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ABSTRACT 

The purpose of this study is to develop a computer program that will predict the 

damage progression in composite plates subjected to bending loads. Kwon's 

micromechanical model is used to compute the smeared effective moduli from the material 

properties of fiber and matrix as well as to determine stresses at the constituent level. 

Failure criteria based on micro-stresses are then applied to determine the extent and type of 

damage that occur in the composite under various loading conditions. The progression of 

damage throughout the composite until complete failure of the composite can then be 

simulated using the current computer program. The numerical prediction for a laminated 

composite plate containing a hole and subjected to a bending load agrees well with the 

experimental data. 
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I. INTRODUCTION 

Composite materials are becoming more competitive with metallic materials in 

structural applications. Fiber reinforced composites are the materials of choice when design 

factors dictate the need for high strength to weight ratio, high stiffness to weight ratio and 

resistance to harsh environmental conditions. Aircraft and aerospace industries have in 

particular taken advantage of fiber reinforced composite to decrease weight while 

maintaining strength. Naval applications of composites are increasingly more common as 

they have become more of an economically viable option. Most composite structures are 

usually subjected to bending loads. It is therefore desirable to predict the strengths and 

failure modes of composite plates subjected to bending loads such that full advantage of the 

plates' material properties may be used. 

Predicting failure mechanisms of composite structures is more difficult than for 

metallic structures. In addition, most studies dealing with composite failure have been with 

inplane loading of composite plates. It is the purpose of this study to develope an analytical 

model to determine the failure modes and strength of laminated fibrous composite plates 

subjected to bending loads. 

Chang and Chang studied failure in a laminated composite plate containing a hole 

at its center. The plate was subjected to tensile loading. A finite element program was 

created to model the experimental results. Stress analysis and failure analysis were 

addressed separately in the program. The computer program modeled stress based on the 

classical lamination theory of composites. The plate load was increased incrementally so 

that a progressive damage study of the plate could be performed. As elements failed, their 

material properties were degraded by the computer program so that failed elements would 

no longer carry any of the applied load. The elements surrounding failed elements then 

assumed the load previously supported by the failed elements and experienced increased 

stress due to those loads. (Chang, 1987) 

The failure analysis was based on work done by Yamada and Sun (Yamada, 1978). 

Matrix cracking, fiber and matrix shearing, and fiber breakage were the identified modes 



of failure for the composite constituents. When stresses found in the stress analysis exceed 

the failure criteria, that element would fail and damage progression in the composite would 

be computed. The computer model developed by Chang and Chang was determined to 

provide an accurate predication of composite damage propagation. (Chang, 1987) 

Owen and Li stated that for composite plates a macromechanical approach 

involving the use of the classical laminated plate theory was not sufficiently accurate for 

stress calculations, yet a micro approach would be too numerically cumbersome to provide 

any results. Laminated composite plates have been shown to have the greater effect of 

transverse shear deformation as the plate thickness increases relative to the plate length and 

as such the classical laminated plate theory is not sufficiently accurate to model orthotropic 

and anisotropic laminates. Owen and Li used a model based on inplane displacements 

across the plate thickness, in which inplane displacements are pieces-wise linear and lateral 

displacements constant across the thickness. This allowed for the three dimensional model 

to be reduced to a two dimensional plate bending model. (Owen, 1987) 

Kwon's use of micromechanical analysis provides the means to determine damage 

progression at the constituent level for laminated fibrous composites. The micromechanical 

model is used to determine smeared composite properties from the fiber and matrix 

material properties. Macro analysis is then used to determine displacements and strains of 

composite using the smeared composite properties in the finite element analysis. 

Microstresses are determined for each composite constituent in the element by using the 

micromechanical model in conduction with the composite strains. Failure analysis can then 

be applied at the fiber and matrix level. Damage progression of the composite may be 

predicted based on the strengths and failure modes of the fibers and matrix that comprise 

the laminated composite. (Kwon, 1993) 



II. MICROMECHANICAL MODEL 

A.       OVERVIEW 

The investigation of damage progression in a laminated fibrous composite plate is 

undertaken using a micromechanical model. Kwon's micromechanical model permits the 

calculation of microstresses for a composite using the material properties of the fiber and 

matrix that make up that composite (Kwon, 1993). The microstresses are evaluated with a 

set of failure criteria, and thus a study of damage throughout the composite with details of 

fiber and matrix damages is possible. The mircromechanical model also computes the 

smeared composite material properties from the fiber and matrix material properties. 

B. MICROMECHANICAL CELL 

The micromechanical unit cell is made of a fiber and surrounding matrix material. 

Using the symmetry of the cell, only a quarter of the actual cell needs to be modelled as 

shown in Figure 1. The fiber direction is taken as the direction along the 1 axis. The cell is 
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Figure 1. Kwon's Unit Cell and Subcells 

divided into four subcells. Each subcell size depends on the volume fraction of the fiber, ¥. 

(Kwon, 1993) 
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The stresses, Oy, and strains, eijt of the composite, are the volume average of the 

subcell stresses, G0^, and subcell strains, e^j, as given below (Kwon, 1993): 

°y = Eq 1 

/a- + v{ 1 - V7)G*,y + v{ 1 - V7)G/ + ( , _ V?)
2
G/ 

E- = 
'J Eq2 

/e* + /( 1 - 77)s*,y + v/( i - 77)e/ + ( 1 - ^7)2
£,/ 

where a is the fiber subcell, b, c, and d are the matrix subcells. 

Stress continuity at subcell interfaces is satisfied by the following relationships 

(Kwon, 1993): 

a b c da c b d 
O 22  =  G 22, G 22  =  G 22, G 33  =  O 33, G33 = G33 Eq 3 

a b c da c b d 
0>   12  =  G  12, O 12  =  G  12, G  13  =  G 13, G13 = G^ Eq 4 

"bed 
O 23   =  O 23   =  G 22  =   G 23 

The strains of the subcells are assumed to meet the following requirements (Kwon, 

1993): 

abed 
e 11 = e 11 = e 11 = e 11 Eq5 
ab r d 

e 22 + e 22 = e 22 + e 22 
a e b d 

£ 33 + e 33 = e 33 + e 33 

abed 
e 12 + e 12 = e 12 + e 12 

Eq 6 
a c b d 

e 13+ e 13= E 13+ e I3 

The constitutive equation for each subcell based on Hooke's law is given by: 

« „(X u 
d  ij = t  ijkiZ  kl Eq7 

where i, j = 1, 2, 3 and a = a, b, c, d. 

The stress for each subcell expressed in Equation 7 is substituted into Equation 3 

and Equation 4 to have an expression for stress continuity represented in terms of subcell 



strains. The resultant equations along with Equation 2, Equation 5 and Equation 6 are 

solved simultaneously to result in subcells strains given by average composite strains. 

Subcell strains expressed in terms of the average composite strains are substituted into 

Equation 7 and the resultant subcell stresses expressed in terms of the composite strains are 

plugged into Equation 1 to result in the relationship between the composite stresses and 

composite strains. This relationship gives the smeared composite material properties 

expressed in terms of the fiber and matrix material properties. (Kwon, 1993) 

As a result, the micromechanical model computes the composite material properties 

using the constitutive fiber and matrix material properties. In addition, the model gives the 

relationship between microstresses (and strains) and composite stresses (and strains). That 

is, microstrains are found from composite strains. The microstrains are then used with 

Hooke's law for each constituent to determine the microstresses, from which the composite 

stresses are determined. 





III. FINITE ELEMENT MODEL 

A.        PLATES IN BENDING 

One objective of this study is to develope a computer program that will model the 

failure experienced by a thin composite plate due to a bending load. The finite element 

method along with Kwon's micromechanical model is used for the present study. The plate 

bending element used in this study is described below. 

A plate bending element is shown in Figure 2 where x, y, and z describe the global 

y>v 

z, w 

Figure 2. Plate Coordinates 

{u\ v1, w} 

{ub,vb, w} 

midsurface 
plane 

coordinates of points of the plate and u, v, and w are the displacements of those points, t is 

the plate thickness. The xy plane is parallel to the midsurface plane prior to deflection. 

The displacement of any point in the plate can be expressed as (Ugural, 1987). 

{d} e =  {u(x,y,z),v( (x,y,z),w(x,y))}T Eq8 

That is, the inplane displacements vary through the plate thickness while the transverse 

displacement remains constant through the plate thickness. This displacement within the 

element may be written in terms of shape functions and nodal displacement. 

{d}e = ^Ni{d}l Eq9 

Equation 9 can be rewritten in a matrix form as given below (Owen, 1987), 

\d\e =   [N] \b\e EqlO 



where {8}e is the nodal displacement vector for a plate element.  {5}; is the nodal 

displacements for the ith node of an element. 

{5},.= Eqll 

where superscripts b and t denote the inplane displacements at the bottom and top sides of 

the plate element, respectively. A four node quadrilateral element is used for the present 

study for interpolation of displacements in the x-y plane as shown in Figure 3: 
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Figure 3. Quadrilateral Element 

The shape function for the quadrilateral element is given in terms of the natural coordinate 

system: 

N; = 2(1+'•'-,-) 0+™,.) Eq 12 

where i= 1,2,3,4, and r; and s; are the local coordinates of the corners of the quadrilateral 

element whose values are either -1 or +1. 



Linear shape functions are given below in terms of the third natural coordinate axis, 

which is mapped into the plate thickness direction in the physical coordinate system: 

Hx{q) =\(\-q) 
Eql3 

H2(q) =\(\+q) 

Combining the previous bilinear shape functions, Equation 12 with the linear shape 

functions, Equation 13, yields (Kwon, 1988): 

_ J 1       j = 1,2,3,4 Eql4 
N2j = Nj(r,s)H2(q) 

Three cartesian displacements within a plate element are then written as: 

ue = Niu i + N2u i +N3U 2+N4u 2 + N$u 3 +7V6w 3 + /V7M 4 + NgU 4 

ve=N1v \+N2v'i+N3v 2 + N4v'2 + N5v 3,+N6v'^+N1v 4 + NgvU       q 

we ~ ^\w\ +
N2W2 + NTIW?) + N4W4 

where u and v are inplane displacements and w is the transverse displacement. Subscript 

and superscript for the nodal displacements indicate the node number, and top or bottom 

plane displacement of the plate, respectively. Since there is no rotational degree of freedom 

in the present plate bending element, the inplane displacements have two components at 

one nodal point: i.e. top plane displacement and bottom plane displacement. 

When a bending load is applied to a plate to cause it to deflect from its original 

configuration, deflection, stresses and strains associated with the deformation will follow 

several basic assumptions. These assumptions are (Ugural, 1987): 

1) The normal stress to the midsurface, az, is negligible 
2) Deflection of the plate is small in comparison with the thickness of the plate 
3) The normal strain in the plate thickness direction, e2 may be neglected. 



Strains for the element are in a matrix form: 

d   , 
■r-  0   0 ox 

E 
X 

o i- o 
£y oy 

*         
'xy — — 0 

dy dx 
\z 

3z       dx 
lyZ 

v                          i   e 

oil oz dy 

u 

V 

w 

Eql6 

Equation 10 is used to represent the displacements in Equation 16 so that strains can 

be expressed in terms of the shape functions and displacements. Elemental strain in terms 

of shape functions and displacements are shown in the Appendix. The matrix of shape 

function derivatives is referred to as [B]. Strain equations may be expressed as: 

{£}, =   [B] {8}e Eql7 

Stresses of a plate in accordance with the assumptions listed for this study are: 

{a}  = 
xy 

yz 

Eql8 

Stresses are obtained from the strains  using  Hooke's law.  For an  isotropic 

homogenous plate, stresses are (Ugural, 1987): 
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where E is the elastic modulus and v is poisson's ratio. 

The matrix of material properties may be written in a more condensed form and 

called [D]. This allows Equation 19 to be written as: 

{<*}e = [D]{£}, Eq20 

For a unidirectional fibrous composite, the [D] matrix is: 

[D]   = 

»n Du 0 0 0 

Dn D22 0 0 0 

0 0 ^33 0 0 

0 Ü 0 D44 Ü 

0 0 0 0 D< 55 

Eq21 

Du= ZM  
1 — Hi2^21 

Dn = 

D 22 

1 — M-12^21 

E22 
!-h2^21 

^33 ~ G12 

D44 = G13 

D55 = G23 

Eq22 

11 



in which E] {is Young's modulus in the direction of the 1 axis as shown in Figure 1, E22 is 

modulus along the 2 axis, \in is poisson's ratio on the 1 face in the 2 direction, (i2i is 

possion's ratio on the 2 face in the 1 direction, and G^ is the shear modulus associated with 

i and j axes. 

Equation 20 shows that stresses are obtained from strains and those strains are 

determined using displacements in Equation 17. A method now must be developed to 

determine displacements such that stress can be obtained. Energy methods can be used to 

find displacements. The Rayleigh-Ritz method is particular suited to determining unknown 

displacements. The procedure of using the Rayleigh-Ritz method is (Ugural, 1987): 

1) Assume a displacemnet function in terms of unknown nodal parameters 
2) Compute the potential energy, n, in terms of the unknown parameters which 

describe the total work, W, and strain energy, U 

U = U-W Eq23 

3) Apply the principle of minimum potential energy and solve for the displace- 
ments. 

Strain energy, U, may be expressed in terms of stress and stain (Ugural, 1987). 

u = 2 J (aA + V>+ Gzez+ Vxy+ XÄ + W dV £q 24 

where V is the volume of the body. 

The work, W, done by external forces, F (per unit volume), and surface forces, T 

(per unit area) is given by (Ugural, 1987): 

= j (Fxu + Fyv + F2w) dV + j (Txii + T v + r w) dS Eq 25 W 
V A 

where A is the boundary surface of the body. 

Using the principle of minimum potential energy, n is minimized such that 

(Ugural, 1987): 

5n = 6 - J (aA + ayey + aze2 + xxyyxy + xyzyxy + xyzyyz) dV Eq 26 

- f J (Fxu + Fyv + Fzw) dV+U Txu + Tv + Tzw) ds)~ 
W A ) 

= 0 

12 



The potential energy equation can be written using the finite element discretization 

11  =  Ulll^h7 W e~ id) eT <Fh)dV-I<\ W eT W edS      ^21 

where summations are over the discretized finite elements, and {d} is the displacement 

vector. Stresses in Equation 27 can be written in terms of strains and [D] from Equation 20. 

11 = 2j(^e>/[DHe}e-{^}r,{/7}J(rfV) Eq28 

-"Zf{d}e
T{T}edS 

1 s 

Displacements for each element are represented by the unknown nodal 

displacements {5},, and shape functions. Strains can now be expressed in terms of 

elemental nodal displacements and derivatives of the shape functions (Owen, 1987). Using 

Equation 17 for the strain in terms of the [B] matrix and nodal displacements, and Equation 

10 for the displacement function, Equation 28 becomes: 

n= 2j(^8>/[Ä]7,[D] [B] {5}e-{S}T[N]T{F}eyV Eq 

-^j{^}T[N}T{T}edS 

[k]e =  \[B]T[D] [B]dV Eq30 

5, 

After minimizing the total potential energy with respect to the nodal displacements, 

the element stiffness matrix is defined as (Owen, 1987): 

T, 

y. 

The element force matrix is formed by combining the work done by external surface forces 

and body forces: 

T {F}dV + j""T 

yc A 

Assembling all element matrices and vectors, the system equation is: 

\K] {8}   =   {Q} Eq32 

The unknown nodal displacement can thus be determined. 

13 

\Q}e=  l[N]T{F}dV + j[N]T{T\dS: Eq31 



Eq33 

Since the shape of the elements can be irregular quadrilateral, domain and boundary 

integrations of such shapes are solved using the natural coordinate system (r, s, q) 

(Segerlind, 1984). This integration must be done numerically and will use the Gauss- 

Legendre integration technique. Since the natural coordinate system is used for numerical 

integration to compute the integral, the Jacobian matrix, [J], must be used for mapping 

between the physical and natural coordinate systems, that is, 

dx dy dz 
dr dr dr 

[J]   =    <*£ 3y dz_ 
ds ds ds 

dx dy dz 
dq dq dq_ 

The stiffness matrix can now be represented in terms of the natural coordinate 

system (Segerlind, 1984). 

l  l  l 

[k]e= \[B]T [D] [B)dV = j j j [B] T [D] [B] \J\drdsdq Eq 34 
v< -l-l-l 

The integrals for the natural coordinate system are defined on the interval +1 to -1. 

Using numerical integration with n, m, 1 integration points along each direction, the 

stiffness matrix becomes: 

m      n       l , .. 

[k]e = j[B]T[D] [B]dV =   X X X W^jW^lBflD] [B]\J\)ijk 

V i=\j=\k=l 

where ()ijk indicates the function is evaluated at (rj, Sj, q^). That is, [B], [£>], and L/l are 

evaluated at their sampling points and W is the weight coefficients for Gauss quadrature 

(Segerlind, 1984). 

With the calculation of a stiffness matrix and a force vector, displacements for the 

nodal points of the plate can be determined. These displacements are used with Equation 

17 to solve for the strain. Once the strains are determined, microstrains, microstresses and 

14 



macrostresses are determined using the micromechanical model described in the previous 

chapter. 
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IV. MICRO-MACRO ANALYSIS 

A. MICRO-MACRO ANALYSIS 

To find the damage progress in a plate due to an external loading, a micro- 

macromechanical approach is used. Kwon's micromechanical model is the basis for the 

procedure. Composite material properties are determined from the fiber and matrix 

material properties using the micromechanical model. These composite properties are then 

used to determine nodal displacements from the finite element analysis (macro analysis). 

Equation 17 shows that macro-strains are obtained from displacements. The 

micromechanical model is again used with the macro-strains to derive the micro-strains of 

each element. Micro-stresses are calculated using micro-strains. Failure criteria applied to 

measure damage progression in the composite. 

[B] can be decomposed into two parts; [B]bfor the bending strains and [B]s for the 

shear stains (Kwon, 1994). 

[*]/,= 

du 
dx 

3v 
dy 

du   dv 
dy    dx_ 

Eq35 

iß] shear (i) 

du dw 
dz dx 

8v 8w 
8z by 

Eq36 

[B]b is evaluated at four integration points in the rs plane while [B]s is evaluated at one 

integration point to prevent shear locking. As a result, the bending strains are averaged to 

produce one value for each element in the same manner as the transverse shear strains. 

17 



B. FAILURE CRITERIA 

In order to study the damage progression in a composite subjected to a bending 

load, the following failure criteria are used (Berner, 1993): 

k1* xf ifau>0 

x/ifau<0 
Eq37 

/        m\2     (        m\2 
O 12 

v sm J 
m\2     (        m\ 

+ 
J\2 

v sm ) 

> 1 if O 22 > 0 

> 1  if G   22 < 0 

Eq38 

in which a ,, is the longitudinal fiber stress and X1 is the ultimate strength of the fiber in 

the longitudinal direction. Subscripts t and c denote tensile and compressive strengths. 

am
22 is the transverse matrix stress, Xm is the ultimate strength of the matrix, am

12 is the 

matrix shear stress, and Sm is the ultimate shear strength of the matrix. 

The failure criteria are used in determining the failure of the composite in four 

different modes; fiber failure in compression or tension and matrix failure in compression 

or tension. If any of these failure modes occurs, then the material properties for the fiber 

and/or matrix related to the failure are degraded at the failed location. This degradation of 

material properties in the computer modeling is accomplished by multiplying those 

material properties by 0.005, effectively reducing the properties to small values but non- 

zero values allowing the material property matrices to be non-singular. For subsequent 

calculations, those failed fiber and/or matrix will not take any of the applied load. (Since 

the failed material properties are not exactly zeros, the failed location may still carry very 

small insignificant loads.) 

The load is applied incrementally. An initial load is chosen and applied to the 

composite. The computer program checks whether computed stresses satisfy the failure 

IX 



criteria. If there is no failure of either the fiber or matrix in the composite, the program 

increases the load incrementally as directed by the input file until some type of failure 

occurs or the maximum prescribe load is applied. 

If some type of failure has occurred, then that fiber and/or matrix material is 

degraded as described previously. Another iteration will now be carried out using this 

"damaged" element(s). Each loading condition is allow to run through only five iterations. 

This is done to more closely model actual loading of the plate by a testing machine that 

continually increases the load over a finite period of time. The failure of the composite 

itself was based on the degree and direction of the failure for the fibers and matrix. 

The failure is checked at the numerical integration points of each plate bending 

element. The elemental stiffness matrix is the sum of stiffness matrices for bending and 

shear (Kwon, 1994). 

[k]e =  [k]b+ [k]s Eq39 

For the bending stiffness, 2-point integration rule is used in every direction. However, 1- 

point integration rule is used for the shear stiffness on the inplane directions and 2-point 

rules on the thickness direction. As a result, the stresses due to bending are computed at 

four points in the plane of a plate element while the transverse shear stresses at one point. 

The bending stresses are averaged for four points on both tension and compression sides of 

a plate element. Finally the averaged bending stresses and the shear stresses are used for 

the failure criteria to represent failure of the element either on the tension or compressive 

side. 
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V. RESULTS 

A.        PLATE WITH A HOLE SUBJECTED TO UNIFORM BENDING 

A numerical prediction was conducted using the present micro-macro damage 

model for the laminated composite used by Yang in his experimental testing. The laminated 

composite plate was a carbon/epoxy composite (IM6/3501-6) manufactured by Hercules 

Materials Company of Magna, Utah. The fibers were in aligned in the 0° direction. Yang 

used a 12 inch by 1 inch plate containing a 0.250 inch diameter hole at the center and 

subjected to a four point bending test to create an uniform bending moment along the edge 

of the plate. (Yang, 1994) 

The material properties of the composite used in the bending study were determined 

from experiments. (See Table 1) 

Property Fiber ^^^^^^H 
Elastic Modulus(Msi) 2.30 0.200 

Poisson's Ratio 0.270 0.360 

Fiber volume fraction 0.250 N/A 

Table 1.   Material Properties of Composite 
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Yang showed that for the one-quarter symmetric sample of the plate, as in Figure 4, 

the failure loading corresponded to 230 lb-in applied moment. 

Finite Element Grid for Symmetric Plate with Hole 

Free 
0.5 

0.25 

0.125 

M-^ 

» xmuTi » \ . 
0.125 0.25 0.5 

Inches 
0.625 0.75 0.875 1 

Fiber Direction 
-* ► 

Figure 4. Symmetric Plate with Hole 

Failure of each element of the plate is based on the criteria of Equation 37 and 

Equation 38. Total failure of the composite is determined from when there is nearly 

complete failure of the fibers along the y-axis. Matrix failure occurs in different forms. 

Matrix may fail along the y-axis creating a matrix cracking and/or it can fail along the x- 

axis to cause fiber splitting. The underlying definition of composite failure in this case is 

the inability of the composite to carry an applied load. The damage progression predicted 

using the present micro-macro model is plotted in Figure 5 through Figure 8. As seen in 

Figure 5 and Figure 6, matrix cracking occurs along the fiber direction causing fiber 

splitting. As the load increases, fiber breakage occurs along the minimum section of the 

plate until the final fracture at 200 lb-in the failure modes agree with the experimental 

observation and the final failure load is 15% less than the experimental failure load. 

77 



£ o 
2 

oh 
c 

c 
<u 
H 

•a 
a* 

u 
Ö 
on 
c 
o 

E 
o 
U 

c   c   c   c 
.2 .2 .2 .2 
VI '(A 
c   c a>   u 
H H 
i>   u 
3 3 

.-3 :3 
CS « 

£.8 a. a. 
< 
c 

o o 

s. & 
£ E 
o o 
U U 
A A 
(-. t- 
3 3 

•fi Ü 
5 £ 

   n 

\     \      \ 

i i Until 

\_———' 

00 
Ö 

ö 
<N 

Ö 

O 
o 

ssqouj 

Figure 5. Fiber Failure Compression Strength Equal to Tensile 

Strength with 94.00 Ib-in Applied Moment 
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Strength with 165 Ib-in Applied Moment 
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Figure 7. Fiber Failure Compression Strength Equal to Tensile 

Strength with 188.00 Ib-in Applied Moment 
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A parametric study was performed by varying the fiber and matrix compressive 

strengths. The fiber's compressive failure strength was varied while all other composite 

material properties were held constant as before. The purpose of this study was to 

determine how the failure load of the composite plate varied in accordance with the change 

of the compressive strength of the fiber. The matrix compressive strength was then varied 

while all other material properties of the composite were held constant to analyze its effect 

on the failure strength of the composite. Figure 9 and Figure 10 show the reduced 

composite strength for reduced fiber strength and increased matrix strength. 

In cases where the fiber compressive failure strength is varied, Figure 9 shows that 

as the compressive strength of the fiber was decreased, so did the load required to cause 

failure of the composite. The reduction in the required load is approximately equal to the 

percent reduction of the compressive failure strength of the fiber. A straight line is drawn 

in Figure 9 for the cases where both tensile and compressive strengths of the fiber are 

reduced uniformly. The composite failure load for the reduced fiber's compressive strength 

only is larger than that for both reduced tensile and compressive strengths of the fiber, as 

expected. However, there is no more than a 5% difference between the two composite 

failure loads. As the fiber and compressive strength is reduced more, the composite failure 

strength deviates further from the straight line because the matrix strength plays a more 

important role in the composite failure. Although other material properties may influence 

the finial failure load, the fiber strength is the dominant material property in determining 

failure load. 

Figure 11 through Figure 14 show the damage progression in a composite for 

various fiber compressive strengths. The results from these figures are used to generate 

Figure 9. As shown by Figure 11 through Figure 14, the applied moment required for 

composite failure increases as the fiber compressive strength increases. Composite failure 

for these cases initiates in the fiber splitting mode in the longitudinal direction and fails in 

the transverse fiber breakage. 

Figure 10 is the graph of resultant failure loads due to changing the matrix's 

compressive strength while keeping all other composite properties the same as listed in 
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Table 1. Changing the matrix strength had no effect on the fiber failure load as indicated in 

Figure 14 through Figure 23 which show the damage progression in a composite with 

various matrix compressive strengths. Matrix failure occurs at larger bending loads for 

increased matrix strength as expected. However, the composite failure load changes little 

for increased matrix strength because the fiber is the dominant material for ultimate failure 

of the composite structure. 
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Tensile Strength with 47.00 Ib-in Applied Moment 
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Figure 12. Fiber Failure Compression Strength Reduced to 20% 

of Tensile Strength with 58.75 Ib-in Applied Moment 
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Figure 13. Fiber Failure Compression Strength Reduced to 60% 

of Tensile Strength with 117.50 Ib-in Applied Moment 
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Figure 14. Fiber Failure Compression Strength Reduced to 60% of 

Tensile Strength with 141.00 Ib-in Applied Moment 
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Figure 15. Matrix Failure Compression Strength Increased to 200% of 

Tensile Strength with 117.50 Ib-in Applied Moment 
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Figure 16. Matrix Failure Compression Strength Increased to 200% 

of Tensile Strength with 165 Ib-in Applied Moment 
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Figure 17. Matrix Failure Compression Strength Increased to 

200% of Tensile Strength with 188.00 Ib-in Applied Moment 
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Figure 18. Matrix Failure Compression Strength Increased to 200% 

of Tensile Strength with 200 Ib-in Applied Moment 
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Figure 19. Matrix Failure Compression Strength Increased to 

600% of Tensile Strength with 117.50 Ib-in Applied Moment 
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Figure 20. Matrix Failure Compression Strength Equal to 600% 

of Tensile Strength with 165 Ib-in Applied Moment 
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Figure 21. Matrix Failure Compression Strength Increased to 600% of 

Tensile Strength with 188.00 Ib-in Applied Moment 
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Figure 22. Matrix Failure Compression Strength Increased to 600% 

of Tensile Strength with 200 Ib-in Applied Moment 
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Figure 23. Matrix Failure Compression Strength Increased to 600% 

of Tensile Strength with 235.00 Ib-in Applied Moment 
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B. SQUARE PLATES SUBJECTED TO TRANSVERSE LOADING 

A square plate was used to examine the damage progression that occurs with 

different boundary and loading conditions. The plate had the length to thickness ratio of 50. 

A quarter model was used due to plate symmetry. Boundary conditions were either 

clamped or simply supported on all plate edges. The quarter model would then have 

adjacent edges clamped or simply supported and the other two adjacent edges symmetric 

as shown in Figure 24. The applied load was either a concentrated load at the point or a 

distributed load over the xy plane. Both loads were applied in a positive z direction (into 

the plane). 
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Figure 24. One Quarter Plate Model 

Figure 26 through Figure 31 show the resultant damage for each combination of 

boundary and loading conditions. Under all conditions, the plate could sustain a higher 

distributed load without failure than a plate with a concentrated load. Complete matrix 

failure occurs for even a small load for the present composite materials whose properties 

are the same as those used in the previous section. There is no contribution to composite 

strength by the present matrix material. 
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A plate with the clamped boundary condition begins failure along the boundary 

edge and around the center of the plate. Damage then proceeds between the two as shown 

in Figure 25 through Figure 28. Simply supported plates show damage initiating around the 

center of the plate and propagating outward. 

The condition of composite failure for this analysis is defined as when the 

composite is unable to support an applied load and maintain structural integrity. 

Concentrated loads cause the composite to fail more readily in the clamped condition than 

in the simply supported condition as indicated by comparing Figure 25 and Figure 26 with 

Figure 29 and Figure 30. 
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Figure 31. Simply-Supported Plate with a Uniformly Distributed Load 
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VI. CONCLUSIONS AND RECOMMENDATION 

The micro-macromechanical analysis allowed for the study of damage progression 

in laminated fibrous composites subjected to bending loads. By first applying the 

micromechanical model developed by Kwon, the composite properties were determined by 

the material properties of the fiber and matrix. The stresses were determined at the fiber and 

matrix level by using the micro-macromechanical approach. Failure analysis then could be 

done based on the stresses in the fiber and matrix. The strength and failure mode of the 

composite were found from this study. Degradation of failed fiber and matrix material 

properties was included in the program such that damage propagation could transfer the 

load from a load from a damaged section to neighboring intact sections resulting increased 

stresses in the intact area. Applied loads were increased incrementally in the model until 

complete composite failure occurred. 

Good agreement was found between the computer model and experimental results 

for a carbon/epoxy laminated composite with a circular hole at its center. The parametric 

study involving the plate clearly showed the dependance of the composite ultimate strength 

on the fiber strength. As the fiber strength was changed, the composite strength changed in 

nearly a directly proportional amount. 

When the computer model was used to study a square plate with transverse loading, 

the failure pattern was as expected for such conditions. The square plate study also showed 

that a greater load could be maintained on the plate with less damage when a uniformly 

distributed load was applied instead of a concentrated load. 

It is suggested that this study be extend to cover cases involving multiple holes to 

determine how their proximity to each other in a plate influences damage progression. 

More experimental results need to be obtained to further verify the damage model. 
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APPENDIX: FINITE ELEMENT MATRICES 
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