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1.  INTRODUCTION 

Traditionally, matrices have been grouped into three categories—sparse, regular, and special cases 

(e.g., triangular matrices). While it is difficult to give a definition of what a sparse matrix is, one might 

agree that any matrix in which significantly less than 1% of the elements have a nonzero value should be 

considered to be sparse. It is traditional to represent sparse matrices using linked lists. When considering 

the efficiency of this representation, there are several aspects which should be considered. For example, 

How long will it take to access an element? or How much space will be required to store the matrix? 

As the dimensions of the matrix become large, it may no longer be practical to use the traditional 

techniques (especially if the size of the data element is very small). 

Sometimes matrices are neither dense nor truly sparse (e.g., 5% of the space contains nonzero values). 

If sparse matrix techniques are applied to matrices in this category, there may be little or no saving of 

space. Even worse, the order N access time (written 0(N)) for this representation (where N is the larger 

dimension of the matrix) is likely to so affect the speed of the program as to make it impractical to 

perform a significant number of operations on multimillion element matrices.! On the other hand, 

attempting to treat such a matrix in the normal fashion (e.g., row major or column major) may require so 

much space as to either exceed the available amount of memory, or in a virtual memory environment, 

cause the computer to thrash to death. The author is not the first person to recognize this problem, and 

the literature is full of specialized techniques for handling a number of special cases (e.g., triangular 

matrices). Unfortunately, none of these techniques seem to be general in nature, and in some cases it can 

be difficult to recognize the matrix structure. 

t For those unfamiliar with this terminology, an algorithm is referred to as having order 1 execution time if it takes a constant 
amount of time to execute regardless of the size of the data set. This is frequently written as O(l). Similarly, an algorithm 
whose execution time scales linearly with the size of the data set is said to have order N execution time. Again, this would 
be written as 0(N). In some cases, one must carefully define what N is, since an algorithm which adds a constant to each 
element of a square matrix is 0(N) in terms of the total number of elements in the matrix, but 0(N2) if N is the number of 
rows in the matrix. The basis for this terminology is that many algorithms have an execution time which can be bounded by 
a polynomial in some suitably selected value of N. If all of the coefficients of this polynomial have roughly the same value 
(e.g., to within a factor of 100), then as N becomes large, the highest order term in the polynomial will dominate, and this 
power is considered to be the order of the execution time. In reality, one sometimes will find that when using specific 
hardware, it is impractical to let N become large (e.g., one runs out of memory), or that as N becomes large, the values of 
some of the coefficients will change (e.g., the memory access time suddenly becomes dominated by paging activity). The 
author believes that areas such as this present opportunities for research into new solutions to what are generally considered 
to be solved problems, and, that without this research, one may unnecessarily conclude that one needs substantially more 
powerful hardware to perform a specific task than may in fact be needed. When applied to the field of supercomputers, this 
may be a key factor in determining which algorithms can run on which computers. One final note, while this footnote has 
been discussing polynomial time orders (e.g., 0(N2)), it is also possible for an algorithm to have a nonpolynomial time order 
(e.g.. (XN log N), 214, N2-61, etc.). 
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In response to these and other concerns, the author started looking for alternative ways to store 

matrices and came to the following conclusions. 

• In order to be practical, the access time should be 0(1) (all elements can be accessed in the same 

amount of time). This is the same order of complexity as the standard method for accessing 

matrices. 

• Ideally, the method should have a sufficiently low amount of memory overhead as to be useful for 

storing both sparse matrices, as well as matrices with nonzero data in as much as 25% of the 

elements (and in some cases 50% or more of the elements). 

• It is acceptable for the new technique to have a longer access time, so long as the increase is not 

excessive (noting that this is a somewhat subjective criterion). In particular, the increase in time 

should be significantly less than a factor of N (defined as before) for values of N in the range of 

interest. 

Looking for a unifying concept on which to base the new form of matrix representation, the author 

realized that almost all matrices which have a large percentage of elements with the value of zero tend 

to share one property in common; they are likely to have significant regions which are totally devoid of 

nonzero data. To use a metaphor, the matrix consists of "islands of data in a sea of zeros." The author 

refers to matrices which have this property as being "semi-sparse." 

Having found the unifying concept, it is possible to construct a data structure which, roughly speaking, 

allocates storage space only for those regions of the matrix which actually contain nonzero data. It turns 

out that this is simpler said than done, but that if one is willing to allocate space for a small percentage 

of the zeroed out elements, then the task becomes doable. The author has named his implementation of 

this concept a "dynamic matrix." 

Finally, this report will also consider some other potentially useful data structures, with the goal of 

defining what might be called an "extensible dynamic matrix." While the author has not yet implemented 

this concept, its purpose would be to allow the development of more robust applications, which to a first 

approximation would allocate arrays and matrices of exactly the size needed without explicitly using 

pointers. 



2. A BRIEF REVIEW OF TRADITIONAL TECHNIQUES FOR STORING MATRICES 

For languages which directly support the concept of a matrix, the most common representations of 

a matrix involve storing either the first column or row of the matrix in consecutive addresses, followed 

by the next column or row, respectively, and so on (this assumes that one is talking about two-dimensional 

matrices, but is easily extended to multidimensional arrays). In general, this is considered to provide the 

most efficient representation of a matrix since it is both compact and the address of each element can be 

easily calculated (meaning each element can be efficiently accessed in a fixed amount of time). 

Almost as soon as these representations were developed, it was realized that there were cases in which 

the vast majority of the elements had the value zero. This class of matrices became known as "sparse 

matrices," and the search was on for an efficient way to store these matrices. The most common solution 

to this problem involves the use of linked lists (frequently bidirectionally linked in all dimensions). This 

technique had the advantage that the amount of space required to store the matrix is equal to 

A * N + B * M, where A and B are small positive integers, N is the largest dimension of the matrix, and 

M is the number of nonzero elements in the matrix. Unfortunately, it is no longer possible to compute 

the address of an element in the matrix. Instead, one must follow the linked lists, and, if N is large, this 

can be rather time-consuming. Moreover, the amount of storage space required for pointers may not be 

small, so mat as the value of M approaches the total number of elements in the matrix, this representation 

will eventually take more space than the normal method for storing matrices. In particular, this means 

that this method is ill-suited for storing triangular matrices. 

As a result of these considerations, a substantial amount of work has gone into developing more 

efficient methods for dealing with a number of special cases (e.g., triangular and tridiagonal matrices). 

While, in general, these techniques make very efficient use of space, and can be computationally efficient 

(although frequently somewhat less efficient than the normal method for storing matrices), by their very 

nature they lack generality. As a result, it is necessary to write special versions of routines which 

manipulate matrices to handle these special methods of representation. Since for moderate sized problems, 

the programmer's time can be more valuable man the computer time, this raises the question of how useful 

these methods really are. (Note, that if the program is run often enough, the answer can still be that they 

are very useful.) 



3.  HOW MATRICES ARE USED 

Before continuing on, it might be helpful to briefly discuss how matrices are used. Probably the most 

common use is to store information, which will then be transformed using common techniques such as 

matrix multiplication. Computer Aided Design (CAD) systems routinely use them to store geometry data, 

with matrix multiplication used to perform rotations, translations, and projections. Another application 

which might come to mind is the representation of a set of simultaneous linear equations in a manner 

which facilitates the use of Gaussian elimination. 

Computer scientists have also learned that matrices are a useful method for storing a wide range of 

other types of information, each with their own set of operations. Some common examples are the 

creation and manipulation of raster images (e.g., transforming data from a CAD system into a format 

compatible with a dot matrix plotter), the accumulation of data about each point on a grid over a fixed 

period of time (e.g., the amount of rain which has fallen at that grid point might be updated every 

5 minutes), or storing the numeric values for a spreadsheet program, etc. While individually this group 

of uses might be considered to be exceptions or oddities not worth mentioning, when taken as a group, 

they form a significant body of applications for this powerful method of storing information. 

Unfortunately, many of this last group of uses produce matrices which are neither sparse nor very 

densely populated, but at the same time do not seem to fall into any of the special cases computer 

scientists are used to working with. Additionally, even when using matrices for a more traditional 

problem, one does not always know how big to make the matrix. As a result, one is frequently left with 

the problem of either imposing unnecessary restrictions on the complexity of problems which can be 

handled, or alternatively tying up so much memory/swap space as to effectively monopolize the computer 

(assuming the job will run at all). In both of these cases, there will be regions which are totally devoid 

of meaningful (e.g., nonzero) data, while other regions have at least some data. 

The author refers to this class of matrices as being "semi-sparse." To visualize this concept, consider 

a map of the Earth. Areas covered by land would be areas with a high data density. Other regions 

consisting of islands surrounded by water would have a low but nonzero data density. Finally, the middle 

of large lakes and open stretches of ocean would correspond to a zero data density, and this is what would 

make the map a candidate for classification as a semi-sparse matrix. Figure 1 should clarify this concept 

further. 



Figure 1. An example of a semi-sparse matrix. 

4. DYNAMIC MATRICES: THE THEORY 

What is needed is a matrix representation scheme which superimposes a grid on the original matrix 

in such a way that a grid cell has a high probability of either containing only zeros, or of having a high 

density of nonzero elements, but a very low probability of having a low (but nonzero) density of nonzero 

elements. There are several ways in which this problem could be approached. For example, the entire 

matrix could be made into one grid cell, but this would not be very helpful, since it would put us back 

where we started from. Alternatively, each element of the matrix could be put in a separate grid cell. 

While this would clearly meet the goal for the gridding process, the problem of how to store the grid 

would be equivalent in difficulty to the original problem. Clearly, this is not a useful solution. Another 

approach would be to use an adaptive grid with cells of varying size, and possibly even geometry so that 

large cells would be used in large regions of either high or zero density, while smaller cells could be used 

in regions of low density and in transition zones. Unfortunately, in many cases there is no prior 

knowledge of what this density will be, and therefore one would not know how to construct such an 

adaptive grid. 



While there may be other successful approaches to the storage problem, the one that the author settled 

on is to divide the matrix up into a large number of equal-sized rectangular partitions (although the grid 

cells along some or all of the edges of the matrix may actually extend past the boundary of the matrix). 

By adjusting the size and shape of these partitions (or as the author refers to them, submatrices), they can 

be tailored to optimize the performance over the range of cases normally found in a particular application. 

One can then construct a matrix of pointers with each pointer pointing to a corner of a submatrix, if the 

submatrix has any nonzero data stored in it, and otherwise pointing to NULL (or some people prefer the 

word "NIL"). (This, of course, assumes that one always points to the same corner for each submatrix 

[e.g., the upper left-hand corner], and that the i j element of the matrix of pointers points to the submatrix 

storing the elements contained in the i.j cell of the grid.) As more data is added to the matrix (or 

alternatively, as the matrix is populated with data), attempts to store values in elements belonging to an 

unpopulated submatrix will result in space being allocated to the submatrix, and initialized to all zeros. 

After this initialization is completed, the request to store information in an element of that submatrix will 

be honored. Figure 2 illustrates these ideas. 

At this point, there are several issues which should be noted: 

• When dealing with semi-sparse matrices, if the size of the submatrices are decreased, the amount 

of dynamically allocated space needed to handle regions of low, but nonzero, data density will 

decline. 

• The size of the matrix of pointers is inversely proportional to the size of the submatrices. 

Therefore, for any particular class of problems, there is an optimal range for the size of the 

submatrices. 

• For a matrix stored in either column major or row major format, the address associated with an 

arbitrary element of this matrix can be calculated using one integer multiplication and one integer 

addition. For a dynamic matrix, when calculating the address of an arbitrary element of the matrix, 

one must perform at least two integer divisions, two integer multiplications, and two integer 

additions. (The current implementation actually performs four integer divisions. One alternative 

to this would be to do two additional integer multiplications and two additional integer 

subtractions.) Therefore, it is considerably more time-consuming to access an arbitrary element of 

a dynamic matrix. 
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Figure 2. An example of data layout for a dynamic matrix. 



• In almost all cases this technique can be used to efficiently represent sparse matrices, dense 

matrices, or the commonly described special cases, although in many cases, the speed of access will 

decrease. (Note that in a paged virtual memory environment, this added overhead may be more 

than offset by a drop in the number of page faults.) 

• It is also possible to implement a number of techniques which can substantially decrease the 

average amount of time it takes to access an element. 

As was just noted, in a paged virtual memory environment, the use of dynamic matrices can 

dramatically reduce the number of page faults. It is, in fact, this particular property which lead the author 

to develop the concepts discussed in this report. While some computers use a page size of 1-kB or less 

(e.g., DEC'S VAX line of computers use a 512-byte page size), most computers use a somewhat larger 

page size. (The author has seen many references to systems using page sizes in the range of 2-16 kB, 

and at least some systems based on the 4.2BSD flavor of UNIX seem to use an open-ended variable page 

size system where page sizes of 1 MB or more are not uncommon.) If a 1,000 x 1,000 element matrix, 

with a data element size of 4 bytes, is being manipulated, it should be clear that regardless of whether the 

matrix is being stored row major or column major, it will take at most 2 pages to store 1,000 elements 

(assuming a page size of at least 2 kB). In some cases, the system may allocate many thousands of 

elements to a single page. 

There are a number of applications (e.g., matrix multiplication, and drawing a border around a raster 

image) that will always result in accessing a matrix stored in row major format in column major order or 

vice versa. The implication of this is that these accesses will constantly cross page boundaries, therefore 

making a large part of the matrix (if not the entire matrix, depending on the size of the matrix and the size 

of the pages) part of the working set. Under the appropriate conditions (and with large page sizes these 

conditions are easily reached), the size of the working set can significantly exceed the size of physical 

memory. 

The concept of a dynamic matrix tries to deal with this problem in three ways. The first is that if one 

is manipulating sparse or semi-sparse matrices, the amount of space needed to store the matrix may 

decrease to the point that the working set is smaller than the size of physical memory (this would virtually 

eliminate the potential for paging in the first place). The second approach is that even if the matrix is 

densely packed with data, by making the submatrices roughly square (the ratio of length to the width, 
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probably should be between 0.1 and 10), one eliminates the importance of accessing the matrix in either 

row major or column major manor. Therefore, under the conditions which would in the past have caused 

the code to rapidly cross page boundaries (e.g., each access might be to another page in memory, cycling 

back to the first page only after visiting a thousand or more other pages), will on average cause the code 

to cross page boundaries much more slowly. The number of successive accesses to the same page of 

memory might increase by a factor of between 10 and 100, while the number of pages being cycled 

through might decrease by a similar factor. Finally, if only a small number of rows and columns are 

needed in memory at any given time for the code to be efficient (e.g., the fifth row of matrix A and the 

tenth column of matrix B when multiplying the two matrices together), it is likely that the use of dynamic 

matrices will allow the program to reduce the amount of additional information which must also be stored. 

Since all of these attributes serve to dramatically reduce the size of the working set, they make dynamic 

matrices a nearly perfect way to avoid thrashing. 

5.  DYNAMIC MATRICES:  IMPLEMENTATION DETAILS 

It is one thing to say that one has developed a new data structure, it is quite another to actually put 

it to use. Probably the best way to approach this problem would have been to develop a whole new 

computer language (or a new flavor of an existing language). Unfortunately, that would be a major 

undertaking and the benefits did not seem to justify the effort. The only other alternative was to use the 

capabilities of an existing language. Since there are relatively few commonly used general purpose 

languages which support pointers (in this country, C, PASCAL, and ADA seem to dominate this niche), 

C seemed to be the best choice for the job (although the generic packages of ADA make that an 

interesting language to consider). 

Once the language is chosen, a method of implementation must be selected. There are, roughly 

speaking, three ways to proceed: 

• The code could be directly inserted in line without making any attempt to have the code maintain 

a separate identity. While this might produce slightly faster programs, considering the complexity 

of this technique, it would make it much more difficult to maintain the code, or to use this 

technique in other programs. 



• Alternatively, everything could be implemented using functions, subroutines, procedures, or 

whatever one is used to calling them. This approach would provide the greatest level of data 

hiding, and therefore, would probably be the safest Unfortunately, on many systems, the overhead 

associated with function calls would make this fairly slow. 

• The alternative which was finally selected was to construct a set of macros using C's macro 

capabilities. This introduced a number of problems inherent with the use of macros, but in the end 

produced fairly efficient code that, with a modest amount of caution (e.g., macro arguments must 

not have any side effects associated with them), could be safely used. The entirety of this set of 

macros is included in Appendix A. 

There are four basic functions which should be included in this group of macros. These functions are 

to: 

• allocate/initialize a dynamic matrix; 

• deallocate a dynamic matrix (although the author has rarely used this macro); 

• retrieve a value from an element of the matrix; and 

• store a value in an element of the matrix. 

The allocation macro dynamically allocates a matrix of pointers (using malloc and calloc) based on 

information concerning the size and shape of the matrix and the size and shape of the submatrices (the 

original version assumes all elements are integers, although it is simple enough to produce versions of 

these macros for other data types). It also records the default value for the elements of the matrix 

(normally zero, but in some special cases other values may be more appropriate). 

The deallocation macro deallocates the space reserved for each of the submatrices and then for the 

matrix of pointers. 
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Fetching (retrieving) a value from the matrix involves calculating the address of the pointer to the 

submatrix. If the submatrix exists, then the address of the relevant element must be calculated and the 

value of that element returned. If the submatrix does not exist, then the default value is returned. This 

is a rather straightforward process; the catch is that all of these actions would normally involve multiple 

statements, making it impossible to use the returned value in an equation. By using some of the unique 

capabilities of C, this problem was overcome, although it should be noted that several of the macros in 

this group use globally defined variables. Additionally, one should be careful when using this macro and 

store the results of any calculations involving the value it returns in a normal variable before continuing 

on. The value stored in the normal variable can then be used to update the dynamic matrix should the 

need arise. 

The macro for storing a value in the dynamic matrix is probably the most complex, since it requires 

several statements to implement (this also means that it cannot appear to the left of an equal sign). It 

starts out like the fetch routine, by calculating the address of the pointer to the submatrix. If the value 

of the pointer is non-null, the address of the specified element is calculated and the value is stored at that 

location. Otherwise, it is necessary to allocate space for a new submatrix, initialize the submatrix, and 

then store a value in that submatrix. Since this can get a bit complicated, the interested reader should 

review the code in Appendix A for the macros and Appendix B for examples of how to use these macros. 

At this point, a functional package exists for creating and manipulating a dynamic matrix. 

Unfortunately, experience has shown that if one stops at this point, the overhead may be considered to be 

a bit excessive. Therefore, the next section will discuss some additional ways that can be used to improve 

the efficiency of these matrices. 

6. DYNAMIC MATRICES: PERFORMANCE ENHANCEMENTS 

While there are several approaches to enhancing the performance of these matrices, the efforts 

generally fall into two categories—reduce the amount of time spent calculating addresses, or reduce the 

number of times the matrix is accessed in the first place. Theoretically, there are a number of ways one 

could try to remember the address of a submatrix from one macro call to the next, and then check to see 

if the same submatrix is being accessed. Unfortunately, most of these techniques are either special 

purpose (e.g., primarily relevant to matrix multiplication, but not to rasterization or vice versa), or have 

a sufficiently high cost associated with them as to make them of questionable value.  One exception to 
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this rule is to implement something akin to the C constructs A + = 2, A * = 2, etc. This is a relatively 

general purpose construct, which if fully implemented will eliminate half of the address calculations with 

no offsetting computational burden (although some people will complain about what this does to the 

clarity of this code). This idea was implemented as the UPDATE macro, and since it is a macro and not 

a function/subroutine, it was very easy to allow the compiler to deal with the problem of which operator 

was specified. 

Another general method for speeding up the code is to restrict the size of the submatrices to a fixed 

size and to make the dimensions of the submatrices be powers of two. In this way, the integer 

multiplication and division can be eliminated by the use of bit shifting, and the modulus operator can be 

replaced with bit masks. All of this can be done on a machine-independent basis and may improve the 

speed of the code by as much as a factor of 10 or more (this claim is based on the fact that many 

machines implement integer division and the modulus operator using very slow functions, and that even 

when there is direct hardware support for these operations, they may still be some of the slowest 

operations implemented in hardware). 

The alternative approach of reducing the number of times the matrix is accessed appears to be much 

more successful. Remembering that dynamic matrices were originally intended for use with semi-sparse 

matrices, it should be clear that if one can check to see if a submatrix has been allocated, that assuming 

it has not been allocated, one can save a significant amount of time. One way that this might be used is 

in printing out the matrix. One would simply print out the default value for the next N values, where N 

is the number of columns in the submatrix. Similarly, when performing matrix multiplication, this could 

allow one to eliminate a great number of calculations. This concept is the basis for the INQUIRE macro. 

Along the same line of reasoning, if one knows that a submatrix exists, and that all of it's elements 

will be accessed in the next set of operations (e.g., matrix multiplication might be a prime example of 

this), one can fetch the starting address of the submatrix and directly manipulate its elements. Clearly, 

this is not something that the casual programmer is likely to want to do, but for someone familiar with 

writing sophisticated programs, this should not be such a daunting process. This has the advantage of 

simplifying the effort needed to access an element, back to roughly that associated with regular matrices, 

and can, therefore, produce a major cost savings. This construct has been implemented as the 

FETCH_POINTER macro. 
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There are a number of other possible ways to reduce the number of times a dynamic matrix is directly 

accessed (e.g., something similar to the PACK and UNPACK procedures in PASCAL). At the present 

time, no attempt has been made to investigate any other possibilities. When compared to a program 

written using regular matrices (assuming that the matrices are relatively small), a program using dynamic 

matrices to store a semi-sparse matrix is likely to run six to ten times slower. However, in the case of 

rasterizing wireframe data, it appears to rarely use more than one-fourth the amount of memory. 

Therefore, if the program written using regular matrices has a working set that is no larger than four times 

the size of main memory, then the program written using dynamic matrices may be 10,000 or more times 

faster. Actual numbers are hard to come by, since in the case which led to the development of these 

theories, the traditional program repeatedly tied up the system it was running on for over an hour before 

the computer finally crashed. On the other hand, a similar program (the author did not have access to the 

source code of the program which crashed the computer) implemented with dynamic matrices "usually" 

finishes the job in about 10-15 minutes on the same computer. The reason for saying "usually" is that 

the performance depends on the data contained in the matrix, and if the matrix is not semi-sparse, or if 

a poor size and shape were selected for the submatrices, the run might take significantly longer (possibly 

even crashing the system). 

7.  CONTINUING RESEARCH 

There are ongoing efforts to use dynamic matrices to multiply large, square, dense matrices on a 

variety of machines. While the results are still preliminary, they appear to be quite promising. In 

particular, by choosing a relatively small size for the submatrices, one can dramatically improve the hit 

rate for the high-speed cache memory most systems are now equipped with. This may also make it easier 

to optimize the code for other aspects of a particular machine's architecture. While the use of smaller 

submatrices has the potential for increasing the amount of paging, experience has indicated that for most 

machines, the computational burden is likely to become excessive long before this becomes a problem. 

Appendix C contains a copy of the macros used in this effort. 

Another area which appears to be interesting is to port dense matrix versions of this code to Fortran 

90. Since Fortran 90 does have a limited amount of support for dynamic memory allocation, it should 

be possible to implement this efficiently. Unfortunately, it is not clear if this support is sufficient to allow 

the author to implement support for sparse and semi-sparse matrices. Even so, the reduction in the size 

of the working set and the improvement in cache utilization may justify the effort. 
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8. FUTURE DIRECTIONS: THE EXTENSIBLE DYNAMIC MATRIX 

One potentially interesting extension of these ideas is to merge the traditional linked list representation 

of sparse matrices with the author's concept of the dynamic matrix. In this way, one might be able to 

allow the matrix to accommodate a wider range of data sets without the need to allocate a large matrix 

of pointers. This might be accomplished by using linked lists to implement a multidimensional mesh of 

matrices of pointers. Initially, only one element in this mesh would be allocated. As the size of the 

matrix grows, additional matrices of pointers can be allocated as needed. This would allow the same data 

structure to efficiently handle storage requirements which might vary by several orders of magnitude from 

one run to the next. The author refers to this idea as an "extensible dynamic matrix." 

Earlier, this report alluded to the ability to link together more than one matrix of pointers. There are 

several strategies which could be used at this point for determining the size of additional matrices of 

pointers. Probably the simplest strategy would be to use a constant size for the matrices of pointers. 

While this would be the easiest to implement, it might not be efficient if the size of the matrix is to grow 

by more than a factor of 10 in any directioa A slightly more complicated alternative is to use one or 

more fixed sizes for the additional matrices of pointers, with the size getting larger as one adds on more 

matrices of pointers. This would help to limit the maximum length of the list of linked lists, but might 

require more programmer involvement than is desirable. Probably the two most desirable alternatives are 

to either have the size of the matrices of pointers and/or the size of the submatrices grow as a power of 

two as one moves further away from the original matrix of pointers. In this way, one is guaranteed that 

the size of the linked list will always remain small. 

At this point, a purist is likely to point out that this will result in a return to 0(N) behavior for the 

time required to access any given element. The author believes that most readers will agree that this 

dependency is so small that effectively it should be possible to treat the extensible dynamic matrix as 

though it has 0(1) access time. An example of this is that if one starts out with a 16 x 16 element matrix 

of pointers with an 8 x 8 element submatrix, one will already be able to store 16 k elements in the matrix. 

If one adds on the eight adjacent matrices of pointers, and uses the strategy for doubling the dimension 

each time one moves away from the original matrix of pointers, then one can now store nearly 150 k 

elements. Taking this out just one more level, one is nearly up to 3 M elements. Finally, using linked 

lists with a maximum length of 6 nodes (the length of the linked lists for elements at the corners might 

actually be 12 nodes, depending on how things are implemented), one can store 1 G elements. 

14 



Additionally, if this were a three-dimensional matrix, the numbers would be growing even faster. Since 

there are very few computers currently in production which could efficiently either store or manipulate 

matrices of these sizes (unless the matrix is either highly sparse or decidedly nonsquare), this should 

probably be considered to be the worst-case scenario for the length of the linked lists. Clearly, if this is 

the worst case, then for most practical purposes, this is not a problem, and one returns to the author's 

earlier conclusion that effectively the extensible dynamic matrix has an 0(1) access time. 

9.  CONCLUSIONS 

With several years worth of experience applying dynamic matrices to the problem of manipulating and 

creating large raster images (and very encouraging early results from the application of dynamic matrices 

to the multiplication of large square matrices), the author feels quite confident in calling dynamic matrices 

a proven success. Hopefully, this report will interest others to pursue additional avenues of investigation 

using these techniques. Additionally, the author believes that the initial results which indicate that the use 

of dynamic matrices can result in substantially higher cache hit rates, with the associated increase in 

perceived processor performance, should encourage compiler writers to investigate more sophisticated 

methods for storing matrices. To some extent, this is already being done on scalably parallel processors 

where the compilers support layout or tiling directives. However, the author believes that this work 

indicates that high-end workstations with only a few processors (possibly only one) can also benefit from 

these ideas. In fact, the original development work in this area was done on 2 MIP, 16-MB SUN 3 

uniprocessors. 
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APPENDIX A: THE DYNAMIC MATRIX MACROS FOR INTEGER DATA 

The following group of macros are normally found in a file called dyn.h and represent the 
original group of macros used in the development of the author's rasterization software. As 
presently configured, they are designed to store integer data, and it is assumed that an integer is 
32 bits. The 32 bit assumption comes into play in two ways. The first way is unique to the 
rasterization software in that all of its bit manipulations are based on the assumption of 32 bit 
integers. The second way may be of more general interest in that if significantly fewer than 
32 bits are used to represent integers (e.g., 16 bits), some of the address calculations may not work 
properly. It is also theoretically possible that there could be problems on machines with 64 bit 
addresses if 32 bit integer arithmetic is used to calculate offsets for very large matrices (e.g., well 
in excess of 100 million elements). Fortunately there are very few machines at the present time 
which could realistically manipulate matrices of this size, and some of them have already solved 
that problem by using 64 bit integers. 

/* V 

/* This include file was written by Daniel M. Pressel at */ 
/* CRDEC in August of 1988.  It is intended to provide a */ 
/* uniform set of structure definitions and macros for  */ 
/* implementing in C his concept of a dynamic matrix.   */ 
/* */ 
/•A********************************************************/ 

/* V 

/* In this file, the following items are defined:       */ 
* 

/* /*      1) A scratch variable. For uniqueness, it is */ 
/* called DYNAMIC TEMP. */ 
/* ~ V 

/*      2)  Two named constants, USED and UNUSED, which */ 
/* will be used as boolean values in some of */ 
/* the macros to follow. */ 
/* V 
/*      3) A type definition for the structure used to */ 
/* simulate my concept of dynamic matrices. */ 
/* *^ /*      4)  The following macro definitions: */ 
/* *// /* a) ALLOCATE:  This macro consists of a */ 
/* series of seperate statements used to */ 
/* allocate and initialize the core */ 
/* structure for a dynamic matrix. */ 
/* */ /* b)  FETCH_VALUE:  Unlike ALLOCATE, this */ 
/* macro is composed of a single      _ */ 
/* arithmetic expression. As such, it is */ 
/* suitable for inclusion directly into */ 
/* an arithmetic expression.  To achieve */ 
/* this goal, both the comma operator and */ 
/* the ternary conditional operator were */ 
/* used. As such this is an extremely */ 
/* complicated macro. */ 

/* 
/* 

/ 
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c)  FETCH_POINTER_TO_BLOCK:  This macro is */ 
/* also designed to be directly included */ 
/* into arithimetic expressions and */ 
/* function calls.  Given a row and */ 
/* column number, this macro will */ 
/* determine in which of the blocks the */ 
/* matrix was subdivided into, the */ 
/* element resides, it then returns a */ 
/* pointer to the block of memory */ 
/* containing this element.  NOTE:  If */ 
/* the specified block has not had any */ 
/* values stored into it, then the NULL */ 
/* pointer is returned.  It is therefore */ 
/* imperative that the */ 
/* INQUIRE_POINTER_TO_BLOCK macro be used */ 
/* first to see if the block exists. */ 
/* */ 
/* d)  INQUIRE_POINTER_TO_BLOCK:  This macro */ 
/* returns a boolean value of either USED */ 
/* or UNUSED, depending upon if anything */ 
/* other than the default value is stored */ 
/* in the elements of the specified */ 
/* block.  It may be used in an */ 
/* expression, but probably is best used */ 
/* as part of if, while, and for */ 
/* statements. */ 
/* V 
/* e)  STORE_VALUE:  Here is another macro, */ 
/* which is composed of multiple */ 
/* statements, and must not be included */ 
/* in any expressions.  It will update */ 
/* the value of an element in a dynamic */ 
/* matrix, allocating space for a block */ 
/* as needed.  When a block is allocated, */ 
/* this macro will also initialize each */ 
/* of its elements.  Since this takes */ 
/* some time, and increases the amount of */ 
/* memory in use, this macro will ignore */ 
/* requests to store the default value */ 
/* into an element of the matrix if it */ 
/* resides in a previously unused block. */ 
/* */ 
/* f)  DEALLOCATE:  This is a multi statement */ 
/* macro used to free all of the memory */ 
/* previously used by a dynamic matrix. */ 
/* */ 
/* g)  UPDATE_VALUE:  This combines the */ 
/* functionality of FETCH_VALUE with */ 
/* STORE_VALUE.  There are two added */ 
/* arguments.  The second extra argument */ 
/* contains a binary operator which will */ 
/* be applied to value stored in the */ 
/* dyanmic matrix.  The first additional */ 
/* argument contains a value or */ 
/* expression which will come to the */ 
/* right of the binary operator.  This */ 
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/* macro is not required, but its use    */ 
/* may result in faster running code.    */ 
/* */ /* NOTE: As with all macros, one should never allow any */ 
/* of the arguments to the macros to have side effects.  */ 
/* If side effects are present, they will almost always */ 
/* take effect several times, with usually undesirable  */ 
/* consequences. Additionally, one may include        */ 
/* expressions as part of most of the arguments, but    */ 
/* care must be taken in doing so.  If the expressions  */ 
/* are computationally intensive, or call functions they */ 
/* may have severe negative speed consequences.  If this */ 
/* becomes a problem, the use of temporary or scratch   */ 
/* variables would be well advised. */ 
/* V 

ft*********************************************************/ 

/it*********************************************************/ 

/* V 

/* This software is the property of the United States    */ 
/* Government. When and if it is made available for use */ 
/* by others, it is totally at their own risk. */ 
/* Furthermore, the author is unable to guarantee */ 
/* continued support for this product.  Any modifications */ 
/* are the responsibility of the users. Finally, it is */ 
/* illegal to sell either this software, or any */ 
/* derivative software, to other United States Government */ 
/* installations without first informing them that the */ 
/* software is already the property of the United States */ 
/* Government. */ 
/* *' /**********************************************************/ 

char *malloc(); 
char *calloc(); 
int  *DYNAMIC_TEMP/ 
int  DYNAMIC_TEMP_VALUE; 
#define USED 1 
#define UNUSED 0 

typedef struct 
{ 
int initial_value; 
int number_of_rows; 
int number_of_columns/ 
int **pointer_to_matrix; 
int rows__in_block; 
int columns_in_block; 
int blocks_in_row; 

}   DYNAMIC_MATRIX; 

# define ALLOCATE(pointer,init_val,num_of_rows,\ 
num_of_columns,num_rows_in_block,\ 
num_columns_in_block) \ 

pointer=(DYNAMIC_MATRIX *)malloc(sizeof\ 
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(DYNAMIC_MATRIX));\ 
pointer -> initial_value=init_val;\ 
pointer -> number_of_rows=num_of_rows;\ 
pointer -> number_of_columns=num_of_columns;\ 
pointer -> blocks_in_rovp= (num_of_columns +\ 

num_columns_in_block -1 )/num_columns_in_block;\ 
pointer -> pointer_to_matrix=(int **)\ 

calloc(((num_of_rows + num_rows_in_block - 1)\ 
/num_rows_in_block)*(pointer -> \ 
blocks_in_row),sizeof(int *))/\ 

pointer -> rows_in_block=num_rows_in_block;\ 
pointer -> columns_in_block=num_columns_in_block; " 

#define FETCH_VALUE(pointer,row_number,column_number) \ 
((DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 

(row_number) / (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)/\ 
(pointer -> columns_in_block))),\ 
((DYNAMIC_TEMP != 0) ? *((DYNAMIC_TEMP) +\ 
(row_number) % (pointer -> rows_in_block) *\ 
(pointer -> columns_in_block ) +\ 
(column_number) % (pointer -> columns_in_block))\ 
: (pointer -> initial_value))) 

#define FETCH_POINTER_TO_BLOCK(pointer,row_number,\ 
column_number) \ 

(*(pointer -> pointer_to_matrix + (row_number) \ 
/ (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)/\ 
(pointer -> columns_in_block))) 

#define INQUIRE_POINTER_TO_BLOCK(pointer,row_number,\ 
column_number) \ 

((*(pointer -> pointer_to_matrix + (row_number) \ 
/ (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)/\ 
(pointer -> columns_in_block))) \ 
!= NULL ? USED : UNUSED ) 

#define STORE_VALUE(pointer,row_number,column_number,\ 
value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number) / (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)\ 
/ (pointer -> columns_in_block))/ \ 

if (DYNAMICJTEMP != 0) \ 
*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block) *\ 
(pointer -> columns_in_block ) + (column_number)\ 
% (pointer -> columns_in__block)) «= (value) / \ 

\ 
else \ 

if ( (value) != (pointer -> initial_value))\ 
{\ 
register int DYNAMIC_COLUMN,\ 
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DYNAMICJENI TIAL=\ 
(pointer -> initial_value),\ 
DYNAMIC_ROW;\ 

if (DYNAMIC_INITIAL == 0)\ 
DYNAMIC_TEMP=(int *)\ 

calloc((pointer -> rows_in_block) * \ 
(pointer -> columns_in_block),\ 
sizeof(int));\ 

else\ 

C\ 
DYNAMIC_TEMP=(mt *)\ 

malloc((pointer -> rows_in_block) * \ 
(pointer -> columns_in_block) *\ 
sizeof(int));\ 

*(pointer -> pointer_to_matrix +\ 
(row_number)/\ 
(pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) \ 
+ (column_number) /\ 
(pointer -> columns_in_block)) \ 
=DYNAMIC_TEMP; \ 

for(DYNAMIC_ROW=0; DYNAMIC_ROW <\ 
(pointer -> rows_in_block) ;\ 
DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN=0; DYNAMIC_COLUMN <\ 

(pointer -> columns_in_block) ;\ 
DYNAMIC_COLUMN++) \ 

*(DYNAMIC_TEMP + DYNAMIC_ROW * \ 
(pointer -> columns_in_block) \ 
+ DYNAMIC_COLUMN) =\ 
DYNAMIC_INITIAL;\ 

*(pointer -> pointer_to_matrix +\ 
(row_number) / (pointer -> rows_in_block)\ 
* (pointer -> blocks_in_row) \ 
+ (column_number)/\ 
(pointer -> columns_in_block)) \ 
= DYNAMIC_TEMP; \ 

*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block)\ 
* (pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) = (value);\ 

} / ; 

#define DEALLOCATE(pointer) \ 
{ \ 
register int column,row; \ 
for ( row=0 / row < (pointer -> number_of_rows\ 

+ pointer -> rows_in_block - 2); \ 
row+=(pointer -> rows_in_block)) \ 

for ( column=0 ; column <\ 
(pointer -> number_of_columns + \ 
pointer -> columns_in_block - 2); \ 
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column+=(pointer -> columns_in_block)) \ 
\ 
free(*((pointer ->\ 

pointer_to_matrix)++))/ \ 
}/ 

#define UPDATE_VALUE(pointer,row_number,column_number,\ 
value,operation) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number) / (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_nuniber)\ 
/ (pointer -> columns_in_block)); \ 

if (DYNAMIC_TEMP !- 0) \ 
DYNAMIC_TEMP_VALUE = (*((DYNAMIC_TEMP) +\ 

(row_number) % (pointer -> rows_in_block)\ 
* (pointer -> columns_in_block ) \ 
+ (column_number) %\ 
(pointer -> columns_in_block))) \ 
operation (value) / \ 

\ 
else \ 

DYNAMIC_TEMP_VALUE =\ 
(pointer -> initial_value) operation\ 
(value);\ 

\ 
if (DYNAMICJTEMP != 0 ) \ 

*((DYNAMICJTEMP) + (row_number) %\ 
(pointer -> rows_in_block) * \ 
(pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) =\ 
DYNAMIC_TEMP_VALUE ; \ 

\ 
else \ 

if ( DYNAMIC_TEMP_VALUE !=\ 
(pointer -> initial_value))\ 
C\ 
register int DYNAMIC_COLUMN,\ 

DYNAMIC_INITIAL=\ 
(pointer -> initiai_value),\ 
DYNAMIC_ROW;\ 

if (DYNAMIC_INITIAL -« 0)\ 
DYNAMIC_TEMP=(int *)\ 

calloc((pointer -> rows_in_block)\ 
* (pointer -> columns_in_block)\ 
,sizeof (int)) ;\ 

else\ 
{\ 
DYNAMIC_TEMP=(int *)\ 

malloc((pointer -> rows_in_block)\ 
* (pointer -> columns_in_block)\ 
* sizeof(int));\ 

*(pointer -> pointer_to_matrix +\ 
(row_number)/ \ 
(pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) \ 
+ (column_number)/\ 
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(pointer -> columns_in_block)) \ 
=DYNAMIC_TEMP; \ 

for(DYNAMIC_ROW=0; DYNAMIC_ROW <\ 
(pointer -> rows_in_block) ;\ 
DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN= 0;\ 

DYNAMIC_COLUMN < \ 
(pointer -> columns_in_block) ;\ 
DYNAMIC_COLUMN++) \ 

*(DYNAMIC_TEMP + DYNAMIC_ROW * \ 
(pointer -> columns_in_block) \ 
+ DYNAMIC_COLUMN) =\ 
DYNAMIC_INITIAL;\ 

};\ 
*(pointer -> pointer_to_matrix +\ 

(row_number)/(pointer -> rows_in_block)\ 
* (pointer -> blocks_in_row) \ 
+ (column_number)/\ 
(pointer -> colvunns_in_block)) \ 
= DYNAMIC_TEMP; \ 

*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block)\ 
* (pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) =\ 
DYNAMIC_TEMP_VALUE ; \ 
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APPENDIX B: RASTERIZATION SOFTWARE USING DYNAMIC MATRICES 

The following are three of the routines used to turn Calcomp plot files (using a subset of the 
Calcomp 960 plotter command set) into raster format suitable for use with a 400 dot per inch 
Versatec electrostatic plotter. The routines listed here, use, in one way or another, macros from 
the Dynamic Matrix package listed in Appendix A to create and plot raster images for the 
previously mentioned plotter. The missing routines do not make use of these macros and have 
been left out for the sake of brevity. This is only one of several similar programs created using 
these macros. In all, programs to drive HP laserjets, Seiko color hard copy units, 200 dot per inch 
monochrome Versatec electrostatic plotters, and 400 dot per inch color and monochrome Versatec 
electrostatic plotters were written. Over a six-year period, these programs became so popular at 
what was then CRDEC that over 10,000 monochrome 400 dot per inch plots (roughly half of these 
were either D or E size) were made. Additionally, smaller numbers of color and 200 dot per inch 
plots were also made. The number of plots to HP laserjets is impossible to estimate, but this 
appears to be the most popular of all of the supported plotters. 

/it*********************************************************/ 
/ */ 

/* This program was written by Daniel M. Pressel at */ 
/* CRDEC in the summer of 1989.  It is designed to take */ 
/* a plot file in Calcomp 960 format with software text */ 
/* and rasterize it for a 400 dpi monochrome 36 inch */ 
/* Versatec electrostatic plotter.  In writing this */ 
/* program, Mr. Pressel has made extensive use of his */ 
/* concept of a dynamic matrix. */ 
/* / 

/ */ 
/* / /* This software is the property of the United States */ 
/* Government.  When and if it is made available for use */ 
/* by others, it is totally at their own risk. V 
/* Furthermore, the author is unable to guarantee */ 
/* continued support for this product.  In fact this */ 
/* package has only been installed on systems running */ 
/* rev 3.0. The installation instructions may only */ 
/* apply to this rev and probably need modifications if */ 
/* the software is to be successfully installed on */ 
/* future revs. Any such modifications are the */ 
/* responsibility of the administrators at the sites */ 
/* receiving copies of this software. Finally, it is */ 
/* illegal to sell either this software, or .any */ 
/* derivative software, to other United States V 
/* Government installations without first informing */ 
/* them that the software is already the property of the */ 
/* United States Government. / 

''/I*********************************************************/ 

#include <stdio.h> 
#include <string.h> 
#include "dyn.h" 
#include "calcomp_defines.h" 
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main() 
{ 
DYNAMIC_MATRIX *image; 

char type; 
char firstb; 
char secondb; 

int calcomp_get_command(); 

int delta_x,delta_y; 
int old_x,old_y; 
int max_x,max_y; 
int bit; 
int row,column; 

#if RESOLUTION == 200 
int offset=0; 
#else 
int offset=l; 
#endif 

int step; 

#if RESOLUTION == 200 
int thickness=l; 
#else 
int thickness=3; 
#endif 

int pen_status=UP; 
int number_of_points; 
register int loop_counter; 

/•it********************************************************/ 

/* V 
/* The array hpstylen stores the pattern for "horizontal */ 
/* lines" (abs(slope) < 1). */ 
/* */ 
/fr*********************************************************/ 

unsigned int hpstyle; 

/••••••a***************************************************/ 

/* */ 
/* The array vpstyle stores the pattern for "vertical    */ 
/* lines" abs(slope) >= 1). */ 
/* */ 
/A*********************************************************/ 

unsigned int vpstyle[33]; 

float scale; 

void calcomp_raster(); 
void calcomp_plot(); 
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A**********************************************************/ 

/* V 
/* Do all kinds of initializations prior to the start of */ 
/* the run. V 
/* V 
/**********************************************************/ 

#if RESOLUTION == 200 
hpstyle=0x80000000/ 
vpstyle[1]=0x80000000; 
#else 
hpstyle=0xe0000000; 
vpstyle[1]=0x80000000 
vpstyle[2]=0x80000000 
vpstyle[3]=0x80000000 
#endif 

scale=RESOLUTION * .0004921; 
step= 1/scale; 
old_x=0/ 
old_y=0; 
max_x=old_x/ 
max_y=old_y; 

ALLOCATE (image, 0 ,MAX_R0WS ,MAX_COLUMNS, R0WS_IN_BL0CK, 
COLUMNS_IN_BLOCK)/ 

while ( calcomp_get_command(&number_of_points, 
&pen_status,stype) 
!= DONE ) 
switch (type) 

{ 

/*   case 0x7F: 
goto FASTJDUT;*/ 

case 0x20: 
case 0x40: 

/**********************************************************/ 
/* V 
/* Process polyline commands. */ 
/* */ 
/**********************************************************/ 

for (loop_counter=0; loop_counter < 
number_of__points / loop_counter++) 

{ 

/**********************************************************/ 

/* . V 

/* Draw from the current location to the location       */ 
/* specified. This command always uses relative */ 
/* positioning.  It is therefore neccessary to look for */ 
/* and handle negative values. Otherwise, the */ 
/* coordinates are similar to the move command above. */ 
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/* */ 

switch (type) 
{ 

case 0x20: 
delta_x=getchar(); 
delta_y=getchar() ; 
if ( delta_x > 0x7f ) 

delta_x=(( ~delta_x & Oxff) + 
1 ) * -1; 

if ( delta_y > 0x7f ) 
delta_y=(( ~delta_y & Oxff) + 

1 ) * -1; 
break; 

case 0x40: 
firstb=getchar(); 
secondb=getchar(); 
delta_x=((firstb & Oxff) << 8) | 

(secondb & Oxff); 
firstb=getchar(); 
secondb=getchar(); 
delta_y=((firstb & Oxff) << 8) | 

(secondb & Oxff); 
if ( delta_x > 0x7fff ) 

delta_x=(( ~delta_x & Oxffff) 
+ 1 ) * -1; 

if ( delta_y > 0x7fff ) 
delta_y=(( "deltas &  Oxffff) 

+ 1 ) * -1; 
break; 

}; 

if ((((old_x+delta_x)*scale+WORD_SIZE) > 
MAX_ROWS) || (((old_y+delta_y)*scale+ 
WORD_SIZE) > MAX_COLUMNS*WORD_SIZE) || 
(((old_x+delta_x)*scale+WORD_SIZE) < 
0) || (((old_y+delta_y)*scale+ 
WORD_SIZE) < 0)) 
{ 
fprintf(stderr, 

"Your plot is too big!!\n"),- 
fprintf(stderr, 

"(%d,%d) max(%d,%d)\n", 
old_x+delta_x, 

old_y+delta_y, max_x, max__y) / 
goto FAST_OUT; 

}/ 

if (pen_status ~ DOWN) 
calcomp_raster(delta_x,delta_y, 

hpstyle,image,offset,old_x,old_y, 
scale,step,thickness,vpstyle)/ 

old_x=old_x+delta_x; 
old_y=old_y+delta_y / 

28 



#ifdef DIAG 

#endif 

row=old_x*scale+WORD_SIZE; 
column=old_y*scale-offset+WORD_SIZE; 
bit=column%WORD_SIZE; 
column=column/WORD_SIZE ; 
UPDATE_VALUE(image,row,column, 

OxFFFFOOOO >> bit , | ); 
column++/ 
UPDATE_VALUE(image,row,column, 

OxFFFFOOOO << (WORD_SIZE - bit ), 
I ); 

if ( max_x < old_x ) 
max_x=old_x; 

if ( max_y < old_y ) 
max_y=old_y; 

}/ 

FAST OUT:  ; 

}; 

,**********************************************************/ 

/* V 

/* We have now processed all of the input data. After  */ 
/* calculating the row and column coordinates for each  */ 
/* max_x,max_y (with a bit of padding to make it look   */ 
/* nicer).  We will then call the plot routine.        */ 
/* */ 
/**********************************************************/ 

max_x=max_x*scale + RESOLUTION * 2; 
if ( max_x > MAX_ROWS - 1 ) 

max_x=MAX_ROWS - 1; 
max_y=(((max_y * scale) / WORD_SIZE ) + 2 ) + 

COLUMNS_IN_BLOCK -  1; 
if   (  max_jr >    MAX__COLUMNS   ) 

max_y = MAX_COLUMNS; 
calcomp_plot (image, max_x, max_y) ; 
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The following routine sends the finished raster image to the plotter. Since the raster image 
is no longer stored as one long series of bytes, it is impossible to output a single large stream of 
bytes. Instead, the portion of each sub-matrix which belongs to the current scan line must be out- 
put with zero fill for those portions of a scan line which were never allocated space. To the extent 
that it seemed reasonable to do, this process has been optimized to reduce the number of separate 
calls to the I/O routines/macros. This also had the effect of reducing the overhead associated with 
the use of Dynamic Matrices. Several service technicians have reported that it also seemed to pro- 
duce a higher quality of output than that obtained on similar equipment at other sites. They 
seemed to feel that this had to do with this software's ability to generate output at a relatively 
high (roughly 200,000 bytes per second on a 2 MIP SUN 3 with 16 Mbytes of memory) and uni- 
form rate of speed. Presumably this is the result of avoiding disk I/O (either implicit in the form 
of paging or explicit in the form of reading the raster image in from a file) while at the same time 
having a relatively low overhead associated with reconstructing the image (compared to using 
more traditional data compression algorithms). 

/* V 
/* This routine was written by Daniel M. Pressel in     */ 
/* October of 1988 at CRDEC.  It is part of his versatec */ 
/* plotter package.  It is designed to output the raster */ 
/* image stored in one of his "DYNAMIC MATRICES" to a   */ 
/* versatec plotter.                                */ 
/* */ 
/***************•*************************************•****/ 

/***********•********************************************•*/ 

/* V 
/* This software is the property of the United States   */ 
/* Government.  When and if it is made available for use */ 
/* by others, it is totally at their own risk.         */ 
/* Furthermore, the author is unable to guarantee       */ 
/* continued support for this product.  In fact this    */ 
/* package has only been installed on systems running   */ 
/* rev 3.0.  The installation instructions may only     */ 
/* apply to this rev, and probably need modifications if */ 
/* the software is to be successfully installed on     */ 
/* future revs.  Any such modifications are the        */ 
/* responsibility of the administrators at the sites    */ 
/* receiving copies of this software.  Finally, it is   */ 
/* illegal to sell either this software, or any        */ 
/* derivative software, to other United States         */ 
/* Government installations without first informing them */ 
/* that the software is already the property of the     */ 
/* United States Government.                         */ 
/* */ 

#include <stdio.h> 
#include <sys/ioctl.h> 
#include <sys/vcmd.h> 
#include "dyn.h" 
#include "calcomp_defines.h" 

void calcomp_plot(image,max_x,max_y) 
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DYNAMIC_MATRIX *image; 
int max_x,max_y; 
{ 
register int x,y; 

static int dummy[MAX_COLUMNS]; 

int temp; 

char vpbuf[BUFSIZ]; 
static int plotmd[]={VPLOT,0,0} 
static int prtmd[]={VPRINT,0,0} 

/**********************************************************/ 

/* V 
/* Force a formfeed to get a clean sheet of paper into */ 
/* the plotter/printer and then stick the plotter/printer */ 
/* into graphics mode. */ 
/* */ 
/**********************************************************/ 

temp=setbuf(stdout,vpbuf); 

temp=fflush(stdout); 
sleep(3)/ 

temp=ioctl(fileno(stdout),VSETSTATE,prtmd); 
temp=fflush(stdout)/ 
sleep(3)/ 
putc(4,stdout)/ 
temp=fflush(stdout); 
sleep(3)i 
temp=ioctl(fileno(stdout),VSETSTATE,plotmd); 
temp=fflush(stdout)/ 
sleep(3)/ 

A**********************************************************/ 

/* V 
/* Output from the top of the plot to the bottom of the */ 
/* plot. */ 
/* V 
/•••it******************************************************/ 

/**********************************************************/ 
/* V 
/* Output from the left edge of the paper to the right */ 
/* edge of the image. We will do this in a more */ 
/* efficient manner, by checking to see which blocks */ 
/* have and have not been allocated space. For empty */ 
/* blocks, we can output all zeros. For allocated */ 
/* blocks, we will output one row from the block all at */ 
/* once, rather than tetching 4 bytes at a time. Since */ 
/* there can be substantial overhead associated with */ 
/* accessing a dynamic matrix, this should save a */ 
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/* substantial amount of CPU time, and also increase the */ 
/* plot speed (up to the limits of the vpc controller). */ 
/* V 
/It*********************************************************/ 

for (x=0; x<max_x ; x++) 
{ 
for (y=0;y < max_y ; y=y+COLUMNS_IN_BLOCK) 

if ( INQUIRE_POINTERJTO_BLOCK(image,x,y) == USED) 
temp= fwrite(FETCH_POINTER_TO_BLOCK(image,x,y) 

+ (X%ROWS_IN_BLOCK) * COLUMNS_IN_BLOCK, 
sizeof(int),COLUMNS_IN_BLOCK,stdout)/ 

else 
temp=fwrite(dummy,sizeof(int), 

COLUMNS_IN_BLOCK,stdout); 

/* */ 
/* Blank fill the remainder of the scan line. */ 
/* V 
/•******•**•***********************************•**•*•****•*/ 

temp=fwrite(dummy,sizeof(int),(MAX_COLUMNS - y), 
stdout)/ 

}; 

temp=fflush(stdout) ; 
sleep(3)/ 
temp=ioctl(fileno(stdout),VSETSTATE,prtmd)/ 
temp=fflush (stdout) ,- 
sleep(3); 
putc(4,stdout)/ 
temp=fflush(stdout); 
sleep(3); 

return; 

32 



This final routine is where the raster image is actually created. By reducing the number of 
pages needed to store the raster image, this is where Dynamic Matrices had the most significant 
effect on the speed of the program. In order to reduce the time spent calculating addresses, this 
routine makes extensive use of the UPDATE macro, which is functionally equivalent to the C 
expression X += A, where X would be an element in the dynamic matrix, + is allowed to be any 
of the standard operations, and A is any expression which lacks side effects. In the case of this 
routine, the operator is always | (bit wise or). Experience indicates that on a 2 MTP SUN3 with 16 
Mbytes of memory, this routine can produce a 400 dot per inch E size raster image for an average 
E size drawing in a bit over 10 minutes. 

/**********************************************************/ 

/* V 
/* This routine was written by Daniel M. Pressel in the */ 
/* summer of 1989. It is part of his calcomp to */ 
/* versatec plotting package. */ 
/* */ 
/**********************************************************/ 

/**********************************************************/ 
/* V 
/* This software is the property of the United States   */ 
/* Government. When and if it is made available for use */ 
/* by others, it is totally at their own risk.         */ 
/* Furthermore, the author is unable to guarantee       */ 
/* continued support for this product.  In fact this    */ 
/* package has only been installed on systems running   */ 
/* rev 3.0.  The installation instructions may only     */ 
/* apply to this rev, and probably need modifications if */ 
/* the software is to be successfully installed on      */ 
/* future revs. Any such modifications are the        */ 
/* responsibility of the administrators at the sites    */ 
/* receiving copies of this software. Finally, it is   */ 
/* illegal to sell either this software, or any        */ 
/* derivative software, to other United States         */ 
/* Government installations without first informing them */ 
/* that the software is already the property of the.    */ 
/* United States Government.                         */ 
/* V 
/**********************************************************/ 

#include <stdio.h> 
#include "dyn.h" 
#include "calcomp_defines.h" 

void calcomp_raster(delta_x,delta_y,hpstyle,image,offset, 
old_x,old_y,scale,step,thickness,vpstyle) 

int delta_x,delta_y; 
unsigned int hpstyle; 
DYNAMIC_MATRIX *image; 
int old_x,old_y; 
float scale; 
int step; 
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int thickness ; 
unsigned int vpstyle[33]; 
int offset; 

{ 
register int level,x,y,- 

int bit; 
int column; 
int row; 

float slope; 

/********************************************************** / 

/* V 
/* Here we are going to rasterize the line to be drawn. */ 
/* First we will determine if the absolute value is */ 
/* greater than or less than 1.  This allows us to */ 
/* maximize the resolution, and to also transparently */ 
/* handle both vertical and horizontal lines.  Depending */ 
/* upon the value of the slope either X or Y may be */ 
/* treated as the independent variable.  Once the */ 
/* independent variable has been selected, it will be */ 
/* stepped through its range of values at the resolution */ 
/* of the plotter.  NOTE:  This program will */ 
/* automatically transpose the X and Y coordinates to */ 
/* rotate the drawing to allow A through E size drawings */ 
/* to be handled.  This is prefered to using CADDS to */ 
/* rotate the drawing, since CADDS has a bug in the */ 
/* rotate modifier (at least in REV 3.0 and earlier). */ 
/* V 
/it*********************************************************/ 

if ((0.0 + delta_x)*delta_x > (0.0 + delta_y)*delta_y) 

/**********************************************************/ 

/* */ 
/* Handle lines which are primarily horizontal.        */ 
/* V 
/* Note:  Since the lines may be more than one dot wide, */ 
/* horizontal lines, which plot vertically on the paper, */ 
/* may cross word boundaries.  Therefore potentially, */ 
/* two elements of the matrix may need updating. * 
/* */ 
/**********************************************************/ 

slope=(delta_y+0.0)/delta_x; 
if ( delta_x > 0 ) 

/* *********************************************************/ 

/* */ 
/* The line goes from left to right. */ 
/* */ 
/**********************************************************/ 
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for (x=(-step)*offset ; x <= delta_x / x+=step ) 
{ 
row=(old_x+x)* scale+WORD_SIZE; 
column=(slope*x+old_y)*scale-offset+WORD_SIZE; 
bit=column%WORD_SIZE; 
column=column/WORD_SIZE ; 
UPDATE_VALUE(image,row,column, 

hpstyle >> bit , | ); 
column++; 
UPDATE_VALUE(image,row,column, 

hpstyle << (WORD_SIZE - bit ), | ); 
} 

} 

else 

/it*********************************************************/ 

/* V 
/* The line goes from right to left. */ 
/* */ 
/it*********************************************************/ 

for (x=step*offset; x >= delta_x ; x-=step ) 

row=(old_x+x)* scale+WORD_SIZE; 
column»(slope*x+old_y)*scale-offset+ 

WORD_SIZE; 
bit=column%WORD_SIZE; 
column=column/WORD_SIZE; 
UPDATE_VALUE(image,row,column, 

hpstyle >> bit , |); 
column++; 
UPDATE_VALUE(image,row,column, 

hpstyle << (WORD_SIZE - bit ), | )/ 

}/ 
} 

else 

/* *// /*  The line is primarily vertical. / 

/* Note: Since the lines may be more than 1 dot wide and */ 
/* vertical lines are actually plotted horizontally, V 
/* matrix elements of more than one row may be updated.  */ 

/i********************************************************v 

slope=(delta_x+0.0)/delta_y/ 
if ( delta_y > 0 ) 
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/* *********************************************************/ 

/* V 
/* The line goes from the bottom to the top. */ 
/* V 
/* *********************************************************/ 

{ 
for (y=(-step)*offset ; y <= delta_y ; y+=step ) 

{ 
row=(slope*y+old_x)*scale-offset+WORD_SIZE; 
coluinn== (old_y+y) *scale+WORD_SIZE; 
bit=column%WORD_SIZE; 
column=column/WORD_SIZE; 
for (level=l ; level <= thickness ; 

level++,row++) 
{ 
UPDATE_VALUE(image,row,column, 

vpstyle[level] >> bit, | ); 
}; 

} 
} 

else 

/* ******************************************************** * / 
/* */ 
/*    The line goes from the top to the bottom. */ 
/* */ 
/**********************************************************/ 

{ 
for (y=step*offset; y >= delta_y ; y-=step ) 

{ 
row=(slope*y+old_x)*scale-offset+WORD_SIZE; 
column= (old_y+y) *scale+WORD_SIZE ,- 
bit=column%WORD_SIZE; 
column=column/WORD_SIZE; 
for (level=l ; level <= thickness ; 

level++,row++) 
{ 
UPDATE_VALUE(image,row,column, 

vpstyle[level] >> bit , | ); 

} 

}; 
}; 

}; 
return ,• 
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APPENDIX C: THE DYNAMIC MATRIX MACROS FOR FLOATING POINT DATA 

This set of macros has been modified to handle floating point data instead of integer data. 
Additionally, it contains a large number of new macros, most of which should be considered 
experimental in nature. In general these additional macros will be most useful when dealing with 
dense matrices where many if not all of the elements in each sub-matrix will be accessed before 
moving on to the next sub-matrix. Under these conditions, some of the macros can be simplified 
(e.g., after storing a value into one of the elements of the sub-matrix, future accesses to that sub- 
matrix need not check to see if it has already been allocated space). Additionally, versions of 
many of the macros were created which use a fixed sub-matrix size (at the present time only 8x8 
element sub-matrices are supported in this way). These macros can be substantially more efficient 
at performing address calculations since they no longer need to carry out integer division or in 
most cases integer multiplication. While the small size for the sub-matrices will in some cases 
provide.only a limited benefit in reducing the level of paging, it can be very successful in 
improving cache utilization for certain types of algorithms. 

/**********************************************************/ 
', */ 

/* This include file was written by Daniel M. Pressel at */ 
/* CRDEC in August of 1988.  It is intended to provide a */ 
/* uniform set of structure definitions and macros for  */ 
/* implementing in C his concept of a dynamic matrix.   */ 
/* In the fall and winter of 1993 Mr. Pressel modified */ 
/* the code so that it would work with floating point   */ 
/* data instead of integers and added a number of      */ 
/* experimental macros.                            */ 
/* */ 
/**********************************************************/ 
'. */ 
/* 
/* In this file, the following items are defined:      */ 
/* /* 1) A scratch variable.  For uniqueness, it is */ 
/* called DYNAMIC TEMP. */ 
/* " V 

/* 2)  Two named constants, USED and UNUSED, which */ 
/* will be used as boolean values in some of */ 
/* the macros to follow. */ 

V 
/ 
/ 
V 

/* 
* / 

/*      3) A type definition for the structure used to */ 
/* simulate my concept of dynamic matrices. */ 

. * / 

/*      4) The following macro definitions: */ 
/* */ 
/* a) ALLOCATE:  This macro consists of a */ 
/* series of seperate statements used to */ 
/* allocate and initialize the core */ 
/* structure for a dynamic matrix. */ 
/* V 

/* b)  FETCH_VALUE:  Unlike ALLOCATE, this */ 
/* macro is composed of a single */ 
/* arithmetic expression. As such, it is */ 
/* suitable for inclusion directly into */ 
/* an arithmetic expression. To achieve */ 
/* this goal, both the comma operator and */ 
/* the ternary conditional operator were */ 
/* used. As such this is an extremely */ 
/* complicated macro. */ 
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/* V 
/*            c)  FETCH_POINTER_TO_BLOCK:  This macro is */ 
/* also designed to be directly included */ 
/* into arithimetic expressions and */ 
/* function calls.  Given a row and */ 
/* column number, this macro will */ 
/* determine in which of the blocks the */ 
/* matrix was subdivided into, the */ 
/* element resides, it then returns a */ 
/* pointer to the block of memory */ 
/* containing this element.  NOTE:  If */ 
/* the specified block has not had any */ 
/* values stored into it, then the NULL */ 
/* pointer is returned.  It is therefore */ 
/* imperative that the */ 
/* INQUIRE_POINTER_TO_BLOCK macro be used */ 
/* first to see if the block exists. */ 
/* */ 
/*            d)  INQUIRE_POINTER_TO_BLOCK:  This macro */ 
/* returns a boolean value of either USED */ 
/* or UNUSED, depending upon if anything */ 
/* other than the default value is stored */ 
/* in the elements of the specified */ 
/* block.  It may be used in an */ 
/* expression, but probably is best used */ 
/* as part of if, while, and for */ 
/* statements. */ 
/* V 
/*           e) STORE_VALUE:  Here is another macro, */ 
/* which is composed of multiple */ 
/* statements, and must not be included */ 
/* in any expressions.  It will update */ 
/* the value of an element in a dynamic */ 
/* matrix, allocating space for a block */ 
/* as needed.  When a block is allocated, */ 
/* this macro will also initialize each */ 
/* of its elements.  Since this takes */ 
/* some time, and increases the amount of */ 
/* memory in use, this macro will */ 
/* ignore requests to store the default */ 
/* value into an element of the matrix if */ 
/* it resides in a previously unused */ 
/* block. */ 
/* V 
/*          f) DEALLOCATE:  This is a multi statement */ 
/* macro used to free all of the memory */ 
/* previously used by a dynamic matrix. */ 
/* */' 
/*           g) UPDATE_VALUE:  This combines the */ 
/* functionality of FETCHJVALUE with */ 
/* STORE_VALUE.  There are two added */ 
/* arguments.  The second extra argument */ 
/* contains a binary operator which will */ 
/* be applied to value stored in the */ 
/* dyanmic matrix.  The first additional */ 
/* argument contains a value or */ 
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/* expression which will come to the     */ 
/* right of the binary operator.  This   */ 
/* macro is not required, but its use    */ 
/* may result in faster running code.    */ 
/* */ 
/* V 
/**********************************************************/ 

/i!ifi!ici!ieiri!icicicit ************************************ **********/ 
/* V 
/* NOTE:  As with all macros, one should never allow    */ 
/* any of the arguments to the macros to have side      */ 
/* effects.  If side effects are present, they will     */ 
/* almost always take effect several times, with usually */ 
/* undesirable consequences.  Additionally, one may     */ 
/* include expressions as part of most of the arguments, */ 
/* but care must be taken in doing so.  If the         */ 
/* expressions are computationally intensive, or call   */ 
/* functions they may have severe negative speed       */ 
/* consequences.  If this becomes a problem, the use of */ 
/* temporary or scratch variables would be well        */ 
/* advised.                                       */ 
/ * / 
/**********************************************************/ 

/**********************************************************/ 

/* .     V 

/* Several additional macros have been added to this    */ 
/* package.  Those with _8_8 appended to the name use a */ 
/* fixed submatrix size of 8 x 8 elements.  This allows */ 
/* all integer division and multiplication to be       */ 
/* replaced with bit shifting, while the mod operator   */ 
/* was replaced with bit masks.  This makes these macros */ 
/* dramatically more efficient on most hardware.        */ 
/* Additionally, some macros with the designation PRE  */ 
/* were created to allow for the more efficient        */ 
/* allocation and manipulation of dense matrices.       */ 
/* These macros must only be used with Dynamic Matrices */ 
/* initialized using the PREALLOCATE macro. Dynamic    */ 
/* Matrices so initialized may still, be manipulated     */ 
/* using non PRE macros, but this will be less         */ 
/* efficient. Finally, there are a large number of new */ 
/* macros which are designed to allow for the more     */ 
/* efficient manipulation of Dynamic Matrices under     */ 
/* specific conditions.  In general the utility of     */ 
/* these macros has not been established, and they     */ 
/* should be considered to be unsupported.            */ 
/* */ 
/**********************************************************/ 

/**********************************************************/ 

/* ' V 

/* This software is the property of the United States   */ 
/* Government. When and if it is made available for use */ 
/* by others, it is totally at their own risk.         */ 
/* Furthermore, the author is unable to guarantee      * 
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/ 
/* continued support for this product.  Any */ 
/* modifications are the responsibility of the users. */ 
/* Finally, it is illegal to sell either this software, */ 
/* or any derivative software, to other United States */ 
/* Government installations without first informing them */ 
/* that the software is already the property of the */ 
/* United States Government. */ 
/* */ 
/■to*********************************************************/ 

void *malloc(); 
void *calloc(); 
float  *DYNAMIC_TEMP; 
float  DYNAMIC_TEMP_VALUE; 
float  *DYNAMIC_LAST_ADDRESS; 

#define USED 1 
#define UNUSED 0 

typedef struct 
{ 
float initial_value; 
int number_of_rows ,- 
int number_of_columns; 
float * * pointer_to_matrix; 
int rows_in_block; 
int columns_in_block; 
int blocks_in_row; 

}   DYNAMICJMATRIX; 

#define ALLOCATE(pointer,init_val,num_of_rows,\ 
num_of_columns, num_rows_in__block, \ 
num_columns_in_block) \ 

pointer=(DYNAMIC_MATRIX *)\ 
malloc(sizeof(DYNAMIC_MATRIX));\ 

pointer -> initial_value=init_val;\ 
pointer -> number_of_rows=num_of_rows;\ 
pointer -> number_of_columns=num_of_columns;\ 
pointer -> blocks_in_row=(num_of_columns +\ 

num_columns_in_block -1 )/num_columns_in__block;\ 
pointer -> pointer_to_matrix=(float **)\ 

calloc(((num_of_rows + num_rows_in_block - l)/\ 
num_rows_in_block)*(pointer -> blocks_in_row),\ 
sizeof(float *));\ 

pointer -> rows_in_block=num_rows_in_block/\ 
pointer -> columns_in_block=num_columns_in_block; 

#define FETCH_VALUE(pointer,row_number,column_number) \ 
((DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 

(row_number)/(pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)/\ 
(pointer -> columns_in_block))),\ 
((DYNAMIC_TEMP !■= 0) ? *((DYNAMIC_TEMP) +\ 
(row_number) % (pointer -> rows_in_block) *\ 
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(pointer -> columns_in_block ) +\ 
(column_number) % (pointer -> columns_in_block))\ 
: (pointer -> initial_value))) 

#define FETCH_POINTER_TO_BLOCK(pointer,row_number,\ 
column_number) \ 

(*(pointer -> pointer_to_matrix + (row_nuinber) \ 
/ (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)A 
(pointer -> columns_in_block))) 

#define INQUIRE_POINTER_TO_BLOCK(pointer,row_number,\ 
column_number) \ 

((*(pointer -> pointer_to_matrix + (row_number) \ 
/ (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)A 
(pointer -> columns_in_block))) != NULL\ 
? USED : UNUSED ) 

#define STORE_VALUE(pointer,row_number,columnjiumber,\ 
value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number) / (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)\ 
/ (pointer -> coliamns_in_block))/  \ 

if   (DYNAMICJTEMP   !=  0)   \ 
*( (DYNi?^MIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block) * \ 
(pointer -> columns_in_block ) +\ 
(column_number) % (pointer -> columns_in_block))\ 
= (value) ; \ 

\ 
else \ 

if ( (value) != (pointer -> initial_value))\ 

register int DYNAMIC_COLUMN, DYNAMIC_ROW;\ 
register float DYNAMIC_INITIAL=\ 

(pointer -> initial_value);\ 
if (DYNAMIC_INITIAL == 0.0)\ 

DYNAMIC_TEMP=( float *)\ 
calloc((pointer -> rows_in_block) *\ 
(pointer -> columns_in_block),\ 
sizeof(float))/\ 

else\ 
t\ 
DYNAMIC_TEMP=(float *) 

malloc((pointer -> rows_in_block) * \ 
(pointer -> columns_in_block) *\ 
sizeof(float));\ 

*(pointer -> pointer_to_matrix +\ 
(r ow_nuniber) /\ 
(pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) \ 
+ (column_number)/\ 
(pointer -> columns_in_block)) \ 
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=DYNAMIC_TEMP; \ 
\ 
for(DYNAMIC_ROW=0; DYNAMIC_ROW <\ 

(pointer -> rows_in_block) ;\ 
DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN=0;\ 

DYNAMIC_COLUMN < \ 
(pointer -> columns_in_block) ;\ 
DYNAMIC_COLUMN++) \ 
\ 
*(DYNAMIC_TEMP + DYNAMIC_ROW * \ 

(pointer -> columns_in_block) \ 
+ DYNAMIC_COLUMN) =\ 
DYNAMIC_INITIAL;\ 

};\ 
*(pointer -> pointer_to_matrix +\ 

(row_number)/(pointer -> rows_in_block)\ 
* (pointer -> blocks_in_row) \ 
+ (column_number) /\ 
(pointer -> columns_in_block)) \ 
- DYNAMIC_TEMP; \ 

*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block)\ 
* (pointer -> columns_in_block ) +\ 
(column__number) % \ 
(pointer -> columns_in block))=(value);\ 

} / / 

#define DEALLOCATE(pointer) \ 
{ \ 
register int column,row; \ 
for ( row=0 / row <\ 

(pointer -> number_of_rows + \ 
pointer -> rows_in_block - 2); \ 
row+=(pointer -> rows_in_block)) \ 
\ 
for ( column=0 ; column <\ 

(pointer -> number_of_columns + \ 
pointer -> columns_in_block - 2); \ 
column+=(pointer -> columns_in_block))\ 
\ 
free(*((pointer -> pointer_to_matrix)++));\ 

}; 
#define UPDATE_VALUE(pointer,row_number,column_number,\ 

value,operation) \ 
DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 

(row_number) / (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)\ 
/ (pointer -> columns_in_block)); \ 

if (DYNAMIC_TEMP != 0) \ 
DYNAMIC_TEMP_VALUE = (*((DYNAMIC_TEMP) +\ 

(row_number) % (pointer -> rows_in_block)\ 
* (pointer -> columns_in__block ) \ 
+ (column_number) %\ 
(pointer -> columns_in_block))) \ 
operation (value) / \ 
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\ 
else \ 

DYNAMIC_TEMP_VALUE =\ 
(pointer -> initial_value) operation\ 
(value);\ 

if (DYNAMIC_TEMP != 0 ) \ 
*((DYNAMIC_TEMP) + (row_number) %\ 

(pointer -> rows_in_block) * \ 
(pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) =\ 
DYNAMIC_TEMP_VALUE / \ 

\ 
else \ 

if ( DYNAMIC_TEMP_VALUE !=\ 
(pointer -> initial_value))\ 

register int DYNAMIC_COLUMN, DYNAMIC_ROW;\ 
register float DYNAMIC_INITIAL=\ 

(pointer -> initial_value);\ 
if (DYNAMIC_INITIAL — 0.0)\ 

DYNAMIC_TEMP=(float *)\ 
calloc((pointer -> rows_in_block) *\ 
(pointer -> columns_in_block),\ 
sizeof(float));\ 

else\ 

DYNAMIC_TEMP=(float *)\ 
malloc((pointer -> rows_in_block) *\ 
(pointer -> columns_in_block) *\ 
sizeof(float))/\ 

*(pointer -> pointer_to_matrix +\ 
(row_number)A 
(pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) \ 
+ (column_number)A 
(pointer -> columns_in_block)) \ 
=DYNAMIC_TEMP; \ 

for(DYNAMIC_ROW=0; DYNAMIC_ROW <\ 
(pointer -> rows_in_block) ;\ 
DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN=0; DYNAMIC_COLUMN\ 

< (pointer -> columns_in_block) ;\ 
DYNAMIC_COLUMN++) \ 

*(DYNAMIC_TEMP + DYNAMIC_ROW * \ 
(pointer -> columns_in_block) \ 
+ DYNAMIC_COLUMN) -\ 
DYNAMIC_INITIAL/\ 

>'\ . •  ^ *(pointer -> poxnter_to_matrix +\ 
(row_number) \ 
/ (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) \ 
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+ (column_number)/\ 
(pointer -> columns_in_block)) \ 
= DYNAMIC_TEMP; \ 

*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block)\ 
* (pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) =\ 
DYNAMIC_TEMP_VALUE / \ 

};; 

#define DENSE_STORE_VALUE(pointer,row_number,\ 
column_number,value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number)\ 
/ (pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)\ 
/ (pointer -> columns_in_block)) ,• \ 

if (DYNAMICJTEMP != 0) \ 
*((DYNAMIC_TEMP) + (row_number) %\ 

(pointer -> rows_in_block) * \ 
(pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) -=\ 
(value) ; \ 

\ 
else \ 

if ( (value) !=\ 
(pointer -> initial_value))\ 
C\ 
DYNAMIC_TEMP=(float *)\ 

malloc((pointer -> rows_in_block) * \ 
(pointer -> columns_in_block) *\ 
sizeof(float));\ 

*(pointer -> pointer_to_matrix +\ 
(row_number)/(pointer -> rows_in_block)\ 
* (pointer -> blocks_in_row) \ 
+ (column_number)/ \ 
(pointer -> columns_in_block)) \ 
-=DYNAMIC_TEMP; \ 

\ 
*((DYNAMICJTEMP) + (row_number) % \ 

(pointer -> rows_in_block)\ 
* (pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) -\ 
(value) / \ 

};; 

#define FAST_STORE_VALUE(pointer,row_number,\ 
column_number,value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number)/(pointer -> rows_in_block)\ 
* (pointer -> blocks_in_row) \ 
+ (column_number) /\ 
(pointer -> columns_in_block))/ \ 
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*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block) * \ 
(pointer -> columns_in_block ) +\ 
(column_number) %\ 
(pointer -> columns_in_block)) = (value) ;; 

#define PRE_SERIAL_STORE_VALUE(pointer,row_number,\ 
column_number,value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number)/(pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) + (column_number)\ 
/ (pointer -> columns_in_block)); \ 

if (DYNAMIC_TEMP != 0) \ 
*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows_in_block) * \ 
(pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) = (value) / \ 

\ 
else \ 

if ( (value) !=  (pointer -> initial_value))\ 

register int DYNAMIC_COLUMN, DYNAMIC_ROW;\ 
register float DYNAMIC_INITIAL=\ 

(pointer -> initial_value);\ 
if (DYNAMIC_INITIAL == 0.0)\ 

DYNAMIC_TEMP=(float *)\ 
calloc((pointer -> rows_in_block) * \ 
(pointer -> columns_in_block),\ 
sizeof(float));\ 

else\ 
(\ 
DYNAMIC_TEMP=(float *)\ 

malloc((pointer -> rows_in_block) * \ 
(pointer -> columns_in_block) *\ 
sizeof(float));\ 

*(pointer -> pointer_to_matrix +\ 
(row_number)/\ 
(pointer -> rows_in_block) *\ 
(pointer -> blocks_in_row) \ 
+ (column_number)A 
(pointer -> columns_in_block)) \ 
=DYNAMIC_TEMP; \ 

for(DYNAMIC_ROW=0; DYNAMIC_ROW <\ 
(pointer -> rows_in_block) ;\ 
DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN=0;\ 

DYNAMIC_COLUMN < \ 
(pointer -> columns_in_block) ;\ 
DYNAMIC_COLUMN++) \ 

*(DYNAMIC_TEMP + DYNAMIC_ROW * \ 
(pointer -> columns_in_block) \ 
+ DYNAMIC_COLUMN) =\ 
DYNAMIC INITIAL;\ 
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};\ 
*(pointer -> pointer_to_matrix +\ 

(row_number)/(pointer -> rows_in_block)\ 
* (pointer -> blocks_in_row) \ 
+ (column_number)/\ 
(pointer -> columns_in_block)) \ 
- DYNAMIC_TEMP; \ 

*((DYNAMIC_TEMP) + (row_number) %\ 
(pointer -> rows__in_block)\ 
* (pointer -> columns_in_block ) +\ 
(column_number) % \ 
(pointer -> columns_in_block)) =\ 
(value) / \ 

}/\ 
DYNAMIC_LAST_ADDRESS = ((DYNAMICJTEMP) +\ 

(row_number) % (pointer -> rows_in_block) *\ 
(pointer -> columns_in_block )\ 
+ (column_number) %\ 
(pointer -> columns_in_block));; 

#define SERIAL_STORE_VALUE(value) \ 
*(++DYNAMIC_LAST_ADDRESS) = (value) // 

#define FETCH_VALUE_8_8(pointer,row_number,column_number) \ 
((DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 

(row_number >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3))), \ 
((DYNAMICJTEMP != 0) ? *((DYNAMICJTEMP) +\ 
((row_number & 0X07) << 3) +\ 
(Column_number & 0X07)) :\ 
(pointer -> initial_value))) 

#define FETCH_POINTER_TO_BLOCK_8_8(pointer,row_number,\ 
column_number) \ 

(*(pointer -> pointer_to_matrix +\ 
(row_number >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3))) 

#define STORE_VALUE_8_8(pointer,row_number,column_number,\ 
value) \ 
DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 

(row_number >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3)); \ 

if (DYNAMICJTEMP != 0) \ 
*((DYNAMIC_TEMP) + ((row_number & 0X07) << 3) \ 

+ (column_number & 0X07)) - (value) / \ 
\ 
else \ 

if ( (value) != (pointer -> initial_value))\ 
C\ 
register int DYNAMIC_COLUMN, DYNAMIC_ROW;\ 
register float DYNAMIC_INITIAL=\ 

(pointer -> initial_value) ,-\ 
if (DYNAMIC_INITIAL ™ 0.0)\ 

DYNAMIC_TEMP=(float *)\ 
calloc(64,sizeof(float));\ 
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else\ 
{\ 
DYNAMIC_TEMP=(float *)\ 

malloc(64 * sizeof(float));\ 
*(pointer -> pointer_to_matrix +\ 

(row_number >> 3)/ \ 
(pointer -> blocks_in_row) +\ 
(column_number >> 3))-DYNAMIC_TEMP;\ 

for(DYNAMIC_ROW=0; DYNAMIC_ROW < 8 ;\ 
DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN=0; DYNAMIC_COLUMN\ 

< 8 ; DYNAMIC_COLUMN++) \ 
\ 
*(DYNAMIC_TEMP +\ 

(DYNAMIC_ROW << 3) \ 
+ DYNAMIC_COLUMN) =\ 
DYNAMIC_INITIAL;\ 

*(pointer -> pointer_to_matrix +\ 
(row_number >> 3) \ 
* (pointer -> blocks_in_row) +\ 
(column_number >> 3)) = DYNAMIC_TEMP; \ 

*((DYNAMIC_TEMP)   +\ 
((row_number & 0X07)   <<  3)\ 
+  (col\omn_number & 0X07))  =  (value)   ;  \ 

};; 

#define DENSE_STORE_VALUE_8_8(pointer,row_number,\ 
column_number,value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3)); \ 

if (DYNAMIC_TEMP != 0) \ 
*((DYNAMIC_TEMP) + ((row_number & 0X07) << 3) \ 

+ (column_number & 0X07)) = (value) ; \ 
\ 
©XSG \ 

if ( (value) !=  (pointer -> initial_value))\ 
t\ 
DYNAMIC_TEMP=(float *)\ 

malloc(64 * sizeof(float));\ 
*(pointer -> pointer_to_matrix +\ 

(row_number >> 3) \ 
* (pointer -> blocks_in_row) +\ 
(column_number >> 3))=DYNAMIC_TEMP; \ 

\ 
*((DYNAMIC_TEMP) +\ 

((row_number & 0X07) << 3) \ 
+ (column_number & 0X07)) = (value) / \ 

}// 

# define PRE_SERIAL_ST0RE_VALUE_8_8 (pointer, row_number, \ 
column_number,value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
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(row_nuinber >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3)); \ 

if (DYNAMIC_TEMP != 0) \ 
*((DYNAMIC_TEMP) + ((row_number & 0X07) << 3) \ 

+ (column_number & 0X07)) = (value) / \ 
\ 
else \ 

if ( (value) !=  (pointer -> initial_value))\ 
{\ 
register int DYNAMIC_COLUMN, DYNAMIC_ROW;\ 
register float DYNAMIC_INITIAL=\ 

(pointer -> initial_value) ,-\ 
if (DYNAMIC_INITIAL == 0.0)\ 

DYNAMIC_TEMP=(float *)\ 
calloc(64,sizeof(float));\ 

else\ 
{\ 
DYNAMIC_TEMP=(float *)\ 

malloc(64 * sizeof(float));\ 
*(pointer -> pointer_to_matrix +\ 

(row_number >> 3) \ 
* (pointer -> blocks_in_row) +\ 
(column_number >> 3))=DYNAMIC_TEMP; \ 

\ 
for(DYNAMIC_ROW=0; DYNAMIC_ROW < 8 ;\ 

DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN= 0;\ 

DYNAMIC_COLUMN < 8; \ 
DYNAMIC_COLUMN++) \ 
\ 
*(DYNAMIC_TEMP +\ 

(DYNAMIC_ROW << 3) \ 
+ DYNAMIC_COLUMN) =\ 
DYNAMIC_INITIAL;\ 

};\ 
*(pointer -> pointer_to_matrix +\ 

(row_number >> 3) \ 
* (pointer -> blocks_in_row) +\ 
(column_number >> 3)) = DYNAMIC_TEMP; \ 

*((DYNAMIC_TEMP) +\ 
((row_number & 0X07) << 3) \ 
+ (column_number & 0X07)) = (value) / \ 

};\ 
DYNAMIC_LAST_ADDRESS = ((DYNAMIC_TEMP) +\ 

((row_number & 0X07) << 3) \ 
+ (column_number & 0X07));; 

#define PRE_SERIAL_UPDATE_VALUE_8_8(pointer,row_number,\ 
coluinn_number, value/Operation) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3)); \ 

if (DYNAMIC_TEMP != 0) \ 
DYNAMIC_TEMP_VALUE = (*((DYNAMIC_TEMP) +\ 

((row_number & 0X07) << 3) +\ 
(column_number & 0X07))) operation\ 
(value) / \ 
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\ 
else \ 

DYNAMIC_TEMP_VALUE =\ 
(pointer -> initial_value) operation\ 
(value)/\ 

if (DYNAMIC_TEMP != 0 ) \ 
*((DYNAMIC_TEMP) + ((row_number & 0X07) << 3) \ 

+ (column_number & 0X07)) =\ 
DYNAMIC_TEMP_VALUE ; \ 

\ 

if ( DYNAMIC_TEMP_VALUE !=\ 
(pointer -> initial_value))\ 

register int DYNAMIC_COLUMN, DYNAMIC_ROW;\ 
register float DYNAMIC_INITIAL=\ 

(pointer -> initial_value);\ 
if (DYNAMIC_INITIAL == 0.0)\ 

DYNAMIC_TEMP=(float *)\ 
calloc(64,sizeof(float));\ 

else\ 
{\ 
DYNAMIC_TEMP=(float *)\ 

malloc(64 * sizeof(float));\ 
*(pointer -> pointer_to_matrix +\ 

(row_number >> 3) \ 
* (pointer -> blocks_in_row) +\ 
(column_number >> 3))=DYNAMIC_TEMP/\ 

for(DYNAMIC_ROW=0/ DYNAMIC_ROW < 8 ;\ 
DYNAMIC_ROW++)\ 
for(DYNAMIC_COLUMN= 0;\ 

DYNAMIC_COLUMN < 8 / \ 
DYNAMIC_COLUMN++) \ 
\ 
*(DYNAMIC_TEMP +\ 

(DYNAMIC_ROW << 3) \ 
+ DYNAMIC_COLUMN) =\ 
DYNAMIC_INITIAL;\ 

} A .   v *(pointer -> pointer_to_matrix +\ 
(row_number >> 3) \ 
* (pointer -> blocks_in_row) +\ 
(column_number >> 3)) - DYNAMIC_TEMP/ \ 

*((DYNAMIC_TEMP)   +\ 
((row_number & 0X07)  <<  3)\ 
+  (column_nvunber & 0X07))  =\ 
DYNAMIC_TEMP_VALUE / \ 

DYNAMIC_LAST_ADDRESS = ((DYNAMIC_TEMP) +\ 
((row_number & 0X07) << 3) \ 
+ (column_number & 0X07))// 
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#define SERIAL_UPDATE_VALUE(value,operation) \ 
*(++DYNAMIC_LAST_ADDRESS) =\ 

*DYNAMIC_LAST_ADDRESS operation (value) // 

#define OFFSET_STORE_VALUE(value,offset) \ 
*(DYNAMIC_LAST_ADDRESS + (offset)) = (value) 

#define PREALLOCATE_8_8(pointer,num_of_rows,\ 
num_of_columns) \ 

{\ 
register int DYNAMIC_COLUMN, \ 

DYNAMIC_ROW;\ 
pointer=(DYNAMIC_MATRIX *)\ 

malloc(sizeof(DYNAMIC_MATRIX));\ 
pointer -> initial_value=0.0,-\ 
pointer -> number_of_rows=num_of_rows;\ 
pointer -> number_of_columns=num_of_columns;\ 
pointer -> blocks_in_row=\ 

((num_of_columns + 7) >> 3) + 1;\ 
pointer -> pointer_to_matrix=(float **)\ 

calloc((((num_of_rows + 7) >> 3) + 1)*\ 
(pointer -> blocks_in_row),sizeof(float *)) ;\ 

pointer -> rows_in_block=8/\ 
pointer -> columns_in_block=8;\ 
DYNAMIC_TEMP=(float *)\ 

calloc(((((num_of_columns + 7) >> 3) << 3)\ 
+ 8) * ((((num_of_rows + 7) >> 3) << 3) + 8),\ 
sizeof(float));\ 

for (DYNAMIC_ROW=0/ DYNAMIC_ROW <-\ 
((num_of_rows +7) >> 3); DYNAMIC_ROW++)\ 
for (DYNAMIC_COLUMN=0/ DYNAMIC_COLUMN <=\ 

((num_pf__columns + 7) >> 3)/\ 
DYNAMIC_COLUMN++)\ 
\ 
{\ 
*(pointer -> pointer_to_matrix +\ 

pointer -> blocks_in_row *\ 
DYNAMIC_ROW + DYNAMIC_COLUMN) -\ 
DYNAMIC_TEMP;\ 

DYNAMIC_TEMP += 64;\ 
};\ 

}; 

#define FAST_STORE_VALUE_8_8(pointer,row_number,\ 
column_number,value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(rowjnumber >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3)); \ 

*((DYNAMIC_TEMP) + ((row_number & 0X07) << 3) \ 
+ (column_nuinber & 0X07)) ■= (value) / 

#define FAST_PRE_SERIAL_STORE_VALUE_8_8(pointer,\ 
row_number,column_number,value) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number >> 3) * (pointer -> blocks_in_row)\ 
+ (column_number > > 3)) / \ 
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*((DYNAMICJTEMP) + ((row_number & 0X07) << 3) \ 
+ (column__number & 0X07)) = (value) / \ 

DYNAMIC_LAST_ADDRESS = ((DYNAMICJTEMP) +\ 
((row_number & 0X07) << 3) \ 
+ (column_number & 0X07));; 

#define FAST_PRE_SERIAL_UPDATE_VALUE_8_8(pointer,\ 
row_number, column_nuitiber, value, operation) \ 

DYNAMIC_TEMP= *(pointer -> pointer_to_matrix +\ 
(row_number >> 3) * (pointer -> blocks_in_row)\ 
+ (columnjiumber > > 3)); \ 

DYNAMICJTEMP JVALUE = (*((DYNAMICJTEMP) +\ 
((row_number & 0X07) << 3) \ 
+ (column_number & 0X07))) operation (value);\ 

*((DYNAMIC TEMP) + ((row_number & 0X07) << 3)\ 
+ (column_number & 0X07))=DYNAMIC_TEMP_VALUE;\ 

DYNAMIC_LAST_ADDRESS = ((DYNAMICJTEMP) +\ 
((row_nuinber & 0X07) << 3) \ 
+ (column_number & 0X07));; 

#define OFFSET_UPDATE_VMiUE(value/Offset,operation) \ 
*(DYNAMIC_LAST_ADDRESS + (offset)) =\ 
*(DYNAMIC_LAST_ADDRESS + (offset)) \ 

operation (value) ;; 

51 



INTENTIONALLY LEFT BLANK. 

52 



BIBLIOGRAPHY 

Bach, M. J. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice Hall, 1986. 

Deitel, H. M. An Introduction to Operating Systems. Reading, MA: Addison-Wesley Publishing Co., 
1984. 

Hayes, J. P.   Computer Architecture and Organization 2nd editioa   New York, NY:   McGraw-Hill 
Book Co., 1988. 

Horowitz, E. Fundamentals of Computer Algorithms. Rockville, MD: Computer Science Press, 1978. 

Kane, G. MIPS RISC Architecture.   Englewood Cliffs, NJ: Prentice Hall, 1992. 

Kurzban, S. A. Operating Systems Principles 2nd edition.  New York, NY: Van Nostrand Reinhold Co., 
1984. 

Leffler, S. J. The Design and Implementation of the 4.3BSD UNIX Operating System. Reading, MA: 
Addison-Wesley Publishing Company, 1989. 

Leonard, T. E. (ed.).  VAX Architecture Reference Manual.  Digital Equipment Corp., Bedford, MA, 
1987. 

Nemeth, E. UNIX System Administration Handbook. Englewood Cliffs, NJ: Prentice Hall, 1989. 

Prasad, N. S. IBM Mainframes Architecture and Design. New York, NY: McGraw-Hill Book Co., 1989. 

Sedgewick, R. Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1983. 

Stone, H.  High-Performance Computer Architecture.  Reading, MA: Addison-Wesley Publishing Co., 
1987. 

Tenenbaum, A. M. Data Structures Using Pascal. Englewood Cliffs, NJ: Prentice-Hall, 1981. 

Waite, M. UNIX Papers for UNIX Developers and Power Users. Indianapolis, IN: Howard W. Sams 
& Co., 1987. 

53 



INTENTIONALLY LEFT BLANK. 

54 



NO. OF 
COPIES ORGANIZATION 

NO. OF 
COPIES   ORGANIZATION 

ADMINISTRATOR 
DEFENSE TECHNICAL INFO CENTER 
ATTN:   DTIC-DDA 
CAMERON STATION 
ALEXANDRIA VA 22304-6145 

COMMANDER 
US ARMY MATERIEL COMMAND 
ATTN:   AMCAM 
5001 EISENHOWER AVE 
ALEXANDRIA VA 22333-0001 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN:   AMSRL-OP-SD-TA/ 

RECORDS MANAGEMENT 
2800 POWDER MILL RD 
ADELPHIMD 20783-1145 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN:   AMSRL-OP-SD-TL/ 

TECHNICAL LIBRARY 
2800 POWDER MILL RD 
ADELPHIMD 20783-1145 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN:   AMSRL-OP-SD-TP/ 

TECH PUBLISHING BRANCH 
2800 POWDER MILL RD 
ADELPHIMD 20783-1145 

COMMANDER 
US ARMY ARDEC 
ATTN:   SMCAR-TDC 
PICATINNY ARSENAL NJ 07806-5000 

DIRECTOR 
BENET LABORATORIES 
ATTN: SMCAR-CCB-TL 
WATERVLIETNY  1218SM050 

COMMANDER 
US ARMY MISSILE COMMAND 
ATTN: AMSMI-RD-CS-R (DOC) 
REDSTONE ARSENAL AL 35898-5010 

COMMANDER 
US ARMY TANK-AUTOMOTIVE COMMAND 
ATTN:   AMSTA-JSK (ARMOR ENG BR) 
WARREN MI 48397-5000 

DIRECTOR 
US ARMY TRADOC ANALYSIS COMMAND 
ATTN:   ATRC-WSR 
WSMRNM 88002-5502 

COMMANDANT 
US ARMY INFANTRY SCHOOL 
ATTN:  ATSH-WCB-O 
FORT BENNING GA 31905-5000 

ABERDEEN PROVING GROUND 

DIR, USAMSAA 
ATTN:   AMXSY-D 

AMXSY-MP/H COHEN 

CDR, USATECOM 
ATTN:   AMSTE-TC 

DIR, USAERDEC 
ATTN:   SCBRD-RT 

CDR, USACBDCOM 
ATTN:   AMSCB-Cn 

DIR, USARL 
ATTN:   AMSRL-SL-I 

DIR, USARL 
ATTN:   AMSRL-OP-AP-L 

DTRFfTOR 
US ARMY ADVANCED SYSTEMS 

RESEARCH AND ANALYSIS OFFICE 
ATTN: AMSAT-R-NR/MS 219-1 
AMES RESEARCH CENTER 
MOFFETT FIELD CA 94035-1000 

55 



NO. OF 
COPIES ORGANIZATION 

25 DIR, USARL 
ATTN:   AMSRL-CI/WILLIAMHMERMAGEN 

AMSRL-CI-C/WALTER B STUREK 
AMSRL-CI-CA/ 

B D BROOME 
AKCELMINS 
JCDUMER 
T A KORJACK 
TPHANRATTY 
RAHELFMAN 
NRPATEL 
D M PRESSEL 
C K ZOLTANI 

AMSRL-CI-CC/ 
B L REICHARD 
A E M BRODEEN 
F S BRUNDICK 
H CATON 
S C CHAMBERLAIN 
A B COOPER m 
AR DOWNS 
DAGWYN 
G W HARTWIG JR 
RC KASTE 
M C LOPEZ 
L F WRENCHER 
S D KOTHENBEUTEL 

AMSRL-CI-CD/J D GANTT 

56 



USER EVALUATION SHEET/CHANGE OF ADDRESS 

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes.  Your 
comments/answers to the items/questions below will aid us in our efforts. 

1. ARL Report Number ARL-MR-198 Date of Report      November 1994  

2. Date Report Received   

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for 

which the report will be used.)  —  

4.  Specifically, how is the report being used?  (Information source, design data, procedure, source of 

ideas, etc.)  —  

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, 

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate  

6.   General Comments.   What do you think should be changed to improve future reports?   (Indicate 
changes to organization, technical content, format, etc.)   

Organization 

CURRENT               Name 
ADDRESS   

Street or RO. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address 
above and the Old or Incorrect address below. 

Organization 

OLD                         Name 
ADDRESS   

Street or RO. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 



DEPARTMENT OF THE ARMY 

OFFICIAL BUSINESS 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO 0001, APG, MD 

Postage will be paid by addressee 

Director 
U.S. Army Research Laboratory 
ATTN: AMSRL-OP-AP-L 
Aberdeen Proving Ground, MD 21005-5066 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 


