
NAVAL POSTGRADUATE SCHOOL
Monterey, California

oTIC
"P-CTE

THESIS 14 3 7 1994

TRANSLATION OF THE DATA FLOW QUERY
LANGUAGE FOR THE MULTIMOD2L,
MULTIBACKEND DATABASE SYSTEM

by

Nancy C. Free

September, 1994

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

94-34469, (92

REPORT DOCUMENTATION PAGE Form Approved 0MB No. 0704

Public reporting burden tor this Lollecrton of informiation is estimated ioa .eragc I hour per response. including the time tor res ie~k mg
instnuction. searching existing data sources. gaihernig and maintaining the data needed, ind ~onipleting and resre~ing the oliektion tit
information Send comments regarding this burden estimat~e or[ank, other aspect kit this collek.tion tit information. ink. luding suggesiiitsn fm

reducing this burden, ito Washington headquarters hers iceN. Directorate lot Iritormation Operation, and Reports, 12 1 ', Jefferson Ijkis
HighwaN. Suite 1 2(". Arlingion. \. A _222;1 -4 ~It)-' nd ito the ()i t e tit "vilaigemnent arid Budgtei. Paipervi or*)m~ d UL I ion Pr. kickI

i07W04 1I SX) \& ashingion DC (iSO(I

IAGiFNCY VI S ONI Y F ot/'an R-P(R*i DATI 1W RP(R TY1 1 A'PI*ND) DAfT s ((IRI)

4 TITLE AND SVBTITLI. I R \N~sI.\TI(WN TF [I- D1)A FLO W~)V 0 1R' S NlO ;NCI NtMHFHS
LANGt AGE FOR THE %VI [ImODEL. !st 1 .riBACKEND D)ATABASE SYSTEMI

6 A.ITH 0R ;S Free. NanLt.'.

-PERFORMING ORG~ANIZATION %AMi-, S, V\D) API)RFS.SFSv S PERFORMINC OH(;ANII.VTlON
N~jksl Postgraduate: Sk hool F RTN iE

Mionierc% CA 9194, S(M

tjSPONSORINU/NVNITORINIG M&(FNt \AMH:Si ANt)ADI)RESSESI I10 SPONSORING/MONITORINC,
AGENCY REPORT N'IMBI-k

11 SUPPLEMENTARY NOTES The sie'ms expressed in this thesis are those at the author and do nor reflect the official polick, or
position of the Department ot Defense or the I S Goksernmen'

12a. DISTRIBUTIONIAVAILABILITY STATEMENT Approved for public release. l2h. DISTRIBUTION CODE
istribution unlimited A

13. ABSTRACT (minimum 200 words)
This thesis involved the design and translation of the Data Flow Query Language (DFQL) for the Multi-Lingual. Multi-Backend

Database System (MOBS). The MDBS is a database system that can effectively support multiple data models and their corresponding data
manipulation languages. The problem was the MDBS interfaces are text-based, and not very user-friendly.

The approach taken to solve this interface problem wsas to design and translate the DFQL for implementation on the MDBS. DFQL was
designed to improve and extend SQL. the data manipulation language associated with the relational data model. It uses a graphical
interface based on the data flow paradigm. This translation would extend the MOBS by allowing a graphical interface to be implemented,
whereas currently a user can only access the system with text-based interfaces.

The result of this thesis is the development of the DFQL to AI3DL translator. The subsequent implementation of this translator on the
MDBS would be a user-oriented enhancement to the current system. In addition, further improvements to the MDBS should be made.
such as allowing the use of additional data types (currently constrained to string and integer) and the ability, to create views. These changes
would allow all the benefits from DFQL. such as orthogonality, language extensibility and incremental querying to be achieved and made
available to the user.

15. NUMBER OF PAGES
85

117. SECUIRITY IX. SECURITY 19 SECURITY 20. LIMITATION OF
CLASSIFICATION O1: CLASSIFICATION OF THIlS CLASSIFICATION OF ABSTRACTr
REPORT PAGE ABSTRACT I L

St. rlassitred I nitl.issilied IUnclassitied

NSN 7-,40-01l 2Xi11f~ Standard Formn 298 ýRc%, 2 NI~
Pres, rif'ed hs AN SI Ski 2

ii

Approved for public release, distiibution is unlimited.

TRANSLATION OF THE DATA FLOW QUERY LANGUAGE FOR
THE MULTIMODEL, MULTIBACKEND DATABASE SYSTEM

Nancy C. Free
Captain. United States Army

B.S.. Kansas State UL1 .. 1984

Submitted in partial fu,.,llm-nt-
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE - ----------------

from the

NAVAL POSTGRADUATE SCHOOL - ----or

September 1994

Author: .

A oNancy C. Free

Approved by:

C. Thomas W hesis Advisor

David K. Hsiao, Second Reader

Ted Lewis, Chairman

Department of Computer Science

ii~i

iv

ABSTRACT

This thesis involved the design and translation of the Data Flow Query Language

(DFQL) for the Multi-Lingual, Multi-Backend Database System (MDBS). The MDBS is

a database system that can effectively support multiple data models and their

corresponding data manipulation languages. The problem was the MDBS interfaces are

text-based, and not very user-friendly.

The approach taken to solve this interface problem was to design and translate the

DFQL for implementation on the MDBS. DFQL was designed to improve and extend

SQL. the data manipulation language associated with the relational data m ,del. It uses a

graphical interface based on the data flow paradigm. This translation would extend the

MDBS by allowing a graphical interface to be implemented, whereas currently a user can

only access the system with text-based interfaces.

The result of this thesis is the development of the DFQL to ABDL translator. The

subsequent implementation of this translator on the MDBS would be a user-oriented

enhancement to the current system. In addition, further improvements to the MDBS

should be made, such as allowing the use of additional data types (currently constrained

to string and integer) and the ability to create views. These changes would allow all the

benefits from DFQL, such as orthogonality. language extensibility and incremental

querying to be achieved and made available to the user.

V

vi

DISCLAIMER

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While effort has been made, within the

time available, to ensure that the programs are free of computational and logic errors,

they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

vii

viii

TABLE OF CONTENTS

I INTRODUCTION .. 1

A. M O TIVATIO N .. I

B. BACKGROUND ... 2

1. M ulti-lingual, M ulti-backend Database System 2

2. The Data Flow Query Language .. 3

C. THESIS ORGANIZATION .. 4

II THE MULTI-LINGUAL, MULTI-BACKEND DATABASE
SYSTEM ... 7
A. MOTIVATION AND ADVANTAGES .. 7

1. Motivation for a Multi-lingual Database System (MLDS) 7

2. A dvantages of the M LD S ... 8

B. STRUCTURE AND CONFIGURATION I I

1. Structure of the M L D S 11

2. Configuration of the Multi-backend Database System 13

C. THE ATTRIBUTE-BASED DATA MODEL 15

1. A B D M C onstructs ... 16

2. A B D L O perations ... 17

a. The RETRIEVE Request .. 18

b. The RETRiEVE-COMMON Request ... 18

c. The INSERT Request ... 19

d. The DELETE Request ... 19

e. The UPDA TE Request ... 19

II THE DATA FLOW QUERY LANGUAGE 21

A. BACKGROUND ... 21

B. DFQL OPERATORS ... 23

1. Basic Prim itive O perators ... 23

a . S e le ct .. 2 4

b . P roject .. 24

ix

c. Jo in .. 25

d . U n io n 2 6

e . D iffe ren ce 2 7

f Group Count................................... _27

2. N on-B asic Prim itive O perators28

C. CHARACTERISTICS OF DFQL ... 29

1. E xtensibility 29

2. D ataflow Structure ... 30

3. Increm ental Q uerying .. 30

4 . V isual Interface ... 3 1

D. CONCLUSIO N ... 31

IV TRANSLATION .. 33

A. MAPPING DFQL TO ABDL .. 34

i. T he Select O perator 34

2. T he Project O perator .. 37

3. The Join Operator ... 38

4. The U nion O perator ... 39

5. The G roupC nt O perator .. 40

B. GENERAL NOTES ... 41

V ANALYSIS OF TRANSLATION 43

A. PROBLEM ANALYSIS ... 44

B. RECOMMENDATIONS 47

VI CONCLUSION .. 51

A. DISCUSSIO N ... 51

B. FUTURE RESEARCH .. 52

C. SUM M ARY 53

APPENDIX A. SAMPLE DATABASE 55

APPENDIX B. SOURCE CODE .. 59

x

LIST OF REFERENCES ... 69

INITIAL DISTRIBUTION LIST 71

xi

xii

ACKNOWLEDGMENT

I would like to thank my thesis advisor, Professor C. Thomas Wu, for his patience

and assistance, but mostly for his sense of humor. I would also like to thank LCDR Bill

De'riers for all of his experienced help with the Multi-lingual, Multi-backend Database

System. Even after he graduated, his long distance assistance proved to be invaluable. I

must also thank CPT Thierno Fall, Senegalese Army, for all of his patient help with the

Macintosh computers and the Prograph programming language.

Finally, I wish to thank my husband, Eddie, for making these past two years

memorable. It was better because we did it together!

xiii

xiv

I INTRODUCTION

A. MOTIl% ATION

Database systems constitute a significant jortion of computer technologý toda%..

mainl, due to their increasing role in al! areas of our societ% I here are three

predominant database models in use today. These are hierarchical. network, and

relational database models. A fourth, and relatively new model. is the object-oriented

database model. Finally, a fifth model is the functional model, often used in Artificial

Intelligence programs. Each of these models has strengths and weakness', although each

is more suited to a specific type of database application. For example, the relational

model is well suited for business/financial applications where relationships can be viewed

as a table; this database is probably the most widely used today. On the other hand, the

hierarchical model would be a better choice for maintaining a database for design

applications. There are many situations where the advantages of more than one model

would be beneficial to the implementation of the database. However, most organizations

cannot afford to institute more than one model. Not only are the direct costs of procuring

another, separate, system usually prohibitive, but there are also the training,

administration and storage costs to consider. One prototype solution to this problem is

the Multi-lingual, Multi-backend Database System (MDBS) - a system which can

support many different data models and their corresponding data language (Demurjian,

1987). Currently, this system allows a user to access data from any of the following four

database models relational, hierarchical. network, and fiunctional as well as from the

\1l)BS kernel data language.

Another problem with most database systems today is the lack of a user friendl)

interlace. And the MDBS is guilty of this downfall as well. Although the current

interface allows fairly easy access to the user's database model choice, once the user

reaches that model, the specific data language of that model must be used. A

graphical/visual interface to the relational model has been developed to enhance the ease

of use of the relational database model (Clark, 1991). This Data Flow Query Language

(DFQL) utilizes a dataflow paradigm to implement and expand the Structured Query

Language in a much more user friendly and graphically intuitive environment.

Since the relational database is the most popular and widely used data model

today, I am focusing my research on designing and translating the DFQL for

implementation on the MDBS. Although DFQL will be translated into the kernel

language of the MDBS (the Attribute Based Data Language), and therefore can be used to

access any of the supported data models, its basis is in the relational model and its

language, SQL. The ultimate goal is to significantly improve the user interface for

interacting with the MDBS.

B. BACKGROUND

1. Multi-lingual, Multi-backend Database System

The Multi-lingual, Multi-backend Database System (MDBS) was developed by

Demurjian and Hsiao at The Ohio State University and currently, at the Naval

2

Postgraduate School's Laboratory for Database Systems Research. The concept behind

this system is to provide a single database computer to manage multiple data models and

execute all database operations written in the corresponding data languages (Demurjian,

1987). The MDBS has demonstrated the ability for at least four different data models and

languages to not only coexists on a single system, but also to interact and share data

(Demers, 1994).

The key to this interaction is the simple kernel data model of the MDBS. This

kernel data model and language are the attribute-based data model (Hsiao, 1970) and the

attribute-based data language (Banerjee. 1977). This model has been shown to support

several different data models and their data languages. The MDBS performs the

interaction between two source databases (relational, hierarchical, etc.) by two different

types of mappings into the kernel data model. The first is the data-model transformation

which transforms the source database into the kernel database. The second is the

data-language translation which takes an operation in the source data language and

translates it into an equivalent operation in the kernel language (Demurjian, 1987). These

two mappings allow for the complete interaction of different data models using the data

language of choice. For example, a network database could bc queried using SQL

transactions.

2. The Data Flow Query Language

The Data Flow Query Language (DFQL) was developed by Clark and Wu at the

Naval Postgraduate School in the early 90's. The purpose of this graphical interface to a

3

relational database was to improve and extend the standard query' language associated

with the relational model, the Structured Query Language (SQL) (Wu. 1991). There are

many documented problems with SQL. many of which focus on the ease of use issues and

extension issues (Elmarsi. 1989). DFQL. uses a graphical environment which allows a

user-friendly interface to the database. It also provides for easy extensibility of the

language by allowing the user to create new operators in terms of the existing ones

(Clark. 1991). The implementation language used for DFQL is Prograph. an

object-oriented language. in an Apple Macintosh environment. DFQL is based on a

dataflow structure, as is Prograph. In addition, Prograph is object-oriented which

provides many powerful features to improve modularity and maintainability of the DFQL

code.

The purpose of this thesis is to design and develop a translation of the Data Flow

Query' Language to be implemented on the Multi-backend Database System. Through my

research. I also plan to determine the portability and ease of translation of the current

system.

C. THESIS ORGANIZATION

In Chapter II, the Multi-lingual, Multi-backend Database System is discussed in

detail. This will include the functionality and organization of the system, as well as a

thorough description of the attribute-based data language (ABDL). In Chapter III, the

Data Flow Query Language is examined in detail. Chapter IV discusses the design and

translation decisions made in translating DFQL's SQL statements into ABDL for further

4

implementation on the MDBS. Chapter V discusses problems encountered, analysis and

solutions determined in the translation. This chapter will also cover those problems

concerning portability and the ease of translation of DFQL. Finally in Chapter VI. a

summary discussion of the work and research is provided, conclusions made and

recommendations for further work in this area.

5

6

II THE MULTI-LINGUAL, MULTI-BACKEND DATABASE
SYSTEM

In this chapter, a more detailed examination of the Multi-lingual, Multi-backend

Database System is provided. The motivation behind designing and implementing such a

system is reviewed, with a discussion of its advantages and functionalities. This is

followed by a more technical review of the system's structure and methodology.

A. MOTIVATION AND ADVANTAGES

1. Motivation for a Multi-lingual Database System (MLDS)

Since the evolution of the database management system (DBMS), design and

implementation philosophy has focused on mono-lingual database systems; that is, a

database computer with a single data model and its corresponding data manipulation

language (i.e. the relational data model and SQL). And when an organization is

determining which model to use, the data model which offers those functionalities best

suited for the organization's particular data is chosen.

The key word here is 'best suited'. Considcring the increasing database computing

requirements in business and government organizations today, just one database system

rarely fits the required application perfectly. Therefore, these organizations settle for the

one DBMS which suits their needs best. This results in one of two main alternatives.

The first is to have the users "work around" those functionalities they need in the DBMS,

but are not there. Or the organization can purchase each of the monolingual database

systems it needs separately. Either alternative results in additional costs to the

7

organization: employees' time spent "working around" the current system, or purchase

and training costs for additional DBMSs. So Demurjian and Hsiao proposed a

multi-lingual database computer that has the capability and flexibility to support a variety

of data models and their corresponding data manipulation languages on a single database

computer (Demurjian, 1985).

Another motivating factor can be seen in an analogy provided by Demurjian

(Demurjian, 1987) in a comparison with Operating Systems. Operating Systems were

originally mono-lingual, designed to support a single programming language, much like a

current database system supports a single data model and it's data manipulation language.

As computers and operating systems have evolved , many varied programming languages

can be supported by a single operating system. Therefore, an operating system can

execute and support a user's program in different languages and data structures, as well as

handle resource allocation. And by Demurjian's analogy, a single DBMS should be able

to provide management of varied data models and access to these models via their

corresponding data manipulation language. Thus, the proposal for a multi-lingual

database system (MLDS) is defined as a single system to support many different data

models and their data languages, much like an operating system supports different

programming languages.

2. Advantages of the MLDS

One of the most valuable features is the ability to "migrate" existing databases

into the MLDS (Holste, 1986). This can be especially beneficial for organizations

8

currently operating an existing mono-lingual DBMS. Once the existing database is

migrated into the MLDS, data manipulations may be performed using the original data

language. In addition, the same database may be interfaced using one of the other

supported data models, taking advantage of it's particular features and capabilities. The

result is the ability to access current data in a wider variety of transactions.

Another practical advantage of the MLDS is the ability to reuse previously

developed database transactions (Demurjian, 1987). Since database transactions written

in different data languages can be run in the MLDS, transactions written in a specific data

language on another database system can also be run in the MLDS. This means that no

transaction conversions are required when migrating to the MLDS, and old transactions

can be reused as is. In addition, new transactions can be written in any of the supported

data languages.

A third advantage to this system can be realized in the economy and effectiveness

or hardware upgrades. As technology progresses, or with increased data requirements, it

is inevitable that hardware upgrades will be necessary. And as a single system, an

upgrade to the MLDS will benefit all of the supported data models. This is contrasted

with upgrading separate DBMS, each of which supports a single data model, resulting in

increased expense and effort.

With the ability to support different data models in one system, the MLDS

provides a user with an environment to explore the other data models. Thus, the strengths

9

of one model may be explored and those desirable features can be utilized for different

applications. And all of this may be done with one database computer.

Two other advantages of the MLDS can be better defined as enhanced

functionalities. The first of these focuses on the availability of the system's native data

model and data language. This is the kernel data model (KDM) and the kernel data

language (KDL). This is the base data model, and it is implemented in the MLDS as the

attribute-based data model and language (ABDM/ABDL). Basically, all of the

conventional data models are be transformed into equivalent databases structured in the

kernel model. In addition, each of the data languages are translated into the kernel data

language. Although this is the system's kernel model, because it is a high-level model

and language, it also acts as an additional data model in which the user can explore and

use as desired. These transformations and translations are performed by the MLDS, and

are essentially transparent to the user (Holste, 1986). The technical details of this facility

are further discussed later in this chapter.

The other enhanced functionality allows the MLDS to be used as a

rapid-prototyping environment to develop and experiment with new data models,

languages and interfaces (Demurjian, 1987). An example is the work proposed in this

thesis; that of providing a more user-friendly interface to the system. With a

multi-lingual environment, a proposed model and/or language can be fine-tuned and

tailored as necessary, without having to develop an entire database system for the new

model.

10

B. STRUCTURE AND CONFIGURATION

1. Structure of the MLDS

A diagram of the multi-lingual database system structure is provided at Figure 1.

The user interacts with the Language Interface LaYer (LIL) utilizing a user-chosen data

model (UDM) and with transactions written in the corresponding user-chosen data

language (UDL). The LIL is where the user interfaces with the system. It includes

querying the user for the data model to be used and requesting file names for databases

and queries. The LIL passes the user transaction to the kernel mapping system (KMS).

a UD UDIM or I M KDM,,
KD

UDMM

KDM Responses(UD) Responses KFesponsesKI

LEGEND:

UDM User Data Model Data Model
UDL User Data Language
LIL Language Interface La) Data Language
KMS Kernel Mapping System
KC Kernel Controller -- System Module
KFS Kernel Formatting System
KDM Kernel Data Model
KDL Kernel Data Language
KDS Kernel Database System

Figure 1. The Multi-Lingual Database System

iI

The KMS is basically the heart of the system. The KMS handles both database

definition and database manipulation requests. For database creation, the KMS

transforms the UDM database definition into an equivalent kernel data model (KDM)

definition. This definition is then sent to the kernel controller (KC). The KC sends this

transformed database definition to the kernel database system (KDS), which issues the

commands to define the new database in KDM form. The KDS notifies the KC, which in

turn notifies the user via the LIL, that the database definition is processed, and the data

may now be loaded.

UDL transactions are also routed through the KV.'.; for translation into an

equivalent kernel data language (KDL). "i his KDL transaction is forwarded to the KC,

which forwards it to the KDS for execution. I he KDS sends the resuit of the transaction

in KDM form back to the KC. Then, the results are sent to the kernel formatting system

'KFS) for transforming them back into UDM form. After this transformation, the results

are returned to the user via the LIL.

The kernel controller plays an important role in the system in that it handles all

interfaces to the backend system. Basically, it's task is to simulate the operational

environment required by the UDM and UDL (Demurjian, 1987). The KC is responsible

for overseeing the execution of the KDL transactions so that the integrity of the database

is preserved. It also performs exception handling if an error is detected in the backend.

During retrieval transactions, the KC properly structures the KDS responses and passes

this data and control to the KFS (Demers, 1994).

12

This structure, minus the KDS, KDM and KDL, is repeated for each supported

data mtr,.cl and language. Each data model/language has its own LIL, KMS, KC and

KFS, called the language interface. And each of these Interfaces share the kernel system:

the KDS, KDM and KDL. Therefore, from the user's perspective, there are several

different data models/languages with which to access the data. However, from the

system's perspective, there exists only one data model and language with which to

manipulate the data. This structure highlights another advantage: duplicated data is

reduced. Although the data can be accessed using any or all of the supported data

models, it is only stored once, in the kernel data model.

2. Configuration of the Multi-backend Database System

The Multi-backend Database System (MDBS) was designed with performance

enhancement in mind, as opposed to the performance degradation often found in

mainframe-based system designs (Hogan, 1989). It accomplishes this goal by utilizing

off the shelf micro-computers working in parallel. Database functions are moved to these

computers, called the backend systems. Another computer acts as the controller to

interface with the backends and/or the user. A diagram of the MDBS is provided at

Figure 2.

The backend computers have their own hard disk subsystems, and are responsible

for processing user queries. The base data is distributed fairly equally over the backends,

which thereby reduces the search space of each backend. The system works as follows.

When the controller receives a transaction, it is transmitted :o all of the backends.

13

Meta data disk
Base data disks

Tape Drive Paging disk

Meta data disk

Base data disks

Controller

Paging disk

*ese 0

Meta data disk
Base data disks

Paging disk

Figure 2. Hardware Configuration of the MultiBackend Database System

14

Communication is handled using a standard Ethernet Local Area Network. This

query is then executed simultaneously on each backend, with the result being passed back

to the controller. This parallel aspect of the backend structure results in improved

response time since each backend works simultaneously and independently to complete

the transaction (Hall, 1989). Since there is only one controller, it has the potential of

becoming a bottleneck in the system. However, this potential is minimized by allowing

the controller to perform a minimum of functions, placing the heaviest burden on the

backends (Holste, 1986).

The configuration of the MDBS also allows for a high degree of extensibility. As

the amount of data being stored grows, performance may decrease. All that is needed to

improve both response times and system capacity is to add additional backend systems.

In fact, studies have shown that by doubling the number of backends can nearly double

the speed and capacity of the MDBS (Hall, 1989). And since these backend systems are

off the shelf purchases, the availability, affordability, and maintainability all add up to a

very cost effective performance enhancement.

C. THE ATTRIBUTE-BASED DATA MODEL

As previously discussed, the Attribute-Based Data Model (ABDM) and the

Attribute-Based Data Language (ABDL) are the kernel data model and language for the

MBDS. The ABDM was chosen as the kernel model because it stores the meta data and

the base data separately, introduces equivalence relations which partition the base data

into mutually exclusive sets called clusters, and allows the clusters to be distributed

15

across the backends, thereby enhancing the system's perfomance (Bourgeois, 1992). The

corresponding data language, ABDL, provides a simple but semantically rich and

complete language. It is designed to allow traditional languages (i.e. SQL, DL/l, etc.) to

be translated into ABDL. This translation is key to mapping the multiple data

modeIs/languages into a single data model/language (ABDM/ABDL).

1. ABDM Constructs

In the ABDM, each database record is a set of attribute-value pairs. An

attribute-value pair consists of the attribute name and its corresponding value. The

attribute-value pair is enclosed by a pair of angled brackets, with the attribute name first,

followed by the corresponding value. For example, <DLOCATION, Houston> is an

attribute-value pair where DLOCATION is the attribute name with the corresponding

value of Houston. A record consists of a set of attribute-value pairs and an optional

textual field called the record body. The first attribute-value pair in a record identifies

thefile which contains the records, followed by the rest of the pairs which make up the

record. A template name may be used instead of file name in the record. The entire

record is enclosed by parenthesis, as shown below:

(<TEMP, Dept_Locations>, <DNUMBER, I>,
<DLOCATION, Houston>)

Within the record, no two attribute-value pairs have the same attribute name.

Another important construct in the ABDM is defined for indexing purposes.

Certain attribute-value pairs of a record, or a file, are called the director. keywords of the

record, or file. These are kept in a directory, and are used to index and identify the

16

records, or files. All of the other pairs not kept in the directory are called non-directory

kevwords. Searching for records or files under the keywords can significantly reduce the

search space when any of the ABDL operations are performed on the database.

2. ABDL Operations

There are five primary database operations supported by the ABDL. These are

RETRIEVE, RETIRIEVE-COMMON, INSERT, DELETE, and UPDATE. All database

queries in any of the supported data manipulation languages are translated into some

combination of these operations. Each of these operations are combined with

qualifications (used to specify the part of the database on which to operate) to form a

request in the ABDL. Transactions are two or more requests grouped together and

surrounded by square brackets.

Before any of these operations can be performed, the qualification of the database

is defined through keyword predicates, or simply predicates. A predicate consists of a

three-tuple: (attribute name, relational operator, attribute value). A query is formed by

combining these in disjunctive normal form as shown below.

(TEMP = Dept_Locations and DLOCATION = Houston) or
(TEMP = Dept_Locations and DLOCATION = Stafford)

This query will locate all the records of the Dept-Locations file which have as a value for

DLOCATION, Houston or Stafford. Each of the primary operations is described in

further detail below. Greater emphasis is given to the first two operations, because these

are key to the translation from DFQL into ABDL.

17

a. The RETRIEVE Request

The RETRIEVE request is used to retrieve information from previously

defined databases. It does not affect the contents of the database in any way. This

request specifies which records to retrieve using a qualification consisting of a query, a

list of output attributes, and an optional BY attribute (used to order the output). An

example of a RETRIEVE would be:

[RETRIEVE ((TEMP = Workson) and (HOURS >10))
(ESSN, PNO) BY PNO]

This request returns the Employee SSN and Project Number of those employees who

work on projects more than 10 hours. The result will be sorted by Project Number.

Aggregate operations are also allowed on RETRIEVE requests. These

include SUM, COUNT, AVG, MIN, and MAX which may be performed on one or more

attribute values. This allows the attribute value to be an aggregate of values from

multiple records. For example, the query

[RETRIEVE ((TEMP = Employee) and (DNO = 5))
(AVG (SALARY))]

will return the average salary of all employees in department 5.

b. The RETRIEVE-COMMON Request

This RETRIEVE-COMMON request involves the merging of two files

based on given common attribute values. Basically, this is a transaction of two or more

RETRIEVE requests, separated by the COMMON attributes, and is processed serially.

18

For example, the following single query would provide all of the department names and

locations:

[RETRIEVE (TEMP = Department) (DNAME)
COMMON (DNUMBER, DNUMBER)
RETRIEVE (TEMP = Dept-Locations) (DLOCATION)

Although in this example the attribute names in the COMMON clause are the same, they

are not required to be. However, they must be common attribute values.

c. The INSERT Request

The INSERT request inserts a new record into a previously defined

database. The request consists of the operational word INSERT followed by all of the

attribute-value pairs in the database record, and surrounded by parenthesis. For example,

[INSERT (<TEMP = DeptLocations>, <DNUMBER = 4>,
<DLOCATION = Houston>)]

inserts a new record for Department 4 at Location Houston.

d. The DELETE Request

The DELETE request can be used to delete either an entire file or specific

records in a file in a previously defined database. For example, the query

[DELETE ((TEMP = Works on) and (PNO = 1))]

deletes all of the records in Workson file in which the Project Number is I.

e. The UPDATE Request

The UPDATE request modifies one or more records of a previously

defined database. The query of the UPDATE specifies those records to be modified, and

19

a modifier is used to specify how they are to be updated. For example,

[UPDATE ((TEMP = Works on) and (PNO = 2))
(HOURS = HOURS + 5)]

which increases the hours of those employees who worked on Project 2 by 5 hours.

20

III THE DATA FLOW QUERY LANGUAGE

A. BACKGROUND

The Data Flow Query Language (DFQL) was proposed and implemented by Wu

and Clark in 1991 as a graphical/visual interface query language to the relational model

based on a dataflow paradigm (Clark, 1991). It retains the capabilities of existing query

languages while providing an additional facility to easily extend the language. This

facility allows users to create new operators in terms of existing primitive operators. In

addition to the relationally complete operators, DFQL also includes aggregate functions,

thus providing query facilities beyond first-order predicate logic. The following goals are

met by DFQL for a visual database interface (Wu, 1991):

"* Employ a fully graphical environment as a user-friendly interface to the
database.

"* Sufficient expressive power and functionality, including relational
completeness.

"* Ease-of-use in learning, remembering, writing, and reading the language's
constructs.

"* Consistency, predictability, and naturalness (in both syntax and function).
"* Simplicity and conciseness of features.
"* Clarity of definition and lack of ambiguity.
"* Ability to modify existing queries to form new ones incrementally.
"* High probability that users will write error-free queries.
"* Operator extensibility - allow users to create new operators in terms of existing

ones.

DFQL achieves these goals by using the following approaches (Wu, 1991):

"* Complete faithfulness to relational algebra and maintenance of the requirements
for operational closure.

"* Elimination of range variables from queries.
"* Elimination of nesting in query constructs.

21

The implementation of operational closure is key to implementing large and complex

queries in DFQL, as the output from each operator is always a relation. However, this

fundamental characteristic of DFQL is not so easily translated into ABDL. This problem

and its analysis is discussed further in Chapter V.

In addition to the above implementation approaches, the dataflow paradigm

allows the user to treat relations as abstract entities operated on by relational operators.

Therefore, users can compose their queries knowing the operators of relational algebra

but without concern for the details of how the operations are carried out.

DFQL is imp!,;tiinted on a Macintosh II, using the programming language

Prograph. The Macintosh allows DFQL to take advantage of the visual interface

environment, while Prograph provides a visual dataflow structure similar to the dataflow

paradigm approach taken for DFQL. This dataflow structure allows a user to define a

query by graphically connecting specified DFQL operators. The operator arguments flow

from the bottom or "output node" of the operator into the top or "input node" of the next

operator (see Figure 3). Once the required input data becomes available, the operator

input nodes

operator
body

O*'•output node

Figure 3. DFQL Operator Construction

22

23 may fire to execute the specific operation. The flow between operators is defined by

the user by drawing lines between input and output nodes of the operators.

B. DFQL OPERATORS

1. Basic Primitive Operators

Basic operators in DFQL are derived from the requirements for relational

completeness, that is, it has the expressive power of first-order predicate calculus

(Wu, 1991). This means that the following operations must be implemented: (with the

DFQL operator name) selection (select), projection (project), Cartesian product (join),

union (union), and difference (diff). In addition to implementing these five operations,

DFQL implements a sixth one, group count (groupcnt). This operator provides for simple

aggregation. It also offers a solution for the problem of universal quantification in SQL;

SQL only supports this concept indirectly. With these six basic primitives, DFQL

supports orthogonality, which in turn makes it easier to use both syntactically and

semantically (Wu, 1991).

A discussion of each of the operators is provided below. Also included are

illustrations of each of the operators. In addition to these primary basic operators, other

DFQL objects are included in the illustrations (Cince, 1993). These objects are

represented by a line drawn underneath the text, with an output node under the line.

These additional objects are generally defined as follows:

"* textual objects - conditions, attribute lists, or some other syntactic item to be

used in the operation.
"* relation - name of a relation, or an instance of the specific relation, fed as input

to an operator.

23

a. Select

This operator implements the relational algebra operation selection, or in

relational algebra notation &< condition >(< relation >). It retrieves tuples from the

relation which meet the condition, while removing duplicate rows. The result is also a

relation, maintaining operational closure. The DFQL implementation is provided in

Figure 4.

relation condition

Figure 4. DFQL Select Operator

b. Project

This operator implements a relational algebra projection, or in notation

form, It< attribute list >(< relation >). The attribute list contains those attribute names

which are to be retrieved from the relation separated by commas. The resulting relation

contains only those attributes specified in the attribute list. This operation also eliminates

duplicates in the result. The DFQL implementation is provided in Figure 5. The project

operator in DFQL can also be used to change attribute names in the resulting relation. In

24

the attribute list an equality condition such as DeptNunt = DNUM can be used to change

the attribute name DNUM to DeptNum.

relation attribute list

Sproject

Figure 5. DFQL Project Operator

c. Join

The DFQLjoin operator implements the relational algebra operation

theta-join. Notationally, this is < relation I > *< condition > < relation2 >. The resulting

relation is made up of all the attributes from <relation 1> and <relation 2>. The DFQL

implentation is provided in Figure 6. If no condition is given, the join essentially

becomes a cartesian product of the two relations. The join condition, if specified, uses

basically the same syntax as the WHERE clause in SQL. However, if both relations

have the same named attribute used in the condition, range variables must be used. These

are limited to rI (for <relation I>) and r2 (for <relation 2>). For example, a join on

DNUM in two relations would be specified as rI.DNUM = r2.DNUM.

25

The result of the DFQL operation join retains all of the attributes of the

input relations. Therefore, when two attributes do share the same name, special handling

must occur. In the resulting relation, one attribute name stays the same (from

<relation 1>) whereas the attribute name from <relation 2> is appended with a "1.

Using the above example, the output relation would have an attribute named DNUM and

one named DNUMI.

relation2

relatinIatiute list

oi

Figure 6. DFQL Join Operator

d. Union

DFQL implements the relational algebra operation union, with notation

< relationl > u < relation2 >, as illustrated in Figure 7. This operation combines the

tuples of both relations, and eliminates duplicates, to provide the resulting relation.

Since the tuples are combined in this operation, both input relations must be union

compatible. By this, we mean that both relations must have the same number of

attributes, and the corresponding attributes must have compatible data types.

26

relation I relation 2

union

Figure 7. DFQL Union Operator

e. Difference

This operator implements the relational algebra operation difference. The

notation is < relationi > - < relation2 >. This operation returns a relation which

contains all the tuples in relation I but not in relation 2. And as in the union operator,

both relations must be union compatible.

f Group Count

The groupcnt operator, although not directly based on relational algebra, is

provided as a primitive operator to add some simple aggregation capabilities to

theprovided as a primitive operator to add some simple aggregation capabilities to the

language. Basically, groupcnt counts the number of tuples in a particular user-specified

grouping. An illustration is provided in Figure 8. The grouping attributes can either be

one attribute or a comma separated list of attributes. The result is a relation with the

grouping attributes listed in the same order specified along with the attribute name

27

provided as the count attribute. This count attribute is an integer representing the number

of tuples in the specific grouping, and is provided for each grouping attribute.

groupiný attributes
relatincutattribute

Figure 8. DFQL Group Count Operator

2. Non-Basic Primitive Operators

There are several other primitive operators implemented in DFQL, which perform

special operations. Most can be implemented by user-defined operations using the basic

primitives. However, DFQL builds them into the language to take advantage of the

underlying DBMS which my already provide the operation. This makes the system

easier to use, and slightly reduces the overhead required to interpret user-defined

operations. A list of these operations and brief descriptions is provided below.

* Intersect - Relational algebra operation of intersection.
* GroupALLsatisfy - Used for simple universal quantification.
* GroupNONEsatisfy - Opposite of above. Gives the grouping attributes only if

none of the tuples satisfy the condition.
* GroupNsatisfy - Specifies exactly how many of the tuples in the group must

satisfy the given condition.
* GroupMin - Finds the minimum value of the specified attribute according to the

grouping attributes.
0 GroupMax - Similar to above, but finds the maximum value.

28

" GroupSum - Adds all of the aggregated attribute's values in each group, based
on the grouping attributes.

" GroupAvg - Calculates the average of the given aggregate attribute.

In addition to the above, DFQL provides a display operator which prints the results of the

query to the screen.

These operators have not been translated into ABDL for two reasons. First, with

the basic primitives available, the user can define the other operations as needed.

Secondly, the underlying DBMS is the ABDM. And as described in Chapter 11, there are

only five basic query types provided by the ABDL and from which all transactions can be

defined. Therefore, there underlying DBMS does not already provide any of these

operations by themselves, however they can be built from the basic operations.

C. CHARACTERISTICS OF DFQL

DFQL provides many improved features as a graphical interface to the relational

database model. These characteristics are based on the dataflow structure and

orthogonality DFQL employs in its implementation. Each of these characteristics

combine to provide the user the ability to easily express simple, as well as complex,

queries intuitively. Each of theses characteristics is examined in more detail below.

1. Extensibility

This important benefit of DFQL allows users to cteate new operators in terms of

existing ones. The user may extend the query language either through the use of the

DFQL primitive operators and/or the user's own previously defined user-operators. This

29

extensibility is achieved without decreasing the orthogonality of the language. This is

becaus,- er-defined operators are constructed by combining the DFQL primitives which

have - dy been coded so to ensure that orthogonality is maintained (Wu, 1991). In

addition, the user-defined operators are constructed so as to support operational closure,

and therefore maintain their compatibility with other operators. This extensibility also

allows for encapsulation. As users define their own operators, the details are

encapsulated within the operation. This means that once a complex query has been

correctly written and converted into a user-defined operator, that operator may be easily

used without any need to know its internal structure.

2. Dataflow Structure

The visual features of DFQL are based on the dataflow paradigm. The dataflow

diagram allows the user to represent complex queries in an intuitive manner. This is

because relations are visualized as objects (in this case, relations) flowing from one

operator to another. This provides a levels of abstraction which contributes to the

ease-of-use of DFQL (Wu, 1991).

3. Incremental Querying

Another key feature of DFQL which also supports ease-of-use is the ability to

incrementally construct queries. Incremental construction allows a user to build a query

part by part while determining the results of each part. This feature is related to the

dataflow structure in that each dataflow represents an actual relation that can be displayed

as a partial result (Wu, 1991). These partial results can be returned from any point in the

30

query to help the user verify or debug the query. Incremental querying is possible

because of operational closure of all DFQL operators. The user knows that the output

from any operator will always be a relation. And since one of the inputs to an operator

must be a relation, the result of one operator is easily combined with another to form

more and more complex queries.

4. Visual Interface

The visual interface is probably the main motivation behind DFQL, and therefore

represents a critical feature of the language. All of the features mentioned above are

possible because of the visual interface. As stated by Wu and Clark (Wu, 1991),

"Allowing the user to interactively manipulate the DFQL query on the computer screen

give a spatial or two-dimensional representation of the query that is lacking from any

textual query language." The visual interface encourages the user to take advantage of

the other ease-of-use features provided by DFQL. Screen real estate can become an

issue, especially as queries become more complex. However, this problem exists with

any visual interface. And the benefits of the visual environment easily outweigh the

problems.

D. CONCLUSION

The technical features and structural characteristics of DFQL have been presented

in this chapter. The advantages of DFQL can be seen from its visual interface, its

graphical dataflow structure, and its set of primitive operators. These combine to make

31

DFQL a unique query language, one with the ability to easily express both simple and

complex queries in an intuitive manner (Clark, 1992). In the next chapters, the

translation of DFQL to ABDL is discussed. The problems associated with this translation

are discussed with relation to the features inherent to DFQL, as well as the ease of

translation.

32

IV TRANSLATION

As presented in Chapter I1, the MDBS provides a unique and valuable database

system. Allowing users to create and interact with a variety of databases using their

choice of database models and languages was shown to be highly flexible as well as cost

effective. And in Chapter III, the many benefits of the graphical interface language

DFQL were described in detail. In order to implement DFQL as an improved interface to

the MDBS, it must first be translated into the system's kernel data language, that is, the

attribute-based data language (ABDL).

This chapter explains the translation and the mappings required to generate the

correct ABDL syntax from the DFQL code, i.e., where SQL statements were previously

generated, now ABDL commands are generated. The actual code is provided in

Appendix B. The user interface was not changed at all in or,-!- to maintain true

portability and standardization. Since DFQL is currently implemented using the

Prograph programming language, all translations were also made in Prograph, and the

DFQL syntax remains the same. Problems encountered in the translation will be

discussed in the next chapter, along with recommendations and solutions. The problems

were primarily due to the objective of maintaining the user interface of DFQL (i.e.,

ensuring portability), and the functionality of the MDBS (i.e., those functions provided

by the kernel data model and language - ABDM/ABDL).

33

DFOL ABDL

[RETRIEVE (TEMP = relation) and
s(condition) (attributes)]

ionatribute list [RETRIEVE (TEMP = relation)

"(attribute list)]

prdojec

[RETRIEVE (TEMP = relation l)(attributes)
COMMON (join condition attribute)

RETRIEVE (TEMP = relation2)(attributes))

relationi relation2 [RETRIEVE(TEMP = relation 1)(attributes)]
A[RETRIEVE(TEMP = relation2)(attributes)]

" art[RETRIEVE (TEMP = relation)
attibte(COUNT(grouping attributes))]

rouci

Figure 9. DFQL to ABDL Translation

35

The first input is the same as in DFQL. The relation is provided by the user. from

which the relation name is extracted. In ABDL each relation name is part of the first

attribute-value pair (as discussed in Chapter III), and it identifies the file or template

which contains the records of that relation. Hence, the attribute TEMP identifies the

value, or relation name. This is the qualification of the ABDL operator and is used, in

this case, to specify the relation on which to operate. Therefore, the predicate (TEMP =

relation) will locate the records of the relation on which the Select will operate. This first

predicate is combined in disjunctive normal form with the condition(s), which is the

second input provided by the user.

The third item required for this query is a list of attributes. This list is not

provided by the user because the Select operator should return all of the attributes in the

relation. However, in ABDL the list of attributes desired in the output must be explicitly

stated. Therefore, in the translation, additional code was required in order to generate this

list of attribute names. This code is provided in Appendix B, Figures 15 - 18. Basically,

the list of attributes is obtained from the relation object and then the name of each

attribute is selected and put into another list. This list is then provided to be part of the

generated ABDL statement.

The result of this ABDL statement will be all the records in the relation which

meet the user-supplied condition. These records will be output using the same

attribute-value pair which defines the ABDL database. An example using the sample

database in Appendix A is provided in Figure 10.

36

A note should be made at this point about the case used in the ABDL statement.

DFQL generates relation names, attribute names, etc. in lower-case. And since the

MDBS is case-sensitive, the same information in the ABDL statements must also be in

lower case. This requires that the database be loaded with relation names and attribute

names in the same case in order to be compatible with DFQL. By preserving the case of

the schema, the user interface remains standard, and portability is maintained.

QUERY:
[RELATION (TEMP = WorksOn) and
(pno = 1) (essn, pno, hours)]

OUTPUT:
<TEMP, WorksOn>, <essn, 123456789>, <pno, 1>, <hours, 33>
<TEMP, W-•rk- , <essn, 453453453>, <pno, I>, <hours, 20>

Figure 10. Example ABDL Select

2. The Project Operator

The Project operator allows for the most direct translation of all of the basic

primary DFQL operators. The two inputs provided by the user are the same as the two

used in the ABDL statement. The relation name is again extracted from the relation and

combined in the first predicate with TEMP. Next, the attribute list provided by the user is

passed directly to the ABDL statement (see Figures 19 - 20). No othei manipulation of

the relation is required. The result of this statement is a list of all records from the

relation

37

with only those attributes specified in the attribute list. An example query and output is

provided in Figure I I to show how the ABDL project statement works.

QUERY:
[RETRIEVE (TEMP = Department) (dname, mgrssn)]

OUTPUT:
<dname, Research>, <mgrssn, 333445555>
<dname, Administration>. <mgrssn, 987654321 >
<dname, Headquarters>, <mgrssn, 888665555>

Figure 11. Example ABDL Project

3. The Join Operator

The translation from the DFQL Join to ABDL requires the use of the

RETRIEVE-COMMON operator from ABDL. This translation requires additional

manipulation of the code in order to generate the correct ABDL statement from the user

provided inputs. This code is provided in Appendix B, Figures 21 - 24.

Two relations are input by the user, and both relation names are extracted. Each

is paired separately with the attribute TEMP to locate the records of the relations to be

joined. The list of attributes from each relation must also be retrieved, however, as in the

Select operator, this is not provided by the user. The same code which was used to

generate this list in the Select operation is used here to generate lists of attributes for both

relations. The join condition attributes are the two attributes obtained from the input

condition. These two attributes are combined with COMMON to form the join predicate.

The two relations are then merged on the common attribute values, resulting in an

38

equi-join. The output is a list of all records from the two relations which meet the join

condition, in attribute-value pairs. An example of this query is provided in Figure 12. As

shown in this example, the two common attributes do not have to have the same name.

QUERY:
[RETRIEVE (TEMP = Department) (dname. dnumber)
COMMON (dnumber, dnum)
RETRIEVE (TEMP = Project) (pname, pnumber)]

OUTPUT:
<dname, Research>, <dnumber, 5>, <pname, ProductX>, <pnumber, 1>
<dname, Research>, <dnumber, 5>, <pname, ProductY>, <pnumber, 2>
<dname, Research>, <dnumber, 5>, <pname, ProductZ>, <pnumber, 3>
<dname, Admin >, <dnumber, 4>, <pname, Computer>. <pnumber, 10>
<dname, Admin >, <dnumber, 4>, <pname, Newbenefit>, <pnumber, 30>
<dname, Hdqtrs >, <dnumber, 1>, <pname, Reorganize>, <pnumber, 20>

Figure 12. Example ABDL Join

4. The Union Operator

The translation from the DFQL Union operator to ABDL results in a modified

relational union. The modification is that ABDL does not provide for the removal of

duplicate rows, if any exist. This is because each relation is retrieved separately through

the RETRIEVE query. The syntax is similar to the Select operation, except that there is

no condition necessary for the retrieve. The relation is input by the user, and the attribute

list is extracted from the relation object to form the query. Because this is a combination

of two relations using two separate RETRIEVE queries, the relations are not required to

be union compatible. An example of this query is in Figure 13. The source code is

provided in Appendix B, Figures 25 - 28.

39

QUERY:
[RETRIEVE (TEMP = Department) (dname, dnumber)]
[RETRIEVE (TEMP = DeptLocations) (dnumbe, A. aion)]

OUTPUT:
<dname, Research>, <dnumber, 5>
<dname, Administration>, <dnumber, 4>
<dname. Headquarters>, <dnumber, I>
<dnumber. I>, <dlocation, Houston>
<dnumber, 4>, <dlocation, Stafford>
<dnumber, 5>, <dlocation, Bellaire>
<dnumber, 5>, <dlocation, Sugarland>
<dnumu,.:, 5>, <dlocation, Houston>

Figure 13. Example ABDL Union

5. The GroupCnt Operator

The GroupCnt operator counts the number of records which meet the grouping

attribute requirement. The count attribute, which is used in DFQL to identify the result

relation which stores the result of the count, is not used in the translation. The translation

code is provided in Appendix B, Figure 29. Since ABDL does not produce a relation as

output at this time, there is no need for a new relation name. The output from this query

is the grouping attribute, and the number of records in with that attribute. An example is

given in Figure 14.

QUERY:
[RETRIEVE (TEMP = Project) (COUNT (pnumber))]

OUTPUT:
< pnumber, 6>

Figure 14. Example ABDL GroupCnt

40

B. GENERAL NOTES

A couple of additional notes need to be made with regards to the code used from

DFQL and for the translation. These involve some or all of the operator translations, and

should be reviewed along with the code provided in Appendix B.

For the Select, Project, and Join operators there was quite a bit of additional code

generated by DFQL which was not used in the translation to ABDL. Most of this

additional code focused on the creation of "views", that is, the generation of temporary

relations. As stated in Chapter 1II, DFQL generates these temporary relations in order to

maintain operational closure. Therefore, a relation is always the output of every operator.

Currently, ABDL does not support the ability to create views. One reason is due to the

lack of communication between different requests in a transaction. That is, one request of

a transaction cannot use the results of a previous request (Demurjian, 1987).

When the MDBS was initially developed, one major goal was to demonstrate that

the key aspects of different data models could be supported in a single system

(Demurjian, 1987). Since it is a research tool, the designers believed this to be sufficient.

However, in order to be able to support more advanced data models and languages in the

future, additional facilities such as creating views become essential. The additional code

which is used by DFQL, and not used in the translation to ABDL was left in place so that

when the additional facility of view creation is implemented, the additional translation

work required will be minimal.

41

42

V ANALYSIS OF TRANSLATION

The implementation of DFQL on the MDBS requires what is basically an

integration of the two systems. The first aspect of that implementation has been

presented here - the translation of DFQL into the kernel language ABDL. Both DFQL

and MDBS were designed to improve database interaction. The focus of this thesis

research is to integrate the two systems, and thereby significantly improve the user

interface for the relational database on the MDBS. However, since both of these systems

were designed and implemented totally independently, each brought its own features and

functional characteristics which had to be considered in the integration. And the fact that

both systems are prototypes, and experimental, had an effect on the translation. For

example, in the MDBS several SQL features were not implemented because the effort

required to support them outweighed the current benefits, and detracted from the primary

goal of demonstrating the feasibility of the system (Demurjian, 1987). Therefore,

operations which seem simple in DFQL were not able to be implemented the MDBS as it

is currently configured. And as a result, some of the beneficial features of DFQL were

not able to be implemented.

In the rest of this chapter, the problems encountered in the translation of the two

systems will be examined in more detail. Most of these were due to features which were

not implemented in MDBS, but are instrumertal to the effective operation of DFQL.

Possible solutions and recommendations will also be discussed.

43

A. PROBLEM ANALYSIS

One of the most critical features not currently implemented on the MDBS is the

ability to define views, or the creation of temporary relations in SQL. This feature was

not implemented because it did not impact on the data-model transformations and the

data-language translations of the original system (Demurjian, 1987). Again, this was

because the MDBS was originally intended as a research tool, as opposed to a

commercial product. The crucial issue with this inability to define views is the lack of

support for operational closure.

Since the MDBS does not create views, the results of a query are those tuples or

records which meet the requirements of the query. Therefore, temporary relations are not

created. In DFQL, these views, or temporary relations, would contain the output from

defined operations. And as described in Chapter III, this allows for easier extensibility of

the language, because one input to all operations is a relation, and the output is always a

relation. Since the MDBS does not support this feature, operations must be performed

one at a time, and cannot be connected to other operators in order to extend the language.

For example, a user cannot perform two projects on two relations, take that output and

join it in a series of operations because the output from the projects are not relations

(required as input to the join), but the records which meet the requirements of the project

query. This significantly reduces the benefits of DFQL. It not only affects the

extensibility of the language, it also reduces the benefits of incremental querying, as

described in Chapter III.

44

The inability to create views in the MDBS causes another problem in the

translation of DFQL - that of translating the difference operator. This operator is not

translated into ABDL because temporary relations cannot be created and because the

operator requires union compatibility. The temporary relations are necessary in order to

obtain two relations which are union compatible, usually through project operations.

These temporary relations are then compared to subtract those tuples which are in one

relation, but not the other. However, since these temporary relations cannot be obtained,

there is nothing to compare. Therefore, difference is not translated into ABDL

There are several other operations which are limited on the MDBS which in turn

limit the DFQL operations. One of these involves the join operation. The ABDL

implementation of join only allows an equi-join and the joining of two relations at a time.

Most joins required tend to be equi-joins, and therefore this is not considered a signifi• I

limitation. However, ay limitation on the user results in less flexibility to manipulate

the database. This also applies to the limitation of joining only two relations. Again,

many times only two relations need to be joined, however, with large databases, this

could be a severe limitation. Also, since operational closure cannot be implemented, the

language cannot currently be extended to perform additional joins on the result of

previous ones.

Another limitation involves the union operator. In the MDBS, the elimination of

duplicates is not supported in addition to the inability to support a union of two different

select operations (again, due to the inability to create temporary relations). Basically, the

45

translation to ABDL calls for two separate RETRIEVE statements, or in relational terms,

two select operations in sequence. This basically accomplishes a mathematical set union,

as opposed to a relational union, since duplicates are not eliminated. Also, since relations

are not produced as output, users cannot use projects on relations to separate out desired

attributes which would then be input to the union operator.

Other problems discovered during the translation were not as significant as those

described above, however, they did impact the translation process. These included syntax

limitations in ABDL which were not documented, but nonetheless caused considerable

effort to be expended in the debugging of code. For example, the system is case

sensitive. All code generated in DFQL must match exactly the code required for the

MDBS and ABDL. Also, all data items (i.e., attribute names and values) are limited to

15 characters. For testing purposes, this is not a problem because test databases are

relatively small. However, large and complex databases require abbreviations in order to

be implemented, and this reduces ease-of-use and user comprehension.

One potential problem with DFQL is the way in which it is implemented. It is

currently implemented on a Macintosh computer, using the Prograph programming

language. As discussed in Chapter III, the Macintosh allows DFQL to take advantage of

the visual interface environment. But more importantly to the constructs of DFQL,

Prograph provides a visual dataflow structure which greatly enhances ease-of-use.

Although these benefits are significant, they are limited in that the Prograph environment

46

is currently available only on a Macintosh systen. To have real portability, the system

should have the ability to be accessed from other platforms.

B. RECOMMENDATIONS

One major improvement to the MDBS would be to implement the ability to create

views. This one change could provide solutions for many of the problems discussed

above. Most importantly, it would allow for operational closure which is an instrumental

feature of DFQL. This one enhancement would allow the major benefit of DFQL to be

realized on the MDBS. Extensibility would be significantly improved by allowing the

full implementation of all DFQL operators, as well as user-defined operators. The ability

to create views would be an additional benefit for the entire system. This is because the

kernel model and language (ABDM/ABDL) would be upgraded to support this feature,

and therefore be available to all data models used on the system. Essentially, this change

would make the MDBS, with DFQL implemented, a viable database system for more

advanced data models, and much more complex databases.

An alternative method of creating operational closure would be to have DFQL

handle the creation of temporary relations. By this, we mean that DFQL would take the

results from one query, restructure it and send it back to the MDBS in the form of a file

creation, with the new data inserted. The MDBS could then act on this new relation in

whichever operation prescribed by the user in DFQL. This solution puts the burden on

DFQL to ensure operational closure is maintained. This is not an optimal solution for

several reasons. First, the updated DFQL would lack the orthogonality, which is

47

currently one of its key features, and one of the goals DFQL set to originally accomplish.

It would make user defined operators much more difficult to construct, thereby losing the

benefit of extensibility. Changing DFQL would also make the system much slower by

significantly increasing the communication time between the two systems. And

restructuring the code in DFQL would significantly reduce its maintainability and

portability. Additionally, none of the other data models implemented in the MDBS

would benefit from the change if it were made to DFQL only.

Other recommendations to the MDBS involve enhancements to the relational

operations currently allowed. These would include providing all the functionality of a

join operation, not just an equi-join, as we!! as allowing the joining of as many relations

as necessary. The problem with the union operator would be corrected by the ability to

create temporary relations. Also, it would be possible to implement the difference

operator. The ultimate goal of these solutions would be to have a full set of rela ial

operators available to the user, as well as all of the advantages of DFQL.

When these additional features are implemented in the MDBS, and it is set up to

support more advanced data models, the syntactic constraints should also be removed.

The most important of these would be the removing the limitation of string and integer

data types. At a minimum, a real data type should be added, as well as a date.

Additionally, the 15 character minimum constraint should be removed. Although it

works fine for test purposes, in actuality most databases require much more flexibility in

allocating space for attribute values. These changes would make the system much more

48

flexible and user friendly. As a result, larger and more complex models could be

effectively loaded and manipulated by the system.

Finally, the change to the programming environment for DFQL is not currently an

issue which can be resolved at this point. Although it is possible to write all code in C++,

the environment would not necessarily be a graphic one. However, when new software

for Prograph is made available for different environments (i.e. DOS, Windows, Unix),

DFQL can be implemented as necessary. This would enhance the portability of DFQL,

and make it much more widely available.

49

50

VI CONCLUSION

A. DISCUSSION

This thesis involved the design and translation of the Data Flow Query Language

(DFQL) for the Multi-lingual, Multi-backend Database System (MDBS). DFQL is a user

friendly, graphical interface designed for the relational data model using a dataflow

paradigm. The MDBS is a database system which can effectively support multiple data

models and their corresponding data manipulation languages.

The background information on both systems was discussed. In addition, their

strengths were presented to illustrate the benefits to be gained from combining the two

systems. The design and translation were then explained in detail, including the DFQL

code. This was followed by the problems encountered during the translation, and

recommended solutions.

The ABDL statement generation in DFQL was fairly straightforward. Once we

gained an understanding of the Prograph programming language and the data flow

paradigm, the required changes in code required were relatively simple. In addition, the

debugging features of DFQL, specifically incremental construction and execution,

allowed for a much more expeditious translation than what is normally available in other

programming environments.

The problems encountered with the MDBS were described in Chapter V. This

system has many outstanding features including the effective management of database

systems growth, database performance, data sharing and resource consolidation (as

51

presented in detail in Chapter I1). It is truly unique in the database community. The

concept was to combine these two systems, and thereby realize benefits much more than

just the sum of the two.

B. FUTURE RESEARCH

The obvious next step in this area of research would be to develop the

communications required to connect the two systems. This interconnection between

DFQL and the MDBS would include the design and implementation of DFQL and

MDBS socket interfaces. The design of these sockets would include the capability to

pass the ABDL strings generated by DFQL correctly to the MDBS for execution. Then

the output from the execution would be similarly passed back to DFQL, and formatted

and displayed according to the user's needs.

Once this step is completed, an in-depth human factors analysis could be

conducted on the DFQL interface implemented on the MDBS backend. This analysis

would be similar to the one proposed in (Wu, 1991). It could quantify the ease-of-use

aspects as well as the flexibility provided by the MDBS. This could be a stand alone

analysis, and/or one performed in comparison with other stand alone data models, and

query languages.

Other aspects of future research concentrate solely on the MDBS. As discussed in

Chapter V, it would be extremely beneficial to implement the ability to create views in

the MDBS. This would add significant flexibility and extensibility to the system. When

this modification is made, the basic set of DFQL primitives translated into ABDL coulIJ

52

be greatly expanded to include the non-basic primitive operators, as well as additional

user-defined operations.

Although the ability to create views is one of the most important changes which

could be made to the MDBS, the system overall should be revamped. Some of the

syntactic requirements should be removed (i.e., the limitation of string length to 15). In

addition, the documentation of the system has become outdated due to the many changes

by research students over the past few years. Although many of these changes may have

been small, if they are unknown, many unnecessary hours can be spent in debugging the

system when it fails. An analysis of the current system, with complete documentation,

would be extremely beneficial for all future research.

C. SUMMARY

The results of this thesis show that the implementation of DFQL on the MDBS

would be a enhancement to the current system. A graphical interface is much more

user-friendly than a text based one, and the data flow paradigm aids in the ease-of-use.

In addition, the MDBS supports multiple database models, providing flexibility and cost-

efficiency to the user. However, as also demonstrated, further enhancements need to be

made to the MDBS to truly realize all of the benefits from DFQL.

53

54

APPENDIX A. SAMPLE DATABASE

This appendix contains the sample database used in queries and examples throughout

this thesis. The database is Company Database from the textbook DATABASE SYSTEMS

(Elmarsi, 1989).

EMPLOYEE
FNAME M MI•NI AMET SSN BDATE I ADDRESS SEX SALARYD SPS RSSN tNo

John B Smith 1234.6789 09JAN-S 731 Fondrie, Houcton, TX M 30000 33345SSS S

Franklino T Won& 33345555 08-DEC.45 638 Vo, Houston, TX M 4W000 88665.555
Ali Ji Zdsa 999887777 19-JUL-58 3321 Castle, Spring. TX F 25" 0 9876S4321 4

Jennifer S .Wallace 9876S4321. 2A.JUN-31 291 Berry, eullar, TX F 43000 38866SSSS 4
Ramueh INazyan "66884444 15SEP..2 975 Fire Oak, Humble, TX M 3800 333455S S

Joyce A English 4534S3453 31-JUL.462 531 Rie, Houston, TX F 200 33345SS S
Ahmad V Jabbar 987987987 29-MAR-59 980 Dallas, Houston, TX M 25000 987654321 4
James E Borg 888665555 10-NOV-27 450 Stone, Houston, TX M 55000 mall I

DEPARTMENT

DNAME DNUMBER MGRSSN MGRSTARTDATE

Raearch 5 33344SSSS 22-MAY-78

Adminibtntion 4 9876S4321 01-JAN.S8

Hleadquarters I 88866555 19-JULN-j71

DEPTLOCATIONS

DNUMBER DLOCATION

1 Houston

4 Sts•ford
$ Beim,"e

S Sugariand

S Houston

55

PROJECT

PNAME PNUMBER PLOCATION DM

ProductX 1 Bellaire S
ProductY 2 Sugariand 5

ProductZ 3 Houston S
Computerization 10 Stafford 4

Reorganization 20 Houston 1

Newbeneflts 30 Stafford I 4

DEPENDENT

ESSN DEPENDENT'NAM- SEX BDATE RELATIONSHIP

33344ssss Alice F 05-APR-76 DAUGTER

33344"555 Theodore M 2S-OCT-73 SON

33344SSSS joy F 03-MAY-48 SPOUSE

9876U4321 Abner M 29-FEB-32 SPOUSE

123456789 Michael M I 01-JAN-78 SON

123456789 Alice F 31-DEC-78 DAUGHTER

12346789 Elizabeth F 50-MAY-57 SPOUSE

56

WORKSON

ESSN PNO HOURS

123456789 1 33

123456789 2 8

666884444 3 40

453453453 1 20

453453453 2 20

333445555 2 10

333445555 3 10

333445555 10 10

333445555 20 10

999887777 30 30

999887777 10 10

987987987 10 35

987987987 30 5

987987987 30 20

987987987 20 15

888665555 20 null

57

58

APPENDIX B. SOURCE CODE

This appendix contains the source code for the translation of DFQL to ABDL.

The only code provided are those portions of the operations which required a change in

the current DFQL code. The order of the operations are SELECT, PROJECT, JOIN,

UNION, and GROUP COUNT.

59

IM OBL File/select 2:2

Fgrelto 15f DFQLo GeertonofADLSelec

lowgnerteadsmI:

" "fRW(ributes

/attribtos at

)aad(

Figure 16. DQ Generateo o ABDL SelectStemn

vqM60

g~1et attributes 1:1

get name :

Figure 18. Ge nert e ListrofuAttribues

61

ABOL File/pqjpr!t 2:2

create the resultwbg
relation of project

Figure 19. DFQL Generation of ABDL Project

yenerate abdlStmt a:1

attr libt e

-IruEvtRW C...

Figure 20. Generate ABDL Project Statement

62

m atir ist

0 BOL File/join 2:2

m~ake ceaHtobw

/* eer W OeW t e ul t t

/ attributes

Figure 22. DQ Generateo o ABDL Join Statement

geerteabl~63 1:

gJ get attributes 1:1

tiam

Figure 23. Generate List of Attributes

MM3 get name 1:1

Figure 24. Generate Attribute Names

64

RODL File/union 1:1

I.PI I,

Figure 25. DFQL Generation of ABDL Union

Sretrieve rell 1:1

"IRETRIEVE (...

Figure 26. Generate ABDL Union Statement

65

(I) get attributes 1:1

IV.

<31

Figure 27. Generate List of Attributes

MM get name 1:1

7C)0-1
etaoh-1

Figure 28. Generate Attribute Names

66

ABOL File/groupCnt 1:1

<Self> A 9rP count

.. a.me attr attr

"[RETRIEVE (..M i/chro(3)

) (COUNT(-) BY - -jig.

bow

Figure 29. DFQL Generation of ABDL Group Count

67

68

LIST OF REFEREN('ES

Banerjec, J. and Hsiao, D. K., DBS Software Requirements Jor Supjporting Relatoioal

DatabahscŽ, Technical Report, Ohio State University, 1977.

Cince, Turgay, Design and Implementation of a Query Editor for the Armadeus System,
Master's Thesis, Naval P',,.graduawe School, 1993.

Clark, Gard J., DFQL: A Graphical Data/low Query Language, Master's Thesis, Naval

Postgraduate School, 1991.

Demers, William A. and Rogelstad, Jon M., The Design and Implementation of a

Functional IDaplex Data Interface or the Multlimodel ard Multilingual Database

System, Master's Thesis, Naval Postgraduate Scho'ol, 1994.

DemurjiJan, Steven A., The Multi-Lingual Database System - A Paradigm and Test-Bed
for the Investigation of Data-Model Transftrmations. Data-Language Translations and

Data-Model Semantics, Dissertation, Ohio State University, 1987.

Demuriian, Staven A. and Hsiao, D. K., "New Directions in Database-Systems Research
and Development," Proceedings of the International Symposium on New Directions in

Computing, 1985.

Elmarsi, R. and Navathe, S., Fundamentals of Database Systems, The Benjamin/

Cummings Publishing Company, Inc., 1989.

Ha!l, James E., Perftbrmance Evaluations of a Parallel and Expandable Database

Computer - The Muli-Bac.,end Database Co'omputer, Master's Thesis, Naval Postgraduate
School, 1989.

Holstc, Steven T., The Implementation ofa Multi-Lingual Database System - -

Multi-Backend Databa.se System Interlace, Master's Thesis, Naval Postgraduate School,

1986.

Hogan, Thomas R., Interconnection of the Graphics Language]br Database System to

the Multi-Linguai. Multi-Model, Multi-Backend Database System Over an Ethernet

Network, Master's Thesis, Naval Postgraduate School, 1989,

Hsiao. I). K. and Harary, 1-, "A Formal System for Information Rctrncval Iorm) Files:
(.ommunications oj the ACM, vol. 13, no. 2. 1()7().

69

Macy, GrIIlIn m N., 1)cw~in and Anal y.wjs of an SQL In tei-la'ce~or a Multi -Backend
DaWU/)ti\ sY.icin, lvIastcr's Thesis, Naval POSLLJNrdUaýC School, I 9ýi4.

Ru! I Irins, R Ichaid L., Dt'xi,'n and An alv~sis oj a Comlnltce Rc/a joiiaI lnicrtact']or a
Nfu/ti-B a~kc/u iDatabaxce SVsiL',f, Master's Th'csis, Naval POStIraNdUatc School, 1984.

Wu, C. Thorý .., Clark, Gard J., L)hFQL:- DatiafloK Query l~an glait'e Ja Relational
Databasess. U' 0 uhlIshcd Paper, Naval PostgradUa(w School, 199!.

INITIAL DISTRIBUTION LIST

Number of Copies
I. Defense Technical Inlormation Center 2)

Cameron Station
Alcxandria, Virginia 22304-6145

2. Dudlcv Knox Library 2
Library, Code 052
Naval Postgraduate School
Montrey, California 93943-5002

3. Computer Technology, Code 37
Naval Postgraduate School
Monterey, California 93943-5002

4. C. Thomas Wu, CS/Wq
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5002

5. David K. Hsiao, Code CS/Hq
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5002

7. Ms. Doris Mlczku
Code P22305
NAWCWPNS
Point Magu, CA 93042-5001

8. CPT Nancy C. Free
PO Box 3180
Ft. Leavenworth, KS 66027

71

