_time(void)

Parameters: none

Returns:

Use:

Errors:

Example:

none

•Turns off the countdown timers and restores the default interrupt service routines. This
routine first checks to see if the timers were previously enabled. If not, then no action
is taken.

none

open_time();
set_time(6,50);
while (chk_time(6) != 0);
close time();

// Set timer 6 for 50 ticks (3 s)
// Wait for 3 s

Related Routines: openjime

67

Description:

Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

openjbreak

Setup the control-C/control-break handler

void open_break(void)

none

none

This routines allows the trapping of control-C and control-break. They must be trapped
to ensure that a program using interrupts can have an orderly exit if the user decides to
abort.

If the routine has already been called (and not closed), this and subsequent calls to open
the control-C/control-break handler are ignored.

none

open_break();
while (press_break() == 0); // Wait for break to be pressed
close break();

Related Routines: closeJbreak, press break

68

open_crit

Description: Enables critical errors to be trapped and clean exit upon Abort

Declaration: void open_crit(void)

Parameters: none

Returns: none

Use: This routine allows critical errors to be trapped to a handler that restores the default
interrupts prior to allowing an Abort exit. Because the Abort exit to a critical error does
not return to the user software, any programs that use interrupts must restore them at an
Abort exit to a critical error prior to returning to DOS with the Abort return.

This routine must be invoked prior to any routines using interrupts.

A critical error normally includes information relating to the cause of the error (drive
letter, type of problem). For simplicity, the critical error handler used here only reports
a critical error without specifying the source of the problem.

The critical error handler has a hard coded calls to closebreak, closejime and closeser.
All these routines are programmed so that they can be called without crashing even if the
corresponding open has not been done. If any other interrupts are used, then a closing
call must be added to this routine. Thus this routine is specific to the serial
communications software.

Errors:

Example:

none

// Critical error use the normal DOS handler
open_crit();

// Critical errors are now trapped

close_crit();
// Critical errors use the normal DOS handler

Related Routines: close crit

69

Description:

Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

openjser

Sets up interrupts and initialize to allow communications on the specified port

int open_ser(int port, int type)

int port Serial port to be enabled with a valid range of 1-10 for COM1-COM10
int type Type of serial board used

0 Standard COM 1-COM4 addresses
1 Digiboard addresses COM3-COM10 (standard COM1 & COM2)

Integer, one of:
0
1

Successfully opened
Port could not be opened

This routine must be called once for every port to be used. Once called, the serial
interrupt is redirected (if not already done) and then the UART is initialized. This
routine initializes the UART, but does not set the baud rate and associated parameters -
use set_ser to do this.

The Digiboard PC/8 when installed uses different addresses for COM3 and COM4 and
allows the use of COM5 to COM 10 (not defined for a PC). The serial board type
parameter allows the software to work on computer with normal PC serial ports or with
the Digiboard PC/8 installed. If multiple ports (and therefore multiple opens) are used,
the type of board must be the same for all calls.

The critical error handler, set up by open_crit, should be invoked prior to this routine.
If it is not used and a user selects Abort in response to a critical error (such as floppy
drive not ready) then DOS will likely hang because the interrupt vectors will not have
been restored.

The port can not be opened if:
- the port number is out of the range 1-10 for ports COM1-COM10
- the port is already open

open_crit(); // Ensure critical error handler active
if (open_ser(3,l) != 0) { // COM3 using Digiboard

pr int f("Cannot open COM3\n");
close_crit();
exit{1);

set_ser(3,OxE3); // 9600 baud, no parity, 1 stop bit, 8 bits/character

Related Routines: closejer, setjer

70

open_time

Description: Initializes and enables all countdown timers

Declaration: void open_time(void)

Parameters: none

Returns:

Use:

Errors:

Example:

none

This routine sets up the interrupts necessary to enable the 11 count-down timers. These
timers were designed to be used as timeout timers.

If the routine has already been called (and not closed), this and subsequent calls to open
the timers are ignored.

none

open_time();
set_time(6,50);
while (chk_time(6) != 0);
close_time();

// Set timer 6 for 50 ticks (3 s)
// Wait for 3 s

Related Routines: close time

71

Description:

Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

pressjbreak

Checks to see if control-C/control-break was pressed since last invocation

int press_break(void)

none

Integer, one of:
0 No control-C/control-break pressed
27 Control-break pressed since last call
35 Control-C pressed since last call

This routine checks to see if either control-C or control-break have been pressed since
the last call (or since openjreak). As long as the return value is 0, no keys have been
pressed requesting a program abort.

This routine traps all occurrences of control-C or control-break, so upon detection, the
programmer must implement a clean-up routine of the various interrupts.

Note that there is only one flag for control-C and control-break. If both are pressed,
only the last one pressed will be returned.

none

open_break();
while (press_break(
close break();

== O); // Wait for break to be pressed

Related Routines: open_break, closejbreak

72

read ser

Description: Gets a character from a serial port

Declaration: int read_ser(int port)

Parameters:

Returns:

int port Serial port to be read with a valid range of 1-10 for COM1-COM10

Integer value:
0 to 255
-1
-2

Character received
No character available
Port number is out of range

Use:

Errors:

This routine when called checks the receive ring buffer of the appropriate port for a
character, and if one is available returns it. Otherwise, the routine returns with a no
character available. This means that the routine can be called frequently without forcing
the software to wait for the next character.

The port number is out of range if it is not within the range of 1-10 for COM1-COM10.
A return of no character available means that no new character has been received yet for
the serial port.

Example:

int c:

write_ser(1,'C');
write_ser(1,'F');
write_ser(!,'?');
while ((c=read_ser(1)) < 0);
printf("Response is %c\n",c);

// Character received

// Send "CF?" out port

// Wait for character

Related Routines: write ser

73

set ser

Description:

Declaration:

Parameters:

Returns:

Use:

Sets the serial port parameters: baud rate, number of bits/character, number of stop bits
and parity.

int set_ser(int port, int parm)

int port serial port to be set with a valid range of 1-10 for COM1-COM10
int parm serial port parameter (see table below)

Integer, one of:
0 Parameters successfully set
1 Port number out of range

This routine sets the communication parameters for the serial port. The four parameters
are fully specified in the low 8-bits of the integer parameter. This routine should be
called immediately after openser and prior to any communications. This routine can be
called again to later change the communication parameters.

The table below gives the values used to specify the four serial port parameters. One
value must be selected for each parameter and summed to get the composite parameter.

Errors:

Example:

Bits per Character Stop Bits Parity Baud Rate

5 bits 0x00 1 bit 0x00 None 0x00 110 0x00

6 bits 0x01 2 bits 0x04 Odd 0x08 150 0x20

7 bits 0x02 Even 0x18 300 0x40

8 bits 0x03 600
1200
2400

4800

9600

0x60
0x80
OxAO

OxCO

OxEO

Port number out of range occurs if the port number is not one of 1-10 for COM 1-COM 10

open_crit(); // Ensure critical error handler active
if (open_ser(3,l) 1= 0) { // COM3 using Digiboard

printf("Cannot open COM3\n");
close_crit();
exit(l);

set ser(3,0xE3); // 9600 baud, no parity, 1 stop bit, 8 bits/character

Related Routines: open_ser

74

set_time

Description: Sets a specific countdown timer to a tick count

Declaration: int set_time(int timer, int tick)

Parameters: int timer Countdown timer to be set with a valid range of 0-10
int tick Number of ticks (16.7 ticks per second)

Returns: Integer, one of:
0 Timer successfully set
1 Timer number out of range

Use: This routine sets a countdown timer to a specific number of ticks. The counter will be
decremented at each timer interrupt until it reaches 0 where it will remain (until set
again). There are 16.7 ticks per second, so using these timers, with a positive integer
tick count, the longest timeout period is 1962 s or almost 33 minutes. Negative values
will provide unpredictable results and should not be used.

Note that the asynchronous nature of the timer setting and decrementing allow an
ambiguity of just less than one tick (60 ms). Therefore, the minimum setting should be
a value of 2 to ensure the period is at least one tick long. The smallest period is then
60-120 ms.

Errors: Timer numbers must be within the range 0-10.

Example:

open_time();
set_time(6,50);
while (chk_time(6) != 0);
close time();

// Set timer 6 for 50 ticks (3 s)
// Wait for 3 s

Related Routines: chk time

75

stat ser

Description:

Declaration

Parameters: none

Returns:

Use:

Errors:

Example:

Provides a composite status of the ports

int stat_ser(void)

Integer status
0x01
0x02

0x04
0x08
0x10
0x20

Interrupt service routine invoked but no active port caused interrupt
Handshake line change caused interrupt, but it was supposed to be
disabled
Serial line break or UART error
Receive ring buffer overflow
Transmit ring buffer overflow
Transmit ring buffer not empty

This routine returns a composite status, with error conditions latched, of all of the active
ports. The status is cleared after each call, so the bits indicate that at least one of the
error events occurred since startup or the last call to this routine. The Transmit buffer
not empty bit is not latched, it is simply the state of the transmit ring buffer at the time
of the call. This bit can be used to wait for all data to be transmitted.

If too much data is sent using writejer and there is insufficient time to send it, then the
Transmit ring buffer overflow will be set. On the other hand, if lots of data is being
received and no calls to readjer are made, then eventually the Receive ring buffer
overflow will be set.

If a serial line break (long period of space) occurred or there were asynchronous framing
errors (such as no stop bit) then the Serial link break or UART error bit will be set.

The bad interrupts bits will be set only if there are other programs (such as TSRs)
attempting to use the serial ports. This should not occur in normal operation.

none

write_ser(l,'H');
write_ser(l,'I');
write_ser(1,'\n');
while ((stat_ser()

// Send out "Hi\n"

& 0x20) != Q); // Wait for buffer empty

Related Routines: none

76

Description:

Declaration:

Parameters: none

Returns:

Use:

Errors:

Example:

ver_ser

Returns the version number string of the serial port software

char *ver_str(void)

Pointer to character string with the serial port software version number. The version
number starts with a "V", followed by a date and then a decimal version, (ex:
V02Jun93.01 means that it was the first version created on June 2, 1993)

This routine returns the version number string to allow user programs to know which
version of the software has been linked. It is used by the communication software during
opening to display all of the relevant software versions. Any modifications to the file
SERIAL.ASM will result in an updated version number.

none

char *strpnt;

strpnt = ver_str(); // Get the version number
printf("The version number of SERIAL.ASM is %s\n",strpnt);

Related Routines: none

77

write ser

Description:

Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

Sends a character to a serial port

int write_ser(int port, int ich);

int port

int ich

Serial port, valid range 1-10 for COM1-COM10, to which the character
is to be sent
Character to be sent to the port with a valid range of 0-255

Integer, one of:
0 Character successfully send
1 Port number out of range

This routine puts one character into the transmit ring buffer of the specified port. If the
transmit ring buffer is full, the character is discarded and the Transmit ring buffer
overflow bit is set (use statjer to check this bit).

Note that it is possible to put characters into the ring buffer faster than the service routine
can service them. In general, no more than 500 characters should be put into the ring
buffer without ensuring that they have been sent. This could be by using some special
protocol (such as response to a command), using a time delay (baud rate/10 gives the
number of characters per second), by examining echoed characters or by checking the
composite Transmit ring buffer not empty bit available from statjer.

Port number out of range occurs if the port number is not one of 1-10 for COM1-COM10

write_ser(l,'H');
write_ser(l,'I');
write_ser(1,'\n');
while ((stat_ser()

// Send out "Hi\n"

& 0x20) != 0); // Wait for buffer empty

Related Routines: readjer, statjer

78

Appendix D

Communications Software Listing

1. Introduction

In this appendix, the two files, header file COM.H and the file COM.C, used for the
communications software are listed. This appendix does not cover the assembly language routines which
are given in the Appendix E - Real-time Software Listing.

2. Header File COM.H

#define HEAD VERSION "V02Jun93.01"

Station name definitions

«define
«define
«def i ne
«def i ne
«define
#define
#define
«def i ne
«define
#define

BAD_STATION
UNKNOWN_ID
DATA LOGGER
BEACÖNJ10N
BURST_DEHOD
TX PROC
EPHEM_PROC
SYNC_PROC
CRC_ANTENNA
T85 ANTENNA

«define NSTATION
«define LENSTN
«define LOW_BASE

«define SNAHES
«define LNAMES

0
1
2
3
4
5
6
7
8

9
4
20

/* Station name or number not valid
/* Station name garbled or not sent
/* Data Logger & Experiment Controller
/* Beacon & Reference Monitor
/* Burst DPSK Demodulator Host
/* CRC Transmit Processor
/* Ephemeris Processor
/* Synchronization Processor
/* CRC Antenna Controller Host
/* T85 Antenna Controller Host

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* Number of valid stations */
/* Length of station name field */
/* Base number used for low-level ports */

"unkn",»dlog","beac","bdem","txpr","ephm","sync","crca","t85a"
"unknown", "datalogger", "beaconjnon", "burst_demod"," tx_proc", \
"ephem_proc","sync_proc","crc_antenna","t85_antenna"

Receiver status definitions

«define NO MESSAGE 0 /*
«define VALID MSG 1 /*
«define COMMJERR 2 /*
«define QUIT 3 /*

No message ready received
Valid message received
Communications error occurred
Exit program requested

*/
*/
*/
*/

Message type definitions

«define
«define
«define
«define
«define
«define
«def i ne
«define
«define
«define
«define

BADJ4ESSAGE
ACK
NAK
COMMAND
CONFIGURE
LOG
STATUS
POINT
MOD POINT
T1ME_STAMP
ERROR

«define NMESSAGE
«define LENMSG

-1
0
1
2
3
4
5
6
7
8
9

10
6

/* Message is invalid
/* Ack message
/* Nak message

Command message
Configuration message
Log message
Status message
Initial pointing information
Modified pointing information
Time stamp

/*
/*
/*
/*
/*
/*
/
/* Error condition message

/* Number of message types
/* Length of message type field

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

79

#define HNAHES "ack »,»nak ","comd ","config","log ",\
"status","point ","modpnt","time "."error "

/*
Error check definitions

/* open_com
/* get com
/* send com
/* look com
/* ready_com
/* config com
/* flush com
/* close com

#define NO ERROR 0 /* No error occurred */
#define TOTAL 1 /* Too many total errors occurred */
#define CONSEC 2 /* Too many consecutive errors on 1 port */
#define BREAK 3 /* Control-Break or Control-C occurred */

/*
Low-level "get" return definitions
 V
#define BAD_DEST -2 /* Destination number is invalid */
#define NO DATA -1 /* No data is available */
#define ALL_OK 0 /* Normal return */

/*
High-level communications routines
 */

opens all high and low level communications */
gets one message, if available, returns status */
sends one message */
determines port number given station name */
checks to see if port is ready to send message */
overrides default SERIAL.CFG name */
resets errors on a channel */
closes all high and low level communications */

int open_com(void);
int get_com(int *ctype, int *cfrom, char *cdata);
int send_com(int dest,int mtype,char »string);
int look_com(char *stn);
int ready_com(int dest);
void config_com(char *string);
int flush_com(int dest);
void close_com(void);

/*
Low-level communications routines
 */
/* These routines need high-level "open_com" and "close_com" before use */
/* getc_low gets one character */
/* gets~low gets one string terminated by the parameter */
/* putc_low puts one character */
/* puts_low puts one string */
/* look_low determines destination number given station name */
int getc_low(int dest);
int gets_low(int dest,int term,char *string);
int putc_low(int dest,int c);
int puts_low(int dest,char »string);
int look_low(char *stn);

/*
String return functions
 */
/* In all cases the function points to string containing the answer */
/* stnstr returns the station string for the given ID number */
/* stnlstr returns the long station for the given ID number */
/* messtr return the message type for the given type number */
char *stnstr(int n.char »string);
char *stnlstr(int n,char »string);
char *messtr(int n.char »string);

80

COM.C

3. COM.C

«define COM VERSION

«include
«include
«include
«include
«include
«include

<string.h>
<stdio.h>
<stdlib.h>
<ctype.h>
<bios.h>
»com.h"

"V17Jun93.01"

Miscellaneous definitions

«define DEFTIME 2 /*
«define DEFMAX 100 /*
«define DEFCONSEC 10 /*
«define NBAUD 8 /*
«define NPORT MAXCOM+1 /*
«define NLOU MAXCOM /*

Default timeout is 2 s
Default number of maximum errors
Default number consecutive errors
Number of valid baud rate keywords
Number of valid port keywords
Number of valid low level ports

*/
*/
*/
*/
*/
*/

Serial configuration file keywords

«define ENDFILE -2
«define ERRLINE -1
«define FROM 0
«define BOARD TYPE 1
«define MAX ERROR 2
«define TO 3
«define LOU LEVEL 4
«define PORT 5
«define BAUD 6
«define PARITY 7
«define STOP 8
«define BITS 9
«define TIMEOUT 10
«define CONSECUTIVE 11

«define NDEF 12

/*
Serial port definitions

«define NOPORT 0x00
«define COM1 0x01
«define COM2 0x02
«define COM3 0x03
«define COM4 0x04
«define COM5 0x05
«define COM6 0x06
«define C0M7 0x07
«define C0M8 0x08
«define COM9 0x09
«define COMA OxOA
«define MAXCOM COMA
«def i ne BITS5 0x00
«def i ne BITS6 0x01
«define BITS7 0x02
«define BITS8 0x03
«define STOP1 0x00
«define STOP2 0x04
«define NOPAR 0x00
«define PARODD 0x08
«define PAREVN 0x18

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

End of file in configuration file */
Error in configuration file */
Local station name */
Serial board type (std/digiboard) */
Max number of errors before exit */
Introduces high-level link */
Introduces low-level link */
Port selection (COM1-COMA) */
Baud rate selection */
Parity type */
Number of stop bits */
Number of bits per character */
Number of bits per character */
Number of consecutive errors */

/* Number of keywords

No communication port
/* COM1 to ...

/* ... COMA (COM10)
/* Maximum number of comm port

/* 5 bits per character
/* 6 bits
/* 7 bits
/* 8 bits

/* 1 stop bit
/* 2 stop bits

/* No parity
/* Odd parity
/* Even parity

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

81

COM.C

«define B110 0x00 /* Baud rate 110 bps

«define B150 0x20 /* 150 bps

#define B300 0x40 /* 300 bps

«define B600 0x60 /* 600 bps

#define B1200 0x80 /* 1200 bps

«define B2400 OxAO /* 2400 bps

«define B4800 OxCO /* 4800 bps
«define B9600 OxEO /* 9600 bps

*/
*/
*/
*/
*/
*/
*/
*/

States for Receiver/Transmitter

«define READY 0
«define NAK SENT 1
«define MSG~SENT 2
«define MSG ACK 3

/* Idle conditions
/* NAK sent, await retransmit
/* Message sent, await ACK
/* Message & ACK sent,await ACK

*/
*/
*/
*/

"getline" return values
 *

«define N0J.INE 0
«define AVAIL LINE 1

/* No line available
/* Line available

Values used for board types

«define STANDARD
«define DIGIBOARD

/* Standard COM3/4 addresses & IRQs */
/* Digiboard COH3/4 addresses & IRQS */

States for parsing configuration file

«define START 0
 */

/* Start state
«define FROM OK 1 /* FROM keyword valid

«define INTROJDK 2 /* TO/LOWJ.EVEL keyword valid

/*
Communications error definitions

*/
No error */ «define NOERR 0 /*

«define CPTACK 1 /* Ack corrupted
«def i ne CPTNAK 2 /* Nak corrupted
«define CPTRXA 3 /* Receive message or ack/nak corrupted
«define CPTTXA 4 /* Transmit message or ack corrupted
«define CPTTXM 5 /* Transmit message corrupted
«define EXTACK 6 /* Extra ack received
«def i ne HEADER 7 /* Header too short
«define ILCHAR 8 /* Illegal character in checksum
«define I LACK 9 /* Illegal ACK/NAK
«define LSTACK 10 /* Ack lost, duplicate message
«define LSTNAK 11 /* Nak lost
«define LSTRXM 12 /* Receive message tost
«define LSTTXM 13 /* Transmit message lost
«define NOCLOS 14 /* No closing bracket
«define NOHCHK 15 /* No trailing "h" or "H" on checksum
«define NOOPEN 16 /* No opening bracket
«def i ne NOSEM1 17 /* No semicolon before message type
«define NOSEM2 18 /* No semicolon after message type
«define NOSEPR 19 /* No from/to separator
«define BADCHK 20 /* Checksum failure, should be X.2X
«define BADFRM 21 /* Bad FROM station, was "Xs"
«define WRGFRM 22 /* Wrong FROM station, was "Xs"
«define BADTO 23 /* Bad TO station, was "Xs"
«define WRGTO 24 /* Wrong TO station, was "Xs"
«define BADTYP 25 /* Bad message type, was "Xs"
«define NERROR 26 /* Number of errors */

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
V
*/
*/
*/
*/
*/
*/
*/
*/
*/

82

COM.C
/* Station names used in the message headers */
char stnnam[NSTATION] [LENSTN+1]=<:SNAMES};

/* Long station names used in configuration file */
char stntit[NSTATION][15]=<LNAMES>;

/* Message types used in the message headers */
char mesnam[NMESSAGE]tLENMSG+1]=(MNAMES>;

/* Error messages */
char errtit[] [50]={"No error","Ack corrupted","Nak corrupted",

"Transmit message or ack corrupted", •
"Transmit message corrupted",
"Receive message or ack/nak corrupted","Extra ack received",
"Header too short","I I legal character in checksum",
"Illegal ACK/NAK","Ack lost, duplicate message","Nak lost",
"Receive message lost","Transmit message lost",
"No closing bracket","No trailing \"h\" or \"H\" on checksum",
"No opening bracket","No semicolon before message type",
"No semicolon after message type","No from/to separator",
"Checksum failure, should be ","Bad FROM station, was",
»Wrong FROM station, Mas","Bad TO station, was ",
"Wrong TO station, was","Bad message type, was ">;

char baudtit[NBAUD][5]= /* Valid baud rate strings */
{"110","150","300","600","1200","2400","4800","9600"> ;

int baudvalINBAUD]= /* Baud rate values */
<B110,B150,B300,B600,B1200,B2400,B4800,B9600>;

char deftit[NDEF][12]= /* Valid keywords in config file */
<:»from","board_type","max_error", "to", "low_level", "port", "baud",
»parity","stop","bits","timeout","consecutive"};

char prttitCNPORT] [5]=<:"com1","com2", /* Valid port names */
"com3","com4","com5","com6","com7","com8","com9","coma","aux">;

/* Low-level link names (as given in configuration file) */
char lowtit[NLOW] [50]; /* Array of names */
int mlow; /* Number of names */

/* Receive message information */
int rxtype; /* Receive message type */
int rxfrom; /* From station of message */
int rxto; /* To station of message */
int rxcase; /* Case of 'H' for ack/ACK */
char rxdata[220]; /* Message */

/* Queue used by get_com when 2 items are returned (ex COMM_ERR & VALID_MSG) */
int qflag; ~ /* Oueue flag 0=empty, 1=fuTl */
int qrxtyp; /* Message type */
int qrxfrm; /* From station of message */
char qrxdat [220]; /* Message */

/* Communications error variables */
int errnum; /* Error number for bad msg */
char errpar[220]; /* Error string parameter for bad msg */
int errval; /* Error number parameter for bad msg */
int errcnt; /* Total number of communication errors */
int maxerr; /* Maximum number of errors before quit */

/* Serial configuration file variables */
FILE *sercfg; /* File stream for configuration file */
char cfgnam[220] = {"serial.cfg">; /* Name of configuration file */
int nl; /* Line number of line being processed */
char Istline[220]; /* Line being processed */
int sfrom; /* From station number */
int bd_type; /* Board type (0=std, 1=digiboard) */

83

COM.C

/* Structure for serial port definitions (indexed by 0..N) */
struct s_type {

Destination of the serial link
COM port number of the serial link
Settings of the serial link (baud, etc)

int to;
int port;
int set;

> sCMAXCOM];
int nd;

/*
/*
/*

/* Number of entries in structure "s"

*/
*/
*/

/* Structure for port
struct p_type i

int state;
int dest;
int error;
int max;
int time;
int rxack;
int rxpnt;
char rxbuff[220];
char rxold[220];
int txack;
char txold[220];

> p[MAXC0M+1];

definitions (indexed by COM port number) */

/* Receiver/transmitter state
/* Destination of the serial link
/* Number of consecutive errors for high-level
/* Maximum number of consecutive errors
/* Number of ticks (16.6 ticks/s) for timeout
/* State of receiver ack (0=ack, 1=ACK)
/* Pointer to receive buffer
/* Receive buffer
/* Old received message buffer
/* State of the transmit ack (0=ack, 1=ACK)
/* Old transmitted message buffer

/* 1 extra, COMO is not used */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

External Assembly Language Routines

/* Serial port routines */
int open_ser(int port,int type);
int close_ser(int port);
int stat_ser(void);
int set_ser(int port,int parm);
int read_ser(int port);
char *ver_ser(void);
int write_ser(int port,int ich);

/*
/*
/*
/*
/*
/*
/*

Initialize serial ports, set up ints
Disable serial port interrupts
Determine serial port status
Set baud rate, etc for serial port
Read a character from serial port
Return version string
Send a character to serial port

*/
*/
*/
*/
*/
*/
*/

/* Control-Break/Control-C
void open_break(void);
void close_break(void);
int press_break(void);

ISR routines */
/* Initialize, set up trap for Ctl-C/Break */
/* Disable trapping of Ctl-C/Break */
/* See if break pressed (0=no, non-zero=yes) */

/* Timer tick ISR routines */
void open_time(void);
void close_time(void);
int set_time(int timer,int tick);
int chk~time(int timer);

/* Initialize timers, set up ints
/* Disable timers
/* Set countdown timer
/* Check if timeout (0=timeout)

*/
*/
*/
*/

/* Critical error handler routines */
void open_crit(void); /* Initialize and trap critical errors */
void close_crit(void); /* Disable trapping of critical errors */

Internal routines
 */
int baudmatch(char *string);
void cfgerror(char *string);
int cfgline(char *string);
int chk_error(int *dest);
char *errstr(char *string);
int getline(int port);
int getmessO'nt port);
int lowindex(char *string);
int messtype(char *string);
void parsemsg(int port);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Determine baud rate from a string
Output error message from configuration
Get a non-blank line from config file
See if any error count has exceeded max
Returns the error string for an error #
Get a line from a serial port
Get a message from a serial port
Get an index value for a low-level port
Determine message type from a string
Parse the received message

*/
V
*/
*/
*/
*/
*/
*/
*/
*/

84

COM.C
int prtmatch(char *string); /* Determine port number from a string
int read_config(void); /* Read configuration from config file
void sendack(int port); /* Send the ack/ACK message to a port
void sendnakd'nt port); /* Send NAK message to a port
void sendstrO'nt port,char *string); /* Send a string to a port
int stationCchar *string); /* Determine station number from short name
int stnmatch(char *string); /* Determine station number from long name
void strip(char *sting); /* Remove leading and trailing blanks

*/
*/
*/
*/
*/
*/
V
*/

/*
/*
/*
/*
/*
/*

-*/
-*/
-*/
-*/
-*/
■*/

High- level Communication Routines
(declared in "com.h") - - -

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

open_com

Description: Opens all high and low-level communications including setting
up for control-C and critical error trapping. Reads in
all the configuration information as well.

Returns:

In:
Out:

(int) Station number of local station. If an error
occurred, BAD_STATION is returned.

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

int open_com(void)
<

int i;
errcnt = 0;
errnum = NOERR;
qflag = 0;
mlow = 0;
for (i=0;i<HAXCOM;i++) <

p[i] .error = 0;
p[i] .rxpnt = 0;
p[i].rxack = 0;
p[i].txack = 0;
p[i].rxold[0] = '\0';
p[i].txold[0] = '\0';

>
if (read_config() != 0) return BAD_STATION;

/*
/*

/*
/*
/*

Integer index variable */
Initialize error reporting */

Initialize queue as empty */
Initialize number of low-level ports */
Initialize port structure */

/* Read config file */

if (bd_type == DIGIBOARD) {
printfC« Communications hardware: Digiboard");

> else (
printfC« Communications hardware: Standard");

}
printfC Configuration file: Xs >>\n",cfgnam);
printfC« Software: C0H.H=%s, COM.C=%s, SERIAL.ASM=%s >>\n",

HEAD_VERSION,C0M_VERSION,ver_ser());

open_crit(); /* Enable trapping of critical errors */
open_break(); /* Enable trapping of Control-C/Break */
open~time(); /* Enable timers */
for (i=0;i<nd;i++) { /* Open all serial ports from config file

if (open_ser(s[i].port,bd_type) != 0) {
printf("Error in opening serial port %d\n",s[i].port);
close com();
return BAD STATION;

>

85

COM.C

p[s[i]. port], state = READY;

for (i=0;i<nd;i++) set ser(s[i].port,s[i].set); /* Setup serial ports */
return sfrom; ~ /* Return local station number */

/*
/*
/* Description:
/*
/*
/*
/*

get_com

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*•

Gets a message - checks all ports for an outstanding message
also checks for if errors occurred or if control-C/break has
been pressed. Occasionally a communications error occurs
while a valid message is received - when this happens the
errors is returned first and the message is queued for the
next call.

Returns:

In:
Out:

(int)

(int *ctype)

(int *cfrom)

(char *cdata)

NO_MESSAGE - no message available
VALID_MSG - valid message returned
COMM_ERR - communications error occurred
QUIT - terminal condition occurred

message type for VALID_MSG, exit type for
QUIT, error number for~COMM_ERR
source of message, not used by QUIT except
for excessive consecutive errors
message data for VALID_MSG or error message
for COMH_ERR, otherwise not used

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

int get_com(int *ctype, int *cfrom, char *cdata)
I

int i,j; /* Integer index variables */
int et.ef; /* Error type */
if (press_break() != 0) i I* Check if break has been pressed */

*ctype = BREAK;
return QUIT;

>
if ((et=chk_error(&ef)) != NO_ERROR) { /* Check if max error occur */

*ctype = et;
*cfrom = ef;
return QUIT;

>
if (qflag == 1) <

*ctype = qrxtyp;
*cfrom = qrxfrm;
strcpy(cdata.qrxdat);
qflag = 0;
return VALID MSG;

/* See if there is a message waiting */

for (i=0;i<nd;i++) <
if (s[i].to < LOW BASE) <

if <(j=getmess(sti].port)) != NO_MESSAGE) t
*ctype = rxtype;
*cfrom = rxfrom;
strcpy(cdata,rxdata);
if (j == COMH_ERR) {

if (rxtype != BAD_MESSAGE) (
qrxtyp = rxtype;
qrxfrm = rxfrom;
st rcpy(qrxdat,rxdata);
qflag = 1;

>
*ctype = errnum;
*cfrom = s[i].to;

/* Check all high-level for a message */

/* If error occurred, but */
/* there is a valid message */
/* put it in the queue */

86

errstr(cdata);
return COMM_ERR;

> else {
return VALID MSG;

>

return NO_MESSAGE;

COM.C

/*
/*
/* Description:
/*
/*
/*
/* Returns:
/*
/* In:
/*
/*
/*
/*■

send_com

Sends one message to the selected destination - formats the
message, sets up the checksum and ensures reliable transfer
through ack/nak and timeouts.

(int) 0 if no error occurred
1 if illegal port or if port not ready

(int dest) destination station number
(int mtype) message type
(char *string) message data

Out:

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-V

int send comd'nt dest,int mtype,char *string)
i

int i,n; /*
char str[220J; /*
char cc [3]; /*
int port; /*
int chk; /*

Integer index variables */
Used to assemble outgoing message string
Used to hold the hexadecimal checksum */
Comm port number (1=C0H1, 10=COMA) */.
Checksum */

for (n=0;n<nd;n++) if (s[n].to==dest) break;
if (n==nd) return 1;
port = s[n] .port;

/* Find "to" port */

str[0] = '['; /*
str[1] = '\0'; /*
strcat(str,stnnam[sfrom]); /*
strcat(str,">"); /*
strcat(str,stnnam[s[n] .to]);
strcaUstr,";");
st rcat(st r,mesnam[mtype]);
if (p[port].txack == 0) {

strcat(str,»;XXh]");
> else {

strcat(str,";XXH]»);
>
pCport].txack A= 1;
if (string[0] != '\0') {

strcat(str," ");
strcat(str,string);

>
chk = 0;
for (i=0;i<strlen(str);i++) if
chk &= OxFF;
sprintf(cc,"X.2X",chk);
str[18] = cc[0];
str[19] = cc[1];
strcat(str,''\r\n");
if (pCport].state != READY) {

pCport].txack A= 1;
return 1;

Set up header */
Message of the form: */
[ffff>tttt;im¥nmmm;XXh] ddddddddd. .<CR><LF>
where: ffff is the from station

/* tttt is the to station
/* mrmmnTi is the message type
/* XX is the hex checksum
/* h is sent to get "ack"
/* H is sent to get "ACK"
/* ddddddddd is the message data

*/
*/
*/
*/
*/
*/
*/
*/

/* Put in the space if there is data */

/* Compute the checksum */
((i<18) || (i>20)) chk += strli];

/* Ensure port is ready */
/* Otherwise error & exit */

87

COM.C

> else {
strcpy(p[port].txold.str);
sendstr(port,str);
set_time(port,p[port].time);
p[port].state = MSG_SENT;

>
return 0;

/* Save the string for retransmit */

/*
/*
/*
/* Description: Determine the port number given the long station name
/*
/*
/*
/*
/*■

=*/
*/
*/
*/
*/
*/
*/
*/
-*/

Returns:
In:
Out:

(int)
(char *stn)

look com

port number, BAD_STATION if not valid
pointer to string with long station name

int look_com(char *stn)

int i,j; /* Integer index variables */

/* Find the matching long station name */
for (i=0;i<NSTATION;i++) if (strcmpi(stn,stntit[i]) == 0) break;
if (i == NSTATION) return BAD_STATION;

/* Find the port with that station number */
for (j=0;j<nd;j++) if (s[j].to == i) return i;
return BAD STATION;

/*=
/*
/*

=*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
-*/

ready_com

/* Description: Checks to see if a link is ready for sending.
/*
/* Returns:
/*
/*
/* In:
/* Out:
/*

(int) 0 if ready
1 if still transmitting last message or bad

port number
(int dest) destination station number

int ready_com(int dest)

int n;
int port;

/* Integer index variables */
/* Comm port number (1=C0M1, 10=COMA) */

/* Find "to" port */ for (n=0;n<nd;n++) if (s[n].to==dest) break;
if (n==nd) return 1;
port = s[n].port;
if (p[port].state != READY) < /* Ensure port is ready */

return 1;
>
return 0;

/*
/*
/

=*/
*/
*/
*/
*/
*/

conf i g_com

/* Description: Overrides the default (SERIAL.CFG) of the configuration file.
/*
/* Returns:

88

/* In:
/* Out:
/*

(char *string) configuration file name

void config com(char *string)
C

strcpy(cfgnam,string);
return;

>

*/
*/
-*/

COM.C

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*■

=*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

flush_com

Description: Resets channel and associate errors.

Returns: (int)

In: (int dest)
Out:

0 if ready
1 if bad port number
destination station number

int flush_com(int dest)
C

int n;
int port;

/* Integer index variables */
/* Comm port number (1=C0M1, 10=COMA)

for (n=0;n<nd;n++) if (s[n].to==dest) break;
if (n==nd) return 1;
port = s[n] .port;
pCport]. state = READY;
pCport].error = 0;
p[port] .rxpnt = 0
pCport].rxack = 0
pCport].txack = 0
pCport]. rxoldCO] = '\0'
pCport] .txoldCO] = '\0'
errcnt = 0;
return 0;

/* Find "to" port */

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
I*

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

-*/

close_com

Description: Closes all high and low-level communications including the
restoration of all interrupt vectors for the serial ports,
control-C/break interrupts and critical error traps.

Returns:
In:
Out:

void close_com(void)

int i; /* Integer index variable */

for (i=0;i<nd;i++) close_ser(sCi].port);
close_time();
close_break();
close_crit();
return;

/* Close serial ports */
/* Close timers */
/* Close Control-C/Break */
/* Close critical errors */

89

COM.C

*/
*/

/*
/*
/* Low-level Communication Routines */
/* (declared in "com.h") */
/* V
/* */

=* /
/* getc low */
/* " */
/* Description: Gets a character from a link using destination station number */
/* */
/* Returns: (int) character if available */
/* NO_DATA is none available */
/* BAD_DEST if destination number is invalid */
/* in: (int dest) destination station number (this number is */
/* obtained through "look_low") */
/* Out: - */
/* */

int getc_low(int dest)
i

int i,n; /* Integer index variables */
int c; /* Character from the port */

for (n=0;n<nd;n++) if (stn].to==dest) break; /* Find port number */
if (n==nd) return BAD_DEST;
if (p[stn].port].rxpnt != 0) { /* Get char from buffer */

c=p[s[n].port] .rxbuff tO];
for (i=1;i<p[s[n]. port], rxpnt; i++) ptstn] .port] .rxbuff [i-1]=ptstn] .port] .rxbuff ti];
p[s[n] .port] .rxpnt--;

> else {
if ((c=read_ser(stn].port))==-1) return N0_DATA;

>
return c;

/* ==*/
/* gets low */
/* " */
/* Description: Gets a terminated string from a link using the destination */
/* station number */
/* */
/* Returns: (int) ALL_OK - if string is returned */
/* NO DATA - if no data available */
/* BADJJEST - if destination number is invalid */
/* in: (int dest) destination station number (this number is */
/* obtained through "look_low") */
/* (int term) string termination character */
/* (char *string) pointer to buffer to receive the string */
/* Out: (char *string) pointer to string containing the received */
/* string */
/* */

int gets lowd'nt dest,int term.char *string)

int n; /* Integer index variable */
int c; /* Character from the port */
int np; /* Port number */

for (n=0;n<nd;n++) if (stn].to==dest) break; /* Find port */
if (n==nd) return BADJJEST;
np = stn] .port; .
if ((c=read_ser(np))==-1) return N0_DATA; /* See if data avail */

90

COM.C
/* Get data till term */
/* No more than 200 */

/* Data still avail? */

while (c!=term) {
if (p[np].rxpnt > 200) p[np].rxpnt = 200;
p[np] .rxbuff [p[np] .rxpnt] = c;
p[np].rxpnt++;
if ((c=read ser(np))==-1) return N0_DATA;

>
p[np].rxbuff[p[np].rxpnt] = '\0'; /* Terminate and save string */
strcpy(string,p[np].rxbuff);
ptnp]. rxpnt = 0;
return ALL_OK;

/* putc low
/*
/* Description: Send a character to a link using destination station number
/*

(int) ALL_OK - if character is sent
BAD~DEST - if destination number is invalid

(int dest) destination station number (this number is
obtained through "look_low")

(int c) character to be sent

/* Returns:
/*
/* In:
/*
/*
/* Out:
/*

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

int putc lowO'nt dest,int c)

int n; /* Integer index variable */

for (n=0;n<nd;n++) if (sCn].to==dest) break;
if (n==nd) return BAD_DEST;
write_ser(s[n].port.c);
return ALL_OK;

/♦Find port number */

/* Send character */

/* puts low */
/* */
/* Description: Sends a string to a link using destination station number */
/* */
/* Returns: (int) ALL_OK - if string is sent */
/* BAD_DEST - if destination number is invalid */
/* in: (int dest) destination station number (this number is */
/* obtained through "look_low") */
/* (char *string) pointer to string to be sent */
/* Out: - */
/* */

int puts_low(int dest,char *string)
i

int n; /* Integer index variable */

for (n=0;n<nd;n++) if (s[n].to==dest) break;
if (n==nd) return BAD_DEST;
sendstr(s[n].port,string);
return ALL_OK;

/* Find port number */

/* Send string */

/* look low */
/* " */
/* Description: Determines station number given the low-level station name */
/. */

91

COM.C

/* Returns:
/*
/* In:
/* Out:
/*

O'nt)

(char *stn)

destination station number */
BAD_STATION if invalid name */
pointer to string containing the station name */

*/
 */

int look low(char *stn)
i

int i; /* Integer index variable */

for (i=0;i<mlow;i++) if (strcmpi(stn,lowtitli]) == 0) return i+LOW_BASE;
return BAD_STATION;

/*
/*
/* String Return Functions-
/* (declared in "com.h") -
/*
/*

-*/
■*/

-*/
-*/
-*/
-*/

/* errstr
/*
/* Description: Returns a string with the error message for the last error
/* . .
/* Returns: (char *) pointer to string containing error message
/* in: (char »string) pointer to buffer to receive the string
/* Out: (char *string) pointer to string containing error message

==*/
*/
*/
*/
*/
*/
*/
*/

char *errstr(char *string)
t

char sval[10];

strcpy(string,errtit[errnum]);
switch (errnum) t

case BADCHK:
sprintf(sval,"X.2Xh",errval);
strcat(string.sval);
break;

case BADFRM:
case WRGFRH:
case BADTO:
case URGTO:
case BADTYP:

strcat(string,errpar);
break;

default:
break;

>
return string;

/* Temporary string for formatting */

/* Save error text */

/* Add checksum parameter */

/* Add string parameter */

/* stnstr
/* _,_
/* Description: Provide station name given the station number

I* Returns: (char *) pointer to string with station name
/*
/* In: (int n) station number

=*/
*/
*/
*/
*/
*/
*/
*/

92

COM.C
/*
/* Out:
/*

(char *string) pointer to buffer to receive the string
(char *string) pointer to string with station name

*/
*/
-*/

char *stnstr(int n, char *string)
i

strcpy(string,stnnam[n]);
return string;

>

/* stnlstr
/*
/* Description: Provide long station name given the station number
/*
/* Returns: (char *) pointer to string with long station name
/*
/* In: (int n) station number
/* (char *string) pointer to buffer to receive the string
/* Out: (char *string) pointer to string with long station name
/*

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

char *stnlstr(int n, char *string)

strcpy(stringfstntit[n]);
return string;

>

/* messtr
/*
/* Description: Provide message type string given the message type number
/*
/* Returns: (char *) pointer to string with message type
/*
/* In: (int n) message type number
/* (char *string) pointer to buffer to receive the string
/* Out: (char *string) pointer to string with message type
/*

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

char *messtr(int n, char *string)
C

st rcpy(st r i ng,mesnam[n]);
return string;

>

/*
/*
/*
/*
/*

Internal Routines

-*/
-*/
-*/
-V
-*/

/* baudmatch */
/* */
/* Description: Determines the baud rate by matching a string with the valid */
/* values */
/* */
/* Returns: (int) Baud rate in bps (0 indicates invalid string) */
/* In: (char *string) Pointer to baud rate string */
/* Out: - */
/* - V

93

int baudmatch(char *string)
{

int i; /* Integer index variable */

for (i=0;i<NBAUD;i++) if (strcmp(string,baudtit[i])==0) return baudval[i];
return 0;

COM.C

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*•

*/
*/
*/

cfgerror

Description: Outputs an error message for the configuration file including */
the line number and the line. Closes configuration file */

Returns:
In:
Out:

(char *string) Error message string

V
*/
*/
*/
-*/

void cfgerror(char *string)
<

int i;
printf("%s in line %d of %s\n",string,nl.cfgnam);
lstlinetstrlen(lstline)-1] = '\0';
printf("%s\n",Istline);
printfC'Debug: ");
for (i=0;i<20;i++) printf("%02X ",lstline[i]);
printf("\nDebug: ");
for (i=20;i<40;i++) printf("%02X ",lstline[i]);
printf("\n");
fclose(sercfg);
return;

/* Error in line # */

/* Output line */

/* Close config file */

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

cfgline

Description: Gets a non-blank line from configuration file
Line must be of the form <keyword> = <value_string>

Returns:

In:
Out:

(int) Keyword number (see defines)
ENDFILE for end of file
ERRLINE for unrecognized line

(char *string) The value_string

int cfgline(char *string)
{

int i;
char line [220];
char c[220];

/* Integer index variable */
/* String holding line read from config file
/* String to hold the keyword */

do {
if
st
nl
li
st
if

> whil
for (i
for (i
if (i=

(fgets(line,220,sercfg)==NULL) return ENDFILE; /* End of file */
rcpy(lstline,lijie); /* Save line for error message */

ne[strlen(line)-1] = '\0';
rip(line);
(line[0]==';') line[0]='\0';

e (linelO] == '\0');
0;i<strlen(line);i++) lineti] = tolower(line[i]);
0;i<strlen(line);i++) if (line[i]=='=') break;

=strlen(line)) return ERRLINE;

/* Remove '\n' and terminate line */
/* Romove leading and trailing blanks */

/* Ignore comment lines */

Lower case */
Find '=' */

94

COM.C
strncpy(c,line,i); /* Extract, terminate and strip keyword */
c[i] = '\0';
strip(c);
strcpy(string,&line[i+1]); /* Extract and strip value string */
strip(string);
for (i=0;i<NDEF;i++) if (strcmp(c,deftit[i])==0) break; /* Find keyword */
if (i == NDEF) return ERRLINE;
return i;

/* chk_error
/*
/* Description: Checks if any error count (total or consecutive on any port
/* has exceeded the maximums
/*

TOTAL - total number of errors exceeded
CONSEC - max consecutive errors on 1 port
NO_ERROR - no errors
Station causing error (when valid)

/* Returns:
/*
/*
/* In:
/* Out:
/*

(int)

(*int dest)

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

-*/

int chk errord'nt *dest)
{

int i; /* Integer index variable */

if (errcnt > maxerr) { /* Check for total errors */
*dest = UNKNOWNJD;
return TOTAL;

>
for (i=0;i<nd;i++) t /* Check for consecutive errors on any link */

if (p[s[i] .port] .error >= p[s[i] .port] .max) {
*dest = s[i] .to;
return CONSEC;

>
}
*dest = UNKNOWNJD;
return NO_ERROR;

/*=
/*
/*

get line

*/
*/
*/
*/
*/
*/

*/
*/

/* Description: Gets a line terminated by CR from a serial port. Control */
/* characters are discarded. Line available in "plport].rxbuff" */
/*
/* Returns: (int) AVAILJ.INE - "p[port3.rxbuff" has the line
/* NO LINE - no line available
/* In: (int port) Port number (1=C0H1 to 10=COMA)
/* Out:
/*

int getline(int port)
i

int c; /* Character read from port */

if ((c=read ser(port))==-1) return NOJ.INE; /* See if char avail */
while (c!=0x0D) { /* Until <CR> */

if (c >= 0x20) i I* Ignore cntl chars */
if (p[port].rxpnt > 200) p[port].rxpnt = 200; /* Max 200 */
ptport]. rxbuff [ptport] .rxpnt] = c;
ptport].rxpnt++;

>

95

if ((c=read_ser(port))==-1) return NOJ.INE; /* Any avail still ? */

>
p[port].rxbuff[p[port].rxpnt] = '\0';
return AVAIL LINE;

COM.C

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*•

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

Description:

Returns:

In:
Out:

getmess

Gets a message from a serial port. Controls the ACK/NAK
handshaking and error detection. Message details are as
described for "parsemsg"

(int) VALID_MSG - a valid message is available
NO_MESSAGE - no message available
COMM_ERROR - communication error occured

(int port) Port~number (1=C0M1, 10=COMA)

int getmess(int port)
i

struct p_type *pp; /* Pointer to port structure */

/* Get pointer to port structure */

/* Bad message => nak */

/* Nak is extra */

pp = &p[port];
switch (pp->state) <
/* Ready state - no outstanding messages, acks or timeouts */

case READY:
if (getline(port) == NOJ.INE) return NO_MESSAGE;
parsemsg(port);
if (rxtype == BAD_MESSAGE) t

sendnak(port);
set_time(port,p[port].time);
pp->state = NAK_SENT;
errnum = CPTRXA;
errcnt++;
pp->error++;
return COMM_ERR;

> else if (rxtype == NAK) {
pp->rxack A= 1;
sendack(port);
errnum = CPTACK;
errcnt++;
pp->error++;
rxtype = BAD MESSAGE;
return COMM ERR;

> else if (rxtype == ACK) <
errnum = EXTACK;
errcnt++;
pp->error++;
rxtype = BAD_MESSAGE;
return COMM_ERR;

> else if (rxcase != pp->rxack) {
if (strcmp(pp->rxbuff,pp->rxold) != 0) {

pp->rxack A= 1;
sendack(port);
strcpy(pp->rxold,pp->rxbuff);
errnum = LSTRXM;
errcnt++;
pp->error++;
return C0MM_ERR;

> else t
pp->rxack A= 1;
sendack(port);
errnum = LSTACK;

/* Ack is extra */

/* Out of msg sync */
/* New msg */

/* Old msg */

96

COM.C

/* Valid message */

rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM ERR;

>
> else i

strcpy(pp->rxold,pp->rxbuff);
sendack(port);

>
break;

/* Nak sent state - awaiting retranmission of message or ack/nak */
case NAK_SENT:

if (chk_time(port) == 0) { /* Timeout => retransmit nak */
sendnak(port);
set_time(port,p[port].time);
errnum = LSTNAK;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM ERR;

}
if (getline(port) == NOJ.INE) return NO_MESSAGE;
parsemsg(port);
if (rxtype == BAD_MESSAGE) { /* Bad message => nak */

sendnak(port);
set_time(port,p[port].time);
errnum = CPTRXA;
errcnt++;
pp->error++;
return COMM ERR;

> else if (rxtype == NAK) t /* Nak => retransmit nak */
sendnak(port);
set_time(port,p[port].time);
errnum = CPTNAK;
errcnt++;
pp->error++;
rxtype = BAD MESSAGE;
return COMM_ERR;

> else if (rxtype == ACK) {
pp->state = READY;
errnum = EXTACK;
errcnt*«-;
pp->error++;
rxtype = BAD_MESSAGE;
return COMM_ERR;

} else if (rxcase != pp->rxack) {
if (strcmp(pp->rxbuff,pp->rxold) 1= 0) t

pp->state = READY;
pp->rxack A= 1;
sendack(port);
strcpy(pp->rxold,pp->rxbuff);
errnum = LSTRXM;
errcnt++;
pp->error++;
return COMM_ERR;

> else {
pp->state = READY;
pp->rxack *= 1;
sendack(port);
errnum = LSTACK;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return C0MM_ERR;

>
y else i

I* Extra ack */

/* Out of msg sync */
/* New msg */

/* Old msg */

97

COM.C
/* Valid message */ pp->state = READY;

strcpy(pp->rxold,pp->rxbuff);
sendack(port);

>
brek;

Message lent state - awaiting ack */
case MS_SENT:

if chk_time(port) == 0) {
sendstreport,pp->txold);
set time(port,ptport].time);
errnum = LSTTXM;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM ERR;

)
if getline(port) == N0J.INE) return NO_MESSAGE;
paremsg(port);
if rxtype == BAD_MESSAGE) i

sendnak(port);
set_time(port,p[port].time);
srrnum = CPTRXA;
H-rcnt++;
>p->error++;
•eturn COMM ERR;

> ete if (rxtype == NAK) {
iendstr(port,pp->txold);
iet_time(port,p[port] .time);
irrnum = CPTTXM;
»rrcnt++;
ip->error*+;
xtype = BAD MESSAGE;
eturn COMMJERR;

/* Timeout => retransmit */

/* Bad message => nak */

/* Nak => retransmit */

ete if (rxtype == ACK) C /
f (pp->txack == rxcase) <

sendstr(port,pp->txold);
set time(port,p[port].time);
errnum = LSTTXM;
errcnt++;
pp->error+*;
rxtype = BAD_MESSAGE;
return COMM ERR;

else {
pp->state = READY;
pp->error = 0;
return NO_MESSAGE;

Ack received */
/* Out of msg sync */

/* Ack OK */

} elt if (rxcase != pp->rxack) { /* Out of msg sync */
f (strcmp(pp->rxbuff,pp->rxold) != 0) { /* New msg */

pp->state = MSG_ACK;
pp->rxack A= 1;
sendack(port);
set_time(port,p[port].time);
strcpy(pp->rxold,pp->rxbuff);
errnum = LSTRXM;
errcnt++;
pp->error++;
return COMM_ERR;

) else {
pp->state = MSG_ACK; /* Old msg */
pp->rxack A= 1;
sendack(port);
set time(port,p[port].time);
errnui = LSTACK;
rxtype = BAD_MESSAGE;
errcnt++;

98

COM.C

/* Timeout =>
/* message

pp->error++;
return COMM_ERR;

>
> else {

pp->state = MSG_ACK;
strcpy(pp->rxold,pp->rxbuff);
sendack(port);
set_time(port,p[port].time);

>
break;

/* Message and Ack transmitted, awaiting ack */
case MSG_ACK:

if (chk_time(port) == 0) {
sendstr(port,pp->txold);
set time(port,p[port].time);
errnum = LSTTXM;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM_ERR;

>
if (getline(port) == N0J.INE) return NO_MESSAGE;
parsemsg(port);
if (rxtype == BAD_MESSAGE) i

pp->rxack A= 1;
sendack(port);
sendstr(port,pp->txold);
set_time(port,p[port] .time);
errnum = CPTRXA;
errcnt++;
pp->error++;
return C0MM_ERR;

> else if (rxtype == NAK) {
pp->rxack A= 1;
sendack(port);
sendstr(port,pp->txold);
set_time(port,p[port].time);
errnum = CPTTXA;
errcnt++;
pp->error++;
rxtype = BAD_MESSAGE;
return C0MH_ERR;

> else if (rxtype == ACK) {
if (pp->txack == rxcase) <

sendstr(port,pp->txold);
set time(port,p[port].time);
errnum = LSTTXM;
errcnt++;
pp->error++;
rxtype = BAD MESSAGE;
return COMM ERR;

> else t
pp->state = READY;
pp->error = 0;
return NO_MESSAGE;

/* Valid message received */

retransmit */
*/

/* Bad message => retransmit */
/* both ack and message */

/* Nak => retransmit both */

/* Ack received */
/* Out of msg sync

/* Valid ack */

else if (rxcase != pp->rxack) {
if (strcmp(pp->rxbuff,pp->rxold) != 0) {

pp->rxack A= 1;
sendack(port);
set_time(port,p[port] .time);
strcpy(pp->rxold,pp->rxbuff);
errnum = LSTRXM;
errcnt++;
pp->error++;
return COMM_ERR;

/* Out of msg sync */
/* New msg */

99

COM.C

} else {
pp->rxack A= 1;
sendack(port);
set_time(port,p[port].time);
errnum = LSTACK;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM_ERR;

>
> else {

strcpy(pp->rxold,pp->rxbuff);
sendack(port);
set_time(port,p[port].time);

)
break;

/* Old msg */

/* Valid message */

pp->error = 0;
return VALID_MSG;

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

-*/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*•

Description:

Returns:

In:
Out:

lowindex

Determines index number for low-level port names. All index
numbers are based on L0W_BASE and do not conflict with high-
level port numbers.

(int) Index number for the low-level port, to be
used as station number in other calls. If
that name has already been used, then it
returns BAD_STATION

(char *string) Pointer to string with low-level port name

int lowindex(char *string)

int i; /* Integer index variable */

/*• Check to see if name is already used */
for (i=0;i<mlow;i++) if (strcmp(string,lowtit[i])==0) return BAD_STATION;
strcpy(lowti t[mlow],string);
mlow++;
return mlow - 1 + L0W_BASE; /* Return numbers starting at L0W_BASE */

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-*/

Description:

Returns:

In:
Out:

messtype

Determines the index number for the message type string
Only the number of characters in the message type field
are checked (LENMSG).

(int) Index number for the message type. If the
message string is not recognized, it returns
BAD_MESSAGE

(char »string) Pointer to string with message type

int messtype(char *string)
{

int i,j; /* Integer index variables */

100

for(i=0;i<NMESSAGE;i++) i /* Check for message type match
for(j=0;j<LENMSG;j++) if (stringCj] != mesnam[i][j]) break;
if (j == LENMSG) return i;

>
return BAD MESSAGE;

COM.C

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

=*/
*/
*/
*/
*/
*/
*/
*/
*/

parsemsg

Description: Parses message stored in "p[port] .rxbuff" including error
and format checking. Source and destination stations are
stored in "rxfrom" and "rxto" respectively. The message type
is in "rxtype". The string "rxdata" contains the data part
of the message, "rxcase" contains the case of the 'H' which
indicates the case needed for the ack/ACK.

In the event of an error, "rxtype" is BAD_HESSAGE. The error */
number is stored in "errnum", string parameter (if required) */
is stored in "errpar" and if necessary the integer parameter
is stored in "errval".
Once the parsing is complete, the buffer pointer is reset

Returns:
In:
Out:

(int port) Port number (1=C0H1, 10=COHA)

*/
*/
*/
*/
*/
*/
*/
-*/

void parsemsg(int port)
{

int i; /* Integer index variable */
int sndchk; /* Checksum sent with message */
int chk; /* Computed checksum on receive message */

rxfrom = 0;
rxto = 0;
if <p[port].rxpnt == 3) < /* 3 chars => ack, ACK or NAK */

if (strcmp(p[port].rxbuff,"ack")==0) {
rxtype = ACK; /* ack, no data */
rxcase = 0;
rxdata[0] = '\0';

> else if (strcmp(p[port].rxbuff,"ACK")==0) {
rxtype = ACK; /* ACK, no data */
rxcase = 1;
rxdata[0] = '\0';

> else if (strcmpi'CpCport] .rxbuff ,"nak")==0) {
rxtype = NAK;
rxdata[0] = '\0';

> else {
rxtype = BAD_MESSAGE;
errnum = I LACK;
p[port]-rxpnt = 0;
return;

/* NAK, no data */

/* otherwise, bad message */

> else if (p[port].rxpnt < 22) { /* <22 chars => header too short */
rxtype = BAD_MESSAGE;
errnum = HEADER;
ptport].rxpnt = 0;
return;

> else i
if (p[port].rxbuff[20] == 'h') C

rxcase = 0;
} else if (p[port].rxbuff[20] == 'H') {

rxcase = 1;
> else t

rxtype = BAD_MESSAGE; /* Not 'h' or 'H' => bad head */

/* Check case of 'h' for ack/ACK */

101

COM.C

errnum = NOHCHK;
p[port].rxpnt = 0;
return;

)
/* Hake all characters lower case */

for (i=0;i<22;i++) plportj.rxbuff[i] = tolower(plport).rxbuffli]);
if (p[port).rxbuff[0] != '[') C

rxtype = BAD_MESSAGE;
errnum = NOOPEN;
plport].rxpnt = 0;
return;

/* No opening bracket */

/* No separator */

/* 1st ';' separator missing */

/* 2nd ';' separator missing */

/* No closing bracket */

if (plport].rxbuff 15] != '>') <
rxtype = BAD_MESSAGE;
errnum = NOSEPR;
plport). rxpnt = 0;
return;

>
if (plport].rxbuff[10] != ';') C

rxtype = BAD MESSAGE;
errnum = N0SEM1;
plport).rxpnt = 0;
return;

>
if (plport).rxbuff 117) != ';') <

rxtype = BAD MESSAGE;
errnum = N0SEM2;
plport].rxpnt = 0;
return;

>
if (plport].rxbuff[21] != ']') C

rxtype = BAD_MESSAGE;
errnum = NOCLOS;
plport].rxpnt = 0;
return;

>
rxfrom = station(&plport].rxbuff11]);
if (rxfrom == BAD STATION) {

rxtype = BAD_MESSAGE;
errnum = BADFRM;
strncpy(errpar,&p [port].rxbuff ID.LENSTN);
errpar[LENSTN] = '\0';
plport].rxpnt = 0;
return;

> else if (rxfrom != plport].dest) {
rxtype = BAD_MESSAGE; /* 'from' station does not
errnum = WRGFRM; /* match link destination
strncpy(errpar,Splport].rxbuff ID.LENSTN);
errparlLENSTN] = '\0';
plport].rxpnt = 0;
return;

>
rxto = station(&p[port).rxbuff [6]);
if (rxto == BAD STATION) {

rxtype = BAD_MESSAGE; /* Unrecognized 'to' station */
errnum = BADTO;
strncpy(errpar,&p[port].rxbuff[6].LENSTN);
errpar[LENSTN] = '\0';
plport). rxpnt = 0;
return;

> else if (rxto != sfrom) {
rxtype = BAD_MESSAGE; /* 'to' station does not */
errnum = URGTO; /* match local station */
strncpy(errpar,»plport].rxbuff[6],LENSTN);
errparlLENSTN] = '\0';
plport].rxpnt = 0;

/* Unrecognized from station */

*/
*/

102

return;

COM.C

rxtype = messtype(&p[port] .rxbuff[11]);
if (rxtype == BAD_MESSAGE) {

rxtype = BAD_MESSAGE; /* Unrecognized message type */
errnum = BADTYP;
strncpy(errpar,&p[port].rxbuff[11],LENMSG);
errpar[LENMSG] = '\0';
p[port].rxpnt = 0;
return;

>
if ((tolower(p[port].rxbuff[18])!='x') J|

(tolower(p[port].rxbuff[19])!='x')) C
/* Only check checksum if field is not 'xx' or 'XX' */
if ((!isxdigit(p[port].rxbuff[18])) |j

(!isxdigit(p[port].rxbuff[19]))) {
rxtype = BAD_MESSAGE; /* Checksum isn't hexadecimal */
errnum = ILCHAR;
p[port] .rxpnt = 0;
return;

>
sscanf(&p[port].rxbuff[18],"%2x",&sndchk); /* Get tx checksum */
chk = 0; /* Compute receive checksum */
for (i=0;i<p[port].rxpnt;i++) if ((i<18) |J (i>20))

chk += p[port]. rxbuff [i];
chk &= OxFF;
if (chk != sndchk) <

rxtype = BAD_MESSAGE;
errnum = BAD CHIC;
errval = chk;
p[port].rxpnt = 0;
return;

>

/* Checksum doesn't match */

/* <24 chars => no data field */
if (p[port] .rxpnt < 24) {

rxdata[0] = '\0';
> else {

strcpy(rxdata,&p[port].rxbuff[23]); /* Get data field, skip blank */
>

p[port].rxpnt = 0;
return;

/* Reset receive buffer pointer */

/* prtmatch */
/* */
/* Description: Determines the port by matching a string with valid values */
/*
/*
/*
/* Returns:
/*
/* In:
/* Out:
/*

C0M1-9 are normal. COMA is used instead of "COH10" to ensure */
a constant length field. AUX is a synonym for COH1.

(int) Port number (1=COM1, 10=COHA) If no match
is found, 0 is returned

(char *string) Pointer to port string

*/
*/
*/
*/
*/
*/
*/

int prtmatch(char *string)
<.

int i; /* Integer index variable */
char t[220]; /* Temporary string variable */

strcpy(t,string);
i = strlen(t);
if (t[i-1]==':') t[i-1] = '\0';

/* Copy string to temp, remove ':' if there */

103

COM.C

for (i=0;i<NPORT;i++) if (strcmp(t,prttit[i])==0) break;
if (i == NPORT) return 0; /* No valid match was found */
if (i == NPORT-1) return 1; /* 'AUX' is changed to 'COMV */
return i+1; /* Return port number */

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

Description:

Returns:
In:
Out:

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

0 if config file is ok,1 if an error occurred */
*/
*/

 */

read_conf i g

Read the configuration file to set up the port
usage and stations names. Sets up the serial structure "s"
for any given link "i" with "s[i].to" as the destination
station, "s[i].port" as the port number and "s[i].set" as the
serial port settings (baud rate etc), "nd" contains the
of links. Also sets up the port structure "p" for any Slven

port "port" with »p[port].dest" as the destination station.

(int)

int read_config(void)

int i; /*
int baud; /*
int parity; /*
int stop; /*
int bits; /*
int dtype; /*
int state; /*
int itimeout; /*
int consecut; /*
char parm[220]; /*

Integer index variable */
Baud rate */
Parity */
Number of stop bits */
Number of bits per character */
Keyword type number */
State of the configuration file processor */
Number of seconds before timeout */
Number of consecutive errors allowed before exit */
String parameter for the keyword */

nl = 0;
IstlinelO] = '\0';
nd = 0;
bd type = 1;
if~((sercfg=fopen(cfgnamf"r")) == NULL) < /* Open configuration file */

printfC"Cannot open %s\n",cfgnam);
return 1;

>
state = START;
while <<dtype=cfgline(parm)) != ENDFILE) i

switch (state) {
/* Start state - waiting for FROM to specify local station */
case START:

if (dtype == FROM) { I* FROM keyword */
if ((sfrom=stnmatch(parni)) == BAD_STATION) {

cfgerrorO'Unrecognized FROM station");
return 1;

>
state = FROM OK;

> else if (dtype~== ERRLINE) { /* Unrecognized line */
cfgerror("Unrecognized definition");
return 1;

y else { /* Keyword other than FROM */
cfgerrorC'Found a definition not preceeded by FROM");
return 1;

>
break;

/* From OK state - waiting for T0/L0WJ.EVEL to intro link */
case FROM_OK:

maxerr = DEFMAX;

104

COM.C
/* Set default link values */ stnd].port = NOPORT;

baud = B9600;
parity = NOPAR;
stop = ST0P1;
bits = BITS8;
itimeout = DEFTIME;
consecut = DEFCONSEC;
if (dtype == TO) { /* High-level link */

if ((s[nd].to=stnmatch(parm)) == BAD STATION) {
cfgerrorC'Unrecognized TO station");
return 1;

>
state = INTRO OK;

> else if (dtype == LOW_LEVEL) < /* Low level link */
if ((s[nd].to=lowindex(parm)) == BAD_STATION) {

cfgerrorC'Low level port name not unique");
return 1;

>
state = INTRO_OK;

> else if (dtype == BOARD_TYPE> { /* Specify board type */
if (strcmp(parm,"digiboard")==0) {

bd_type = DIGIBOARD;
y else if (strcmp(parm,"standard")==0) i

bd_type = STANDARD;
> else {

cfgerrorC'Unrecognized board type");
return 1;

>
> else if (dtype == HAX_ERROR) { /* Maximum errors */

sscanf(parm,"%d",&maxerr);
if ((maxerr < 1) Jj (maxerr > 30000)) I

cfgerrorC'Maximum errors must be in range 1-30000");
return 1;

>
break;

> else if (dtype == ERRLINE) t /* Unrecognized line */
cfgerrorC'Unrecognized definition");
return 1;

> else < /* Other keywords */
cfgerrorC'Comm parameters without TO or LOW LEVEL");
return 1;

>
break;

/* Intro OK - waiting for comm parameters or another intro */
case INTRO_OK:

switch~(dtype) {
case ERRLINE: /* Unrecognized line */

cfgerrorC'Unrecognized definition");
return 1;

case FROM: /* Extra From */
cfgerrorC'Multiple FROM definition");
return 1;

case BOARDJTYPE: /* Bd type misplaced */
cfgerrorC'Board type definition must follow FROM");
return 1;

case MAX_ERR0R: /* Max err misplaced */
cfgerrorC'Maximum error must follow FROM");
return 1;

case TO:
case LOWJ.EVEL: /* Another link intro */

if (stndj.port == NOPORT) { /* PORT= is missing */
cfgerrorC'No PORT definition found");
return 1;

>
s[nd].set = baud + parity + stop + bits;
p[s[nd].port].dest = s[nd].to;

105

COM.C

p[s[ndl.port].time = (int)(itimeout * 16.66);
p[s[nd].port].max = consecut;
nd++;
if (nd >= MAXCOM) i

cfgerrorC'Maximum number of ports exceeded");
return 1;

s[nd].port = NOPORT; /* Set default parameters */
baud = B9600;
parity = NOPAR;
stop = ST0P1;
bits = BITS8;
itimeout = DEFTIME;
consecut = DEFCONSEC; .
if (dtype == TO) t /* High-level link */

if ((s[nd].to=stnmatch(parm)) == BAD_STAT10N) t
cfgerror("Unrecognized TO station");
return 1;

j else <; /* Low-level link */
if <(s[nd].to=lowindex(parm)) == BAD_STATION) i

cfgerrorC'Low level port name not unique");
return 1;

>
>
state = INTROJX;
brssk*

case PORT: /* Define COM port to be used */
if ((s[nd].port=prtmatch(parm)) == 0) C

cfgerrorC'Unrecognized port type");
return 1;

if (nd > 0) < /* Check port not already use */
for (i=0;i<nd;i++) <

if (stndl.port == s[i).port) <
cfgerrorC'Redefinition of serial port");
return 1;

>
>

>
break; , .,

case BAUD: /* Define baud rate */
if ((baud=baudmatch(parm)) == 0) {

cfgerrorC'Unrecognized baud rate");
return 1;

)
break»' .- -^ *,

case PARITY: /* Define parity */
if (strcmp(parm,"none")==0) {

parity = NOPAR;
> else if (strcmp(parm,"even")==0) <

parity = PAREVN;
} else if (strcmp(parm,"odd")==0) <

parity = PAROD0;
> else {

cfgerrorC'Unrecognized parity");
return 1;

>
break*

case STOP: I* Define number of stop bits */
if (strcmp(parm,"1")==0) i

stop = STOP1;
> else if (strcmp(parm,"1.5")==0) i

stop = ST0P1;
> else if (strcmp(parm,"2")==0) i

stop = ST0P2;

106

COM.C
> else <

cfgerror("Unrecognized stop bits");
return 1;

>
break;

case BITS: /* Define bits per character */
if (strcmp(parm,"5")==0) {

bits = BITS5;
> else if (strcmp(parm,"6")==0) {

bits = BITS6;
> else if (strcmp(parm,"7")==0) {

bits = BITS7;
> else if (strcmp(parm,"8")==0) {

bits = BITS8;
> else {

cfgerrorO'Unrecognized bits/character");
return 1;

>
break;

case TIMEOUT: /* Set timeout */
sscanf(parm,"%d",&itimeout);
if ((itimeout < 1) || (itimeout > 100)) <

cfgerrorC'Timeout must be in range 1-100");
return 1;

>
break;

case CONSECUTIVE: /* Maximum errors */
sscanf(parm,"%d",ficonsecut);
if ((consecut < 1) || (consecut > 10000)) {

cfgerrorC'Consecutive errors must be in range 1-10000");
return 1;

>
break;

>
break;

>
>
switch (state) {

case START:
cfgerrorC'No FROM definition found");
return 1;
break;

case FROM_OK:
break;

case INTRO OK:
if (stnd).port == NOPORT) { /* PORT= missing */

cfgerrorC'No PORT definition found for last TO");
return 1;

>
s[nd].set = baud + parity + stop + bits;
p[s[nd].port].dest = s[nd].to;
p[s[nd].port].time = (intKitimeout * 16.66);
p[sind] .port] .max = consecut;
nd++;
break;

>
fclose(sercfg); /* Close file */
return 0;

/* sendack */
/* */
/* Description: Sends an ack/ACK of the appropriate case to the port */
/* */

107

COM.C

/* Returns:
/* In:
/* Out:

(int) Port number (1=C0M1, 10=COMA)
*/
*/
*/

-V

void sendack(int port)

if (p[port].rxack == 0) {
sendstr(port,"ack\r\n");

> else t
sendstr(port,"ACK\r\n");

>
p[port].rxack A= 1;
return;

/* Toggle case for next ack/ACK */

/* sendnak
/*
/* Description: Sends a nak to the port
/*
/* Returns:
/* in: (int) Port number (1=C0M1, 10=COMA)
/* Out:

=*/
*/
*/
*/
*/
*/
*/
*/
-*/

void sendnak(int port)
C

sendstr(port,"nak\r\n");
return;

>

/*
/*
/* Description: Sends a string to the port
/* Returns:
/* in: (int) Port number (1=COM1, 10=COMA)
/* (char *string) Pointer to string to be sent
/* Out:
/*

*/
*/
*/
*/
*/
*/
*/

sendstr

void sendstrO'nt port,char »string)

int i; /* Integer index variable */

for(i=0;i<strlen(string);i++) write_ser(port,stringti]);
return;

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
I*

=*/
*/
*/
*/
*/
*/
V
*/
*/
*/
*/
•*/

station

Description: Determines the station number by matching a string with valid
values. Only the number of characters in the from/to field
are checked (LENSTN).

Returns:

In:
Out:

(int) Station number. If the string is not
recognized, it returns BAD_STATION

(char *string) Pointer to string with station name

108

int station(char *string)

int i,j; /* Integer index variables */

for(i=0;i<NSTATION;i++) { /* Match only LENSTR characters */
for(j=0;j<LENSTN;j++) if (stringlj] != stnnamli] [j]) break;
if (j == LENSTN) return i; /* Match found */

>
return BAD STATION;

COM.C

/*=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*■

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
-V

stnmatch

Description: Determines the Station number by matching a string with the
valid long station names (used in configuration file).

Returns:

In:
Out:

(int) Station number. If the string is not
recognized, it returns BAD_STATION

(char *string) Pointer to string with long station name

int stnmatch(char *string)

int 1; /* Integer index variable */

for (i=0;i<NSTATION;i++) if (strcmp(string,stntit[i])==0) break;
if (i == NSTATION) return BAD_STATION; /* No match found */
return i;

/* strip
/*
/* Description: Removes trailing and leading blanks from a string
/*

Returns:
In: (char *string) Pointer to string to be stripped of blanks
Out: (char *string) Pointer to string that has been stripped

/*
/*
/*
/*-

=*/
*/
*/
*/
*/
*/
*/
*/
-*/

void strip(char *string)
i

int i;
char t[220];

/* Integer index variable */
/* Temporary working string */

/* Check (from beginning) for non-blank character */
for (i=0;i<strlen(string);i++) if (!isspace(string[i))) break;
if (i == strlen(string)) i /* Blank string */

string [0] = 'XO'.-
return;

>
strcpy(t,&string[i]); /* Remove leading spaces */

/* Check (from end) for non-blank character */
for (i=strlen(t)-1;i>0;i--) if (Msspace(string[i])) break;
strncpy(string,t,i+1); /* Remove trailing spaces */
string[i+1] = '\0';
return;

109

110

Appendix E

Real-time Software Listing

1. Introduction

In this appendix, the assembly language file SERIAL. ASM is listed. This file includes all of the
real-time software used by the communications software. This appendix does not cover the C-language
portion of the communications software which are given in the Appendix D - Communications Software
Listing.

Conversely if one stop bit is chosen for five bits per character, it is converted to 1.5 stop bits.
2. SERIAL.ASM

TITLE SERIAL.ASM
SERIALJ/ERSION EQU "V02Jun93.01"

SERIAL.ASM - serial port handlers
- timer support
- control-C and Break trapping
- critical error trapping to allow clean exit on Abort

'C Language Interface

PUBLIC _open_serf_close_ser,_stat_ser,_ver_ser,_set_ser
PUBLIC _read_ser,_write_ser

Serial Port Routines

int open_ser(int port.int type)

int close_ser(int port)

int stat_ser(void)

char *ver_ser(void)

int set_ser(int port.int parm)

int read_ser(int port)

int write_ser(int port, int ich)

Opens serial 'port',valid range is 1-10
for COM1-10. 'type' is 0 for standard
port addresses, 1 for Digiboard.
Returns 0=OK, 1=port out of range

Close serial 'port', valid range is 1-10
returns 0 for OK,1 for port out of range

Returns composite status of ports. See
the equates for status bit definitions

Returns string showing version number.

Sets baud rate, bits, stop and parity
See equate for definitions of bits in
'parm'. Valid 'port' is 1-10.
Returns 0 = OK, 1 = port out of range

Get character from 'port', valid range
is 1-10. Returns character, -1 for no
char avail or -2 for 'port' out of range

Sends 'ich' to 'port', valid range 1-10
Returns 0 = OK, 1 = port out of range

PUBLIC _open_time,_close_time1_set_time,_chk_time

Timer Support Routines

void open_time(void) Initializes and enables all countdown timers

111

SERIAL.ASM

void close_time(void) Disables all countdown timers

int set timeO'nt timer, int tick) Sets countdown 'timer' to value 'tick'
'Tick' units = 1/16.7s Valid 'timer'
is 0-10. Returns 0=OK, 1=out of range

int chk time(int timer) Returns value of countdown 'timer'. Valid range
0-10. Returns 0 when countdown complete, -1 if
'timer' out of range

PUBLIC _open_break,_cIose_break,_press_break

Control-C and Break Handling Routines

void open break(void) Initializes and enables Cntl-C/Break handler

void close_break(void) Restores system Cntl-C/Break handler

int press break(void) Returns non-zero if Cntl-C/Break pressed since
last call otherwise returns 0

PUBLIC _open_crit,_close_crit

Critical Error Handling Routines

void open_crit(void)

void close crit(void)

Enables critical error handler. This allows
a clean exit if Abort is chosen

Restores system critical error handler

; Memory Model Size

Arg1
Arg2

.MODEL SMALL
EQU [BP+4]
EQU [BP+6]

; [BP+6] for large model
; [BP+8]

Common Declarations

MINCOM EQU COM1
MAXCOM EQU COMA
NO EQU 0
YES EQU 1
NORMAL EQU 0
ERROR EQU 1

Range of COMs to shut down if Abort is
chosen in critical error handler

Interrupt initialized flag values

Return values for routines
(not valid for read_ser and chk_timer)

Serial Port Handler

; Valid COM ports (see MINCOM and MAXCOM above)
COM1 EQU 1
COM2 EQU 2
COM3 EQU 3
COM4 EQU 4
COM5 EQU 5
COM6 EQU 6
COM7 EQU 7
COM8 EQU 8

112

SERIAL.ASM

C0H9
COMA

EQU
EQU

9
10

; Definitions for the 8259 interrupt controller
OCW EQU 20h ; Control word register

EOI EQU 20h ; Nonspecific end-of-interrupt
IMR EQU 21h ; Interrupt mask register

1 Port offsets for UART registers
s RXD EQU 0 Rece ve data register (RfDLAB=0)
s" "TXD EQU 0 Transmit data register (U,DLAB=0)
s" "DLSB EQU 0 Baud rate divisor LSB (U,DLAB=1)
s" "DMSB EQU 1 Baud rate divisor MSB (W,DLAB=1)
s] JER EQU 1 Interrupt enable register (DLAB=0)

DISINT EQU 00000000b Disable all interrupts
ENRXD EQU 00000001b Enable Rx data interrupts
ENTXD EQU 00000010b Enable Tx empty interrupts
ENBRK EQU 00000100b Enable Break/Error ints
ENCTL EQU 00001000b Enable Control line ints

s. _I IR EQU 2 Interrupt identification register
CTLINE EQU 00000000b Control line int
NOINTS EQU 00000001b No interrupts occurred
TXDRDY EQU 00000010b Tx empty interrupt
RXORDY EQU 00000100b Rx data interrupt
BREAKE EQU 00000110b Break/Error interrupt
VALBIT EQU 00000111b Valid bit mask

s. .LCR EQU 3 ■ Line control register
BIT5
BIT6
BIT7
BIT8

EQU
EQU
EQU
EQU

00000000b
00000001b
00000010b
00000011b

; Number of bits/character

STOP1 EQU 00000000b ; Number of stop bits
STOP2 EQU 00000100b
PARNO EQU 00000000b ; Parity (none)
PARODD EQU 00001000b ; Odd
PAREVN EQU 00011000b ; Even
PARO EQU 00111000b ; Force 0
PAR1 EQU 00101000b ; Force 1
BRKOFF EQU 00000000b ; Disable break
BRKON EQU 01000000b ; Send break
DLAB EQU 10000000b ; Controls divisor (addr 0/1)

s. _HCR EQU 4 ■ Modem control register
DTR EQU 00000001b Set Data Terminal Ready
RTS EQU 00000010b Set Request To Send
OUT1 EQU 00000100b Set out 1 (reset Hayes modem)
OUT2 EQU 00001000b Set out 2 (enable interrupts)
LOOPBK EQU 00010000b Set loopback mode

s. J.SR EQU 5 ■ Line status register
RXREDY EQU 00000001b Rx data character available
OVERUN EQU 00000010b Overrun error
PARITY EQU 00000100b Parity error
FRAME EQU 00001000b Framing error
BREAK EQU 00010000b Break received
TXREDY EQU 00100000b Tx hold register empty
TXSRDY EQU 01000000b Tx shift register empty

s. _MSR EQU 6 ■ Modem status register
DELCTS EQU 00000001b Change in CTS line
DELDSR EQU 00000010b ■ Change is DSR line
FALRI EQU 00000100b ■ Falling edge of RI line
DELCD EQU 00001000b ■ Change in CD line
CTS EQU 00010000b ■ State of CTS line
DSR EQU 00100000b ■ State of DSR line
RI EQU 01000000b ■ State of RI line
CD EQU 10000000b ■ State of CD line

Status bits for variable stat - returned by stat_ser()

113

SEWAL.ASM

INVINT EQU
HANDSK EQU
BRKERR EQU
RXOVER EQU
TXOVER EQU
TXFULL EQU

00000001b
00000010b
00000100b
00001000b
00010000b
00100000b

Interrupt called, int bit not set (1)
Handshaking line change (2)
Error or break occured (4)
Receive buffer overflow (8)
Transmit buffer overflow (16)
Transmit buffer not empty, valid only (32)
on return from stat_ser()

; Rx and Tx buffer definistions
BSIZE EQU 512
BFLOW EQU BSIZE-4

Buffer size
Overflow point for buffer

.DATA
s_base DU ?

i
Base address of serial port

stat DW b i Status

eoi_cnt DW 0 i
Number of EOIs in the isr

bas_tbl LABEL WORD i
Serial port base addresses

DW 03F8h COM1

DW 02F8h COM2

bas_c3 DW 0100h COM3

bas_c4 DW 0108h COM4

DW 0110h COM5

DU 0118h C0M6

DU 0120h COM7

DU 0128h COM8

DU 0130h COM9

DU 0138h COMA

t_tbl LABEL WORD i
Translation table: serial port

DU 2 COM1, IRQ4

DW 0 ■ COM2, IRQ3
t_c3 DW 0 ■ COM3, IRQ3
t~c4 DW 0 ■ COM4, IRQ3

DW 0 ■ COM5, IRQ3

DU 0 ■ COM6, IRQ3

DU 0 ■ COM7, IRQ3
DU 0 ■ COM8, IRQ3
DW 0 • COM9, IRQ3

DW 0 ■ COMA, IRQ3

use_tbl LABEL UORD ; Table for flags to indicate port in use

DW NO COM1

DW NO COM2
DU NO COM3

DU NO COM4
DU NO COM5
DU NO COM6
DW NO ■ C0M7
DW NO ■ COM8
DW NO ■ COM9
DU NO ■ COMA

cnt_tbl LABEL WORD ; Table to count number of ports using IR

DU 0 ■ IRQ3
DU 0 ■ IRQ4

off_tbl LABEL WORD ; Table af offsets for old vectors

DU ? ■ IRQ3
DW ? ; IRQ4

seg_tbl LABEL UORD ; Table Df segments for old vectors

DW ? ; IRQ3

DW ? ; IRQ4

114

SERIAL.ASM

u

eoi_flg LABEL UORD Table of flags for eoi services
DW 0 ; IRQ3
DU 0 ; IRQ4

rxjxit LABEL UORD ; Receive buffer put pointers
DU rx1_buf COM1
DU rx2_buf COM2
DU rx3_buf COM3
DU rx4 buf COM4
DU rx5Jxjf COM5
DU rx6 buf COH6
DU rx7~buf COM7
DU rx8_buf COM8
DU rx9~buf COM9
DU rxa_buf COMA

rx_get LABEL UORD ; Receive buffer get pointers
DU rx1 buf COM
DU rx2~buf COM2
DU rx3_buf COM3
DU rx4 buf COM4
DU rx5~buf COM5
DU rx6~buf COM6
DU rx7_buf COM7
DU rx8~buf COM8
DU rx9~buf C0M9
DU rxa_buf COMA

rx_cnt LABEL UORD ; Receive buffer character counts
DU 0 COM1
DU 0 COM2
DU 0 COM3
DU 0 COM4
DU 0 C0M5
DU 0 COM6
DU 0 COM7
DU 0 COM8
DU 0 COM9
DU 0 COMA

rx_beg LABEL UORD ; Pointer to beginning of receive buffer
DU rx1 buf • COM1
DU rx2~buf • COM2
DU rx3Jxjf • COM3
DU rx4 buf ■ COM4
DU rx5~buf ■ COM5
DU rx6~buf ■ COM6
DU rx7Jxif ■ COM7
DU rx8_buf ■ COM8
DU rx9~buf • COM9
DU rxa_buf ; COMA

rx_end LABEL UORD ; Pointer to end of receive buffer
DU rx1 1st ; COM1
DU rx2_lst ; COM2
DU rx3_lst ; COM3
DU rx4~lst ; COM4
DU rx5~lst ; COM5
DU rx6~lst ; C0M6
DU rx7~lst ; C0M7
DU rx8~lst ; COM8
DU rx9~lst ; COM9
DU rxa_lst ; COMA

tXJXJt LABEL UORD ; Transmit buffer put pointers
DU tx1 buf ; C0M1

115

SERIAL.ASM

DW tx2 buf COM2
DW tx3 buf COM3

DW tx4~buf COM4
DW tx5_buf COM5
DU tx6*~buf COM6
DU tx7J*jf C0M7
DU tx8_buf COM8
DU tx9~buf COM9
DU txa_buf COMA

tx get LABEL UORD ; Transm t buffer get pointers
DU tx1 buf COM1
DU tx2 buf COM2
DU tx3 buf COM3
DU tx4 buf COM4
DU tx5_buf COM5
DW tx6 buf COM6
DW tx7_buf COM7

DW tx8_buf C0M8
DW tx9_buf C0M9
DW txa_buf COMA

tx cnt LABEL WORD ; Transm t buffer character counts
DU 0 C0M1
DU 0 COM2
DU 0 COM3
DU 0 COM4
DU 0 COM5
DU 0 COM6
DU 0 COM7
DU 0 COM8
DU 0 COM9
DU 0 COMA

tx beg LABEL WORD ; Pointe - to beginning of transmit buffer
DU tx1 buf ■ COM1
DU tx2 buf ■ COM2
DU tx3 buf COM3
DU tx4 buf • COM4
DU tx5 buf • COM5
DU tx6 buf • COM6
DU tx7_buf ■ COM7
DU tx8_buf • COM8
DW tx9~buf ■ COM9
DW txa_buf ■ COMA

tx end LABEL WORD ; Pointe r to end of transmit buffer
DW tx1 1st ■ COM1
DU tx2 1st ■ COM2
DU tx3_lst ■ COM3
DW tx4_lst • COM4
DW tx5~lst • COM5
DW tx6~lst • COM6
DW tx7_lst • COM7
DW tx8 1st ■ COM8
DW tx9_lst • COM9
DW txa~lst • COMA

; Receive buffers
rx1 buf DB BSIZE DUP (?) ; COM1
rxAst EQU $
rx2 buf DB BSIZE DUP (?) ; COM2
rx2 1st EQU $
rx3 buf DB BSIZE DUP (?) ; COM3

rx3 1st EQU $
rx4~buf DB BSIZE DUP (?) ; COM4

I

116

SERIAL.ASM

rx4 1st EQU $
rx5J>uf DB BSIZE DUP (?) ; COM5
rx5 1st EQU $
rx6 buf DB BSIZE DUP (?) ; COM6
rx6 1st EQU $
rx7 buf DB BSIZE DUP (?) ■ COM7
rx7 1st EQU $
rx8 buf DB BSIZE DUP (?) ■ COM8
rx8_lst EQU $
rx9~buf DB BSIZE DUP (?) ■ COM9
rx9_lst EQU $
rxa_buf DB BSIZE DUP (?) ■ COMA
rxa_lst EQU $

; Transmit buffers
tx1 buf DB BSIZE DUP (?) ■ COM1
tx1 1st EQU $
tx2Jxjf DB BSIZE DUP (?) ■ COM2
tx2 1st EQU $
tx3~buf DB BSIZE DUP (?) COM3
tx3~lst EQU $
tx4 buf DB BSIZE DUP (?) COM4
tx4 1st EQU $
tx5~buf DB BSIZE DUP (?) COM5
tx5~lst EQU S
tx6~buf DB BSIZE DUP (?) COM6
tx6~lst EQU $
tx7~buf DB BSIZE DUP (?) COM7
tx7~lst EQU $
tx8~buf DB BSIZE DUP (?) COM8
tx8_lst EQU $
tx9 buf DB BSIZE DUP (?) COM9
tx9_lst EQU $
txa_buf DB BSIZE DUP (?) COMA
txa_lst EQU $

.CONST
ver_str DB SERIAL VERSION,0 ; Version number string
isr_vec DD ser_int ; Pointer to ISR

baud_dv LABEL UORD f Baud rate divisor table
DU 0417h 110 bps
DU 0300h 150 bps
DU 0180h 300 bps
DU OOCOh 600 bps
DU 0060h 1200 bps
DU 0030h 2400 bps
DU 0018h 4800 bps
DU OOOCh 9600 bps

Standard COM port definitions
sbas c3 DW 03E8h ; COM3
sbas_c4 DU 02E8h

i

; COM4

Standard COM IRQ definitions
st_c3 DU 2 ; COM3, IRQ4
st_c4 DU 0 . COM4, IRQ3

get tbl LABEL UORD
DU 350Bh
DU 350Ch

Serial port ISR "get vector" commands
; IRQ3
; IRQ4

put_tbl LABEL UORD
DU 250Bh
DU 250Ch

Serial port ISR "put vector" commands
; IRQ3
; IRQ4

117

SERIAL.ASM

dis tbl LABEL WORD
DW 00001000b
DU 00010000b

en tbl LABEL WORD
DW 11110111b
DW 11101111b

eoi_tbl LABEL WORD
DW 63h
DW 64h

; 8259 masks to disable serial interrupts
; IRQ3
; IRQ4

; 8259 masks to enable serial interrupts
; IRQ3
; IRQ4

; 8259 specific end-of-interrupts
; IRQ3
; IRQ4

.CODE
_open ser PROC

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
CMP
JLE
JMP

os1: CMP
JGE
JMP

os2: CMP
JNE
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

os3: DEC
SAL
CLI
MOV
CMP
JE
JMP

os4: MOV
MOV
MOV
MOV
MOV
ADD
OUT

clrdat: MOV
ADD
IN
MOV
TEST
JNZ
CMP
JNE
MOV
ADD
IN
CMP

NEAR
BP
BP.SP
ES
DS
AX.DGROUP
DS,AX
ES, AX
BX.Argl
AH,Arg2
BX.MAXCOM
osl
oserr
BX,MINCOM
os2
oserr
AH,0
os3
AX,sbas_c3
bas_c3,AX
AX,sbas_c4
bas_c4,AX
AX,st c3
t c3,ÄX
AX,st_c4
t_c4,AX
BX
BX,1

Install serial port ISR

Get port number passed by C
Get configuration passed by C
Check to see if it is within range

If standard type, reassign COM3/4 addresses
and IRQs over the Digiboard ones

os5:

AX,use_tbl£BX]
AX, NO
os4
oserr
use_tbl[BX],YES
AX,bas_tbl[BX]
s base,AX
AL,ENRXD+ENTXD+ENBRK+ENCTL
DX,S_IER
DX,s base
DX.AL
DX,S_IIR
DX,s_base
AL.DX
AH,AL
AL,NOINTS
clrok
AH.CTLINE
os5
DX,S_MSR
DX,s_base
AL.DX
AH.TXDRDY

Convert port number to table pointer

Disable interrupts while changing vectors
Check to see if it is already open

Set used flag
Set up serial port base address

; Enable all interrupts

Clear junk from UART

Check for unserviced interrupts

If control line interrupt pending
then read MSR to clear it

If Tx empty interrupt pending

118

SERIAL.ASM

os6:

os7:

clrok:

JNE
CMP
JNE
MOV
ADD
IN
CMP
JNE
MOV
ADD
IN
JMP
MOV
MOV
ADD
OUT
MOV
MOV
ADD
OUT
MOV
MOV
MOV
INC
CMP
JG
MOV
PUSH
INT
MOV
POP
MOV
MOV
PUSH
MOV
LDS
INT
POP
IN
AND
OUT
MOV
OUT
MOV
JMP
MOV
ST I
POP
POP
MOV
POP
RET

_open_ser ENDP

osok:

oserr:
osdone:

os6
AH,RXDRDY
os7
DX,S_RXD
DX,s base
AL,DX
AH.BREAKE
clrdat
DX.SJ.SR
DX,s base
AL,DX
clrdat
AL.DTR+RTS+OUT2
DX,S_MCR
DX,s base
DX.AL
AL.ENRXD+ENTXD
DX,S_IER
DX,s base
DX.AL
AX,t_tbl[BX]
BX,AX
AX.cnt tbltBX]
cnt_tbT[BX]
AX,0
osok
AX,get tbllBX]
BX
21h
AX.BX
BX
off tbl[BX],AX
seg~tbl[BX],ES
DS
AX,put_tbl[BX]
DX.isr vec
21h
DS
AL.IMR
AL,BYTE PTR en_
IMR.AL
AL.EOl
OCU.AL
AX,NORMAL
SHORT osdone
AX,ERROR

DS
ES
SP,BP
BP

then do nothing
If Rx data interrupt pending
then read data

; If Break/Error interrupt pending
then read LSR to clear it

; Check for more pending interrupts
; Set all handshaking lines

; Enable Rx and Tx interrupts

; Translate port number to IRQ number

; See if IRQ is already initialized

; Get old interrupt vector

; Save for restoring later

; Put in new int vector
; DS:DX point to new ISR

; Enable 8259 PIC
tbl[BX]

; Send out an EOI to clear it

; Normal return

; Error return
; Re-enable interrupts

close ser PROC NEAR Remove serial port ISR
PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
CMP
JLE

BP
BP.SP
ES
DS
AX.DGROUP
DS.AX
ES, AX
BX,Arg1
BX.MAXCOM
cs1

Get port number passed by C
Ensure it is within range

119

SERIAL.ASM

JHP cserr
cs1: CMP BX,MINCOM

JGE cs2
JMP cserr

cs2: DEC BX
SAL BX,1
MOV AX,use tbUBX]
MOV use tbl[BX],NO
CMP AX,YES
JE cs3
JMP cserr

cs3: MOV AX,bas_tbl[BX]
MOV s base,AX
MOV AX,t tbUBX]
MOV BX,AX
DEC cnt_tbl [BX]
JNZ csok
IN AL.IMR
OR AL,BYTE PTR dis
OUT IMR.AL
MOV AL.DISINT
MOV DX,S_IER
ADD DX,s base
OUT DX,AL
MOV AX,put tblCBX]
MOV DX,off tbl[BX]
MOV CX,seg~tbl[BX]
MOV DS,CX ~
INT 21h

csok: MOV AX,NORMAL
JMP SHORT csdone

cserr: MOV AX,ERROR
csdone : POP DS

POP ES
MOV SP.BP
POP BP
RET

close ser ENDP

stat ser PROC NEAR ; Get se
PUSH BP
MOV BP,SP
PUSH ES
PUSH DS
MOV AX.DGROUP
MOV DS.AX
MOV ES,AX
MOV AX,stat
OR AX,TXFULL
MOV BX.MAXCOM
DEC BX
SAL BX,1

sal: CMP tx_cnt[BX],0
JNE sa2
SUB BX,2
JGE sal
XOR AX.TXFULL

sa2: AND stat.OOH
POP DS
POP ES
MOV SP.BP
POP BP
RET

_stat_ser endp

; Convert port number to a table pointer

; Get old value for used flag
; Clear used flag
; See if it was used before

; Port wasn't opened
; Get UART base address for port

; Translate port number to IRQ number

; Decrease count of ports using this IRQ
; If non-zero, do not disable IRQ

; Disable COM interrupts in 8259
tbl[BX]

; Disable UART interrupts

; Restore original vector

; Normal return

; Error return

Get serial port and buffer status

Set transmitter buffers full flag
Convert max port # to table offset

Check to see if any tx buffer has data

Reset tx buffers full
Clear status for next

flag
call I

120

SERIAL.ASM

ver_ser PROC NEAR
PUSH
HOV
PUSH
PUSH
MOV
MOV
MOV
MOV
POP
POP
MOV
POP
RET

_ver_ser endp

; Returns string showing version number
BP
BP.SP
ES
DS
AX.DGROUP
DS.AX
ES, AX
AX,OFFSET ver str
DS
ES
SP.BP
BP

1

_set_ser PROC
PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
CMP
JLE
JMP

ss1: CMP
JGE
JMP

ss2: DEC
SAL
MOV
MOV
MOV
MOV
ADD
OUT
MOV
MOV
ROL
AND
MOV
ADD
MOV
MOV
ADD
OUT
MOV
MOV
ADD
OUT
MOV
AND
MOV
ADD
OUT
MOV
MOV
ADD
OUT
MOV
JMP

NEAR
BP
BP.SP
ES
DS
AX.DGROUP
DS.AX
ES,AX
BX,Arg1
AH,Arg2
BX.MAXCOM
ss1
sserr
BX.MINCOM
ss2
sserr
BX
BX,1
CX,bas_tbl[BX] ;
s_base,CX
AL.DLAB
DX,S_LCR
DX,s base
DX.AL
DL,AH
CL,4
DL.CL
DX,00001110b
DI,OFFSET baud_dv
DI.DX
AL.CDI+1]
DX,S_DMSB
DX,s_base
DX,AL
AL.tDI]
DX,S_DLSB
DX,s_base
DX.AL
AL, AH
AL,00011111b
DX.SJ.CR
DX,s base
DX.AL
AL.ENRXD+ENTXD ;
DX.SJER
DX.s base
DX.AL
AX,NORMAL
SHORT ssdone

Set serial port paramenters

Get port number passed by C
Get configuration passed by C
Ensure port in range

Convert port number to table pointer

Get base address of UART

Set DLAB bit to access divider regs

Shift configuration to BAUD field

; Mask out all other bits

; Convert to table pointer
Set high byte of divider

Set low byte of divider

Use rest of configuration to set LCR

Enable Rx or Tx interrupts

Normal return

121

SERIAL.ASM

sserr: MOV AX,ERROR
ssdone: POP DS

POP ES
MOV SP.BP
POP BP
RET

_set_ser ENDP

read ser PROC NEAR ; rea
PUSH BP
MOV BP.SP
PUSH ES
PUSH DS
MOV AX.DGROUP
MOV DS,AX
MOV ES.AX
MOV BX,Arg1
CMP BX.MAXCOM
JLE rs1
JMP rserr

rs1: CMP BX.MINCOM
JGE rs2
JMP rserr

rs2: DEC BX
SAL BX,1
MOV Dl.rx getIBX]
CMP DI,rxjxjt[BX]
JE nodata
INC DI
CMP DI,rx_end[BX]
JNE rs3
MOV Dl.rx beg[BX]

rs3: MOV AL, [DI]
MOV AH,0
MOV rx_get[BX],DI
DEC rx~cnt[BX]
JMP SHORT rsdone

rserr: MOV AX.-2
JMP SHORT rsdone

nodata: MOV AX.-1
rsdone: POP DS

POP ES
MOV SP.BP
POP BP
RET

read ser ENDP

Error return

byte from serial port receive buffer

; Get port number passed by C

; Ensure port is within range

; Convert port to table pointer

; See if character is available

; Advance (with wraparound) get pointer DI

; Get the character and clear upper byte

; Save new get pointer
; Reduce the buffer character count

; Error return - port number out of range

; Error return - no data available

write ser PROC NEAR Write char to serial port or tx buffer
PUSH BP
MOV BP.SP
PUSH ES
PUSH DS
MOV AX.DGROUP
MOV DS.AX
MOV ES.AX
MOV BX.Argl
CMP BX.MAXCOM
JLE wsi
JMP wserr

ws1: CMP BX.MINCOM
JGE ws2
JMP wserr

ws2: DEC BX
SAL BX.1

Get port number passed by C
Ensure port within range

Convert port to table pointer

122

SERIÄL.ASM

MOV
MOV
MOV
CMP
JNE
MOV
ADD
IN
AND
CMP
JNE
MOV
ADD
IN
TEST
JZ
MOV
MOV
ADD
OUT
jmp

sv_chr: MOV
MOV
INC
CMP
JNE
MOV
MOV
INC
CMP
JLE
OR
MOV
JMP
MOV
POP
POP
MOV
POP
RET

write ser ENDP

ws3

wsok:

wserr:
wsdone

AX,bas_tbl[BX] ;
s base.AX
D7,tx_put[BX]
DI,tx_get[BX]
sv ehr
DX7S_MSR
DX,s base
AL.DX
AL.CTS+DSR
AL.CTS+DSR
sv ehr
DX7S_LSR
DX,s base
AL,DX
AL.TXREDY
sv ehr
AL7Arg2
DX,S_TXD
DX,s_base
DX.AL
SHORT wsok
AL,Arg2
[DI],AL
DI
DI,tx_end[BX]
ws3
Dl.tx begtBX]
tx_put[BX],DI
tx_cnt [BX]
tx_cnt[BX],BFLOU
wsok
stat.TXOVER
AX,NORMAL
SHORT wsdone
AX,ERROR
DS
ES
SP.BP
BP

Get base address of UART

See if buffer already has characters

Check for DSR, CTS

Check for UART ready

Transmit char from 'C

Save character passed from C in buffer

Advance (with wraparound) put pointer DI

; Check for transmit buffer overflow

; Set status bit for overflow
Normal return

Error return

J

ser int:
CLI
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MOV

MOV
MOV
MOV
MOV

chkdev: CMP
JE
MOV
MOV
ADD

Serial port ISR for C0M1-COM8 (IRQ3 & IRQ4)

DS
ES
AX
BX
CX
DX
DI
SI
AX.DGROUP
DS.AX
ES,AX

BX,0
eoi cnt,BX
eoi~flg,BX
eoi flg+2,BX
use~tbl[BX],NO
nxtdev
SI,bas_tbl[BX]
DX,S IIR
DX.sT

Start table pointer at first device
Clear counter and flags for IRO.3,4

Check to see if in use

Check to see if this UART caused int

123

SERIAL.ASM

IN
AND
TEST
JZ

nxtdev: ADD
CMP
JL

isdone: CMP
JE
JMP

notint: OR
JMP

found:

i tbl

MOV
JMP
LABEL
DW
DU
DW
DW

ctlint: OR
MOV
ADD
IN
JMP

txint: MOV
CMP
JE
DEC
MOV
MOV
ADD
OUT
INC
CMP
JNE
MOV
MOV
JMP

txend:

rxint:

n"1:

rxend:

MOV
ADD
IN
MOV
INC
CMP
JNE
MOV
MOV
MOV
INC
CMP
JLE
OR
JMP

brkint: OR
MOV
ADD
IN
JMP

AL.DX
AX.VALBIT
AX.NOINTS
found
BX,2
BX,MAXCOM*2
chkdev
eoi_cnt,0
not i nt
sidone
stat.INVINT
SHORT sidonl
DI.AX
CS:i tbUDI]
WORD-

ctlint
txint
rxint
brkint

stat.HANDSK
DX.S MSR
DX.sT
AL.DX
SHORT sidonl

DI,tx_get[BX]
DI,tx_put[BX]
txend
tx cntCBX]
ALTCDI]
DX,S_TXD
DX,SI
DX,AL
DI
DI,tx_end[BX]
txend
Dl.tx begCBX]
tx_get[BX],DI
SHORT sidonl

DX,S_RXD ;
DX.SI
AL.DX
DI,rx_put[BX]
DI
DI,rx_end[BX]
rit
Dl.rx beg[BX]
[DI] ,ÄL
rx_put[BX],DI
rx_cnt[BX]
rx_cnt[BX],BFLOW
rxend
stat.RXOVER
SHORT sidonl

stat.BRKERR ;
DX,S_LSR
DX.SI
AL,DX
SHORT sidonl

; If interrupt found then process

; Next UART

No in-use UARTs caused interrupt,
so set invalid interrupt status bit

Use interrupt ID number as pointer

Handshaking line changed (set status bit)
; Clear interrupt

Tx empty
; If data in buffer

; then decrement count
; and send it out

; Advance get pointer (with wraparound)

Rx data available
; Get character from UART

; Advance put pointer (with wraparound)

; Put character in buffer

; Increment buffer count
; Check for receive buffer overflow

; Set status bit

Break or error occurred (set status bit)
; Clear interrupt ^

sidonl: PUSH
MOV
MOV

BX
AX,t tbUBX]
BX,AX

; Translate port number to IRQ number

124

SERIAL.ASM

INC eoi cnt
INC eoi flg[BX]
POP BX
JMP chkdev

sidone: CMP eoi flg,0
JE si1
MOV AX,eoi tbl
OUT OCW.AL

si1: CMP eoi flg+2,0
JE si2
MOV AX,eoi tbl+2
OUT OCW.AL

si2:
POP SI
POP DI
POP DX
POP CX
POP BX
POP AX
POP ES
POP DS
I RET

; Count number of total eoi
; Set flag for later EOI

; Check for EOI for first IRQ

; Get IRQ eoi instruction
; Send EOI to 8259 chip

; Check for EOI for second IRQ

; Get IRQ eoi instruction
; Send EOI to 8259 chip

Timer support

NTIMER EQU 11
GETTIV EQU 351Ch
PUTT IV EQU 251Ch

h

.DATA
t_vec DD
t~init DU
count LABEL

DU

.CODE
open_time PROC

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
CMP
JNE
MOV
MOV
INT
MOV
MOV
MOV
MOV
MOV
MOV
INT

otdone: POP
POP
MOV
POP
RET

_open_time ENDP

?
NO
WORD
NTIMER DUP (0)

Number of countdown timers
Get timer interrupt vector
Put timer interrupt vector

Storage for original INT 1CH vector
Flag to indicate if initialized
Table of count down values

NEAR ; Install timer tick ISR
BP
BP.SP
ES
DS
AX.DGROUP
DS.AX
ES, AX
t_init,NO
SHORT otdone
t init,YES
AX,GETTIV
21h
WORD PTR t_vec,BX
WORD PTR t_vec+2,ES
AX.SEG time_int
DS.AX
DX,OFFSET time_int
AX,PUTTIV
21h
DS
ES
SP.BP
BP

; Check to see if already initialized

; Set initialized flag
; Get interrupt vector for 1CH

; Save old vector

; DS:DX points to new routine

; Set interrupt vector

125

SERIAL.ASM

_close_time PROC NEAR ; Remove timer tick ISR
PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
CMP
JNE
MOV
LDS
MOV
INT

ctdone: POP
POP
MOV
POP
RET

close time ENDP

BP
BP,SP
ES
DS
AX.DGROUP
DS.AX
ES, AX
t_init,YES
ctdone
t_init.NO
DX.t vec
AX,PÜTT IV
21h
DS
ES
SP,BP
BP

Check to see if initialized

; DS:DX points to original routine
; Set interrupt vector

set time PROC
PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
CMP
JL
JMP
CMP
JGE
JMP
SAL
MOV
MOV
MOV
JMP

sterr: MOV
stdone: POP

POP
MOV
POP
RET

set time ENDP

st1:

st2:

NEAR
BP
BP.SP
ES
DS
AX.DGROUP
DS.AX
ES, AX
BX.Argl
BX.NTIMER
st1
sterr
BX.O
st2
sterr
BX.1
AX,Arg2
count[BX],AX
AX,NORMAL
SHORT stdone
AX,ERROR
DS
ES
SP.BP
BP

Set the count-down timer counter

Get timer number passed by C
Ensure it is within range

Convert timer number to table pointer
Get the tick count passed by C
Set countdown timer value

Error return

chk time PROC NEAR Returns count-down value

ck1:

PUSH BP
MOV BP.SP
PUSH ES
PUSH DS
MOV AX.DGROUP
MOV DS.AX
MOV ES, AX
MOV BX.Argl
CMP BX.NTIMER
JL ck1
JMP ckerr
CMP BX.O
JGE ck2

V
Get timer number passed by C
Ensure timer number is within range

126

SERIAL.ASM

JMP ckerr
ck2: SAL BX,1

MOV AX,count[BX]
JHP SHORT ckdone

ckerr: MOV AX.-1
ckdone: POP DS

POP ES
MOV SP.BP
POP BP
RET

_chk_time ENDP

time int: ; Timer
CLI
PUSH DS
PUSH ES
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AX.DGROUP
MOV DS.AX
MOV ES,AX
MOV BX,0

til: DEC count[BX]
JG ti2
AND countEBX],0000h

ti'2: ADD BX,2
CMP BX,NTIMER*2
JL til
POP DX
POP CX
POP BX
POP AX
POP ES
POP DS
IRET

; Convert timer number to table pointer
; Load countdown value (0 if finished)

; Error return - timer number out of range

Timer tick interrupt service routine

Load table pointer for first timer
; Decrease count but not below 0

; Get table pointer for next timer
Until done

Control-C and Break Detection

GETBIV EOU 351Bh
PUTBIV EQU 251Bh
GETCIV EQU 3523h
PUTCIV EQU 2523h

.DATA
b vec DD 7
b init DW NO
brkflg DU 0

.CODE
open break PROC NEAR ;

PUSH BP
MOV BP.SP
PUSH ES
PUSH DS
MOV AX.DGROUP
MOV DS.AX
MOV ES, AX
CMP b init,NO
JNE obdone
MOV b_im"t,YES

Get Break interrupt vector
Put Break interrupt vector
Get Control-C interrupt vector
Put Control-C interrupt vector

Storage for original INT 1BH vector
Flag to inidicated initialized
Flag that BREAK occurred

Install control-C and break ISR

Check to see if initialized

Set flag to indicate initialized

127

SERIAL.ASM

MOV AX.GETBIV
INT 21h
MOV WORD PTR b vec.BX
MOV WORD PTR b~vec+2,ES
MOV AX.SEG break int
MOV DS,AX
MOV DX,OFFSET break int
MOV AX.PUTBIV
INT 21h
MOV AX.SEG ctlc int
MOV DS,AX
MOV DX,OFFSET ctlc int
MOV AX.PUTCIV
INT 21h

obdone: POP DS
POP ES
MOV SP.BP
POP BP
RET

_open_break ENDP

; Get break interrupt vector
; (don't need to save for Control-C)
; Save break interrupt vector

; DS:DX points to new break routine

; Set Break interrupt vector

; DS:DX points to new Control-C routine

; Set Control-C interrupt vector

close break PROC NEAR Remove control-C and break ISR
PUSH BP
MOV BP,SP
PUSH ES
PUSH DS
MOV AX.DGROUP
MOV DS.AX
MOV ES, AX
CMP bJnit.YES
JNE cbdone
MOV b_init,NO
LDS DX,b vec
MOV AX.PUTBIV
INT 21h

cbdone: POP DS
POP ES
MOV SP.BP
POP BP
RET

close break ENDP

Check to see if initialized

Reset initialized flag
DS:DX points to original
Set Break interrupt vector
(system resets Control-C interrupt vector)

_press break PROC NEAR ; Returns 0 if no break
~ PUSH BP
MOV BP.SP
PUSH ES
PUSH DS
MOV AX.DGROUP
MOV DS.AX
MOV ES.AX
XOR AX, AX # Prepare to re.
XCHG AX.brkflg f Normal return
POP DS #
POP ES *
MOV SP.BP
POP BP
RET

_press_break ENDP

break int: 1 Control -break interrui
PUSH ES
PUSH DS
PUSH AX

0000h = no break
001Bh = Break
0023h = Control-C

V

128

SERIAL.ASM
MOV AX.DGROUP
MOV DS,AX
MOV ES,AX
MOV brkflg,1Bh
POP AX
POP DS
POP ES
I RET

; Make it nonzero

ctlc int: Control-C interrupt service routine
PUSH ES
PUSH DS
PUSH AX
MOV AX.DGROUP
MOV DS.AX
MOV ES, AX
MOV brkflg,23h
POP AX
POP DS
POP ES
I RET

Make it nonzero

Critical Error Trapping

GETEIV EQU
PUTEIV EQU

.DATA
e_vec DD
e_init DU

.CONST
prompt DB

DB

.CODE
_open_crit PROC

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
CMP
JNE
MOV
MOV
INT
MOV
MOV
MOV
MOV
MOV
MOV
INT

ocdone: POP
POP
MOV
POP
RET

_open_crit ENDP

3524h
2524h

?
NO

; Get critical error handler vector
; Put critical error handler vector

; previous contents of crit error handler
; Flag to indicate if initialized

ODh.OAh,'Critical Error Occurred: ',0Dh,0Ah
' Abort, Retry, Ignore, Fail? ','$'

NEAR ; Install new critical error handler
BP
BP.SP
ES
DS
AX.DGROUP
DS.AX
ES,AX
e_init,NO
SHORT ocdone
e init.YES
AX,GETEIV
21h
WORD PTR e_vec,bx
WORD PTR e_vec+2,es
AX,SEG crit hand
DS,AX
DX,OFFSET crit hand
AX.PUTEIV
21h
DS
ES
SP.BP
BP

; Check to see if initialized

; Set initialized flag
; Get old vector

; Save old vector

; Set DS:DX to point to new handler

; Set up new handler

129

SERIAL.ASM

close crit PROC NEAR ; Restore original critical error handler
PUSH BP
MOV BP,SP
PUSH ES
PUSH DS
MOV AX,DGROUP
MOV DS,AX
MOV ES, AX
CMP e_init,YES
JNE ccdone
MOV e_init,NO
LDS DX,e vec
MOV AX,PUTE IV
INT 21h

done: POP DS
POP ES
MOV SP,BP
POP BP
RET

lose crit ENDP

Check to see if initialized

Reset initialized flag
Restor old vector

This is the replacement critical error handler. It
prompts the user for Abort, Retry, Ignore, or Fail and
returns the appropriate code to the MS-DOS kernel.

crit hand PROC FAR ; Critic
PUSH ES
PUSH DS
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH BP
MOV AX.DGROUP
MOV DS,AX
MOV ES, AX

getkey: MOV DX,OFFSET prompt
MOV AH,09h
INT 21h
MOV AH,01h
INT 21h
CMP AL,'a'
JE dabort
CMP AL,'A'
JE dabort
CMP AL.'r'
JE dretry
CMP AL.'R'
JE dretry
CMP AL.'i'
JE dignor
CMP AL,'I'
JE dignor
CMP AL.'f
JE dfail
CMP AL.'F'
JE df ai I
JMP getkey

dabort: MOV AL,2
CALL _close_break
CALL close time
MOV BX.MINCOM

Critical error handler, called only by MS-DOS kernel

Display prompt for user

Get user's response

v

Abort chosen
; Restore Break/Control-C vector
; Restore timer vector
; Restore all serial vectors

130

)

SERIAL.ASM

d1: CALL
INC

close
BX

ser

CMP BX.MAXCOM
JLE d1
MOV AL,2 ; Set Abort return value
JMP ddone

dretry: MOV AL,1 ; Retry chosen
JMP ddone

dignor: MOV
JMP

AL,0
ddone

; Ignore chosen

dfail: MOV
JMP

AL,3
ddone

; Fail chosen

ddone: POP
POP
POP
POP
POP
POP
POP
POP
POP
I RET

BP
DI
SI
DX
CX
BX
AX
DS
ES

; exit critical error handler
crit hand ENDP

END

/
131

132

References

[1] W. Stallings, Data and Computer Communications. New York, NY: Macmillan, 1985.

[2] R. Duncun, The MS-DOS Encyclopedia. Redmond, Washington: Microsoft Press, 1988.

[3] Software Installation and Operation Manual for DigiCHANNEL PC/X, DigiCHANNEL
MODEM/Xand UNIX System V/386 Rel 3.2. Eden Prairie, MN: DigiBoard, 1991.

[4] Microsystem Components Handbook, Microprocessors Volume I. Santa Clara, CA: Intel
Corporation, 1986.

[5] "INS8250, INS8250-B Universal Asynchronous Receiver/Transmitter Data Sheet", National
Semiconductor.

133

-135-

UNCLASSIFTED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Establishment sponsoring
a contractor's report, or tasking agency, are entered in section 8.)

Defence Research Establishment Ottawa
Ottawa, Ontario
K1A 0Z4

2. SECURITY CLASSIFICATION
(overall security classification of the document
including special warning terms if applicable)

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

Real-time Inter/processor Serial Communications Software for Skynet EHF Trials (U)

4. AUTHORS (Last name, first name, middle initial)

Addison, Robin D.

5. DATE OF PUBLICATION (month and year of publication of
document)

July 1994

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc.)

145

6b. NO. OF REFS (total cited in
document)

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

DREO Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.

Defence Research Establishment Ottawa
Ottawa, Ontario, K1A 0Z4

9a. PROJECT OR GRANT NO. of appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant)

041LM and Project D6470

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10a. ORIGINATOR'S DOCUMENT NUMBER (the official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DREO REPORT 1227

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(X) Unlimited distribution
) Distribution limited to defence departments and defence contractors; further distribution only as approved
) Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
) Distribution limited to government departments and agencies; further distribution only as approved
) Distribution limited to defence departments; further distribution only as approved
) Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). however, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

Unlimited Announcement

UNCLASSIFIED
SECURrrY CLASSIFICATION OF FORM RA.W (24 Nov 93)

136 UNCLASSIFIED
SECURTTY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
' desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the

security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

The EHF (Extremely High Frequency) Skynet Trials consisted of several week-long accesses over Skynet 4A during
1993. The whole link (from transmitting ground terminal to Skynet to receiving ground terminal) was used to simulate an
EHF downlink from a payload to a ground terminal. Use of the Skynet satellite allowed the experimentation at EHF with
the ground terminal and payload simulators over a link that had real satellite effects such as link degradations caused by
satellite motion and weather. To conduct the trials, it was recognized that many tasks needed to be active at once: pointing
of antennas, monitoring power levels, synchronization, data communications and result logging. To shorten development
time and simplify integration requirements, a distributed processing system (multiple computers) was chosen.

This paper describes the communications software which provided the services necessary for the distributed
processing used in the trials. The challenge was to develop a system that was easy to integrate with the user software as
well as to ensure that the communications hardware and software did not conflict with special purpose boards in the various
computers. For simplicity, stop-and-wait ARQ (Automatic Repeat Request) protocol was used for high-level message
passing. Low-level communications services that do not require handshaking, were also provided for equipment control.
The communications software package met these challenges and after extensive testing, was proven to provide the necessary
communications among all the processors of the distributed system.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

serial communications
real-time
EHF
ARQ

UNCLASSIFIED
SECURTTY CLASSIFICATION OF FORM

