
WL-TM-94-3130 

TIC 
PELECTPp 

DEC0 7J994[    '" 

A Non-Iterative Grid Deformation 
Algorithm for Computational Fluid 
Dynamics for Aeroelasticity 

Richard D. Snyder 

Structural Dynamics Branch 
Structures Division 

October 1994 
Interim Report for Period June 1994 - July 1994 

Approved for public release; distribution is unlimited 

Jijj'j 

FLIGHT DYNAMICS DIRECTORATE 
WRIGHT LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7562 

:d) O 

19941129 151 



Notice 

When Government drawings, specifications, or other data are used for any purpose other 
than in connection with a definitely Government-related procurement operation, the 
United States Government thereby incurs no responsibility nor any obligation 
whatsoever; and the fact that the government may have formulated, furnished, or in any 
way supplied the said drawings, specifications, or other data, is not to be regarded by 
implication or otherwise as in any manner licensing the holder or any other person or 
corporation, or conveying any rights or permission to manufacture, use, or sell any 
patented invention that may be any way related thereto. 

This technical report has been reviewed and is approved for publication. 

RICHARD D. SNYDER 
Research Aerospace Engineer 
Aeroelasticity Section 
Structural Dynamics Branch 

TERRY M. HARRIS 
Technical Manager 
Aeroelasticity Section 
Structural Dynamics Branch 

JOSEPH W. MOSCHLER, MAJOR, USAF 
Chief, Structural Dynamics Branch 
Structures Division 

If your address has changed, if you wish to be removed from our mailing list, or if the 
addressee is no longer employed by your organization, please notify WL/FIBGE; 2130 
Eighth Street Suite 1; Wright-Patterson Air Force Base, OH 45433-7542 to help us 
maintain a current mailing list. 

Copies of this report should not be returned unless return is required by security 
considerations, contractual obligations, or notice on a specific document. 



REPORT DOCUMENTÄT \ÖM i3E 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to ai/erage 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
qatherinq and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operationsand Reports, 1215 Jefferson 
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2. REPORT DATE I3. REPORT TYPE  AND DATES COVERED 

September 1994 Interim Report for June 1994 - July 1994 
4. TITLE AND SUBTITLE 

A Non-Iterative Grid Deformation Algorithm for Computational Fluid 
Dynamics for Aeroelasticity 

6. AUTHOR(S) 

Richard D. Snyder 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Structural Dynamics Branch 
Structures Division 
Flight Dynamics Directorate 
Wright Laboratory 
Wright-Patterson Air Force Base, OH 45433-7006 

9. SPONSORING"/MONITORING AGENCY NAME(S) AMD ADDRESS(ES) 

Flight Dynamics Directorate 
Wright Laboratory 
Air Force Materiel Command 
Wright-Patterson Air Force Base, OH 45433-7562 

5.  FUNDING NUMBERS 

PE 62201 
PR 2401 
TA TI 
WU 00 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

WL-TM-94-3130 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

WL-TM-94-3130 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This Technical Memorandum presents an algorithm for deforming a two- or three-dimensional aero- 
dynamic grid given deflections on a physical boundary. This algorithm is to be used in coupling a com- 
putational fluid dynamics code with a computational structural mechanics code. The deformation 
algorithm was tested successfully on both two- and three-dimensional grids. The method sufficiently 
maintains grid quality for smooth deflections of realistic orders of magnitude. The method is computa- 
tionally efficient: the time required to deform the grid is small compared to the time required to solve the 
fluid dynamics. 

14. SUBJECT TERMS 
Grid Generation 
Grid Adaptation 
Grid Deformation 

17.   SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

23 
16. PPJCE CODE 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



Foreword 

This Technical Memorandum was prepared by the Aeroelasticity Section of the 

Structural Dynamics Branch, Structures Division, Flight Dynamics Directorate, Wright 

Laboratory, Wright-Patterson Air Force Base, Ohio. The study reported herein was 

conducted under Work Unit 2401TI00, "Structural Technology Integration". 

This manuscript was released in September 1994 for publication as a Technical 

Memorandum covering work performed during June and July 1994. 

Accesion For 

NTIS    CRA&I 
DTIC    TAB 
Unannounced 
Justification 

D 

By 

LJist 'it 

P 

uiion / 

 .  vailabiiity Codes 

in 



Summary 

This Technical Memorandum presents an algorithm for deforming a two- or three- 

dimensional aerodynamic grid given deflections on a physical boundary. This algorithm is 

to be used in coupling a computational fluid dynamics code with a computational 

structural mechanics code. This algorithm is intended to assist engineers in the Flight 

Dynamics Directorate with the analysis of aeroelastic problems using state-of-the-art 

computational methods. The deformation algorithm was tested successfully on both two- 

and three-dimensional grids. The method sufficiently maintains grid quality for smooth 

deflections of realistic orders of magnitude. The method is computationally efficient: the 

time required to deform the grid is small compared to the time required to solve the fluid 

dynamics. 
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Introduction 

The Flight Dynamics Directorate is conducting research towards integrating 

computational fluid dynamics (CFD) codes with computational structural mechanics 

(CSM) codes. This will give the Directorate the ability to develop solutions to aeroelastic 

design and analysis problems using state-of-the-art computational methods. The 

integration of the CFD and CSM equations is done cyclically. The fluid dynamics 

equations are solved time-accurately for a single time step. Next, the deflections of the 

body are computed by the CSM code using surface pressures computed by the CFD code. 

The new surface deflections are then used to update the aerodynamic grid. With the 

updated grid, the CFD code is executed for another time step and the process repeats. 

This paper presents an algorithm for updating the grid point positions of the aerodynamic 

grid.- e>- 

An algorithm has been developed for deforming aerodynamic grids that is based on 

a spring analogy (References 1 and 2). This method, however, is seen to have two 

limitations. The first is its reliance on grid connectivity. The computer code for a 

structured grid would be different from that for an unstructured grid and the code for a 

two-dimensional grid would be different from that for a three-dimensional grid. The 

second limitation is that the grid point deflections are a function of local grid point 

spacing, rather than body geometry and global distances. Consequently, the method best 

maintains orthogonality in regions of high grid point densities, regardless of the proximity 

to the surface. 

A second algorithm has been developed by this author that eliminates the 

restrictions of the spring analogy method (Reference 3). The computer code can be 

applied to a wide variety of grid types and body geometries without modification. The 

algorithm can accurately solve for large deflections. Also, the orthogonality of grid lines 

at a surface is made a function of the global geometry: the deflection at a given point in 

the aerodynamic grid is a function of the deflection of the entire aerodynamic surface. 

However, this global geometry dependence is computationally expensive. For three- 

dimensional grids, the computational cost is prohibitive. Another algorithm is needed 

which is both computationally efficient and able to produce a well-deformed grid. 



Presented herein is a third grid deformation algorithm that is based on a single 

first-order differential equation. The smoothing at a point is dependent on the distance 

from the body. The equation is non-iterative and is solved by marching away from the 

aerodynamic body. The method is computationally inexpensive, yet maintains the quality 

of the original undeformed grid. The algorithm is dependent on the grid topology, 

however. As such, the grid deformation code must be specialized to a particular grid 

topology. 



Grid Deformation Algorithm 

The deformation algorithm solves a non-linear relationship between known 

(independent) boundary deflections and unknown (dependent) interior grid point 

deflections. The deformation algorithm is a non-iterative method based on an ad-hoc first- 

order differential equation. The algorithm is applied at each iteration of the CFD-CSM 

loop. 

The algorithm can be divided into five steps: 

1. If desired, transform the known grid point deflections to deflections with respect to a 

body-fixed coordinate system. 

2. Determine appropriate marching directions. 

3. Solve for the unknown grid point deflections. 

4. If necessary, transform the grid point deflections back to the global coordinate system. 

5. Update the grid point positions. 

Each step is described in the following sub-sections. 

Preliminaries 

The aerodynamic surfaces and the surrounding grid are defined in terms of physical 

coordinates x . To facilitate the solution of the CFD equations, the grid is mapped onto a 

uniform rectilinear coordinate system \ . The engineer constructs this mapping by using 

an analytic or computational grid generator. Figure 1 shows a sample mapping. A C-H 

grid about a flat plate is mapped from physical coordinates x to computational 

coordinates ^ . The flat plate, shaded gray, maps onto a portion of the &, face of the 

computational domain. Diagonal hash marks identify the region behind the flat plate. 

A grid deformation algorithm must maintain the quality of the original grid. The 

following conditions should be satisfied for grid quality to be maintained: 

a) No negative cell volumes. 

b) Grid point clustering is maintained. 

c) Orthogonality of grid lines at a physical surface is maintained. 

d) Minimal change in cell volumes near a physical surface. 
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     Figure 1. Physical to Computational Coordinate Transformation 

Euler Coordinate Transformation 

The first step of the grid deformation algorithm is to transform the known grid 

point deflections to deflections with respect to a body fixed coordinate system. This is an 

optional step that helps to maintain the orthogonality of grid lines at the physical surface, 

which is an important property for many CFD codes. If the transformation is used, the 

deflections on the outer boundary will not be zero upon transformation back to the global 

coordinate system. A moving outer boundary may be incompatible with physical 

constraints or may require special boundary conditions. See page 11 for an example of a 

grid deformed with and without a coordinate transformation. 

An Euler transformation is used to transform the grid point deflections to the 

body-fixed coordinate system. The transformation is defined as three consecutive 

rotations with respect to the body-fixed coordinate system about a center point x0 defined 

in the global coordinate system. The rotation angles about the xx, x2, and x3 body axes 

are 6,, 02, and 03, respectively, and have corresponding transformation matrices [©,], 

[02], and [03]. It should be stressed that the order of rotation is important. The 

equation for the transformed deflections of points on the physical surface is 

{«;} = [0,][0:][0,]{x; + 5; -*„}-{*; -.<„}. 

The product of the three transformation matrices is 

(1) 

[0,10,103] = 
CD^CBJ —C9-,S9-, —SO., 

C9,S93 — .SBiSöiCGj    C9, C03 + S9]S9-,,S8.,    —S01C9^ 

59,Su-, + C9,59TC93    59] C9-J — C9,o9-,S9-<     C9,C9-, 

(2) 
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where C and S are shorthand for the cosine and sine functions, respectively.    If the 

coordinate transformation is not applied, then Equation 1 simplifies to 

{"(T}=K} (3) 

since the rotation angles are all zero. 

Selection of Marching Directions 

The differential equation governing the grid point deflections, described in the next 

sub-section, requires an initial value. Deflections are computed along grid lines by 

marching away from the initial value. However, in general, there is not a single 

computational coordinate that can serve as the marching direction for the entire 

aerodynamic grid. In such cases, it is necessary to divide the aerodynamic grid into 

domains within each of which there is a consistent marching direction. Often, the solution 

of one domain will be used as an initial condition for a second domain. 

As an example, consider a two-dimensional C-grid about an airfoil, as shown in 

Figure 2. The chordwise direction is 2;, and the normal direction is ^2. Define the wake- 

cut as the set of points on the ^2 grid line that connect the trailing edge with the outer 

boundary. Deflections on the airfoil surface are known from the CSM code. Deflections 

are to be determined for the points in the wake-cut, the grid interior, and the outer 

Figure 2. C-Grid About an Airfoil 



boundaries. The wake-cut points are chosen to form one domain and the interior points 

and outer boundary points a second domain. The deflections in the wake-cut domain are 

obtained by using the deflection of the trailing edge as an initial condition and ^, as the 

marching direction. The second domain uses both the airfoil and wake-cut grid point 

deflections as initial conditions and the marching direction is ^2. 

Solving for Interior Grid Point Deflections 

Let h,2 be the marching direction. The grid point deflections in terms of the body- 

fixed coordinate system are determined according to the following ad-hoc non-linear first- 

order differential equation: 

-v(x,^) 
dx 

&» u (4) 
^2 

Each term is described below. The method is considered ad-hoc since the grid 

deformation problem is not based on any natural phenomenon and is constructed purely 

based on considerations of computational accuracy and efficiency. Equation 4 is solved by 

marching along grid lines of constant !;, and %3, with t>1 varying from £,2^ to £,2ma- The 

deflection of the £2 grid point serves as a boundary or initial condition. The ^2min point 

will be either a point on the physical surface or a point in another domain for which 

deflections have already been computed. 

Equation 4 produces the desired behavior in the region away from the physical 

surface: the deflection um and the gradient of the deflection dum/d£,2 are of opposite 

sign since every term in Equation 4 other than um is always positive. Also, as the 

deflection üm goes to zero, so does the gradient dum/d£17 32 • 

Equation 4 can be written as 

where K is a function of 3c, ^ , and U : 

= -KÜm (5) 

KfrlU)-**'® u 
dx 

*i 

(6) 



If K is replaced by a constant, Equation 5 becomes linear and has an exponentially 

decaying solution. Thus, it is clear that the rate of decay of the deflections is related to the 

function K(X,%) . 

The spacing function v is chosen to give the desired grid behavior near the 

physical surface: surface deflections are propagated some distance into the interior of the 

aerodynamic grid with little smoothing. The function v is plotted in Figure 3 and is 

defined as 

v(*,5) = 

0 

1 - ro + r 

\       '\       ) 
(      f 
2- 1 + ro - r 

,3\ 

\ '\ J 

r<rQ-r{ 

rQ-r,<r<r0 

r0<r<rQ+r, 

r0 + A-, < r 

(7) 

1.00 

>0.50 

0.25 ■• 

ro-ri ro ro+ri 

Figure 3. Grid Spacing Function 



Deformed 

Undeformed 

Figure 4. Smoothing Parameters 

where r0 and r{ are two constants chosen by the user. The constant r0 is a measure of 

the distance from the body at which smoothing becomes significant. The constant r, is a 

measure of how rapidly the smoothing becomes significant. No smoothing occurs at 

distances less than rQ - rx away from the surface. The function r is defined as the 

distance between the point at the base of the grid line and the interior grid point, 

r = x (8) 

and is as shown in Figure 4. 

The term U is taken to be slightly greater than the magnitude of the maximum 

deflection on the physical surface. The magnitude \dx/dt,2\ is evaluated according to the 
equation 

33c 

^ 

3JC, "    dx2 '    3x3 
(9) 

V^2 K2 d$2 

The |3x/3^2j and U terms exist in Equation 4 to help prevent the creation of negative cell 

volumes in the deformed aerodynamic grid. 



Figure 5. Distances Between Consecutive Grid Points, 
Undeformed and Deformed 

Along a gridline, two consecutive points will not cross if the following condition is 
satisfied: 

< 
dx 

3$2 
(10) 

Consider a E,2 grid line, as shown in Figure 5. The deflection at point n is taken to be 

known and the deflection at point n + l is to be computed. The undeformed distance 

between the two points is \Ax\. The deformed distance is | Ac + Aw|. The magnitude of 

Aü must be less than the magnitude of Ax for the t,2 grid line to remain uncrossed. 

Letting the distance between the two points, |Ax|, go to zero, the condition becomes that 

of Equation 10. Equation 10 is satisfied by Equation 4 since \um/u\ and v are always 

less than one. This property does not prevent two ^2 grid lines from crossing. However, 



grid lines should not cross if the physical surface deforms smoothly and if deflections do 

not change rapidly over the surface. 

Inverse Coordinate Transformation 

With all of the grid point deflections known in terms of the body-fixed coordinate 

system, the grid point deflections in terms of the global coordinate system can be 

determined by applying an inverse coordinate transformation: 

{ü;} = [03]
T
[02]

T
[0,]

T
{X;+ü;-XO}-{X;-XO}. an 

Updating Grid Point Positions 

With the grid point deflections known for the entire grid, the grid point positions 

can be updated according to 

Deflections for the (m+l)st iteration of the CFD-CSM loop are referenced to the grid at 

the mth iteration. 

Numerical Implementation of the Smoothing Equation 

The differential equation governing the grid point deflections, Equation 4, must be 

solved numerically. The partial derivative can be replaced by a first-order forward finite 

difference. Equation 4 then becomes 

MtU+A£;2 

dx 
«" (13) 

S2 

Since the grid point deflections need not satisfy any physical laws, a first-order finite 

differencing scheme is adequate. 

10 



Sample Deformed Grids 

This section gives results from two test grids deformed with the method presented 

in this paper.  The first is a two-dimensional 

O-grid about a cylinder.    The second is a 

three-dimensional C-H grid about a swept 

wing. 

An O-Grid About a Cylinder 

Figure 6 shows an O-grid about a 

cylinder of unit radius. The outer boundary is 

a distance of 5 radii away from the surface of 

the cylinder. Grid points are clustered near 

the surface of the cylinder. In all of the 

deformed grids about the cylinder, values of 

r0 = 25 and r, = 3.0 were used in Equation 

4. 

-6-4-2 0 2 4 6 

Figure 6. O-Grid About a Cylinder 

Figure 7. Deformed O-Grid About a 
Rotated Cylinder without Coordinate 

Transformation 

Figure 8. Deformed O-Grid About a 
Rotated Cylinder with Coordinate 

Transformation 
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A deformed grid resulting from a 30° rotation of the cylinder is shown in Figure 7. 

This grid was obtained without applying a transformation to a coordinate system fixed to 

the cylinder. The clustering of grid points near the surface of the cylinder has been 

maintained. However, the grid lines are no longer normal to the surface of the cylinder. 

Figure 5 shows the effect of the coordinate 

transformation on the deformed grid. The 

entire grid is simply rotated by the same 

amount as the cylinder. 

Figure 9 shows the result of a 

translation of the cylinder. The cylinder is 

translated half a radius in the negative x- 

direction and three-halves a radius in the y- 

direction. In this case, both clustering and 

orthogonality have been maintained. Since 

the body-fixed coordinate system is not 

rotated with respect to the global coordinate 

system, the transformation would have no 

effect. The smooth transition between the 

inner and outer boundaries of the grid is 

-6 -2 

Figure 9. Deformed O-Grid About a 
Translated Cylinder without Coordinate 

Transformation 

-4 -4 

Figure 10. Deformed O-Grid About a 
Translated and Rotated Cylinder without 

Coordinate Transformation 

Figure 11. Deformed O-Grid About a 
Translated and Rotated Cylinder with 

Coordinate Transformation 

12 



easily visible in this figure. 

Two final examples of deformed grids about the cylinder are shown in Figure 10 

and Figure 11. Here, the cylinder is both translated and rotated. The grid in Figure 10 is 

produced without applying a coordinate transformation. The grid in Figure 11 was 

produced using a coordinate transformation. In Figure 10, the outer boundary has not 

been affected, while in Figure 11 the outer boundary has been rotated by the same amount 

as the cylinder. Both have maintained grid clustering near the cylinder surface. 

Orthogonality was only maintained when a coordinate transformation was applied. 

These grids show that the differential equation of Equation 4 maintains grid quality 

under translational motion of the physical surface, but that the quality of the grid 

deteriorates under rotational motion. The coordinate transformation of Equation 1 

improves the quality of the deformed grid in cases with rotational motion, but it does so 

Figure 12. Partial View of a C-H Grid About a Swept Wing 
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by rotating the entire grid, which moves the outer boundaries. 

C-H Grid About a Swept Wing 

Figure 12 shows a portion of a C-H grid about a swept wing. The wing was 

deformed by applying enough of the first bending mode to deform the wing tip by 5% of 

the root chord. Values of rQ = 2.0 and r, = 05 were used in Equation 4 and no 

coordinate transformation was applied. For this grid, there was no consistent normal 

direction in computational space. Therefore, the deformation problem was divided into 

three domains. First, the deflections of the grid points outboard of the wing tip and in the 

plane of the wing are computed by marching away from the wing tip in the spanwise, or 

\r, direction. Second, the deflections in the wake cut are determined by marching in the 

chordwise, or £,, direction. At this stage, all of the deflections in the E, plane are 

known. Finally, the remaining grid point deflections are determined by marching in the £3 

direction. 

\ 

\ 

Figure 13. Deflection Contours of a Deformed Grid About a Swept Wing 
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Figure 13 shows contours of the grid point deflections in the 2^ plane of the 

grid. The wing is outlined with a heavy border. The deflections remain approximately 

constant for distances less than r0 away from the wing. The grid deflections then smooth 

out to zero over a distance of a few root chords. The roughly rectangular shape of the 

contours is a result of using multiple marching directions. 

15 



Conclusions and Recommendations 

This memorandum presents an algorithm for deforming an aerodynamic grid given 

deflections on a physical boundary. The algorithm has been implemented in FORTRAN 

and has been successfully tested on both two- and three-dimensional grids. 

The method is capable of producing reasonable grid deflections in a reasonable 

amount of computer time for a range of practical problems. The method is faster than 

both the spring analogy and the global-geometry methods. It is applicable to a variety of 

physical configurations, including a wing and a wing-body. Also, the method can be 

applied to a variety of grid schemes, such as C-H grids and H-H grids. It is necessary, 

however, to code each configuration separately. 

The method is limited to reasonably smooth deflections since smoothing is only 

applied in the direction normal to the surface. A discontinuity in the surface deflections, 

such as occurs at a deflected flap, is propagated away from the surface without smoothing. 

The method could be improved by adding a term to the differential equation to smooth 

such discontinuities in surface deflections. 

The method, as presented here, cannot enforce grid point deflections on outer 

boundaries. In many cases, the grid point deflections will damp to zero, but the algorithm 

does not impose such a constraint. It should be possible to enforce deflections on multiple 

boundaries, though, by applying this algorithm iteratively, alternately marching away from 

the physical surface and the outer boundary. This would make the method applicable to 

interior flow analyses and to multi-element airfoil analyses. 

16 
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