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CHAPTER 1 

INTRODUCTION 

The purpose of this research is to compare the effects of two filtering routines 

which may be used to integrate Inertial Navigation System (INS) and Global 

Positioning System (GPS) data to determine certain state vector elements. The two 

filtering routines are:  1) the ordinary Kaiman Filter, and 2) a Two-Stage Least- 

Squares Procedure, which will be referred to as the 2-Stage Filter. Using the Kaiman 

Filter to determine state vector elements, the vector quantities can be affected when 

system error is introduced into the model. Theoretically, the 2-Stage Filter is more 

robust, that is, it should be able to determine accurately the state vector elements 

despite the presence of errors (Schaffrin, 1991). This research will attempt to verify 

the 2-Stage Filter is, in fact, a more robust filter than the Kaiman Filter. 

The research used two data sets provided by Oleg Salychev and K.P. Schwarz of 

the University of Calgary. The GPS data are a collection of latitude and longitude 

measurements at a series of epochs. The INS data are a collection of latitude, 

longitude, velocity (in the easterly (dx) and northerly (dy) directions), and bearing 

measurements at a subset of the GPS epochs. By applying the model to these data 

sets, where 1) the difference between the INS- and GPS-observations of the easterly 

or northerly position of the observer, and 2) the respective velocity of the observer, 

are the observable elements, one can determine not only the two observable elements 

at a given epoch, but also two additional non-observable elements: the Direction of 
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the Vertical (in the nominal East-North-Up coordinate system centered at the 

observer), and the Drift Velocity of the observer. 

Error is introduced into the model by modifying the state transition matrices, 

<&,., and ®y, the transition equation covariance matrix, ©,, or the observation 

covariance matrix, 2,. By modifying these three matrices, the effects of the two filters 

on the predicted state vector elements can be observed and analyzed, and the 

robustness, or lack thereof, of the 2-Stage Filter can be verified.   The computations 

were performed by a program written in C using the equations, matrices, and vectors 

introduced in chapters II and III. 

Chapter II discusses the model used to integrate the GPS and INS data and 

introduces the Kaiman and 2-Stage filters. 

Chapter III discusses the derivation of the state transition matrices, and 

introduces the vectors and matrices necessary to study the filters and analyze the 

results. 

Chapter IV presents the methods used to introduce systematic error into the 

model, and the results of each method. 

Chapter V summarizes the results, draws the research's conclusions, and 

suggests areas of future research in this subject. 



CHAPTER n 

THE DYNAMIC LINEAR MODEL AND THE 

KALMAN AND 2-STAGE FILTERS 

2.1 Dynamic Linear Model 

The model used to integrate the INS and GPS data is a discrete case of a 

Dynamic Linear Model (Schaffrin, 1990). The model observation equations are of the 

form: 

y1=Aix1+e1 (2-1) 

where: 

j, is the (nxl) observation vector in the first epoch. 

Aj is the (nxm) observation coefficient matrix. 

Xj is the (mxl) unknown state vector of random effects at the first epoch. 

ej is the (nxl) error vector of the observations whose expected value is 0, and 

(nxn) covariance matrix is 2,. 

The state vector at the first epoch is constrained according to the state equation: 

Xi=%x0+Uj (2-2) 

where: 

<D0 is the (raxra) state transition matrix from epoch 0 to epoch 1. 

x0 is the (mxl) unknown state vector of random effects at epoch 0. 

Uj is the (mxl) error vector of the states, whose expected value is 0, and (mxm) 

covariance matrix is 0,. 
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Generally, it is assumed that some prior information on the initial state vector is known, 

hence: 

^0=^0+^ (2"3) 

where: 

Im is the identity matrix of dimension equal to the number of elements in the 

state vector. 

e°0 is the error vector for the initial state whose expected value is 0 and whose 

initial covariance matrix is 2°. 

e,, Uj, and e°0 are assumed to be uncorrelated. 

2.2 Kaiman Filter 

Applying the least-squares target function: 

(£(£,,«,,4U,) «efSf'e, +tf1
r©r,«I +(e0°)r(2o)\0 + 

+2\(e] + A,ux - Ax<b0el -y,+ 4<Mo) (2"4) 

and solving the normal equations which satisfy the Euler-Lagrange necessary and 

sufficient conditions leads to the Best inhomogeneously Linear Prediction (inhom 

BLIP): 

x, = ®0x0 + K,(y, - A,%x0) (2-5) 
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where Kj is the Kaiman gain matrix for the first epoch and is computed: 

K, =[(6, +$0i:<D0
T)-' + A^-'AJ-'A^-1 (2-6) 

and the updated state vector covariance matrix is: 

2? = [(0, + (DoZteV + A^-'AJ-1 (2-7) 

When this model is applied to the ENS and GPS data, the procedure is called "Kaiman 

Filtering" which takes the original information contained in x0 and the new information 

in the observation, y}, together with the transition equations to yield updated 

information in the new vector, xt. 

2.3 2-Stage Filter 

In an effort to solve the problem of fixing cycle slips within GPS phase 

observations, a "two-stage least-squares procedure" is introduced (Schafifrin, 1991) 

which considers the observational information to be superior as long as it is available, 

and only in the case of missing GPS information are the INS state equations used to 

overcome the deficit. The 2-Stage Filter differs in that it is derived from a sequential 

least-squares adjustment by applying two target functions to the Dynamic Linear Model. 

The first target function: 

efSj-'e, = G>, - 4*i)" 2,-' CVi - Ah) = min (2-8) 
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minimizes the observational error, and only when needed, is the information from the 

transition equations used. Hence, the second target function, which minimizes the 

system error: 

(«i -<Vo°)r(0i +$02>o)"'(«, -3Vo°) = (*, -*,)"(©, +<£02>on*, -*,)= 

minft^Sr'^K-^Sr^,} (2-9) 

Since this approach only uses the transition equations when observational information is 

missing, it should be more resistant to the error inherent in the transition equations. 

The following relations comprise the 2-Stage Filter: 

^-x.+Kjy^Af,) (2-10) 

where: 

x,=%x0 (2-11) 

K, =(G, +<VW)A?,[A1(01 +00lS$or)A?TA,(Air2-,A,)-A^-' (2-12) 

I?=(Im-K]A1)(01+^o2X')(Im-K1A])
T + K121K

T (2-13) 

Note that where there were quantities inverted in the Kaiman gain matrix equation, the 

2-Stage gain matrix has generalized inverses (g-inverses). The g-inverse of a matrix, 

N", is a matrix such that NN'N = N. The need for the g-inverses arises from the rank 

deficiency in the observation coefficient matrix, A,, which may cause several segments 

of (2-12) to become rank deficient. 



Consider the first of the two g-inverses: 

[A^+O^CD^A;] (2-12a) 

which is a 2x2 matrix with a rank of 2. Since (2-12a) is nonsingular, the g-inverse is 

equivalent to the matrix inverse, that is, N" = N~'(Koch, 1988). The second g-inverse, 

which in this case is singular, is: 

(AjzX)-. (2-12b) 

This is a 4x4 matrix, of rank 2, which takes the form of: 

o >r2 0 0 o" 
0 o2-2 0 0 

0 0 0 0 

0 0 0 0_ 

(2-12c) 

using Aj as given in (3-15) below. Clearly, this matrix is not invertible, and the 

g-inverse is: 

o? 0 0 o" 
0 o\ 0 0 

0 0 0 0 

0 0 0 0 

(2-12d) 



CHAPTER in 

VECTORS AND MATRICES INVOLVED 

3.1 State Transition Matrices 

The state transition matrices, <&xand <5y, are derived from the following 

differential equations in spherical approximation (Salychev, 1991): 

X-Channel 

M--l—tox    (3-la) 
Kcoscp 

Mx--g*y+Bx    (3-lb) 

^=-^ + E,       (3"lc) 
to, 
R 

£   =co° (3-ld) 

where: 

Y-Channel 

öcp = — öv^, y    R    y (3-2a) 

bvy=g$x+By (3-2b) 

M        ÖV" Y*             ^ (3-2c) 

0 
£x =C0 (3-2d) 

R is the mean radius of the earth. 

g is the gravitational constant of the earth. 

ÖX is the observer's longitude error, 

öcp is the observer's latitude error 

ov is the observer's speed error in the respective direction. 

B is the accelerometer error. 



<j) is the error in the determination of the local vertical. 

£ is the drift rate. 

oo° is the initial drift acceleration. 

The coordinate frame for the model is the East-North-Up reference frame, centered at 

the observer, with the x-channel corresponding with the easterly motion of the 

observer; the y-channel corresponding with motion in the northerly direction, and the 

local vertical, along the gravity vector, corresponding with the up direction. By 

solving these eight differential equations, the x- and y-channel transition matrices are 

obtained. These matrices are uncoupled and given, respectively, by (Salychev, 1991): 

<I> 

1 + - -gtl -g? 
2R cos qo    Rcostp    2/?coscp    6Rcoscp 

0 

0 

0 

1- 
2R 

R 
0 

2R 
0 

-111 
2 

t 

1 

(3-3) 

<£„ 

1 + 
r / $L g<J 

2R1 R 2R 6R 

0 
2R 

gt 
2 

0 
t 

~R 2R 
t 

0 0 0 1 

(3-4) 
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The state transition equations from tk to tk+] in each channel are (Salychev, 1991): 

X-channel 

ök*+i 'ft*./ 

= 0 ^x 

UJ 
+ u (3-5) 

Y-channel 

Ö«P*+i" "ö<pt" 

<!>/i 
-*, 

K 
<l>* 

Ei+1 _«S J 

+ u (3-6) 

3.2 State Equation Covariance Matrix 

The transition equation covariance matrix, 0j, used was the matrix selected by 

Salychev and Schwarz (without explanation), and assumed to be identical for both 

channels with values: 

©i 

1.39xl0"4rad2 

0 

0 

0 

1.67x10^^-       6.54xl0~12 rad-m 

s s 

6.54xl0-12^^     3.42xl0-12rad2 

0 

0 

9.4x10 -i2 rad2 

(3-7) 
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3.3 Initial State Vector 

The initial value for the state vector, xöwas assumed for both channels to be: 

xa (3-8) 

3.4 State Vector Initial Covariance Matrix 

The initial state vector covariance matrix, 2°, courtesy of Salychev and 

Schwarz, was also assumed to be identical for both channels with values: 

2U = 

lAxlO-4 

0 

0 

rad2 0 

1.0x10^ 
s 

0 

0 

0 

5.0xl(r17rad2 

0 0 0 

0 

0 

0 

5.0x10 
.I? rad2 

(3-9) 

3.5 Observation Equations 

In each channel, there are two observation equations (Salychev, 1991): 

X-Channel 

ÖX = XGPS-Xins=[\   0   0   0] 
bvx

k 
+ e &x (3-10) 
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övx = [0   1   0   0] + e 6v, (3-11) 

Y-Channel 

ö<p = qw - «p», = I1  °  o  o] + e ötp (3-12) 

öv„ = [0    1    0    0] 

6<P* 

+ e 6v„ (3-13) 

which, using matrix notation, takes the form: 

where 

(3-14) 

A1 = 
10   0   0 

0    10   0 
(3-15) 
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3.6 Observation Covariance Matrix 

The covariance matrix of the observation equations, I.v courtesy of Salychev 

and Schwarz, was, again, assumed to be identical for both channels with values: 

2, 
2.0xl(Trad2 

0 

0 

2.25x10" 
m (3-16) 



CHAPTER IV 

RESULTS AND ANALYSES 

Error was introduced into the model in one of three ways:  1) modifying the state 

transition covariance matrix, 0P 2) modifying the state transition matrices, $x, and <[>,, 

and 3) modifying the observation covariance matrix, 2,. 

4.1   Increasing the Magnitude of 0t. 

Hypothesis: When system error is introduced by increasing the magnitude of the 

state transition covariance matrix, 0p state vectors computed by the filter which is more 

sensitive to this type of error display larger element magnitude changes than the state 

vectors of the less sensitive filter.    The 2-Stage Filter, due to the fact that it only uses the 

information from the transition equations in the absence of observations, is expected to be 

the less sensitive filter. 

Procedure: A modified 0, with diagonal elements increased to 4000 (which is 

sufficiently large to approximate infinity) and off-diagonal elements reduced to 0 was 

introduced. The results of both filters were observed to determine the sensitivities of each 

of them to the introduced systematic error. 

14 
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Results: When the magnitude of Ql is increased to approximate infinity, both filters 

yielded identical state vectors for a given set of state transition matrices. The first two 

state vector elements reproduced the observations, with the third and fourth elements 

equalling values greatly distorted from the unmodified computed values. Table 1 displays 

a portion of the results for the case where the transition matrices were modified. The first 

two state vector elements from the 2-Stage Filter were insignificantly affected by the 

change in 0t , however, the same cannot be said for the Kaiman Filter. Table 2 shows 

the changes in the first two state vector elements of the Kaiman Filter at selected epochs. 

Two lines are included for each epoch: the first line includes the observed quantities and 

the unmodified first two state vector elements; the second includes the first state vector 

elements computed when 0, becomes large and approaches oo.   The epochs of interest 

correspond with the initial epoch after a cycle slip. 

Analysis: Since a number of the first and second elements of the Kaiman Filter state 

vectors were affected by the introduced system error (Table 2), and the respective 2-Stage 

Filter state vector elements (not shown) were unaffected, it appears the 2-Stage Filter is 

less sensitive to this type of system error than the Kaiman Filter. The reason for this 

insensitivity can be seen in the gain matrices. 

As 0j approaches «, the Kaiman gain matrix, K}, is transformed as follows: 

K, -[(G.+^SS^-' + A^-'AJ-'A^-1 (4-1) 

since 0, dominates the <&02°<I>0
T term: 

K, =[(©,)-' + Aji;%]-1Aji;] (4-la) 
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since the inverse of °° is 0: 

KI=[A1
I2;,A1]-A1'2 T-^-l 

1  ■ (4-lb) 

Noting that A1 is a matrix made up of I2 and the 2x2 zero matrix, and 2, is diagonal, K, 

reduces to: 

Kt = 

"1 0" 

0 1 

0 0 

0 0 

(4-lc) 

at the initial epoch. At later epochs, however, the lower block elements will become much 

larger. To see why this is so, one needs to look to the equation to update the state vector 

covariance matrix: 

sf-tee. + ^W-' + A^r'A,]-'. (4-2) 

When 0, is large, the third and fourth diagonal elements of the 2, also become 

large which causes the lower 2x2 block in the gain matrix to assume values other than 0. 

Since the state equation covariance matrix represents the error in the prior information, 

when the third and fourth diagonal elements become large, and approach oo, this implies 

that the observer knows nothing concerning the third and fourth elements of the state 

vector. Consequently, the values which are computed through the transition equations 

with such error present are, essentially, arbitrary, and the magnitude of the change in either 

filter's state vector is irrelevant. Rewriting the state transition equation: 
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% 1 0 "1 x, 

x} = 3 
*3 

x4 

+ 
0 1 

"■32 

«42 _ 

(Pi] - 
"1    0 

0    1 

0   0" 

0   0_ 

~1 
X2 

"] x3 

x1 x
4 

(4-3) 

which reduces to: 

X, " 1 0   " 

*; = + 
0 

ä31 

1 

^32 Ui-^2. 
W _«41 "■42. 

(4-3a) 

it becomes apparent that the coefficient matrix filters out the third and fourth elements of 

the state vector. Therefore, the x,1 and x2 elements are eliminated, however, the x\ and x4 

elements remain and are, generally, non-zero. 

The 2-Stage Filter gain matrix is similarly affected. 

K, =(01 + a>o2X)AaA1(el+Oo2:X)A^-A1(A^-1A1)-A^]-,    (4-4) 

As 0j becomes large, it dominates the <£02°<E>o term and the gain matrix, Kt , is reduced 

at the initial epoch to: 

K1=01Al
1[A101A1

I]"A1(A1
l2JIA1)-A1

l2i- (4-4a) 

The segment following the first g-inverse reduces to I2, and [A,©^^]" is a 2x2 matrix 

with large diagonal elements, which reduces to: 
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K,= 

0. 0 

0, 

li 

0 U22 

0 0     0 

0 0 

0 0 " "1    0" 

0 0 0    1 ["0,, 0 " 

^33 0 0   0 _ 0 022. 

0 044. _0   0_ 

(4-4b) 

which equals: 

K,= 

[e„ 0 " "l    0" 

0 022 ["0,-; 0 " 0    1 

0 0 0 022. 0   0 

0 0 0   0_ 

(4-4c) 

Furthermore, in the limit, 20 =20- This equivalence is not readily apparent from equations 

(2-7) and (2-13), however, an equivalent form of (2-7) is: 

^(VKAXQ^oWXVKAr+K^K (4-5) 

which closely resembles the 2-Stage expression: 

Z? - (Im -KAX®. + %K%)dm ~K,A])
T + K.Z.K (4-6) 

Therefore, at each epoch, the x\ and x\ elements are eliminated, leaving the observations, 

y\ and v2, and x\ and x\ as the state vector elements from each filter. 

This case illustrates that the 2-Stage Filter is insensitive to error introduced through 

the state transition covariance matrix for those state vector elements which have been 
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observed, though it is not more robust than the Kaiman Filter since it computes identical 

state vectors . It also illustrates that both filters become unstable for those state vector 

elements which are not observed. 

Another way of looking at this situation is that when we increase the magnitude of 

the state transition covariance matrix, we are telling the model we do not have a good set 

of equations to transition from one state to another. Consequently, the only useful state 

vector elements which can be expected are those which we can observe, which both filters 

provide. 



Table 1 
State Vector Comparison 

@, »00 
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Kaiman Filter 
Observed Quantities Updated State Vector 

Epoch (lLambda dVelocity dLambda dVelocity Attitude 
Angle 

Drift 

sec rad m/sec rad m/scc rad rad/sec 
2 -2.461E-5 7.877E-2 -2.461E-5 7.877E-2 6.181E-16 -1.929E-20 
4 -2.466E-5 7.917E-2 -2.466E-5 7.917E-2 -3.072E-5 -1.025E-5 
6 -2.471E-5 7.978E-2 -2.471E-5 7.978E-2 -3.592E-5 -5.163E-6 
8 -2.476E-5 8.038E-2 -2.476E-5 8.038E-2 -3.078E-5 -1.923E-8 
14 -2.490E-5 8.219E-2 -2.490E-5 8.219E-2 2.535E-5 3.569E-5 
16 -2.496E-5 8.360E-2 -2.496E-5 8.360E-2 -1.023E-4 -3.060E-5 
18 -2.501E-5 8.360E-2 -2.501E-5 8.360E-2 3.563E-5 3.571E-5 
20 -2.506E-5 8.360E-2 -2.506E-5 8.360E-2 1.587E-7 9.929E-8 
22 -2.510E-5 8.520E-2 -2.510E-5 8.520E-2 -1.229E-4 -4.098E-5 
24 -2.515E-5 8.520E-2 -2.515E-5 8.520E-2 4.073E-5 4.082E-5 
26 -2.520E-5 8.520E-2 -2.520E-5 8.520E-2 1.853E-7 1.190E-7 
150 -2.802E-5 1.254E-1 -2.802E-5 1.254E-1 -6.616E-5 -5.470E-7 
156 -2.817E-5 1.271E-1 -2.817E-5 1.271E-1 -5.902E-5 -7.751E-6 
158 -2.821E-5 1.271E-1 -2.821E-5 1.271E-1 2.554E-5 2.556E-5 

3672 5.612E-4 4.883E-1 5.612E-4 4.883E-1 1.656E-4 4.779E-5 

2-Stage Filter 
Observed Quantities Updated State Vector 

Epoch dLambda dVelocity dLambda dVelocity Attitude 
Angle 

Drift 

sec rad m/sec rad m/sec rad rad/sec 
2 -2.461E-5 7.877E-2 -2.461E-5 7.877E-2 6.181E-16 -1.929E-20 
4 -2.466E-5 7.917E-2 -2.466E-5 7.917E-2 -3.072E-5 -1.025E-5 
6 -2.471E-5 7.978E-2 -2.471E-5 7.978E-2 -3.592E-5 -5.163E-6 
8 -2.476E-5 8.038E-2 -2.476E-5 8.038E-2 -3.078E-5 -1.923E-8 
14 -2.490E-5 8.219E-2 -2.490E-5 8.219E-2 2.535E-5 3.569E-5 
16 -2.496E-5 8.360E-2 -2.496E-5 8.360E-2 -1.023E-4 -3.060E-5 
18 -2.501E-5 8.360E-2 -2.501E-5 8.360E-2 3.563E-5 3.571E-5 
20 -2.506E-5 8.360E-2 -2.506E-5 8.360E-2 1.587E-7 9.929E-8 
22 -2.510E-5 8.520E-2 -2.510E-5 8.520E-2 -1.229E-4 -4.098E-5 
24 -2.515E-5 8.520E-2 -2.515E-5 8.520E-2 4.073E-5 4.082E-5 
26 -2.520E-5 8.520E-2 -2.520E-5 8.520E-2 1.853E-7 1.190E-7 
150 -2.802E-5 1.254E-1 -2.802E-5 1.254E-1 -6.616E-5 -5.470E-7 
152 -2.808E-5 1.254E-1 -2.808E-5 1.254E-1 1.946E-5 1.949E-5 
158 -2.821E-5 1.271E-1 -2.821E-5 1.271E-1 2.554E-5 2.556E-5 

3672 5.612E-4 4.883E-1 5.612E-4 4.883E-1 1.656E-4 4.779E-5 



Table 2 
Kaiman Filter State Vector Observed Element Changes 

0j versus 9B 

21 

Observed Quantities 
Updated 

State Vector Elements 
Epoch dLambda dVelocity dLambda dVelocity 

sec rad m/sec rad m/sec 

Gj 2 -2.461E-5 7.877E-2 -2.443E-5 7.811E-2 

e. 2 -2.461E-5 7.877E-2 

0! 4 -2.466E-5 7.917E-2 -2.466E-5 7.916E-2 

e„o 4 -2.466E-5 7.917E-2 

e, 6 -2.471E-5 7.978E-2 -2.471E-5 7.977E-2 

e. 6 -2.471E-5 7.978E-2 

©i 150 -2.802E-5 1.254E-1 -2.794E-5 1.254E-1 

0* 150 -2.802E-5 1.254E-1 

Gj 332 -3.171E-5 1.752E-1 -3.158E-5 1.752E-1 

0» 332 -3.171E-5 1.752E-1 

e, 473 -3.362E-5 2.194E-1 -3.352E-5   ■ 2.194E-1 

©<* 473 -3.362E-5 2.194E-1 

e, 656 -3.440E-5 2.781E-1 -3.427E-5 2.781E-1 

GK 656 -3.440E-5 2.781E-1 

0! 806 -3.375E-5 3.529E-1 -3.363E-5 3.529E-1 

Goo 806 -3.375E-5 3.529E-1 

Gx 810 -3.374E-5 3.368E-1 -3.374E-5 3.370E-1 

Goo 810 -3.374E-5 3.368E-1 

e, 1002 -3.151E-5 4.437E-1 -3.131E-5 4.437E-1 

e. 1002 -3.151E-5 4.437E-1 

0! 3137 4.564E-4 8.882E-1 4.561E-4 8.882E-1 

©oo 3137 4.564E-4 8.882E-1 
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4.2 Modifying Elements of the Transition Matrices. 

Hypothesis: If, when system error is introduced through modifying the 

transition matrices, the elements of the state vector computed by one of the filters are 

changed more substantially than the other, it would be evidence that the filter is more 

sensitive to the error in the model. For a given pair of modified transition matrices, 

the 2-Stage Filter is expected to calculate state vectors whose elements are less 

significantly changed than those of the Kaiman Filter because of its acceptance of the 

observations as superior to the transition equations. 

Procedure: The filter which is less susceptible to system error would display 

smaller magnitude changes in its state vector elements than the other. The change in 

the state vector can be quantified by computing the Euclidean vector norm: 

|:e| = yjx* + x\ + x; + x\ (4-7) 

at each epoch. By modifying Ox and c£y and observing the changes in the state vector 

norms for each filter, evidence should become apparent concerning which filter is 

more sensitive to system error in the model. System error is introduced by modifying 

the transition matrices in one of three ways:  1) Using a value of 15 m/s2 for the 

gravitational acceleration of the earth; 2) Using a value of 2,000,000 m for the mean 

radius of the earth; and 3) Multiplying the unmodified transition matrices by the 

constant value 2. 
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Results: In all three cases, the observed state vector elements were unaffected 

by the sysetm error, and the modified state vector norms for both filters changed in 

similar manners over the observation set. Figures 1, 3, and 5 depict the vector norm 

percentage changes for each case. 

Analysis:   Due to the large differences in magnitude between the observable 

and non-observable state vector elements, simply computing the percentage difference 

between the norms of the modified and unmodified state vectors was inconclusive. 

The much larger observed elements were unaffected by the system error, and caused 

the vector norms to be unchanged.   However, when a third vector comprised of 

elements which were the percentage differences between the respective state vector 

elements, large fluctuations became apparent in the norm percentage changes for both 

filters. Unfortunately, the state vector norms changed in such a similar fashion that the 

difference between the two curves in Figures 1, 3, and 5 is indistinguishable. To 

determine if a statistically significant difference exists between the results of each filter, 

the difference between the Kaiman and 2-Stage state vector norm percentage changes 

were computed at each epoch (Figures 2, 4, and 6).    For a normal distribution, 68.3 

percent of the area lies within one standard deviation of the distribution mean. 

Therefore, for a mean which is close to 0, if a higher percentage of the differences lie 

within one standard deviation of the mean, it can be interpreted to mean there is no 

statistical difference between the results of the two filters. Conversely, if the number 

of differences within one standard deviation of the mean is lower than 68.3 percent, or 

the mean is a value other than 0, it can be interpreted as statistically significant 

differences between the results of the two filters. 
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Case 1: When system error is introduced by adjusting the value for the 

gravitational constant to 15 m/s2, from 9.8 m/s2, the state vector norms from both 

filters are similar, as shown in Figure 1. However, when the differences between the 

Kaiman and 2-Stage filters are plotted (Figure 2), it is apparent that the mean is close 

to 0, and very few of the points lie outside the region bounded by one standard 

deviation either side of the mean (indicated by the straight lines). Of the 172 points 

displayed, only 11 (6%) lie outside the region (which is far fewer than what would be 

expected for a normal distribution) suggesting that there is no statistical difference 

between the results of the two filters in this case. 

Case 2: When system error is introduced by adjusting the mean radius of the 

earth to be 2,000,000 m, from 6,701,000 m, the results are similar to Case 1. The 

state vector norms are similar, as seen in Figure 3, and the percentage differences of 

the vector norms lie predominantly with one standard deviation around 0. In this case, 

the amount of error introduced was greater, which can be seen in the larger 

magnitudes of the differences, however, both filters were affected in a similar fashion, 

and no statistically significant difference is apparent between the results. 

Case 3: When system error is introduced by multiplying the unmodified 

transition matrix by 2, the results, again, reflect a lack of any statistically significant 

difference between the Kaiman and 2-Stage filters.   Figure 5 clearly shows the state 

vector norms to be indistinguishable, and Figure 6 shows few differences, six, to lie 

beyond the region bounded by one standard deviation. The magnitudes of the 

differences are significantly larger due to the larger error introduced, but the 

differences between the two filters appears to be statistically insignificant. 
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As was the case when we introduced system error through the state transition 

covariance matrix, when the transition matrices are distorted, we are conceding we do 

not have a good set of equations to transition from one state to the next. 

Consequently, one cannot expect any stable state vector elements other than what can 

be observed, which both filters, again, displayed. 
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4.3 Severely Distorting the Transition Matrices. 

Hypothesis: The filter which is more robust will continue to compute the two 

observed quantities even when systematic error is introduced which so distorts the 

transition matrices such that the less robust filter will yield state vectors whose first 

two elements fail to reproduce the two observed values. 

Procedure: The transition matrices were modified by multiplying the 

unmodified matrices by a 500. The results were observed to determine the effects on 

the first two elements of the state vectors of both filters. 

Results: The results for a number of the epochs are included in Table 3. The 

first two elements of the 2-Stage Filter-computed state vectors reproduce the observed 

quantities to the same precision, whereas, at the same epochs, the Kaiman Filter- 

computed state vector show the first element to change in the second and third 

decimal place, and the second element to, on occasion, change as well. At epoch 150, 

there is a more severe distortion in the first element for the Kaiman Filter which 

appears throughout the data set at the first epoch following a cycle slip, however, 

similar distortions also are present after cycle slips in the 2-Stage Filter results. 

Analysis: Table 3 clearly shows the 2-Stage Filter to be relatively unaffected 

by this type of systematic error, except for the periods immediately following cycle 

slips. A second modified matrix was used in which the unmodified transition matrices 

were multiplied by 50,000. Though the introduction of this much error might appear 

ridiculous, the results are interesting. Table 4 shows the Kaiman Filter state vector 
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elements to be surprisingly stable, with results meeting, and often exceeding, the 

precision in Table 3. The 2-Stage results were much less stable. This apparent 

instability, however, was not due to the breaking down of the 2-Stage Filter, but 

rather, caused by precision rounding by the operating system. At times, the 2-Stage 

Filter was reproducing the observed precision, however, over time, rounding errors 

eventually cause the filter to return "NaN" (for values which are not a number) in the 

computation of the gain matrix elements, resulting in useless results. From this 

perspective, it appears that the Kaiman Filter is, in a manner of speaking, less sensitive 

to this type of error in that, even though it may lose some of its state vector element 

precision, it does not appear to be as severely affected by system round-off as the 2- 

Stage Filter. 

Unlike the previous situations, the observed elements did not pass through the 

Kaiman filter without distortion, albeit relatively minor distortion given the magnitude 

of the system error. Unfortunately, the 2-Stage filter was not unaffected by the error, 

which suggests an area for possible future consideration. 
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Table 3 

State Vector Observed Element Distortion 

<£m„d=500<S> 

Kaiman Filter 
Observed Quantities                State Vector Elements 

Epoch dLambda dVelocity dLambda dVelocity 
sec rad m/sec rad m/sec 

4> 2 -2.461E-5 7.877E-2 -2.443E-5 7.811E-2 

*mod 2 -2.461E-5 7.877E-2 

<E> 4 -2.466E-5 7.917E-2 -2.466E-5 7.916E-2 

«»mod 4 -2.471E-5 7.933E-2 

$ 150 -2.802E-5 1.254E-1 -2.794E-5 1.254E-1 

$mod 150 -5.414E-5 1.254E-1 

$ 152 -2.808E-5 1.254E-1 -2.808E-5 1.254E-1 

3>mod 152 -2.814E-5 1.254E-1 

4> 2500 2.473E-4 1.050E+0 2.473E-4 1.050E+0 

«fcmod 2500 2.477E-4 1.050E+0 

$ 2502 2.482E-4 1.049E+0 2.482E-4 1.049E+0 

*mod 2502 2.487E-4 1.049E+0 

4> 3661 5.601E-4 4.965E-1 5.601E-4 4.965E-1 

$mod 3661 5.612E-4 4.965E-1 

2-Stage Filter 
Observed Quantities                 State Vector Elements 

Epoch dLambda dVelocity dLambda dVelocity 
sec rad m/sec rad m/sec 

<E> 2 -2.461E-5 7.877E-2 -2.461E-5 7.877E-2 

*mod 2 -2.461E-5 7.877E-2 

* 4 -2.466E-5 7.917E-2 -2.466E-5 7.917E-2 

$mod 4 -2.466E-5 7.917E-2 

$ 150 -2.802E-5 1.254E-1 -2.802E-5 1.254E-1 

«fmod 150 -2.802E-5 1.254E-1 

$ 152 -2.808E-5 1.254E-1 -2.808E-5 1.254E-1 

3>mod 152 -2.808E-5 1.254E-1 

$ 2500 2.473E-4 1.050E+0 2.473E-4 1.050E+0 

*mod 2500 2.473E-4 1.050E+0 

$ 2502 2.482E-4 1.049E+0 2.482E-4 1.049E+0 

*mod 2502 2.482E-4 1.049E+0 

<E> 3661 5.601E-4 4.965E-1 5.601E-4 4.965E-1 

$mod 3661 5.601E-4 4.965E-1 
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Table 4 
State Vector Observed Element Distortion 

Omod = 50,000$ 

Kaiman Filter 
Observed Quantities                               State Vector Elements 

Epoch dPhi dVelocity dPhi dVelocity 
seconds radians meters/second radians meters/second 

2 3.000e-08 9.133e-02 3.000e-08 9.133e-02 
4 6.000e-08 9.183e-02 6.000e-08 9.183e-02 
6 8.000e-08 9.204e-02 7.817e-08 9.204e-02 
8 1.100e-07 9.244e-02 1.074e-07 9.244e-02 

10 1.300e-07 9.193e-02 1.274e-07 9.193e-02 
12 1.500e-07 9.274e-02 1.477e-07 9.274e-02 
14 1.700e-07 9.374e-02 1.712e-07 9.374e-02 
16 2.000e-07 9.425e-02 2.005e-07 9.425e-02 
18 2.300e-07 9.344e-02 2.301e-07 9.344e-02 
20 2.500e-07 9.324e-02 2.500e-07 9.324e-02 
22 2.700e-07 9.214e-02 2.700e-07 9.214e-02 
24 2.900e-07 9.344e-02 2.900e-07 9.344e-02 
26 3.300e-07 9.445e-02 3.300e-07 9.445e-02 

150 2.260e-06 8.601e-02 2.260e-06 8.601e-02 
152 2.310e-06 8.560e-02 2.310e-06 8.560e-02 
154 2.350e-06 8.540e-02 2.346e-06 8.540e-02 

2-Stage Filter 
Observed Quantities                                State Vector Elements 

Epoch dPhi dVelocity dPhi dVelocity 
seconds radians meters/second radians meters/second 

2 3.000e-08 9.133e-02 3.000e-08 9.133e-02 
4 6.000e-08 9.183e-02 6.000e-08 9.183e-02 
6 8.000e-08 9.204e-02 8.000e-08 9.204e-02 
8 1.100e-07 9.244e-02 -1.655e-05 9.244e-02 

10 1.300e-07 9.193e-02 -2.172e-05 -1.615e+01 
12 1.500e-07 9.274e-02 1.500e-07 9.274e-02 
14 1.700e-07 9.374e-02 -5.968e-03 9.374e-02 
16 2.000e-07 9.425e-02 5.240e+01 9.425e-02 
18 2.300e-07 9.344e-02 1.677e-04 1.405e+03 
20 2.500e-07 9.324e-02 2.500e-07 3.974^08 
22 2.700e-07 9.214e-02 2.700e-07 -2.400e+00 
24 2.900e-07 9.344e-02 -3.770e+05 9.344e-02 
26 3.300e-07 9.445e-02 3.300e-07 2.194e-01 

150 2.260e-06 8.601e-02 2.260e-06 -1.593e+18 
152 2.310e-06 8.560e-02 -2.939e+15 8.560e-02 
154 2.350e-06 8.540e-02 2.350e-06 8.540e-02 
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4.4   Increase the Magnitude of 2r 

Hypothesis: When the elements of the observation covariance matrix are 

increased in magnitude, the filter more sensitive to the error will compute state vectors 

which diverge from the observed and unmodified calculated values. The filter which 

is more robust will continue to yield the observed quantities in the first two elements 

of its state vector. 

Procedure: Error was introduced by increasing the diagonal elements of 2, to 

1.0, from 2.0 x 10-6 and 2.25 x 106, respectively, which approximates the diagonal 

elements of the unmodified transition matrices, <DX and <E>y. The results were observed 

to determine which filter was more sensitive. 

Results: The results at selected epochs are displayed in Table 5. Two lines are 

included for each epoch. The first line is the calculated state vector using the 

unmodified 2^ the second line is the state vector using the modified matrix, 2mod. 

The Kaiman filter yielded results which were reduced in magnitude from the observed 

elements. The 2-Stage Filter, on the other hand, was insensitive to the error in the first 

two elements, and much less sensitive in the third and fourth elements, as well. 

Analysis: Consider equation (2-12) which defines the 2-Stage gain matrix: 

K^Cej+Oo^OA^A^e.+Oo^OAn-A^A^i'AJ-A^;1        (4-8) 

During the first epoch, 2X only appears at the tail end of the expression. Focusing our 

attention on the portion of the equation with 2j we find: 
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(A'XAJAJT; (4-9) 

Substituting the expression el for 2j\ where E is a real number, we see: 

(A^EIA^-A^EI (4-9a) 

which equals: 

(EA^AJ-A^E . (4-9b) 

When e is pulled out of the g-inverse: 

i(AjA1)-A[e = (A[A1)-A^=A^ (4-9c) 

it becomes clear that the 2-Stage gain matrix is initially unaffected by the systematic 

error introduced through the observation covariance matrix. After the initial epoch, 

however, the gain matrix is not completely immune to systematic error from 2, 

because the updated 2°, also depends on 2,. The result is the subsequent state vector 

covariance matrices have elements of larger magnitude (meaning less precise 

information is known about prior state vectors), which affects the lower block of the 

gain matrix. Consequently, the third and fourth state vector elements are not 

completely immune to systematic error introduced through the observation covariance 

matrix. 

In this case, we've assumed that our confidence in our observations is low, yet 

we see that the observable state vector elements pass through the 2-Stage filter, but 

not the Kaiman. This would appear to suggest that the 2-Stage filter is insensitive to 
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this source of error, however, that conclusion is probably inaccurate. We used the 

same data set which was obtained with the "good" covariance matrix, and allowed our 

confidence in the observations erode when we increased the values of the observation 

covariance matrix to increase. Realistically, our state vector observable elements with 

such a matrix, even though they would be passed through the 2-Stage filter, could be 

no more reliable than the quantities which are actually observed given the observation 

covariance matrix. If those observations are "bad", the corresponding updated state 

vector elements will not be any better after being processed by the 2-Stage filter. Even 

though the Kaiman filter is adversely affected by this type of error where the 2-Stage 

filter is not, it cannot be immediately concluded that the results from the 2-Stage filter 

are "better." 
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Table 5 
X-Channel State Vector Comparison 

I, versus Smod = ^ 

Kaiman Filter 

Epoch dLambda dVelocity Attitude 
Angle 

Drift 

seconds radians meters/sec radians radians/sec 

2i 2 -2.443e-05 7.811e-02 1.110e-08 -2.866e-13 

Atiod 2 -6.860e-09 2.103e-05 2.987e-12 -7.716e-17 

2, 4 -2.466e-05 7.916e-02 3.297e-08 -1.140e-09 

^mod 4 -1.713e-08 5.536e-05 -1.472e-ll -1.457e-ll 

2i 6 -2.471e-05 7.977e-02 4.576e-08 -3.801e-09 

•^rnod 6 -3.081e-08 1.032e-04 -2.851e-10 -8.795e-ll 

2, 8 -2.476e-05 8.037e-02 3.341e-08 -9.747e-09 

■^rnod 8 -4.789e-08 1.648e-04 -1.487e-09 -2.948e-10 

2, 10 -2.480e-05 8.038e-02 3.819e-08 -9.898e-09 

Anod 10 -6.835e-08 2.398e-04 -4.972e-09 -7.374e-10 

2-Stage Filter 

Epoch dLambda dVelocity Attitude 
Angle 

Drift 

seconds radians meters/sec radians radians/sec 

Si 2 -2.461e-05 7.877e-02 1.119e-08 -2.891e-13 

■^mod 2 -2.461e-05 7.877e-02 1.119e-08 -2.891e-13 

Zi 4 -2.466e-05 7.917e-02 3.490e-08 -4.382e-10 

•^mod 4 -2.466e-05 7.917e-02 3.610e-08 -3.646e-13 

2i 6 -2.471e-05 7.978e-02 4.919e-08 -3.075e-09 

■Hmod 6 -2.471e-05 7.978e-02 6.142e-08 -9.228e-13 

z, 8 -2.476e-05 8.038e-02 3.830e-08 -9.020e-09 

■^mod 8 -2.476e-05 8.038e-02 8.711e-08 -2.483e-12 

2, 10 -2.480e-05 8.038e-02 4.540e-08 -9.034e-09 

Anod 10 -2.480e-05 8.038e-02 1.123e-07 -2.494e-12 



CHAPTER V 

CONCLUSION 

5.1 Summary of Results 

During the process of analyzing the Kaiman and 2-Stage filters, attention was 

focused on two of the covariance matrices, 0, and 2,, in addition to the transition 

matrices,  &x and 0>y.   When system error was introduced into the state transition 

covariance matrix, 01; by making it large so as to approach °°, the 2-Stage Filter was 

unaffected in its observed state vector elements, but it was unstable in the elements 

which were not observable. The Kaiman Filter produced state vectors which were 

identical to the 2-Stage Filter. When system error was introduced via the transition 

matrices, <E>X and <&y, the two filters appeared to generate state vectors of statistically 

insignificant differences. When system error was introduced by distorting the transition 

matrices sufficiently to distort the observed elements, the 2-Stage Filter produced 

results which exceeded the precision of the Kaiman Filter, however, there appears to 

exist an upper limit at which point the 2-Stage results are adversely affected by system 

rounding. When error was introduced via the observation equation covariance matrix, 

2,, the Kaiman Filter yielded distorted state vector element values, whereas the 2-Stage 

Filter was unaffected regarding its observed state vector elements. 
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5.2 Conclusions, and Areas of Future Research 

The 2-Stage Filter can only be considered to be more robust than the Kaiman 

Filter if the source of the model error is in the observations. In this case, the 2-Stage 

Filter is stable in the observed state vector elements, where the Kaiman Filter is unstable 

in all of its state vector elements. All other sources of error, i.e. state transition 

covariance matrix, and the transition matrices, the two filters generated results which 

were of no significant difference. 

In light of the fact that the 2-Stage Filter is definitely the less efficient of the two 

filters (it requires at least 30% more lines of code to perform its computations) there 

appears to be little reason to expend much energy investigating it further. However, 

more detailed analysis may be useful in order to investigate the reasons for the apparent 

limit at which the 2-Stage Filter is affected by system rounding. Additionally, a closer 

look at the effects of the error on the state vector covariance matrix, 2°, may provide 

insight into the differences between the Kaiman and 2-Stage filters. 
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