
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

<Origteal contalng

Plates: All DTIC reprodurt-
ions «rill be in ».1 l"vaaGZm

white» ° black **

DESIGN AND IMPLEMENTATION OF A
SOFTWARE COMMUNICATION ARCHITECTURE

FOR THE JANUS-3D VISUALIZER

by

Christopher S. Upson

September 1994

Thesis Advisor: David R. Pratt

Approved for public release; distribution is unlimited.

19941201 073

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Lthlnnn ^Z»i^ I „f.? ! ,nf°rma,ion E «,imated ,0 aTO'a9e 1 h°"' P<» ™=P«>nse. including the «ime reviewing instructions, searching exiting data sources
«Z ™ !n„Z" , 9 ^ ?' . comple,,n9 and reviewi"9 ,he collec,i°" °f '"formation. Send comments regarding «his burden estimate or any other aspect of this
S^^CT^*^.,U9SrSS3Utor 9 'hiS bUrden '° Washin9'°" H-dquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson
Dav,s Highway. Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington DC 20503

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 13. REPORT TYPE AND D>
September 1994 | Master's Thesis

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

DESIGN AND IMPLEMENTATION OF A SOFTWARE
COMMUNICATION ARCHITECTURE FOR THE JANUS-3D
VISUALIZER (UNCLASSIFIED)

5. FUNDING NUMBERS

6. AUTHOR(S)

Upson, Christopher S.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)
10. SPONSORING/ MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 rVords7^^™"'"™™""""™™,"",~™"™",,'™"""""""""""","''™"-™"",,~'

During the National Guard's mobilization for Desert Shield/Desert storm, deficiencies were noted in the command and
control skills of battalion and brigade level units. The major problem addressed by this research was to improve these skills by
developing a software communication architecture that would allow events occurring in two dimensions in the Janus Combat
Modeler to be seen in three dimensions on a visualization tool called the Janus-3D Visualizer over both local ethernet and wide
area telephonic networks. The challenge was to minimize network latency along with providing accurate data in order to
maintain the time and space coherence of the simulation.

The approach taken was to first determine where the needed information resided in the Janus modeler Next a protocol
was developed to extract the information and send it to the Janus-3D Visualizer over the local network for viewing Finally a
protocol was developed to transmit this information over a telephonic network upon request in order for it to be viewed on a
remote Janus-3D Visualizer.

As a result of this work, Janus battles can be viewed in three dimensions and in real time by brigade and battalion
commanders and their staffs without them having to spend valuable training funds to move everyone to a single location
National Guard units can now use the Janus modeler more often and more realistically in order to improve command control
and communication skills.

14. SUBJECT TERMS '"

Wide Area Network, Local Area Network, Communication Architecture,
Software, Ethernet, Telephone, Janus Combat Modeler

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

*SN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

77
16. PRIcE CODE"

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A
SOFTWARE COMMUNICATION ARCHITECTURE

FOR THE JANUS-3D VISUALIZER

Christopher S. Upson
Captain, United States Army
B.B.A., Siena College, 1985

Submitted in partial fulfillment of the
requirements for the degree of

Author:

Approved By:

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

^

Uc
Christopher S. Upson

David R. Pratt, Thesis Advisor

AX/LW
Gilbert M. Lundy, Secon/rReader

\Ud-
Ted Lewis, Chairman,

Department of Computer Science

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By...,
Distribution/

D
D

Availability Codes

Dist

M

Avail and /or
Special

111

ABSTRACT

During the National Guard's mobilization for Desert Shield/Desert Storm,

deficiencies were noted in the command and control skills of battalion and brigade level

units. The major problem addressed by this research was to improve these skills by

developing a software communication architecture that would allow events occurring in

two dimensions in the Janus Combat Modeler to be seen in three dimensions on a

visualization tool called the Janus-3D Visualizer over both local ethernet and wide area

telephonic networks. The challenge was to minimize network latency along with providing

accurate data in order to maintain the time and space coherence of the simulation.

The approach taken was to first determine where the needed information resided in the

Janus modeler. Next, a protocol was developed to extract the information and send it to the

Janus-3D Visualizer over the local network for viewing. Finally, a protocol was developed

to transmit this information over a telephonic network upon request in order for it to be

viewed on a remote Janus-3D Visualizer.

As a result of this work, Janus battles can be viewed in three dimensions and in real

time by brigade and battalion commanders and their staffs without them having to spend

valuable training funds to move everyone to a single location. National Guard units can

now use the Janus modeler more often and more realistically in order to improve command,

control and communication skills.

VI

TABLE OF CONTENTS

I. INTRODUCTION j

A. OBJECTIVE i

B. BACKGROUND j

C. MOTIVATION 2

D. ORGANIZATION OF THESIS 3

II. OVERVIEW OF JANUS AND PREVIOUS WORK 5

A. THE JANUS COMBAT MODELER 5

1. History 5

2. Description g

3. Hardware 7

4. Software 7

a. Database Management 7

b. Scenario Creation and Execution 8

c. Scenario Results Analysis 8

d. Utility Programs 8

B. PREVIOUS WORK 9

1. Distributed Virtual Environment System for Cooperative Work 9

2. Lucasfilm's Habitat 10

3. Environmental Effects for Distributed Interactive Simulation (E2DIS)... 11

4. DIS Integration into NPSNET 13

5. Summary 14

III. JANUS-3D VISUALIZER OVERVIEW 15

A. BACKGROUND 15

Vll

B. VISUALIZER OVERVIEW 15

C. EQUIPMENT 15

D. SOFTWARE 16

E. FUNCTIONALITY DESCRIPTION 16

F. COMMUNICATIONS OVERVIEW 19

IV. LOCAL AREA NETWORK MESSAGE TRANSFER 21

A. OVERVIEW 21

B. INFORMATION REQUIRED FROM JANUS 21

1. Unit Type and Graphics Symbol 22

2. Initial Unit Locations 23

3. Unit Movement 23

4. Direct Fire Information 24

5. Indirect Fire Information 24

6. Unit Attrition Information 24

C. MESSAGE FORMATION AND TRANSMISSION 25

1. Movement Message 25

2. Direct Fire Message 28'

3. Indirect Fire Message 28

4. Detonation Message 28

5. Message Transmission 29

D. MESSAGE HANDLING IN THE JANUS-3D VISUALIZER 29

1. Ethernet Communications Library 29

2. Script File Creation 30

3. PDU Storage In Linked List 31

4. Reading the PDUs for Display 32

V. WIDE AREA NETWORK MESSAGE TRANSFER 35

viu

A. OVERVIEW 35

B. INITIAL MODEM CONFIGURATION 35

C. STARTING THE LISTENING SUBPROCESS 37

D. SENDING PDUS TO A REMOTE UNIT 38

1. Connection Establishment 38

2. Sending the PDUs 38

3. Connection Termination 39

E. RECEDING PDUS FROM A REMOTE UNIT 39

1. Connection Establishment 39

2. Reading the PDUs 40

3. Connection Termination 40

F. DISPLAYING PDUS RECEIVED VIA THE TELEPHONE WAN 40

VI. PERFORMANCE, CONCLUSIONS AND FUTURE RESEARCH 43

A. PERFORMANCE 43

B. CONCLUSIONS 43

C. TOPICS FOR FUTURE RESEARCH 44

APPENDIX: JANUS-3D VISUALIZER USER'S HANDBOOK 45

LIST OF REFERENCES 61

INITIAL DISTRIBUTION LIST 63

IX

LIST OF FIGURES

Figure 1. Multi-process Model for the Distributed Virtual Environment System 10

Figure 2. E2DIS Communications Configuration 12

Figure 3. NPSNETDIS Network Interface 13

Figure 4. Janus-3D Visualizer Main Screen 18

Figure 5. Janus-3D Visualizer Communications Network 20

Figure 6. Janus-3D Visualizer PDU Contents 26

Figure 7. Conceptual View of WAN Operations 36

XI

Xll

I. INTRODUCTION

A. OBJECTIVE

Our objective for this thesis was to develop a software communications architecture

for the Janus-3D Visualizer that is robust and efficient. The Janus 3D Visualizer is a

program that displays in 3 dimensions what is occurring in a Janus Combat Modeler

scenario in real time [VAGL94]. The success of this project was measured by the ability of

the 3D Visualizer to accurately and efficiently depict a simultaneously running battle on

Janus over both a local area network and wide area network without communication failure

or significant communication delay.

B. BACKGROUND

Military budgets continue to shrink significantly. With these shrinking budgets

come fewer opportunities for military personnel to train on their war time equipment as

such training is costly in both time and logistical resources. This reality has, in recent years,

led to the rapidly growing research, development and use of simulators to train our nation's

military. These simulations are not meant to replace traditional hands-on training, but to

supplement it in order to enhance its benefit as opportunities to conduct traditional training

are far fewer than in the past.

Because of this need for low cost technological solutions, the Graphics and Video

Laboratory of the Department of Computer Science at the Naval Postgraduate School is

conducting research on 3D visual simulators that use commercial off-the-shelf graphics

workstations. The primary research project of the laboratory is NPSNET, a three-

dimensional, real-time, networked vehicle simulator [PRAT93]. A principle focus of this

work is the development of software to create and run realistic visual simulations on low

cost hardware, thus saving the user money while still providing a product that can be used

for effective training. This is also the goal of the Janus-3D Visualizer project, of which this

work is a part.

C. MOTIVATION

In fiscal year 1992, the Simulation in Training for Advanced Readiness (SIMITAR)

program was initiated as the result of a Congressional mandate. The purpose of this

program is to improve the training of National Guard Roundout Brigades through the use

of advanced technology. This program came about as a result of training readiness

deficiencies that were identified during the Desert Shield/Desert Storm mobilization.

[FUNK94]

The manager of this program is the Advanced Research Projects Agency (ARPA).

ARPA is an organization whose principle mission is research and development in areas of

advanced technology in order to find ways in which the Department of Defense (DOD) can

better accomplish its missions. One of its primary goals is to improve cost and performance

within the DOD.

It was noted during the Desert Shield/Desert Storm mobilization that the National

Guard was far more proficient in small unit skills than it was in battalion and brigade level

skills. This is partially attributable to the fact that it is much easier for the companies and

platoons to get together to train than it is for the higher level commands, which are often

separated by large distances. Therefore, getting these larger commands together for training

is very expensive and thus usually occurs only during the annual two week training period.

As a result of these observations, one of the primary goals of SIMITAR is to improve

brigade and battalion staff battlefield synchronization skills by designing technologies to

distribute training opportunities as far as possible. Increasing the quantity and quality of

higher command training in the National Guard through 3 dimensional visualization and

distribution is the purpose behind the Janus-3D Visualizer project.

The 3D Visualizer will provide commanders with a three-dimensional perspective

view of a Janus battle in real time. This 3D versus 2D view will allow commanders to better

position their units before and during the battle and to better critique their junior leaders

both during and after the battle. The wide area communications capabilities of this project

will allow the Janus battle to be viewed over a greater area, thus enabling a brigade and its

battalions to participate in the same battle from remote locations. This will save significant

costs as the brigade will not have to travel to a single location to conduct this type of

training. Each battalion and the brigade headquarters can remain at their drill locations for

the duration of the exercise. Therefore, the training can be conducted much more

frequently. It is hoped that allowing National Guard brigade and battalion commanders and

their staffs to view their own and each others actions in the battle in 3D as frequently as

they desire will improve their command, control and communication skills and thus their

overall readiness.

D. ORGANIZATION OF THESIS

This thesis is organized into six chapters. This chapter provides the background and

motivation of the work performed. Chapter II provides an overview of the Janus Combat

Modeler itself along with brief descriptions of previous works whose ideas and

philosophies contributed to this project. An overview of the Janus-3D Visualizer both in a

broad sense and then, more specifically, its communications requirements and functionality

is provided in Chapter HI. Chapter IV discusses the development of the local area network

communications architecture of the Janus-3D Visualizer and its interaction with the Janus

Combat Modeler as a scenario takes place. The wide area network communications

architecture for the Janus-3D Visualizer is described in Chapter V. Chapter VI provides

information on the run-time performance of the 3D Visualizer with respect to

communications along with our conclusions and topics for future research. Finally, the

Appendix consists of the Janus-3D Visualizer's user's guide.

II. OVERVIEW OF JANUS AND PREVIOUS WORK

A. THE JANUS COMBAT MODELER

The Janus Combat Modeler is a brigade and lower level unit computer based war-

gaming simulation used widely by the United States Army. It has two primary missions.

One is combat development and analysis of new doctrine, strategy and technology. The

other, which is most closely related to the Janus-3D Visualizer project, is to provide

commanders and their staffs an inexpensive method of training to improve their command,

control and communications skills "while developing and testing realistic operation plans."

[JANU93b]

1. History

The Janus simulation was first fielded in 1978 by the Lawrence Livermore National

Laboratories (LLNL) to model nuclear effects and became known as Janus(L). It quickly

gained notoriety for its innovative graphical user interface design and was thus acquired by

the U.S. Army Training and Doctrine Command (TRADOC) Analysis Command (TRAC)

located at White Sands Missile Range (WSMR) as part of the Janus Acquisition and

Development Project in 1980. TRAC-WSMR modified and further developed Janus(L)

into a simulation tool to support Army combat development and referred to this new

version as Janus(T). [WALT92].

Both versions of Janus gained in popularity and became widely distributed to a

varied user community. With this growing popularity, the Army recognized that Janus

could also provide a valuable training tool in addition to its combat development role. As

a result, the Janus(Army) Program was started in 1989 to develop one standardized version

of Janus that could be used by both the combat development and training communities.

This standardized version of the combat modeler is now known as simply Janus and its

continued development is the responsibility of TRAC-WSMR. [WALT92] [JANU93b]

The original version of Janus was developed on Digital VAX computers running

the VMS operation system and used Tektronix Model 4225 graphics workstations for

display. In 1992, Janus was ported to the UNIX operating system with X-Windows

workstations for graphics display. UNIX version 3.17 was used for the Janus-3D Visualizer

project. [JANU93b]

2. Description

The Janus combat modeler is a monolithic simulation that is "two-sided, closed,

interactive and stochastic." Monolithic refers to the characteristic that the Janus scenario

actually runs on only one machine while a number of other systems display the forces. The

model is termed two-sided because it allows for the simulation of two opposing forces, blue

and red, that are simultaneously controlled by two sets of players on separate monitors.

Each monitor displays only those forces on its side along with opposing forces that its

forces have detected. In other words, a player on one side does not know the complete

distribution of the opposition's forces. Janus is considered closed because it is a stand alone

simulation system. No outside systems influence it in any way. Janus is also interactive as

the operators at each workstation control the actions of their forces in real time as the

scenario unfolds. This detailed control is possible as the model focuses on individual

fighting system engagements. The results of these engagements occur according to the laws

of probability and chance that are built into the modeler. Therefore, Janus is referred to as

stochastic and may lead to different results each time a specific scenario is executed.

[JANU93] Finally, Janus also has a replay capability and analyst workstation that allow for

after action reviews of the scenario in terms of troop movements, artillery fires and

individual weapon system hits and kills. As such, the Janus combat modeler provides many

valuable insights for analysis and training purposes. [JANU93b]

The terrain database for the Janus battles is developed from digitized terrain

elevation data (DTED) provided by the Defense Mapping Agency (DMA). The terrain is

displayed in a way that is familiar to military users with its contour lines, roads, rivers,

vegetation and urban areas. These terrain features affect line of sight and vehicle movement

just as real terrain does. Also, its symbology includes operational overlays, military map

unit symbols and weapon system icons. [JANU93b]

3. Hardware

The open, or UNIX, version of Janus runs on a hardware suite that consists of a

Hewlett-Packard (HP) Model 715/50 host computer that is linked to up to 24 workstations

[JANU93c]. For the Janus-3D Visualizer project, the HP host was networked to a number

of Sun Classic workstations for normal Janus operations and a Silicon Graphics Indigo 2

Extreme workstation for 3D visualization. Each workstation also included a 19-inch color

monitor, keyboard, and three-button mouse.

4. Software

Janus includes sixteen executable programs written in FORTRAN. These programs

can be divided based on their functionality into four major groups: data base management;

scenario creation and execution; scenario results analysis; and utility programs. User menu

programs written in the Digital Command Language (DCL) are also included. These DCL

programs allow easy access to the executables. [JANU93]

a. Database Management

Five programs are used to create and maintain the weapon systems, graphics

symbols and terrain databases. Weapon systems characteristics and weather conditions are

managed by the CSDATA program prior to their application to a scenario. Once this

information has been read into a scenario, however, the TED program is used to edit it for

that specific scenario. The SYMBOLS program, on the other hand, is used to modify the

graphics symbols that are displayed on the terrain. The terrain itself is managed by the

TRNFLTR and TED programs. The TRNFLTR program allows for the selection of part of

a master terrain and its conversion into a format that is compatible with Janus. Finally, the

TED program is used to create terrain features such as contour lines, roads and rivers.

[JANU93].

b. Scenario Creation and Execution

Seven programs are used to develop and execute the Janus scenarios. First,

the FORCE program is used to enter the actual units into new scenarios and edit forces in

existing scenarios. The MERGE program allows the user to combine the opposing forces

of different scenarios to form a new scenario. The battlefield environment of a scenario can

be initialized or edited by the INITSCEN program. Scenario specific information and

database errors are written to a file by VFYSCEN in order to allow for error correction by

the user. GRFVFY, on the other hand, only prints such information to the screen. The

CONWOR, or controller workstation, program allows a workstation to be set up as a

passive observer station allowing people to view the battle, but not to interact with it.

Finally, the JANUS program allows for initial planning by the user and then the actual

execution of the scenario. [JANU93]

c. Scenario Results Analysis

Scenario analysis is handled by two programs. The POSTP program

generates numerous reports on the results of the battle such as direct and indirect fires and

casualties caused by various weapon systems. The JAAWS program displays unit statuses

for the user at certain intervals throughout scenario execution vice after execution as

POSTP does. [JANU93]

d. Utility Programs

The utility programs consist of HELPEDIT and FORMS. HELPEDIT is

used in creating and editing user help files. FORMS, on the other hand, is used to develop

the screen forms for displaying scenario data. [JANU93]

B. PREVIOUS WORK

The following works were researched due to their networking implementations and

teleprocessing methodologies. Both local area ethernet and wide area telephonic network

implementations are discussed. Many of the ideas in these works were used in developing

the software communications architecture for the Janus-3D Visualizer.

1. Distributed Virtual Environment System for Cooperative Work

Nobutatsu Nakamura, Keiji Nemoto and Katsuya Shinohara have performed

research on distributed virtual environments over a network. They developed three

techniques to allow them to create an immersive virtual world that can be shared by

multiple users simultaneously across a network. Their techniques include a client/server

communications method, a management mechanism for the virtual objects that inhabit the

world, and a multi-process model to help them achieve flexibility across different system

configurations. The technique most applicable to our project was their multi-process

methodology. [NAKA94]

In their model, the main process of any client was the client manager process. It is

this parent process that creates the numerous child processes necessary for their distributed

virtual environment to function smoothly. In their system, child processes included those

responsible for the network, graphics, 3D mouse and data-glove, among others. All of these

processes could be created and killed independently of any other. This allowed for the

many tasks that must occur simultaneously to be accomplished while also saving CPU

memory by killing processes that were no longer needed. This capability is crucial to

creating and executing believable distributed virtual environments. See Figure 1 for a

depiction of their multi-process model.

Server

Client 2

Client 1

Client 3

Figure 1. Multi-process Model for the Distributed Virtual Environment System

2. Lucasfilm's Habitat

Habitat was a networked virtual environment that allowed many players to

participate in the world simultaneously. Each user played at his home from his own

personal computer and connected to Habitat via modems and phone lines. This early

attempt at designing a many user, networked virtual world entertainment system brought

10

to light many issues that must be considered when doing so. The issues of concern to this

project are those involving serial communications. In Habitat, they had to be able to allow

the user a pleasing experience in the environment with the limitation of 300 BAUD

connections. Therefore, bandwidth was a major concern. Only the absolutely essential data

could be transmitted in order to achieve fast enough feedback to satisfy the user. In Habitat,

they transmitted only behavioral data; changes in state. Presentation or modeling data could

not be transferred in order to keep things moving fast enough to maintain user satisfaction.

[MORN91] In this project, the same principles were followed in order to maintain the

realism of the 3D display on the Janus-3D Visualizer.

3. Environmental Effects for Distributed Interactive Simulation (E2DIS)

E2DIS was an exercise conducted between the Naval Postgraduate School's (NPS)

Computer Science Graphics and Video Laboratory and the Army's TEXCOM

Experimentation Command (TEC) at Fort Hunter Liggett, California. Its purpose was to

show the feasibility of the combination of a Virtual Reality (VR) interface with real world

weapons testing. The real world events were displayed in the NPS Graphics Laboratory on

NPSNET [ZYDA92]. NPSNET is a 3-dimensional (3D) battlefield simulator that operates

simultaneously on separate workstations through the use of Distributed Interactive

Simulation (DIS) network protocols [INST91]. The link between the real world events and

NPSNET was accomplished with two modems transmitting formatted packets over a phone

line from Fort Hunter Liggett to NPS. With the information received, NPSNET, using the

Fort Hunter Liggett terrain, displayed a 3D animation of the actual test as it was occurring.

See Figure 2 for a depiction of the flow of data across the E2DIS network. [PRAT94] This

transmission of entity location information via phone lines over a wide area for subsequent

display in 3D was very useful in the development of the wide area communications

software architecture for the Janus-3D Visualizer.

11

Radio
Trans.

FORT HUNTER LIGGETT

Fixed
Antenna

r\
Entity

Ö-!!

Mobile
Multicomputer

System

NPS
Silicon Graphics Workstations

NPSNET
3D

Virtual World
Display

Data
Processing

Center

I
Modem

Phone
Line

Figure 2. E2DIS Communications Configuration

12

4. DIS Integration into NPSNET

The work of Capt. Steven Zeswitz, USMC, [ZESW93] and John Locke, a Naval

Postgraduate School computer specialist, in integrating DIS into NPSNET resulted in the

development of a network library that provides network management and contains

functions to open, configure, write to, and receive from an ethernet local area network using

the DIS network protocols. As seen in Figure 3 below, the network library acts as an

interface between the application and the operating system. This allowed NPSNET to be

included in distributed simulations involving numerous types of simulators. This creation

of a network library was useful in the development of the local area communications

software architecture for the Janus-3D Visualizer.

r
Application (NPSNET)

I
Network Library

r I
Operating System

Ethernet I
DIS Traffic

Figure 3. NPSNET DIS Network Interface

13

5. Summary

Much research has been conducted in the areas of both local and wide area

networking of virtual environments and simulations. However, little has been conducted on

their combined use in a single simulation. In this project, the concepts used in the earlier

research were employed to combine both types of communications in order to extend a

single local simulation over a wide area to enhance its overall training effectiveness.

14

III. JANUS-3D VISUALIZER OVERVIEW

A. BACKGROUND

As indicated in Chapter I, the Janus-3D Visualizer project is a result of the

SIMITAR initiative. The purpose of the Visualizer is to improve the command, control and

communication skills of National Guard battalion and brigade commanders and their staffs.

It is hoped that this training will alleviate some of the weaknesses brought out during the

National Guard's mobilization for Desert Shield/Desert Storm in 1990 and 1991.

B. VISUALIZER OVERVIEW

The Janus-3D Visualizer accomplishes its mission by showing a 2D battle running

on the Janus Combat Modeler in three dimensions. This allows the commanders and their

staffs a much better perspective of the battle. By viewing the battle in 3D, commanders get

a better 'feel' for the terrain and its effects on movement and weapons' positioning. They

will be able to use this view to critique their junior leaders' and staffs' performance both

during and after the battle. Also, because the battalions and brigade will be networked, the

brigade commander will be able to view the battle from his battalion commanders'

viewpoints and critique overall brigade command and control.

C. EQUIPMENT

The equipment involved at each location includes that used for the Janus Combat

Modeler and that for the Janus-3D Visualizer. The Combat Modeler setup at each battalion

and brigade consists of a Hewlett-Packard Model 715/50 host computer linked to 20 Sun

Sparcstations via an ethernet local area network. A three-button mouse also accompanies

each workstation along with a 19-inch color monitor and keyboard.

The Janus-3D Visualizer equipment consists of a Silicon Graphics (SGI) Indigo 2

Extreme graphics workstation also connected to the Janus ethernet local area network. It

also includes a three-button mouse, keyboard, 19-inch color monitor and a U.S. Robotics

28,800 BAUD modem linking the SGI workstation to the other SGI workstations at the

15

battalions and brigade headquarters via commercial phone lines. This equipment was

selected based upon its capabilities and as part of the dual use program as the workstations

can be used for many other purposes at the National Guard armories when Janus battles are

not being executed. Also, modems and commercial phone lines were selected for the wide

area links as they met both minimum requirements and cost constraints.

D. SOFTWARE

The Janus-3D Visualizer is a set of programs that reside on the SGI Indigo 2

Extreme graphics workstation. The programs are written primarily in ANSI C with some

C++. The files are broken down into three groups: terrain generation and data storage,

graphics generation, and communications. A directory structure and file descriptions are

shown in the User's Guide in the Appendix.

E. FUNCTIONALITY DESCRIPTION

The Visualizer allows the user to view a currently running Janus battle in three

dimensions via two different viewing methods. The first is tether mode. In this mode, the

user can tether his viewpoint to a particular vehicle in the battle and see whatever that

vehicle's field of view will allow as it moves around the battlefield. The other method is

stealth mode. In stealth mode, users can simply fly around the battlefield traveling and

looking wherever they want, as fast as they want. In other words, the user has a god's eye

view of the battle. The tethered mode will allow leaders to better position their forces and

to get a feel for the terrain as they see it from the vehicle's point of view. The stealth mode,

on the other hand, will allow commanders to view the battle from anywhere they like in

order to watch their junior leaders control their forces and to provide guidance and critiques

both during and after the battle.

The Janus-3D Visualizer's main screen is shown in Figure 4. It is basically divided

into three sections: the 3D viewport, the 2D map and the information and control panel. The

3D view depicts the battlefield in three dimensions as seen from a vehicle in tethered mode

or from the god's eye view in stealth mode. Vehicles will be moving along the terrain in

16

the 3D window in relation to there movements and positions in the Janus battle being

executed on the HP workstation.

The 2D map shows the terrain in two dimensional gray scale elevation

representation. Also, unit icons are depicted on the map in their positions relative to the

Janus battle occurring on the HP workstation. The viewing triangle represents the vehicle's

field of view that is depicted in the 3D window.

The information and control panel contains both pertinent information about what

is currently occurring in the program and buttons allowing user interaction. The

noninteractive information includes the terrain database being used, whether or not a script

is being run, and stealth or tethered vehicle information.

The various interactive buttons allow the user to adjust the operations of the

program. The 2D map scale buttons allow the user to change the 2D map scale in much the

same way as can be done in Janus. The icon button is a toggle between numbers and

symbols for the icons shown on the 2D map. Other functionality allowed by the control

panel includes the creation and storage of script files of the battle with the 'logging' button.

The 'freeze' button allows the user to stop vehicle movement while a script file is being run

in order to allow the stealth vehicle to move around the frozen battlefield. Objects such as

trees and urban areas can be displayed on the terrain using the 'objects' button. Also, the

script button is used when the user wants to run a script file and view past action in the

battle. Finally, the block of unit buttons is used to call and establish a connection with a

remote unit. Once connection is established, Protocol Data Units (PDUs) from the remote

unit will be transmitted and displayed on the local screen. The local unit can then see the

remote unit's vehicles on their screen and observe their actions in the battle.

17

■■MMi

Figure 4. Janus-3D Visualizer Main Screen

18

F. COMMUNICATIONS OVERVIEW

The focus of this research consisted of developing the software communication

architecture for the Janus-3D Visualizer communications network depicted in Figure 5.

The network consists of two main components. First, there is the ethernet local area

network (LAN) that connects the Visualizer to the Janus Combat Modeler. Then, there is

the wide area network (WAN) that connects the Visualizers of the different battalions and

brigade headquarters to each other via modems and commercial phone lines.

The local area network consists of the HP workstation running the Janus scenario,

20 Sun Sparcstations depicting the Janus battle in its normal 3D representation and on

which the users run the battle, and the SGI graphics workstation on which resides the Janus

3D Visualizer. Across this LAN, the HP transmits PDUs to the SGI. The SGI then uses the

information in the PDUs to draw the battle in 3D on the same terrain database as is used in

the Janus scenario. Unit movement, direct fire, indirect fire and detonation PDUs are sent

across the network, interpreted by the Visualizer and then drawn. This all occurs in real

time as the scenario is being run and allows the users to see in 3D what is happening in the

local Janus battle.

The WAN, on the other hand, consists only of the SGI workstations at each

battalion and the brigade headquarters. Each unit has the capability to call any other unit in

the brigade, but only one at a time. The connection is established via modem and

commercial telephone lines. Once a connection has been established, the same types of

PDUs sent across the LAN are now transmitted from the remote SGI to the local or calling

SGI. These PDUs are then interpreted and drawn concurrently with the locally generated

PDUs. Now the local unit can see not only what is happening in its portion of the battle, but

also what its sister unit is doing. This networked 3D viewing will allow for a much better

perspective of the battle by unit commanders and their staffs

19

Figure 5. Janus-3D Visualizer Communications Network

20

IV. LOCAL AREA NETWORK MESSAGE TRANSFER

A. OVERVIEW

The LAN portion of the Janus-3D Visualizer's communications architecture is

responsible for completing a number of missions. Its first task is to set up the

communications on both the HP running Janus and the SGI running the Visualizer. Both

the HP and the SGI contain a communications library that acts as an interface between the

applications and the ethernet. It is these libraries that actually set up the connection with the

network and place messages on and pull messages off of the ethernet. Once the network

connection is set up, the remaining tasks occur after the simulation has started. All

remaining tasks apply to how a PDU is handled from its creation on the HP to its display

on the SGI. These operations, in the order they occur, are indicated below.

• HP: Extract necessary information from Janus.

• HP: Build PDU.

• HP: Transmit PDU to the Janus-3D Visualizer.

• SGI: Read PDU off of the ethernet.

• SGI: Write PDU to a script file.

• SGI: If connected to a remote unit, send PDU across telephone line.

• SGI: Store PDU in linked list.

• SGI: Read PDU from linked list for display by the Visualizer.

Each of these tasks will be discussed in this chapter except for remote connections,

which will be detailed in Chapter V.

B. INFORMATION REQUIRED FROM JANUS

The information required for displaying a Janus scenario in three dimensions

includes data on the entities to be displayed and their movements, direct and indirect fires,

round impacts and kills. This information is retrieved from Janus by function calls placed

into the Janus code itself that retrieve the required data. These calls are to C programming

language functions that reside in the janus/comm directory in the dis.c and send_fire.c

21

files. The amount of modifications made to the Janus source code in order to extract

necessary information had to be kept to a minimum in order to prevent slowing of scenario

execution. A breakdown of the Janus files that were modified and the types of

modifications in terms of lines of code added are shown in Table 1. Also, in order to enable

the Visualizer to keep up with the Janus Combat Modeler as a scenario is being executed,

this information must be kept to a minimum to allow for quick transfer to and interpretation

by the Visualizer. The following paragraphs describe the information needed and where it

is found in Janus.

Janus
Directory File Name

Lines of
Code

Added
Declara-

tions
Assign-
ments

Function
Calls Other

MAIN JANUS 2 0 0 2 0

INJT INITMAIN 20 6 8 5

MAIN WRITMOVE 16 6 9 0

ASSESS SUSTN 9 3 5 0

ASSESS IMPACT 5 1 3 0

DIRFIR SHOOT 5 0 4 0

DIRFIR ADFIRE 5 0 4 0

HELI SFSHOOT 5 0 4 0

MOVE UPDATE 16 6 8 1

MOVE SETDLAY 16 6 8 1

ASSESS DFMPACT 15 6 8 0

TOTALS 11 Files 114 34 61 12 7

Table 1. Janus Code Modifications

1. Unit Type and Graphics Symbol

In order to draw the proper two dimensional icon and three dimensional model in

the 3D Visualizer, the Janus system type number must be retrieved. This information is

included in all movement protocol data units (PDUs) and is cross-referenced against a copy

of the system type table from the National Guard master data base that resides on the

Visualizer[VAGL94]. In order to retrieve the system type, an index into the master system

type table is retrieved from the scenario specific symbol table. This mapping is done

22

wherever vehicle movement information is gathered: initmain, writmove, update, setdlay

and dfmpact.

2. Initial Unit Locations

The initial locations of the units are obtained from initmain immediately after the

initial scenario planning is saved by Janus. This information is necessary for drawing the

units in the proper locations in the Visualizer prior to the start of scenario execution.

3. Unit Movement

Unit movement information is obtained from a number of files and can be broken

down into units that are currently moving and those that have stopped. Information for all

moving units is obtained in writmove as this routine is executed by Janus in order to write

their movements to a file.

Unit halts, however, must be obtained from other sources as writmove is not

executed when a unit stops. Three different Janus functions are used to determine when

units stop: update, setdlay and dfmpact.

The purpose of the update routine is to process movements of both air and ground

units. If a unit is moving, a call to writmove is made. However, if it stops, no such call is

made. Therefore, a check was placed at the very end of update that tests to see if a unit's

speed is zero. If it is, a call to sendjmove is made.

The zero velocity test in update does not catch all unit stops, however. It fails to

see artillery vehicles that have stopped to shoot and foot soldiers that have been suppressed.

These situations are caught as they occur in setdlay and dfmpact. In setdlay, which sets or

cancels movement delays, a velocity check was placed at the end of the routine. Just as in

update, if the unit's speed is zero, a call to send_move is executed. This test will catch

those units that must stop to fire their weapons.

The dfmpact function processes direct fire impact events. One of the numerous

tasks that it executes is suppression of foot soldiers, which results in their speed going to

23

zero. At this point, a call to send_move is made in order to stop these units in the

Visualizer.

4. Direct Fire Information

Information for direct fire events is obtained from the shoot, adfire and sfshoot

functions. The shoot routine is used to simulate and evaluate direct fire events for normal

units while the sfshoot function does the same for special and flyer units. Air defense

weapon direct fire events are processed by adfire. In all three functions, a call to

send_fire_event is made immediately after Janus writes the event to a recording file.

5. Indirect Fire Information

Indirect fire information is split into fires and impacts as these events do not occur

virtually simultaneously as direct fire firing and impacts do. Indirect fire firing events are

processed by the sustn function. This routine handles all indirect fire missions to include

smoke, chemical, precision guided and artillery-delivered minefields. A call to

send_if_fire_event is made immediately after the event is recorded to a file by Janus.

Indirect fire impact events are processed by the impact routine. This function assesses the

impact effects of all types of indirect fire munitions. The call to sendifimpactevent is

made immediately after the impact event is written by Janus to the artillery file.

6. Unit Attrition Information

Within Janus, units can be aggregated or grouped together such that one icon may

represent more than just one individual soldier or weapon system. For example, unit

number 101 may be an individual rifleman icon on the screen. However, it may actually

represent up to sixteen individual soldiers due to aggregation. Therefore, as that unit

progresses in the Janus battle, kills are represented as decreases to the number of individual

entities that an icon represents. This number is the NSCORE entry in the GLOBUNITS

array. Once this number reaches zero, the unit is completely destroyed and its icon is

removed from the screen.

24

Initially, we tracked these kills in the kill function with a call to send_move, which

includes a variable for the aggregation level of a unit, whenever a unit was completely

destroyed. It was noticed when examining the script files on the Visualizer, however, that

whenever a unit was completely killed, duplicate messages were sent, one right after the

other. One message was generated by kill and the other by writmove. Since writmove

captures all unit kills, including those that do not reduce NSCORE to zero, the send_move

call was eliminated from the kill routine.

C. MESSAGE FORMATION AND TRANSMISSION

There are four types of PDUs sent from Janus to the 3D Visualizer. They include

the JanMovementPDU, JanDirFirePDU, JanlndirFirePDU and the JanDetonationPDU.

The breakdown of the PDUs and their fields is shown in Figure 6. The PDUs are built and

broadcast on the ethernet by the functions whose calls are embedded in the above

mentioned Janus files.

1. Movement Message

The movement message, or JanMovementPDU, is built by the send_move function

in the file dis.c. As mentioned previously, calls to send_move are made in the initmain,

writmove, update, setdlay and dfmpact Janus functions. These calls cover all vehicle

movements to include when they stop and start moving.

The information contained in the PDU is derived from that passed in to the function.

Obviously, the type is used to determine what action to take upon the message's receipt in

the Visualizer while the time stamp is included mainly as information that may be useful

in reviewing script files.

The entity number indentifies the specific unit in the Janus scenario. Blue forces are

represented by entity numbers 1 through 600, while the red forces are assigned 601 through

1200. Numbering the units in this way eliminates the need for a force identification field

and thus reduces message size.

25

JanMovementPDU

PDUtype
time stamp
entity number
location
velocity
radian orientation
degree orientation
system number
entity amount

JanDirFirePDU

PDU type
time stamp
firing unit number
target unit number

Jan&idirFirePDU

PDU type
time stamp
firing unit number
target location

JanDetonationPDU

PDU type
time stamp
firing unit number
impact location

Figure 6. Janus-3D Visualizer PDU Contents

The entity amount field represents the value of NSCORE, or the number of vehicles

or soldiers that this particular Janus unit represents. This number decreases as elements are

killed during the Janus battle. When this number reaches zero, the entire unit has been

killed. The 3D Visualizer monitors this field and when its amount reaches zero, the 2D map

icon is drawn green and a dead 3D model is drawn in the 3D viewing area. In addition, this

quantity is displayed on the information panel of the Visualizer whenever the user is

tethered to a unit to let him know how many entities the icon currently represents.

The entity location field consists of the unit's x, y and z coordinates on the

battlefield. Currently, the Janus x and y coordinates are converted such that the lower left

corner of the map is considered the origin, (0,0), and kilometers are converted to meters for

26

subsequent display in the Visualizer. Because Janus is a 2D simulation, it has no z value.

Therefore, the z location field is filled with the distance the vehicle has traveled since its

previous move.

The unit's velocity in kilometers per hour is contained in the entity velocity field.

A unit's velocity is computed in send_move by determining the distance the unit has

traveled since its last move and dividing it by the time delta since its last move.

Next, we have the entity orientations. Currently, the unit's orientation is computed

in both radians and degrees. These values are computed based upon the unit's direction of

movement, which is determined by the vector formed between the unit's previous and

current locations. This Janus value is then converted into a value usable by the Visualizer.

This conversion is necessary because, in Janus, zero degrees is East and rotation is counter-

clockwise while in the Visualizer, North is at zero degrees and rotation is clockwise.

Finally, the system type number of the entity is included. As mentioned previously,

it is this number that is mapped against the symbol table in the Visualizer to determine what

2D icon and 3D model are drawn.

With respect to movement messages, it was noticed when studying the script files

that when a unit stopped, numerous updates were sent indicating that the unit was still

stopped and nothing has changed. These messages are generally not needed by the

Visualizer and serve only to increase the processing load it must work through. Only if a

unit has suffered kills while stopped is a message necessary as the unit information panel

on the Visualizer must be updated. Also, if the unit is completely destroyed, the icon and

model on the Visualizer must be changed. Therefore, a test was inserted into send_move

that filters out all subsequent updates of a unit who's velocity is zero except for those whose

number of entities has changed. This results in a significant reduction in message traffic as

these zero velocity updates occur at two to six second intervals for up to a minute and then

at twenty second intervals thereafter until the vehicle begins to move again or is completely

destroyed. Also, in large scenarios, it is likely that 50% or more of the units are stopped at

any given time.

27

2. Direct Fire Message

The JanDirFirePDU is constructed in the sendfireevent procedure residing in

send_fire.c. This procedure is called from within the shoot, sfshoot and adfire functions

of Janus in order to display direct fire engagements in the 3D Visualizer. These calls cover

all direct fire engagements.

The direct fire message is very simple. It contains only the firing and target unit

numbers along with the PDU type and time fields. The unit numbers are used to display

direct fire lines from the shooter to the target in the Visualizer's 3D window[VAGL94].

3. Indirect Fire Message

The indirect fire message, or JanlndirFirePDU, is built in the sendiffireevent

procedure, also within send_fire.c. Calls to this procedure are made from sustn and are

used to display muzzle flashes on the firing vehicles in the 3D Visualizer.

Like the direct fire message, this PDU is also simple. It contains the message type

and time stamp as all messages do. It also contains the firing entity number and target

location. The firing entity number is used to determine the vehicle to apply the muzzle flash

to while the target location is used to determine the barrel or turret orientation [VAGL94].

4. Detonation Message

The last PDU type is the JanDetonationPDU. This message is constructed in

sendifimpact event in send_fire.c. This procedure is called from within impact and is

used to display indirect fire impacts in both the 2D map and 3D window displays on the 3D

Visualizer.

This message includes the message type, time stamp, firing entity number and

impact location. The impact location is used to determine where to draw the impacts in the

Visualizer while the fixing entity number is currently included to be used for debugging

purposes.

28

5. Message Transmission

Within each of the four functions that build the PDUs, a call to net_write is made

that actually transmits the PDU across the ethernet. This net_write function is part of the

communication library developed by John Locke and modified for this project, that resides

in the comm/DIS-2.0 directory. As mentioned previously, this library also initializes the

connection with the ethernet during Janus' initialization process with a call to net_open.

D. MESSAGE HANDLING IN THE JANUS-3D VISUALIZER

PDUs received from Janus across the ethernet LAN are handled by the

communications library in the Janus-3D Visualizer. These messages serve three purposes.

The primary purpose, of course, is concurrent 3D display of the Janus battle. Also, the

messages are stored in script files to be used for later after action reviews. Finally, if a

telephone call is received from another unit, the messages are sent to that unit via the

telephone connection for display in the remote unit's Visualizer. The first two purposes will

be discussed below while the telephone transfer is described in Chapter V.

1. Ethernet Communications Library

The ethernet communications library, initially developed by Capt. Steven Zeswitz

and John Locke and modified for this project, resides in the visualizer/src directory

[ZESW93]. The ethernet connection is established during the initialization process of the

3D Visualizer with a call to net_open, which includes the ethernet interface. Besides

setting up the communications sockets, this routine also spawns a receiver process,

receiveprocess, that runs concurrently with the Visualizer main process and reads traffic

off of the ethernet. Finally, an arena, or shared memory area, is set up in which message

information and a number of communication related variables and flags are maintained.

The arena is shared by the Visualizer application process, the ethernet receiver

process and the modem communications processes. This allows for much more efficient

data handling as all user processes have access. As mentioned above, this area of shared

memory contains a number of variables and flags that are used by the various processes to

29

determine what tasks are to be executed. Those that apply to local display of the Janus battle

include pointers to the head and tail of the linked list of PDUs, a counter for the number of

PDUs in the list, and a pointer to the semaphore that prevents simultaneous access of the

linked list by two or more user processes.

2. Script File Creation

Script files are created for the Janus scenario during its execution. The purpose of

these script files is to act as a tool for unit leaders to use to enhance after action reviews of

the Janus battles. With these files, the scenario can be replayed in its entirety after the battle

has been completed. Commanders can go over key actions during the battle and point out

both good and the bad execution. Any script file can be selected for viewing and motion

can be stopped or frozen during the review. This allows the leaders to explore the battlefield

in the stealth mode while all is still. [VAGL94]

The script files are created in the receiveprocess of the communications library.

The first task is to build the file name. This name is built such that the script files are stored

in a directory based on the terrain that is being used for the scenario. For example, if the

terrain being used is NTC (the National Training Center at Fort Irwin, California), the

directory in which the script files for that scenario will be stored is visualizer/terrain/

NTC/scriptfiles. Within that directory, the individual file names are datafile followed by

their sequence number. For example, datafile.0005 would be the fifth script file created for

the scenario.

After a PDU is read off of the ethernet and verified to be one of the four valid PDU

types, it is written to the script file by a function called printPDU that is located in src/

printc. This routine actually prints the PDU to the file in ASCII format. The ASCII format

allows the user to read the files if necessary and for easier debugging of the code. If it is

found that ASCII script files use too much system memory, the routine can be rewritten to

write binary files to save space.

30

Each script file remains open for twenty minutes based upon the time stamp of the

incoming PDUs. The initial start time is set equal to the time stamp of the first PDU

received while the stop time is simply the start time plus the time interval in seconds, or

1200 for a twenty minute file. After each PDU is written to the file, the value of the stop

time is compared to the time stamp of the PDU. If they are equal, the current script file is

closed, the new start time is set to the old stop time and the new stop time is set to the new

start time plus the time interval. A new file is then opened with an extension one greater

than the previous file. This process continues until the Janus scenario has ended and the 3D

Visualizer has been terminated.

Because any script file can be opened first and not just the initial one, each script

file must begin with the current status of each unit. This is necessary because after the Janus

simulation has started, JanMovementPDUs are rarely generated for stopped units. As a

result, not all units would be included in the script file and therefore placed on the

Visualizer battlefield if they did not move or suffer a casualty during the file's time interval.

This would decrease significantly from the realism and accuracy of the battle replay. To

alleviate this problem, an array is maintained by the receiveprocess that contains the

information from the last JanMovementPDU received for each unit. In other words, each

time a JanMovementPDU is received, its contents are stored in this array named

position_array. Whenever a new script file is opened, each entry in positionarray is

written to the script file in the exact same format as a JanMovementPDU. As a result, each

script file begins with every unit's status as of the end of the last script file. Therefore, no

matter which script file is selected, all forces will be displayed on the battlefield in their

correct state. The initial script file obviously does not require this as it begins with the initial

position dump received from Janus just prior to the battle's start.

3. PDU Storage In Linked List

The next action that takes place within the LAN portion of the communications

architecture is the storage of the PDUs into the linked list in the arena. This is a simple

31

process. First, the linked list semaphore is obtained. The PDU is then added to the tail of

the list and the tail pointer variable maintained in the flags and variables structure in the

arena is updated. Of course, if the list is empty, the PDU is added to the head of the list and

both the head and tail pointer variables are updated. This linked list grows with each PDU

received off of the ethernet and shrinks with each PDU read by the Visualizer for display.

4. Reading the PDUs for Display

The whole purpose of the Janus-3D Visualizer is to display the Janus battle in three

dimensions. This is accomplished by reading each PDU from the linked list in the arena and

using its information to display it in both the 3D display and 2D map. The functions that

retrieve the PDUs and update the unit status arrays in the Visualizer are contained in

visualizer/network.c.

The display process is started in the main application loop of the Visualizer, in the

file jeep.c, by a call to the getpackets function, which resides in network.c. The getpackets

routine then calls net_read, which resides in the communications library. The net_read

function actually reads and returns the PDU at the head of the list and then updates the head

of the list pointer maintained in the shared memory variable list. The getpackets function

then determines what type of PDU has been received and, based on that type, determines

the next action to be taken. This function continues until all of the PDUs in the linked list

have been read. After the last one has been read, control is returned to the Visualizer's main

application loop in order for the drawing routines to be executed.

As mentioned above, the action taken within getpackets depends upon the type of

message received. If the message is a JanMovementPDU, a function called

getjanusmovemess is executed. This routine simply takes the information from the

movement PDU and loads it into the vehicle status arrays of the Visualizer. All data except

the system number is read into the veharray while the system type is read into either the

friendyvehtypearray or enemyvehtypearray depending on which side it is on. It is these

32

arrays that are read by the Visualizer's drawing routines to actually display the units on

both the 2D map and in the 3D viewing window [VAGL94].

The remaining message types are acted upon by functions that lead to the drawing

of direct and indirect fire effects on the Visualizer. If the PDU received is a JanDirFirePDU,

the getjanusfiremess function is called. This function loads the shooter and target unit

numbers into the shotarray. This information is then used by the Visualizer to draw the red

and blue direct fire lines in the 3D window from the shooter to the target [VAGL94].

For indirect fire firing and detonation messages, the functions

getjanusindirfiremess and getjanusdetmess are executed. If the message is the

JanlndirFirePDU, the getjanusindirfiremess function is called by getpackets. This

function calculates the gun orientation of the shooter based upon the location of the target

in relation to the shooter. This information is then used to orient the unit's weapon toward

the target and to display a muzzle flash [VAGL94]. When an impact, or

JanDetonationPDU, is received, the getjanusdetmess routine is executed. This function

uses the impact location to determine where on the 2D map and the 3D window to draw the

explosion symbols. The logexplo function is then called to draw the explosions [VAGL94].

33

34

V. WIDE AREA NETWORK MESSAGE TRANSFER

A. OVERVIEW

The WAN segment of the Janus-3D Visualizer communications architecture is

responsible for all modem operations. These operations include initialization, listening for

connections, sending PDUs to and receiving PDUs from a remote unit, and displaying those

PDUs in the Visualizer. The majority of these tasks require subprocesses, specifically the

listening and receiving processes, to be spawned. These WAN functions are found

primarily in visualizer/modem.c. A conceptual view of how the modem operations are

conducted is shown in the flow chart in Figure 7.

B. INITIAL MODEM CONFIGURATION

Prior to using the Janus-3D Visualizer, the modem must be connected to the SGI.

As currently written, port 2 is the serial port opened for the modem. Changing the port is

simply a matter of changing the MODEM_PORT definition in modem.h, which is in the

visualizer/headers directory.

The modem used in this project was the USRobotics Sportster 9600 high speed, full

duplex data modem with V.32 transmission. For the Visualizer's operations, the DIP

switches were set as follows:

• 1: UP - Normal Data Terminal Ready (DTR) operations.

• 2: UP - Verbal result codes (vice numbered).

• 3: DOWN - Result code display enabled.

• 4: DOWN - Command mode local echo suppressed.

• 5: UP - Auto answer enabled for pick up on first ring.

• 6: UP - Modem sends carrier detect (CD) signal upon connection and drops CD

on disconnection.

• 7: DOWN - Load factory settings from read only memory (ROM).

• 8: DOWN - AT (attention) command set recognition enabled.

35

Configure Modem

I
Start Listen Process

I
Wait for Connect

No

Yes

Yes

Kill Recv Process Kill Listen Process

Send PDU

Start Recv Process

Store PDU

I

Yes

Read PDU

J

Figure 7. Conceptual View of WAN Operations

36

C. STARTING THE LISTENING SUBPROCESS

During the initialization of the 3D Visualizer, a call to modem_open is made just

prior to the start of the main application loop. The modem_open function resides in

modem.c and its sole purpose is to call the start_listen_process function. This function

then spawns a child process called Janus_write_process that runs concurrently with the

main application process and the ethernet receiveprocess mentioned in Chapter IV.

It is the Janus_write_process that actually initializes the modem by sending it

initialization commands. First, the ATZ command is issued to reset the modem and ensure

it is operating according to the DIP switch settings. Next, a set of default settings are issued

as an extra precaution against the DIP switches being wrong. These settings are: [USR092]

• &A0 - ARQ (error control) codes are disabled.

• &B0 - Variable rate at the serial port interface which allows the modem to change

this rate to match the connection rate established with the remote modem.

• &C1 - Normal CD operations.

• &I0 - Disable XON/XOFF flow control of received data.

• &N0 - Variable phone line interface rate which allows the modem to negotiate the

connection rate with the remote modem.

After the default settings are passed in, another set of operating parameters is sent.

These include disabling local echo, displaying result codes and displaying them in text,

keeping the modem speaker on until a connection is established, and answer on one ring.

Again, these are passed in to ensure the settings we want are used.

After this initialization takes place, the modem simply listens for an incoming

telephone call from a remote unit. If a call comes in, it will answer on the first ring as

determined by the settings made during the initialization process. Because the

Janus_write_process is a spawned subprocess, it does not hinder the execution of the 3D

Visualizer while it listens for a call.

37

D. SENDING PDUS TO A REMOTE UNIT

1. Connection Establishment

If a call comes in from a remote unit while the modem is listening, that call will be

answered on the first ring. Once the connection is established, two flags are set. These flags

are the SEND_PDUs and JUST_CONNECTED flags that reside in the arena in order for

them to be seen by the application process, and more importantly in this case, by the

receiveprocess in the communications library.

2. Sending the PDUs

In the receiveprocess that continuously reads PDUs off of the ethernet and stores

them in both a linked list and script file, the SEND_PDUs flag is checked immediately after

a PDU is written to the script file. If the flag has been set due to a connection being made

with a calling unit, the PDU is sent to that unit through the modem port.

However, if the JUST_CONNECTED flag is also set, which it will be immediately

after the connection is established as mentioned above, the position_array discussed in

Chapter IV comes back into play. When the JUST_CONNECTED flag is set, a

JanMovementPDU is constructed for each unit in the array and sent to the remote caller.

Just as in the beginning of each script file, the status of every unit at the time the telephone

connection is made must be sent to the remote caller in order to ensure that all of the local

units show up on the remote unit's Visualizer. As previously discussed, if this was not

accomplished, only moving units would show up on the remote Visualizer, thus

significantly impairing the ability of the remote users to determine exactly how the battle

is progressing at the local unit. No stationary living or destroyed units would be displayed

unless one happened to suffer casualties while the transmission was taking place.

After this initial download of the position_array information across the WAN, the

JUST_CONNECTED flag is reset to zero and the array values are no longer sent. At this

point, since the remote unit has received the position of all vehicles, only the current PDUs

being read off of the ethernet are transmitted.

38

The receiveprocess continues to write PDUs to the modem port as long as the

SEND_PDUs flag is set. Once it notices that the SEND_PDUs flag has been reset to zero,

however, it stops sending PDUs across the WAN connection and simply continues to store

the PDUs in the linked list and script files as it was doing before the connection was

established.

3. Connection Termination

Upon the termination of the connection by either the remote caller or local sender,

a number of actions take place on the sender's end. First of all, the SEND_PDUs flag is

reset to zero. As mentioned above, this terminates the writing of the PDUs to the modem

port in the receiveprocess. The 'hangup' command is then sent to the modem to ensure that

the connection has terminated properly. This is followed by the closing of the file descriptor

and the killing of the current Janus_write_process. Finally, the start_listen_process is

called again to create a new Janus_write_process and reinitialize the modem. All of these

actions take place in either the hang_up or remote_hang_up functions in modem.c

depending upon who terminated the connection.

E. RECEIVING PDUS FROM A REMOTE UNIT

1. Connection Establishment

When a battalion wants to call one of its sister units to see what is happening in their

part of the Janus battle, the user selects the call button of the unit to be called. This results

in a call to call_remote_unit which is located in modem.c.

The caII_remote_unit function first kills the Janus_write_process. This must be

done in order to set up the receiving process. It then calls the start_receive_process

function.

The start_receive_process accomplishes its mission by spawning the

Janus_receive_process. This process then passes the port and phone numbers to call_SGI.

It is this routine that actually initializes the modem just as in Janus_write_process, and

39

then executes the call. Once the connection is established, a call to readPDU is made from

within call_SGI. This call is executed continuously until the connection is terminated.

2. Reading the PDUs

The readPDU function in modem.c actually reads the PDUs sent by the remote

unit. The information received is read one byte at a time. Once the first byte is read, the

PDU type is determined. From this, the message length is derived and therefore the number

of bytes remaining in the message is known. After a complete PDU is received, it is placed

into the linked list for modem PDUs and the head and tail pointers to that list are updated

after the modem list semaphore has been acquired.

3. Connection Termination

As previously mentioned, the readPDU call is made until the connection is

terminated by either party. Again, depending upon who terminated the connection, either

hang_up or remote_hang_up is called. The procedures within the hang_up functions are

the same except that the process being killed on the receiving SGI is the

Janus_receive_process. After this process is killed, another Janus_write_process is

started and the modem sits and waits for someone to call or for a command to call someone

else.

F. DISPLAYING PDUS RECEIVED VIA THE TELEPHONE WAN

PDUs received from a remote unit across the telephone network are in the same

format as those received from the ethernet. As a result, the display procedures for these

PDUs are virtually the same as those for the locally received PDUs.

The modem PDU display process is started much the same as the ethernet PDU

display process. A call is made to the getmodpackets function immediately after the

getpackets call in the main loop of the Visualizer. This function also resides in network.c.

Similar to getpackets, getmodpackets calls a function to read and return a PDU from the

modem linked list. In this case, the reading function is called readmodpackets, which

operates very similar to the net_read function in the communications library. Once the

40

PDU is returned from readmod packets, its type is determined and a call is made to the

appropriate array updating function that will update the Visualizer's display arrays in order

for the information in the PDUs to be displayed. The getmodpackets function will be

called as long as a connection is maintained with another unit. Once the connection is

broken, the getmodpackets function call is no longer made.

41

42

VI. PERFORMANCE, CONCLUSIONS AND FUTURE RESEARCH

A. PERFORMANCE

It was noted during this research that achieving a real time traffic flow over the

ethernet local area network was not a problem. The 3D Visualizer residing on the SGI

Indigo 2 Extreme had no trouble keeping up with the messages generated by the Janus

battle and displaying them such that time and space coherence was maintained.

Using the USRobotics Sportster 9600 modem, however, resulted in a noticeable lag

between the units in Janus and their counterparts on the Visualizer while the Visualizer was

connected and sending PDUs to a remote unit. This delay was caused by the relative slow

speed of the modem. It could not send the PDUs as quickly as they were being fed to it by

the ethernet receiveprocess. This was to be expected as a 9600 BAUD modem can handle

only 21 JanMovementPDUs (the longest PDUs used by the Visualizer at 56 bytes) per

second. This equates to 48 movement updates every two seconds, the normal Janus update

cycle length. However, with the 28,800 BAUD modems that the National Guard will be

using with the 3D Visualizer, the number of movement updates that can be handled every

two seconds is nearly 130. This will allow for real time transmission via the wide area

telephone network as it is unlikely in a battalion sized scenario that 130 vehicles will be

moving at the same time. Also, Janus does not update all moving vehicles every two

seconds. The slower moving vehicles may have updates up to eight seconds apart, thus

reducing prospective message traffic further.

B. CONCLUSIONS

The primary objective of this research was to develop a software communication

architecture that would allow events occurring in two dimensions in the Janus Combat

Modeler to be seen in three dimensions on the Janus-3D Visualizer over both local ethernet

and wide area telephonic networks. This objective was accomplished. A Janus scenario can

now be viewed in three dimensions as it is executing, thus enabling commanders and their

staffs to view the battlefield more realistically and thus improve their training. Also, due to

43

the wide area network capability, separate units can remain at their home stations and still

participate in the same Janus scenario. This significantly reduces lost training time and

funds due to extensive travel. As a result of this research, the Janus-3D Visualizer is

currently being tested by the National Guard.

C. TOPICS FOR FUTURE RESEARCH

There are several areas or topics of future study that can be pursued as a result of or

to improve upon this project with respect to communications. First of all, a set of

monitoring tools for modem communications could be developed to assist in analyzing the

performance of the WAN message transmissions. Such a set of tools should be able to

analyze throughput and error rates just as similar tool kits do for local area ethernet

networks, for example.

Another area of research that would enhance the effectiveness of the Janus-3D

Visualizer would be to make it an interactive station. In other words, implement two-way

communications between Janus and the Visualizer. This would allow the commanders and

their staffs to take advantage of the more realistic three dimensional view provided by the

Visualizer to employ their forces both prior to and during the battle, thus enhancing training

effectiveness.

Finally, with the immense growth in popularity of distributed interactive

simulations, their spread to a more widely varied group of users is sure to increase. With

this spread comes the movement of these simulations to networks consisting mainly of

phone lines as this is the least costly method of communications. As a result, there may well

be a need to develop a standard low bandwidth telephonic communications protocol that

would allow these simulations to be conducted over traditional telephone networks in real

time.

44

APPENDIX: JANUS-3D VISUALIZER USER'S HANDBOOK

JANUS 3D
VISUALIZER

(USER'S HANDBOOK)

Naval Postgraduate School

Advisor: Dr. David Pratt

Written by: Chris Upson and Jim Vaglia

45

Directory Structure and Program Files

DATAFILES VISUALIZER

IMMAGESUPPORT

MODELS

SRC

HEADERS

DOCS

LIBS

TERRAIN RDOBJ3

JANUSFILES MAKEGROUND

NTC

(terrain files)

Figure A-l. Directory Structure

The program is broken down into the following directories and files.

Figure A-1 shows the directory structure of the Janus-3D Visualizer.

visualizer

datafiles

headers

The main program files are located here.

This directory contains the input files.

The header files for all the programs are located in this direc-
tory.

46

imagesupport

libs

models

rdobj3

src

terrain

docs

This directory contains the imaging programs.

The header files for the manipulation of 'off objects.

The three dimensional models are located in this directory.

The files to manipulate the 'off objects are in this directory.

The communication programs are in this directory.

The terrain files, script, and terrain conversion programs are
located in this directory.

Contains Frame Maker postscript and text versions of the user's
handbook and briefing slides.

The following programs are located in the visualizer directory.

acds.font

checkintersectc

cover.c

dogsncats.c

drawcover3d.c

drawobjs.c

fontdef.c

infopannel.c

janus3d

jeep.c

jeepmot.c

This contains the fonts used to produce the icons for the vehi-
cles on the two dimensional map.

This file contains the routines for terrain intersections.

This file contains the routines to open terrain files.

This file contains the functions used to switch from one vehicle
to another and define the cursor.

This file contains the routines to draw the 3d terrain.

This file contains the routines to draw the 3d objects.

This file is used to manipulate the fonts.

This file contains the display routines for the information panel

This is the executable code for the visualizer.

This is the main program. It creates the display window and ties
all of the other programs together.

This contains the procedures to move the vehicles.

47

map.c

menus.c

modem.c

network.c

readfiles.c

readobjs.c

util.c

viewbounds.c

This draws the two dimensional map and the icons that are dis-
played on it.

This file contains the information that is displayed when the
popup menus are selected.

This file contains the routines for modem communications.

This file contains the routines to read the communication pack-
ets.

This file contains the procedures to read in the terrain and vehi-
cle data files.

This file contains the routines to read the objects.

This file contains functions to fill in the polygons and place
vehicles on the ground.

This file contains the procedures to display the three dimen-
sional objects and terrain on the screen.

Installation Procedures

To install the Janus-3d Visualizer, load the file visualizer.tar.Z in the directory

you want to install the program. Once loaded, uncompress the file by typing uncompress

visualizer.tar.Z [enter]. When this is finished, untar the files. This will separate the

program into the individual files and subdirectories. The command to do this is tar -xvof

visualizer.tar[enter]. You are now ready to run the program in the default mode.

Communications Setup

1. Ethernet Network Setup

The interface with the local area ethernet network is set up and maintained by the

network library in the visualizer/src directory. The net_open call just prior to the

beginning of the main application loop in jeep.c establishes this interface. Ensure the value

of BCAST_INTERF as defined in headers/jeep.h is correct for your network. You can

check for your system's network interfaces by using the "netstat -rn" command. Also check

48

the port definitions for the send and receive ports that are listed as UDP_SEND_PORT and

UDP_RECV_PORT. If you change any definitions in jeep.h, ensure you recompile both

the src and visualizer directories.

2. Modem Setup

These modem setup procedures apply to the US Robotics Sportster 9600 modem

that was used in the design of the Janus-3D Visualizer prototype. If you have a different

model modem, please consult its user's guide where appropriate to ensure these procedures

will result in proper setup.

All modem processes, to include opening, transferring data and closing, are

contained in the file modem.c in the visualizer directory. Its header file, modem.h is in the

headers directory. The modem interface is established with the modem_open call

immediately following net_open in the Visualizer initialization process.

Once you have connected your modem to the system, determine what serial port it

is connected to. Then check this with the MODEM_PORT definition in modem.h. Our

default is port "2". If yours is different, change the MODEM_PORT definition and

recompile the visualizer directory. Also, even though default settings are loaded into the

modem upon its initialization within the Visualizer, check the dip switches on the back of

the modem to ensure that 1,2,5 and 6 are up and 3,4,7 and 8 are down. Pages B-4 and B-

5 in the user's guide contain more detailed informations on the dip switch settings. Finally,

once the Visualizer has completed its initialization process and is ready to run, the Auto

Answer (AA), Data Terminal Ready (DTR) and Clear to Send (CS) lights on the front panel

should be illuminated.

Terrain Conversion

To convert the Janus TERRAINxxx.DAT into files that are readable by the Visualizer

follow these instructions. There are seventeen steps in the process. These steps need to be

executed in the order presented. The conversion process takes awhile, suggest you run the

49

programs running in the back ground. To run a program in the background type & after the

command and prior the pressing enter.

The janus TERAINxxx.DAT needs to be placed in the janusfiles directory. You need

to ensure that the temporary storage directories in the terrain directory are empty, some of

the conversion files append to existing files, this will cause erroneous data to be stored in

the files. Then execute the following steps to convert the terrain:

1. readtrrn <terrain #><terrain name>

This program reads the TERAINxxx.DAT located in the janusfiles directory .First

the program uses the terrain name to create the root directory for the header files, terrain

files and script files needed in the conversion process and the Janus-3D visualizer. The

subdirectories created in the terrain directory are: elevfiles, objectfiles, quadfiles,

scriptfiles and textobjectfiles. Readtrrn creates five files. The files globals.dat and

janus.text are placed in the terrain directory. Globals.dat contains the map parameters and

is used by the other conversion programs and Janus-3D Visualizer to initiate the global

variables. Janus.text contains the same information but with the text names of the variables.

The other three files are placed in the janusfiles directory. The file xxx.ele contains the map

elevation and grid information. The remaining files; xxx.riv and xxx.road, contain the

coordinates of the rivers and roads respectively.

2. gen_binary_elev <terrain #><terrain name>

The program reads in globals.dat and xxx.ele. Next the program creates the file

elev.bin.dat which contains only elevation data and places them in the sub-terrain directory

elevfiles.

3. maketrimesh <terrain #><terrain name>

The program reads in globals.dat and the elev.bin.dat file that was created in step

three. Elev.mesh.bin is created containing the terrain mesh information and is placed in the

same directory as elev.bin.dat.

50

4. conv_elev2block_bin <terrain #><terrain name>

Conv_elev2block_bin reads in globals.dat and elev.bin.dat and creates one

kilometer grid square files. For a 50 Km by 50 Km map the program creates 2500 files and

stores them in the elevfiles directory.

5. janus2nps <terrain #><terrain name>

Janus2nps reads globals.dat and xxx.ele files. The program then creates and places

the file cover.dat in directory textcoverfiles. Cover.dat contains the elevation, normal, and

colors of the points.

6. reverseroads <terrain #><terrain name>

Janus reads the map information from the lower left hand corner. NPSNET bases

the location of objects on the upper left hand corner. This program modifies the coordinates

of xxx.riv and xxx.road so they can be read into NPSNET terrain. The location of the files

is in the roadrivfiles.

7. makeroadfile <terrain #><terrain name>

Makeroadfile reads the globals.dat, xxx.road and xxx.riv files. The program then

creates the file roads.dat. This file contains the information and points needed to draw the

rivers and roads as polygons.

8. make roads <terrain #><terrain name>

Makeroads reads globals.dat and xxx.ele files. The program then creates and places

the file roadcover.dat in directory roadrivfiles. Roadcover.dat contains the elevation,

normal, and colors of the points.

51

9. makenewtrees <terrain #><terrain name>

This program extracts the density, city or tree, road, and river information from the

xxx.ele file. The files treecover.dat and citycover.dat are created and stored in the directory

textobjectfiles.

10. maketrees <terrain #><terrain name>

Maketrees reads in the treecorver and citycover files, compares them with xxx.ele

to insure that the trees and cities are not on the roads. Then the program creates seven city

and seven tree files to store the modified information.

11. genblockcov «cterrain #><terrain name>

This program creates one kilometer by one kilometer grid square text files

containing polygon descriptions. These files are stored in the directory texte overflies.

12. conv_blockcov2bin «cterrain #><terrain name>

Conv_blockcov2bin converts the text files created by genblockcov and converts

then to binary format. The new files are stored in the coverfiles directory.

13. genquadcov <terrain #><terrain name>

This program reads in the files created by conv_block2bin and places then into a

quadtree structure. This files are then stored in the textquadfiles directory.

14. conv_quadcov2bin <terrain #><terrain name>

The textquadfiles are converted into binary format by this program and then are

stored in the quadfiles directory located in the terrain specific directory.

52

15. genblockobj <terrain #><terrain name>

Genblockobj creates the tree and city canopies for the terrain. This files are in text

form and placed in the textobject directory.

16. conv_block_obj_to_bin <terrain #><terrain name>

The textobjectfiles created by the program genblockobj are converted into binary

format by this program and then are stored in the objectfiles directory located in the terrain

specific directory.

How to Use the 3D Visualizer

Getting Started
Prior to running the program for the first time you need to change the file

units.dat located in the datafiles directory. This file contains the names and telephone

numbers of the units that can be called via the modem. There can be a maximum of nine

units and phone numbers in the file. The names can be a maximum of six characters or

letters on a line by itself. The telephone number associated with that unit should be on the

following line. The telephone number can consist of a maximum of twenty numbers, e.g.:

199INF

17032212935

To execute the program, you need to be in the visualizer directory on a Silicon

Graphics machine. At your unix prompt, type janus3d NTC [enter]. (The terrain name

can be substituted by any of the terrains you have in the terrain directory).The initial screen

will be displayed with the credits. Note that at the lower center of the screen, information

will be displayed as the different data files are read into the program. Once the program is

finished loading, the working screen will appear. (See Figure A-2) With the main screen

up, start Janus(A) 3.17 running. By starting the visualizer running first, when Janus

initializes it's screens all the initial positions of the janus units will be transferred and

53

displayed. Prior to beginning a scenario, remove all script files from the terrain directory.

Otherwise, the new files will be appended to the old files.

There are three main sections to the display: the 3D view, 2D map and the

vehicle information panel. The largest area is the 3D view. At initalization you are in the

stealth mode. Through the use of the keyboard you can move freely throughout the

battlefield. This area will display the world from your reference point. The other option is

to be tethered to a vehicle. In this case, the 3D view will be from the vehicle's position.

The blue rectangle is the information panel. The panel contains the buttons to

call other units, change the two dimensional map display, read scripted files, and stealth /

janus vehicle information. This gives the user a numerical reference to where you are on or

above the battlefield, the directions of travel and view, speed, and vehicle orientation, ID

number and type. Direction is based on 0 degrees equates to North.

The lower right hand comer is the 2D map. The vehicles are iconized and color

coded to make identification easy. The location of the icon is it's location on the battlefield.

The line originating from each of the icons is the direction of travel with the length

signifying the speed. (Longer lines indicate higher speeds). The yellow circle is your

current location, while the green ' V is the area of the map shown on the 3D display; the

field of vision.

Moving in the Visualizer
There are two modes: tethered and stealth. While in the tethered mode, the user

can change the viewing direction to the left or right and up or down. The direction and

speed of the vehicle are determined by Janus(A) 3.17 running on the Hewlett Packard or a

script of a previously run battle scenario. The stealth mode allows the user to move freely

throughout the battlefield with all movements determined by the user through the keyboard.

54

Figure A-2, Main Screen

Using the mouse

Left Mouse Button: Select a vehicle to tether on - Place the mouse cursor on a

vehicle's icon or number in the 2D map area and click the left mouse button. The 3D screen

will display what the selected vehicle can see in it's current direction of travel,

Middle Mouse Button: Untether- To untether from a vehicle, click the middle

mouse button and the user will be in the stealth mode with the same view as from the

vehicle that was deselected.

55

Right Mouse Button: Select Menu - Press the right mouse button while anywhere

on the screen and the popup menu will appear. From this menu, you can take a picture of

the screen.The image will be stored in the visualizer directory as snapshot*. The # will

increase for each image stored during a session.

Using the keyboard

Tethered mode.
The pad left arrow key will move the field of view to the left.
The pad right arrow key will move the field of view to the right.
The pad up arrow key will allow the user to look up.
The pad down arrow key will allow the user to look down.
The pad 5 key will reset the view to the direction of travel of the tethered vehicle.

Stealth mode.
The left arrow key will change the direction of travel to the left.
The right arrow key will change the direction of travel to the right.
The up arrow key will increase the speed of the stealth vehicle.
The down arrow key will decrease the speed of the stealth vehicle.
The end key will stop the stealth vehicle.
The pad left arrow key will move the field of view to the left.
The pad right arrow key will move the field of view to the right.
The pad up arrow key will allow the user to look up.
The pad down arrow key will allow the user to look down.
The pad 5 key will reset the view to the direction of travel of the stealth vehicle.
The page up key will increase the elevation of the stealth vehicle.
The page down key will decrease the elevation of the stealth vehicle.

Information panel (Figure A-3)

The information panel contains the buttons to interact with the program and

displays pertinent information about what is currently occurring in the program. The two

lines under the title let the user know what terrain was loaded and, if they are running, a

script and which script is running. The other non-interactive section of the panel is the

vehicle information. The user is given the x and y grid coordinates of the vehicle, the

ground elevation and elevation above ground of the stealth or tethered vehicle above the

ground, the direction of travel, direction that the vehicle is looking and the speed of the

vehicle are displayed. The last information displayed is the side (Friend or Hostile), the

56

Janus vehicle number, the Janus name from the master list located in datafiles/janusveh.dat

(Type), and the number of systems that the icon and 3d model represent (Amount).

Calling another unit.
To call a unit place the mouse cursor in the box containing the name of the unit

you wish to call, then press the left mouse button. The box will turn green and the program

will try to establish a connection with that unit. Once a connection is established, current

PDUs will immediately be transferred to the calling unit from the remote unit.To terminate

the connection, place the mouse cursor in the Hang Up box, press the left mouse button.

The Hung Up button will turn green and a box will appear asking if you really want to hang

up. Select the OK button to terminate the connection or the No button to hide the box. If

the OK button is selected, the box will automatically disappear once the connection has

been terminated.

Logging
The logging button default is on (green). This will cause the program to create and

store script files in the terrain directory. The program will not create a script file for the

script files you are running or for the information displayed from another unit. If you do not

want to create script files, move the cursor into the logging box and press the left mouse

button. The box will turn blue to indicate that the script files are not being stored.

Freeze
The Freeze button only works when running a script file. This will stop the

scripted vehicles from moving while allowing the stealth vehicle to travel around the frozen

battlefield. To freeze the scripted file, move the mouse cursor into the Freeze box and press

the left mouse button. The box will turn green indicating the script is frozen. To unfreeze,

repeat the above procedure and the button will turn blue.

Help
When selected, the help button will display the keyboard inputs to move around

the battlefield. To select the help menu, move the mouse cursor into the help box and press

57

JANUS 3D
v ISU A LJb&KIv

tafvHij

oag na

xi><w: mum, 2
GnU f;i«t': BII3. 7
(Jlt*i*(„t ion! V\ I .:i

Sr«»wU: ■fJißÜ.M
Uo(> Sitlii: .-)■"■ r'lötid

Hm''. .'■ ■ nil

?ö,.Mt»|j

Vpös :■■.■.: 2823Ö.0

Uinw Uiri ? I I . I»'

Typo: II-HI
HrHMiril ; 1

Figure A-3. Control Panel

the left mouse button, This will cause a large box containing the help information to appear

in the information panel. When you are done looking at the help information, select the OK

button and the box will disappear.

Objects
The Objects button default is on (green). With the objects selected, the trees and

urban areas will be displayed. To remove the trees and urban areas move the mouse courser

58

into the objects box and press the left mouse button. To redisplay the objects, repeat the

above procedure and the box will turn green.

Script
To run a script, move the mouse cursor into the script box and press the left mouse

button. A box containing a maximum of twenty script files will appear. Move the mouse

cursor to the script file you want to run and press the left mouse button. The box will

disappear and the name of the script file will appear at the top of the information panel.

Each of the script files are twenty minutes long. Before each session, remove the old script

file. This will keep the number of files to a minimum.

Exit
To exit the visualizer, move the mouse cursor into the Exit box and press the left

mouse button. An exit box will appear and ask if you want to exit the program. Select the

appropriate button to terminate the program.

Map Scale
The 2d map is initially set to xl. This displays the entire terrain file. x4,x8, x25

displays one fourth, one-eight, and one-twentyfifth of the map respectively (centered on

your location). To change the map scale move the mouse courser into the box containing

the desired scale and press the left mouse button.

Icon/Num
This changes the 2d icon display. To change from the default icon setting to the

Janus number move the mouse cursor into the icon/numeric box and press the left mouse

button. By repeating this process you can toggle between number and icon in the 2dmap.

2D Display
The map gives the user a gray scale elevation representation of the terrain. Black

is the low ground and white is the high ground. The grid squares on the map represent one

kilometer grid squares, Figure A-4.

59

The vehicles can be depicted as numerics or as icons. The numbers range from

one to six hundred for both forces. The icons / numerics for the friendly forces are blue, the

enemy forces are red, and the dead vehicles are green. The user's location is indicated by a

yellow circle» The green triangle extending from the circle is the field of view that is

displayed in the 3D window.

Friendly
Icons

'ield of
view

Speed and
Direction

User
Location

Figure A-4, 2D Map Display

60

LIST OF REFERENCES

[FUNK94] Funk, Steven, Information Paper ARPA/ARNG Advanced Technology
Demonstration #2 Project SIMITAR, Ft. Leavenworth, KS.

[INST91] Institute for Simulation and Training, Military Standard: Protocol Data
Units for Entity Information and Entity Interaction in a Distributed
Interactive Simulation, Institute for Simulation and Training, Orlando, FL.

[JANU93] Department of Army, The Janus 3XIUNIX Model Software Design Manual,
Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,
May 1993.

[JANU93b] Department of Army, The Janus 3XIUNIX Model System Design Manual,
Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,
May 1993.

[JANU93c] Department of Army, The Janus 3XIUNTX Model User's Manual,
Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,
May 1993.

[MORN91] Morningstar, Chip, and Farmer, F. Randall, The Lessons of Lucasfilm's
Habitat in Cyberspace First Steps, ed. Benedikt, Michael, The MIT Press,
Cambridge, 1991.

[NAKA94] Nakamura, Nobutatsu, Nemoto, Keiji, and Shinohar, Katsuya, Distributed
Virtual Environment System for Cooperative Work, 1st International
Workshop on Networked Reality, '94 Proceedings, May 1994.

[PRAT93] Pratt David R., A Software Architecture for the Construction and
Management of Real-Time Virtual Worlds, Dissertation, Naval Postgraduate
School, Monterey, CA, June 1993.

[PRAT94] Pratt David R., and Locke, John, A Virtual Reality Interface for Real World
Weapons Testing, Naval Postgraduate School, Monterey, CA, July 1994.

[USR092] U.S. Robotics, Inc., USRobotics Sportster 9600 and Sportster 9600 Fax
User's Guide, U.S. Robotics, Inc., Skokie, IL, 1992.

[VAGL94] Vaglia, James A., Creating a Real-Time Three Dimensional Display for the
Janus Combat Modeler, Master's Thesis, Naval Postgraduate School,
Monterey, CA, September 1994.

61

[WALT92] Walter, Jon C, and Warren, Patrick T., NPSNET: Master's Thesis in
Computer Science, JANUS-3D Providing Three-Dimensional Displays for a
Traditional Combat Model, Master's Thesis, Naval Postgraduate School,
Monterey, CA, September 1992.

[ZESW93] Zeswitz, Steven R., NPSNET: Integration of Distributed Interactive
Simulation (DIS) Protocol for Communication Architecture and Information
Interchange, Master's Thesis, Naval Postgraduate School, Monterey, CA,
September 1993.

[ZYDA92] Zyda, Michael I, Pratt, David R., Monahan, Gregory, and Wilson, Kalin P.,
NPSNET: Constructing a 3D Virtual World, Symposium on 3D Graphics, '92
Proceedings, April 1992, pp 147-156.

62

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station

Alexandria, VA 22304-6145

2. Dudley Knox Library
Code Ü52
Naval Postgraduate School
Monterey, CA 93943

3. Chairman Ted Lewis, Code CS/Lt
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Professor D. R. Pratt, Code CS/Pr
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor G.M. Lundy, Code CS/Ln
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. MAJ Tom Allen
ARPA-SIMITAR
Fort Leavenworth, KS 66027

7. Mr. Don Bennett
Cubic Applic Inc.
P.O.Box 13548
Fort Carson, CO 80913

8. Mrs. Meg Champion
LTSI
Box 1825
Richmond Hill, GA 31324

63

9. Mr. Jeffrey K. Stalling
BDM Federal Inc.
P. O. Box 908
Fort Knox, KY 40121

10. CPT Christopher S. Upson
RD#3, Box 297
Frankfort, NY 13340

64

