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SUMMARY 

This research work developed a systematic methodology for the design of op- 

timal process parameters for forging processes. The methodology uses a multi- 

disciplinary approach involving advanced modeling methods, finite element tech- 

niques, nonlinear mechanics and modern control theory, for maintaining the forg- 

ing system variables within 'favorable' processing windows.  Appendix A gives 

an overview of the project goals and tasks, and also describes in brief the tasks 

accomplished in this work and their organization in this report.  Chapter 1 in- 

troduces the objectives and goals of this research work, and the design/analysis 

methods used to achieve these goals. It also includes a section surveying the ear- 

lier work done in this area. Chapter 2 gives a brief description of the nonlinear 

rigid viscoplastic finite element method, and presents the mathematical deriva- 

tion of the deformation state space model from the finite element equations. In 

addition, this chapter also describes the finite element based condensation pro- 

cedure used to reduce the number of degrees of freedom of the deformation state 

space model.  The procedure for development of the thermal state space mod- 

el from the finite element governing equations is described in Chapter 3 of the 

report.   This chapter also presents the procedure for condensation of the ther- 

mal state space model to reduce the order of the state space system.  Chapter 

4 describes the development of the coupled thermomechanical state space mod- 

el, and the construction of the control output matrix.   Chapter 5 explains the 

design strategy used for optimizing the process parameters based on the linear 

quadratic regulator (LQR) theory. This chapter gives a detailed description of 

the procedure used in solving the state space equations, and also presents the 

methodology used in designing the initial die temperature.   The logic used in 

selecting weighting matrices for the LQR control scheme is also described in 

Chapter 5. The methodology developed was tested and validated using a variety 

of forging simulations under different operating conditions. These test cases and 

n 



numerical examples are presented in Chapter 6 of this report.   While dealing 

with large scale finite element models involving a large number of degrees of free- 

dom, generally, numerical difficulties are encountered during the implementation 

process. To avoid such situations and to reduce the time and effort during com- 

putation, reduced order models need to be used.  Chapter 7 describes in detail 

the model reduction methods studied and utilized during the course of this work. 

This chapter also presents the comparative evaluation of several order reduction 

methods and the basis for selection of the Balanced Model Reduction (BMR) as 

suitable for use in this work. The control law and weighting matrix selection had 

to be modified for use with the reduced order models. The procedure for doing 

this, and a few case studies to validate the conclusions drawn are also presented 

in Chapter 7.  Chapter 8 presents more complicated and large-scale simulation 

examples to demonstrate the effectiveness of the model reduction methodology 

developed. After the control-based methodology was developed, approximations 

were made and introduced into the program to reduce the computational time 

involved in the process. Chapter 9 presents the results of these studies and de- 

scribes the effect of using one state space model for the entire simulation, and 

the effect of using smoothened (approximate) die velocity schedules during the 

simulation. 

To summarize the entire procedure, the nonlinear rigid viscoplastic finite 

element method is used for deformation and thermal analyses. A coupled state 

space model is then built to represent the deformation and thermal behavior of 

the material, with nodal velocities and nodal temperatures as the state variables. 

A finite element based condensation technique is used for reducing the order 

of the system to facilitate numerical analysis. Sophisticated model reduction 

techniques are used to further reduce the order of the state space system. The 

desired (favorable) forging conditions are obtained by imposing constraints on 

effective strain-rate and temperature variation within the deforming material. 

The linear quadratic regulator (LQR) theory with finite time control is used in 

designing the ram velocity and initial die temperature. 

in 
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CHAPTER 1 

Introduction 

1.1   Need for process control in metal forming 

In today's metal forming industry new materials are being widely introduced 

and used for an ever-broadening scope of applications. The increasing demand for 

new, high performance materials has augmented the need for superior processing 

methods. Computer-aided design techniques have generally been found to be the 

most effective and efficient way to meet this challenge and are used widely. In 

this work, the nonlinear rigid viscoplastic finite element method has been used 

for simulation and analysis of forging processes. Even though this work focuses 

on forging, the methodology featured in this report is general purpose and is 

applicable to any of the unit forming processes. 

During manufacturing the mechanical and service properties of the final prod- 

uct are dependent to a large extent on the prior processing history. As such, one 

of the most important tasks is the selection and control of critical process pa- 

rameters that would ensure required part quality along with specific mechanical 

and physical characteristics. Therefore, there is a need to develop an optimal 

processing strategy that would result in defect-free, high quality products on a 

repeatable basis. 



Forging is a thermomechanical plastic deformation process wherein the work- 

piece is deformed from a relatively simple geometry to a predetermined complex 

shape by the application of compressive forces. Forging differs from other shap- 

ing methods in that the flow of metal is intended to produce specific material 

properties in the final product.   The forging operation can be visualized as a 

system with a large number of interacting factors like starting billet shape, inter- 

face frictional conditions, temperature of workpiece and dies, velocity of the die, 

and geometry of the final part. These parameters strongly influence the thermal 

and flow behavior of the deforming material and have a direct impact on the 

spatial and temporal distribution of field variables like strain-rate, total effective 

strain, and nodal temperatures. The properties and integrity of the final formed 

product are, in turn, functions of the field components of the metal forming 

system. It is thus necessary to monitor and control the essential field variables 

like strain, strain-rate, and temperature to obtain the desired microstructure and 

service properties in the final product.  Also, non-conventional and difficult-to- 

process materials generally have a narrow range of processing conditions in the 

strain, strain-rate, and temperature space where they can be processed success- 

fully without any formation of defects.   To maintain the field variables within 

these 'favorable' processing regions, optimal design of process parameters such 

as die velocity and initial die/billet temperature must be carried out. 



1.2   Process parameters and physical/microstructural properties 

Generally, metal forming processes may be divided into two categories: mas- 

sive forming and sheet metal forming.  The massive forming processes include 

operations such as forging, extrusion, and rolling. Although this work is generic 

in nature and is applicable to all the unit forming processes, the main focus is 

on isothermal/nonisothermal forging.  In these processes there is a strong rela- 

tionship between macroscopic (physical) properties, microstructure, and process 

parameters. This is strongly supported by earlier work done in this area. For in- 

stance, in the design of aircraft engine disks, attempts have been made to obtain 

desired properties in the final product by generating different microstructures 

in different regions of the disk [1].   Though detailed relationships between mi- 

crostructure and physical properties have not yet been fully established, it has 

been shown through experiments that physical properties depend to a large ex- 

tent on the microstructure of the material, and if the workpiece is not processed in 

the right manner and under appropriate operating conditions, defective products 

and/or unwanted physical characteristics in the final product may result. 

In metal forming processes, it has generally been found that process param- 

eters play an important role in the forming of a specific microstructure in the 

workpiece. For example, Devadas et. al. [2], modeled the microstructure and 

mechanical properties of steel during hot rolling. These models have been used 



to predict grain size and characterize static and dynamic recrystallization dur- 

ing the rolling process. Most of these models have been found to be sensitive to 

change in process parameters such as strain, strain-rate, and temperature. Sastry 

et. al. [3] studied the relationship between metallurgical properties and process 

parameters during the superplastic forming of titanium alloys. This work showed 

that the percentage of equilibrium a phase in the microstructure is related to 

strain-rate, strain-rate sensitivity, and temperature. Dadras and Thomas [4] con- 

ducted experiments to study the deformation behavior of Ti-6242 (Ti-6Al-2Sn- 

4Zr-2Mo-0.lSi) alloy during the upset forging of specimens starting with (a + ß) 

or ß microstructure. They found that the volume percentage of primary a mi- 

crostructure in the specimen is influenced by the deformation temperature. This 

further illustrated and emphasized the importance of temperature effects during 

deformation. Recently, Cohen and Durham [5] correlated the effect of change in 

strain-rate to the final microstructure during hot working processes. The depen- 

dence of the resulting microstructure on various temperatures and strain-rates 

was analyzed while carrying out compression tests on a carbon steel material. 

Seetharaman et.   al.   [6] analyzed the effect of strain, strain-rate, and temper- 

ature on the microstructure of a gamma Ti-Al alloy during extrusion.   During 

this work, the relationship between microstructural parameters (grain size and 

grain distribution) and process parameters (effective strain-rate, effective strain, 

and flow stress) was obtained using experimentally collected data. This further 

proved that both strain-rate and temperature have a strong influence on the 

microstructure and properties of a given material. 



Besides microstructure, workability is also an important characteristic in an- 

alyzing metal forming processes. Workability is the capacity of a material to 

deform without failure. It depends on: (1) process parameters (such as temper- 

ature, strain-rates, stresses, and strain history), and (2) material variables (such 

as composition and initial microstructure). The current work proposes that it is 

crucial to select proper processing conditions and process parameters to achieve 

the desired microstructure and workability level in the deforming workpiece. For 

a given billet material and geometry the foUowing major process parameters have 

to be determined to obtain optimal forging conditions: 

• Die material 

• Initial die/workpiece temperatures 

• Ram speed 

• Lubricant 

• Preform geometry and position 

• Die geometry 

• Type and size of the forging press 



In the past, the design of process parameters for metal forming operations 

was done on a trial and error basis, and was dependent to a large extent on the 

experience of the die designers, metallurgists and process engineers. This method 

was expensive, time consuming, and not very reliable. With the development of 

sophisticated numerical techniques, computer aided design and analysis methods 

have become very popular and are in use widely. 

1.3  Metal forming simulation using the finite element method (FEM) 

With advancement in computer technology and development of sophisticated 

processing methods, the use of computer-aided techniques for process simulation 

and process design has increased considerably. Some of the well known metal 

forming simulation and analysis methods are the slab method, the upper-bound 

method, the slip-line field method, and the finite element analysis (FEA) method. 

The slab method is based on the equilibrium of a slab of the deforming body 

and assumes a simplified stress distribution along the slab. Biswas and Rooks [8] 

evaluated the loads and stresses for metal forming processes based on this method 

using an approach in which the various deformation stages are uncoupled and 

analyzed separately. Lui and Das [9] also used the slab method for evaluating 

the loads and stresses in axisymmetric forgings. Although this method is quick 

and gives reasonable results [10,11], its main shortcoming is that it is restricted 

to the evaluation of loads and stresses for simple geometries only. 



The upper bound method [12,13] assumes a velocity field describing metal 

flow during the forming operation. Based on this velocity field, the total forming 

energy and the forming load are then calculated. By including one or more pa- 

rameters in the considered velocity field, it is possible to determine and optimize 

the upper-bound velocity field. The optimal process parameters are determined 

by minimizing the total forming energy with respect to these parameters [14]. 

This approach has earlier been used in the analysis of axisymmetric forgings, 

plate rolling, and extrusion processes [15-19]. 

Due to the rapid development of computers and numerical algorithms, the 

finite element method (FEM) has become very popular for simulating and ana- 

lyzing metal forming problems. Most of the FE analyses in this field are based 

on the rigid-plastic and rigid-viscoplastic theories. For rigid-plastic materials, it 

is assumed that flow stress is a function of strain, strain-rate, and temperature, 

and that the elastic response of the material is negligible. The rigid-viscoplastic 

theory was generalized by Zienkiewicz et. al. [20,21] and is capable of model- 

ing hot, rate-dependent processes. This generalization provides the theory for 

analyzing the deformation of Ti-alloys which are strain-rate sensitive materials. 

Lee and Kobayashi [22,23] developed the rigid-plastic finite element method 

using variational principles for a material obeying Von Mises' yield criterion with 

isotropic kinematic hardening. In the early 80's, Oh et. al. [24,25] refined the 

rigid-viscoplastic formulation to solve a wide variety of problems using the fi- 

nite element method. These efforts resulted in the development of a generalized 



computer program ALPID [26] (Analysis of Large Plastic Incremental Deforma- 

tion), which has the capability to perform a wide range of 2-D metal forming 

simulations. 

A variety of metal forming problems have been solved using the finite ele- 

ment analysis method. Reference 27 gives a broad and detailed coverage of the 

application of FEM in metal forming research. It contains plane strain problems 

(such as bulk forging, sheet rolling, plate bending and side pressing), axisymmet- 

ric forgings (such as disk forging and ring compression), steady-state processes 

such as extrusion and drawing; sheet metal forming operations, and the forging 

of porous metals. Duggirala [28] also used ALPID in the analysis of flashless ring 

gear blanks and axle shafts. 

Besides the rigid-plastic and rigid-viscoplastic finite element analysis, some 

researchers also used other plastic theories. Dexter [29] studied the mechanisms 

involved in forging using the elastic-viscoplastic finite element analysis. The 

stress and strain values, especially at the die-workpiece interface, and the critical 

loads for the potential failure of forging die can be obtained by this method of 

analysis. The updated Lagrangian Jaumann Formulation of FEM, which includes 

elastic deformation and tends to be elastic-plastic or elastic-viscoplastic in nature, 

has also been used in metal forming [30]. It has successfully been applied to the 

problems of extrusion, drawing, rolling and sheet metal forming. 

Finite element analysis and simulation has been further enhanced and devel- 

oped by several researchers to handle nonisothermal processing conditions. Wu 



and Oh developed the program ALPIDT [31] which interfaces ALPID with a 

thermal analysis module, and can perform coupled thermo-viscoplastic deforma- 

tion analyses.   Oh et.  al.   [32] used ALPIDT to analyze the hot die forging of 

Ti6242 alloys. They found that the distortion in the FE mesh was more severe 

during hot-die forging than in isothermal forging. Clearly, the effect of tempera- 

ture, possibly combined with the strain-rate effect, caused the metal flow to differ 

under the two forging conditions. Zienkiewicz et. al. [33] studied and performed 

a coupled thermal analysis for steady-state extrusion operations.  Tang et.  al. 

[34] analyzed the shell nosing problem using this approach.   Coupled analysis 

using the updated Lagrangian approach also has been reported in earlier work 

[35]. 

In this work, the finite element method has been chosen as the primary 

numerical analysis tool. The nonlinear rigid viscoplastic finite element program 

ALPID has been used for simulation and analysis purposes because it has the 

following capabilities: 

1. Obtaining detailed solutions of mechanics in a deforming body with sufficient 

accuracy for practical purposes. The solution contains velocities, strains, 

stresses, strain-rates, temperatures, contact pressure distributions, die load 

and die temperatures. 

2. Handling arbitrary boundary conditions. 



3. Including the friction effect at the die-workpiece interface in both deformation 

and thermal calculations. 

4. Graphics display for post-processing. 

5. Analyzing a large variety of problems by simply changing the input data. 

1.4   Design of optimal process parameters 

Compared to traditional design methods in the metal forming field, numer- 

ical analysis and design techniques are less time consuming and expensive. In 

the past, considerable research has been conducted in designing and selecting 

optimum process parameters using numerical approaches. 

Boer et. al. [36] developed a process model based on the slab method to calcu- 

late stress and strain distributions in the deforming workpiece. Thermal analysis 

was performed using finite element methods and a simplified non-dimensional 

analysis. Using the above strategy, and minimizing the stress ratio parameter, 

optimal ram velocity profiles and initial die temperature were obtained for both 

isothermal and hot die forgings (using NIM80A material). Lanka and Grand- 

hi [37] developed the Conformal Mapping Method to design intermediate die 

shapes for 2-D and 3-D forgings. This is a geometry mapping technique wherein 

the staging criteria are identified based on the stress ratio parameter. Malas [38] 

developed an approach for process parameter design using a linear relationship 

between the ram velocity and strain-rate as an approximation to maintain the 
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billet variables within stable processing regions.   Hong [39] designed a control 

scheme based on a finite element analysis model.  This model utilizes the local 

thickness of the deforming blank as a measured variable to track a desired tra- 

jectory. Kobayashi et. al.  [27], and Park et.  al.  [40] developed the "backward 

tracing" technique which is based on the reversal of material flow during simu- 

lation. Using this method preforms were designed for shell nosing, plane-strain 

rolling, and axisymmetric forging problems. Han et. al. [41] combined this idea 

with a numerical optimization approach, and designed optimal intermediate die 

shapes for isothermal forging processes by minimizing the strain-rate variance in 

the deforming workpiece.  This technique is called the "Backward Deformation 

Optimization Method", and includes sensitivity analysis, besides introducing a 

criterion for nodal separation from the surface of the die during backward de- 

formation simulation.  Grandhi et.  al.   [42] then introduced an optimal control 

design algorithm into the process parameter design procedure. The metal form- 

ing process was modeled and condensed into the state space form, and a suitable 

optimal control algorithm was used in designing the process parameters. Opti- 

mum ram velocity schedules for maintaining specified strain-rates in the billet 

were generated by this approach for an isothermal disk forging. 

During conventional hot die forging, there is a complex thermal interplay 

between the workpiece, die(s) and the atmosphere. There is heat generation due 

to the dissipation of deformation energy, and friction. At the same time there 

is heat loss from the system due to conduction between the billet and die. In 

addition, there is also heat loss due to convection and radiation between the billet 
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and the environment. As a result, the processed material may experience severe 

temperature gradients along the interface of the die and billet, which could lead 

to the formation of surface defects. Thermal disparities and temperature changes 

in the workpiece may also induce phase transformations and changes in the grain 

structure. These changes, in turn, affect the flow stress and metal flow as well 

as other process variables. Furthermore, severe temperature gradients result in 

large thermal stresses leading to material failure. Quenching is an example where 

thermally induced stresses can cause warping and cracking of the finished parts. 

In view of these effects, this research extended the isothermal study in reference 

42 to handle nonisothermal situations like hot die forging. 

The objective of this work is to build a numerical model representing the 

metal forming system, and design optimal process parameters (ram velocity and 

initial die temperature) that satisfy the following requirements: 

1. Maintain the strain-rate at a certain value at a given location (element) in 

the billet. 

2. Maintain the temperature at the critical spot (node) above some value. 

3. Reduce the temperature range in the billet. 

4. Reduce the temperature gradient at the interface of die and billet. 

5. Force the strain-rate and temperature to follow desired trajectories. 
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The above requirements have significant practical meaning, as explained in 

the later sections of this report. If these requirements can be satisfied, maintain- 

ing the process parameters within favorable processing regions becomes easy. 

The coupled deformation and thermal analysis code, ALPID, is modified to 

build the state space model and then condensed to obtain a reduced order model. 

An optimal finite time controller design algorithm has been integrated with the 

ALPID code to calculate the required (optimal) process parameters. The results 

show that the above methodology is quite successful in achieving the required ob- 

jectives. But developing the state space model from the finite element equations 

and solving the resulting set of equations is a non-trivial task, especially while 

dealing with large scale systems. While simulating realistic manufacturing pro- 

cesses, it is necessary to use large-scale finite element models with a large number 

of degrees of freedom.  In such instances, the corresponding state space model 

also has a large number of states.  This is likely to cause numerical difficulties 

during implementation, besides being computationally expensive and tedious. In 

such situations, model reduction techniques have to be used to reduce the order 

of the system before designing the controllers. The following section gives a brief 

introduction and description of model reduction techniques. 
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1.5   Reduced order models 

Balas [43], surveyed different model reduction methods applied to the con- 

trol of large space structures. He presented a mathematical framework to survey 

the general topics in control theory (for large space structures) like optimal con- 

trol, reduced-order models, spiUover compensation, reduced order controllers, 

and other related topics. These numerical techniques are widely used in aircraft 

and space structure control work by many researchers. Marshall [44] described 

in detail the numerical strategies used for the reduction of large models using the 

modal analysis approach. Akoi [45,46] applied economic aggregation techniques 

to solve large scale control problems. Rao, et. al. [47] applied the balanced trun- 

cation and modal aggregation methods to large flexible structures, where the FE 

model of the structure in the state space form is used to design robust controller- 

s for structural systems.   Safonov, et.   al.   [48] used the modal truncation and 

Hankel-norm techniques to reduce a 116-state model to a 4-state model, while de- 

signing a robust multivariable controller for suppressing active vibration in large 

space structures.   Ben Jaafar, et.   al.   [49] had earlier applied model reduction 

techniques to thermal diffusion problems. In that work, the Eitelberg, Marshal- 

1, and Aggregation methods were applied to a finite element model describing 

heat transmission in thermal diffusion problems. Wanxie, et.  al.   [50] used the 

relationship between the generalized variational approach and LQ control theo- 

ry to successfully reduce the size of an eigenvalue problem by half.  Chang and 

Engblom [51] used the Rayleigh-Ritz method to reduce the model of a structure 

under uniform loading for non-linear dynamic response predictions. 
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In most of the above applications, the model reduction techniques used tend 

to retain the dynamic response of the original system. For the current analysis, 

the objective during model reduction is to derive a reduced order system that 

is both controllable and observable.   In addition, it must be ensured that the 

reduced model retains the properties/characteristics of the full model. Gregory 

[52] constructed a reduced model for lightly damped structures using balanced 

model reduction (BMR) techniques.   He reduced a full state model having 114 

states to a reduced model having 26 states, and concluded that the BMR tech- 

nique (effectively) retains the stability, controllability and observability of the 

full model. Yae and Inman [53], also concluded that the BMR technique retains 

the properties of the full state model for multi-body systems and can be used for 

control applications.  This was also confirmed by Adams et. al.  [54], who used 

the BMR method in flight control applications. 

In this work, the following three broad methods of model reduction were 

studied: 

a. Aggregation Method [55] 

b. Modal analysis methods [56] 

c. Balanced model reduction [57] 

After the reduced order state space models are developed, a control law based 

on the differential Riccatti equation is adopted to design optimal die velocities for 
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the metal forming process, like in the case of the full state model. The detailed 

formulation involved in deriving reduced order models is explained at a later 

stage in this report. 

The following chapters describe in detail the process control strategy devel- 

oped and the mathematical formulations involved in setting up and solving the 

optimal control problem. Appendix B and Appendix C provide information on 

the program developed (COPP - Control of Optimal Processing Parameters) for 

implementing this methodology. 
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CHAPTER 2 

State Space Model for Deformation Analysis 

2.1   Basis for the finite element formulation 

The finite element method (FEM) used in this work is based on the flow 

formulation. This approach assumes that during metal forming the plastic s- 

trains usually outweigh elastic strains and the idealization of rigid-plastic or 

rigid-viscoplastic material behavior is acceptable. In other words, phenomena 

associated with elasticity are completely neglected in this method of analysis. 

The original problem associated with the deformation process of rigid vis- 

coplastic materials is a boundary-value problem and the formulation is briefly 

described below [22,23,27]: 

Consider a body (workpiece) having volume V and a boundary surface S. 

The boundary surface S may be divided into three distinct parts given by: 

S = SU + SF + SC (2.1) 

where Su is the surface with prescribed velocity ü, Sp is the portion of the work- 

piece with traction F prescribed, and Sc is the tool-workpiece interface surface 

where the frictional stress / acts. The body is composed of a rigid plastic mate- 

rial which obeys the Von Mises yield criterion and its associated flow rule. The 

deformation of the body V is now characterized by the following field equations. 
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Equilibrium conditions for deformation analysis (neglecting body forces) are 

given by: 

<rijj = 0 (2.2) 

where aij is the ijth component of the Cauchy stress tensor. In the above equa- 

tion, a recurring letter suffix indicates the sum, and the comma denotes partial 

differentiation. 

Compatibilty conditions are given by the following strain rate-velocity rela- 

tion: 

£y = 2 (Ui>i + ui^ (2-3) 

where, tij is the zjtfe-component of the strain-rate tensor, U{ is a velocity compo- 

nent, and the comma represents differentiation. 

The constitutive equation giving the stress-strain rate relationship is [27]: 

<r'ij = \%kij (2-4) 

where cr'ij is a component of the deviatoric stress, ä and e are the effective 

stress and effective strain rates, respectively, defined by ä = y 2°"»i °"»'i anc^ 

t = J\ tij tij. The flow stress, in general, is a function of total strain, strain-rate, 

temperature, and microstructure S, and may be represented as: 

ä = f(T,eXS) (2.5) 

The boundary condition for this system representing equilibrium of stresses is 

given by: 

crijTii — Fj,        on    SF (2-6) 
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where ra; is the ith-component of the unit normal vector to the body surface 

and Fj is the jth-component of the prescribed surface traction. The velocity- 

boundary condition is given by: 

U{ = u i,        on    Su (2-7) 

where ü{ is the ith-component of prescribed velocity. Solutions to this problem 

are the stress and velocity distributions that satisfy the governing equations 

and the boundary conditions. The governing equations include the equilibrium 

equations, the yield criterion, and the compatibility conditions derived from the 

flow rule. Since it is difficult to obtain a complete solution that satisfies all 

the field equations, various approximate methods are used to solve the above 

problem, one of them being the finite element method. The basic principles and 

concepts involved in the finite element method are the variational principle and 

discretization. 

The finite element governing equation for metal forming analysis may be 

derived from the potential energy functional [27], 

7T = / cldV - I   FmdS (2.8) 
Jv JsF 

where the first term represents the rate of total plastic work done and the sec- 

ond term represents the rate of work expended due to surface traction. The 

variational principle requires that among admissible velocities u{ that satisfy the 

conditions of compatibility and incompressibility (as well as the velocity bound- 

ary conditions) the actual solution gives the above functional a stationary value. 

In other words, the solution of the original boundary value problem is obtained 
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from the solution of the dual variational problem, where the first order variation 

of the above functional vanishes, i.e., 

8-K = [ äStdV - /   FiSuidS = 0 (2.9) 
Jv JsF 

Metal deformation occurs at a constant volume. Therefore, the admissible 

velocity U{ needs to satisfy the incompressibility constraint. This is embedded 

into the variational principle functional (Eq. (2.9)) by introducing the penalty 

constant K (which is a very large positive quantity) into the equation as, 

8ir= [ äStdV + K [ evSeydV - [   FiSu^S = 0 (2.10) 
Jv Jv JsF 

where tv  = e« is the volumetric strain rate.    The development of the finite 

element equations from the above equation is described in the next section. 

2.2   Finite element equations 

The discretization of the variational principle functional decribed above is 

done using the standard procedure of the finite element method. The primary 

unknown for the solution of Eq. (2.10) (which represents a quasi-static plastic 

deformation process) is the velocity field associated with it. This velocity field, 

u, is approximated by shape functions in terms of nodal point velocity values as, 

U = N£V (2.11) 

where No is the shape function matrix for deformation analysis, and v is the 

nodal velocity vector for the element under consideration. For two-dimensional, 
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four-noded, quadrilateral elements having two degrees of freedom per node, v is 

a 8 x 1 vector given by, 

VT = [vi    V2   V3     ... V&] 

Eq. (2.10) may now be expressed in terms of the nodal point velocities v and 

their variations 8v. Using the variational principle, from the arbitrariness of 5vh 

a set of nonlinear algebraic equations (stiffness equations) are obtained as given 

below [27]: 

*L = y (*L\     = 0 (2.12) 

3 (i) 

where (j) represents the quantity at the jth element. The capital-letter suffix, 

I, refers to the nodal point number. The above equation is actually determined 

by first obtaining the elemental equations and then assembling them under ap- 

propriate constraints to obtain a set of global stiffness equations in the standard 

finite element form, 

»KnV = nF (2.13) 

where K is the global stiffness matrix, F is the load vector (described in detail in 

the next section), V is the global velocity vector, and n is the counter representing 

the iteration number at every time step. This problem is similar to a standard 

finite element analysis problem, but its special feature is that the geometry of the 

boundary, and hence the boundary condition, keeps changing as the die stroke 

increases. K and F are both functions of V, resulting in a highly nonlinear 

system of equations. Therefore, the analysis path of the forging process is traced 

in an incremental manner by considering a series of discrete equilibrium states, 

21 



each corresponding to a specific value of time. The nth discrete equilibrium state 

is assumed to correspond to the time value t, and the subsequent or (n + 1) 

equilibrium state, is assumed to correspond to time (t + At). The geometry 

configuration at time (t + At) is updated from time (t). This is known a priori 

from the solution of the previous time step (t). The velocity distribution for 

configuration (t + At) is unknown and calculated in an implicit iterative manner 

until a converged solution is obtained. 

The solution to Eq. (2.12) or Eq. (2.13) is generally obtained iteratively 

using the Newton-Raphson method. The method consists of linearization and 

application of convergence criteria to obtain the final solution. If the converged 

point is v = vo, a Taylor series expansion can be made about vo as follows: 

d27T 

dvi 
+ 

v=v0 
dvjdvj 

Avj = 0 (2.14) 
v=vo 

where Avj is the first order correction of the velocity v. The linearized system 

of equations may be written as: 

KAv = f (2.15) 

where K is again the material and process dependent stiffness matrix, and f 

is the residual of the nodal point force vector. This equation may further be 

rearranged and expanded as, 

K5v + KiAv = F (2.16) 

where Ks and K* are called the secant stiffness and tangent (or gradient) stiffness 

matrices, respectively (Fig.  1). Ks and Kt are calculated based on the current 
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solution of Eq. (2.13) and treated as constant matrices for time t to (t + At). Here 

again, F is the finite element load vector. Once the solution of Eq. (2.14) for the 

velocity correction term (Av) is obtained, the current velocity v0 is updated as 

(vo + aAv), where a is a constant between 0 and 1, and is called the deceleration 

coefficient. Iteration is continued until the velocity correction terms become 

negligible and the convergence criteria are met. 

To calculate the first and second derivatives in Eq. (2.14), the effective strain 

rate (I) and volumetric strain rate (ey) must be expressed in terms of the nodal 

velocities. This is done by means of the strain-rate matrix Bs defined by [27], 

e = Bsv (2.17) 

where e is the strain-rate vector which contains the normal strain-rate and engi- 

neering shear strain-rate components. The effective strain-rate, in turn, can be 

expressed in terms of the strain-rate vector as [27]: 

(I)2 = eTDe 

= vTBjDBsv (2-18) 

= vTPv 

where P = BjDBs. D is a diagonal matrix that has | and | as its compo- 

nents, corresponding to the normal and shear strain-rates, respectively. Also, 

the volumetric strain-rate is defined as: 

ev = Cm (2.19) 
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A v 

Force 

v       = Velocity 

K      = Secant Stiffness Matrix 

K      = Tangent Stiffness Matrix 

Figure 1: Secant and tangent stiffness 
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where d = Bu + Bii + £3;, and Bij is an element of the strain-rate matrix Bs. 

Using the above formulae, the first and second order derivatives in Eq. (2.14) 

may be expressed as [27], 

dvi 
f tPijVjdV + ! KCjVjddV - I   FjNjidS (2.20) 
JV £ JV JSp 

and, 

Ö27T ^- = / ZPijdV + /  (~ - ^) lpikvkvmPmjdV + f KCjCidV     (2.21) 
dvivj     Jv e Jv\ed£     t j e Jv 

The detailed derivation of the above equations and explanation of the terms 

involved may be obtained from reference 27. 

2.3   Frictional force as the finite element load vector 

The frictional condition at the die-material interface greatly influences metal 

flow during most forming processes and merits proper analysis and treatment. 

In the current procedure, friction stress //, which appears in the load vector of 

the finite element governing equation, is given by, 

ff = - f  mkp-dS (2.22) 
JSc       \uT\ 

where m is the friction factor, k is the shear strength of the material, and uT is 

the sliding velocity at the die workpiece interface (5c)- 

During finite element analysis, a coordinate transformation is made to trans- 

fer the die-workpiece contact nodal velocities onto a local coordinate system 
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which has one axis normal to the die surface and the other axis along the die 

surface (Fig. 2). A shape function is used to interpolate ur [58] as, 

Ur = \{l-r)vr{j) + ±(l + T)vr{I) (2.23) 

where vTij\ and vrn\ are the relative sliding velocities at nodes j and 1, respectively. 

At node j, the sliding velocity can be expressed in the local coordinate system 

as, 

vr{j) = vT(j) ~ vdT{j) (2-24) 

where vTtj\ is the tangential nodal velocity along the die surface, and V<JT(J) *
S
 
tne 

tangential component of the die velocity at boundary node j. Then, Eq. (2.22) 

becomes: 

(2.25) 

= - I  mkNT
f^dS + f  mkNT

f^dS 
JSc J \ur\ JSc J \uT\ 

where Ny is the shape function, v^ and v^j are given below: 

VT = [vT(j)   vT(o] vdT = [xdT(j)   vdT(o] 

Eq. (2.25) gives the friction force along the die surface for the segment between 

node j and node 1. The first term of Eq. (2.25) is added to the stiffness matrix 

Ks because it contains the nodal velocity. The second term stays on the right 

side of the finite element governing equation, and appears as the load vector in 

Eq.  (2.16).  During the design phase, this term is transformed into the control 
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Workpiece   Surface 

n s = Inward unit normal to the die continuum at the contact 
node i 

n R = Unit vector tangent to the die continuum at the contact 
node i 

( n s f n R ) = Local coordinates 

( X   ,    y ) =   Global coordinates 

Figure 2: Contact boundary conditions 
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input as it contains die velocity, which is one of the major design parameters in 

this work. 

2.4   Condensation of the system during deformation analysis 

In general, while simulating metal forming processes, large-scale finite ele- 

ment models are required to capture in detail the thermo-mechanical behavior 

of the deforming material. In this work four-noded isoparametric quadrilateral 

elements have been used for discretization of the workpiece and the die.   Each 

of these nodes has two degrees of freedom.  Because each nodal degree of free- 

dom corresponds to one algebraic equation, the number of equations to be solved 

during analysis would be very large if many elements are used to describe the 

problem. This would result in a large size state space model, adding to the dif- 

ficulty and computational expense in integrating FEM with an optimal control 

algorithm.   In addition, most control design algorithms are efficient and effec- 

tive only while handling 50 or less state variables. Beyond this limit, numerical 

difficulty may be encountered during the computation and implementation pro- 

cess. There is thus a need for reducing the nodal degrees of freedom of the metal 

forming system represented by Eq. (2.16). 

A systematic condensation procedure has been developed wherein some of 

the important degrees of freedom of the system, including the nodal degrees of 

freedom for the 'element of interest', are retained, and those for the rest of the 

elements are condensed out of the system.  'Element of interest' actually refers 
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to the element(s) constituting critical regions in the billet where it is desired to 

achieve and maintain specific processing conditions. 

To condense Eq.  (2.16), the velocity field V has been divided into the fol- 

lowing five zones (Fig. 3): 

VT: Tangential nodal velocities along the die surface. 

YN: Nodal velocities with direction normal to the die surface. 

Vc: Fixed nodal degrees of freedom due to symmetric boundary condition. 

Vj: Nodal velocities of the element(s) of interest. 

V^: Nodal velocities of the other elements. 

Eq. (2.16) can now be rewritten based on the above definitions as, 

Ksn Ksi2 Ksn Ksli Ksi5 

KS21 KS22 KS2Z K„24 Ks25 

KS31 KS32 K3Z3 K334 -K"s35 

K34i KS42 Ks43 KsA* -Ks45 

.KS51 K3B2 Ks$3 -K"a54 KS55. 

VT 

VN 

Vi 
VB 

Vc 

+ 

Km Ktu Km Ktu Km 
Kt21 Kt22 Kt2Z Kt2A Kt25 
Ktzi Ktz2 Km KtzA Kt3s 
Kt41 Ku2 Kt43 Kui KtA5 
Kt5j Kt52 Ktss Ktu Ktss. 

AVT 

AVN 

AVi 
AVB 

AVcJ 

FT 

FN 

0 
0 
0 

(2.26) 

where Ksij and K«y are submatrices of K3 and Kt, and are determined based 

on their location in the billet. FT is the load vector associated with the friction 

force, and FN is the load vector related to the normal force at the die/billet 

interface. 
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Bottom Die 

•    = Nodes at the die contact boundary ( V T and VN ) 

= Nodes at the symmetric boundary    ( Vc) 

= Nodes of the element of interest ( Vi ) 

o   = Nodes of the rest elements ( V B ) 

Figure 3:  System condensation 
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Assuming die velocity is represented by Vd, the tangential and normal die 

velocities at the contact boundary are: 

Normal        Y^N — TyVd 

Tangential       VdT = TzVd 

(2.27) 

(2.28) 

where Tx and Tj, are the transformation vectors which contain the direction 

cosines of the local coordinates at every die contacting node. Referring to Fig. 

2, at the contact node i, the transformation vectors are given by, 

Txi = sin ati 

Tyi = cos ai 

(2.29) 

(2.30) 

In the nodal velocity discretization scheme described above, VJV is always equal 

to VdN, the normal component of the die velocity. Therefore, it is reasonable 

to set AVjy to zero. At surfaces having symmetric boundary conditions, the 

velocity components are zero in the direction of symmetry. So, we also have Vc 

and AVc equal to 0. These terms can therefore be dropped from the system 

equations. We are then left with the following boundary conditions: 

Vc = 0       AVC = 0 

VN = VdN = TyVd        AVtf = 0 

By applying these boundary conditions in Eq.   (2.26) and deleting the corre- 

sponding rows and columns, we have, 

Ksu Ksu    Ksi4 "VT" Km Km Km 'AVT 

Kszi KsZ3      Ks3i VI + Km Km Km AVj 

Ksu Ks43     Ksu. LvB .Km Km Kt44_ [AVB 
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FT - Ksi2VN 

-Ka32Vn (2.31) 

On the right side of Eq. (2.31), FT is obtained from the friction force calculation 

of Eq. (2.25) as, 
'VdT 

JSc J \ur\ 

-is. mkN T 
±x 

f UT 

dSVd 
(2.32) 

= hsVd 

where VdT = TxVd, and hs = /5c mfcNj^<f5.   Evaluating the above friction 

term along the whole interface, we have, 

FT = H3Vd 
(2.33) 

(2.34) 

The load vector may now be written as, 

FT - KSI2"VN HS - K3i2Ty 
-K„32VN       =       -KsnTy 
-K"S42VN      J      L     KswTy 

To solve and condense VB from Eq. (2.31), a forward difference approach is used 

to calculate AV#, where, 

AVB = yB-vB (2.35) 

Here, VB is the nodal velocity at time (t + At) and VB is the nodal velocity 

at time t. *VB is a known vector and treated as a constant vector in the time 

interval (t,t + At). By substituting Eq. (2.35) into the 3rd row of Eq. (2.31), we 

have, 

VB = [Ks44 + Kt44]-1 
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[-KS4iVT - Ks^Vj - Kt4i AVT - Kt4sAVi - Ks42VN + Kt44VB] 

Substituting this solution into the first and second rows of Eq. (2.31) gives the 

following reduced order equation: 

v-.-.i rAV_i       rn. i rür. i 
(2.36) 

KS21       KS22 

VT 

Vi 
+ Km    Km 

Kt21      Kt22 

AVT 

AV, G2 
Vd + w2\ 

where the submatrices and vectors are: 

Ksii = Ksii — (Ksi4 -I- Kti4 

K s43 

-1 K 

-l 

s41 

KS43 

LK 

-l 

t41 

Kt43 

Ka12 = KS13 — (Ksi4 + Ktl4) (Ks44 + Kt44 

Ka21 = KS31 — (KS34 + Kt34) (KS44 + Kt44 

KS22 = KS33 — (KS34 + Kt34) (Ks44 + Kt44 

Km = Ktll — (Ksi4 -f Ktl4) (KS44 + Kt44 

K*i2 = Ktl3 — (Ksi4 + Ktl4) (KS44 + Kt44 

Kt21 = Kt31 — (KS14 + Ktl4) (KS44 + Kt44 

Kf22 = KtS3 — (KS14 + Ktl4) (KS44 + Kt44 

Gi = Hs — Ksi2Ty + (K814 + Ktl4) (KS44 + Kt44)      Ks42Ty 

G2 = -Ks32Ty + (KS34 + Kt34) (K844 + Kt44)      KS42Ty 

Wi = - (KS14 + Ktw) (KS44 + Kt44)"1Kt44VB + Kti4VB 

W2 = - (Ks34 + Kt34) (Ks44 + K^^K^Vß + Kt34VB 

(KS44 + Kt44 
-1 K s41 

-1 

Kt41 

Kt43 

In Eq. (2.36), only Vy and Vj are retained. These are the nodal degrees of 

freedom needed in the process parameter design. The rest of the nodal degrees 
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of freedom are either eliminated or condensed. In this way, the order of the state 

space system is greatly reduced. 

2.5   State space model for deformation analysis 

In Eq. (2.36) if Ka, K*, G and W are defined as follows, 

s " IKS2I KS22; 

Kt - Ut2i Kt22; 

- (&)• * ■ (Si) 
and if, 

VS
T = [VT

T  V7
T] AV5

T = [AVT
T   AV7

T
] 

then equation (2.36) may be written as, 

K3V5 + KtAVs = GVd + W 

or, 

Kt AVS = -K3VS + GVi + W 

By multiplying and dividing the left side of the above equation by At, we have, 

[AtKt] ^ = -K.VS + GVd + W 

Now, by applying the limit, At —» 0, we have, 

[AtKt] ^ = -K,V5 + GVd + W (2.37) 
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where At is the time increment from one simulation step to the next. The above 

equation is in the standard state space format. By defining the plant matrix as, 

Ax> = -[A<Kt]     [K,] 

the input matrix as, 
i-i 

BD = [AtKt]     [Ö] 

and the constant perturbation vector (due to condensation) as, 

Wp=[AtKf]~
1[w] 

the condensed state space model for deformation analysis (Eq.   (2.37)) may be 

rewritten as: 

^ = ADVS + BDVd + Wz, (2.38) 
dt 

where V5 is the state vector containing the nodal velocities associated with the 

element of interest and the nodal velocities of the die-contacting boundary nodes. 

The plant matrix, input matrix, and perturbation vector have been described 

above, and Vd (die velocity) is the input (scalar) to the system represented in the 

above equation. 
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CHAPTER 3 

State Space Model for Thermal Analysis 

3.1   Finite element equations for heat transfer 

The consideration of temperature effects in metal forming is very important 

because thermal effects accompanying the deformation process strongly influence 

the mechanical and material properties of the final product. In addition to defor- 

mation analysis, nonisothermal metal forming simulation needs a comprehensive 

thermal analysis procedure to determine the temperature distribution in the bil- 

let and die domains. The thermal analysis involves several separate bodies like 

the die, workpiece, and lubricant, and takes into account the thermal interplay 

between each of them. The die and billet are discretized (Fig. 4), and finite 

element analysis for each of these bodies is conducted separately. Heat transfer 

between the distinct bodies through the region of contact is modeled by enforc- 

ing consistent heat transfer boundary conditions. Generally, for nonisothermal 

forming processes, a coupled thermo-viscoplastic analysis is carried out wherein 

it is necessary to simultaneously solve the material flow problem (for a given 

temperature distribution) and the heat transfer equations. This section gives an 

overview of the thermal analysis procedure for metal forming simulation using 

the finite element method [27,34]. 
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Figure 4: FEM discretization of the die body 
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Consider a body in thermal equilibrium under a specific set of prescribed 

thermal boundary conditions (Fig. 5). The energy balance equation for heat 

transfer analysis is given by, 

AT 
V-q-r + pc— =0 (3.1) 

at 

where p and c are the mass density and specific heat, respectively; r is the heat 

generation rate, T is the current temperature, and t refers to time. Also, q is 

the heat flux, and can be written using Fourier's law of heat transfer as, 

q = -kc • VT (3.2) 

where kc denotes thermal conductivity, and VT is the spatial gradient of tem- 

perature. In Eq. (3.1), V • q refers to the divergence of heat flux, which is given 

by, V • q = f^3-, where Xm is the m-coordinate value for a generic point P in 

the body domain. If the heat generation in the deforming body is assumed to be 

due to plastic deformation only, then, 

T = KCTijSij (3.3) 

where the heat generation efficiency K represents the fraction of mechanical en- 

ergy transformed into heat (which is generally assumed to be 0.9). In this work, 

two types of boundary conditions are considered over the body surface (Fig. 5). 

On surface ST, the temperature is prescribed as: 

T = f cm        ST (3.4) 
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On surface Sq, the heat flux is specified as: 

n • q + g = 0 on        Sq — Sj -f Se (3.5) 

where q is the heat flux due to conduction, and n is a unit vector acting normal 

to the body surface in an outwards direction, q represents heat flux due to 

convection (and/or radiation) boundary conditions and heat generated due to 

friction in the die-workpiece contact area. 5/ is the die-workpiece interface, and 

Se represents the surface exposed to the environment. 

Using the Galerkin weighted residual approach, with 6T (i. e., virtual temper- 

ature increment) as the weighting function, a weak form of Eq. (3.1) is obtained 

as [27], 

dT 

lA V • (kc • VT) + r-pc 
dt 

STdV + f {q + n • q) STdS = 0 (3.6) 

where S is the total surface area of the body (5 = 5j + Sq), and V is the 

current volume of the body. Solutions to problems of this nature require that 

the temperature field satisfies the prescribed boundary conditions and Eq. (3.6) 

for an arbitrary perturbation St. 

To implement the finite element procedure, the temperature field in Eq. (3.6) 

is discretized and approximated as, 

T = N?T (3.7) 

For a quadrilateral element, the shape function vector, N, and the vector of nodal 

temperatures, T, are given by, 

N? = [qi q2 qz <Z4] TT = [Tj T2 T3 T4] 
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where q{ is the shape function, and T; is the nodal temperature. By substituting 

Eq. (3-7) into Eq. (3.6) and expanding, the finite element governing equation 

for heat transfer analysis is obtained, as shown below: 

CTt + KCT = QT (3-8) 

where CT is the heat capacity matrix, Kc is the heat conduction matrix, QT is 

the heat flux vector, and T is the vector of nodal point temperatures. 

The transient thermal behavior of the body is captured in an incremental 

manner by considering a series of discrete thermal equilibrium states, each corre- 

sponding to a specific value of time. The nth discrete equilibrium state is assumed 

to correspond to the time value (t) and the subsequent, or (n + l)th equilibrium 

state is assumed to correspond to time (t + At) where At is the (current) time 

increment value. Therefore, for a particular CT and Kc, Eq. (3.8) is used to 

obtain the temperature solution in the interval {t,t + At). Then, CT and Kc are 

updated, and the procedure is repeated for the next time step. 

In Eq. (3.8), the heat flux vector QT has several components and is expressed 

as: 

QT = / «(a!) ™TdV + f   <re (Te
4 - T?) NTdS 

JV " &e 
(3.9) 

+ f  h(Te-Ts)KTdS+ [  hlub(Td-Tw)NTdS+l   qfNTdS 
JSe JS' ' 

where Se refers to the surface where convection and radiation boundary con- 

ditions are specified. Sj is the surface where interface heat transfer conditions 

apply. 
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The first term on the right side of Eq. (3.9) is the heat generated by plastic 

deformation within the deforming body. The second term defines the heat ra- 

diated between the workpiece and environment, where cr is the Stefan-Boltzman 

constant, e is the emissivity, and Te and Ts are environment and surface tem- 

peratures, respectively. The third term describes the heat convected from the 

body to the environment with heat convection coefficient h. The fourth term 

represents the heat conducted between the die/workpiece through their inter- 

face. Tj, and Tw are die and workpiece temperatures, respectively, and hiuj, is the 

heat transfer coefficient for the lubricant. The last term is the contribution of 

the heat generated due to friction along the die-workpiece interface, qf being the 

surface heat generation rate due to friction. 

3.2   State space model for thermal analysis 

From the finite element governing equations for thermal analysis, a state 

space model representing the thermal aspects of the metal forming process is 

constructed. To build the state space model for thermal analysis, Eq. (3.8) first 

must be expressed in terms of the state variables, namely the nodal velocities and 

nodal temperatures. The most difficult task in achieving this is the representation 

of the thermal load vector of Eq. (3.8) in terms of the state variables. This is done 

by considering one term at a time from Eq. (3.9). The procedure is described 

below: 

42 



(1)   Jvn(äE)NTdV 
Using Eq. (2.18) to describe I, we have, 

/ K (*g) T$TdV = j Y?NTdV 

= f ^NTvTP^v 
Jv e 

= [ ^NTvJP<£Fv 
JV   £ 

(3.10) 

where v is the nodal velocity vector for the element under consideration (un- 

known), KE = Jv ^Nrv^PdV, and v* is the vector of nodal velocities (known 

quantity) at the beginning of the current time step. KE is therefore constant for 

the current time step. 

(2) JSe <re(re
4 - T})KTdS 

It is generally tedious to linearize a fourth order term such as the radiation 

heat transfer term shown above. In addition, the magnitude of the radiation 

term was found to be insignificant when compared to the other heat transfer 

terms. It has thus been neglected for the course of this work. 

(3) JSeh(Te-T3)NTdS 

l  h(Te-Ts)NTdS= f  KNTdSTe- f  hNTT3dS 
JSe JSe JSe 

= /  hNTdSTe - [  KNT^dSTa (3-n) 
JSe JSe 

— HeTe — KBTS 
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where He = /5e hNTdS, and KB = JSe hNTN%dS. 

(4)   JS] hlub(Td - Tw)NTdS 

Similar to the procedure used in (3), this term can be expressed as, 

/   hlub{Td-Tw)NTdS = UdTd-KWTW (3.12) 
JSj 

where Hd = /5/ hlubNTdS, and Kw = JS} hlubNTTSl'%dS. 

(5)   Ss,qfNTdS 

The heat generated due to friction, qf, is calculated as, 

9/ = //Kl 

where ff is the frictional stress, and from Eq. (2.25), 

// = -mkNT
f^- 

Now, we have, 

/   qfNTdS = I   -mfcNrNjdSvT 
JSj JSj 

= f   -mfcNrNjd5vT + f  mkNT'N'fTxdSVd (3-13) 
JSj J Sj 

= -KfVT + BDTVJ 

where Kf = Js mAjN^NTdS, and ~QDT — Jsr "ifcNrNyTzd5. The explanation 

of some of the terms described above may be obtained from section 2.3 describing 
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the interface frictional stresses. Substituting Eqs.(3.10) through (3.13) into Eq. 

(3.9), and expanding, we have, 

QT = KEv - K/VT - K£TS - KwTtt + HdTd + HeTe + BDTVd (3.14) 

Also, from Eq. (3.8), we have, 

^^-CT-'KCT + CT-'QT (3.15) 
at 

Substituting Eq. (3.14) into Eq. (3.15) and rearranging the terms, the full size 

state space model for thermal analysis is obtained as, 

^ = AZJTV + ATT + BDTVd + WT (3.16) 
at 

where ADT consists of the matrices KJJ, K/, and CT; V represents the velocity 

field explained in section 2.4; AT is built from K5, Kw, Kc and CT; and WT 

consists of HdTd and HeTe. Similar to the deformation state space model, all the 

matrices in Eq. (3.16) are built at time step t, and are assumed to be constant 

for the time interval At. 

3.3   Condensation of the thermal state space model 

In nonisothermal forging analysis, the analytical (state space) model repre- 

sents a coupled deformation-thermal system which has both nodal velocities and 

nodal temperatures as the nodal degrees of freedom. The total number of finite 

element equations to solve is (comparatively) much higher than in isothermal 

analysis. It is thus necessary to condense the thermal state space system to re- 

duce the number of degrees of freedom involved.   Eq.   (3.16) has two distinct 
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parts: AjgjV, related to deformation, and Aj-T, related to temperature effects. 

Therefore, system condensation is performed in two stages, one related to velocity 

field condensation and the other dealing with temperature field condensation. 

(1) Condensation of the velocity field: 

Similar to the condensation of the deformation model, the velocity field is 

partitioned into five zones, and A.DT is expanded based on these zones as, 

ADJV = ADTIVT + ADT2VN + ADTSVI + ADT-IVB + ADTSVC       (3-17) 

Now, from Eq. (2.16), we have, 

Because Av is small compared to v, and because Ap^V is not a significant part 

of the heat flux in a hydraulic press forging process, the term K* Av is left out to 

simplify the thermal condensation process. Now, we can solve for V# from the 

above two equations as, 

Vjs = K;i [-K84iVT - K343V7 - KaA2TyVd] (3.18) 

In addition, 

VJV = TyVd 

Substituting Vjv and Vß into Eq. (3.17) and setting Yc = 0 (symmetric bound- 

ary condition), we have, 

ADTV = AxjTiVy + ApT^Vj + B'uyV^ 

where, 

ADTI = Ax>Ti - A£>T4K744K34i 
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Ä-DT2 = A-DT3 — A£)T4KJ44K«43 

&DT = {A-DT2 - ADT4K744K,42J TJ, 

Substituting these expressions into Eq. (3.16) and setting 

Ä-DT = [Ä-DTl   ÄDT2] OPT = &DT + Bz?T, 

the thermal state space model after velocity condensation may be represented 

as: 

dt 
= ADT 

VT + ATT + BDTVd + Wr 
(3.19) 

Here, the retained velocity field consists of nodal velocities of the die-contacting 

boundary nodes and nodal velocities of the nodes constituting the element of in- 

terest. 

(2) Condensation of the temperature field: 

The second stage of condensation is done with respect to the temperature 

field so as to retain the 'critical' nodal temperatures. To be consistent with the 

deformation condensation, the 'critical' nodal temperatures are identified as tem- 

peratures of the nodes at the die-workpiece boundary, and temperatures of the 

nodes constituting the element of interest. In accordance, the temperature field 

is divided into two zones. The first one consists of the temperatures of interest 

Tj, which in turn includes the nodal temperatures at the die-billet interface and 

the nodal temperatures of the element(s) of interest. The rest of the nodal tem- 

peratures are put into the second group represented as TM- Eq. (3.19) is now 

partitioned and rearranged as follows: 

It 
T/ ADTU      A.DT12 

. ÄDT21      -A-DT22. [VI 
+ ATU    ATU 

AT21      A.T22. 

Ti 
TM 

+ 
. Br>T2. 

Vd + 
WTi' 
WT2. 
(3.20) 
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Assume Tji/ is the unknown temperature field at (t-\- At) and Tjv/ constitutes the 

known temperatures at time t. Using the forward difference scheme, we have, 

dt    ~        At 

Substituting the above expression into the 2nd row of Eq. (3.20) and solving for 

TM, we get, 

TM =Ai[I - A*AT22]_1 [ÄuT21Vr + ÄDT22Vi + AT21T7 + BDT2Vd + WT2 

+ [I-AiAT22]-1TAf 

(3.21) 

where I is the unit (or identity) matrix. By substituting Eq. (3.21) into the 1st 

row of Eq. (3.20) and rearranging, the following equation is obtained: 

dTj 

dt 
KDT V/J + KTPT7 + BTPVd + WTP (3.22) 

where, 

KDT = [KDTI K£>T2J 

KDTI = ApTu + An2Ai[I - A*AT22]   ADT2I 

KDT2 = ^-DT12 + Ar12Af[I - AtAy22]     Ä-DT22 

KTP = AT11 + AT12 At[I - AiAr22]_ AT21 

BTP = BjDTl + AJI2 At[I — AtAx22]     Bz)T2 

WTP = WT1 + AT12 At[I - A*AT22]-1WT2 + AT12[I - A<AT22]_1T^ 

Eq. (3.22) represents the condensed state space model for thermal analysis. Here ' 

again, all the matrices are built at time t and are considered to be invariant for 

the time interval At. -4 
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CHAPTER 4 

Coupled Thermo-mechanical State Space Model 

4.1   Construction of the control output matrix 

As mentioned earlier, for this work the effective strain rate of the element of 

interest has been identified as an important process variable to be monitored and 

controlled. At the same time, since nodal velocities (explained earlier) have been 

chosen as the state variables, it is necessary to formulate an output equation 

to represent the strain rate in terms of the nodal velocities. The relationship 

between the strain rate and nodal velocities is a nonlinear function over the entire 

domain of the process. Therefore, at every simulation time step a linearization 

is performed to formulate the output equation. 

Let v represent the nodal velocities of the nodes constituting the element of 

interest. Also assume the current state space model is built with the velocity 

field v* and is valid until time t. Then, in the next time step (t to t + At), the 

velocity field may be described as, 

= v* + Av (4-1) 

From Eq. (2.18) and Eq. (4.1), 

t2 = vTPv 

= (v, + Av)TP(v, + Av) I4-2) 

= vf Pv, + AvTPv, + vf PAv + AvTPAv 
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Because the last term in the above equation is a higher order term, it may be 

neglected. The second term can be expanded as, 

= E(E«.;*;W (4'3) 

= v?PTAv 

From Chapter 2, P is equal to BJDBJ, and D is a diagonal matrix implying 

PT = P. Now, from Eq. (4.3), 

AvTPv, = vJPrAv 

= vTPAv 
(4.4) 

By substituting these relations into Eq. (4.2), 

t2 = vfPv* + 2v^PAv 

Now, by defining, 

= vJPv» + 2v^PAv + v^Pv* - vfPv* 

= 2vfPv<, + 2v^PAv - vJPv» (4.5) 

= 2vJP (v* + Av) - vJPv* 

= 2v^Pv - vJPv, 

2vJP = C!        vJPv» = ex 

a linearized relationship between effective strain rate and nodal velocities is ob- 

tained, given by, 

(I)   = CiV - ei (4.6) 
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4.2   Coupled state space system 

In the state space model for deformation analysis, the state vector is given by 

[ VT VJ ]T- If the strain-rate squared of the element of interest (element I) is 

defined as lj, the following output equation for deformation analysis is obtained: 

sJ = C! + Ej (4.7) 

Strain-rate squared is used as the output variable instead of the strain-rate be- 

cause it is difficult to obtain a linearized relationship between I and v.   Also, 

since I is always positive, t gives almost the same information as I.   The ci 

and ei in Eq.   (4.6) have been placed in the corresponding rows and columns 

of Ci and Ei, which are in turn related to the nodal velocities associated with 

the element of interest.  In the thermal state space model, the state vector Tj 

contains the nodal temperatures of the die-contacting boundary nodes, and the 

nodal temperatures of the element(s) of interest.   Theoretically (and from an 

implementation point of view), it is difficult to include all of these temperatures 

in the optimal design. One effective way to circumvent this problem is to select 

one critical nodal temperature from the set Ti to be the output variable.   For 

example, if the objective is to keep all the nodal temperatures above a certain 

value, then the lowest nodal temperature could be selected as the critical nodal 

temperature. With the critical nodal temperature controlled, the rest of nodal 

temperatures would also be in the desired temperature range.   If the critical 

temperature is Tc, the output equation for the thermal analysis becomes, 

Tc = C2T7 (4.8) 
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where, C2 is a matrix with the diagonal element(s) equal to 1, corresponding to 

the critical nodal temperature, while the rest of the diagonal elements are zeros. 

In this study, the state vector is defined as x, where, 

xT = [ VT
S   Tj ] (4.9) 

and Vs and Tj are the state variables corresponding to deformation and thermal 

analysis, respectively. V5 includes the nodal velocities of the die-contacting 

boundary nodes and the nodal velocities of the nodes constituting the element 

of interest. Tj contains the nodal temperatures of the boundary nodes and the 

nodal temperatures of the nodes forming the element of interest. 

The output vector for the coupled thermo-mechanical system is defined as y, 

where, 

yT = [ i) Tl} (4.10) 

Here, %i is the strain rate of the element of interest (explained earlier), and He 

is the critical nodal temperature as discussed above. 

With the above definitions, a coupled thermo-mechanical state space model 

for nonisothermal metal forming processes can be obtained by grouping together 

the deformation state space model of Eq. (2.38) and the thermal state space 

model of Eq. (3.22). Then, 

x = Ax + BVd + W 
(4.11) 

y = Cx + E 
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where A is the plant matrix and is given by 

A = 
AD        0 

B is the input matrix given by, 

B    - [ &D ^TP \ 

W is a constant vector given by, 

wT = [w£w?P] 

C is the output matrix, where, 

Ci     0 
0    c2 

and E is a constant vector in (i,i + At) given by, 

ET=[E?0T] 

It should be noted that W contains certain terms coming from the condensa- 

tion procedure. In keeping these terms, the error between the condensed model 

and the full size model is reduced considerably, especially for large scale problem- 

s. Comparing with standard state space models generally used in control system 

theory, Eq. (4.6) maybe treated as a system with constant perturbation W. The 

model is built and updated at each time step of the simulation. An unique feature 

of this system is that the geometry of the workpiece and the boundary condition 

keeps changing with progress in deformation. Because of this, the dimension of 

the plant matrix and other matrices representing the system also changes with 

increasing stroke. 
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CHAPTER 5 

Process Parameter Design Using Optimal Control Theory 

5.1   Design strategy 

To establish an effective design strategy, it is important to understand the 

essential characteristics of the system and the relationship between the vari- 

ous interacting parameters and field variables. Chapters 2, 3 and 4 described the 

different field variables and design parameters being considered, and the relation- 

ship between them. This section describes the setting up of the optimal control 

problem for forging processes and the general strategy adopted for solving it. 

In this work, the design goal is to monitor and control two important pro- 

cess variables associated with the deformation process, namely effective strain 

rate and nodal temperature. Effective strain-rate is directly dependent on nodal 

velocities; it is therefore an instantaneous quantity and may be directly influ- 

enced by changes in the die velocity. However, there are some system dependent 

constraints on how effectively the strain rate may be controlled while simulating 

the forging process. The metal working process, though nonlinear in nature, is 

treated in a piecewise continuous manner by linearizing it at every simulation 

time step. The deformation analysis therefore does not allow a large change in 

effective strain in one time step of the simulation. This constraint is represented 

by the maximum strain increment per step in ALPID. In addition, there are 

other constraints such as the forging machine's acceleration capability. But it is 
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an accepted fact in the metal forming field that strain rate in the billet may be 

controlled by suitably adjusting the die velocity. Therefore, a design methodolo- 

gy based on control theory is developed to design optimal ram velocity schedules 

that meet the design requirements on the strain rate. Generally, the design ob- 

jective is to maintain the effective strain-rate at some desired value, or within a 

range of desired values.   Considering that the strain-rate at time t may be far 

away from the desired value, to achieve the above objective a tracking problem 

needs to be formulated, wherein the desired value may be reached after a finite 

number of steps, and from then on maintained at this value. At each time step, 

an optimal die velocity is generated based on the desired strain-rate value at that 

step, which is defined as zu, where T stands for the current step number, zu is 

decided by the final desired strain-rate value (ed), the effective strain-rate value 

from the previous step (e;-i), and the specified constraints. This may be stated 

mathematically as, 

zv 
_ Jf;_i ±mxki-i,    l^ii — £d| > 0.03ed /& ^ 
"Ud, |Zli-!d|<0.03^ 

where mx is a suitable percentage value (usually less than 5%) based on the 

machine's acceleration capability and the strain increment limit [58]. 

Temperature design is a much more difficult and complicated issue than veloc- 

ity design. From chapter 3 it is observed that nodal temperatures are influenced 

by a number of heat generation and heat transfer terms. The first term in Eq. 

(3.9) (deformation heat generation) is dependent on the type of forging process 

used. This term plays a more important role in high speed forging processes like 

mechanical press forging (about 20 in/sec ram velocity) or hammer (about 80 

in/sec ram velocity) forging. For these processes changing the die velocity in the 
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middle of the process is virtually impossible because of the high inertia of the die 

and the very short processing time involved. Therefore, in this study we confine 

ourselves to conventional forging processes utilizing hydraulic presses having ram 

velocities below 5 in/sec. Earlier, Boer et. al. [59] designed a varying die veloc- 

ity profile for processing NIM80A material and implemented it on a hydraulic 

machine with a microcomputer as the controller. Since hydraulic presses oper- 

ate at relatively low die velocities, the deformation heat generation is not very 

significant. Generally, while performing forging using hydraulic-type machines, 

the temperature in the middle of the billet increases by 30 to 40° F, while on 

the boundary surface this effect is totally counteracted by the die chilling effect, 

which is explained below. 

The last four terms in Eq. (3.9) mainly affect the boundary surface tempera- 

ture. Among these terms, the radiation heat term is neglected because it has an 

insignificant magnitude when compared to the other terms. Also, if the process 

does not last very long, the convection heat loss is again not very significant. At 

the boundaries, the friction heat has some influence on the temperature, but is 

still not the dominant term. The dominant factor is the heat conducted between 

the billet and die through the interface. Because the die temperature is usually 

much lower than that of the billet (up to 1000° F at times) the heat transfer due 

to conduction between these two bodies is very large, and a severe temperature 

gradient exists at the die-workpiece boundary. This phenomenon is called the 

die chilling effect. Compared to the 40°F increase in temperature in the middle 

of the billet due to deformation heat generation, the boundary temperature has 

a 300 to 400°F reduction in temperature due to the die chilling effect.   Due to 
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the large temperature gradient between the center of the billet and the contact 

boundary, severe thermal stresses are induced which can radically increase die 

wear. The die chilling effect also affects the microstructure and mechanical prop- 

erties of the workpiece because the resulting temperature gradient could result 

in a non-uniform distribution of service properties in the billet. Therefore, in 

this study, one of the primary goals is to determine a method to alleviate the die 

chilling effect. Since this phenomenon occurs mainly at the boundaries, only the 

treatment of boundary nodal temperatures was taken up during this work. 

The difficulties involved in boundary nodal temperature control are appar- 

ent from its following two characteristics. First, temperature is an accumulated 

value and not an instantaneous quantity like strain rate.   Second, it is not di- 

rectly influenced by the die velocity.   So, changes made in die velocity at some 

instant in time do not immediately affect the temperature. In this work, the ob- 

jective selected for temperature control is to reduce the temperature range in the 

workpiece material. This is desirable because it would result in a more uniform 

distribution of mechanical properties in the final product. Since temperature is 

not easily controllable, for the scope of this work the goal is confined to raising 

the nodal temperatures above a specified value rather than trying to maintain 

them at the given value.  To achieve the above objectives, the design scheme is 

again formulated as a tracking problem, and the lowest boundary nodal temper- 

ature is selected as the design parameter to achieve this goal. The logic behind 

this is if the lowest boundary temperature is maintained above a certain value, all 

the other boundary nodal temperatures would also be above the specified value. 
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Similar to strain-rate control, we define the desired nodal temperature at step 

i as Z2i, which can be generated in two ways. One way is to use the following 

formula: 

Z2i = Ti-1+gdi-i{l-n)At (5.2) 

where T;_i is the nodal temperature at step (i-1), and gd{-\ is the temperature 

gradient at step (i-1). n is a positive percentage value usually less than 3% and 

is again determined based on the machine capabilities and the strain increment 

limit. The objective of Eq. (5.2) is to reduce the temperature range by reducing 

the temperature gradient at each simulation step. Though it cannot give an 

accurate control of temperature, it is quite suitable for nonisothermal design 

involving die velocity as the lone design variable. The other method of defining 

the desired nodal temperature is by inputting a known polynomial approximation 

of the required temperature into the design scheme, as discussed later in the 

report. 

In the nonisothermal design process, the output vector contains at least two 

output variables: the effective strain-rate and the nodal temperature. Without 

the initial die temperature parameter (explained later), the only control input 

is the die velocity. From control system theory, this is a single input multiple 

output (SIMO) system. The forging system also contains a constant vector W in 

the system equation, which may be treated as a constant perturbation term [60]. 

For problems of this nature, several kinds of optimal control schemes have been 

developed. For example, the robust servomechanism design in reference 61 uses 

two servocompensators so that the resulting system is stable, and the steady-state 

error is zero for all kinds of disturbances. That means the disturbance could occur 
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in the system matrices, input/output vectors, or the feedback channels. The 

Proportional plus Integral state feedback design in reference 60 uses an integral 

feedback to eliminate the steady-state error caused by a known or unknown 

constant disturbance. However, the above two design schemes have the basic 

requirement that the number of control inputs should not be less than the number 

of system outputs. Therefore, this scheme cannot be utilized in the current SIMO 

problem. 

In this work, the linear quadratic regulator (LQR) theory is used as a design 

tool for determining the optimal (forging) process parameters. LQR theory is 

one of the most popular design methods in optimal control. It is a proportional 

feedback design and can be used for SIMO and SISO systems. In this study, a 

terminal condition is also introduced into the standard LQR quadratic perfor- 

mance index to improve the error characteristics of the system. From Eq. (4.11), 

for step i which lasts from time t to (i + At), the desired value vector may be 

defined as, 

Zi   = [zii z2i] 

and the error vector may be expressed as, 

e;(i) = Zi-yi(i) t<=(i,t + At) 

Now, the following performance index may be used in the optimal design scheme: 

J = ief (At) Me; (At) + \ jf**  [ej (t) Qe; (t) + Uf (f) RUf (t)] dt (5.3) 

where M, Q, and R are the weighting matrices for the terminal condition, error, 

and input term, respectively, and U; is the input vector. For the isothermal case, 
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or in cases where only die velocity design is considered, U{(i) = [V^,-(<)]. If initial 

die temperature design is also performed, Vj(t) = [Vdi(t) ATdi(t)], where ATdi 

is the initial die temperature adjustment parameter. Minimization of Eq. (5.3) 

gives [60]: 

Ui (0 = -R^B1 [Ki (t) x (0 - gi («)] (5.4) 

where K;(i) and g;(f) are the solutions to the differential Riccati equations given 

by, 

Ki (t) = -Ki (t) A - ATKi (*) + Ki (0 BR"1BTKi (t) - CTQC 

gi (t) = [Ki (t) BR-'B1 - AT] gi (*) - CTQZi + K{ (t) Wr (5.5) 

In Eq. (5.5), Ki and gi are time dependent, and are not constant because 

of the finite time integral in the performance index. However, if the output 

is more than the control input, there may be no solution for the infinite time 

optimal tracking problem [60]. Eq. (5.4) gives a solution series in the time 

interval (t,t + At). To make the process more efficient and for reducing the 

computational time, the average of this solution series is taken as the optimal 

design, i.e., 

voPt = 2         tje{t,t + At) (5.6) 
n 

where n is the number of smaller time intervals into which step i is divided for 

solving Eq. (5.5). For most cases, it has been observed that Eq. (5.6) is a 

reasonably good and acceptable assumption. 

To give an overview of the methodology, the state space model is developed 

based on the finite element simulation, and then the LQR design scheme is used 
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to design the optimal process parameters. This is an off-line design scheme, and 

the purpose is to use control theory as a design tool rather than to design a 

practical control system. The emphasis is on obtaining die velocity profiles and 

the initial die temperature, rather than in stabilizing the control loops as done in 

classical control system design. The entire design scheme developed is illustrated 

in Fig. 6. 

During nonisothermal forging process design, the strain-rate control and the 

temperature control may have a conflicting requirement on the die velocity. For 

example, the strain rate control may need the die velocity to be reduced; at the 

same time the temperature control may actually require the die velocity to be 

increased. In such a situation the strain-rate control is given higher priority be- 

cause the strain-rate is more sensitive to changes in the die velocity. Therefore, 

in this design scheme, if the above mentioned conflict occurs, the die velocity 

is decided based on the strain-rate. Actually, temperature is not an easily con- 

trollable quantity and the main contribution of the optimal die velocity design 

to the thermal aspect of the process is in reducing the temperature range in 

the deforming billet by reducing the die-workpiece contact time. This may not 

always be possible, though, and a more effective way to directly influence the 

interface temperature is by designing an appropriate initial die temperature for 

the process. 
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Figure 6: Design scheme flow chart 
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5.2   Initial die temperature design 

Because of the strong die chilling effect during hydraulic press forging, the 

most efficient way to influence the boundary nodal temperatures and reduce the 

temperature range in the workpiece is by designing the initial die temperature. 

Since the entire design methodology is based on the LQR design scheme, it is 

preferable to continue to apply the LQR method for initial die temperature design 

also. But, LQR is a step by step design scheme, while initial die temperature 

is a single value and needs to be specified at the beginnning of the process. To 

solve this problem, the following design approach is proposed. 

In this scheme, a new design variable called die temperature adjustment 

(ATd) is introduced. By adding ATd to the present die temperature (Td) the 

total die temperature is given by (Td + AT,*), and Eq. (3.12) may now be written 

as, 

/  hlub {Td + ATd - Tw) TSiTdS = HdTd + KdATd - K^TW 
JSf 

By using this equation instead of Eq. (3.12) in developing the state space model, 

the modified state equation may be written as, 

x = Ax + 
BD      0 

. BT\P   Hd 
Vd 

[ATd 
+ Wr (5.7) 

The difference between Eq. (4.11) and Eq. (5.7) is that in the latter, the input 

matrix B has been expanded and now there are two input variables instead of 

one. If ATd = 0, then Eq. (5.7) will yield the same results as Eq. (4.11). The 

term KdATd actually changes the temperature gradient at each step by a certain 

amount. H^ mainly contains shape functions and heat transfer coefficients and 
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does not change much during the whole process. For a case in which the tem- 

perature gradient needs to be reduced by the same amount at each time step (by 

applying the ATd correction), nearly the same ATd value may be expected from 

the LQR design scheme. This suggests that to achieve the design objective, the 

actual initial die temperature should be changed by the average value of ATd for 

all the time steps, i.e., 
EATd 

ATdo = -*  (5-8) n 

where * is the design step count and n is the total number of design steps.  It 

has been found that with the (new) initial die temperature (Td + ATd0) designed 

in this manner, the boundary nodal temperature may be altered sufficiently to 

meet the design requirement. 

To implement this scheme, the key issue during initial die temperature design 

is how to generate a desired nodal temperature profile which not only satisfies the 

design requirement, but also gives nearly the same temperature gradient change 

at each design step. Through parametric studies it was found that for hydraulic 

press forging, the temperature curve of a die-contacting node is nearly a straight 

fine.   Therefore, we may with reasonable accuracy use a 3rd order polynomial 

to approximate the temperature path of a particular node with respect to time. 

Then, by changing the coefficient of the first order term in the polynomial, we 

can generate the desired temperature profile.   The problem now becomes one 

of tracking the desired temperature profile.   The above design scheme works 

successfully if the die temperature is not very close to the billet temperature, 

and if the die velocity does not vary by a significant amount. These conditions 

hold good in most hot die forging cases.  The detailed procedure for designing 

64 



the initial die temperature is explained in the numerical examples section of this 

report. 

5.3   LQR design scheme 

In Eq. (4.11) E is a constant vector and can be grouped into the left side 

of the output equation, with the vector of desired values. Now, the state space 

model representing the system may be written as, 

x = Ax + Bu + W (5.9) 

y = Cx (5.10) 

where the state vector x has a dimension n, the input vector u has a dimension 

m and the output vector y has a dimension p. n, m, and p refer to the number 

of states, number of inputs, and number of outputs in the system, respectively. 

Then, A (system matrix) is a n x n matrix, B (input matrix) is a n x m matrix, 

and C (output matrix) is a p x n matrix. W is a known vector resulting from 

the finite element condensation procedure. During the derivation, to make the 

notations simple, the integration limits are set as to = tk and T = tk + At, 

where t0 and T are the lower and upper integration limits in the performance 

index equation. If the desired output is z, and the error vector is e = z - y, the 

performance index is given by, 

J = \eT (T) Me (T) + ± f [eT (t) Q (t) e (t) + uT (t) Ru (*)] dt 

where Q is a n x n semi-positive definite matrix for weighting the error vector, 

R is a m x m positive definite matrix for weighting the input vector, and M is 
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a semi-positive definite matrix used for weighting the terminal condition. The 

method of selection of these weighting matrices is explained in section 5.4 of this 

chapter. Some important steps in the derivation of the optimal control scheme 

are described below [49]. The error vector, e, may be written as, 

e = z-Cx (5.11) 

By following the standard state space equation solving procedure, and by sub- 

stituting Eq. (5.11) into the performance index, the Hamiltonian function may 

be written as, 

H = hz - Cx]TQ [z - Cx] -f JuTRu + xTATA + uTBTA + WTA 

where A is a Lagrange multiplier. From the condition, ^ = 0, we have, 

Ru + BTA = 0 

u = -R_1BTA (5.12) 

From A = -^,we have, 

A = -CTQCx + CTQz - ATA (5.13) 

By substituting Eq. (5.12) into Eq. (5.9), 

x = Ax - BR_1BTA + W (5.14) 

Now, by defining the following terms, 

S = BR_1BT 

V = CTQC 
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P = CTQ 

we can group Eq. (5.13) and Eq. (5.14) as, 

A       -S 
-V    -AT + Wr 

Pz 
(5.15) 

This represents a 2n x 2n system, where n is the number of states in the state 

space model. 

If $ is the state transition matrix, the solution to Eq. (5.15) is given by, 

Al $]-™ft$] + jf •"<'•'> 
W(T)T(T) 

P(r)z(r) 
dr (5.16) 

i.e., 

*(T)1 
A(T) 

= $(T,i) 
x(i) 

MO 
+ &(*) 

L»(0 
(5.17) 

The 2ra boundary conditions corresponding to the current system are, 

t = to,        x (i0) = £ 

A(T) = 
ftc(T) 

-eT(T)Me(T) 

t = T; 

CT (T) MC (T) x (T) - CT (T) Mz (T) 

Now, by defining      CT(T)MC(T) = G(T), we have, 

A (T) = G (T) x (T) - CT (T) Mz (T) (5.18) 

Also, say, 

*(T,t) = 
$11      #12 

$21      $12 
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Then, Eq. (5.17) becomes, 

x(T) 
X(T)\ $21 

*12 

$12 

x(T) 
LA(T) + gi(0 

Substituting Eq. (5.18) into the above equation, we have: 

A {t) = [#22 - G*«]-1 ([G#n - *2i] x (0 + [Ggl (t) - g2 (0 - CT (T) Mz]) 

Now, by assuming, 

K (0 = [$22 - GSn]"1 [G*n - #21] 

g (0 = [*22 - G*^-1 [Ggl (0 - g2 (0 - CT (T) Mz 

we have, 

A = K(t)x(*)-g(0 

(5.19) 

(5.20) 

(5.21) 

where K(i) is a n x n time-varying matrix, and g(t) is a n-dimensional vector. 

By differentiating Eq. (5.21) with respect to t, we have, 

A = Kx + Kx - g (5.22) 

Then, substituting Eq. (5.21) into Eq. (5.14), we get, 

x = [A - SK] x + Sg + Wr (5.23) 

Now, substituting Eq. (5.23) into Eq. (5.22), we get, 

A = [K + KA - KSK] x + KSg + KWr - g (5.24) 
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Substituting Eq. (5.21) into Eq. (5.13), A may also be written as, 

Ä = [-V - ATK] x + ATg + Pz (5.25) 

Comparing Eq. (5.24) and Eq. (5.25), we have, 

K = -KA - ATK + KSK - V 

i.e., 

and, 

K = -KA - ATK + KBR"1BTK - C^QC (5.26) 

g = [KBR-XBT - AT] g - CTQz + KWr (5.27) 

The above equations are the differential Riccati equations mentioned in section 

(5.1). The corresponding boundary condition for this system is: 

A(T) = K(T)x(T)-g(T) 

A (T) = CT (T) MC (T) - CTMz (T) 

where 
K(T) = CT(r)MC(T) 

g(T) = CT(T)Mz(T) 
(5.28) 

By solving Eq. (5.26) and Eq. (5.27) together with the boundary conditions 

from Eq. (5.28), the optimal design solution may be obtained. While computing 

the solutions of Eq. (5.26) and Eq. (5.27), the Pade approximation [47] method 

has been used in determining the state transformation matrix #. Eqs. (5.19) 

and (5.20) are then used to calculate K and g [48]. 
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5.4   Selection of weighting matrices for control 

The selection of weighting matrices during optimal control is a very difficult 

issue, and no general method exists which is applicable to all kinds of systems 

and problems. Generally, weighting matrices are determined by a trial and error 

process or are based on parametric studies. In nonisothermal forging process 

design, the boundary conditions may change significantly from one time step 

to the next, so that the system equations could be totally different between 

steps. Therefore, using constant weighting matrices for different design problems 

is practically impossible. In this study, the following matrices are used during 

process parameter design as the weighting matrices [65]: 

Q = diag 
e2 
*-max 

M = 100Q 

R = 
Su      o 

0.01 

Here, r is a positive value varying between 1 and 100, and is automatically decided 

by the computer program based on the deviation of the process parameters from 

their respective desired values. This quantity actually forces the change of the 

design parameters within fixed constraints. Usually, an isothermal design uses a 

large value of r compared to a nonisothermal design process. For plane strain 

cases in general, and for complex problems it was found that the above weighting 

matrix scheme was resulting in numerical difficulties during implementation. For 

such cases, the weighting matrices were constrained within certain finite bounds 

determined using systematic parametric studies. 
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CHAPTER 6 

Numerical Examples - Full Size State Space Model 

A general purpose computer program COPP (Control of Optimal Processing 

Parameters) has been developed to implement the design techniques described in 

this work. This program is built on the rigid viscoplastic finite element program 

ALPID (Analysis of Large Plastic Incremental Deformation). In addition to 

using ALPID subroutines for analysis purposes, a design and control module has 

been developed and built into the program for designing the optimal process 

parameters. Along with the ALPID input file, COPP requires a small design 

input data file, the format of which is presented in Appendix (B). Appendix B 

also contains a detailed user's manual with examples for running this program. 

In general, COPP has the following capabilities: 

1. ALPID simulation for both isothermal and nonisothermal processes. 

2. Optimal die velocity design for isothermal process. 

3. Optimal die velocity design for nonisothermal process. 

4. Initial die temperature design for nonisothermal process. 
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This chapter presents a few numerical examples to support and substantiate 

the theory presented in earlier sections of the report. The case of an axisymmetric 

engine disk forging (Fig. 7) is considered under different operating conditions. 

The material used for the simulation is Ti-6242 (Titanium alloy), which is a 

strain-rate sensitive material. Due to its symmetry, only a quarter section of the 

cylindrical billet is modeled. Discretization of the billet continuum was performed 

using 50 isoparametric quadrilateral elements (Fig. 8), and the die was modeled 

using 73 finite elements. A constant shear friction factor of 0.3 was used at the 

die-billet interface. A billet temperature of 1735°F and a die temperature of 

600°F was specified at the beginning of the process. A total die stroke of 0.50 

inch was required to complete the forging operation as shown in Fig. 7. 

6.1   Model validation 

The accuracy of the state space model in representing the metal forming 

system has been tested extensively and validated using ALPID simulation re- 

sults. The testing was done for both isothermal and nonisothermal processes 

using varying frictional conditions, different die velocities, and for a range of dif- 

ferent materials. The response of the state space system was found to be in close 

conformance with the ALPID simulation results. One such example is present- 

ed here to establish the effectiveness of the state space model in capturing the 

deformation characteristics of the forging process. 
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Consider the forging of the engine disk described earlier. Element 23 is 

selected as the element of interest. The rationale behind this is, due to its location 

in the workpiece, element 23 is always under deformation and is also likely to 

go through a number of modes of deformation. As a result this element is very 

sensitive to changes in the die velocity and is a good candidate to be selected as 

the control element. As shown in Fig. 9, the state space model is built at 18% 

reduction when the stroke is 0.33 inch and the die velocity is 1.0 in/sec. In the 

current state space system, 17 state variables are used for describing the nodal 

velocities. Of these, 9 are the tangential nodal velocities of the die-contacting 

boundary nodes and the rest are nodal velocities of element 23. In addition, 14 

states are used to describe the nodal temperatures. Among these, 10 are nodal 

temperatures of the die-contacting nodes, and the other four are temperatures 

of the nodes constituting element 23. The full size state space model thus has 

31 state variables. Now, a small perturbation of 0.0025 in/sec is given to the die 

velocity to activate the response of the state space model. At the same time, this 

change in die velocity is also implemented in ALPID. The results from the state 

space system and those from ALPID (which serves as the reference) are then 

tabulated and compared (Table 1). The results presented in Table 1 show that 

the temperature field and the nodal velocity field (for element 23) generated by 

the state space system closely match with those of the ALPID simulation. 
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Table 1. Model Validation: State space model vs. ALPID 

t=0.33292 + 0.0 (sec) 

Velocity Field (in/sec) 

N.O.F. State Space Model ALPID Error (%) 

23 0.10078E+00 0.10078E+00 — 

35 0.15708E+00 0.15708E+00 — 

47 0.20641E+00 0.20641E+00 — 

59 0.14646E+00 0.14646E+00 — 

71 0.14127E-01 0.14127E-01 — 

125 -0.11512E+00 -0.11512E+00 — 

127 -0.26875E+00 -0.26875E+00 — 

129 -0.29317E+00 -0.29317E+00 — 

131 -0.33610E+00 -0.33610E+00 — 

53 0.86712E+00 0.86712E+00 — 

54 -0.30277E+00 -0.30277E+00 — 

55 0.73772E+00 0.73772E+00 — 

56 -0.52864E+00 -0.52864E+00 — 

65 0.83599E+00 0.83599E+00 — 

66 -0.14027E+00 -0.14027E+00 — 

67 0.75102E+00 0.75102E+00 — 

68 -0.21921E+00 -0.21921E+00 — 

N.O.F.: Nodal degree of freedom 
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Table 1. (Continued) 

t=0.33292 + 0.0 (sec) 

Temperature Field (°F) 

N.O.F. State Space Model ALPID Error (%) 

6 0.17418E+04 0.17418E+04 — 

12 0.15857E+04 0.15857E+04 — 

18 0.15509E+04 0.15509E+04 — 

24 0.15602E+04 0.15602E+04 — 

27 0.17465E+04 0.17465E+04 — 

28 0.17491E+04 0.17491E+04 — 

30 0.15454E+04 0.15454E+04 — 

33 0.17421E+04 0.17421E+04 — 

34 0.17433E+04 0.17433E+04 — 

36 0.16389E+04 0.16389E+04 — 

63 0.17079E+04 0.17079E+04 — 

64 0.16738E+04 0.16738E+04 — 

65 0.16513E+04 0.16513E+04 — 

66 0.16337E+04 0.16337E+04 — 

N.O.F.: Nodal degree of freedom 
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Table 1. (Continued) 

t=0.33292 + 0.005 (sec) 

Velocity Field (in/sec) 

N.O.F. State Space Model ALPID Error (%) 

23 0.10090E+00 0.10562E+00 4.4684 

35 0.15719E+00 0.16308E+00 3.6095 

47 0.20655E+00 0.21551E+00 4.1550 

59 0.14656E+00 0.15717E+00 6.7457 

71 0.14061E-01 0.14151E-01 0.6354 

125 -0.11519E+00 -0.12870E+00 10.4985 

127 -0.26891E+00 -0.27671E+00 2.8208 

129 -0.29331E+00 -0.29747E+00 1.3996 

131 -0.33622E+00 -0.33604E+00 0.0537 

53 0.86752E+00 0.88153E+00 1.5902 

54 -0.30291E+00 -0.30300E+00 0.0301 

55 0.73804E+00 0.75044E+00 1.6529 

56 -0.52889E+00 -0.53073E+00 0.3459 

65 0.83638E+00 0.84936E+00 1.5283 

66 0.14034E+00 -0.13878E+00 1.1298 

67 0.75135E+00 0.76265E+00 1.4823 

68 -0.21932E+00 -0.21743E+00 0.8694 

N.O.F.: Nodal degree of freedom 
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Table 1. (Continued) 

t=0.33292 + 0.005 (sec) 

Temperature Field (°F) 

N.O.F. State Space Model ALPID Error (%) 

6 0.17420E+04 0.17420E+04 0.0006 

12 0.15840E+04 0.15842E+04 0.0103 

18 0.15489E+04 0.15488E+04 0.0072 

24 0.15584E+04 0.15582E+04 0.0096 

27 0.17467E+04 0.17466E+04 0.0044 

28 0.17494E+04 0.17494E+04 0.0039 

30 0.15432E+04 0.15430E+04 0.0122 

33 0.17423E+04 0.17423E+04 0.0032 

34 0.17435E+04 0.17434E+04 0.0058 

36 0.16370E+04 0.16366E+04 0.0235 

63 0.17063E+04 0.17060E+04 0.0172 

64 0.16713E+04 0.16714E+04 0.0023 

65 0.16490E+04 0.16490E+04 0.0014 

66 0.16312E+04 0.16311E+04 0.0047 

N.O.F.: Nodal degree of freedom 
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Table 1. (Continued) 

t=0.33292 -+- 0.01 (sec) 

Velocity Field (in/sec) 

N.O.F. State Space Model ALPID Error (%) 

23 0.10099E+00 0.10842E+00 6.8529 

35 0.15728E+00 0.16655E+00 5.5713 

47 0.20665E+00 0.22100E+00 6.4914 

59 0.14664E+00 0.16244E+00 9.7278 

71 0.14011E-01 0.15191E-01 7.7659 

125 -0.11524E+00 -0.13458E+00 14.3705 

127 -0.26902E+00 -0.27961E+00 3.7885 

129 -0.29342E+00 -0.29832E+00 1.6414 

131 -0.33634E+00 -0.33486E+00 0.4417 

53 0.86784E+00 0.88620E+00 2.0716 

54 -0.30302E+00 -0.30269E+00 0.1094 

55 0.73830E+00 0.75574E+00 2.3080 

56 -0.52910E+00 -0.53030E+00 0.2280 

65 0.83671E+00 0.85311E+00 1.9227 

66 -0.14040E+00 -0.13830E+00 1.5162 

67 0.75161E+00 0.76531E+00 1.7895 

68 -0.21940E+00 -0.21693E+00 1.1403 

N.O.F.: Nodal degree of freedom 
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Table 1. (Continued) 

t=0.33292 + 0.01 (sec) 

Temperature Field (°F) 

N.O.F. State Space Model ALPID Error (%) 

6 0.17423E+04 0.17423E+04 0.0010 

12 0.15824E+04 0.15827E+04 0.0212 

18 0.15469E+04 0.15467E+04 0.0138 

24 0.15565E+04 0.15562E+04 0.0185 

27 0.17470E+04 0.17468E+04 0.0088 

28 0.17497E+04 0.17496E+04 0.0078 

30 0.15409E+04 0.15406E+04 0.0232 

33 0.17425E+04 0.17424E+04 0.0064 

34 0.17437E+04 0.17435E+04 0.0116 

36 0.16350E+04 0.16343E+04 0.0455 

63 0.17047E+04 0.17041E+04 0.0373 

64 0.16689E+04 0.16690E+04 0.0050 

65 0.16466E+04 0.16466E+04 0.0031 

66 0.16286E+04 0.16285E+04 0.0102 

N.O.F.: Nodal degree of freedom 
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It may be noticed, however, that boundary nodes behave differenly from the 

interior nodes and tend to have greater error margins. The error in the velocities 

of the boundary nodes is due to the complex effects of friction, temperature 

gradient, and changes in boundary conditions. In spite of these errors we still 

have very accurate velocity field modeling for elements within the boundary. 

Therefore, in the present design scheme, elements at the boundary are generally 

not selected as elements of interest. 

Based on the above example and other similar cases, we may conclude that 

the state space model is capable of satisfying the design requirements and can 

be used as an effective numerical model for design of the process parameters. It 

was also observed that, overall, the state space model was found to give more 

accurate results for the frictionless case as compared to the friction case. Also, 

the results of the isothermal model were generally found to be better than those 

of the nonisothermal state space model. 

6.2   Temperature gradient reduction 

One of the primary design objectives in this work is to reduce the tempera- 

ture gradient at the boundaries, because this would alleviate the thermal stresses 

induced at the boundaries due to the die chilling effect. This example illustrates 

the influence of temperature gradient reduction on the boundary nodal tem- 

peratures. The design requirements are chosen arbitrarily just to illustrate the 

method. It is assumed that the temperature gradient at node 18 needs to be 

reduced, and the effective strain-rate of element 23 (l23) is to be maintained at 

2.0 1/sec. The only design parameter is the die velocity. The process is started 
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with a relatively low die velocity of 0.5 in /sec, which results in l23 around 0.25 

1/sec. This gives enough room to change the die velocity by large amounts to 

illustrate the effectiveness of the current method. For comparison purposes, two 

sets of designs are carried out, and the results are presented in Figs. 10 through 

12. 

The first design, called 'Design I', does not include temperature gradient 

reduction, and merely involves controlling the strain rate. The output variable 

of Design I is t23. The second design, 'Design II', is similar to Design I, but in 

addition involves a temperature gradient reduction of 3% at every time step, and 

has node 18's temperature added into the output vector. Eqs. (5.1) and (5.2) are 

used to obtain the desired t23 and Tn, respectively. The weighting matrices are 

the same for the two designs, except that Design II has an additional weighting 

factor corresponding to the temperature output.   During Design I die velocity 

increases at a steady rate till t23 reaches 2.0 1/sec at a stroke of 0.23 inch.  In 

Design II, the strain-rate increases faster than in Design I because of the effect 

of temperature gradient reduction. To reduce the temperature gradient the heat 

generation rate needs to be faster than normal.  This can be achieved only by 

increasing the die velocity. As a result, the strain rate also increases at a faster 

rate and reaches the required value quicker than in the previous case.   When 

the stroke approaches 0.13 inch, a sudden jump in the strain-rate occurs because 

the workpiece comes in contact with the far end of the die.   Consequently, e23 

overshoots the desired value of 2.0 1/sec. The die velocity is now reduced to bring 

£23 back to 2.0 1/sec.  The desired value is finally achieved at a stroke of 0.17 

inch. Examining the temperature profiles in Fig.  12, it is observed that before 
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a stroke of 0.20 inch, the temperature gradient shows a definite reduction in the 

second case.   But after that, the gradients of both curves are nearly the same 

because the die velocities in both cases are almost the same. At the end of the 

process, the temperature of node 18 is 1609°F in Design I and 1635°F in Design 

II, a 26° F increase in the latter case.   It may be concluded that temperature 

gradient reduction results in an increase in temperature of the die-contacting 

boundary nodes. It should be noted, though, that this increase is largely a result 

of the reduced die-workpiece contact time because the die velocity is higher in 

Design II than in Design I. This example shows that using the optimal design 

scheme, a suitable die velocity profile may be generated that maintains the strain 

rate of critical elements at the desired value and at the same time reduces the 

temperature gradient at the die-workpiece interface. 

6.3   Isothermal design 

This example uses the same engine disk forging model described earlier. An 

isothermal design is presented which requires the effective strain-rate of element 

23 to be maintained at 0.1 1/sec. The starting die velocity is about 0.25 in/sec, 

corresponding to an £23 value of 0.125 1/sec. Fig. 13 shows that this starting 

t23 value is quickly reduced to 0.1 1/sec because the design scheme calls for a 

reduction in the die velocity. During the initial stages of forging the change in 

f 23 is relative small, but around a stroke of 0.13 inch a large jump (nearly a 50% 

increase) in f 23 may be noticed. This is because of the sudden change in the 

deformation mode of the workpiece as it comes in contact with the far end of the 

die. However, as shown in Fig. 14, the design scheme is robust and effective, and 
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immediately reduces the die velocity and brings the effective strain-rate back to 

0.1 1/sec in a short time without much oscillation. Near the end of the process, 

though, some instability is observed, causing a considerable amount of oscillation 

in both the die velocity and strain-rate. This could be due to the complex nature 

of forces that come into play during the die fining process. 

6.4   Temperature range reduction 

In most hot die forging processes, one of the design objectives is to reduce 

the temperature range in the billet as much as possible. This improves the 

temperature distribution and results in a more uniform distribution of properties 

in the final workpiece. The following numerical example is presented to illustrate 

how the above objective may be met using the proposed design methodology. 

The optimization problem is stated as: 

Minimize: \Tmax — Tmin\ ("•!) 

Subject   to: tmax  <  2.5    1/sec (6.2) 

Design    variable: Vj, 

where Eq. (6.2) applies a constraint that requires the maximum effective strain- 

rate in the billet to be no more than 2.5 1/sec. The present design scheme is 

used to generate an optimum ram velocity profile to solve the problem stated 

above. The optimal results are then compared with the constant velocity results 

to demonstrate the effectiveness of the proposed design methodology. 

Through finite element simulations it was found that node 18 possesses the 

lowest temperature in the billet throughout the process. This is because node 18 
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remains in contact with the die from beginning to end, and the strain rate in the 

vicinity of node 18 is not very high. The temperature range in Eq. (6.1) may now 

be approximated to {Tmax - Tu), where T18 is the temperature of node 18. The 

design scheme has the ability to automatically select the element possessing the 

largest strain-rate as the element of interest and design an optimal die velocity 

schedule based on the strain rate constraint imposed. Fig.  15 gives the strain- 

rate schedule for the element(s) having the largest strain rate in the workpiece 

at any given time step, and Fig. 16 gives the corresponding optimal die velocity 

profile. With a starting value of 2.1 in/sec, the designed ram velocity gradually 

reduces keeping tmax around 2.5 1/sec for the entire process. The designed ram 

velocity profile gives the largest value of die velocity that can be used without 

violating the constraint of Eq. (6.2). Hence, the profile also gives the minimum 

contact time between the die and billet.   By minimizing the contact time, the 

total heat loss and the temperature range in the workpiece are also reduced. At 

the end of the process, node 18's temperature (the lowest temperature in the 

billet) is 157A0 F and the maximum temperature in the billet is 1777° F, giving a 

temperature range of 203° F. 

For comparison, the above example was also simulated using a constant die 

velocity. Because tmax gradually increases under a constant die velocity, the 

largest constant die velocity which can be used without exceeding the constraint 

is 1.25 in/sec. By examining Figs. 15 and 16 it may be observed that even 

though for most of the process tmax is far below 2.5 1/sec limit, we can use a 

constant die velocity no larger than 1.25 in/sec; otherwise emax would violate the 

strain rate constraint towards the end of the stroke. 
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In this example the constant velocity is lower than the optimal ram velocity 

for most of the forging process (Fig. 16). This results in a longer die-workpiece 

contact time in the former case. At the end of the simulation it may be observed 

that node 18 has a temperature of 1533° F, and the maximum temperature in 

the billet is 1775° F. The temperature range thus turns out to be 242° F. Fig. 

17 clearly illustrates the difference in temperature profiles (of node 18) for the 

two cases, and Fig. 18 gives the corresponding load-stroke curves. There is only 

a slight increase in load while using the optimal die velocity because the design 

scheme is based on the minimum energy concept. This example shows that 

by using this design scheme, an optimal die velocity profile can be generated 

to minimize the die-workpiece contact time and the temperature range in the 

deforming workpiece. Table 2 lists some of the performance benefits derived by 

using this methodology. 

Table 2. Performance of the optimal control design scheme 

Optimum Velocity Constant Velocity 

Max. Temp. (°F) 1777 1775 

Min. Temp. (°F) 1574 1533 

Temp. Range (°F) 203 242 

Range Reduced (%) 16 — 

Process Time (sec) 0.300 0.402 

Time Reduced (%) 25.4 — 
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6.5   Initial die temperature design 

In forging processes, selection of initial die temperature is an important but 

difficult decision to make. This numerical example describes how the proposed 

design methodology could be used to obtain an optimal initial die temperature 

value. The design problem for this example may stated as follows: 

Objective: T18   >   1560°F (6-3) 

Subject    to: e23   =  0.7    1/sec (6.4) 

Design    variables: Td    and    Vd 

where t23 is the effective strain-rate of element 23 (critical element as explained 

earlier), and Td is the initial die temperature. Because node 18 (critical node) 

possesses the lowest temperature in the billet, Eq. (6.3) is equivalent to raising 

the temperature of the whole billet above 1560° F. The design is carried out in 

three steps, each necessitating an independent finite element simulation. 

Step 1. Generating the desired nodal temperature profile. 

In this step, the design is conducted using only die velocity as the design vari- 

able. The initial die temperature used is 600° F. The purpose of this step is to: 

(1) check whether Eq. (6.3) can be satisfied without changing the initial die tem- 

perature, and (2) generate a suitable polynomial representing the temperature 

path of node 18 that satisfies the constraints of Eq. (6.4). The design is started 

when the die velocity, Vd, is equal to 1.4 in/sec, corresponding to l23 equal to 

0.698 1/sec. Checking the results at the end of the simulation, the temperature 
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of node 18 temperature was found to be 1519°F. Figs. 20 through 22 give the 

profiles of I23, Vd and Tig, respectively for this example. It may be observed 

from Fig. 20 that the strain rate constraint of Eq. (6.4) is satisfied for the entire 

process under the optimal die velocity (V^) in Fig. 21. At the same time, Fig. 

22 shows that the temperature constraint of Eq. (6.3) is not satisfied. This calls 

for an increase in the initial die temperature so as to bring the temperature of 

node 18 to the required value. To represent the desired temperature profile, a 

3rd order polynomial is used to fit the path of Tis as, 

Tu = 1735 - 641.37« + 355.5i2 - 25.1*3 (6.5) 

In Eq. (6.5) the first order term is the dominant term influencing the temperature 

gradient. To raise the nodal temperature, therefore, the coefficient of the first or- 

der term has to be changed to an appropriate value. By setting Tig = 1560° F at 

end of the process, the new first order coefficient (from Eq. (6.5)) was calculated 

as -550. Substituting this back into Eq. (6.5) we have, 

Tu = 1735 - 550* + 355.5«2 - 25.Ü3 (6.6) 

Eq. (6.6) gives the desired temperature profile for node 18 during the initial die 

temperature adjustment design. 

Step 2. Adjusting the initial die temperature 

With Eq. (6.6) as the desired temperature profile, the design in step 1 is 

repeated using an additional design variable AT,*, which is the initial die temper- 

ature adjustment parameter. The other conditions remain the same as in Step 

1. The value of ATd at every time step is calculated using the proposed design 
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scheme and presented in Fig. 19. By using Eq. (5.8) to average the ATd values 

at each simulation time step, a mean initial die temperature adjustment value of 

172°.F is obtained (represented by the dashed line in Fig. 19). The actual initial 

die temperature which satisfies all the design constraints is thus 772° F. 

Step 3. Redesign using the new initial die temperature 

This step is merely a repeat of step 1 with the new initial die temperature 

value of 772°^ (instead of 600°^). From Figs. 20 and 21, the profiles of the 

die velocity and £23 are similar before and after initial die temperature design. 

This shows that changing the initial die temperature does not affect the strain- 

rate of the control element significantly. The temperature of node 18, though, 

is very sensitive to the change in initial die temperature as observed in Fig. 22. 

With a 172°F higher initial die temperature, the final temperature of node 18 

is 1557°.F, very close to the design requirement of 1560°F (a difference of about 

7.5%). The temperature gradient of the boundary nodes (node 18 in particular) 

is thus reduced. At the same time, it was also observed that the temperature 

range was reduced from 256° F to 218°F, a drop of about 14%. 

This example shows that the proposed method for initial die temperature 

(adjustment) design works well, and can be effectively used to reduce the tem- 

perature range/temperature gradient in the deforming workpiece. Noting that 

the increase in boundary nodal temperatures is not linearly proportional to the 

increase in initial die temperature, solving a design problem such as the one 

posed in this example would be very difficult and cumbersome without a sys- 

tematic methodology and/or strategy like the one described in this section. One 
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of the major advantages of the method described here is that the design can be 

performed in three simulation steps instead of going through a number of trial 

and error steps as is done normally. This could save a considerable amount of 

time, effort, and money during the entire design process. 
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CHAPTER 7 

Reduced Order State Space Models 

7.1   Introduction to model reduction 

In general, large scale finite element models are used for simulating and 

analyzing metal forming processes to capture in detail information regarding 

the thermo-mechanical behavior of the deforming material. The condensation 

scheme explained earlier reduces and transforms the finite element model to a 

state space model by retaining the tangential nodal velocities and temperatures 

of the die contacting nodes, and the nodal degrees of freedom of the critical 

element (in the deforming material) as states. Despite the condensation process, 

a large model results when analyzing large scale practical forming problems. 

Further, for on-line control applications, it is desirable to have smaller models 

capable of accurately representing the thermo-mechanical behavior of the metal 

forming process. Since the state space model is built using the converged finite 

element solution at each time step, it may be considered a reasonably accurate 

representation of the metal forming process [66,67]. 

The highly nonlinear finite element model of the metal forming process is 

linearized and modeled in the state space form as, 

x = Ax + Bii 
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y = Cx (7.1) 

where A is the plant matrix, B is the input matrix, and C is the output matrix to 

convert the state vector x into the desired output y. u is the input vector, which 

in this case is the ram velocity.   Eq.  (7.1) is derived from the stiffness matrix 

and force vectors of the metal forming process.   The state space models are 

built using the converged solution at the end of each simulation time step. The 

conversion of the finite element equations to state space form takes into account 

the symmetric boundary conditions and the other relevant boundary conditions 

of the physical system. The force vector used includes the effects due to friction 

and reaction forces.   The reaction forces are due to the symmetric boundary 

conditions applied during the finite element modeling.   The nodal velocities of 

the boundary nodes and the nodal velocities of the element of interest (whose 

strain rate is to be controlled) are considered as states. The elemental strain rate 

is the output, and it is maintained within a predetermined and prespecifed range. 

The output matrix, C, is defined as the matrix to convert the nodal velocities 

into the strain rate of the element of interest. The control problem is posed as 

a tracking problem, and since the output is to be tracked, the objective of the 

control law is to minimize the performance index in such a way that the error is 

minimized and the end conditions are met. 

The aim of reducing the original model is to get an equivalent linear state s- 

pace system of a dimension considerably smaller than that of the original system. 

Since the control problem is a tracking problem, the reduced model should nec- 

essarily be controllable. In addition, the reduced system should be observable 

in order to implement this methodology as a feedback on-line control scheme. 

107 



The methodology for obtaining reduced order state space models and their sub- 

sequent use in designing optimal die velocity schedules is decribed in the flow 

chart of Fig. 23. 

Reduced order models can generally be obtained using several methods avail- 

able in relevant literature. The following are two broad classifications of currently 

available order reduction techniques: 

i. The first classification uses the mode concept of linear models. The aim here 

is to keep the dominant eigenvalues of the full model, i.e., the eigenvalues most 

influential on the system dynamic behavior. The modal analysis method and 

the aggregation method belong to this classification. 

ii. The second classification includes the approaches based on preserving the 

same degree of controllability and observability product (cri) as in the full 

model. The Balanced Model Reduction (BMR) method belongs to this cate- 

gory, where the reduction is applied by deleting the smallest singular values, 

cr;, of the balanced state space configuration. 
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7.2   Aggregation method 

Aggregation techniques replace the initial system model with a reduced order 

model that preserves the dominant system characteristics. In this method, the 

important assumption is that the reduced state vector (xr) and the full state 

vector x are related linearly by an aggregation matrix, P, of dimension (mxp), 

having rank m. Here, m is the number of states in the reduced order model, and 

p represents the number of states in the full-size model. The aggregated model 

is not a part of the full state model. Instead, it is a linear combination of the 

states of the full model [55]. Some salient features of this technique are described 

below. In this method it is assumed there exists an aggregation matrix (P) such 

that, 

xr = Px (7-2) 

where xr is the reduced state vector, and x is the full state vector. Also, xe Rp, 

xTe Rm and Pe R(mxp\ Now, the aggregated state space model can be con- 

structed as, 

xr = ATxr + Bru 

yr = Crxr (7.3) 

where Are R<mxm\ BTeR(mxl) and Cre R<lxm) are the aggregated plant, input 

and output matrices, respectively. Since the input and output are scalars (for the 

isothermal case), Br and Cr take the sizes described above. In order to derive 

the aggregated model from the full state model, the relationship between the full 
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model, aggregated model, and the transformation matrix must be determined. 

By substituting Eq. (7.2) in Eq. (7.3), we have, 

Px = ArPx + Bru (7.4) 

By premultiplying Equation (7.1) with P and equating the coefficient matrix of 

x and the coefficient matrix of u, with those of Equation (7.4), we get, 

ArP = PA 

Br = PB (7.5) 

The selection of P is important to establish a proper relationship between the 

full state model and aggregated model. Generally, this matrix is computed based 

on the contribution of the eigenvalues to the output vector. If A represents the 

eigenvalues of A, and v represents their associated eigenvectors, then, 

Av = Av (7.6) 

Premultiplying both sides of Equation (7.6) by the aggregation matrix, P, 

P (Av) = APv (7.7) 

Substituting for PA from Equation (7.5) into Equation (7.7), 

Ar(Pv) = A(Pv) (7.8) 

This equation shows that the eigenvalues of the matrix AT are m aggregated 

eigenvalues of the matrix A. The same is true in case of the eigenvectors also. 

Hence, it may be seen that the selection of the aggregation matrix significantly 

influences the performance of the reduced model with respect to the full model. 
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Since the aggregation matrix is a transformation matrix which is selected based 

on eigenvalues, the selection is carried out using the modal matrix of the full 

system. The canonical form of the states is expressed as, 

x = Mw (7.9) 

where w is the transformed state variable in eigenspace and M is the modal 

matrix containing the eigenvectors of the matrix A. By substituting Equation 

(7.9) into Equation (7.1), the full-size state space system in the transformed form 

is written as, 

w = Aw + r« (7.10) 

where, 

A = M->AM=(A0'    A°J (7.11) 

r = M"lB=(£) (7.12) 

Here, A is a diagonal matrix of the eigenvalues of A, Ai contains the dominant 

eigenvalues and A2 is made up of the non-dominant eigenvalues of the system. 

Because of the properties of the stiffness matrix, the plant always has distinct 

eigenvalues. rieR.(mxm) and T2e R(P-m)x(P_m) are the transformed forms of the 

input matrix of the full state model. In the partitioned form the full state space 

system is written as, 

(£)-(? *)£)+(£)• (7-13) 

From this, the decomposition of the transformed states into m reduced states is 

performed as described below: 

Wi = A1w1 + r1u (7.14) 
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where Wi represents states that are to be retained for the reduced model of size 

m, and is defined as wj = (ITO 0 )w. Also, substituting for w from Equation 

(7.9), we get Px = (Im 0)M-1x. Now, the transformation matrix P can be 

defined as, 

P = (Im    (^M-1 (7.15) 

Because the goal of model reduction is to reduce the size of the original model, 

but still obtain results comparable to that of the full model, the output matrix 

Cr also must be defined in terms of the aggregation matrix. Hence, the reduced 

output matrix is given by, 

Cr = CP+ (7.16) 

where P+ is the pseudo inverse of the aggregation matrix P. 

7.3   Modal analysis method 

In the aggregation method the states (reduced) are a linear combination of the 

full state model. The modal analysis method, unlike the aggregation method, is 

based on transforming the system matrices in such a way that the characteristics 

of the entire system (full-size) are included in the reduced model. The full state 

model is represented in eigenspace using the relation in Equation (7.9), where 

the transformation is done using the modal matrix, M. Equation (7.1) is valid 

for one simulation time step of the metal forming process. Because the system 
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(Eq. (7.1)) is now linear and time invariant for that time step (interval), it can 

be partitioned in the following form, 

(£)-(£ £)(2)+(£)- (7-17) 

where XieRm is the state vector whose modes are to be retained, x2eR(p_mJ is 

the state vector whose modes are to be neglected, and m is known a ■priori. The 

matrices Ai, A2, A3, A4, Bi and B2 are constant. Accordingly, the modal 

matrix, M, can also be represented in the partitioned form as, 

__      /Mi    M2\ M=U3    M4J (7.18) 

From Eq. (7.9), x = [xTi xT
2]T is the original form and w = [wTi wT

2]T 

is the transformed form. In the partitioned form, wi includes the states of 

dominant eigenvalues and w2 includes states of non-dominant eigenvalues of the 

system. Now, the original system is represented in the transformed coordinates 

as explained in equations (7.10) - (7.12). The states in eigenspace are further 

expanded using the matrix properties and the relationship between the matrices 

of M and their inverses. The dominant and non-dominant states are expressed 

as, 

+ 
-l 

wi = Mi-1 [AiMi + A2M3] wi 

(Mi - M2M4~
1M3) Bi - Mi_1M2 (M4 - M3Mf1M2)   * B2 

w2 = M4
_1 [A3M2 + A4M4] w2 

u (7.19) 

+ f-M4"
1M3 (M4 - M2M4

-1M3) 
1Bi+(M4-M3Mi *M2) B2 U (7.20) 

From the above two expressions the reduced order models may be derived. Based 

on the modal analysis technique, there are three methods by which model reduc- 

tion is done: 
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1. Davison's method 

2. Marshall's method 

3. Nicholson's method 

All the above methods retain the dominant eigenvalues of the original system. 

Further, all three methods assume that all the non-dominant eigenvalues are in 

A2. Because the design is a tracking problem, the output matrix is also modified 

accordingly, to get reasonable results. Some distinct features of these methods 

are discussed below. 

7.3.1   Davison's method 

This method makes use of the fact that A2 contains only non-dominant 

eigenvalues. w2 is derived from the approximation w2 = 0 and is replaced in 

terms of xx and u. By substituting this approximation back into Equation (7.10) 

and rearranging the terms, the reduced system is written as, 

Ar = A1 + A2M3M1-1 

Br = Mi (Mi - M2M4-
1M3)~

1 Bi - M2 (M4 - M3Mf1M2)"
1 B2      (7.21) 

Because the output of the reduced model depends on the retained states xi, the 

output matrix is also partitioned as, 
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where Ci and C2 are the partitioned output matrices spanning the dominant 

and non-dominant states, respectively. By rearranging and substituting for the 

non-dominant states, X2, the output is written as, 

y = [Ci + C2M3M;;1] xi + {C2 [MsMj XM2 - M4] A2
_1r2}u = Crxi + Dru 

(7.23) 

7.3.2.   Marshall's method 

This method is derived from Equation (7.17) and equations (7.10) - (7.12). 

From Equation (7.17), Xi can be defined as, 

ii = A1X1 + A2x2 + Biu (7.24) 

By partitioning Equation (7.9) and extracting the terms related to X2, we get, 

x2 = M3W1 + M4w2 (7.25) 

Now, rearranging Equation (7.25), the dominant states in the modal coordinates 

are obtained as, 

wi=Mf1xi-Mf1M2W2 (7.26) 

Using the condition W2 = 0, w2 can be determined in the modal coordinates as, 

w2 = -A2~
1T2u (7.27) 

By substituting Equations (7.26) and (7.27) in Equation (7.25), and substituting 

the result in Equation (7.24), the reduced system is derived as, 

Ar = Ai + A2M3M!-1 
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Br = Bi - A2 [M4 - MsMf'Mj] A2
_1r2 (7.28) 

In modal coordinates the output is written as in Equation (7.22). Now, substi- 

tuting for w2 from Equation (7.27), the output (in terms of reduced states) may 

be written as, 

y = [CiMi + C2Ms] wi - [CiM2 + C2M4] A2-1r2u = Crwi + BTu     (7.29) 

7.3.3.   Nicholson's method 

In this method the reduced system is derived by completely neglecting the 

effect of W2 on the system. By assuming that the non-dominant states do not 

have any influence on the dominant states, and substituting for x2 in terms of 

xi, the reduced model is constructed. Based on this assumption, Equation (7.18) 

is modified as, 

(£)=(& 2) GO (7-30) 

By substituting Equation (7.30) in Equation (7.17) and rearranging, we get, 

xi = M1A1M1 xxi + Miriu (7.31) 

The reduced model may now be described as, 

A, = Ai + A2M3M1"1 

BT = M!(Im   O^^M^B (7.32) 
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The neglected (non-dominant)states are given by, 

x2 = M3Mi xxi (7-33) 

The output matrix for the reduced system may be derived as, 

y = [Ci + C2M3Mix] Xl  =   CrXl (7.34) 
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7.4   Balanced model reduction (BMR) method 

7.4.1   Construction of the balanced model 

The BMR method belongs to the second classification of order reduction 

methods described in section 7.1. Generally, it is desirable to have a system 

that is both controllable and observable, called the balanced system. The BM- 

R method is a state selection procedure in the grammian-balanced coordinate 

system of the full state space model. The grammian-balanced system is called 

the internally balanced system of the full system. The reduced model is derived 

by retaining only the most controllable and observable states of the internally 

balanced system. The internally balanced system is constructed using a trans- 

formation matrix, [Tb], which exists only if the plant matrix of the full state 

space model is asymptotically stable. The state space model for metal forming 

processes is always stable because the plant matrix is negative definite, as may 

be observed from chapter 2. If the transformation matrix exists, then, the states 

in the balanced coordinate system are given by, 

xb  =  Tb^x (7.35) 

Now, the balanced state space form of Equation (7.1) is expressed as, 

xb  =  AbXb + BbU + Wb 

y =  Cbxb (7.36) 
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where Ab = T^ATb, Bb = T^1, Cb = CTb and Wb = Tb 
XW. A 

system is called internally balanced or grammian balanced if, 

Pc  =  P0  =  S   =  diag[<n2, (r2
2,..-,<r„2] (7.37) 

where the o^'s are Hankel singular values of the balanced system and S is a diag- 

onal matrix containing a\2. Pc and Pc are the controllability and observability 

grammians of the system, which are the solutions of the following Lyapunov 

equations: 

AbPc  + PcA
T

b  + BbBT
b  =  0 

and 

AT
bP0  + PoAb  +  CT

bCb  =  0 (7.38) 

The balanced state space model (Equation 7.36) is actually the controllable sub- 

space of the condensed (full-size) state space model of the metal forming process 

(Equation 7.1). 

7.4.2   Construction of the transformation matrix [57] 

The controllability and observability grammians (Pc and P0) of the full state 

space model may be obtained as solutions of the following Lyapunov equations: 

APC  + PCAT  + BBT  =  0 

and 

ATP0  + PoA +  CTC  =  0. (7.39) 
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By factorizing the controllability grammian Pc using singular value decomposi- 

tion, we have, 

Pc  =  UxSxUx1 (7.40) 

From the properties of singular value decomposition, the product UiUi results 

in an identity matrix, and Si is a diagonal matrix having the singular values of 

the matrix Pc as its diagonal terms. Si will normally have nc non-zero values. 

From the non-zero values of Si, the controllable subspace of the system can 

be extracted by partitioning the matrix U as [Un U12], where UueRn x nc 

spans the controllable subspace and Ui2eRn x <n~nc) spans the uncontrollable 

subspace of the system. If all the states are controllable, then nc = n. Using the 

information specified above, the controllable subspace may be retained as, 

Ti   =   UiiEii* (7.41) 

By factorizing the product TiTPcTi using singular value decomposition 

[56,57,68], 

TiTP0Ti   =  U2S2U2
T (7.42) 

where the non-zero portion of the singular value matrix, S2, spans the observable 

part of the controllable subspace of the system, represented as S22. By partition- 

ing U2 similar to the operation in Equation (7.40), the controllable-observable 

subspace is constructed as, 

T2  =  U2iS22-3 (7.43) 

From Ti and T2, the transformation matrix for balanced model reduction (Tb) 

is derived as, 

Tb  =  TXT2 (7.44) 

121 



7.4.3   Construction of the reduced model 

As explained by Moore [68], in cases where <r2m is considerably larger than 

a (m+l)) the subspace xr behaves like it is both controllable and observable. If 

the mechanics of Kalman's minimal realization theory are applied to the inter- 

nally balanced model, with xr used as a working approximation of x&, then, the 

resulting lower order model is generically stable and internally balanced. Now, by 

truncating the smallest singular values {crC) of the balanced system, the reduced 

model may be defined by, 

Ar = (Im    0)A6(
1-) 

Br = (Im    0)B6 

Cr = C6(M (7.45) 

7.5   Control law for reduced order models 

The performance of reduced order models can be measured using many cri- 

teria. The objective of model reduction in this case is to design optimal input 

velocities while using a smaller state space system. Hence, comparing the die 

velocities designed using the full and reduced models is a good measure to e- 

valuate the performance of the reduced order models. The control law used for 

the full-size state space model [66,67] cannot be directly applied to the reduced 

models (Equations (3.23) and (3.29)), because the reduced models have an extra 
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term (D) in the output equation. In this section, a control law suitable for use 

with reduced order models is developed. The input velocities are designed using 

a finite time control law with output tracking. 

For a time-invariant linear system, the state space representation may be 

given by, 

x = f[x(t),u(t),t] = Ax + Bu + W       and       y  =  Cx + Bu      (7.46) 

where A,B,W,C,D,x describe the full system and Ar,Br, Wr,Cr,Dr,xr de- 

scribe the reduced system. The design is done off-line as explained earlier. The 

problem is posed as an output tracking problem and the output tracked is the 

strain rate of the element of interest. Cd is the desired strain rate trajectory to 

be tracked, and y is the output of the system. The error term (e) is given by 

e = |d _ Cx - Du. This error signal is used as the state feedback while designing 

the velocity schedule. For control, it is desirable to bring the system from a given 

initial state xQ to an acceptable terminal state by designing a suitable control 

input u. The control is achieved by minimizing a performance index consisting of 

positive definite quadratic terms for the terminal condition, tracking error, and 

control input, respectively. This is represented mathematically as, 

tf 

min       J = ^[x(tf),tf] + |L[x(t),u(t),t]dt (7.47) 

to 

where 0[x(tf),tf] = |eT(tf)Se(tf) and L[x(t),u(t),t] = |[eT(t)Qe(t) + uTRu]. 

S and R are positive definite weighting matrices which weight the terminal condi- 

tion and the control, respectively, and Q is a positive semi-definite matrix which 

weights the states. Here, the problem is to design the control input, u(t), such 
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that the Equation (7.47) is minimized. To find an optimal u(t), the system dif- 

ferential equation (Eq. (7.46)) is combined with Equation (7.47) by means of a 

Lagrange multiplier function, A(t), as shown below: 

tf 

J = *[x(t,),t,] + |   [L[x(t),u(t),t]   +  AT(t){f[x(t),u(t),t]-x}]dt 

to 
(7.48) 

A(t) is a function of the states x(t). For numerical convenience a scalar function 

H called the Hamiltonian, is defined as [69]: 

F[x(t),u(t),t] = L[x(t),u(t),t] + AT(t)f[x(t),u(t),t] (7.49) 

By substituting Equation (7.49) in Equation (7.48) and integrating the resulting 

equation, the function to be minimized is: 

tf 

J = 4> [x (tf), tf] - A1 (tf) x (tf) + A1 (t0) x (t0) + j{H[x (t), u (t), t] + A* (t) x (t)}dt 

(7.50) 

83 = - A* \Sx 

Now consider the variation of J due to variations in the control u(t), for the fixed 

time interval tD to tf. Mathematically, 

tf n 

+ [AT*x]to + / { |? + A4  8x+^8u}dt       (7.51) 
Jtf t0        L J 

By setting the coefficients of Sx. to zero in the above equation, the necessary and 

sufficient conditions for minimizing the performance index can be derived as, 

ÖH 

<9x 

AT (t) = dx 
and ■—— = 0 

au 
(7.52) 

The corresponding boundary condition may be given as, 

A   (tf)"^ 
(7.53) 
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The optimal u(t) which minimizes the performance index (Eq. (7.47)) can be 

obtained by solving Equations (7.46), (7.52), and (7.53) simultaneously. The 

Hamiltonian function, H, is now derived as, 

H = I [e
TQe + uTRu] + AT [Ax + Bu + W] 

= - [ZQZ - xTCTQZ - uTDTQZ - ZQCx + xTCTQCx + uTDTQCx] 

+- [-ZQDu + xTCTQDu + uTDTQDu + uTRu] + ATAx + ATBu + ATW 

(7.54) 

where Z is the desired strain rate ed. Taking the partial derivative of Equation 

(7.54) with respect to x and setting the result equal to -A, one of the Euler- 

Lagrange equations may be constructed as, 

A  =   -ATA  -  CTQCx + CTQZ  -  CTQDu (7.55) 

Now, taking the partial derivative of Equation (7.54) with respect to u and 

setting the result equal to zero, the optimal control law may be derived as, 

u (t) = - [DTQD + R] "X [DTQZ - DTQCx (t) + BTA (t)] (7.56) 

Substituting for u(t) from Equation (7.56) into Equation (7.46), we have, 

x(t)   = Hix(t)   + HaA(t)   + Vx(t) (7.57) 

where, 
Hi=  A + B[D

T
QD + R]~  D

T
QC 

H2 = -B [DTQD + R]"
1
 B

T 

Vi(t)= W-B[DTQD + R]_1DTQZ(t) 
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Substituting for u(t) from Equation (7.56) into Equation (7.55), we get, 

A(t)   =  H3x(t)   + H4A(t)   + V2(t) (7.58) 

where, 
H3 = -C

T
QC-C

T
QD[D

T
QD + R]" D

T
QC 

H4 = _AT + CTQD [DTQD + R]"1 BT 

V2=  CTQZ + CTQD[DTQD + R]_1DTQZ(t) 

Combining Equations (7.57)and (7.58), we get, 

/x(t)\   _   /Hx    H2Wx(t)\        /Vx(t)\ (759) 

\\(t))   '   Us    H4JU(t)J   +  U2(t)J *       } 

There are 2n number of equations in Equation (7.59), where n is the number of 

states in Equation (7.46). Now, the solution of Equation (7.59) may be obtained 

as, 

to 

where $ is the state transition matrix (explained earlier). For convenience, 

Equation (7.60) can be rewritten as, 

OT ■ •<**>($)+ (SI3)       (7-61) 

The two terms on the right side of Equation (7.61) are computed using the 

Pade approximation technique [63]. In Equation (7.61) there are two unknowns 

(x(tf) and A(t)) out of which only A(t) is needed for the design of the system 

input (Equation 7.56). To solve for these unknowns 2n boundary conditions are 

needed. These are specified as, 

at t = t0, x(t0) is known 

d<f>T 

att = tf, A(tf)   =   -j^- 
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By partitioning $ in Equation (7.61) into four parts, Equation (7.61) can be 

rewritten as, 

/x(tf)\        fSii    *»\fx(t)\        (^^l) (7.62) 

From the boundary condition (Equation 7.53) and the definition of tf>, A(tf) may 

be defined as: 

* M= A-4 (zT -xTcT - UTDT1 S [Z -Cx -Du]} 
öx(tf)L2 

dx 
S[Z-Cx-Du] + [ZT-xTCT-uTDT]s -C-D 

du 
dx 

= -C*ä SZ + CTSCx + CTSDu + ^L [DTSDu + DTSCx - DTSZ] 
(7.63) 

Using the definition of u from Equation (7.56), 

duT 

dx 
-T = C

±
QBK~

X
 =a (7.64) 

where K = D
T

QD + R.   Substituting Equation (7.64) in Equation (7.63) and 

grouping the terms, we have, 

A (tf)= [-C
TS - «DTS] Z + [CTSC + aDTSC] x + [CTSD + aDTSü] u 

= r1Z + r2x + r3u ^ 

Again substituting for u from Equation (7.56), we have, 

A (tf) = ,I + W. + fl [-«-»D'QCZ + «-lD*QCx - «->B»i (t)]       (7.66) 

Rearranging and regrouping the above equation, we get, 

[I + T3«-iBT] A (tf) = [n - TSK-^QC] Z (tf) + [r, + TS«-
1
D

T
QC] X (t,) 

(7.67) 
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or, 

A(tf)= [l + raK-1BT}   1{[r1-r^-1I)TQ]Z(t{)+{T2 + T3K-lDTqc}K(tf)} 

= ^Z(tf) + J?2x(tf) 
(7.68) 

where 
i-l 

Vi= [i + TSK^B*]     [n - TZK-^Q 

772=   [I + TSK-^]-1  [T2+T3K-
1
'D

T
QC 

By expanding the matrices in equation (7.62), we get, 

x(tf)   =   $iix(t)   +   *i2A(t)   +  gi(t) 

A(tf)   =  *2Xx(t)   +  *22A(t)   + g2(t) 
(7.69) 

From equation (7.68), 

A(tf) = 77iZ(tf) + 772x(tf) (7.70) 

Substituting for x(tf) (in the above equation) from Equation (7.69), we get, 

A(tf)   = 7?i#iix(t)   + 771*12 A (t)   + T7!gi(t)   + 772Z(tf) (7.71) 

Substituting the above equation back into Equation (7.69), we get, 

T?i*iix(t)   + 7/i*i2A(t)   + 7/igi(t)   +  i»Z(tf)   =  *2Xx(t)   + *22A(t)   +  g2(t) 

(7.72) 

By rearranging the terms in the above equation, we get, 

[*22- 771*12] A (t)   =   [7,1*1i-*2i]x(t) + [77igi(t)-g2(t) + 772Z(tf)]  (7.73) 
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From equation (7.73), the A(t) needed for input design in Equation (7.56) may 

be derived as, 

A(t)     =     [$22-7?l#12]"1{[^l*U-*2l]x(t) + [7?lgl(t)-g2(t)+7,2Z(tf)]} 

(7.74) 

or, 

A(t) = L(t)x(t)   - g(t) (7.75) 

where Z(t) is the desired output, and L and g are solutions of the differential 

Riccatti equations shown below: 

- LHi  -  H^L + LH2L + H4 = L 

- [LH2  - Hf ] g - V2  + LVx = g (7.76) 

The boundary conditions for the above system of equations are given as, L(tf)   =   771 

and g(tf)   =  7/2Z(tf), which are constant known values. With these boundary 

conditions, solving Equation (7.76) iteratively, the control law for designing the 

process parameters may be obtained. 

To a large extent, the design obtained using this control law depends on the 

proper selection of the weighting matrices (Eq. (7.48)). Since this is a vital 

issue in getting an acceptable design, the weighting matrices have to be carefully 

designed so as to obtain meaningful inputs. In this work, the weighting matrices 

Q , R, and  S are determined as follows [69]: 

S-1   =  n x max. of diagonal of e (tf) e   (tf), 

Q_1   =  n(tf — t0) x max. of diagonal of e (t) e   (t), (7.77) 

R-1   = n/(tf — t0) x max. of diagonal of u (t) u   (t). 
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where e(tf) is known from the desired design values. The values of e(t) and u(t) 

are calculated at every simulation time step along with the iterative solution 

process. 

7.6   Performance evaluation and selection of reduced order models 

The order of the full-size state space model was reduced using the method- 

s discussed in earlier sections of this chapter. A comparative study was then 

carried out to evaluate which model reduction method was best suited for metal 

forming applications. Two numerical examples were used to perform the compar- 

ative study of the model reduction methods studied. The selection of a suitable 

reduced order model was based on the designed die velocities. Of the two exam- 

ples presented here, the first example has no friction specified, while the second 

example uses a shear friction factor of 0.3. 

7.6.1   H-block compression - Frictionless case 

A closed die forging was simulated to deform a cylindrical billet into a H-block 

using two dies. The die had a height to web ratio of 0.5. A cylindrical billet of 

radius of 60 mm and height 40 mm was used as the starting workpiece. Due to its 

symmetry, only one half of the workpiece was modeled. The discretized workpiece 

had 96 elements and 117 nodes (Fig. 24). The simulation was carried out with 

an initial die velocity of 0.1 mm/sec for the upper die, while the bottom die was 
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Figure 24: FEM discretization - Frictionless case 
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kept stationary. A rate sensitive billet material was used for the simulation. The 

constitutive (flow) equation for the material is given as: 

ä  =  k  igeh (7.78) 

where k is a proportionality constant used in the flow formulation, g is the rate 

sensitivity factor, and h is the effective strain exponent. For this example the 

values of k, g, and h were 10, 0.1, and 0.0, respectively. The strain rate of a 

single element was controlled, and element number 53 was chosen as the element 

of interest. This element was considered critical because it goes through a number 

of modes of deformation during the simulation due to its location in the billet. 

In this example the friction factor at the die/billet interface was assumed to be 

zero. 

During the start of the simulation, seven nodes were touching the (moving) 

die. For each of these nodes, the normal component of velocity is a known 

quantity and is not considered as a degree of freedom. In addition, there are 

four nodes associated with the element of interest, each having two degrees of 

freedom. Since the degrees of freedom of the system are also considered as the 

states during state space modeling, this results in a full-size state space model 

with 15 states. The initial strain rate of element 53 was 0.0044/sec and the 

desired strain rate was 0.005/sec. The 15 initial states were reduced to 4 using the 

model reduction methods described earlier. The number of states in the reduced 

model was decided from the controllability grammians of the full matrix. In 

this case, only four grammians had significant magnitude and the rest were very 

small, resulting in four states in the reduced order model. Since a transformation 

matrix was used to construct the reduced models, the weighting matrices were 
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modified using these tansformation matrices, so as to have a uniform testing 

condition for all the models. The control scheme was applied for designing the 

die velocity using the state space models derived using the Aggregation, Davison, 

Marshall, Nicholson and BMR approaches. The design of velocities was carried 

out for 20 simulation time steps. 

The comparative results are shown in Fig. 25. In this figure, the optimal die 

velocities are plotted as a function of time for 20 time steps (0.4 sec). The simu- 

lations were conducted using a time step of 0.02 sec. At each time step the state 

space model (A, B and   C) is built based on the current billet geometry, die 

velocity (designed in the previous step), and the prevailing frictional conditions. 

For the first step the die velocity is taken from the input information specified. 

A finite time control law based on the linear quadratic regulator (LQR) theory is 

used to design the die velocities using the full state model. These results are used 

as a reference against which the results of the reduced order model are compared. 

The designed velocities (Fig.   25) show a sharp increase in the initial phase of 

deformation and then gradually stabilize with time as the strain rate approach- 

es the desired value.  From the full model, the earlier mentioned reduced-order 

systems are generated and an optimal die velocity is again designed. It may be 

observed that the velocities designed using the BMR model match very closely 

those of the full model. The maximum percentage error in the design was 0.3%. 

This percentage error was observed in the initial stages of the velocity design, 

and the error decreased as the simulation progressed. In the Aggregation model, 

the initial results (first three steps) followed the trend of the full model.   But, 

after that the designed velocities displayed a trend quite different from that of 

133 



0.4 

0.3- 

o 

J,    0.2 
o 

_o 
> 

Z-. 

0. 1 

P-«--e--»--S"B--s--a-«-^5.^.^.^s.^.^_^__B__a,'    "¥        Dovison_ _ 

U  ■*-  -^ Marshall _ 
B  Nicholson 

Full model 
©  BMR model 

Aag_regatio_n 

-CD    m 

0.0 

CD      CD      CD CD      0      CD      0      CD"   G> 

0.00      0.05       0.10       0.15       0.20       0.25       0.30      0.35       0.40 
Time(sec) 

Figure 25:   Comparison of velocities using reduced models and 

full model 

134 



the full model. This was probably because the transformation (during reduction) 

did not retain the controllable characteristics of the full model. Further, in the 

case of the Aggregation model, the performance of the reduced model improved 

as the number of retained states was increased.  Davison's model resulted in a 

velocity trend similar to that of the full model except at the last time step of 

the simulation. In this case the designs do not match because only the first four 

modes are retained in the reduced system. Though the full model is compensated 

for within the reduced system, the initial response of the unretained states may 

result in a mismatch in the results.  The results of Marshall's and Nicholsons's 

method are similar, and to a large extent the trend of the full state model is 

maintained, in both cases. Because these models are derived from model trans- 

formations, the numerical correspondence with the full model is not exact.  In 

these methods the proper selection and grouping of the dominant modes of the 

system largely influence the system characteristics and output. 

For the first example, the reduced model built using the BMR scheme retains 

the controllable and observable characteristics of the full model. As a result, the 

velocities designed using the BMR model and full model match very closely. 

The velocities designed using the Aggregation, BMR, Marshall, Davison and 

Nicholson methods along with results of the full model are tabulated in Tables 

(3) through (7), respectively. The forging simulation was carried out using these 

velocities and the finite element model described earlier. The resulting strain 

rate trajectories obtained are depicted in Fig. (26). 
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Table 3.    Comparison of optimized velocities for aggregation method (Frictionless case) 

Step 

No. 

Time 

(sec) 

Full model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 

Error 

1 0.02 0.1069 0.0221 79.3265 

2 0.04 0.1102 0.0238 78.4029 

3 0.06 0.1137 0.0256 77.4846 

4 0.08 0.1173 0.0277 76.3853 

5 0.10 0.1211 0.0301 75.1445 

6 0.12 0.1251 0.0328 73.7810 

7 0.14 0.1293 0.0359 72.2351 

8 0.16 0.1337 0.0395 70.4562 

9 0.18 0.1384 0.0435 68.5694 

10 0.20 0.1433 0.0483 66.2945 

11 0.22 0.1485 0.0539 63.7037 

12 0.24 0.1540 0.0606 60.6494 

13 0.26 0.1599 0.0687 57.0356 

14 0.28 0.1661 0.0788 52.5587 

15 0.30 0.1727 0.0916 46.9600 

16 0.32 0.1797 0.1086 39.5659 

17 0.34 0.1873 0.1323 29.3647 

18 0.36 0.1953 0.1677 14.1321 

19 0.38 0.2039 0.2267 -11.1820 

20 0.40 0.2132 0.3457 -62.1482  | 
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Table 4.    Comparison of optimized velocities for BMR model (Frictionless case) 

Step 

No. 

Time 

(sec) 

Full Model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 

error 

1 0.02 -0.2497 -0.2504 -0.2803 

2 0.04 -0.2387 -0.2393 -0.2514 

3 0.06 -0.2333 -0.2338 -0.2143 

4 0.08 -0.2288 -0.2292 -0.1748 

5 0.10 -0.2252 -0.2255 -0.1332 

6 0.12 -0.2223 -0.2225 -0.0900 

7 0.14 -0.2200 -0.2202 -0.0909 

8 0.16 -0.2182 -0.2184 -0.0917 

9 0.18 -0.2169 -0.2170 -0.0461 

10 0.20 -0.2160 -0.2160 0.0000 

11 0.22 -0.2153 -0.2153 0.0000 

12 0.24 -0.2150 -0.2149 0.0465 

13 0.26 -0.2149 -0.2148 0.0465 

14 0.28 -0.2150 -0.2149 0.0465 

15 0.30 -0.2153 -0.2151 0.0929 

16 0.32 -0.2157 -0.2155 0.0927 

17 0.34 -0.2163 -0.2161 0.0925 

18 0.36 -0.2169 -0.2167 0.0922 

19 0.38 -0.2177 -0.2175 0.0919 

20 0.40 -0.2186 -0.2183 0.1372 
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Table 5.    Comparison of optimized velocities for Marshall's method (Frictionless case) 

Step 

No. 

Time 

(sec) 

Full model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 
Error 

1 0.02 0.1069 0.1787 -67.1656 

2 0.04 0.1102 0.1846 -67.5136 

3 0.06 0.1137 0.1908 -67.8100 

4 0.08 0.1173 0.1973 -68.2012 

5 0.10 0.1211 0.2041 -68.5384 

6 0.12 0.1251 0.2111 -68.7450 

7 0.14 0.1293 0.2186 -69.0642 

8 0.16 0.1337 0.2263 -69.2595 

9 0.18 0.1384 0.2345 -69.4364 

10 0.20 0.1433 0.2431 -69.6441 

11 0.22 0.1485 0.2521 -69.7643 

12 0.24 0.1540 0.2616 -69.8701 

13 0.26 0.1599 0.2715 -69.7936 

14 0.28 0.1661 0.2821 -69.8374 

15 0.30 0.1727 0.2932 -69.7742 

16 0.32 0.1797 0.3049 -69.6717 

17 0.34 0.1873 0.3173 -69.4074 

18 0.36 0.1953 0.3305 -69.2268 

19 0.38 0.2039 0.3445 -68.9554 

20 0.40 0.2132 0.3594 -68.5741 
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Table 6.    Comparison of optimized velocities for Davison's method (Frictionless case) 

Step 

No. 

Time 

(sec) 

Full model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 
Error 

1 0.02 0.1069 0.1318 -23.2928 

2 0.04 0.1102 0.1408 -27.7677 

3 0.06 0.1137 0.1504 -32.2779 

4 0.08 0.1173 0.1605 -36.8287 

5 0.10 0.1211 0.1712 -41.3708 

6 0.12 0.1251 0.1825 -45.8833 

7 0.14 0.1293 0.1945 -50.4254 

8 0.16 0.1337 0.2072 -54.9738 

9 0.18 0.1384 0.2207 -59.4653 

10 0.20 0.1433 0.2350 -63.9916 

11 0.22 0.1485 0.2503 -68.5522 

12 0.24 0.1540 0.2666 -73.1169 

13 0.26 0.1599 0.2841 -77.6735 

14 0.28 0.1661 0.3028 -82.2998 

15 0.30 0.1727 0.3229 -86.9716 

16 0.32 0.1797 0.3445 -91.7084 

17 0.34 0.1873 0.3679 -96.4229 

18 0.36 0.1953 0.3933 -101.3825 

19 0.38 0.2039 0.4210 -106.4738 

20 0.40 0.2132 0.4512 -111.6323 
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Table 7.    Comparison of optimized velocities for Nicholson's method (Frictionless case) 

Step 

No. 

Time 

(sec) 

Full model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 

Error 

1 0.02 0.1069 0.1318 -23.2928 

2 0.04 0.1102 0.1408 -27.7677 

3 0.06 0.1137 0.1504 -32.2779 

4 0.08 0.1173 0.1605 -36.8287 

5 0.10 0.1211 0.1712 -41.3708 

6 0.12 0.1251 0.1825 -45.8833 

7 0.14 0.1293 0.1945 -50.4254 

8 0.16 0.1337 0.2072 -54.9738 

9 0.18 0.1384 0.2207 -59.4653 

10 0.20 0.1433 0.2350 -63.9916 

11 0.22 0.1485 0.2503 -68.5522 

12 0.24 0.1540 0.2666 -73.1169 

13 0.26 0.1599 0.2841 -77.6735 

14 0.28 0.1661 0.3028 -82.2998 

15 0.30 0.1727 0.3229 -86.9716 

16 0.32 0.1797 0.3445 -91.7084 

17 0.34 0.1873 0.3679 -96.4229 

18 0.36 0.1953 0.3933 -101.3825 

19 0.38 0.2039 0.4210 -106.4738 

20 0.40 0.2132 0.4512 -111.6323 
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7.6.2   H-block compression - Friction case 

In this example, a closed die forging of an H-block from a cylindrical billet was 

simulated using one die.  The billet considered for simulation had a height of 2.45 

inches and a radius of 2.45 inches. Due to the existing symmetric conditions, only 

a quarter of the die and workpiece were modeled. During modeling the workpiece 

was discretized into 240 nodes and 203 elements (Fig. 27). The die had a height to 

web ratio of 1.0. The same material as used in the previous example was used for 

this simulation. The frictional condition at the billet-die interface was specified by 

using a constant shear friction factor of 0.3. The simulation was initiated with an 

initial die velocity of 0.1 in/sec. The control of a single element was considered and 

a desired strain rate of 0.05/sec in element number 153 was taken as the control 

objective.   This element is critical because it is adjacent to the die-billet contact 

surface, and is sensitive to the frictional conditions at the die-billet interface. During 

the first step of simulation, 25 nodes were touching the die.   Each of these nodes 

has one degree of freedom as explained in the previous example. In addition, the 

element of interest is associated with four nodes having two degrees of freedom 

each. This results in a full-size (condensed) state space system with 33 states. At 

the end of the second time step, 29 nodes were touching the die.   As explained 

above, this would result in a state space model having 37 states. By applying the 

model reduction techniques explained earlier, the number of states was reduced 

to 10.   In this case, the number of states in the reduced model was decided by 

the controllability grammians. In the current example the first 10 grammians had 

142 



significant values compared to the rest, resulting in a reduced order model having 

10 states. 

To evaluate the perormance of the reduced order models, the input velocities 

were designed using the full model and compared with those of the reduced models. 

Because the strain rate desired was very low compared to the initial strain rate of 

element 153, the design trend using the full model revealed that the die velocities 

decreased rapidly as the simulation progressed. The consolidated results and com- 

parisons of the designed velocities are depicted in Fig. (28). The simulations were 

carried out using a time step of 0.02 sec for 20 time steps. It may be observed that 

the results of the BMR model match almost exactly with that of the full model 

(Table 8), with a maximum error of 0.06%. The designed ram velocities using the 

Aggregation, Marshall, Davison and Nicholson methods were also compared with 

those of the full model.   These results are tabulated in Tables (9) through (12), 

respectively.  Here again, the Aggregation model performed well in the initial few 

steps. But, after the seventh step the results from this model did not conform with 

that of the full model.  This behavior of the aggregated model is due to the trun- 

cation of the higher eigenvalues of the system during the reduction process.  The 

other models showed trends in close conformance with the full-size model.   It is 

very likely that retaining more states in the reduced models would result in more 

accurate results. 
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Table 8.    Comparison of optimized velocities for BMR model (Friction case) 

Step 

No. 

Time 

(sec) 

Full Model 

(in/sec) 

Red. Model 

(in/sec) 

% 

error 

1 0.02 -0.002341 -0.002342 0.0548 

2 0.04 -0.009623 -0.009629 0.0570 

3 0.06 -0.016222 -0.016229 0.0489 

4 0.08 -0.022782 -0.022792 0.0423 

5 0.10 -0.029304 -0.029315 0.0365 

6 0.12 -0.035785 -0.035796 0.0313 

7 0.14 -0.042225 -0.042236 0.0266 

8 0.16 -0.048623 -0.048634 0.0223 

9 0.18 -0.054980 -0.054990 0.0184 

10 0.20 -0.061294 -0.061304 0.0149 

11 0.22 -0.067566 -0.067574 0.0117 

12 0.24 -0.073794 -0.073800 0.0088 

13 0.26 -0.079979 -0.079984 0.0061 

14 0.28 -0.086119 -0.086122 0.0038 

15 0.30 -0.092215 -0.092217 0.0016 

16 0.32 -0.098266 -0.098266 0.0003 

17 0.34 -0.104272 -0.104270 -0.0020 

18 0.36 -0.110232 -0.110229 -0.0035 

19 0.38 -0.116147 -0.116141 -0.0048 

20 0.40 -0.122016 -0.122008 -0.0060     1 
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Table 9.    Comparison of optimized velocities for aggregation method (Friction case) 

Step 

No. 

Time 

(sec) 

Full model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 
Error 

1 0.02 0.0993 0.2760 -177.9456 

2 0.04 0.1037 0.2764 -166.5381 

3 0.06 0.1083 0.2767 -155.4940 

4 0.08 0.1133 0.2771 -144.5719 

5 0.10 0.1186 0.2775 -133.9798 

6 0.12 0.1243 0.2779 -123.5720 

7 0.14 0.1303 0.2782 -113.5073 

8 0.16 0.1368 0.2786 -103.6550 

9 0.18 0.1436 0.2790 -94.2897 

10 0.20 0.1510 0.2794 -85.0331 

11 0.22 0.1588 0.2797 -76.1335 

12 0.24 0.1671 0.2801 -67.6242 

13 0.26 0.1760 0.2805 -59.3750 

14 0.28 0.1855 0.2809 -51.4286 

15 0.30 0.1956 0.2813 -43.8139 

16 0.32 0.2064 0.2817 -36.4825 

17 0.34 0.2179 0.2821 -29.4631 

18 0.36 0.2302 0.2824 -22.6759 

19 0.38 0.2434 0.2828 -16.1873 

20 0.40 0.2574 0.2832 -10.0233 
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Table 10.    Comparison of optimized velocities for Marshall's method (Friction case) 

Step 

No. 

Time 

(sec) 

Pull model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 

Error 

1 0.02 0.0993 0.2039 -105.3374 

2 0.04 0.1037 0.2045 -97.2035 

3 0.06 0.1083 0.2050 -89.2890 

4 0.08 0.1133 0.2055 -81.3769 

5 0.10 0.1186 0.2060 -73.6931 

6 0.12 0.1243 0.2066 -66.2108 

7 0.14 0.1303 0.2071 -58.9409 

8 0.16 0.1368 0.2076 -51.7544 

9 0.18 0.1436 0.2081 -44.9164 

10 0.20 0.1510 0.2087 -38.2119 

11 0.22 0.1588 0.2092 -31.7380 

12 0.24 0.1671 0.2097 -25.4937 

13 0.26 0.1760 0.2103 -19.4886 

14 0.28 0.1855 0.2108 -13.6388 

15 0.30 0.1956 0.2113 -8.0266 

16 0.32 0.2064 0.2119 -2.6647 

17 0.34 0.2179 0.2124 2.5241 

18 0.36 0.2302 0.2129 7.5152 

19 0.38 0.2434 0.2135 12.2843 

20 0.40 0.2574 0.2140 16.8609 
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Table 11.    Comparison of optimized velocities for Davison's method (Friction case) 

Step 

No. 

Time 

(sec) 

Full model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 

Error 

1 0.02 0.0993 0.1233 -24.1692 

2 0.04 0.1037 0.1234 -18.9971 

3 0.06 0.1083 0.1235 -14.0351 

4 0.08 0.1133 0.1236 -9.0909 

5 0.10 0.1186 0.1237 -4.3002 

6 0.12 0.1243 0.1238 0.4023 

7 0.14 0.1303 0.1240 4.8350 

8 0.16 0.1368 0.1241 9.2836 

9 0.18 0.1436 0.1242 13.5097 

10 0.20 0.1510 0.1243 17.6821 

11 0.22 0.1588 0.1244 21.6625 

12 0.24 0.1671 0.1245 25.4937 

13 0.26 0.1760 0.1247 29.1477 

14 0.28 0.1855 0.1248 32.7224 

15 0.30 0.1956 0.1249 36.1452 

16 0.32 0.2064 0.1250 39.4380 

17 0.34 0.2179 0.1251 42.5883 

18 0.36 0.2302 0.1253 45.5691 

19 0.38 0.2434 0.1254 48.4799 

20 0.40 0.2574 0.1255 51.2432 
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Table 12.    Comparison of optimized velocities for Nicholson's method (Friction case) 

Step 

No. 

Time 

(sec) 

Full model 

(mm/sec) 

Red. Model 

(mm/sec) 

% 

Error 

1 0.02 0.0993 0.1233 -24.1692 

2 0.04 0.1037 0.1234 -18.9971 

3 0.06 0.1083 0.1235 -14.0351 

4 0.08 0.1133 0.1236 -9.0909 

5 0.10 0.1186 0.1237 -4.3002 

6 0.12 0.1243 0.1238 0.4023 

7 0.14 0.1303 0.1240 4.8350 

8 0.16 0.1368 0.1241 9.2836 

g 0.18 0.1436 0.1242 13.5097 

10 0.20 0.1510 0.1243 17.6821 

11 0.22 0.1588 0.1244 21.6625 

12 0.24 0.1671 0.1245 25.4937 

13 0.26 0.1760 0.1247 29.1477 

14 0.28 0.1855 0.1248 32.7224 

15 0.30 0.1956 0.1249 36.1452 

16 0.32 0.2064 0.1250 39.4380 

17 0.34 0.2179 0.1251 42.5883 

18 0.36 0.2302 0.1253 45.5691 

19 0.38 0.2434 0.1254 48.4799 

20 0.40 0.2574 0.1255 51.2432 
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The reduced model constructed using the BMR method resulted in a velocity 

schedule very close to that of the full state model (Table 8), and the corresponding 

strain rate profile is depicted in Fig. 29. 

7.7   Analysis of results 

In this work, an efficient model reduction scheme suitable for the metal forming 

applications is identified. The methodology developed is general purpose and ap- 

plicable to most metal forming processes such as forging, extrusion, upsetting and 

coining processes. Of the possible order reduction methods studied, the balanced 

model reduction (BMR) method was the most accurate scheme suitable for process 

control of metal forming operations. Because the BMR scheme is based on the con- 

trollable and observable properties of the original system, the designed velocities 

matched almost exactly with those of the full model. Another advantage of this 

method is that it can be used for a very large reductions in the number of states. 

Also, this method does not need any additional calculation of weighting matrices 

since it is based on the controllability of the original system. This results in a 

savings in computational time during simulation, as compared to the other model 

reduction methods. 

The consolidated results are presented in Figures (25) and (29). In the first case, 

the discretized system resulted in 234 states, which was reduced to 15 states by using 

finite element condensation techniques. This was further reduced to four states by 

the model reduction schemes considered. The initial strain rate of the uncontrolled 

system was 0.0044/sec and the objective was to increase this to 0.005/sec. Because 

the desired strain rate is higher than the initial strain rate, the control dictated a 
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sharp increase in the velocity. The change in the velocity gradually reduced with die 

stroke, maintaining the strain rate at 0.005/sec. This trend was exhibited by all the 

reduced models except the Aggregated model. The reduced model constructed using 

the balanced model reduction scheme resulted in a design closest (comparatively) 

to that of the the full model. For the BMR model, the maximum deviation in 

velocities from the original (full-size model) design was 0.3%. 

In the second case, the finite element model had 240 nodes, and the number of 

states in the original system was 480. The condensation scheme reduced this large 

number of states to 37 at the second step, and model reduction further reduced the 

number of states to 10. The initial strain rate of element 153 was 0.0996/sec, and 

the desired effective strain rate was 0.005/sec. Because a reduction in effective strain 

rate is desired, the designed velocities decreased sharply to ensure that the desired 

strain rate is achieved. This tendency was shown by all the reduced models except 

the Aggregation model. A characteristic feature of the modal analysis methods is 

that the steady state response matches with the parent model. Hence, the reduced 

model behaves similar to the full model after the settling time is reached. But in 

metal forming processes, the simulation time step cannot be large because of the 

nonlinearity of the system/process. Therefore, in general, modal analysis methods 

are not suitable for metal forming processes. 
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CHAPTER 8 

Numerical Examples - Reduced Order Models 

The condensed state space model representing the coupled thermomechanical 

forging system is first constructed. This model is further reduced by retaining the 

controllable and observable subspace of the system using the balanced state space 

representation. The process parameters are then designed using LQR theory as an 

off-line design tool. The design problem is posed as an output tracking problem 

and the trajectory to be tracked is the desired strain-rate profile of the element 

of interest. The state space model is updated at the end of each time step to 

accomodate the frequent changes in geometry and boundary conditions. 

The design approach is demonstrated using two example cases.   In the first 

example, the design of process parameters (die velocity) is performed while forging 

an integrated blade and rotor (IBR) disk under isothermal conditions. This problem 

is carried out with two different initial conditions.   In the first case an initial die 

velocity of 1.0 in/sec was used, and in the second case, the design was carried 

out using an initial ram velocity of 0.5 in/sec.   In both cases, the method was 

demonstrated using two different strain rate requirements.   Also, the simulation 

was carried out only for 200 time steps, and not until completion. This is because 

the goal of these examples is limited to demonstrating the concept developed and 

not for simulating and analyzing the entire forging process. In the second example, 

die velocity design was performed under nonisothermal conditions for an engine disk 
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forging. For validation purposes the design obtained using the reduced model was 

compared with that obtained using the full model. 

8.1   Isothermal design - IBR disk forging 

Forging of an IBR disk is generally conducted in multiple stages because of the 

complexity and intricacy of the finished part. The die/billet shapes for this forging 

were determined by earlier researchers using a trial and error approach. Figure (30) 

shows the billet and die shapes used in simulating the IBR disk forging. Figures 

(30a) and (30b) show the start and finish of the first stage of forging. The second 

stage forging simulations are shown in Figures (30c) and (30d). 

In this work, the billet and die shapes shown in Figure (31) were used for sim- 

ulation while designing the process parameters. Though there is a considerable 

change in billet shape during the first stage of simulation, this process is similar 

to pure compression where only one mode of deformation is dominant. On the 

other hand, the second stage has multiple modes of deformation and constitutes a 

more challenging forging problem. As a result, the second stage of the IBR disk 

forging was selected for demonstrating the methodology proposed in this work. To 

evaluate the performance of the reduced order model, the same case was studied 

with two different initial ram velocities and with two different design (strain rate) 

requirements. Element 275 was chosen as the element of interest for this example 

(Figure 31). This element is 'critical' because it goes through a variety of defor- 

mation modes as the forging simulation progresses. A hypothetical rate dependent 
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Figure 30: Simulation of IBR disk forging 
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Top die 

Figure 31:   Finite element model of Integrated Blade and Rotor 
disk 
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material with constitutive equation cr = kt9eh was used in the simulation [Ref. Eqn. 

(7.78)]. In this case, the proportionality constant k, the strain rate exponent g, and 

the strain sensitivity factor h, were assumed to be 10.0, 0.1, and 0, respectively. 

Due to the symmetry of the model only one half of the disk was modeled. The 

discretized workpiece had 302 quadrilateral elements and 347 nodes. A constant 

temperature of 1700°F was maintained in the workpiece for the entire isothermal 

forging process. The bottom die was kept stationary while the top die was allowed 

to move. Interface frictional conditions were enforced using a constant shear friction 

factor of 0.15. 

In the first case the simulation was started with an initial die velocity of 1.0 

in/sec. Two different strain-rate requirements of 0.2/sec and 0.5/sec were imposed 

on element 275. The 0.5/sec strain rate case was compared with the full state space 

model results and the designed velocities for 200 simulation time steps are shown 

in Figure (32). The full model results were used as the reference design values. 

From the figure it can be observed that the full model and reduced model results 

match exactly, and the difference in results obtained from the two models is zero. 

At the beginning of the process, the full state space model had 26 states and the 

controllable subspace (reduced order model) had 4 states. At the completion of 200 

time steps, there were 34 states in the full model and 5 states in the reduced model. 

Figure (33) depicts the effective strain rate profile of element 275 for the the full and 

reduced models. The difference in results for the two models is again zero, because 

the balanced model consists of the controllable subspace of the full system and the 

weighting matrices (for control) used in both the simulations are the same. The 

fluctuation in die velocity/strain rate towards the end of the 200iA step is because 
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of the change in boundary conditions of the system as nodes get detached and 

reattached to the die surface. With the same initial die velocity, a different design 

requirement of 0.2/sec was now imposed on element 275. The design procedure was 

then repeated for 200 simulation steps. The strain rate of element 275 obtained 

using the designed ram velocity schedule was compared with that obtained using a 

constant velocity of 1.0 in/sec in Figure (34). This figure shows a plot of the strain 

rate against die stroke upto a stroke length of 0.0993 in. 

The design was continued for the strain-rate requirement of 0.5/sec, until ele- 

ments distorted significantly and remesh was needed. The reduced model at this 

stroke (0.98 in.) had 5 states, while the full model had 66 states. The velocity 

and strain rate schedules for this example are described in Figure (35) and Figure 

(36), respectively. It may be observed that there is a sudden jump in strain-rate 

(Figure (37)) at a stroke of 0.17 in. due to the detaching of a node from the bottom 

die. Further, a series of oscillations in strain-rate may be observed at a stroke of 

0.4 in. These oscillations may be attributed to the attaching of additional nodes 

to the die at this stroke. As new nodes come in contact with the die, the time 

step used in ALPID decreases considerably. The controller now has a smaller time 

duration to meet the strain rate requirement in the 'control' element. It thus makes 

large corrections in the input (die velocity). If these adjustments are not within the 

equipment acceleration limit, the die velocity tends to bounce back and forth be- 

tween the acceleration bounds resulting in the fluctuations observed in Figure (37). 

For on-line control implementation, these oscillations must be smoothed about their 

mean value at the disturbance locations and then used. 
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In the second case, an initial die velocity of 0.5 in/sec was used with two d- 

ifferent design requirements of 0.15/sec and 0.1/sec on the strain rate of element 

275. Figure (38) shows a comparison between the strain rate profiles for the con- 

trolled and uncontrolled (constant velocity) cases for 200 simulation steps. The 

figure demonstrates the effectiveness of the reduced order model in meeting the de- 

sign requirement under different initial conditions and confirms the stability of the 

proposed approach. 

8.2   Non-isothermal design - Engine disk forging 

In the second example, process parameter design for an engine disk forging 

was carried out under nonisothermal conditions. The finite element discretization 

of the billet and die for the engine disk are shown in Figure (39). An initial die 

temperature of 600°F and initial billet temperature of 1700°F was chosen for this 

simulation. Figure (39) also shows the location of the element of interest (element 

23) and critical node (node 18) for this example. The critical node may be defined 

as the node at the die-billet interface whose temperature is to be tracked. Only 

the interface nodes qualify to be critical nodes because they go through a variety 

of heat transfer modes as deformation proceeds. The design requirement was to 

maintain the strain-rate of the element 23 at 0.7/sec. Only a quarter of the billet 

was modeled because of the inherent symmetry of the engine disk along the two 

cartesian axes. The billet was discretized using 50 quadrilateral elements and 66 

nodes. The billet material used for this example was titanium alloy (Ti 6242), and 
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the design was started using a single die (top die) moving with a velocity of 1.0 

in/sec. 

The full-size state space model for this system (nonisothermal) resulted in 21 

states. The number of states was further reduced to 10 by using the BMR method. 

Process parameter (die velocity) design was performed, and Figure (40) shows the 

resulting strain rate trajectory. In the figure, the results from the full state model 

were used as the reference.   It may be observed that the full and reduced order 

models gave exactly the same results.  The corresponding die velocity profiles for 

the two models (Figure (41)) also matched exactly.   The temperature profile of 

node 18 was compared for the two models and is depicted in Figure (42). Again, it 

was observed that the results of the full-size and reduced order state space models 

match very well, with a maximum difference in nodal temperature of 0.25%. The 

simulation was carried out till the die was completely filled, and at the end of the 

simulation it was observed that the full model had 41 states while the reduced order 

model had a total of 11 states. 
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CHAPTER 9 

Practical Aspects in Process Control Design 

9.1   Smoothened die velocity profiles 

The optimal control scheme described earlier worked satisfactorily for most 

metal forming problems. But, it was observed that simulations involving intricate 

and complex die/billet shapes resulted in frequent changes in the material flow 

direction and boundary conditions of the system.  This implies that nodes get 

attached/detached from the die boundary at frequent intervals as the simulation 

progresses. This phenomemon causes the optimal control scheme to produce an 

oscillating die velocity schedule.   In addition, there is a complex interplay of 

forces during die-fill which results in unsteady and non-uniform material flow. 

This again causes the control algorithm to produce a fluctuating die velocity 

during the final stages of the forming process.  A fluctuating or oscillating die 

velocity schedule is impractical to implement on a hydraulic press.  Therefore, 

designed velocity curves were smoothened locally using curve-fitting techniques 

before implementation. To check the effect of this approximation on the results 

obtained, the new velocity schedule was fed back into the system using the same 

design conditions and requirements as the original (control) simulation. Fig. 43 

shows a comparison of the original (designed) and smoothened velocity profiles 

for an axisymmetric engine disk forging. The corresponding strain rate profiles 

are depicted in Fig.  44.  It is observed that the strain rate obtained using the 

smoothened velocity profile satisfies the (strain rate) design requirement, and is 

also in close conformance with that obtained using the original velocity profile. 
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A smoothened velocity schedule was also produced for a plane strain channel 

section forging. Again, it was observed that the strain rate obtained met the 

design requirement satisfactorily, and was in conformance with that obtained 

using the original velocity. Figures 45 and 46 depict the die velocity and strain 

rate profiles for this example case. It may thus be concluded that the smoothened 

velocity curves are an acceptable approximation, and may be used for practical 

application of the control algorithm described in this work. 

In addition to the advantage during implementation, the smoothened velocity 

profiles are also an asset while carrying out parametric studies for metal forming 

simulations. In such studies, generally, repetitive simulations must be performed, 

and previously constructed smoothened velocity profiles can directly be used for 

carrying out additional simulations, instead of using the computationally inten- 

sive control-based design methodology. This would save a considerable amount of 

computational time and effort during the simulation, since expensive numerical 

calculations involved in the design process may be avoided. 

9.2   Stability and validity of the state space models 

The results obtained using the control-based methodology depend, to a large 

extent, on the prevailing properties and characteristics of the metal forming 

system. This means that the designed velocities and the effectiveness of the 

control scheme are dependent on the system matrices (plant, input, and output 

matrices) and the weighting matrices used in the LQR design scheme. But, for 

simple forging simulations, having uniform and well distributed metal flow, it was 

observed that the system matrices did not change significantly from one time step 

to the next. Studies were thus carried out to determine the effect of using only 

one set of system matrices for the entire simulation, instead of building the state 

space model at every time step. This would again reduce the computational cost 
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and time significantly. An axisymmetric engine disk forging was considered as 

the test case, and the design of velocities was carried out for the following three 

situations: 

1. State space model built at every time step. 

2. State space model built only once at the beginning of the simulation. 

3. State space model built whenever boundary condition changes. 

In Case 3, the boundary condition changed 12 times during the entire sim- 

ulation, which lasted about 130 time steps. As a result, the state space model 

had to be built 12 times during the design process.  On an average, each state 

space model was valid for about 10 simulation time steps for this example. Case 

3 is also more accurate than Case 2 because it accounts for the change in the 

size of the system matrices as deformation progresses.  In other words, in case 

3, the system matrices are built and used (for designing the die velocity) when- 

ever nodes attach/detach from the die surface. Figures 47 and 48 show the die 

velocity and strain rate profiles obtained for the above three cases.  It may be 

observed from Fig. 47 that the die velocities designed for the above three cases 

match closely. Fig. 48 shows that the strain rate requirement is met effectively 

for all the three cases. Since the results from case 2 match so closely with that 

of the other two cases, it may be concluded that for this case the one state space 

model built at the beginning of the simulattion was valid for the entire duration 

of the simulation. In addition, use of approximate system matrices for the entire 

simulation has a smoothening effect on the designed velocities, thereby reducing 

the fluctuations in the designed die velocities. This in itself is a big advantage, 

as explained in the previous section. It may thus be concluded that for simple 

forging problems, approximate system matrices may be used to design die veloc- 

ities without radically altering the performance of the system. In addition, by 
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intelligently selecting points along the simulation path where the system matri- 

ces are to be built, a large amount of computational time may be saved without 

sacrificing the accuracy of the system. 

The above argument may be extended and applied to the design of weighting 

matrices also. In the original design scheme, the weighting matrices for control 

are determined at every time step of the simulation. For systems behaving in a 

fairly linear and predictable manner, constant weighting matrices may be used 

for the entire simulation without affecting the results significantly. Figs. 49 and 

50 show the velocities and (corresponding) strain rates obtained using constant 

and varying weighting matrices for an engine disk forging. In both cases, the 

conformance with the original results is very good. Therefore, it may be con- 

cluded that the use of constant weighting matrices in the control scheme is again 

an acceptable approximation. 

All the above mentioned approximations made in the formulation and imple- 

mentation procedures result in a large savings in computational time and effort 

during the simulation, while still realizing effective control and design. However, 

it must be noted that these practical aspects are related to the simulation and 

are not directly applicable to the actual forging process itself. 
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9.3   Eigen mode analysis for process characterization 

This section presents a methodology for identifying the tension and compres- 

sion zones in the wrokpiece material, based on the study of eigenmodes of the 

deforming system. The process of identification of the tension and compression 

zones is then related to the selection of favorable operating zones/conditions for 

the process, and for predicting the stability of the deforming material. 

Elemental level eigenmode analysis 

The derivation of the finite element governing equations for metal forming 

analysis have been described earlier in chapter 2 of this report. In the finite 

element formulation, the objective is to design admissible velocity fields by min- 

imizing the potential energy of the system (Eq. (2.8)) while also maintaining 

the incompressibility condition on the velocity field. This is done by introducing 

a penalty constant for the volumetric component and converting the variational 

problem into a stationary value problem, whose first order variation (Eq. (2.10)) 

is stated as, 

STT = f äStdV + K f evSeydV - f   FtSmdS = 0 (9.1) 
Jv Jv JsF 

where K is the penalty parameter, and is generally a large positive quantity. 

On the right hand side of Eq. (9.1), the first, second, and third terms rep- 

resent the shear component, the volumetric component, and the work done by 
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external tractional forces, respectively. Because of the penalty parameter, the 

volumetric deformation component is easily separable from the shear deformation 

component. In a similar manner the stiffness matrix of the element can also be 

separated into the deformation part and volumetric part. The stiffness equations 

in metal forming analysis are nonlinear in nature, and the velocity field solution 

is generally obtained in an iterative manner. At the converged solution point, 

the stiffness matrix of any element may be represented as, 

Kc = KD + Kvo (9-2) 

where KD is the deformation part of stiffness, Kvo is the volumetric part of stiff- 

ness, and Kc is the total elemental stiffness (volumetric and deformation parts 

combined). For a four-noded quadrilateral element, the volumetric strain is lin- 

early distributed within the element. The penalty function constraint, Jv kvdV, 

requires the value of ey to be zero at every point of the element because of the 

'squared' term. This over-constraint condition is relaxed by using the one point 

numerical integration scheme, which is applied at the centroid of the element. 

For identifying the tension and compression zones, the analysis is based on 

the volumetric component of the stiffness matrix. It has been observed that a 

distinct separation exists between the eigenvalues of the shear deformation part 

and the volumetric deformation part in the elemental level eigenvalue represen- 

tation, as shown in Fig. 51. This figure shows the real eigenvalue spectrum of 

an element during the axisymmetric compression of a disk. In general, the de- 

formation of the material can be characterized by three modes: the rigid body 

mode, the shear mode, and the volumetric mode. The rigid body mode is due to 
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the rigid movement caused by adjacent elements. The shear mode is due to pure 

deformation of the material. The volumetric mode is a result of bulk deforma- 

tion, which is not practical to have in any metal forming process. Therefore, in 

closed die forging the volume is maintained constant during deformation. This 

is achieved by using a large penalty constant as explained earlier. In the elemen- 

tal level eigenvalue distribution, at least one eigenvalue and its corresponding 

eigenmode is due to the volumetric component of stiffness. Because the penal- 

ty constant is very large and applied to the volumetric deformation component, 

the corresponding eigenvalue will be the largest in the real eigenvalue spectrum. 

The eigenvalues are calculated by first computing the stiffness matrix Kyo (Eq. 

(9.2)) and using an IMSL subroutine DEVCSF to extract these values from this 

matrix. 

Once the eigenvalue representing the volumetric deformation component is 

identified, the corresponding eigenvector can easily be calculated. The elemental 

level representation of the eigenvalue problem is: 

KVo<£= [/ {KC)djA<t> (9.3) 

where K is the penalty constant, <j> is the modal matrix having dimensions corre- 

sponding to the number of degrees of freedom (8 X 8) of each element, and C is 

the volumetric gradient vector of size 1X8. Eq. (9.3) is of the form Ax = Ax, 

which is the general form of a standard eigenvalue problem where, A is the eigen- 

value matrix, and x is the modal matrix. Further, C can be determined from 

the expression for the volumetric strain rate k\r, as described below [27]: 

kv = kx + ky + kz (9.4) 
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In terms of nodal velocities, the volumetric strain rate is expressed as, 

kv = CTV = dvi        i = 1,2,3 (9.5) 

where d = Bu+B2i+Bzi and '£' refers to the elements of the strain rate gradient 

matrix corresponding to the x, y and z coordinates. Now, the eigenmode problem 

may be formulated as, 

Se = C4>va (9.6) 

where Se is a scalar used for identifying the tension and compression zones, and 

<f>v is the volumetric deformation mode of the elemental stiffness, a, the scalar 

term, is calculated from the volumetric eigenmodes as, 

a = <^TV (9-7) 

where V is the elemental nodal velocity vector. The value of Se determines 

whether the element is in tension or compression. The general rule is, 

If        C<j)v(ßvTV > 0        the element is in tension 

//        C^>v^yTV < 0        the element is in compression 

The product of C and V gives the volumetric strain rate of the element which is 

a scalar, and the product of the eigenvectors {<j>v) is another positive scalar, rep- 

resenting the extent of the deformation. Because the product of these two scalar 

quantities gives the volumetric strain of the element, Se can indicate whether the 

element is in tension or compression. 
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Global level eigenmode analysis 

As explained in chapter 2, the equilibrium equations dealt with in metal 

forming processes are nonlinear, and the solution to these equations is obtained 

in an iterative manner. The velocity solution is actually obtained by lineariz- 

ing the equilibrium equations and applying suitable convergence criteria. The 

linearization is achieved by a Taylor series expansion (Eq. (2.14)) about the 

assumed velocity solution as shown below: 

dir 

dvj 
+ 

J v=v0 

d2TT 
Avj = 0 (9.8) 

J v=v0 
dvjdvj 

where v0 is the converged solution point, and Avj is the first order correction of 

the velocity v. Eq. (9.8) can be rewritten by taking the first derivative term to 

the right hand side as, 

KAv = f (9-9) 

The linearized form of the system of equations is given as, 

K5v + KTAv = F + f (9.10) 

where Ks is the secant stiffness matrix at the converged solution point of the 

previous iteration, KT is the gradient stiffness matrix at the current iterative 

step, F is the force vector, and f is the change in force due to a change in the 

nodal velocity. 

Using the discrete representation of the quantities involved in the stiffness 

equation developed in chapter 2 (Eq. (2.12)), we have [27], 

J7T       dirp     dirp     ÖTTSF (9.U) 
dvj      dvj      dvj       dvi 
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where the first term on the right hand side of the above equation is the load 

vector due to deviatoric stresses, the second term is the load due to hydrostatic 

stress, and the third term is the applied nodal point force. These three terms 

are added up to give the additional force term f. The second derivative terms of 

7T are expressed as (Eq. 2.21), 

& ̂  = / tPudV + /  (iS - ^) lpIKvKvMPMjdV+ [KCjCjdV (9.12) 
rvj      Jv e Jv\ede      t) e JV dvjvj 

The third term in the above equation is the gradient matrix due to volumetric 

deformation. This part of the gradient stiffness is easily separable from the 

other parts due to its association with the penalty parameter, and is used for 

global level eigenvalue analysis. The stiffness terms are first computed at the 

elemental level and then assembled into the global stiffness matrix (Eq. 2.13). 

This assembled stiffness matrix has both the shear and volumetric components 

together. Consequently, the real eigenvalue spectrum of the stiffness has two 

parts. These parts again are distinct and can be easily identified and separated 

because of the penalty parameter associated with the volumetric part. 

In the global level eigenvalue analysis, the first step is to identify the eigen- 

values related to Kvo and calculate the corresponding eigenvectors matrix $y 

The next step in this procedure is to compute a for each volumetric deforma- 

tion mode, by taking the product of the eigenvector and the nodal velocities as 

explained in the previous section. This computation results in a vector given by, 

a = *vTV (9-13) 
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The volumetric gradient matrix, C, for each element is assembled as a global 

matrix CQ of dimension equal to total number of degrees of freedom of the 

system. This matrix is sparsely populated and has values only at eight places, 

the rest of the terms in a given row being zeros. These eight values correspond 

to the degrees of freedom of the element under consideration. Now, the scalar 5 

is calculated for each element as, 

S = CG$v<* (9-14) 

Because CQ is assembled row wise, only the degrees of freedom corresponding 

to the element under consideration are made active. Eq. (9.14) actually gives 

the element volumetric strain. Therefore, the sign of the scalar, 5, provides 

information whether the element is in tension or compression. 

Numerical examples 

The methodology developed is demonstrated using two numerical examples 

presented in this section. The results are validated by two methods: The actual 

computation of the volumetric strain and the g ratio method presented by Chen 

et. al. [83]. The first method is simple and easy to implement because the 

volumetric strain rate can directly be calculated using Eq. (9.5). To obtain 

the volumetric strain, the calculated volumetric strain rate is multiplied by the 

simulation time step (size) which is a positive quantity. In general, the volumetric 

strain determines whether volume is gained or lost, and this in turn can help 

predict whether the element is in tension or compression. If the calculated value 

192 



(of volumetric strain) is greater than zero, the element is in tension. Otherwise, 

the concerned element is in compression. 

The other validation method used in this work is the g ratio method which 

is briefly explained in this section. The g ratio is defined as [83], 

g = ^ (9-15) 
(T 

where <rm is the mean or hydrostatic stress, and a is the effective stress.  The 

hydrostatic stress in turn is calculated as, 

o-m = 3 (o-l + 0-2 + o-s) (9-16) 

where a\,<ri and a% are the principle stresses. 

The Dynamic Material Model (DMM) developed by Prasad et. al. [84], 

and Gegel [85] provides useful macroscopic information for identifying favorable 

processing zones in the workpiece material during deformation. This procedure 

models the relationship between the constitutive behavior, hot workability, and 

microstructure development. The modeling is based on four criteria: range of 

strain rate sensitivity, stability criteria relating the variations of strain rate sensi- 

tivity with loge, the lower limit on the temperature sensitivity on flow stress, and 

the stability criteria relating the variations of the entropy with loge. According 

to the authors, the rate sensitivity should lie between 0 and 1, and the lower 

limit on entropy should be 1, for stable deforming operations. Further, for stable 

processing conditions, the following relations should hold good: 

9m    <  0        and &     <  0 (9.17) 
dloge dlog'e 
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where s is the entropy of the system and m is the strain rate sensitivity index. 

By analogy, Chen et. al. [83], considered the stress ratio parameter (g) as a 

measure of stability, and concluded that, 

ds 
If    g   <   0> ö 1   <   0        tne element is stable (9.18) 

ologe 

and 

ds 
If    g  >   0) "^—i   >  0        the element is not stable. (9.19) 

ologe 

Hence, the g ratio can be used as a reference for dynamically determining favor- 

able processing conditions during deformation. If the g ratio value is less than 

i, the state of stress is considered compressive, otherwise, the state of the stress 

is considered tensile. 

Example 1: H-block compression 

In this example, the closed die forging of a H-block is simulated using the 

nonlinear finite element code ALPID (Fig. 52). Isothermal simulation conditions 

were assumed, with a initial billet temperature of 1700°F. A constant shear fric- 

tion factor (m=0.3) was assumed at the die/billet interface. A Titanium alloy was 

used as the workpiece material. A ram velocity of 0.12 mm/sec was used at the 

start of the simulation. Because of the symmetry of deformation, only a quarter 

section of the workpiece is modeled and analyzed, while maintaining symmetric 

boundary conditions along the X and Y axes. The simulation is carried out for 15 

steps, and the billet deformation is predicted. The results of the elemental and 

global level analyses are compared with the stress ratio method, and presented 
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in Figs. 53 and 54. Figs. 53a and 54a show the predictions of the stress ratio 

method. Figs. 53b and 54b show the results of elemental level analysis, while 

Figs. 53c and 54c show the results of global level analysis. The elemental level 

results exactly match the prediction made by the stress ratio method. In case 

of the global level analysis, the results match in most of the elements except for 

three or four elements which are in a state of transition between the compression 

and tension zones as indicated in Figs. 53c and 54c. This discrepancy could be 

due to the coupling of modes of deformation in the billet (i.e., coupling of the 

deformation and shear modes). 

Example 2: Disk forging 

In this example, the closed die forging of a circular billet of radius 52 mm 

is simulated under plane strain conditions. Two dies are used in simulating the 

process. The top die is given an initial velocity of l.Omm/sec, while the bottom 

die is kept stationary. A half-model is used for simulation of the process because 

of the symmetry in deformation (Fig. 55). Symmetrical boundary conditions are 

applied for the nodes along the Y-axis. The billet is modeled with 97 elements. 

A rate sensitive billet material having the following constitutive relationship is 

used for the simulation: 

ä = Kentm + c (9.19) 

For the current example the constant K is 10.0, the strain rate hardening sensi- 

tivity index, m, is 0.1, the strain hardening index, n, is 0 and the constant c is 

0.  The simulation is carried out under isothermal conditions for 10 steps, each 
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of step size 0.1 sec. The elemental level analysis results again compared very 

well with that of the stress ratio method. The global level eigenmode analysis 

results along with the stress ratio results are presented in Figs. 56 and 57. The 

results of the global analysis matched that of the stress ratio method for most 

of the elements except the ones indicated Figs. 56c and 57c. The uncharacter- 

istic behavior of some of these elements is again attributed to the coupling of 

deformation modes within the workpiece material. 

Summary 

In this work an attempt was made to relate the deformation modes of the 

forging system with the tensile and compressive behavior of the material. Iden- 

tifying the tension and compression zones can be directly related to the stability 

of the system under deformation. Because identifying the zones is carried out 

using the stiffness matrices, the predictions depend closely on the stability of the 

stiffness matrices. Hence, the volumetric modes calculated in a particular step 

can be used for several steps by calculating the stability margins of the stiffness 

matrices in that step and by confirming that in the succeeding steps the stiffness 

matrices do not exceed the stability margins. 

The elemental analysis showed a clear separation of modes, namely, the rigid 

body mode, shear deformation mode and the volumetric deformation mode. Each 

one is characterized by a different location in the real eigenvalue spectrum. The 

predictions made using the elemental level analysis matched very well with the 
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predictions of the stress ratio method and with the volumetric strain calculation. 

The global level formulation was also tested and compared with the stress ratio 

method. There was some discrepancy in the predictions of the two methods. 

These differences may be attributed to the coupling of shear and volumetric 

deformations. 

Out of the three modes of deformation, the rigid body modes clearly separate 

from the other two modes. Between the shear and volumetric modes, a coupling 

exists for certain problems whose geometry and processes are complex. From 

the stiffness calculations, it is clear that the bulk and volumetric strain rates are 

involved in the deformation process. Both of these are functions of the strain rate 

components ex, ey, and ez. Due to this nature of the stiffness matrix coupling 

exists between the shear and the volumetric deformation modes. This coupling 

is not shown very well in the elemental analysis because each element is treated 

individually. Because the global analysis is based on the volumetric deformation 

of the entire billet, the coupling of the modes is more pronounced. 
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CHAPTER 10 

Summary and Conclusions 

The forging of complex geometries using expensive alloys under optimum pro- 

cessing conditions is critical to produce defect-free and cost-effective products. 

This work presents an innovative methodology for process modeling and control 

using a multidisciplinary approach based on nonlinear finite element methods 

and optimal control theory. From the finite element governing equations of the 

metal forming system, a state space model is built. This model only retains the 

critical states of the system (after condensing out from the system the unwanted 

and non-critcal states), and has lower number of degrees of freedom as compared 

to the corresponding finite element model. This model is further reduced us- 

ing sophisticated model reduction methods if required. The state equations are 

solved using the LQR design scheme to obtain the optimal process parameters 

(die velocity and initial die temperature). 

This methodology has been implemented by means of a computer program, 

COPP, developed during the course of this work. COPP is built using ALPID 

subroutines, and can be used with isothermal and nonisothermal forgings to ob- 

tain optimal ram velocity schedules and temperature trajectories. Several design 

problems have been solved to substantiate and validate the methodolgy devel- 

oped. Both strain rate and nodal temperature have been effectively controlled 

to satisfy the design requirements, and the performance of the process has been 

considerably improved. From this study, the following conclusions can be drawn: 
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1. The condensed state space model describes the forging process behavior very 

well as discussed in section 6.1 (model validation) of this report. This is fur- 

ther supported by the numerical examples described in sections 6.2 through 

6.5. 

2. Optimal die velocity profiles may be used to control the strain rate in the 

workpiece, as well as reduce the temperature gradient and temperature range 

for any given forging process. Typically 5 % to 10 % reduction in temperature 

gradient was observed. At the same time, the temperature range reduction 

varied from 15 % to 20 % for the examples considered in this work. 

4. Optimizing the initial die temperature directly influences the die-workpiece 

boundary temperature and reduces the temperature range in the billet. For 

the numerical examples considered in this work the temperature range was 

typically reduced by about 15 % due to the optimal design and/or selection 

of the initial die temperature. 

5. In some cases, additional benefits such as a reduction in die loads and process 

time were also observed. Depending on the processing conditions chosen, the 

process time was reduced by upto 25 % in some cases, while the die load in 

most examples was reduced by 15 % to 20 %. 

Among the model reduction methods studied, the balanced model reduction 

(BMR) method was found to be the most effective in representing metal forming 

processes. In future, other order reduction methods also need to be explored for 

this purpose. Some of the issues that require further investigation are: 
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i. Issues pertaining to the stability and performance robustness of the metal 

forming system. 

ii. Extending this design procedure to suit on-line control applications. 

iii.  Extending this methodology and making it applicable to other unit forming 

processes. 

iv Integrating preform shape design and staging criteria with the process control 

concepts developed in this work. 
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Appendix A - Project Overview 

Metal forming processes generally involve the plastic deformation of a material 

having a relatively simple geometry into a product of relatively complex config- 

uration in one or more operations. In metal forming technology, proper design 

and control of the process requires, among other things, the determination of the 

deformation mechanics involved in the process. For example, in a forming process 

such as forging, the properties, quality, and integrity of the final product are de- 

termined by factors such as workpiece/die geometry, material properties, frictional 

conditions, ram velocity schedule, and die/billet temperature profiles. Without 

the knowledge of the influence of these variables on the process mechanics it would 

not be possible to design the dies and equipment adequately, and/or predict and 

prevent the occurence of defects. 

The entire design process is depicted in Fig. Al. In this flowchart, the high- 

lighted box shows the control methodology developed and presented in this report. 

Using this methodology, optimal ram velocity profiles and initial die temperatures 

may be designed for any generic forming process, with constraints on elemental 

strain rates and nodal temperatures within the deforming workpiece. The exact 

design procedure is decribed in detail elsewhere in this report. Fig. A2 briefly 

describes the design procedure by means of a flow diagram and also indicates the 

chapter (of this report) in which each of the design procedures is elaborated upon. 
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Fig Al. Process control of metal forming operations - Project overview 
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Finite element modeling of the metal forming process 

Development of the deformation state space model 

Condensation of the deformation state space model 

Development of the thermal state space model 

Condensation of the thermal state space model 

Development of the coupled thermomechanical state space model 

—<- Chapter 2 

Chapter 2 

Chapter 3 

Chapter 4 

Design of optimal process parameters using LQR theory 

- Selection of optimal processing conditions 
- Die velocity design 
- Initial die temperature design 
- Design of weighting matrices for the LQR scheme 

Validation of the state space model with numerical examples 

•—*■ Chapters 

Chapter 6 

Development of reduced order state space models 

Validation of the reduced order models using numerical examples 

Chapter 7 
Chapter 8 

Practical aspects in metal forming process control design 

- Smoothened die velocity profiles 
- Validity of state space models 
- Eigenmode analysis 

Chapter 9 

Fig A2. Description and organization of the metal forming process control work 
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Appendix B - User's Manual for COPP 

A general purpose program COPP (Control of Optimal Processing Parameters) 

has been developed for designing optimal die velocities and initial die temperature 

for forging processes. This program has been coded using FORTRAN 77, and uses 

ALPID (Analysis of Large Plastic Incremental Deformation) subroutines for finite 

element simulation and analysis. A control module has been integrated into the 

program for implementing the optimal design strategy described in chapter 2. Be- 

the control module uses IMSL subroutines during the design process, access cause 

to IMSL subroutines is necessary while linking this program. This program runs 

on VAX systems because ALPID makes use of some VAX system commands dur- 

ing the simulation. General exposure to ALPID and its postprocessor (FEMGRA) 

are required for using this program. 

COPP can be used with both isothermal and nonisothermal forgings.   For 

isothermal forging operations COPP requires an ALPID deformation input file, and 

for nonisothermal forgings it requires both ALPID deformation and temperature 

input files.   For more information regarding the ALPID input files the reader 

is referred to the ALPID user's manual [43].   In addition to these files COPP 

also requires a small input data file called Wrol.dat', which has information 

regarding the design requirements and element(s)/node(s) to be controlled. After 

the program is run, it creates an output file called 'output.dat' which contains 

the designed (optimal) velocity, strain rate of the 'control' element, initial die 

temperature adjustment, and other relevant information.   This manual presents 
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the format for the input/output files and also contains a few sample data files for 

the reader's reference. 

General format for the input file 'control.dat' 

ISO 
ICNTL 
NUMD, IDDIE, IDPICK, NUMELE 

VDOT, SMAX 
NUME, NUMVI 
NELMZ(NUME) 

EPSLMT(NUME) 
NPVI(NUMVI) 
NUMT 
NTEMP(NUMT) 
GT(NUMT) 
C0EF(4,NUMDIE) 

Note: 

The variables with parentheses are arrays, and the quantity within the parentheses 

gives the size of the array(s). 
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Description of the input variables 

ISO O-Isothermal process, 1-Nonisothermal process 

ICNTL       : O-Simulation only (No design required) 

1-Optimal design required 
(This means die velocity and/or initial die temperature need to be designed) 

NUMD       : Number of control input(s) 
1-Only die velocity (or initial die temperature) needs to be designed 

2-Both die velocity and initial die temperature need to be designed 

IDDIE        : Number of dies requiring initial die temperature design 

IDPICK : O-User selects the 'element of interest' and/or 'critical node' 

1-User selects the 'critical node' and the program selects the 

'element of interest' 
(The program normally picks the non-perimeter element having the largest 

strain rate in the billet as the 'element of interest') 

2-User selects the 'element of interest' and the program selects the 'critical node' 

(The program normally picks the node having the lowest temperature in 

the billet as the 'critical node') 

3-Program selects the 'element of interest' and 'critical node' 

NUMELE   : Number of elements used to discretize the billet 

VDOT        : Machine's maximum acceleration capability 

(This restricts the amount by which the die velocity can change 

in a given time step) 

SMAX        : Stroke at which the simulation is to be stopped 

NUME        : Number of 'elements of interest' 
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NUMVI      : Number of nodes constituting the 'element(s) of interest' 

(If NUME is 1, NUMVI would be 4, for a four-noded quadrilateral element) 

NELMZ      : The element numbers of the elements of interest separated by commas 

(Maximum of NUME sets) 

EPSLMT    : The desired effective strain rate values for the (corresponding) 'elements 

of interest' separated by commas (Maximum of NUME columns) 

NPVI : The node numbers constituting the 'element(s) of interest' 

(separated by commas up to NUMVI columns) 

(Note: The node numbers for any element have to be in the ccw direction) 

NUMT        : Number of critical nodal temperatures to be controlled 

NTEMP      : The node numbers of the 'critical' nodes, 

(separated by commas up to NUMT columns) 

GT : Desired temperature gradient reduction(s) (< 0.03) 

(separated by commas up to NUMT columns) 

COEF : Coefficients of the desired temperature profile 

(4 coefficients are needed for a 3rd order polynomial. These have 

to be specified in sequence starting with the constant term 

Note: 

1. In the above nomenclature 'element of interest' refers to the element whose 

strain rate is being controlled (or needs to be controlled). Perimeter elements 

226 



are generally not picked as 'elements of interest'. Also, 'critical node' refers 

to the die-contacting boundary node whose temperature is being tracked (or 

needs to be tracked). The present version of the program can have, at most, 

one 'element of interest' and one 'critical node' during the design process. 

2. If ISO=0, 

All temperature related inputs may be omitted. 

3. If ICNTL=0, 

EPSLMT, GT may be omitted. 

4. IfIDDIE=0, 

COEF may be omitted. 

5. If IDPICK=1 or 3, 

NUME, NUMVI, NELMZ, NPVI may be omitted. 

6. If IDPICK=2 or 3, 

NUMT, NTEMP may be omitted. 
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Sample data file; Isothermal case 

(Die velocity design only) 

ISO 
0 

ICNTL 
1 

NUMD, IDDIE, IDPICK, NUMELE 
1, 0,           0,             50 

VDOT, SMAX 
15, 0.5 

NUME, NUMVI 
1, 4 

NELMZ(NUME) 
23 

EPSLMT(NUME 
0.5 

) 

NPVI(NUMVI) 
27,28,33,34 

In the above input file, element 23 has been specified as the 'element of interest', 

and it's strain rate must be maintained at 0.5 1/sec. Refer section 6.3 for more 

information regarding the design of die velocities for isothermal forging processes. 
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Sample output file ('output.datM: Isothermal case 

(Die velocity design for 5 simulation steps) 

*********************************** 

* PROCESS PARAMETERS * 

*********************************** 

ST*100      T*10 VRAM     EPS    23 EPS     0 EPS 0 EPS     0  EPS     0 

0.100      0.0100 1.0000    0.49341    0.00000   0.00000 0.00000 0.00000 

0.200      0.0200 1.0000   0.46508   0.00000   0.00000 0.00000 0.00000 

0.549      0.0533 1.0481    0.49065    0.00000    0.00000 0.00000 0.00000 

0.916      0.0883 1.0481    0.48903   0.00000   0.00000 0.00000 0.00000 

1.300      0.1232 1.1005    0.51541    0.00000   0.00000 0.00000 0.00000 

In the above output file, the first column gives the stroke (ST), the second column 

gives the time (T), and the third column gives the optimal die velocity (VRAM) 

corresponding to that stroke or time. It may be noted that the stroke and time 

have been multiplied by suitable scaling factors for convenience. The fourth column 

in the output file gives the strain rate of element 23, which was specified as the 

'control element' in the input data file.   It is also observed that the strain rate 

of this element is maintained more or less at 0.5 1/sec as specified by the design 

requirement.   The last four columns in the output file are meant for the strain 

rates of other 'control elements'. But, at present these columns do not have any 

significance because the program (COPP) is capable of having only one 'control' 

element at any given time. 
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Sample data file: Non-isothermal case 

(Die velocity design only) 

ISO 
1 

ICNTL 
1 

NUMD, IDDIE, IDPICK, NUMELE 
1, 0, o, 50 

VDOT, SMAX 
15, 0.5 

NUME, NUMV1 
1, 4 

NELMZ(NUME) 
23 

EPSLMTtNUME' 
0.7 

) 

NPVI(NUMVI) 
27,28,33,34 

NUMT 
1 

NTEMP(NUMT) 
18 

GT(NUMT) 
0.01 

In the above input file, element 23 is specified as the 'control' element, and node 

18 is specified as the 'critical' node. Also, it is required to maintain the strain rate 

of element 23 at 0.7 1/sec, and reduce the (nodal) temperature gradient of node 

18 by 1 % at every time step. Refer sections 6.2 and 6.4 for more information 

regarding the design of die velocities for nonisothermal forging processes. 
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Sample output file foutpiit.dat^t Non-isothermal case 

(Die velocity for 5 simulation steps) 

*********************************** 

*        PROCESS PARAMETERS * 

*********************************** 

ST*100      T*10       VRAM     EPS   23  EPS     0  EPS     0 EPS     0  EPS     0 TEMP 

18 TEMP   0  TEMP    0 TEMP   0 TEMP    0 

0.100     0.0100   1.0000   0.50017   0.00000   0.00000   0.00000   0.00000   1734.34      0.00 

0.00       0.00       0.00 

0.200      0.0200   1.0000   0.48265   0.00000   0.00000   0.00000   0.00000   1733.68       0.00 

0.00        0.00        0.00 

0.540     0.0533   1.0193   0.49242   0.00000   0.00000   0.00000   0.00000   1731.50      0.00 

0.00       0.00       0.00 

0.896     0.0873   1.0495   0.50697   0.00000   0.00000   0.00000   0.00000   1729.28      0.00 

0.00       0.00       0.00 

1.277     0.1223   1.0895   0.52627   0.00000   0.00000   0.00000   0.00000   1727.02      0.00 

0.00       0.00       0.00 

The output file shown above has 14 columns. The first two columns contain the 

stroke (ST) and time (T), respectivly. The third column gives the optimal ram 

velocity (VRAM) for the process, and the fourth column contains the strain rate 

of elment 23 ('control element') due to the designed velocity schedule. Column 9 

give temperature of node 18 ('critical node) at every time step of the simulation. 

The columns containing zeros are not relevant at this stage and may be ignored. 
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Sample data file: Non-isothermal case 

(Die velocity design k initial die temperature design) 

ISO 
1 

ICNTL 
1 

NUMD, 
2, 

IDDIE, IDPICK, NUMELE 
1, 0, 50 

VDOT, SMAX 
15, 0.5 

NUME, NUMVI 
1, 4 

NELMZ(NUME) 
23 

EPSLMT(NUME) 
0.7 

NPVI(NUMVI) 
27,28,33,34 

NUMT 
1 

NTEMP(NUMT) 
18 

GT(NUMT) 
0.01 

COEF(4,NUMDIE) 
1735,-550,355,-25 

The above input file is similar to the one shown earlier for nonisothermal die 

velocity design. But here, in addition to die velocity, it is specified that initial die 

temperature also needs to be designed. In this case there are two control inputs 

(instead of one, as in the previous case), namely the die velocity and the initial 
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die temperature adjustment. Here again, element 23 and node 18 are specified as 

the 'control' element and 'critical' node, respectively. The design requirements are 

to maintain a strain rate of 0.7 1/ sec in element 23, and reduce the temperature 

gradient at node 18 by 1% at every simulation time step. The last line in the data 

file gives the coefficients of a third order polynomial (in sequence) starting with 

the coefficient of the constant term. This polynomial specifies the temperature 

trajectory to be tracked by node 18 in order to meet the design goals. The reader 

is referred to section 6.5 of this report for more details on the initial die temperature 

design procedure. 
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Sample output file ('output.dat'h Non-isothermal case 

(Die velocity k initial die temperature design for 5 simulation steps) 

*********************************** 

*        PROCESS PARAMETERS 

*********************************** 

ST*100 T*10 DIE-TEMP+ 

0.100 0.0100       0.00       0.00 

0.200 0.0200       0.00       0.00 

0.550 0.0533 304.58        0.00 

0.936 0.0883 182.50        0.00 

1.382 0.1251 179.66        0.00 

In the output file shown above, the first column gives the stroke (ST), and the sec- 

ond column gives the time (T). The third column gives the initial die temperature 

adjustment value. The average of the initial die temperature adjustments for all 

the time steps, needs to be added to the original initial die temperature, to get 

the optimal initial die temperature. In addition to designing the initial die tem- 

perature, die velocity design is also done in this example. The reader is referred 

to section 5.2 and section 6.5 for further information on initial die temperature 

design. 
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Appendix C - User's Manual for Reduced Order Models 

The reduced order state space models described earlier are obtained using 

the BMR (Balanced Model Reduction) method. A FORTRAN subroutine RED- 

MOD has been developed for this purpose. The subroutine REDMOD takes in 

the full size state space matrices and returns the reduced order matrices. This 

subroutine has been integrated into the program COPP for designing optimal 

process parameters using reduced order state space models. The rest of the pro- 

gram including the control design strategy is similar to that used in COPP for 

the full-size state space models. The program with the capability to reduce the 

of the state space system has been named MODRED (Model Reduction). size 

The following common blocks and subroutine call statements are needed to 

link the reduced order model routine (REDMOD) to the full state space model 

program. 

C COMMON BLOCK FOR FULL STATE MODEL 
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c 

COMMON /FULL/ AA(NN,NN),BB(NN),CC(NN,NN),WW(NN),NDD 

COMMON /OPTL/ VGOOD(5),B(MS,5),NUMDX 

COMMON /CSYC/ CSYS(MS,MS),EBI(MS,MS) 

COMMON /MORE/ IMRE 

CALL REDMOD(IPQ) 

SUBROUTINE REDMOD(IPQ) 
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( 

1 

C COMMON BLOCK FOR FULL STATE MODEL 

C 

COMMON /FULL/ AA(NN,NN),BB(NN),CC(NN,NN),WW(NN),NDD 

COMMON /OPTL/ VGOOD(5),B(MS,5),NUMDX 

a. In the common block FULL fadded in the control subroutine), 

AA : A copy of the Plant matrix. 

BB : A copy of the Input matrix. 

CC : A copy of the Output matrix. 

WW : A copy of the Constant perturbation term in the system. 

NN : Maximum allowable size of the full system. 

NDD : Number of rows in the C matrix (This depends on the numer of outputs). 

b. Tn ihr mmmon block CSYC fadded in the control subroutine), 

CSYS : The reduced model of the output matrix is written in this array. 
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EBI : Array to store the inverse of the transformation matrix used in the balanced 

representation. 

c. In the common block OPTL (added to the control subroutine), 

VGOOD : Vector to store the designed process parameter(s). 

B : Reduced order model of the input matrix is stored in this array. 

NUDX : Number of design variables. 

d. In the common block MORE (added to the control subroutine), 

IMRE : If IMRE = 1, model reduction is performed. Otherwise, model reduction is 

not performed. 

e. From the CALL statement, 

IPQ : Goes in to the subroutine MODRED as the size of the full state model and 

returns as the size of the reduced model. 

NOTE : — After the call statement for generating the reduced order models, the 

full state vector and the input matrix need to be multiplied with the inverse of 

the transformation matrix EBI. 

The data files required for running MODRED are the same as those used 

for COPP. The only difference in this case is that the file 'control.dat' has an 

additional input variable called IMRE appended at the end of the data file. This 
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variable acts as a switch to turn the model reduction capability 'on' (IMRE - 1) 

or 'off' (IMRE = 0). The output of this program ('output.dat') is also the same 

as in the case of COPP (Appendix B). 

1 
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