NAVAL POSTGRADUATE SCHOOL
Monterey, California

00 ==
NE=
0=
| ==
5
- - ¥CTE
THESIS gy 971994
N £
TRANSLATION OF THE DATA FLOW QUERY
LANGUAGE FOR THE MULTIMOD:’L,
MULTIBACKEND DATABASE SYSTEM
by
Nancy C. Free
September, 1994
Thesis Advisor: C. Thomas Wu
Approved for public release; distribution is unlimited.
9 . /

()

i
]

| REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden tor this collection ot intormation 1y estimated to average 1 hour per response. including the tme tor reviewing
instruction. searching existing data sources. gathering and mamtaining the data needed. and completing and reviewing the collection ot
tnformation Send comments regarding this burden estimate or any othet aspect of this collection ol intormation. including suggestions tor
reducing this burden. to Washington headquarters Services. Directorate tor Intormation Operations and Reports. 1215 Jetterson Davis
Highway. Sutte 1204, Arhington. VA 22202.3302 4nd to the Ortice of Mamagement and Budget, Paperworn Roduction Progedt
O704-0188) Washington DC 208023

1 AGENCY USE ONLY (Leave hank > REPORT DATE 3 REPORT TYPE AND DATES COVERED
Sep 1994 Master's Thesis

L4 TITLE AND SUBTITLE TRANSLATION OF THE DATA FLOW QUERY S FUNDING NUMBERS
LANGU AGE FOR THE MULTIMODEL. MU TIBACKEND DATABASE SYSTEM

e AUTHOR(S: Free, Nang O

" PERFORMING ORGANIZATION NAME'S AND ADDRESS/ES» K PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monteres CA 93943 S0()

) SPONSORING/MONITORING AGENCY NAMES) AND ADDRESS(ES 10 SPONSORING/MONITORING

AGENCY REPORT NUMBER

11 SUPPLEMENTARY NOTES The views expressed in this thesis are those ot the author and do not reflect the otficial policy or
hpnsmun of the Department ot Detense or the US Governmen

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release: 12b. DISTRIBUTION CODE
istribution unlimited A

13. ABSTRACT (minimum 200 words)
This thesis involved the design and translation of the Data Flow Query Language (DFQL) for the Multi-Lingual, Multi-Backend
atabase System (MDBS). The MDBS is a database system that can effectively support multiple data models and their corresponding data
anipulation fanguages. The problem was the MDBS interfaces are text-based. and not very user-friendly.
The approach taken to solve this interface problem was to design and translate the DFQL for implementation on the MDBS. DFQL was
esigned to improve and extend SQL. the data manipulation language associated with the relational data model. It uses a graphical
interface based on the data flow paradigm. This translation would extend the MDBS by allowing a graphical interface to be implemented,
hereas currently a user can only access the system with text-based interfaces.
The result of this thesis is the development of the DFQL to ABDL translator. The subsequent implementation of this translator on the
MDBS would be a user-oriented enhancement to the current system. In addition. further improvements to the MDBS should be made.
uch as allowing the use of additional data types (currently constrained to string and integer) and the ability to create views. These changes
ould allow all the benefits from DFQL. such as orthogonality, language extensibility and incremental querying to be achieved and made
vailable to the user.

I
15. NUMBER OF PAGES
85
17. SECURITY 18 SECURITY 19 SECURITY 20. LIMITATION OF

CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT Ul
U nclassihied Unclassedied Unclassthied

NSN 7840-01. 2RO SS(X) Standdard Form 29K (Rev 2 8w

Presenbed hy ANS) Std 23004x

Approved for public release; distribution is unlimited.

TRANSLATION OF THE DATA FLOW QUERY LANGUAGE FOR
THE MULTIMODEL, MULTIBACKEND DATABASE SYSTEM

Nancy C. Free
Captain, United States Army
B.S.. Kansas State U .. 1984

Submitted in partial fu, ,llment T
35

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIYNCE e
from the T
‘—“ i ﬁﬁv 1
/ Vol uoes
NAVAL POSTGRADUATE SCHOOL s T]
September 1994 t S Cial

(Phee

4 Nancy C. Free

e T

C. Thomas Wg/Thesis Advisor

Dol Hsi'ceqg ™

David K. Hsiao, Second Reader

-
e

Ted Lewis, Chairman
Department of Computer Science

Author:

Approved by:

iid

ABSTRACT

This thesis involved the design and translation of the Data Flow Query Language
(DFQL) for the Multi-Lingual, Multi-Backend Database System (MDBS). The MDBS is
a database system that can effectively support multiple data models and their
corresponding data manipulation languages. The problem was the MDBS interfaces are
text-based. and not very user-friendly.

The approach taken to solve this interface problem was to design and translate the
DFQL for implementation on the MDBS. DFQL was designed to improve and extend
SQL. the data manipulation language associated with the relational data model. It uses a
graphical interface based on the data flow paradigm. This translation would extend the
MDBS by allowing a graphical interface to be implemented. whereas currently a user can
only access the system with text-based interfaces.

The result of this thesis is the development of the DFQL 1o ABDL translator. The
subsequent implementation of this translator on the MDBS would be a user-oriented
enhancement to the current system. In addition, further improvements to the MDBS
should be made. such as allowing the use of additional data types (currently constrained
to string and integer) and the ability to create views. These changes would allow all the
benefits from DFQL., such as orthogonality, language extensibility and incremental

querying to be achieved and made avatilable to the user.

vi

DISCLAIMER

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While effort has been made, within the
time available, to ensure that the programs are free of computational and logic errors,
they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

vii

viii

I INTRODUCTION
A.MOTIVATION . i it ciie e,
B.BACKGROUND ... et

1. Multi-lingual, Multi-backend Database System

11

III THE DATA FLOW QUERY LANGUAGE
A.BACKGROUND ...iiiiiiiiiiiiiiiiiiiiiiiiiiiiiienieiieieircnsanaeness
B.DFQL OPERATORS ...ttt iiii ittt cceenes

1. Basic Primitive Operators i

TABLE OF CONTENTS

2. The Data Flow Query Language e
C. THESIS ORGANIZATION ... iiiiiiiiiiiiiiiieiiertinerarnesanacnnas

THE MULTI-LINGUAL, MULTI-BACKEND DATABASE

SYSTEMcccvvnnnen. ceesesesnassncarsancasas Ceeeernenanns
A.MOTIVATION AND ADVANTAGESccoiviiiiiiiiiiiiiiiinnae,
1. Motivation for a Multi-lingual Database System (MLDS)
2. Advantages of the MLDS
B. STRUCTURE AND CONFIGURATIONoiiiiiiiiiiiiiinininnnnen.
1. Structure of the MLDS
2. Configuration of the Multi-backend Database System
C. THE ATTRIBUTE-BASED DATAMODELccciviiiiiiiiiiinnnn.
1.ABDM Constructs ...
2. ABDL Operations
a. The RETRIEVE Requestcc.cciiiiiiiieiiiiinnainannnn.
b. The RETR{EVE-COMMON Request cc.cooovn...
c. The INSERT Request i,
d. The DELETE Requestcccciuiiiiiiiieiiaanaann..
e. The UPDATE Requesto i,

a Select e

b. Projecto.oooi

oo

...... 7

...... 23

23

d.Union . 26

e. Difference 27

[Group Count 27

2. Non-Basic Primitive Operators 28

C. CHARACTERISTICSOF DFQL ..cvtiniiiiiiiiiiiiiii i iii i iiiiiiee 29

LExtensibility .o oo 29

2. Dataflow SUUCIUTE 30

3. Incremental Querying 30

4 Visual Interface i 3i

D.CONCLUSION .. iiiiiiiiiiiiiitiriritiititenieseissssseenesnacnsenasnenn .. 31

IV TRANSLATION ceeenan ceeeenes Cereecitinanas ceeeens Cerereens 33

A.MAPPING DFQLTOABDLcvviirriiiiiieiiiitniieiecnnerennsennen ... 34

1. The Select Operator i 34

2. The Project OPeratorc..iouniiiimio it 37

3. The JoIn OPeratorco.oinininiii e 38

4. TheUnion Operatoro e 39

5. The GroupCnt Operator e 40

B.GENERAL NOTES ...iciiiiiiiiiiiiiiiiiiiiiiiitiiiitirineenrnesnneene oo, 4]

V ANALYSIS OF TRANSLATION ceteenee cecitiecessaianes 43

A.PROBLEM ANALYSIS ..ttt iiiiiiiiiiiiiiiieeeneeneenannnn .. 44

B. RECOMMENDATIONS ... oiiiiiiiiiiiiiiiiiieiieiaeietesirsencassncenc n. 47

VI CONCLUSION Ceeeeestetcesetetetnttatonntenanans -1 |

A. DISCUSSION e e s eseseaseaenaenesanetateatetastnatetntnttenronnan e 51

B.FUTURE RESEARCHciiiiiiiiiiiiiiiiiiiiiiiiiirinnietnncnannnenn. ... 52

C.SUMMARY L iiiiiiiiiiiiiiiiititeteeeseettossensesenessonacenenseone e o 53

APPENDIX A. SAMPLE DATABASE Ceeeretiateetetenneeians 55

APPENDIX B. SOURCE CODE beetetetetetetttirtiasonns cerenns 59
X

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

oo

ooooooooooooooooooooooooooooooooooooooo

X1

ACKNOWLEDGMENT

I would like to thank my thesis advisor, Professor C. Thomas Wu, for his patience
and assistance, but mostly for his sense of humor. 1 would also like to thank LCDR Bill
Derners for all of his experienced help with the Multi-lingual, Multi-backend Database
System. Even after he graduated, his long distance assistance proved to be invaluable. 1
must also thank CPT Thierno Fall, Senegalese Army, for all of his patient help with the
Macintosh computers and the Prograph programming language.

Finally, I wish to thank my husband, Eddie, for making these past two years

memorable. It was better because we did it together!

Xiii

’

I INTRODUCTION
A. MOTIVATION

Database systems constitute a significant portion ot computer technology today.
mainly due to their increasing role in all areas ot our societs There are three
predominant database models in use today. These are hierarchical. network. and
relational database models. A fourth. and relatively new model. is the object-oriented
database model. Finally, a fifth model is the functional model. often used in Artificial
Intelligence programs. Each of these models has strengths and weakness', although each
is more suited to a specific type of database application. For example, the relational
model is well suited for business/financial applications where relationships can be viewed
as a table; this database is probably the most widely used today. On the other hand, the
hierarchical model would be a better choice for maintaining a database for design
applications. There are many situations where the advantages of more than one model
would be beneficial to the implementation of the database. However, most organizations
cannot afford to institute more than one model. Not only are the direct costs of procuring
another, separate, system usually prohibitive, but there are also the training,
administration and storage costs to consider. One prototype solution to this problem is
the Muiti-lingual, Multi-backend Database System (MDBS) - a system which can
support many different data models and their corresponding data language (Demurjian,

1987). Currently, this system allows a user to access data from any of the following four

database models relational. hierarchical. network. and functional as well as from the
MDBS kemel data language.

Another problem with most database systems today is the lack of a user friendly
interface. And the MDBS 1s guilty of this downfall as well. Although the current
interface allows fairly easy access to the user's database model choice, once the user
reaches that model, the specific data language of that model must be used. A
graphical/visual interface to the relational model has been developed to enhance the ease
of use of the relational database model (Clark, 1991). This Data Flow Query Language
(DFQL) utilizes a dataflow paradigm to implement and expand the Structured Query
Language in a much more user friendly and graphically intuitive environment.

Since the relational database is the most popular and widely used data model
today, I am focusing my research on designing and translating the DFQL for
implementation on the MDBS. Although DFQL will be translated into the kernel
language of the MDBS (the Attribute Based Data Language), and therefore can be used to
access any of the supported data models, its basis is in the relational model and its
language, SQL. The ultimate goal is to significantly improve the user interface for
interacting with the MDBS.

B. BACKGROUND
1. Multi-lingual, Multi-backend Database System
The Muiti-lingual, Multi-backend Database System (MDBS) was developed by

Demurjian and Hsiao at The Ohio State University and currently, at the Naval

Postgraduate School's Laboratory for Database Systems Research. The concept behind

this system is to provide a single database computer to manage multiple data models and
execute all database operations written in the corresponding data languages (Demurjian,
1987). The MDBS has demonstrated the ability for at least four different data models and
languages to not only coexists on a single system. but also to interact and share data
(Demers, 1994).

The key to this interaction is the simple kernel data model of the MDBS. This
kernel data model and language are the attribute-based data model (Hsiao. 1970) and the
attribute-based data language (Banerjee. 1977). This model has been shown to support
several different data models and their data languages. The MDBS performs the
interaction between two source databases (relational. hierarchical. etc.) by two different
types of mappings into the kernel data model. The first is the data-model transformation
which transforms the source database into the kernel database. The second is the
data-language translation which takes an operation in the source data language and
translates it into an equivalent operation in the kernel language (Demurjian. 1987). These
two mappings allow for the complete interaction of different data models using the data
language of choice. For example. a network database could bc queried using SQL
transactions.

2. The Data Flow Query Language

The Data Flow Query Language (DFQL) was developed by Clark and Wu at the

Naval Postgraduate School in the early 90's. The purpose of this graphical interface to a

relational database was to improve and extend the standard query language associated
with the relational model. the Structured Query Language (SQL) (Wu. 1991). There are
many documented problems with SQL. many of which focus on the ease of use issues and
extension issues (Elmarst. 1989). DFQL. uses a graphical environment which allows a
user-friendly interface to the database. It also provides for easy extensibiiity of the
language by allowing the user to create new operators in terms of the existing ones
(Clark. 1991). The implementation language used for DFQL. is Prograph, an
object-oriented language. in an Apple Muacintosh environment. DFQL is based on a
dataflow structure, as is Prograph. In addition, Prograph is object-oriented which
provides many powerful features to improve modularity and maintainability of the DFQL
code.

The purpose of this thesis is to design and develop a translation of the Data Flow
Query Language to be implemented on the Multi-backend Database System. Through my
research. | also plan to determine the portability and ease of translation of the current
system.
C. THESIS ORGANIZATION

In Chapter I1. the Multi-lingual, Multi-backend Database System is discussed in
detail. This will include the functionality and organization of the system, as well as a
thorough description of the attribute-based data language (ABDL). In Chapter II1. the
Data Flow Query Language is examined in detail. Chapter IV discusses the design and

translation decisions made in translating DFQL's SQL statements into ABDL for further

implementation on the MDBS. Chapter V discusses problems encountered. analysis and
solutions determined in the translation. This chapter will also cover those problems
concerning portability and the ease of translation of DFQL. Finally in Chapter VI. a
summary discussion of the work and research is provided, conclusions made and

recommendations for further work in this area.

II THE MULTI-LINGUAL, MULTI-BACKEND DATABASE
SYSTEM

In this chapter, a more detailed examination of the Multi-lingual, Multi-backend
Database System is provided. The motivation behind designing and implementing such a
system is reviewed, with a discussion of its advantages and functionalities. This 1s
followed by a more technical review of the system's structure and methodology.

A. MOTIVATION AND ADVANTAGES

1. Motivation for a Multi-lingual Database System (MLDS)

Since the evolution of the database management system (DBMS), design and
implementation philosophy has focused on mono-lingual database systems; that is, a
database computer with a single data model and its corresponding data manipulation
language (i.e. the relational data model and SQL). And when an organization is
determining which model to use, the data model which offers those functionalities best
suited for the organization's particular data is chosen.

The key word here is ‘best suited’. Considering the increasing database computing
requirements in business and government organizations today, just one database system
rarely fits the required application perfectly. Therefore, these organizations settle for the
one DBMS which suits their needs best. This results in one of two main alternatives.

The first is to have the users "work around” those functionalities they need in the DBMS,
but are not there. Or the organization can purchase each of the monolingual database

systems it needs separately. Either alternative results in additional costs to the

organization: employees’ time spent "working around” the current system, or purchase
and training costs for additional DBMSs. So Demurjian and Hsiao proposed a
multi-lingual database computer that has the capability and flexibility to support a variety
of data models and their corresponding data manipulation languages on a single database
computer (Demurjian, 1985).

Another motivating factor can be seen in an analogy provided by Demurjian
(Demurjian, 1987) in a comparison with Operating Systems. Operating Systems were
originally mono-lingual, designed to support a single programming language, much like a
current database system supports a single data model and it's data manipulation language.
As computers and operating systems have evoived , many varied programming languages
can be supported by a single operating system. Therefore, an operating system can
execute and support a user’s program in different {anguages and data structures, as well as
handle resource allocation. And by Demurjian's analogy, a single DBMS should be able
to provide management of varied data models and access to these models via their
corresponding data manipulation language. Thus, the proposal for a multi-lingual
database system (MLDS) is defined as a single system to support many different data
models and their data languages, much like an operating system supports different
programming languages.

2. Advantages of the MLDS

One of the most valuable features is the ability to "migrate” existing databases

into the MLDS (Holste, 1986). This can be especially beneficial for organizations

currently operating an existing mono-lingual DBMS. Once the exisung database 1s
migrated into the MLDS, data manipulations may be performed using the original data
language. In addition, the same database may be interfaced using one of the other
supported data models, taking advantage of it's particular features and capabilities. The
result is the ability to access current data in a wider variety of transactions.

Another practical advantage of the MLDS is the ability to reuse previously
developed database transactions (Demurjian, 1987). Since database transactions written
in different data languages can be run in the MLDS, transactions written in a specific data
language on another database system can also be run in the MLDS. This means that no
transaction conversions are required when migrating to the MLDS, and old transactions
can be reused as is. In addition, new transactions can be written in any of the supported
data languages.

A third advantage to this system can be realized in the economy and effectiveness
or hardware upgrades. As technology progresses, or with increased data requirements, it
is inevitable that hardware upgrades will be necessary. And as a single system, an
upgrade to the MLDS will benefit all of the supported data models. This is contrasted
with upgrading separate DBMS, each of which supports a single data model, resulting in
increased expense and effort.

With the ability to support different data models in one system, the MLDS

provides a user with an environment to explore the other data models. Thus, the strengths

of one model may be explored and those desirable features can be utilized for different
applications. And all of this may be done with one database computer.

Two other advantages of the MLLDS can be better defined as enhanced
functionalities. The first of these focuses on the availability of the system'’s native data
model and data language. This 1s the kernel data model (KDM) and the kernel data
language (KDL). This is the base data model, and it is implemented in the MLDS as the
attribute-based data model and language (ABDM/ABDL). Basically, all of the
conventional data models are be transformed into equivalent databases structured in the
kernel model. In addition, each of the data languages are translated into the kernel data
language. Although this is the system's kernel model, because it is a high-level model
and language. it also acts as an additional data model in which the user can explore and
use as desired. These transformations and translations are performed by the MLDS, and
are essentially transparent to the user (Holste, 1986). The technical details of this facility
are further discussed later in this chapter.

The other enhanced functionality allows the MLDS to be used as a
rapid-prototyping environment to develop and experiment with new data models,
languages and interfaces (Demurjian, 1987). An example is the work proposed in this
thesis; that of providing a more user-friendly interface to the system. With a
multi-lingual environment, a proposed model and/or language can be fine-tuned and
tailored as necessary, without having to develop an entire database system for the new

model.

10

B. STRUCTURE AND CONFIGURATION

1. Structure of the MLDS

A diagram of the mului-lingual database system structure is provided at Figure 1.

The user interacts with the Language Interface Laver (LIL) utihzing a user-chosen data

model (UDM) and with transactions written in the corresponding user-chosen data

language (UDL). The LIL is where the user interfaces with the system. It includes

querying the user for the data model to be used and requesting file names for databases

and queries. The LIL passes the user transaction to the kernel mapping svstem (KMS).

KMS
UDM or

UDL

LIL

UDM

Responses KFS

LEGEND:
UDM User Data Mode!
UDL User Data Language
LIL Language Interface Lay . -
KMS Kemel Mapping System
KC : Kemne} Controlier
KFS Kemne! Formatting System
KDM Kernel Data Model
KDL Kernel Data [.anguage
KDS : Kernel Database System

KDM or

KDM ur
KDL ‘(//2'

KC | KDS

KDM

KDM Responses
Responses

Data Model
Data Language

System Module

| D00

information Flow

Figure 1. The Multi-Lingual Database System

The KMS i1s basically the heart of the system. The KMS handles both database
definition and database manipulation requests. For database creation, the KMS
transforms the UDM database definition into an equivalent kernel data model (KDM)
definition. This definition is then sent to the kernel controller (KC). The KC sends this
transformed database definition to the kernel database system (KDS), which issues the
commands to define the new database in KDM form. The KDS notifies the KC, which in
turn notifies the user via the LIL, that the database definition is processed, and the data
may now be loaded.

UDL transactions are also routed through the K**5 ior translation into an
equivalent kernel data language (KDL). "this KDL transaction is forwarded to the KC,
which forwards it to the KDS for execution. The KDS sends the resuit of the transaction
in KDM form back to the KC. Then, the results are sent to the kernel formatting system
‘KFS) for transforming them back into UDM form. After this transformation, the results
are returned to the user via the LIL.

The kernel controller plays an important role in the system in that it handles all
interfaces to the backend system. Basically, it's task is to simulfate the operational
environment required by the UDM and UDL (Demurjian, 1987). The KC is responsible
for overseeing the execution of the KDL transactions so that the integrity of the database
is preserved. It also performs exception handling if an error is detected in the backend.
During retrieval transactions, the KC properly structures the KDS responses and passes

this data and control to the KFS (Demers, 1994).

12

This structure, minus the KDS, KDM and KDL, is repeated fer each supported
data mo. .l and language. Each data model/language has its own LIL, KMS, KC and
KFS, called the language interface. And each of these -nierfaces share the kernel system:
the KDS, KDM and KDL. Therefore, from the user's perspective, there are several
different data models/languages with which to access the data. However, from the
system's perspective, there exists only one data model and language with which 1o
manipulate the data. This structure highlights another advantage: duplicated data is
reduced. Although the data can be accessed using any or all of the supported data
models, it is only stored once, in the kernel data model.

2. Configuration of the Multi-backend Database System

The Multi-backend Database System (MDBS) was designed with performance
enhancement in mind, as opposed to the performance degradation often found in
mainframe-based system designs (Hogan, 1989). It accomplishes this goal by utilizing
off the shelf micro-computers working in parallel. Database functions are moved tc these
computers, called the backend systems. Another computer acts as the controller to
interface with the backends and/or the user. A diagram of the MDBS is provided at
Figure 2.

The backend computers have their own hard disk subsystems, and are responsible
for processing user queries. The base data is distributed fairly equally over the backends,
which thereby reduces the search space of each backend. The system works as follows.

When the controller receives a transaction, it is transmitted ¢o all of the backends.

13

Tape Drive

Mezta data disk
Base data disks

e

Base data disks

agmg disk
Meta data disk

Controller

e

o o ®

™) ® °

®) °®

° ° e
Meta data disk

Base daa disks

Paging disk

Figure 2. Hardware Configuration of the MultiBackend Database System

14

Communication is handled using a standard Ethernet Local Area Network. This
query 1s then executed simultaneously on each backend, with the result being passed back
to the controller. This parallel aspect of the backend structure results in improved
response time since each backend works simultaneously and independently to complete
the transaction (Hall, 1989). Since there is only one controller, it has the potential of
becoming a bottleneck in the system. However, this potential is minimized by allowing
the controller to perform a minimum of functions, placing the heaviest burden on the
backends (Holste, 1986).

The configuration of the MDBS also allows for a high degree of extensibility. As
the amount of data being stored grows, performance may decrease. All that is needed to
improve both response times and system capacity is to add additional backend systems.
In fact, studies have shown that by doubling the number of backends can nearly double
the speed and capacity of the MDBS (Hall, 1989). And since these backend systems are
off the shelf purchases, the availability, affordability, and maintainability all add up to a
very cost effective performance enhancement.

C. THE ATTRIBUTE-BASED DATA MODEL

As previously discussed, the Attribute-Based Data Model (ABDM) and the
Attribute-Based Data Language (ABDL) are the kernel data model and language for the
MBDS. The ABDM was chosen as the kernel model because it stores the meta data and
the base data separately, introduces equivalence relations which partition the base data

into mutually exclusive sets called clusters, and allows the clusters to be distributed

across the backends, thereby enhancing the system's perfomance (Bourgeois, 1992). The
corresponding data language, ABDL, provides a simple but semantically rich and
complete language. It is designed to allow traditional languages (i.e. SQL, DL/I, etc.) to
be translated into ABDL. This translation is key to mapping the muitipfe data
models/languages into a single data model/language (ABDM/ABDL).

1. ABDM Constructs

In the ABDM, each database record is a set of attribute-value pairs. An
attribute-value pair consists of the attribute name and its corresponding value. The
attribute-value pair is enclosed by a pair of angled brackets, with the attribute name first,
followed by the corresponding value. For example, <DLOCATION, Houston> is an
attribute-value pair where DLOCATION is the attribute name with the corresponding
value of Houston. A record consists of a set of attribute-value pairs and an optional
textual field called the record body. The first attribute-value pair in a record identifies
the file which contains the records, followed by the rest of the pairs which make up the
record. A template name may be used instead of file name in the record. The entire

record is enclosed by parenthesis, as shown below:

(<TEMP, Dept_Locations>, <DNUMBER, 1>,
<DLOCATION, Houston>)

Within the record, no two attribute-value pairs have the same attribute name.
Another important construct in the ABDM is defined for indexing purposes.
Certain attribute-value pairs of a record, or a file, are called the directory keywords of the

record, or file. These are kept in a directory, and are used to index and identify the

16

records, or files. All of the other pairs not kept in the directory are called non-directory
kevwords. Searching for records or files under the keywords can significantly reduce the
search space when any of the ABDL operations are performed on the database.

2. ABDL Operations

There are tive primary database operations supported by the ABDL. These are
RETRIEVE, RETRIEVE-COMMON, INSERT, DELETE, and UPDATE. All database
queries in any of the supported data manipulation languages are translated into some
combination of these operations. Each of these operations are combined with
qualifications (used to specify the part of the database on which to operate) to form a
request in the ABDL. Transactions are two or more requests grouped together and
surrounded by square brackets.

Before any of these operations can be performed, the qualification of the database
is defined through keyword predicates, or simply predicates. A predicate consists of a
three-tuple: (attribute name, relational operator, attribute value). A query is formed by

combining these in disjunctive normal form as shown below.

(TEMP = Dept_Locations and DLOCATION = Houston) or
(TEMP = Dept_Locations and DLOCATION = Stafford)

This query will locate all the records of the Dept_Locations file which have as a value for
DLOCATION, Houston or Stafford. Each of the primary operations is described in
further detail below. Greater emphasis is given to the first two operations, because these

are key to the translation from DFQL into ABDL.

17

a. The RETRIEVE Request

The RETRIEVE request is used to retrieve information from previously
defined databases. It does not affect the contents of the database in any way. This
request specifies which records to retrieve using a qualification consisting of a query, a
list of output attributes, and an optional BY attribute (used to order the output). An

example of a RETRIEVE would be:

[RETRIEVE ((TEMP = Works_on) and (HOURS >10))
(ESSN, PNO) BY PNO]

This request returns the Employee SSN and Project Number of those employees who
work on projects more than 10 hours. The result will be sorted by Project Number.
Aggregate operations are also allowed on RETRIEVE requests. These
include SUM, COUNT, AVG, MIN, and MAX which may be performed on one or more
attribute values. This allows the attribute value to be an aggregate of values from

multiple records. For example, the query

(RETRIEVE ((TEMP = Employee) and (DNO = 5))
(AVG (SALARY))]

will return the average salary of all employees in department 5.

b. The RETRIEVE-COMMON Request

This RETRIEVE-COMMON request involves the merging of two files
based on given common attribute values. Basically, this is a transaction of two or more

RETRIEVE requests, separated by the COMMON attributes, and is processed serially.

18

For example, the following single query would provide all of the department names and
locations:
[RETRIEVE (TEMP = Department) (DNAME)

COMMON (DNUMBER. DNUMBER)
RETRIEVE (TEMP = Dept_Locations) (DLOCATION)

Although in this example the attribute names in the COMMON clause are the same, they
are not required to be. However, they must be common attribute values.

c¢. The INSERT Request

The INSERT request inserts a new record into a previously defined
database. The request consists of the operational word INSERT followed by all of the

attribute-value pairs in the database record, and surrounded by parenthesis. For example,

[INSERT (<TEMP = Dept_Locations>, <DNUMBER = 4>,
<DLOCATION = Houston>)]

inserts a new record for Department 4 at Location Houston.
d. The DELETE Request
The DELETE request can be used to delete either an entire file or specific

records in a file in a previously defined database. For example, the query
[DELETE ((TEMP = Works_on) and (PNO = 1))]

deletes all of the records in Works_on file in which the Project Number is 1.
e. The UPDATE Request
The UPDATE request modifies one or more records of a previously

defined database. The query of the UPDATE specifies those records to be modified, and

19

a modifier is used to specify how they are to be updated. For example,

[UPDATE ((TEMP = Works_on) and (PNO = 2))
(HOURS = HOURS + 5)]

which increases the hours of those employees who worked on Project 2 by 5 hours.

20

III THE DATA FLOW QUERY LANGUAGE

A. BACKGROUND

The Data Flow Query Language (DFQL) was proposed and implemented by Wu
and Clark in 1991 as a graphical/visual interface query language to the relational model
based on a dataflow paradigm (Clark, 1991). It retains the capabilities of existing query
languages while providing an additional facility to easily extend the language. This
facility allows users to create new operators in terms of existing primitive operators. In
addition to the relationally complete operators, DFQL also includes aggregate furctions,

thus providing query facilities beyond first-order predicate logic. The following goals are

met by DFQL for a visual database interface (Wu, 1991):

* Employ a fully graphical environment as a user-friendly interface to the
database.

¢ Sufficient expressive power and functionality, including relational
completeness.

¢ Ease-of-use in learning, remembering, writing, and reading the language's

constructs.

Consistency, predictability, and naturalness (in both syntax and function).

Simplicity and conciseness of features.

Clarity of definition and lack of ambiguity.

Ability to modify existing queries to form new ones incrementally.

High probability that users will write error-free queries.

Operator extensibility - allow users to create new operators in terms of existing

ones.

DFQL achieves these goals by using the following approaches (Wu, 1991):

® Complete faithfulness to relational algebra and maintenance of the requirements
for operational closure.

® Elimination of range variables from queries.

® Elimination of nesting in query constructs.

21

The implementation of operational closure is key to implementing large and complex
queries in DFQL, as the output from each operator is always a relation. However, this
fundamental characteristic of DFQL is not so easily translated into ABDL. This problem
and its analysis is discussed further in Chapter V.

In addition to the above implementation approaches, the dataflow paradigm
allows the user to treat relations as abstract entities operated on by relational operators.
Therefore, users can compose their queries knowing the operators of relational algebra
but without concern for the details of how the operations are carried out.

DFQL is imp'c.nonted on a Macintosh II, using the programming language
Prograph. The Macintosh allows DFQL to take advantage of the visual interface
environment, while Prograph provides a visual dataflow structure similar to the dataflow
paradigm approach taken for DFQL. This dataflow structure allows a user to define a
query by graphically connecting specified DFQL operators. The operator arguments flow
from the bottom or "output node" of the operator into the top or "input node" of the next

operator (see Figure 3). Once the required input data becomes available, the operator

M input nodes
j(.___operator
body

Figure 3. DFQL Operator Construction

output node

22

23 may fire to execute the specific operation. The flow between operators is defined by
the user by drawing lines between input and output nodes of the operators.
B. DFQL OPERATORS

1. Basic Primitive Operators

Basic operators in DFQL are derived from the requirements for relational
completeness, that is, it has the expressive power of first-order predicate calculus
(Wu, 1991). This means that the following operations must be implemented: (with the
DFQL operator name) selection (select), projection (project), Cartesian product (join),
union (union), and difference (diff). In addition to implementing these five operations,
DFQL implements a sixth one, group count (groupcnt). This operator provides for simple
aggregation. It also offers a solution for the problem of universal quantification in SGL;
SQL only supports this concept indirectly. With these six basic primitives, DFQL
supports orthogonality, which in turn makes it easier to use both syntactically and
semantically (Wu, 1991).

A discussion of each of the operators is provided below. Also included are
illustrations of each of the operators. In addition to these primary basic operators, other
DFQL objects are included in the illustrations (Cince, 1993). These objects are
represented by a line drawn underneath the text, with an output node under the line.

These additional objects are generally defined as follows:

® textual objects - conditions, attribute lists, or some other syntactic item to be
used in the operation.

® relation - name of a relation, or an instance of the specific relation, fed as input
to an operator.

23

a. Select

This operator implements the relational algebra operation selection. or in

relational algebra notation O« condition >(< relation >). It retrieves tuples from the

relation which meet the condition, while removing duplicate rows. The result is also a
relation, maintaining operational closure. The DFQL implementation is provided in

Figure 4.

relation condition

select

Figure 4. DFQL Select Operator

b. Project

This operator implements a relational algebra projection, or in notation

form, TU<auribute list >(< relation >). The attribute list contains those attribute names

which are to be retrieved from the relation separated by commas. The resulting relation
contains only those attributes specified in the attribute list. This operation also eliminates
duplicates in the result. The DFQL implementation is provided in Figure 5. The project

operator in DFQL can also be used to change attribute names in the resulting relation. In

24

the attribute list an equality condition such as Dept_Num = DNUM can be used to change

the attribute name DNUM to Dept_Num.

relation attribute list

Eproject j
(@)

Figure 5. DFQL Project Operator

¢c. Join

The DFQL join operator implements the relational algebra operation
theta-join. Notationally, this is < relationl > *< condition > < relation2 > . The resulting

relation is made up of all the attributes from <relation 1> and <relation 2>. The DFQL
implentation is provided in Figure 6. If no condition is given, the join essentially
becomes a cartesian product of tne two relations. The join condition, if specified, uses
basically the same syntax as the WHERE clause in SQL. However, if both relations
have the same named attribute used in the condition, range variables must be used. These
are limited to r1 (for <relation 1>) and r2 (for <relation 2>). For example, a join on

DNUM in two relations would be specified as rI. DNUM = r2. DNUM.

25

e E—

The result of the DFQL operation join retains all of the attributes of the
input relations. Therefore, when two attributes do share the same name, special handling
must occur. In the resulting relation, one attribute name stays the same (from

<relation 1>) whereas the attribute name from <relation 2> is appended with a "1".

Using the above example, the output relation would have an attribute named DNUM and

one named DNUM .

Figure 6. DFQL Join Operator

d. Union

DFQL implements the relational algebra operation union, with notation
< relationl > U < relation2 >, as illustrated in Figure 7. This operation combines the

tuples of both relations, and eliminates duplicates, to provide the resulting relation.
Since the tuples are combined in this operation, both input relations must be union
compatible. By this, we mean that both relations must i1ave the same number of

attributes, and the corresponding attributes must have compatible data types.

26

relation 1 relation 2

(i)

Figure 7. DFQL Union Operator

e. Difference

This operator implements the relational algebra operation difference. The
notation is < relationl > — < relation2 > . This operation returns a relation which

contains all the tuples in relation 1 but not in relation 2. And as in the union operator,
both relations must be union compatibie.

f- Group Count

The groupcnt operator, although not directly based on relational algebra, is
provided as a primitive operator to add some simple aggregation capabilities to
theprovided as a primitive operator to add some simple aggregation capabilities to the
language. Basically, groupcnt counts the number of tuples in a particular user-specified
grouping. An illustration is provided in Figure 8. The grouping attributes can either be
one attribute or a comma separated list of attributes. The result is a relation with the

grouping attributes listed in the same order specified along with the attribute name

27

provided as the count attribute. This count attribute is an integer representing the number

of tuples in the specific grouping, and is provided for each grouping attribute.

count attribute

groupcnt

Figure 8. DFQL Group Count Operator

2. Non-Basic Primitive Operators

There are several other primitive operators implemented in DFQL, which perform

special operations. Most can be implemented by user-defined operations using the basic

primitives. However, DFQL builds them into the language to take advantage of the

underlying DBMS which my already provide the operation. This makes the system

easier to use, and slightly reduces the overhead required to interpret user-defined

operations. A list of these operations and brief descriptions is provided below.

Intersect - Relational algebra operation of intersection.

GroupALLsatisfy - Used for simple universal quantification.
GroupNONEsatisfy - Opposite of above. Gives the grouping attributes only if
none of the tuples satisfy the condition.

GroupNsatisfy - Specifies exactly how many of the tuples in the group must
satisfy the given condition.

GroupMin - Finds the minimum value of the specified attribute according to the
grouping attributes.

GroupMax - Similar to above, but finds the maximum value.

28

® GroupSum - Adds all of the aggregated attribute's values in each group, based
on the grouping attributes.
® GroupAvg - Calculates the average of the given aggregate attribute.

In addition to the above, DFQL provides a display operator which prints the results of the
query to the screen.

These operators have not been translated into ABDL for two reasons. First, with
the basic primitives available, the user can define the other operations as needed.
Secondly, the underlying DBMS is the ABDM. And as described in Chapter Il, there are
only five basic query types provided by the ABDL and from which all transactions can be
defined. Therefore, there underlying DBMS does not already provide any of these
operations by themselves, however they can be built from the basic operations.

C. CHARACTERISTICS OF DFQL

DFQL provides many improved features as a graphical interface to the relational
database model. These characteristics are based on the dataflow structure and
orthogonality DFQL employs in its implementation. Each of these characteristics
combine to provide the user the ability to easily express simple, as well as complex,
queries intuitively. Each of theses characteristics is examined in more detail below.

1. Extensibility

This important benefit of DFQL allows users to create new operators in terms of
existing ones. The user may extend the query language cither through the use of the

DFQL primitive operators and/or the user's own previously defined user-operators. This

29

extensibility is achieved without decreasing the orthogonality of the language. This is
becaus~ -er-defined operators are constructed by combining the DFQL primitives which
have . .dy been coded so to ensure that orthogonality is maintained (Wu, 1991). In
addition, the user-defined operators are constructed so as to support operational closure,
and thereforc maintain their compatibility with other operators. This extensibility also
ailows for encapsulation. As users define their own operators, the details are
encapsulated within the operation. This means that once a complex query has been
correctly written and converted into a user-defined operator, that operator may be easily
used without any need to know its internal structure.

2. Dataflow Structure

The visual features of DFQL are based on the dataflow paradigm. The dataflow
diagram allows the user to represent complex queries in an intuitive manner. This is
because relations are visualized as objects (in this case, relations) flowing from one
operator to another. This provides a levels of abstraction which contributes to the
ease-of-use of DFQL (Wu, 1991).

3. Incremental Querying

Another key feature of DFQL which also supports ease-of-use is the ability to
incrementally construct queries. Incremental construction allows a user to build a query
part by part while determining the results of each part. This feature is related to the
dataflow structure in that each dataflow represents an actual relation that can be displayed

as a partial result (Wu, 1991). These partial results can be returned from any point in the

30

query to help the user verify or debug the query. Incremental querying is possible
because of operational closure of all DFQL operators. The user knows that the output
from any operator will always be a relation. And since one of the inputs to an operator
must be a relation, the result of one operator is easily combined with another to form
more and more complex queries.

4. Visual Interface

The visual interface is probably the main motivation behind DFQL, and therefore
represents a critical feature of the language. All of the features mentioned above are
possible because of the visual interface. As stated by Wu and Clark (Wu, 1991),
"Allowing the user to interactively manipulate the DFQL query on the computer screen
give a spatial or two-dimensional representation of the query that is lacking from any
textual query language.” The visual interface encourages the user to take advantage of
the other ease-of-use features provided by DFQL. Screen real estate can become an
issue, especially as queries become more complex. However, this problem exists with
any visual interface. And the benefits of the visual environment easily outweigh the
problems.
D. CONCLUSION

The technical features and structural characteristics of DFQL have been presented
in this chapter. The advantages of DFQL can be seen from its visual interface, its

graphical dataflow structure, and its set of primitive operators. These combine to make

31

DFQL a unique query language, one with the ability to easily express both simple and
complex queries in an intuitive manner (Clark, 1992). In the next chapters, the
translation of DFQL to ABDL is discussed. The problems associated with this translation
are discussed with relation to the features inherent to DFQL, as well as the ease of

translation.

32

IV TRANSLATION

As presented in Chapter 11, the MDBS provides a unique and valuable database
system. Allowing users to create and interact with a variety of databases using their
choice of database models and languages was shown to be highly flexible as well as cost
effective. And in Chapter III, the many benefits of the graphical interface language
DFQL were described in detail. In order to implement DFQL as an improved interface to
the MDBS, it must first be translated into the system's kernel data language, that is, the
attribute-based data language (ABDL).

This chapter explains the translation and the mappings required to generate the
correct ABDL syntax from the DFQL code, i.e., where SQL statements were previously
generated, now ABDL commands are generated. The actual code is provided in
Appendix B. The user interface was not changed at all in or¢+~ to maintain true
portability and standardization. Since DFQL. is currently implemented using the
Prograph programming language, all translations were also made in Prograph, and the
DFQL syntax remains the same. Problems encountered in the translation will be
discussed in the next chapter, along with recommendations and solutions. The problems
were primarily due to the objective of maintaining the user interface of DFQL (i.e.,
ensuring portability), and the functionality of the MDBS (i.e., those functions provided

by the kernel data model and language - ABDM/ABDL).

33

DFQL ABDL

[RETRIEVE (TEMP = relation) and
(condition) (attributes)]

[RETRIEVE (TEMP = relation)
(attribute list)]

[RETRIEVE (TEMP = relation1)(attributes)
COMMON (join condition attribute)
RETRIEVE (TEMP = relation2)(attributes)}

[RETRIEVE(TEMP = relation!)(attributes)]
[RETRIEVE(TEMP = relation2)(attributes))

[RETRIEVE (TEMP = relation)
(COUNT(grouping attributes))]

Figure 9. DFQL to ABDL Translation

35

The first input is the same as in DFQL. The relation is provided by the user. from
which the relation name is extracted. In ABDL each relation name is part of the first
attribute-value pair (as discussed in Chapter I1I), and it identifies the file or template
which contains the records of that relation. Hence, the attribute TEMP identifies the
value, or relation name. This is the qualification of the ABDL operator and is used, in
this case, to specify the relation on which to operate. Therefore, the predicate (TEMP =
relation) will locate the records of the relation on which the Select will operate. This first
predicate is combined in disjunctive normal form with the condition(s), which is the
second input provided by the user.

The third item required for this query is a list of attributes. This list is not
provided by the user because the Select operator should return all of the attributes in the
relation. However, in ABDL the list of attributes desired in the output must be explicitly
stated. Therefore, in the translation, additional code was required in order to generate this
list of attribute names. This code is provided in Appendix B, Figures 15 - 18. Basically,
the list of attributes is obtained from the relation object and then the name of each
attribute is selected and put into another list. This list is then provided to be part of the
generated ABDL statement.

The result of this ABDL statement will be all the records in the relation which
meet the user-supplied condition. These records will be output using the same
attribute-value pair which defines the ABDL database. An example using the sample

database in Appendix A is provided in Figure 10.

36

A note should be made at this point about the case used in the ABDL statement.
DFQL generates relation names, attribute names, etc. in lower-case. And since the
MDRBS is case-sensitive, the same information in the ABDL statements must also be in
lower case. This requires that the database be loaded with relation names and attribute
names in the same case in order to be compatible with DFQL. By preserving the case of

the schema, the user interface remains standard, and portability is maintained.

QUERY:
[RELATION (TEMP = Works_On) and
(pno = 1) (essn, pno, hours)]

OUTPUT:
<TEMP, Works_On>, <essn, 123456789>, <pno,i>, <hours, 33>
<TEMP, Wrrke -, <essn, 453453453>, <pno,1>, <hours, 20>

Figure 10. Example ABDL Select

2. The Project Operator

The Project operator allows for the most direct translation of all of the basic
primary DFQL operators. The two inputs provided by the user are the same as the two
used in the ABDL statement. The relation name is again extracted from the relation and
combined in the first predicate with TEMP. Next, the attribute list provided by the user is
passed directly to the ABDL statement (see Figures 19 - 20). No other manipulation of
the relation is required. The result of this statement is a list of all records from the

relation

37

with only those attributes specified in the attribute list. An example query and output is

provided in Figure 11 to show how the ABDL project statement works.

QUERY:
[RETRIEVE (TEMP = Department) (dname, mgrssn))

OUTPUT:
<dname, Research>, <mgrssn, 333445555>

<dname. Adminisiration>, <mgrssn, 987654321> <
<dname, Headquarters>, <mgrssn, 888665555>

Figure 11. Example ABDL Project

3. The Join Operator

The translation from the DFQL Join to ABDL requires the use of the
RETRIEVE-COMMON operator from ABDL. This translation requires additional
manipulation of the code in order to generate the correct ABDL statement from the user
provided inputs. This code is provided in Appendix B, Figures 21 - 24.

Two relations are input by the user, and both relation names are extracted. Each
is paired separately with the attribute TEMP to locate the records of the relations to be
joined. The list of attributes from each relation must also be retrieved, however, as in the
Select operator, this is not provided by the user. The same code which was used to
generate this list in the Select operation is used here to generate lists of attributes for both
relations. The join condition attributes are the two attributes obtained from the input
condition. These two attributes are combined with COMMON to form the join predicate.

The two relations are then merged on the common attribute values, resulting in an

38

equi-join. The output is a list of all records from the two relations which meet the join

condition, in attribute-value pairs. An example of this query is provided in Figure 12. As

shown in this example, the two common attributes do not have to have the same name.

QUERY:
[RETRIEVE (TEMP = Department) (dname, dnumber)
COMMON (dnumber, dnum)
RETRIEVE (TEMP = Project) (pname, pnumber))

OUTPUT:
<dname, Research>, <dnumber, 5>, <pname, ProductX>, <pnumber, 1>
<dname, Research>, <dnumber, 5>, <pname, ProductY>, <pnumber, 2>
<dname, Research>, <dnumber, 5>, <pname, ProductZ>, <pnumber, 3>
<dname, Admin >, <dnumber, 4>, <pname, Computer>, <pnumber, 10>
<dname, Admin >, <dnumber, 4>, <pname, Newbenefit>, <pnumber, 30>
<dname, Hdqtrs >, <dnumber, 1>, <pname, Reorganize>, <pnumber. 20>

Figure 12. Example ABDL Join

4. The Union Operator

The translation from the DFQL Union operator to ABDL results in a modified
relational union. The modification is that ABDL does not provide for the removal of
duplicate rows, if any exist. This is because each relation is retrieved separately through
the RETRIEVE query. The syntax is similar to the Select operation, except that there is
no condition necessary for the retrieve. The relation is input by the user, and the attribute
list is extracted from the relation object to form the query. Because this is a combination
of two relations using two separate RETRIEVE queries, the relations are not required to
be union compatible. An example of this query is in Figure 13. The source code 1s

provided in Appendix B, Figures 25 - 28.
39

QUERY:
[RETRIEVE (TEMP = Department) (dname, dnumber)|
[(RETRIEVE (TEMP = Dept_Locations) (dnumber 2l ation)]

OUTPUT:
<dname, Research>, <dnumber, 5>
<dname. Administration>, <dnumber. 4>
<dname, Headquarters>, <dnumber, 1>
<dnumber. 1>, <dlocation, Houston>
<dnumber, 4>, <dlocation, Stafford>
<dnumber, 5>, <dlocation, Bellaire>
<dnumber. 5>, <dlocation, Sugarland>
<dnumu.z, 5>, <dlocation. Houston>

Figure 13. Example ABDL Union

5. The GroupCnt Operator

The GroupCnt operator counts the number of records which meet the grouping
attribute requircment. The count attribute, which is used in DFQL to identify the resuit
relation which stores the result of the count, is not used in the translation. The translation
code is provided in Appendix B, Figure 29. Since ABDL does not produce a relation as
output at this time, there is no need for a new relation name. The output from this query
is the grouping attribute, and the number of records in with that attribute. An example is

given in Figure 14.

QUERY:

[RETRIEVE (TEMP = Project) (COUNT (pnumber)))
OUTPUT:

< pnumber, 6>

Figure 14. Example ABDL GroupCnt

40

B. GENERAL NOTES

A couple of additional notes need to be made with regards to the code used from
DFQL and for the translation. These involve some or all of the operator translations, and
should be reviewed along with the code provided in Appendix B.

For the Select, Project, and Join operators there was quite a bit of additional code
generated by DFQL which was not used in the translation to ABDL. Most of this
additional code focused on the creation of "views", that is, the generation of temporary
relations. As stated in Chapter III, DFQL. generates these temporary relations in order to
maintain operational closure. Therefore, a relation is always the output of every operator.
Currently, ABDL does not support the ability to create views. One reason is due to the
lack of communication between different requests in a transaction. That is, one request of
a transaction cannot use the resulits of a previous request (Demurjian, 1987).

When the MDBS was initially developed, one major goal was to demonstrate that
the key aspects of different data models could be supported in a single system
(Demurjian, 1987). Since it is a research tool, the designers believed this to be sufficient.
However, in order to be able to support more advanced data models and languages in the
future, additional facilities such as creating views become essential. The additional code
which is used by DFQL, and not used in the translation to ABDL was left in place so that
when the additional facility of view creation is implemented, the additional translation

work required will be minimal.

4]

V ANALYSIS OF TRANSLATION

The implementation of DFQL on the MDBS requires what is basically an
integration of the two systems. The first aspect of that implementation has been
presented here - the translation of DFQL into the kernel language ABDL. Both DFQL
and MDBS were designed to improve database interaction. The focus of this thesis
research is to integrate the two systems, and thereby significantly improve the user
interface for the relational database on the MDBS. However, since both of these systems
were designed and implemented totally independently, each brought its own features and
functional characteristics which had to be considered in the integration. And the fact that
both systems are prototypes, and experimental, had an effect on the translation. For
example, in the MDBS several SQL features were not implemented because the effort
required to support them outweighed the current benefits, and detracted from the primary
goal of demonstrating the feasibility of the system (Demurjian, 1987). Therefore,
operations which seem simple in DFQL were not able to be implemented the MDBS as it
is currently configured. And as a result, some of the beneficial features of DFQL were
not able to be implemented.

In the rest of this chapter, the problems encountered in the translation of the two
systems will be examined in more detail. Most of these were due to features which were
not implemented in MDBS, but are instrumer.tal to the effective operation of DFQL.

Possible solutions and recommendations will also be discussed.

43

[——

A. PROBLEM ANALYSIS
One of the most critical features not currently implemented on the MDBS is the
ability to define views, or the creation of temporary relations in SQL. This feature was

not implemented because it did not impact on the data-model transformations and the

data-language translations of the original system (Demurjian, 1987). Again, this was
because the MDBS was originally intended as a research tool, as opposed to a
commercial product. The crucial issue with this inability to define views is the lack of
support for operational closure.

Since the MDBS does not create views, the results of a query are those tuples or
records which meet the requirements of the query. Therefore, temporary relations are not
created. In DFQL, these views, or temporary relations, would contain the output from
defined operations. And as described in Chapter III, this allows for easier extensibility of
the language, because one input to all operations is a relation, and the output is always a
relation. Since the MDBS does not support this feature, operations must be performed
one at a time, and cannot be connected to other operators in order to extend the language.
For example, a user cannot perform two projects on two relations, take that output and
Join it in a series of operations because the output from the projects are not relations
(required as input to the join), but the records which meet the requirements of the project
query. This significantly reduces the benefits of DFQL. It not only affects the
extensibility of the language, it also reduces the benefits of incremental querying, as

described in Chapter III.

44

The nability to create views in the MDBS causes another problem in the
translation of DFQL - that of translating the difference operator. This operator 1s not
translated into ABDL because temporary relations cannot be created and because the
operator requires union compatibility. The temporary relations are necessary in order to
obtain two relations which are union compatible, usually through project operations.
These temporary relations are then compared to subtract those tuples which are in one
relation, but not the other. However, since these temporary relations cannot be obtained,
there is nothing to compare. Therefore, difference is not translated into ABDL

There are several other operations which are limited on the MDBS which in turn
limit the DFQL operations. One of these involves the join operation. The ABDL
implementation of join only allows an equi-join and the joining of two relations at a time.
Most joins required tend to be equi-joins, and therefore this is not considered a signific t
limitation. However, any limitation on the user results in less flexibility to manipulate
the database. This also applies to the limitation of joining only two relations. Again,
many times only two relations need to be joined, however, with large databases, this
could be a severe limitation. Also, since operational closure cannot be implemented, the
language cannot currently be extended to perform additional joins on the result of
previous ones.

Another limitation involves the union operator. In the MDBS, the elimination of
duplicates is not supported in addition to the inability to support a union of two different

select operations (again, due to the inability to create temporary reiations). Basically, the

45

translation to ABDL calls for two separate RETRIEVE statements, or in relational terms,
two select operations in sequence. This basically accomplishes a mathematical set union,
as opposed to a relational union, since duplicates are not eliminated. Also, since relations
are not produced as output, users cannot use projects on relations to separate out desired
attributes which would then be input to the union operator.

Other problems discovered during the translation were not as significant as those
described above, however, they did impact the translation process. These included syntax
limitations in ABDL which were not documented, but nonetheless caused considerable
effort to be expended in the debugging of code. For example, the system is case
sensitive. All code generated in DFQL must match exactly the code required for the
MDBS and ABDL. Also, all data items (i.€., attribute names and values) are limited to
15 characters. For testing purposes, this is not a problem because test databases are
relatively small. However, large and complex databases require abbreviations in order to
be implemented, and this reduces ease-of-use and user comprehension.

One potertial problem with DFQL is the way in which it is implemented. It is
currently implemented on a Macintosh computer, using the Prograph programming
language. As discussed in Chapter 111, the Macintosh allows DFQL to take advantage of
the visual interface environment. But more importantly to the constructs of DFQL,
Prograph provides a visual dataflow structure which greatly enhances ease-of-use.

Although these benefits are significant, they are limited in that the Prograph environment

46

is currently available only on a Macintosh systerm. To have real portability, the system
should have the ability to be accessed from other platforms.
B. RECOMMENDATIONS

Cne major improvement to the MDBS would be to implement the ability to create
views. This one change could provide solutions for many of the problems discussed
above. Most importantly, it would allow for operational closure which is an instrumental
feature of DFQL. This one enhancement would allow the major benefit of DFQL to be
realized on the MDBS. Extensibility would be significantly improved by allowing the
full implementation of all DFQL operators, as well as user-defined operators. The ability

to create views would be an additional benefit for the entire system. This is because the

kernel model and language (ABDM/ABDL) would be upgraded to support this feature,
and therefore be available to all data modeis used on the system. Essentially, this change
would make the MDBS, with DFQL implemented, a viable database system for more
advanced data models, and much more complex databases.

An alternative method of creating operational closure would be to have DFQL
handle the creation of temporary relations. By this, we mean that DFQL would take the
results from one query, restructure it and send it back to the MDBS in the form of a file
creation, with the new data inserted. The MDBS could then act on this new relation in
whichever operation prescribed by the user in DFQL. This solution puts the burden on
DFQL to ensure operational closure is maintained. This is not an optimal solution for

several reasons. First, the updated DFQL would lack the orthogonality, which is

47

currently one of its key features, and one of the goals DFQL set to originally accomplish.
It would make user defined operators much more difficult to construct, thereby losing the
benefit of extensibility. Changing DFQL would also make the system much slower by
significantly increasing the communication time between the two systems. And
restructuring the code in DFQL would significantly reduce its maintainability and
portability. Additionally, none of the other data models implemented in the MDBS
would benefit from the change if it were made to DFQL only.

Other recommendations to the MDBS involve enhancements to the relational
operations currently allowed. These would include providing all the functionality of a
Jjoin operation, not just an equi-join, as we!! as allowing the joining of as many relations
as necessary. The problem with the union operator would be corrected by the ability to
create temporary relations. Also, it would be possible to implement the difference
operator. The ultimate goal of these solutions would be to have a full set of rela nal
operators available to the user, as well as all of the advantages of DFQL.

When these additional features are implemented in the MDBS, and it is set up to
support more advanced data models, the syntactic constraints should also be removed.
The most important of these would be the removing the limitation of string and integer
data types. At a minimum, a real data type should be added, as well as a date.
Additionally, the 15 character minimum constraint should be removed. Although it
works fine for test purposes, in actuality most databases require much more flexibility in

allocating space for attribute values. These changes would make the system much more

48

flexible and user friendly. As a result, larger and more complex models could be
effectively loaded and manipulated by the system.

Finally, the change to the programming environment for DFQL is not currently an
issue which can be resolved at this point. Although it is possible to write all code in C++,
the environment would not necessarily be a graphic one. However, when new software
for Prograph is made available for different environments (i.e. DOS, Windows, Unix),
DFQL can be implemented as necessary. This would enhance the portability of DFQL.

and make it much more widely available.

49

V1l CONCLUSION
A. DISCUSSION

This thesis involved the design and translation of the Data Flow Query Language
(DFQL) for the Multi-lingual, Multi-backend Database System (MDBS). DFQL is a user
friendly, graphical interface designed for the relational data model using a dataflow
paradigm. The MDBS is a database system which can effectively support multiple data
models and their corresponding data manipulation languages.

The background information on both sysiems was discussed. In addition, their
strengths were presented to illustrate the benefits to be gained from combining the two
systems. The design and translation were then explained in detail, including the DFQL
code. This was followed by the problems encountered during the translation, and
recommended solutions.

The ABDL statement generation in DFQL was fairly straightforward. Once we
gained an understanding of the Prograph programming language and the data flow
paradigm, the required changes in code required were relatively simple. In addition, the
debugging features of DFQL, specifically incremental construction and execution,
allowed for a much more expeditious translation than what is normally available in other
programming environments.

The problems encountered with the MDBS were described in Chapter V. This
system has many outstanding features including the effective management of database

systems growth, database performance, data sharing and resource consolidation (as

31

presented in detail in Chapter I1). It is truly unique in the database community. The
concept was to combine these two systems, and thereby realize benefits much more than
just the sum of the two.

B. FUTURE RESEARCH

The obvious next step in this area of research would be to develop the
communications required to connect the two systems. This interconnection between
DFQL and the MDBS would include the design and implementation of DFQL and
MDBS socket interfaces. The design of these sockets would include the capability to
pass the ABDL strings generated by DFQL correctly to the MDBS for execution. Then
the output from the execution would be similarly passed back to DFQL., and formatted
and displayed according to the user's needs.

Once this step is completed, an in-depth human factors analysis could be
conducted on the DFQL interface implemented on the MDBS backend. This analysis
would be similar to the one proposed in (Wu, 1991). It could quantify the ease-of-use
aspects as well as the flexibility provided by the MDBS. This could be a stand alone
analysis, and/or one performed in comparison with other stand alone data models, and
query languages.

Other aspects of future research concentrate solely on the MDBS. As discussed in
Chapter V, it would be extremely beneficial to implement the ability to create views in
the MDBS. This would add significant flexibility and extensibility to the system. When

this modification is made, the basic set of DFQL primitives translated into ABDL coulJ

52

be greatly expanded to include the non-basic primitive operators, as well as additional
user-defined operations.

Although the ability to create views is one of the most important changes which
could be made to the MDBS, the system overall should be revamped. Some of the
syntactic requirements should be removed (i.e., the limitation of string length to 15). In
addition, the documentation of the system has become outdated due to the many changes
by research students over the past few years. Although many of these changes may have
been small, if they are unknown, many unnecessary hours can be spent in debugging the
system when it fails. An analysis of the current system, with complete documentation,
would be extremely beneficial for all future research.

C. SUMMARY

The results of this thesis show that the implementation of DFQL on the MDBS
would be a enhancement to the current system. A graphical interface is much more
user-friendly than a text based one, and the data flow paradigm aids in the ease-of-use.
In addition, the MDBS supports multiple database models, providing flexibility and cost-
efficiency to the user. However, as also demonstrated, further enhancements need to be

made to the MDBS to truly realize all of the benefits from DFQL.

53

54

APPENDIX A. SAMPLE DATABASE

This appendix contains the sample database used in queries and examples throughout

this thesis. The database is Company Database from the textbook DATABASE SYSTEMS

(Elmarst, 1989).

EMPLOYEE

(FNAME IMINIT [LNAME] SSN BDATE | ADDRESS |SEX|SALARY|SUPERISSN|DNO|
Jobn B | Smith |123456789 | 09-JAN-55 731 Fondren, Houston, TX| M | 30000 | 333445555 | §
Franklin] T | Wong |333445555 | 08-DEC-45 | 638 Voss, Houston, TX | M | 40000 | 888665555 | S
Alicia | J | Zelaya |999887777] 19-JUL-S8 | 3321 Castle, Spring, TX | F | 25000 | 987654321 | 4
Jenaifer S Wallace 1987654321 20-JUN-31 | 291 Berry, Bellaire, TX F 43000 488665555 4
Ramesh | K |Narayan |666884344 | 15-SEP-S2 (975 Fire Oak, Bumble, TX| M | 38000 | 333448585 | S
Joyce | A | English |453453453| 31-JUL-62 | 5631 Rice, Houston, TX | F | 25000 | 333445555 | §
Abmad | V | Jabbar |987987987 |2-MAR-59| 980 Dallas, Houston, TX | M | 25000 | 987654321 | 4
James | E Borg |888665555 | 10-NOV-27 | 450 Stone, Houston, IX | M | 55000 null 1
DEPARTMENT

DEPT_LOCATIONS

[DNUMBER

MGRSTARTDATE
3 333445555 22MAY-18 i
4 987654321 01-JAN-8S
1 888665555 19-JUN-71
—

PROJECT

T PNAME | PNUMBER | PLOCATION | DNUM |
ProductX 1 Bellaire 5
ProductY 2 Sugariand 5
ProductZ 3 Houston s

Computerization 10 StafTord 4

Reorgsnization 20 Houston 1
Newbenefits k) Stafford | 4
DEPENDENT

T LSSN |DEPENDENT.NAME [SEX] BDAIE |RELATIONSHIP)

333445555 Alice F | 05APR-76 DAUGTER

333445588 Theodore M |25-0CT-73 SON

333445555 Joy F |03-MAY-48 SPOUSE

987654321 Abner M | 29-FEB-32 . SPOUSE

123456789 Michasel M |, 01-JAN-78 SON

123456789 Alice F | 31-DEC-78 | DAUGHTER

123456789 Elizabeth F |05-MAY-S7 SPOUSE

56

ESSN

WORKS_ON

123456789

123456789

666884444

453453453

453453453

333445555

333445555

333445555

333445555

999887777

999887777

987987987

987987987

987987987

987987987

888665555

57

APPENDIX B. SOURCE CODE

This appendix contains the source code for the translation of DFQL to ABDL.
The only code provided are those portions of the operations which required a change 1n
the current DFQL. code. The order of the operations are SELECT, PROJECT, JOIN,

UNION, and GROUP COUNT.

59

ABDL File/select 2:2
ud
/nev instance ol ¥ /nameZ ;
eate the resulting
relation of select . sondition
////////////////}///////////////////.
5
& _»
Figure 15. DFQL Generation of ABDL Select
& generste abdistmt 1:)
0
CIRETREVE .. | rotsten Betstvrane])
canditien
5]
el ®

Figure 16. Generate ABDL Select Statement

60

get attributes 1:1

LSS IS SIS SIS ISLSLSSLI SIS S SIS —{—}-
LSLLSSI LS LSS LSS S LS IS SIS LT
|
A3
Figure 17. G+»erage List of Attributes
get name 1:1
2277277777777 2

(7772 L7 772 77777777

<@l

= B

Figure 18. Generate Attribute Names

61

¥ BBOL File/project 2:2

&

R Ll il il i
7 0
W

create the resulting
relation of project

L& ig,{ —

////////////////////}///////////////,
z"[>>>>>>> " -
Figure 19. DFQL Generation of ABDL Project
enerate nbdlétml 1:1
IR T
o
& B

Figure 20. Generate ABDL Project Statement

62

ABDL File/ join 2:2

’////////////////////////////////./// 0
zlnov hslm ; Re12| condition '—1
make condition
1f input &5 an
oquijein par ameter
/////////////////////}//////////////. La
N B
Figure 21. DFQL Generation of ABDL Join Statement
generate abdistmt 1:1
. ud
ol Rel2 !Et oﬂrﬂw\csil
t attrbute
ﬁ:ﬂ condition /name.
/name
“IRETRIEVE (...
R L ZJohr(13)
“RETRIEVE (T...
///////////////////‘/////////////////. L_G—
el 15

Figure 22. Generate ABDL Join Statement

63

(D get attributes 1:1
SIS SIS LA AL S LTS AL A A S A S S LS LSS .0_1
-(-
. Sl
SITSSLSLSSS IS LSS IS S LSS S LSS LSS SIS TS
=
<ol 2
Figure 23. Generate List of Attributes
get name 1:1
L il &
///////.///////////.///////////.//////I.
-—
G
&l |

Figure 24. Generate Attribute Names

64

ABDL File/union 1:1

=

Rel 1 i i Rel 2

[%etrieve relrﬂ] &etrieve mzﬂ]
Tr Y

////////////////}///////////////////.

<

<l

[>

Figure 25. DFQL Generation of ABDL Union

retrieve rell 1:1

1

“[RETRIEVE (... —T—

SLLLLSS LSS SIS LS LSS LLLLL LS LSS LSS 2

<

<l

16

Figure 26. Generate ABDL Union Statement

65

get attributes 1:1
LS LS LSS SSLS IS LS SSASL S LSS S S PSISIS 3
//////////.//////////I///////////////.
4
Figure 27. Generate List of Attributes
 get name 1:1
SIS ILS LS SLSS LS LLS S S S AL LS LSS AT P—
///////I/////.///////////////////////,
O
&l J &

Figure 28. Generate Attribute Names

66

ABDL File/groupCnt 1:1

<self> A

“[RETRIEVE (...

=) (COUNT("

LSS LSISSISS LSS SIS LSS SIS TS SIS SIS

count
attr

%I ZJchr(1 3)2

LS LSLLLLL LSS LI LSS SIS SIS LSS LYY

=

<

<

[

Figure 29. DFQL Generation of ABDL Group Count

67

LIST OF REFERENCES

Bancrjee, J.and Hstao, D. K., DBS Software Requirements for Supporting Relatonal
Databases, Technical Report, Ohio State University, 1977,

Cince, Turgay., Design and Implementation of a Query Editor for the Amadeus System,
Maslter's Thesis, Naval Postgraduaw School, 1993,

Clark, Gard J., DFQL.: A Graphical Dataflow Query Language, Master's Thesis, Naval
Postgraduate School, 1991.

Demers, William A. and Rogelstad, Jon M., The Design and Implementation of a
Functional [Daplex Daia Interface for the Multimodel ard Multilingual Database
System, Master's Thesis, Naval Postgiaduate School, 1994,

Demurijian, Steven AL, The Multi-Lingual Database Sysiem - A Paradigm and Test-Bed
for the Investigation of Data-Maodel Transformations, Data-Language Translations and
Data-Maodel Semantics, Dissertation, Ohio State University, 1987,

Demurjian, Steven AL and Hsiao, D. K., "New Directions in Database-Systems Rescarch
and Development,” Proceedings of the International Symposium on New Directions in
Compuung, 1985.

Elmarsi. R. and Navathe, S., Fundumentals of Database Systems, The Benjamin/
Cummings Publishing Company, Inc., 1989.

Hall, Jamcs E.. Performance Evaiuations of a Parallel and Expanduble Database
Computer - The Multi-Bac..end Database Computer, Master's Thesis, Naval Postgraduate
School, 1989,

Holste, Sweven T, The Implementation of a Multi-Lingual Database System - -
Multi-Backend Database Sysiem [nterface, Master's Thesis, Naval Postgraduate School.
1986.

Hogan, Thomas R., fnterconnection of the Graphics Language for Database System to
the Multi-Linguai, Multi-Model, Mult-Backend Database Svstem Over an Ethernel
Netwark, Master's Thesis, Naval Postgraduate School, 1989,

Hsiao, D. K. and Harary, F., "A Formal System for Information Retnieval trom Files.”
Communications of the ACM, vol. 13, no. 2. 1970.

6Y

Macy, Grithn N., Design and Analysis of an SQL Interface for a Mulu-Buckend
Database System, Master's Thesis, Naval Postgraduate School, 1984,

Rollins, Richard k. Design and Analysis of a Complete Relatonal Interface for a
Mulu-Backend Database System, Maslter's Thesis, Naval Postgraduate School, 1984,

Wu, C. Thomi «.d Clark, Gard 1., DFQL. Dataflow Query Language for Relational
Databases, U published Paper, Naval Postgraduate School, 1991,

)

!\J

[

INITIAL DISTRIBUTION LIST

Detense Technical Information Center

Camcron Station
Alcxandria, Virginia 22304-6145

Dudley Knox Library

Library, Code 052

Naval Postgraduate School
Monterey, California 93943-5002

Compulter Technology, Code 37
Naval Postgraduate School
Montcrey, California 93943-5002

C. Thomas Wu, CS/Wq
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5002

David K. Hsiao, Code CS/Hg
Department of Computer Science
Naval Postgraduate School
Monterey, Califorma 93943-5002

Ms. Doris Miczko

Code P22305

NAWCWPNS

Point Magu, CA 93042-5001

CPT Nancy C. Free
PO Box 3180
Ft. Leavenworth, KS 66027

71

Number of Copies
5

to

tJ

3%

r

