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1.  INTRODUCTION 

As a result of their high specific stiffness and specific strength, continuous fiber composites are often selected for 

weight-critical structural applications. However, deficiencies in current life prediction methodologies for these 

materials often force large factors of safety to be adopted. That is, composite structures used in high cycle fatigue 

applications are often "overdesigned" and are therefore somewhat heavier and more costly than necessary. Better life 

prediction methodologies may result in more efficient use of these materials and may result in lower weight and 

lower cost structures. For traditional aerospace applications, this has the added benefit of improved vehicle 

performance; it may also increase the attractiveness of composites for non-traditional applications. 

A large number of models have been proposed to predict the residual strength and life of fatigue loaded composite 

structures. These models may be broadly characterized as either mechanistic or phenomenological. Mechanistic 

models, which we define as those which quantitatively account for the progression of damage in composite laminates, 

offer the long term promise to be applicable to a wide variety of materials, layups and loadings with a minimal 

amount of experimentally obtained input. At present, however, these models are either in their infancy or have only 

been applied to simple fatigue loadings (e.g., McLaughlin et al., 1975; Kulkarni et al., 1976; Talreja, 1985; Timmer 

and Hahn, 1993). Phenomenological models, which we define as those which characterize residual strength and life 

in terms of macroscopically observable properties, such as strength or stiffness, perhaps offer the most promising 

near term approach. The primary drawback of current phenomenological approaches is their dependency on large 

amounts of experimental input for each material, layup, and loading of interest. 

In this two-part work, a new phenomenological model is developed for predicting the residual strength and life 

of fatigue loaded composite laminates. As in previous approaches, the model is semi-empirical; however, only a 

limited amount of experimental input is required for this model's characterization. Moreover, it will be shown that 

the model has very good predictive capability for both simple and complex load histories. Part I of this work 

considers the development and verification of the model for constant amplitude and two-stress amplitude fatigue. The 

model is validated for sequencing effects by comparing theoretical fatigue life predictions to experimental results for 

low-high and high-low two-stress amplitude test data. The model is also evaluated for its ability to predict the 

degradation of strength and life that may be caused by frequent changes in the stress amplitude of the loading. This 



is accomplished by comparing predicted to experimental results for two-stress level low-high-low-high repeating tests 

with various load block sizes. Part II of this work (Schaff and Davidson, 1994b) considers extension of the model 

to a randomly ordered load spectrum. 

2.  PHENOMENOLOGICAL FATIGUE MODELS 

In this section, a brief review of previous phenomenological fatigue models is presented. This review in not 

intended to be exhaustive, but rather to frame the motivation for the succeeding modelling approach. More extensive 

reviews can be found in Hwang and Han (1986a) or Sendeckyj (1991). 

Previous phenomenological approaches to modelling fatigue failures of composite laminates can be broadly 

characterized as stiffness-based or strength-based. As the names imply, stiffness-based models utilize some measure 

of the laminate's stiffness as the primary variable upon which the model is based, whereas strength-based models 

utilize various measures of strength and stress. Either approach may be either deterministic, in which a single-valued 

life and/or residual strength are predicted, or statistical, in which predictions are for life and/or strength distributions. 

The primary difficulty with stiffness-based models has been the development of a generally applicable failure 

criterion. Different failure criteria fundamentally based upon secant modulus (Hahn and Kim, 1976; O'Brien and 

Reifsnider, 1981; Whitworth, 1990, 1987; Farrow, 1989) and static strain-to-failure (Hwang and Han, 1986a, 1986b, 

1989; Poursartip, Ashby, and Beaumont, 1986; Poursartip and Beaumont, 1986; Yang, Yang and Jones, 1989; Lee, 

Yang and Sheu, 1992) have been proposed. These criteria and their associated stiffness-based models have been used 

to obtain reasonable fatigue life predictions for constant amplitude and two-stress amplitude loadings. However, none 

of the approaches have been successfully applied to a variety of laminate types or to a randomly ordered load 

spectrum. 

In contrast to stiffness-based models, strength-based models have an inherent "natural" failure criterion: failure 

occurs when the applied stress equals or exceeds the residual strength. Strength-based models are often referred to 

as "wearout" models and generally incorporate the "strength-life equal rank assumption" (SLERA). SLERA assumes 

that a laminate's fatigue life is proportional to its initial static strength (Hahn and Kim, 1975). From their early use 

(Halpin, et al., 1972), wearout models have generally been statistical. Two-parameter Weibull functions (Weibull and 



Weibull, 1977) have commonly been used to describe the residual strength and probability of failure after an arbitrary 

number of cycles, as well as life distributions after an indefinitely repeating load sequence. The most successful 

wearout model, in terms of its predictive capability, is perhaps that developed by Yang et al. (Yang and Liu, 1977; 

Yang, 1978; Yang and Jones, 1980, 1981,1983; Yang and Du, 1983). In their apparently final work (Yang and Du, 

1983), this model showed reasonable correlation with a limited amount of spectrum fatigue test results. However, 

development of this model has not been continued. This may partly be due to the excessive amount of experimental 

input that is necessary for the model's characterization. 

Based on the above, a strength-based wearout model appears to offer the best near-term promise for developing 

a reliable predictive methodology for fatigue loaded composite laminates. The challenge is to develop a model that 

only requires a limited amount of experimental data as input, yet is applicable to randomly ordered load spectra 

containing a wide variety of load levels. 

3. THEORY 

3.1   Constant Amplitude Loading 

3.1.1   Residual Strength 

Consider a single laminate subjected to constant amplitude loading. The residual strength, R(n), initially equals 

the static strength, RQ, and is assumed to decrease monotonically. If environmental and frequency-based effects are 

ignored, the rate of strength degradation should depend on RQ, the peak stress magnitude of the loading, S , and the 

stress ratio, Rs. The conventional definition of stress ratio is adopted, i.e., Rs = Smin/Smax, where Smin and Smax 

are the minimum and maximum stresses, respectively, in the cycle. Thus, if -1 < Rs < 1, S refers to the magnitude 

of the tension peak and RQ is the tension strength; otherwise, S refers to the magnitude of the compression peak 

and RQ is the compression strength. Regardless of the stress ratio and peak stress, both S and RQ are always 

positive. Using the above definitions, the general form of the assumed residual strength relation may be written as 

R{n)  =   R0-f(R0,   Sp,   Rs)    nv (1) 



Here, f(R , S , R ) describes the rate of strength loss associated with cyclic loading and v is a yet-to-be-determined 

"strength degradation parameter." The function f(R0, S , Rs) is determined by imposing a failure criterion. It is 

assumed that the failure will occur when the residual strength, R(n), equals the peak stress magnitude, Sp. By 

definition, when failure occurs, the number of loading cycles, n, equals the constant amplitude fatigue life, N. 

Substituting these conditions into Equation (1) gives 

f(Rol  SD, Rs)   =^Z£M (2) 
'■o'   "p1   "S' JVV 

or substituting Equation (2) into Equation (1) . 

R(n)   = R0-(R0-Sp) (|r (3) 

Figure 1 illustrates possible residual strength curves as a function of fatigue loading cycles as described by Equation 

(3). Note that each strength curve begins at the static strength, R0, and passes through the location defined by the 

failure criterion, i.e., n=N and R(n)=S . The path of each curve between these locations is dependent on the value 

of the strength degradation parameter, v. Linear strength degradation corresponds to v=l; "sudden death" behavior 

(Chou and Croman, 1978, 1979) is obtained for v>l, and a sudden initial loss in strength is obtained for v<l. The 

determination of v is based on a comparison of theoretical and experimental fatigue life results and is addressed in 

a subsequent section. 

3.1.2 Probability of Failure 

Consider the above equations applied to a set of geometrically "identical" laminates that are subjected to identical 

loadings. Because strength and life are statistically variable quantities, one would not expect a deterministic equation, 

such as Equation (3), to be generally accurate. Moreover, a knowledge of the statistical distributions of residual 

strength and life would be more useful in practical applications. We assume that both the residual strength 

distribution after an arbitrary number of cycles, and the life distribution after continuous cycling, may be represented 

by two parameter Weibull functions (Weibull and Weibull, 1977). The two parameters that describe the individual 
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Weibull functions are the scale, which represents the 63.2 percentile of the distribution, and the shape, which 

describes the degree of scatter in the data. Further, we define R(n), RQ and N to be the 63.2 percentile of their 

respective distribution functions, i.e., they are all Weibull scale parameters. Figure 1 therefore "tracks" the 63.2 

percentile of the strength distribution. To avoid subsequent confusion, we will continue to use the symbols R(n), RQ 

and N to describe scale parameters described by Eq. (3), and the symbols ft(n), ßQ and ft to describe the residual 

strength, static strength and life distributions, respectively. Using these definitions, the static strength Weibull 

cumulative distribution function, describing the probability that the initial strength of a laminate is less than or equal 

to the peak stress magnitude, S , is given by 

P [£0sSp]  = l-exp[- (Sp/R0)
B° ] (4) 

where Bs is the shape parameter for static strength (Weibull and Weibull, 1977). Both the shape and scale parameters 

are obtained from experimental results using the maximum likelihood method (Weibull, 1967). It is recommended 

that results from a minimum of 5 static strength experiments are used. A similar relation for the Weibull fatigue life 

distribution is given by 

P [Nzn]  = l-exp[- {n/N)Bl ] (5) 

where Bj is the shape parameter for fatigue life. As in the above, it is recommended that a minimum of 5 fatigue 

life tests are conducted to obtain N and Bj for a given constant amplitude loading. 

The probability of failure during constant amplitude fatigue loading, i.e., the probability that the residual strength, 

£(n), is less than the peak stress magnitude, S , may also be expressed in the form of a Weibull distribution as 

P[R(n)*Sp] = l-exp[-(Sp/R(n))B'la)] (6) 

where B^n) is a yet-to-be-determined Weibull shape parameter for residual strength. Substituting the residual strength 

relation, Equation (3), into Equation (6), the final form of the probability of failure relation for constant amplitude 



loading is 

P[ä[n) sSD] =l-exp[-(- 
5, p_ 

R0-{R0-Sp)(2y 
i B'(n) 1 (7) 

Figure 2 illustrates, at selected intervals, the strength distributions that are predicted by Eq. (7) for a set of 

laminates subjected to constant amplitude fatigue loading. A linear strength degradation is assumed (i.e., v=l). The 

stronger laminates reside in the upper portions of each distribution and the weaker laminates reside in the lower. 

During fatigue loading, all of the laminates experience a loss in strength. Eventually, the strength of the weaker 

laminates falls below the peak stress and these laminates are predicted to fail. The failed portion of the distribution 

is denoted by the darkly shaded areas. As cycling continues, more of the distribution falls below the peak stress and 

the probability of failure increases. 

Next, consider the shapes of the distributions in Figure 2. At zero cycles, Eq. (7) must reduce to (4). Thus, the 

shape parameter for strength at zero cycles, B^O), must equal the static shape parameter, Bs. Previous experimental 

results for residual strength distributions as a function of cycling have shown that these distributions become more 

disperse during fatigue loading (Yang and Liu, 1977; Yang, 1978; Yang and Jones, 1983). This implies that B^n) 

decreases with increasing cycling. This effect is illustrated schematically in Figure 2; the range of values covered 

by the residual strength distribution expands as the number of loading cycles increases. To account for this effect 

in the model, it is assumed that B^n) initially equals the static shape parameter, and that it degrades linearly to a 

limiting value of Bj. That is, the relation used to calculate B^n) in Equations (6) and (7) is given by 

Bfin)=Bs-iBs-B1 )  -|       n<N (g) 

Bfin) =BX nzN 

We point out that we cannot rigorously justify this assumption on either mathematical or physical grounds. 

However, for all laminates which we have been able to obtain the appropriate data, we have observed that Bj<Bs. 
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Also, for the limited amount of data available where residual strength distributions were obtained experimentally after 

a finite number of loading cycles and where life distributions were also obtained, we have observed that Bj is less 

than any of the intermediate residual strength shape parameters. The assumptions of Eq. (8) therefore represent an 

effort to reproduce observed behaviors without increasing the number of tests that are required for model 

characterization. Utilization of Eq. (8) significantly improves the model's predictive capability as compared to the 

case where B^(n) is assumed to always equal Bs; this latter assumption has been used in a number of previous 

wearout models (Chou and Croman, 1978; Halpin et al, 1972; Yang et al. including Yang and Jones, 1980, 1981, 

1983). 

3.1.3  Strength Degradation Parameter 

The method used to determine the strength degradation parameter, v, consists of comparing the theoretical 

probability of failure, Equation (7), to the experimentally obtained Weibull distribution for fatigue life, Equation (5), 

until an "optimum" value is obtained. This is illustrated in Figure 3 using data for Scotchply 1002 cross-ply laminates 

(Broutman and Sahu, 1972); the experimental curve is plotted based on Weibull distribution fatigue life data since 

raw data was unavailable. 

First, the theoretically predicted probability of failure curves, using Equations (7) and (8) and v values of 0.5, 1.0 

and 1.5, were compared to the experimental curve as shown in Figure 3. Based on this type of a comparison, the 

value of v may be refined to within 0.2. We have found that the "best" values of v, i.e., those that ultimately give 

the best predictive capability, may be obtained by examining the upper portion of the probability of failure curve 

and refining v to within 0.1. This procedure resulted in a final value of v=l.l for the laminate of Figure 3. We are 

currently evaluating whether examining the lower portion of the curve may be used in a secondary fashion to improve 

the model's predictive capability for early failures. 

3.2  Two-Stress Amplitude Fatigue Loading 

In this section, the model is extended to two-stress level loadings. Both, the residual strength relation and the 

probability of failure equation are modified such that they may be applied over each constant amplitude segment. 
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Also, a "cycle mix factor" is added to the model to account for the loss in strength and for life that may result 

from frequent changes in stress amplitude of the loading. Since N, Bj, and v are dependent on peak stress and 

stress ratio, it is assumed that they have individually been determined for those peak stress and stress ratio values 

that define each loading segment. 

3.2.1 Residual Strength 

Consider a two-stress amplitude fatigue sequence, i.e., two separate constant amplitude loading segments applied 

sequentially. Assume that the first stress segment consists of nj cycles at a peak stress Sj, and that the second 

segment consists of n2 cycles at a peak stress S2. For this example, assume S i>S2- For a constant amplitude loading 

defined by a stress level, Sj, let the strength degradation and fatigue life scale parameters be denoted by Vj and Nj, 

respectively. Similarly, for a constant amplitude loading defined by a stress level S2, let the strength degradation and 

fatigue life scale parameters be denoted by v2 and N2, respectively. The scale parameter for residual strength at the 

end of the first stress segment, and therefore at the beginning of the second stress segment, is Rj(nj). This strength 

is given by 

Ä1(fl1)=i?0-(i?0-51) (^)Vl (9) 

In determining the residual strength after n2 cycles of the second loading segment, we desire to use the constant 

amplitude residual strength relation characterized by S2, N2, v2, and n2, i.e., 

R2(n2)=R0-(R0-S2) (-|)
v* (10) 

However, the loss-of-strength for the second segment of a two-stress level loading must be calculated beginning from 

Rj(n j), and the rate of strength loss must be that for the current state of the laminate. That is, except for the special 

case of a linear degradation law (v=l), the rate at which the strength degrades depends on the amount of previous 

cycling. Physically, this corresponds to a damage-dependent rate, and has been observed experimentally (Poursartip 

and Beaumont, 1986). 

11 



The way in which the two-stress loading sequence is handled by the model may be most easily described with the 

aid of Figure 4. In this figure, curve AB illustrates the strength degradation for laminates subjected to constant 

amplitude loading at stress level Sj, and curve ACD illustrates the strength degradation for laminates subjected to 

constant amplitude loading at stress level S2- Both of these curves assume that the specimens are of virgin material 

and therefore begin at the static strength. Point B represents the strength after nj cycles at stress level Sj. Point C 

represents a location of equivalent strength as that of point B on the constant amplitude loading curve corresponding 

to stress level S2. Our model assumes that a laminate that arrived at point B, along path AB, has the same residual 

strength and essentially the same state of damage as a laminate that arrived at point C along path AC. Applying this 

idea to the two-stress level sequence, the beginning of the second segment should correspond to point C, and the 

strength degradation for the second segment itself should occur along path CD. Notice that the curve ACD has a 

nonlinear strength degradation rate; thus, simply replacing RQ with Rj(nj) in Eq. (10) will not produce the correct 

result. 

To achieve the requisite shift from point B to point C, an "effective" number of cycles, neff, is introduced. The 

value of neff is defined as the equivalent number of loading cycles necessary to produce the same strength loss within 

the second segment as that predicted to occur within the first segment. Thus, the effective number of cycles may be 

determined from Equations (9) and (10) by setting Rj(nj) = R2(neff) and solving for ngff, i.e., by determining the 

number of cycles that defines the location of point C in Figure 4. This gives 

neff- [ \R^S^ 1^   N2 (11) 

Referring to Figure 4, Eq. (10) may now be used to predict the strength at the end of segment 2 by replacing n2 

by n2 + neff. Thus, the scale parameter for residual strength after nj cycles at stress Sj and n2 cycles at stress S2 

is given by 

R2(n1+n2)=R0-(R0S2)   [ (^2 > 1 * (12) 

Notice that neff is also the mechanism through which sequencing effects are incorporated into the model. This 

12 
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technique can easily be extended to two-stress level repeating block loadings, as well as multi-stress level loadings. 

3.2.2 Probability of Failure 

For the two-stress level sequence described above, the probability of failure during the first segment is given by 

Pt^MsSj = l-exp[-(S1/Rl(n) )s'l(n) ] <13) 

where Rj(n) is given by Equation (9), with n replacing nj and n<nj. The probability of failure during the second 

segment is given by 

P[R2(ni+n) <.S2] = l-exv[-(S2/R2(n1+n) )B/j(n) ] <14) 

where R2(nj+n) is given by Eq. (12), with n replacing n2, and n is interpreted as the current number of cycles in 

the second segment. 

To determine the probability of failure after an arbitrary number of cycles, a "tracking" technique is adopted by 

the model. That is, suppose in the current example that S2«Sj and N2»Nj. Under these circumstances, it is 

possible that the probability of failure at the beginning of segment 2, as predicted by Eq. (14), will be less than at 

the end of segment 1 as predicted by Equation (13). When this occurs, the model stores the probability of failure 

at the end of segment 1. The probability of failure during segment 2 is taken to be the greater of that predicted at 

the end of segment 1 or that predicted by Eq. (14). This technique is also readily extended to two-stress level 

repeating block or multi-stress level loadings. 

The equations defining the residual strength shape parameter are also readily extended to two-stress and multi-stress 

level loadings. For the first loading segment, Eq (8) may be rewritten as 

Bfi {n) =BS - (Bs-B2i )   JL        if Bfi > Bh and n<Nx (15a) 
*i 

otherwise, 
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Bti*Blx (15b) 

where the subscript "1" designates values corresponding to the first load level. A generalization of Equation (15) 

for multi-stress level loadings yields 

If Blj<BfiJnj.^) 
j'-i 

(16a) 

ThenBf   (n)   = Bs-£  (B.-B^ )   ^-(B.-B, ) (-£) 
3^1 •ivi lvj 

If B, < Bf   (n,-.) andBf (n) [as given by (16a) ] sB, 
TAeTJ Bf(n) = B, 

J J 

T/r   o      ^   B /„ X (16C) Jf B^^Bf^n^) 
Then Bfj{n) =Bfj_i(iiHL) 

In the above, "j" is the current load segment, n is the current number of cycles within that segment, Bf (n) is the 
j 

current residual strength shape parameter, Bf (nk) is the residual strength shape parameter at the end of load segment 

"k", and Bj   is the fatigue life shape parameter corresponding to load segment "k." 

If the fatigue life shape parameter of the current segment, Bj, is less than the current value of Bf(n), then these 

equations linearly degrade B^n) to a limiting value of Bj. However, if the fatigue life shape parameter of the current 

segment is greater than the current value of Bj(n), then these equations enforce the physical condition that B^n) 

cannot increase. Rather, the value of Bf(n) is kept at its current value for the load segment. 

3.2.3 Cycle mix 

The residual strength and fatigue life of composite laminates have been observed to decrease more rapidly when 

the loading sequence is repeatedly changed after only a few loading cycles (Farrow, 1989). This was classified by 

Farrow (1989) as a "cycle mix effect." For illustration, consider Figure 5, where large block and small block loading 

sequences are compared. In this figure, the large block loading consists of 10,000 cycles at the low stress level 

followed by 100 cycles at the higher stress level, while the small block loading contains 1,000 cycles at the low 

stress followed by 10 cycles at the high stress. Note that after 10,100 cycles, both the large block and small block 
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Figure 5. Illustration of loading sequences with small cycle blocks, 
top, and large cycle blocks, bottom. 
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loadings contain the same number of cycles at each stress level. However, it has been observed (Farrow, 1989) that 

laminates that experience small block loadings have reduced average fatigue lives as compared to laminates that are 

subjected to large block loadings. 

It is our belief that the cycle mix effect is a result of the damage that occurs during those "transition cycles," 

between different constant amplitude segments, where the magnitude of the mean stress increases. This effect is 

accounted for in the model through application of a "cycle mix factor." The cycle mix factor is applied only when 

the magnitude of the mean stress increases from one segment to the next. During these transition cycles, the scale 

parameter for residual strength is degraded according to the relation 

R(n)~R(n) -CM (17) 

where CM is the cycle mix factor, given by 

In this equation, AS and ASmn are the change in the peak stress magnitude and mean stress, respectively, during the 

transition between stress levels. The conventional definition of mean stress is utilized, i.e., 

■s„-<5«x+W/2 (19) 

The cycle mix constant, Cm, is determined by comparing fatigue life data from small block and large block two- 

stress level fatigue loadings to predicted results. A single value of Cm is chosen that gives the best agreement based 

on the 63.2 percentile of each distribution. We have observed that the cycle mix factor may be negligibly small for 

certain laminates (Schaff and Davidson, 1994a). Our results also suggest that cycle mix is a significant contributor 

to strength loss only when the ratio of loading cycles, n, to fatigue life, N, is less than 0.001. In instances where n/N 

is greater than 0.001, the strength loss due to the cycle mix effect is generally small; thus, Cm is small and the cycle 

mix factor is likely not required. Of course, the cycle mix factor may be included for all loadings; exclusion of this 

effect for n/N > 0.001 is suggested only to reduce the required experimental input to the model. 

Finally, we point out that Eq. (18) was obtained through evaluation of a number of possible relationships 

comprised of nondimensional groupings of suitable governing parameters. Of those expressions evaluated, Eq. (18) 
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gave the best results, in terms of the model's predictive capability, for a wide variety of laminates and loadings. We 

are currently performing a more extensive investigation of the effect of cycle mix for a range of materials, layups, 

and geometries. 

4. APPLICABILITY 

Although the emphasis of the preceding discussion may have given the impression that the model is applicable 

only to uniaxial loading, there is no loss in generality in applying the formulation to multiaxially, proportionately 

loaded laminates. That is, proportional loading can be characterized by a single parameter and this is the only 

assumption made on the loading in the model's derivation. Similarly, the model can be applied to complex geometries 

if the appropriate characterization testing is performed. For example, tests could be performed on a scale version of 

a local configuration where failure is expected, and the loading acting on this local feature could be defined using 

finite element results from the full scale structure. 

5. RESULTS 

In this section, the model is evaluated through a comparison of predicted and observed fatigue life distributions 

for glass/epoxy and graphite/epoxy laminates subjected to various constant amplitude and two-stress level uniaxial 

fatigue loadings. The constant amplitude fatigue data are primarily used for model characterization; however, the 

degree to which the model can reproduce these results provides some measure of its accuracy. Two-stress level 

results are used to evaluate the model's ability to account for both sequencing and cycle mix effects. 

5.1   Sequencing Effects 

All evaluations of the model's accuracy for predicting sequencing effects were performed using the data of 

Broutman and Sahu (1972) on cross-ply, glass/epoxy laminates. Constant amplitude, tension-tension fatigue tests were 

performed at four different peak stresses; various low-high and high-low tests were performed using variations of 

these four stress levels and various block sizes. In all cases, the second loading block was a "runout block," i.e., of 

sufficient length that all laminates failed. Much of this same data was also used by Yang and Jones (1981) to 
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evaluate their model. All of the two-stress level results of Broutman and Sahu (1972) are compared to predictions 

from our model and, for comparison, predictions by the Palmgren-Miner rule (Palmgren, 1924; Miner, 1945), based 

on the 50th percentile. Results from Yang and Jones' (1981) model are included where available. 

The constant amplitude results of Broutman and Sahu (1972) were utilized to determine values of N, Bj and v 

corresponding to each of their test stress levels. This was accomplished using the previously described techniques 

and the resulting parameters are summarized in Table 1. Figures 6 through 9 compare the model's predicted life 

distributions to the experimentally obtained Weibull distributions [cf. Eq. (5)]. In general, the correlation is quite 

good. As would be expected from our method of determining v, the largest discrepancies between the predicted and 

observed results occur at the lower end of the probability of failure curves. In these figures, all of the experimental 

distributions are obtained using the maximum likelihood method (Weibull, 1967) and are based on at least 30 data 

points. In subsequent figures showing two-stress level results, the experimental probability of failure curves are 

plotted using log-normal cumulative distributions based on the mean lives and standard deviations presented by 

Broutman and Sahu (1972). Also, in subsequent figures, "predictions" refer to those by the model presented herein 

and "Yang's model" refers to results taken directly from Yang and Jones (1981). 

Data from six high-low, small first block loadings were presented by Broutman and Sahu (1972) and the 

comparison between theory and experiment is presented in Figures 10-15. We define a "small first block loading" 

as one in which nj/ Nj < 0.2, where nj is the number of cycles in the first segment and Nj is the scale parameter 

for life for the constant amplitude loading that defines this segment. The discontinuity in slope in our model's 

predictions occurs when Bf(n) reaches its limiting value. The three loading cases of Figures 10-12 were also 

evaluated by Yang and Jones (1981) and essentially similar predictive capability is observed for the two models. 

Predictions of mean life by the Palmgren-Miner rule are comparable to those by the wearout models for all of these 

loading cases. 

There is no single cause to which we can attribute the relatively poor correlation of Figures 14 and 15 as compared 

to that of Figures 10-13. The poor initial correlation of the constant amplitude predictions at 42 ksi and 35 ksi stress 

levels shown in Figures 8 and 9 are certainly contributory. However, this does not explain the reasonably good 
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correlation for the loading of Figure 12 as opposed to that of Figure 14; considering the constant amplitude fatigue 

results, one would expect similar correlation between theory and experiment for these two load cases. Part of the 

discrepancy is perhaps due to the inherent variability of the data. Within the present construct of the model, better 

(or worse) correlation can be obtained by assuming different functional dependencies of B^n). For example, if B^n) 

decreases more rapidly to (or beyond) its limiting value of Bj, then better correlation is obtained in Figures 14 and 

15, although this results in worse correlation in Figures 11 and 12. This may imply that the change in the fatigue 

strength shape parameter with increasing cycling is somewhat more complex than that assumed by Equations (15) 

and (16). To obtain better predictions for two-stress level runout fatigue, without altering the fundamental nature of 

the model, would therefore require a more comprehensive experimental assessment of the change in B^n) with load 

cycling and/or an evaluation of various linear and nonlinear degradations in B^n) that are perhaps dependent upon 

the stress level. To date, we have not pursued either of these options. We believe that the significant increase in 

characterization testing required for the former option would make the model non-viable for practical applications. 

As will be shown in Part II of this work, the predictive capability of the model in its present form is quite good for 

realistic, randomly ordered load spectra; this is the primary reason we have not as yet addressed possible alterations 

in the model associated with the latter option. It will be shown in the next section that the general accuracy of the 

model for realistic load spectra is partially due to the fact that the sequencing effects evident in two-stress level 

runout fatigue are somewhat "overshadowed" by the loss in strength and life that is associated with a large number 

of changes in the stress amplitude of the loading. 

Table 1. Model Parameters for Constant Amplitude Fatigue Loading 

Maximum 
Stress (ksi) 

Minimum 
Stress (ksi) N (cycles) Bl V 

56 2.80 626 2.089 2.5 

49 2.45 2888 3.436 2.0 

42 2.10 19406 1.886 1.1          1 

35 1.75 230419 1.595 0.75         [ 
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Broutman and Sahu (1972) also presented data from six high-low, large first block loadings, four of which were 

evaluated by Yang and Jones (1981). The comparison between theory and experiment is presented in Figures 16-21. 

Of those cases evaluated by Yang and Jones (1981), essentially similar predictive capability is once again observed 

for the two models; based on Figures 16 and 17, the current model is perhaps slightly better. The worst correlation 

between predicted and observed results is evidenced in Figures 20 and 21 and occurs for reasons similar to those 

given above in reference to Figures 14 and 15. As for the small first block loading cases, predictions of mean life 

by the Palmgren-Miner rule are comparable to those by the wearout models for all loadings. 

Figures 22 through 27 compare predicted and observed results for the low-high, small first block loadings. Only 

the first of these was evaluated by Yang and Jones (1981). For these figures, the number of cycles on the abscissa 

begins at the second stress level. Yang's probability of failure curve displays good agreement with the experimental 

fatigue life distribution for the loading of Figure 22. However, based on the single loading case which they evaluated, 

one cannot substantiate any direct comparisons between models. In general, our model shows reasonable correlation 

to experiment for all loading cases. In contrast to the high-low results, overall, the Palmgren-Miner rule compared 

unfavorably to the model's predictions and to experimental results. 

Figures 28 through 31 present the predicted and observed results for low-high, large first block loadings; no 

predictions by Yang and Jones (1981) were presented for these cases. In general, these results are similar to those 

of the low-high small first block loadings: reasonable predictions are obtained by the model and somewhat worse 

results (with the exception of Figure 31) are obtained by the Palmgren-Miner rule. 

5.2  Cycle Mix Effects 

Farrow (1989) evaluated the effect of cycle mix using angle-ply graphite/epoxy laminates subjected to both large 

and small block two-stress level fatigue loadings. The large block loading was comprised of an initial 100,000 cycles 

at a maximum stress of 17.66 ksi followed by 1,000 cycles at a maximum stress of 26.66 ksi. This pattern was 

repeated until the specimen failed. In the small block loading case, the number of cycles at each stress is reduced 

by a factor of 100. That is, the first sequence consisted of 1,000 cycles at a maximum stress of 17.66 ksi and the 

second sequence consisted of 10 cycles at 26.66 ksi. The constant amplitude fatigue life data and strength degradation 
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parameters required to characterize the model for the two-stress levels were obtained from separate constant 

amplitude fatigue test results and are presented in Table 2. The static strength and shape parameters were found to 

be RQ=36.4 ksi and Bs=42.9 and were obtained from static strength data reported by Farrow (1989). 

Table 2. Wearout Parameters for Constant Amplitude Loading for Angle-ply Laminates 

Maximum 
Stress (ksi) 

Minimum 
Stress (ksi) 

Fatigue Life 
N Bl V 

26.66 2.67 16351 3.7 2.00 

17.66 1.77 1151021 6.0 1.25 

Figures 32 and 33 present predicted and observed results for high-low and low-high large block repeating 

loadings, respectively, and Figure 34 presents results for a low-high small block repeating loading. The experimental 

results in the figures were obtained from 6 tests and are plotted using Weibull cumulative distributions. Predicted 

results are presented for our model with the cycle mix factor, CM [cf. Eq.'s (17) and (18)]. Where CM is included, 

the cycle mix constant, Cm, was obtained by comparing the model predictions to the three sets of data and choosing 

that value which gave the best correlation. This procedure gave Cm = 5.38xl0'7. Where CM is not included, we take 

Cm = 0. For clarity, in this latter case only the predicted mean fatigue life is shown in the figures. Predictions are 

also presented from the Palmgren-Miner rule, and from an interactive parameter cumulative damage (IPCD) model 

developed by Farrow (1989). The IPCD model predicts mean fatigue life only; it defines damage in terms of the 

percent change in secant modulus and defines failure when the damage sum equals a value that is empirically related 

to the static failure strain. Note that essentially no change in the model's predictions are observed for the large block 

loading cases when the cycle mix factor is included. However, a non-zero value of Cm significantly improves the 

model's predictions for the small block loading. Also note that the discrepancies between theory and experiment 

shown in Figures 32 and 33, which are primarily sequencing effects, are overshadowed by the cycle mix effect of 

Figure 34. This "dominance" of the cycle mix effect will occur for the most practical loadings and, as described 

earlier, is one reason why we have not concentrated on obtaining better correlation between theory and experiment 

for two-stress level runout fatigue. 
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6. CONCLUSION 

A strength-based wearout model has been presented for predicting the residual strength and fatigue life of 

composite laminates subjected to constant amplitude and two-stress level loadings. The model is derived based on 

three fundamental assumptions: that the laminate or structure of interest is subjected to undergo proportional loading, 

that strength is a monotonically decreasing function of the number of cycles, and that the probability of failure after 

an arbitrary number of cycles may be represented by a two parameter Weibull function. The model requires a limited 

amount of characterization testing to determine the necessary input parameters and this testing must be performed 

on samples which experience an essentially similar stress state as the structure of interest. By comparison with a large 

amount of fatigue test data, it has been demonstrated that the model has reasonably good predictive capability, and 

that this capability equals or exceeds that of other models of which the authors' are aware. 

The primary step in extending this model to multi-stress level loading is the development of a procedure for 

determining all of the model parameters that are required to characterize the stress levels comprising a randomly 

ordered load spectrum. In Part II of this work (Schaff and Davidson, 1994b), a relatively simple approach is 

developed. It is shown that only a limited amount of experimental input, primarily from constant amplitude tests at 

3 separate stress ratios, is required to fully characterize the model. The model is verified by comparison with 

experimental results from a number of different laminates and load spectra and good correlation is obtained for all 

cases. 
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