
NAVAL POSTGRADUATE SCHOOL
Monterey, California

00 ==

Irvp

•TIC
THESIS ,V 0 71994

DESIGN AND IMPLEMENTATION OF VISUAL
OBJECTED-ORIENTED LOGO USING PROGRAPH

by

Emily M. Black
and

Thierno Fall

September 1994

Thesis Advisor: C. Thomas Wu.

Approved for public release; distribution is unlimited

94-34470.\•C .. ,
944-[lillilll/t iii'tl U ll :/"4•. .,,.-

REPORT DOCUMENTATION PAGE Fo:,-r Approved 0%MB No. 0-547

,Pubhc reporing b rde:, for this ýollecto: o: no•'o.! a.':.'." ! :,, e C : av era% e . .,c : t• •:eS.'O.Sc.: ":' " le\% n'.gL
[iinstr'uction. searcniriL existing oata sources atne: :.c a :a:'E .: :. : :hL i:: a ! ede.. : C' : :. .. " .v .':! :

, •or"aton sed comm~ents r2.a:'R ni~lS t 'en eS~'::a' .,2 a:,i ~ ie : •',eJ : , : ' • • ~CC'.;.,n :ts .g • . '- ..is: u..•,s':,:S

I:!or redu,:ng Lhis nuruen, to \k ash:ne:on heauuua:-ter. , ,, [):ate :o:: "n,.r.:j:.: U" r: ", a:- Rp"': :C 2 .c: :e:s
ilDa\ !S I ighss a\. 2 ar' iiK'P

ll~ax•s }gh~a.•. u:' .2-..=\r.:rg:'.". \ A 22X2L-.4 2 a:c n c '.)::.- 2' k:xi::az::cW: arc.......: P.......' :.K-.::n ~~.
t-4--oUi sl \,asning'o, Du Ci5.3

I '
I AGENCY USE ONLY (Leave blanrik REPOR I DA I F.. RE DR) N R\\- :.\, -

u T:TL AANI) SU'BT::L7 [).Ecsign and Implcmcnia[Ii L •, \ A I % tjc I I IricnIend 1I(), () i " \ ".'."
L sing ,Prograph (L.

.- HIOR S Er:,', V a.dj and Thie-o a.

PERFORMING ORGANWIATION NAME(S AND ADDRESSESý ES i F1 -f)RN.,:M OR(AN:ZAT'ON
Naval Postgraduate Schoo* RIPOR : \,MBER
Monterey (CA 93-13-500C

!9 SPONSORING OONTORIN, AGENCY NAMIE, S) AND ADDRESS(ESi Q S _ NSURJNO MO):TORNC
None AGENCY RFPOR7 NLMBFR

I SPPLEMENTARY NOTES The views expressed in this thesis are those of the authors and do no! relkec' the offlciaa policy or
osition of "hc Department of Defense or the U.S Governmen:

12a DISTRIBUTIONAVAILABILITY STATEMENT Approved for public release, 12b DISTRIBUTION CODE
distrbution unlimited A

13. ABSTRACT (maximum 200 words)

This thesis addresses the problem of how best to teach begiining programmers the necessary skills of obiect onented progranumng
llere is no established mcthod of introducing object oriented concepts such as encapsulation, inheritance, and polvmorphism, or
providing an intuitive progression from simple programs to complex problem solving.

The approach ,aas to use two cornmercialiy available programming languages which "se consider e\emplitf good object oriented
,rograiruing techniques, to teach beginners how to program. We selected LOGO. which has been used succcessfull, in the past as a first
progralnming language for children. Then we added the concepts of visual programming throught he use of Prograph. a language which
)rovides a visual, object oriented, dataflow environment.

The main result of our research is the design and implementation of a prototype language called Visual Object Oriented LOGO
VOOL). VOOL is intended for use at all levels of education to teach problem solving, object oriented concepts, and fundamental

vrograniming skills. VOOL was implemented on a Macintosh ii the pictorial, iconic language of Prograph and fully supports the goals of
is thesis

14. SUBJECT TERMS 15. NU'MBER OF PAGES

object oriented programming, visual languages, LOGO, Prograph. turtle graphics. classes, objects, 1 1 0
inheritance. encapsualtion, polsnnorphisii

16. PRICE CODE

17 SECURITY 18. SECURITY 19 SECURITY 20 LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF I ABSTRACT
REPORT PAGE ABSTRACT UL

IUncl~sificd Unclassified Unclassified

NSN 7540-01-280-5500 Stancarc F om- 2•) iRe% 2-891
Prescribed t. ANS: Sid 39-iF

ii

Aj d for public release; distribution is unlimited

Design and Implementation of
V'isual Object-Orientec LOGO using Prograph

Emily M. Black
Lieutenant Commander. United States Navv

B.A.. Wellesley College. 1979
LJ

and - -

Thierno Fall
Captain. -11 Army

B.S.. Lycee Dt •enegal. 1979
Civil Engineering. Poo .,mic Senegal. 1985

Submitted in partial fulfillment of the
requirements for the degreýe of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September, 1994

Authors: E__I_ _.__
M. Black

Thierno Fall

Approved By: C.• IWn ss Advisor

Roger Second er

Ted Lewis, hairman,
Department of Computer Science

iii

iv

ABSTRACT

This thesis addresses the problem of how best to teach beginning programmers the

necessary skills of object oriented programming. There is no established method of

introducing object oriented concepts such as encapsulation, inheritance, and

polymorphism or providing an intuitive progression from simple programs to complex

problem solving.

The approach was to use two commercially available programming languages which

we consider exemplify good object oriented programming techniques, to teach beginners

how to program. We selected LOGO, which has been used successfully in the past as a

first programming language for children. Then we added the concepts of visual

programming through the use of Prograph, a language which provides a visual, object

oriented, dataflow environment.

The main result of our research is the design and implementation of a prototype

language called Visual Object Oriented LOGO (VOOL). VOOL is intended for use at all

levels of education to teach problem solving, object oriented concepts, and fundamental

programming skills. VOOL was implemented on a Macintosh in the pictorial, iconic

language of Prograph and fully supports the goals of this thesis.

v

vi

TABLE OF CONTENTS

I. INTRO DUCTIO N ... 1

A. BACKGROUND .. 1

B. O BJEC T IV E S 2

C. ORGANIZATION OF THE THESIS 2

II. DESCRIPTION OF THE ORIGINAL LOGO 5
A. DESCRIPTION OF LOGO ... 5

1. T urtle G raphics 5

2 Sam ple Turtle Program 6

3. Functional A bstraction 8
B. LOGO OBJECT ORIENTED PROGRAMMING 10

1 . O bje ct L O G O 10

2. L O G O Inheritance 12

3. LO G O M ultiple Inhernitance .. 13

4. M ethod O verride 14

III.STRENGTHS AND SHORTCOMINGS OF LOGO 17

A. STRENGTHS OF LOGO ... 17

1 L O G O is M odular 17

2. LOGO Supports Nesting .. 17

3 L O G O is In teractiv e 18

4. LOGO Supports Graphics 19

5. LO G O Supports List Processing 19

6. LOGO Develops Problem Solving Skills 19

7. LOGU is a General Purpose Programming Language 20

B. SHORTCOMINGS OF LOGO 20

1. LO G O 's Functionality ... 21

2. LOGO's Object Oriented Concepts 21

a. Turtle's Abstract Data Type 22

b. Turtle's O bject C lass 22

c. Inheritance 23

d. D ata A bstraction 23

IV. VISUAL PROGRAMMING 25

A. WHAT IS A VISUAL PROGRAMMING LANGUAGE? 25

1. D e fin itio n . 2 5

2 . H isto ry .. 2 6
B. ADVANTAGES OF VISUAL PROGRAMMING 26

vii

C. GOAL OF VISUAL OBJECT ORIENTED LOGO (VOOL) 2-

V'. DESIGN OF VISUAL OBJECT LOGO 29
A. PROGRAPH AS A FOUNDATION 29

I. Prograph's C lass System .. 30

2 . Prograph's A ttributes 32

3. Prograph's M ethods 32
B. THE TURTLE AS A MODEL 34

1. T urtle C lass H ierarchy .. 34

2. Turtle A ttributes and M ethods .. 36
VI. IMPLEMENTATION OF VOOL 39

A. OBJECTS AND CLASSES .. 39

1. T h e n am e : . 4 0
2. The attributes: 40

3. The m ethods: 40

B. INHERITANCE ... 41

C. ENCAPSULATION/ABSTRACTION 44

D. POLYM ORPHISM .. 50

E. ITERA TION ... 51

F. SELECTIO N ... 53

VII. CONCLUSION AND RECOMMENDATIONS 59
A. VISUAL APPROACH: PROS AND CONS 59

B. BUILDING THE PROTOTYPE 60

C. ASSESSM ENT .. 61

D. RECOMMENDATIONS .. 62

APPENDIX A-USER COMMAND AND METHOD DEFINITIONS 65

APPENDIX B - TURTLE GRAPHICS' SOURCE CODE 69

LIST OF REFERENCES 93

BIBLIOG RA PHY 95

INITIAL DISTRIBUTION LIST 97

viii

LIST OF FIGURES

1. Turtle Graphics Comm ands for Square Process .. 8

2. Object Instances of Turtle CLIFF and JEFF .. 12

3. The Inheritance Hierarchy Relating HOPPER, FLYER, TURTLE 13

4. The M ultiple Inheritance Hierarchy for BIRD .. 14

5. Prograph's Graphical Class Hierarchy ... 31

6. Prograph's Attribute Definitions .. 33

7. Prograph's M ethod Definitions .. 33

8. Turtles' Class Hierarchy ... 35

9. M ainTurtle's Attribute Definitions .. 37

10. M ainTurtle's M ethod Definitions .. 37

11. Ture_l's M ethod Definitions .. 38

12. Turtle_l's Attribute DEfinitions .. 38

13. Iteration For Circle .. 45

14. TurtleI / Polygon .. 45

15. Polygon ... 46

16. Square ... 46

17. Draw Train .. 49

18. Iteration / Polygon ... 52

19. Iteration For polygon ... 54

20. Rotator ... 54

ix

21. Iteration / Circle .. 55

2 2 . C irc le s 5 6

23. Com pute Coord (Selection) ... 58

x

ACKNOWLEDGMENT

This thesis has an international flavor, bninging together minds from the shores of Hong

Kong, Senegal Africa, and the tiny state of Rhode Island, (a foreign land in itself). We

wish to thank Dr. Wu, the Emperor of Enlightenment, for his invaluable guidance during

our months-long Ouest for the Thesis Grail. Professor Stemp, our second reader, also

deserves credit for his thoughtful suggestions for improvement, and for reading the

finished product without going cross-eyed

Of course, our spouses, John Black and Aissatou F. Sabara, deserve special

recognition for admitting that they know us. Many thanks to both of them for their

unquestioning support, and their blind faith that we knew what we were doing!

xi

1. INTRODUCTION

A. BACKGROUND

In 1967 Seymour Papert introduced Turtle geometry with the development of the

programming language Logo at Massachusetts Institute of Technology. The initial intent

was to develop a computer language that would be both suitable for children, yet powerful

enough for professional programmers. Logo is described as having "no threshold" --

preschool children can use it -- and "no ceiling" -- computer scientists can use it for their

work. The turtle is simply a computer-controlled cybernetic animal. It exists within the

cognitive Logo environment in which communication with the turtle takes place. Turtle

geometry is a computational style of geometry in which the turtle has its own position and

heading. It provides a straightforward meaning to attach to each individual procedure,

namely a picture. Children can identify themselves with the turtle and are thus able to

bring their knowledge about their bodies and how they move into the process of learning

formal geometry. The basic foundation for turtle geometry lies with the idea that specific

problems of interest to the novice can be tackled by simple programs.

Logo is a widely recognized programming language for children, designed to

develop both their problem solving skills as well as their general programming skills. The

language has met many of its original goals, but is somewhat outdated by today's

computer standards, especially as it does not integrate the concepts of object-oriented

programming.

B. OBJECTIVES

The purpose of this research is to study the benefits and shortcomings of the

programming language Logo, and to update it by proposing a fully visual programming

system which supports object oriented concepts. This system, titled Visual Object

Oriented Logo (VOOL), has the primary objective of providing an intuitive environment in

which students of all skill levels can learn the concepts of an object oriented language. The

visual, object oriented, data flow programming environment of Prograph was used for the

implementation of this prototype, because it provided the necessary base classes for

interface design, as well as the primitive operations for graphics drawing functions.

To meet our objectives, this thesis addresses the following issues: first, it provides a

description of the original language Logo; second, determines the merits and shortcomings

of the language Logo, and then suggests possible solutions to the shortcomings through a

prototype; third, evaluates the benefits of visual object oriented design; fourth, describes

the design and the implementation of the proposed prototype; and finally, identifies the

targeted users of the upgraded Logo language. Each specific issue will be developed in

detail throughout later chapters.

C. ORGANIZATION OF THE THESIS

Chapter II of this thesis describes the original Logo language, followed by the

objectives, strengths and shortcomings of Logo in Chapter III. Chapter IV contains the

2

gioals of visual object-oriented Ltogo Chapter V discusses the design of the protot\pe.

then Chapter VI focuses on the prototvpe's implementation, including amplifvinmg

examples Finally, Chapter VII summarizes the research and provides conclusions and

recommendations

3

4

!1. DESCRIPTION OF THE ORIGINAL LOGO

I ogo was developed at the Massachusetts Institute of Technology under the

direction of Seymour Papert Papert's intent was to create a "mathland" where students

could actively explore mathematical concepts.

A. DESCRIPTION OF LOGO

Logo is a full-featured computer language derived from Lisp, the language of

artificial intelligence. Logo was developed to be both powerful and easy to use, hence it is

found in educational settings from kindergartens to universities. Although the language

itself is not limited to any particular subject, it is most commonly used for exploring

mathematics, since Logo's turtle graphics provide a natural mathematical environment. In

particular, it is an ideal tool for studying geometry through manipulating the turtle to draw

various shapes.

1. Turtle Graphics

Logo's best-known feature is the Turtle, a triangular cursor used to create graphics

in a programming area called Turtle Geometry. Originally, the Turtle was viewed as a

computer-controlled "cybernetic animal" that leaves a trace on the display screen and

responds to Logo commands to make it move or rotate. The motion of a pen on a sheet of

paper is simulated by commanding the Turtle to move FORWARD, or to turn LEFT or

S

RIGHT The user specifies ho%% many units to move ahead, or hovk mans degrees to turn

As the Turtle moves (FORWARD, BACK) or rotates (RIGHT. LEFT), it leaves a trace

of its path, and in this way can be used to make drawings on the display screen Even

young children can quickly learn to move and turn the Turtle using easily-remembered.

intuitive commands, and can generate quite detailed pictures Using these commands, a

child can explore the properties of regular planar shapes ranging from simple squares.

triangles, and hexagons to complex patterns reminiscent of the designs made by

Spirograph drawing wheels.

Turtle space is defined by the dimensions of the screen on which the graphics will

appear. Screen dimensions are generally stated as x and y axis coordinates representing

horizontal and vertical positions respectively, and with the origin at x = 0, y = 0 The

Turtle can then be moved around the screen using one of two possible frames of reference

In the first method, the user specifies an x-y position on the screen, and the Turtle moves

directly to that point regardless its current location or heading. Alternatively, the user can

specify distances to move and angles to turn, which are then executed based on the

Turtle's current location and heading. Basically, the first method uses the grid origin as the

reference point, and the second method uses the Turtle itself as the reference point.

2. Sample Turtle Program

The commands FORWARD and BACK require an input from the user to specify

how many units the Turtle should move in the indicated direction. The commands RIGHT

and LEFT require the number of degrees that the Turtle should rotate. For example,

6

tP;"g FORWARD 50 moves the turtle forward 50 pixels (screen dots), and typing

RIGHT 90 turns the Turtle 90 degrees clockwise

If we consider maneuvering the Turtle to draw a square, the following commands

must be executed

I FORWARD 50

2 RIGHT 90 that completes the left side of the square.

3 FORWARD 50

4 RIGHT 90 that completes the top side of the square.

5 FORWARD 50

6 RIGHT 90 that completes the right side of the square.

7 FORWARD 50

8 RIGHT 90 that completes the bottom side of the square.

By combining these steps with the command REPEAT, the same square can be

drawn using only one line of code.

REPEAT 4 [FORWARD 50 RIGHT 90]

7

1. FD50RT94)

2. FD 5 RT 90

3. FD ORT 90

4. FD 5O RT 90

-or- 4

REPEAT 4 (FD50 RT 901

Figure 1 Turtle Graphics Commands for Square Process.

3. Functional Abstraction

Due to Logo's extensibility, the user can add new commands by creating short

programs or sets of instructions called procedures. Some procedures can call other

procedures as their helpers to solve a new general problem. Each procedure has a name

which is used as the shorthand for calling all lines of code within it; this is a form of

encapsulation. Once you have defined a procedure, it becomes part of the computer's

working vocabulary and can be used as if it were a primitive. Building a library of

procedures encourages code reusability and facilitates more time-efficient coding of future

programs. Procedures can be viewed as the building blocks of larger programs.

A procedure is composed of three parts: a title line, which consists of the word TO

followed by the name you chose for the procedure; a body, which is the sequence of

commands that comprises the definition; and the word END which indicates completion of

8

the procedure Simply typing the name of the procedure tells Logo to automaticalk

execute each line of the procedure in turn, just as if you had typed them individuallý on the

keyboard

For example, here is the procedure that will draw, our familiar square

TO SQUARE

REPEAT 4 [FD 50 RT 90]

END

Now, to draw a square, you only need to type the single word SQUARE.

Whenever you use this command, the turtle draws a square with side 50. You can use

SQUARE just like any other Logo command, even including it in other procedures.

Generalizing a procedure can add to the command's power by giving the user more

control and flexibility. You can change the definition of SQUARE to enable it to draw

squares of all different sizes. The new SQUARE procedure takes an input that allows the

user to specify the desired length of a side:

TO SQUARE :SIDE

REPEAT 4 [FORWARD :SIDE RIGHT 90]

END

9

The procedure is evaluated just like any Logo command that takes an input, that is.

to draw a square of side 25, you type SQUARE 25

B. LOGO OBJECT ORIENTED PROGRAMMING

1. Object LOGO

The original Logo Turtle did not support object oriented programming concepts. It

was designed as an educational tool of considerable power and wealth of expression, to be

used easily at any level of the educational system.

As object oriented programming became an increasingly powerful and popular

programming methodology, Object Logo was introduced as a type of object oriented

system. Object Logo includes all the features found in original Logo, but goes beyond

them in incorporating the concepts of object oriented programming.

Object Logo supports two of the most basic concepts in object oriented

programming: objects and inheritance. An object is a collection of procedures and data

that works together to implement some kind of behavior. An object's procedures represent

the things that the object knows how to do. Once you have defined a type of object, you

can make multiple copies, (also called multiple instances), of the object to produce

multiple creatures that have the same behavior. Object Logo's data objects include not

only numbers and character strings, but also compound structures. Since Object Logo

10

procedures can themselves be represented and manipulated as lists, users attain

considerable direct control over the way commands are interpreted

The Turtle is an easily understood example of a Logo object, so we will focus

primarily on Turtle objects and the methods inherited from them The best way to sho\,

how objects behave in the Logo environment, is to create several Turtles and make them

interact. To create a new object, you can use one of two Logo commands: KINDOF or

ONEOF. The difference between the two commands is that. with KINDOF, you must

explicitly ask the object to EXIST in order to initialize values for the object's variables,

ONEOF will automatically make the object EXIST [Abel, pg. 99]. For example, you can

create a Turtle named JEFF to be a KINDOF Turtle, and ask JEFF to EXIST. (To

indicate a word in Logo, you type the character string prefixed by a quotation mark) At

this point you can give commands to JEFF, using ASK to indicate which object you're

asking:

MAKE "JEFF KINDOF TURTLE

ASK JEFF [EXIST]

ASK JEFF [FORWARD 100]

ASK JEFF [LEFT 45]

TALKTO is another way to issue commands to an individual object. Once you

specify the particular object you're talking to, all commands go directly to that object until

11

you specify otherwise The following example shows the interaction of two instances of

Turtle named CLIFF and JEFF, each of them was asked to draw a square (The two

objects were created prior to the TALKTO commands, and CLIFF was forwarded 100

units, while JEFF was turned 45 degrees then forwarded 100 units).

TALKTO :CLIFF

SQUARE 30

T k.LKTO :JEFF

SQUARE 20

Figure 2 : Object Instances of Turtles CLIFF and JEFF.

2. LOGO Inheritance

Inheritance is the ability to define new kinds of objects in terms of

previously-defined objects. Figure 3 shows an example of the inheritance hierarchy relating

three objects named Hopper, Flyer and Turtle. Turtle is said to be the parent of Hopper

and Flyer. Whenever you ask an object to perform a command, the object first checks to

see if it has a command by that name. If none is defined, then it checks its parent, then its

parent's parent, and so on. For example, a Flyer knows how to SWOOP because SWOOP

was defined for Flyer, whereas a Flyer knows how to FORWARD because its parent,

Turtle, knows how to FORWARD and the trait was inherited.

12

TURTLE

FORWARD
LEFT
RIGHT
BACK

HOPPER FLYER

MOVE MOVE

SPIN SWOOP

Figure 3 -The Inheritance Hierarchy Relating HOPPER, FLYER, TURTLE.

3. LOGO Multiple Inheritance

Inheritance rules can be more complex when an object has multiple parents. For

instance, you can make a Bird that is both a kind of Hopper and a kind of Flyer.

MAKE "BIRD KINDOF (LIST :HOPPER :FLYER)

This example shows that you can make something with multiple parents by giving

KINDOF a list of parents, rather than just a single parent. As you can see on Figure 4, a

Bird can go FORWARD, BACK, LEFT, and RIGHT, (which it inherits from Turtle); a

Bird can SPIN, (which it inherits from Hopper); and a Bird can SWOOP, (which it inherits

from Flyer). A potential conflict exists, since MOVE is inherited from both Hopper and

13

Flyer and might contain disparate definitions The conflict is resolved by a rule requiring

Bird to NIOVE like Hopper, because Hopper was the first parent named in the list

TURTLE
FORWARD
LEFT
RIGHT
BACK

HOPPER FLYER
MOVE MOVE
SPIN SWOOP

B D

Figure 4: The Multiple Inheritance Hierarchy for Bird.

4. Method Override

An object and its parent might both have methods with the same name. In this case,

the object will use its own method definition, rather than that of its parent. In Logo, if you

need to explicitly refer to the parent's method vice the object's method, you use the dot

notation with the prefix USUAL. For example, you can make a new object, Creeper, that

is a kind of Turtle, and teach it to go FORWARD differently than a regular Turtle, as in

the second line:

14

MAKE "CREEPER KINDOF TURTLE

ASK:CRFEPER (TO FORWARD : DISTANCE]

REPEAT:DISTANCE (USUAL.FORWARD 1]

END

The notation USUAL.FORWARD in the third line indicates that the procedure

definition for FORWARD should be used ftom a parent object. This concept of referring

to a specific method definition using the dot notation is called method overriding.

15

16

III.STRENGTHS AND SHORTCOMINGS OF LOGO

Logo is a language that encourages students to explore, learn, and think In the

following sections, we'll discuss some characteristics that contribute to its success, then

identify some of its limitations.

A. STRENGTHS OF LOGO

1. LOGO is Modular

A Logo language program is not necessarily written as one large unit. Rather, it can

be divided into smaller pieces, and a separate procedure can written for each piece. A

procedure is a group of one or more instructions to the computer that the computer can

store to be executed at a later time. Logo users start with a vocabulary of primitives and

use them to develop new procedures to add to the vocabulary. Procedures can

communicate among themselves via inputs and outputs, and each new procedure becomes

an extension of Logo. Figures 1 and 2 provide an illustration of building procedures and

procedure calls using SQUARE.

2. LOGO Supports Nesting

We've already seen the use of the Logo REPEAT command to repeat a series of

steps for a specified numbers of times. Another way to cause repetition in Logo is to

define a procedure that includes a call to itself as the final line. This is called recursion and

17

is very useful because it allows an involved problem to be described in simple terms For

example, you can make the Turtle move in a square pattern over and over again until

explicitly stopped.

TO SQUARE :SIZE

FORWARD :SIZE

RIGHT 90

SQUARE :SIZE

END

In this case, the definition of SQUARE is "go forward, turn right, and do SQUARE

again." One disadvantage of this particular SQUARE, as opposed to REPEAT, is that it

goes on indefinitely and so is not a good building block to use in making complex

drawings.

When used properly with a stop condition, recursive procedures are a powerful tool

which can be used to obtain complicated effects, but they are also much harder to

understand and handle.

3. LOGO is Interactive

Any Logo command, whether built into the language or defined as a procedure, can

be evaluated by simply typing the command at the keyboard. It is easy to change or

18

correct a procedure in Logo, because the editing process is designed as part of the

language

4. LOGO Supports Graphics

Turtle graphics allows users to order a Turtle to move forward or backward and

turn left or right. As stated previously, the Turtle can leave a trace, or it can move without

a trail. With simple commands, the user can "teach" the turtle to draw very complex

drawings. These drawings can be created with or without reference to any coordinate

system.

5. LOGO Supports List Processing

Logo provides operations for manipulating character strings that Logo calls

"words." Logo also has the ability to combine data into structures called "Lists." These

lists can be used to create very complex data structures.

6. LOGO Develops Problem Solving Skills

Logo's best known feature is the Turtle. By identifying themselves with this object,

even children can use their knowledge of how a turtle behaves to move it across the

screen. Children learn to program in Logo by experimenting with maneuvering the Turtle.

Thanks to the turtle, Logo becomes very friendly and easy to understand, and offers

immediate feedback through helpful messages. Many studies have been conducted in

classrooms from kindergarten to elementary school, researching how Logo helps children

develop their problem solving abilities. Results show that children using Logo exhibit

statistical gains over non-Logo users.

19

Children who draw pictures with a Logo turtle unconsciously assimilate important

mathematical concepts such as angles and estimation. In addition, by telling the Turtle to

go forward 1000 units, forward 200 units, and left 30 degrees, many children are using

number in a meaningful way for the first time; they receive feedback on the relative sizes

of numbers that they never get doing school arithmetic [diSe 86, pg. 91.

7. LOGO is a General Purpose Programming Language

The ornmitives and concepts of the language are encountered in the context of

working procedures. Completely predefined procedures are presented to the beginner, to

be typed into the computer and used. In fact, experimenting these pre-written procedures

is a good way of learning how they work. This approach is not prescriptive, in that

students are allowed to develop their own way of grouping the primitives. The procedures

presented are carefully chosen and deliberately ordered to illustrate particular concepts,

increasing in complexity as the student progresses. By reading, using, modifying, and

extending these procedures, the beginner can develop his or her own understanding and

knowledge of the language and of programming concepts in general.

B. SHORTCOMINGS OF LOGO

Despite Logo's benefits and successes in the educational environment, we think there

still exist some limitations of the language. This is primarily due to the fast development of

today's computer standards, especially the emergence of object oriented programming.

20

1. LOGO's Functionality

We think that the power of Logo is limited by constraints on the amount of

memory, and constraints of the processing power that, in part, forced Logo's designers to

slight some areas. Logo is limited in building large structures and abstract objects that are

difficult to manipulate. Logo is a list-based interpreted language where each line is

processed as it is entered into a work window.

We also believe that Logo's syntax and semantics could be improved. For example,

Logo includes only two limited conditional expressions for allowing users to write

programs that perform test controls. The first expression is IF <condition> <action>: if the

test condition is true, then the action is executed. A variation is IFELSE <condition>

<actionl> <action2>: if the test condition is true, then actionl is performed; otherwise,

action2 is performed. The second expression is TEST <condition> IFTRUE <action 1>

IFFLASE <action2>: this tests a condition to be used in conjunction with IFTRUE and

IFFALSE. These conditional expressions are only useful for basic test cases, but are not

powerful enough for complex test operations.

The REPEAT command of Logo and the recursive procedures for executing

multiple operations are also only useful for basic operations, due to the limitations of the

control loop.

2. LOGO's Object Oriented Concepts

The original Logo was an early programming language, developed before the

growth of object oriented programming languages. Object oriented programming (OOP) is

21

a data-centered view of programming in which data and behavior are strongly linked Data

and behavior are conceived of as classes whose instances are objects In the original

Logo, the concepts of object-oriented programming are poorly defined in that there is no

specific link between data and behavior, and there is no distinction between object and

class.

a. Turtle's Abstract Data Type

In Logo, the user doesn't have access to the Turtle's attribute types nor to its

predefined operations. This lack of access to the Turtle's data structure makes it difficult

to explore the object oriented features. The user interacts with the Turtle only through the

editor where he types a set of instructions and sees the result on the display screen. In our

prototype, however, the user has the opportunity to check, and modify if necessary, the

different attributes and methods that characterize the turtle. At run time, the user is not

only able to see the data being input, but can also evaluate or modify it.

b. Turtle's Object Class

The concept of an object in Logo can lead to confusion, because Logo does not

define the concept of a class. Although objects and classes are two different notions, there

is a distinct relationship between them. In our model, a class defines a type of object and a

set of operations associated with that object. An object of a class is referred to as an

instance of that class. The object is defined in terms of its attributes and methods. Even

though a system class with its inheritance hierarchy is clearly predefined in the Prograph

22

environment, the student should be able to define his or her own object class with its own

characteristics, without being forced to link it to an existing object class

c. Inheritance

Although the concept of inheritance is defined in Logo, the type derivation

mechanism is in a rigid form. The fundamental idea behind inheritance is code reuse, yet in

Logo the user does not have any control over which components are inherited This

significantly limits the flexibility and practicality of reusing code. In addition, the language

does not have a specific system class available to the user for modifications.

L Data Abstraction

Logo has strong functional abstraction because all the low level implementation

of commands and instructions is hidden from the user. The notion of data abstraction,

however, is not specifically addressed, thus preventing the student from accessing beyond

the command line level. This notion of data abstraction is clearly described in our system,

allowing the user to access precisely what is needed to perform the job, and to modify the

underlying code, if necessary.

23

24

IV. VISUAL PROGRAMMING

A. WHAT IS A VISUAL PROGRAMMING LANGUAGE?

1. Definition

Visual programming is a very general term with no consensus on exactly what it

means. Visual programming languages have many forms and methodologies, depending on

the application for which they will be used. Chang segments visual languages into the

following four classifications:

" languages trwl support visual interaction;

" visua.programming languages;

" visual information processing languages, and

" iconic visual information processing languages.

Visual Object Oriented Logo (VOOL), implemented using the Prograph environment, falls

into the fourth category.

In the context of this thesis, a visual programming language is defined to be "a

language which uses some visual representations (in addition to or in place of words and

numbers), to accomplish what would otherwise have to be written in a traditional

one-dimensional programming language." [SHU, pg. 138].

25

2. History

Text-based programming languages developed in parallel with computer hardware,

and have been significantly influenced by the organization of this hardware As a result,

these languages are oriented towards simple, character-based input and output, and are

generally sequential in structure. In addition, they tend to rely on a combination of

mathematical formulas and natural language, resulting in a complex, inflexible syntax The

advent of sophisticated, high resolution graphics and user interfaces has made possible the

direct use of pictures in programming. Pictorial programming has become a highly

researched area, and visual languages are shaking free from the legacy of traditional

programming approaches.

B. ADVANTAGES OF VISUAL PROGRAMMING

In many situations, people frequently prefer pictures to words. Pictures can be very

powerful, conveying information succinctly without loosing the primary message in a

padding of verbiage. Most importantly, pictures can bridge language barriers, or in the

case of youngsters, can bridge reading ability barriers. In the arena of computer science,

visual programming is an emerging new field for precisely these reasons. Its growing

popularity is aided by the falling costs of graphics related hardware and software.

Beginning programmers, and children in particular, usually face a large gap between the

idea they want to implement and knowledge of the syntax and semantics of a text-based

26

programming language It is difficult enough for beginners to anahze a problem, without

getting bogged down in how to solve it using linear code A visual language supports

beginners with a premade vocabulary and system defined icons, which assist in organizing

thoughts and structuring the program. For example, in linear programming, something as

simple as incrementing a counter may require interspersing statements into three or four

separate places in the program. Computer architecture is driving the code writing, rather

than what is the natural way for a beginner to approach the problem. Intermingling code in

this manner tends to blend the structure of the program, obscuring how different

components of the problem solution interrelate with one another. Visual programming

represents individual components with separate icons, thus enabling the beginner to

actually see the interconnections between various parts of the program. The beginner can

then manipulate and connect the various icons without confusing the two issues of

structure and function. This is particularly beneficial when there are multiple connections

to a given iccn.

C. GOAL OF VISUAL OBJECT ORIENTED LOGO (VOOL)

Our goal is to design an environment suitable for all levels of computer literacy, in

which a student can learn the concepts of object oriented programming in an intuitive

manner. VOOL combines the advantages of object oriented languages with the benefits of

visual programming described above. As a visual language, it is more intuitive for the

beginner, and as an object oriented language, it incorporates the main OOP concepts of

27

inheritance, polymorphism, and encapsulation VOOL supports code reuse and will

ultimately reduce the time needed to implement solutions

VOOL programs are built by pointing, moving and copyini;, with only minimal

labeling. This reduces the typical syntactical errors which commonly consume the time,

energy and patience of beginners. Once students are largely relieved of the mechanics,

they can then concentrate on mastering the concepts of object oriented programming. To

this end, VOOL provides a kernel class, in our case called MainTurtle, which can be

used to experiment with object oriented features. As the beginner progresses to more

advanced lexels of understanding. he can create his own classes and write his own

methods.

28

V. DESIGN OF VISUAL OBJECT LOGO

This chapter addresses three issues: first, characteristics of the programming

language Prograph, which we used for the design and implementation of our model,

second, a description of the model- and third, examples of key object oriented

programming concepts

A. PROGRAPH AS A FOUNDATION

This section's intent is not to teach the concepts of the visual programming

language Prograph, but rather to provide a basic understanding of its programming

environment.

Prograph is a fully visual, object oriented dataflow language developed in the early

1980's and implemented on the Macintosh platform. It is an object-oriented language that

defines objects and methods with icons, offering an option to text-based programming

languages such as Logo. Prograph supports a highly visual programming system which has

multiple windows for viewing program execution states, visual syntax editors for

designing program data structures, and graphical expressions in the windows themselves.

The major categories of operations are assigned icons, which are then connected to create

the code, :he result is code in the form of a diagram of icons.

The language interpreter allows the user to see the results of execution immediately,

while the compiler builds complete stand-alone applications. This is in keeping with

29

Prograph's stated purpose of providing a programming environment which is intuitive and

easy to use, but which also produces effective, useful programs. Prograph provi,-s a

mixture of high and low level routines, even including some Macintosh system calls for

advanced interface programming. As a complete language, Prograph satisfies a wide range

of different programming requirements.

1. Prograph's Class System

A class in Prograph is defined as a type of object and a set of operations associated

with that object. The object is defined in terms of its attributes, while operations on that

object are defined in methods of that class. An object of a class is referred to as an instance

of that class.

Figure 5 shows the Prograph class system which provides a mean for constructing a

new class from an existing one, via the mechanism of inheritance. Each Prograph class is

represented by an hexagonal icon displayed in the class window. The lines connecting

individual classes within the hierarchy represent the inheritance links between various

classes. The left side of a class icon contains the attributes of that class, and the right side

contains it associated methods. All object oriented prigramming applications start out

with these minimum template classes.

A new class icon is created by clicking inside the class' window. The newly created

class is given a unique name and is defined by adding the appropriate attributes and

methods related to that class.

30

IT Classes

Ystem

Application Menu Menu Item Window Item Window

Text Canvas Click Item Scroll List

Edit Text Button Radio Sot Check Box Ghc

Scroll Text Pop-up Menu Pict Icon

Figure 5: Prograph's Graphical Class Hierarchy

31

2. Prograph's Attributes

An attribute is a named slot for holding a value, and an attribute's name must be

unique within the class. Figure 6 shows the results of double-clicking on the left half of the

class icon. There are two types of attributes: an instance attribute is represented by an

inverted triangle, and can have a different value for each instance of the class- a class

attribute is represented by the hexagonal shaped icons above the thin line, and has one

value which is shared by all the instances of the class. Inherited attributes have a

downward pointing arrow inside the inverted triangle. Attributes can be assigned initial

values by double-clicking on the icon and changing the value in the attribute editor In

addition to simple data types, attributes can also be instances of other classes that already

exist as a composite object in Frograph.

3. Prograph's Methods

A method is a procedure or function associated with an instance of a class. As

shown in Figure 7, methods are represented by an icon that contains a small dataflow

diagram. A method is activated by double-clicking on the icon, at which point new code

can be written, or existing code can be read. A methods name should be unique.

32

V Application
< <Applicatio...

Q
current

NULL

0
front

V
name

NULL

owner

FALSE

active?

NULL

V
menu bar

Figure 6: Prograph's Attribute Definitions

SP Rpplication

All events Handles command keys
are passed and menu selections

Notify to this method MnMenu Click

Handles mouse down events Returns the
in the menu bar1 front window

Moore VDoLand in the desktop. Fron or NULL

MouseFront Vindow

I• Modify this method I Modify this method
to show your 1J to update your menus.

About about dialog. Update Menus

Figure 7: Prograph's Method Definitions

33

B. THE TURTLE AS A MODEL

The design and implementation of the prototype for this thesis is based on creating

a Turtle object with specific attributes and specific messages, each of which can be defined

by the user. The Turtle itself is split into two levels of complexity: first, the MainTurtle

has basic methods such as Move, GotoPos, TurnTo, PenUp, etc.. second, Turtle_1

contains additional behaviors such as making squares, polygons, circles etc. All the

methods are fully defined in Appendix A.

A beginning programmer can relate to the idea of steering a miniature Turtle around

on the screen, and this lays the groundwork for introducing the underlying concepts of

object oriented programming.

1. Turtle Class Hierarchy

The design of the class hierarchy was based on the need to create Turtle objects

that would have the necessary attributes and methods common to all subsequently created

Turtle objects. This design includes the drawing window which is used by all existing

Turtles for graphical display. Figure 8 shows the Turtle class hierarchy.

34

Classes

Application Menu Menu Item Window Window Item

The parent Turtle which Opens the canvas that allowsconmtains the basic dthe display of the Turtle's

commands Initialization, rawing
MainTurtle Move, GotoPos, TurTo, a

'Turn Left, Turn Right, Canvas Window
PenUp and PenDown.

Subclasss of MAinTurtle which
inherits the basic commands, and

Turtle_1 contains the additional commands:
Polygon, Pen Color and Pen Size.

Figure 8: Turtle Class Hierarchy

35

2. Turtle Attributes and Methods

Figures 9 and 10 show the graphical representation of the Main-Turtle's class

attributes and methods, they contain the necessary framework to define specific Turtle

instances. In addition, MainTurtle serves as the superclass for all subsequent Turtle

classes, commencing with Turtlel which is a subclass with extended features. Each

attribute type is initialized to a constant value for MainTurtle, then set to a default value

for Turtle 1 Turtlel inherits all of its superclass' methods, as well as providing

additional ones of its own to support more complex needs. Figure 11 shows these

additional methods.

Each Turtle object has some basic characteristics to support the drawing routines.

the name that identifies it; its location on the drawing screen; and the direction it is

heading. Turtles have other features such as setting the color of the pen, setting the width

of the pen, and setting the pen on and off. These -,ethods are completely defined in

Appendix A.

36

V Main-Turtle

NULL

V
name

(200 200 }V
location

0
V

heading
{11 }
V

tailVidth

"Black"

V
trailColor

TRUE

V
Trail On?

Figure 9: Main_Turtle's Attribute Definitions

S Main-Turtle |

• Initialize the pen to vahe Moves the turtle in a
drawing ability forward direction, based

Init Input: turtle Hove on present heading.
Output: turtle Input: Distance
HMoves to the x, y coordinate Turns to the true compass
on screen, regardless of direction indicated[

Ge~oPos current position; does not draw di
a line. TurnTo Input: Degrees

Input: x, y coordinate
Turns left from the current I -E I Turns right from the current

heading. heading.

Turn Left Input: Degrees Turn Right Input: Degrees

• Disables the pen from Enables the pen to draw
drawing. Input: turtle

PenUp Input: turtle PenDown Output: turtle
Output: turtle

Figure 10: Main_Turtle's Method Definitons

37

Turtle-l

SChanges the pen color. Changes the thickness of the line.
Input: Color n Line works like a calligraphy pen.

Pen Color Pen Size Input: Height, Width

Ui Forms any polygon,
(e.g. square, circle)

Poly gon based on user input.
Input: Side length,

Number of sides

kI 1o3

Figure 11: Turtle_1 's Method Definitions

V Turtle-l

NULL

name

NULL

location
0
v

heading

NULL

tailVidth

NULL

trailColor

TRUE

Trail On?

Figure 12: Turtle_l's Attribute Definitions

38

VI. IMPLEMENTATION OF VOOL

Object oriented programming (OOP), a data-centered view of programming in

which data and behavior are strongly linked, is the programming methodology of choice in

the 1990s. The goal for all OOP languages is to provide faster development, improved

reliability and quality of end products, and easier maintenance and extension. The main

objective of implementing Visual Object Oriented Logo (VOOL) is to teach the concepts

of object-oriented programming: objects, classes, inheritance, abstraction/encapsulation

and polymorphism.

A. OBJECTS ANr N .JASSES

It is natural to view the world as a collection of objects. Even children too young to

program can see, feel, and differentiate between many objects every day. For the beginning

programmer, objects provide an intuitive means of organizing thoughts and relating a real

world problem to the program to be written. From prior every day experience, the

beginner understands that objects have individual characteristics and behaviors, and that

they can communicate with each other. From there, it is a natural step to cluster similar

objects into groups, called classes.

A class is an abstraction of a specific group of objects which share common

characteristics. As a minimum, a class includes the following:

39

1. The name:

Each class must have a unique name for reference purposes.

2. The attributes:

A set of features for the class are called attributes. Each object will acquire the same

set of attributes, although the actual data values contained in these attributes can vary from

object to object.

3. The methods:

A library of behaviors for the objects in the class are called methods. The methods

are the operators which the class objects are capable of performing, and typically have a

number of arguments, or parameters. Although each object has access to every method in

its class library, it does not necessarily need them all for a given application.

The class serves as a template for objects which have not yet been instantiated, and

identifies the skills and behaviors to be expected when an object is instantiated in the

course of writing a program. Classes provide the ability to generalize from a few specific

cases to a category of similar cases. In addition, attributes and methods common to all

members of the class only need to be stored once, rather than repeated for each object.

Figure 8 shows the three features of a class in our implementation. We created a

class and named it Main Turtle. The diagram represents its attributes with a triangle and its

methods with a square. These attributes and methods are then further defined in Figures 9

and 10. Whenever the user wishes to create an instance of this class, he/she knows exactly

what the attributes will be and which methods will be available for manipulation.

40

In our implementation, only one object per class may be displayed at a giwen

time in the active window. Initially, this ensures that the programming environment is kept

simple and the beginner is not overwhelmed with complex options A more advanced user,

however, might appreciate the ability to have multiple objects of the same class, e g two

or three turtles, active in the window at the same time, or even multiple objects from

different classes. This would provide the opportunity for objects to interact with each

other.

B. INHERITANCE

Inheritance is a powerful tool in object oriented programming, enabling the

construction of new classes based on the existing hierarchy. The necessity to redesign and

recode is reduced, resulting in code reusability and timelier, more efficient programming.

In addition, inheritance provides a logical structure for organizing information. Designing

a well-defined inheritance hierarchy can assist the beginner in analyzing a problem and

programming a solution.

New classes, called subclasses, inherit the methods and attributes of the class above

it in the hierarchy. These subclasses can then be specialized by extending their behavior

and representation, thus tailoring them to the application at hand. Inheritance means that

methods defined in the parent class, (and all ancestor classes), are automatically part of the

subclass without needing to repeat the code. One way to specialize a subclass, however, is

to override an inherited method. This is achieved by using the same method name, but

41

writing different code, the ne" code applies onlk to that subcle :"iC' dan tUltue

descendants of it) For example, there could be a method named "'-love Shape", Nhich i',

located fairly high in the inheritance hierarchy Moving a squi.- and moioving a circle

require slightly different code for execution, so MoveShape could be specialized at

subsequent levels in the heirarchy to fit the specific situation A message to an object will

execute the most recently defined method of that name Only upon failing to find the

appropriate method in a class, will the message search higher in the hierarchy until it finds

the matching nam,.

So far, this discussion has dealt only with single inheritance, meaning that each

subclass has one and only one immediate parent class. It is also possible for a class to

inherit from two or more parent classes; this is called multiple inheritance. The resulting

subclass contains the union of its parents methods and attributes, as well as any new

methods and attributes defined for that subclass.

Although multiple inheritance may be desirable in certain rare cases, it significantly

complicates the structure of a program and can lead to inheritance conflicts. For example,

two methods with the same name but different code may inadvertently be combined in one

subclass. To guard against such an occurrence, effort must be diverted from productive

code writing and expended on conflict resolution strategies. It is our opinion that multiple

inheritance has more drawbacks than benefits; it is better to restructure the program and

avoid it completely.

42

Figure 8 shows the inheritance hierarchy for our implementation Main Turtle, at

the top of the hierarchy, contains what we considered to be the core capabilities and

attributes needed for a turtle object, (Figures 9 & 10). With these features, a beginner has

an object on the screen which he can then manipulate with simple visual code. Each piece

of code has a direct effect on the object, for example turning it right or left, thus providing

satisfying feedback to the beginner. When the beginner is ready for additional capabilities,

he can progress to the next level in the hierarchy.

Turtle_] is a direct descendant of Main Turtle, and inherits all of its attributes and

methods. As Figure 12 indicates, however, TurtleI does not inherit the actual values of

the attributes; rather, they are reset to null or a default setting. TurtleI does inherit the

ability to perform all the methods defined in Main Turtle. As shown in Figure 11, these

methods do not need to be redefined for descendants, which is a primary advantage of

inheritance. TurtleI can then increase its capabilities by adding methods particular to that

class, in this case Pen Color, Pen Width, and Polygon.

The relationship between Main Turtle and TurtleI demonstrates to the beginner

the concept of inheritance. The beginner is able to play with a working model and observe

inheritance in action, rather than just trying to grasp the idea from a book. For example, in

order to execute the method Polygon, Turtle_1 must call on the methods Move and Turn

Right which it inherited from Main Turtle. Based on user input for the parameters, the

result in this case is a square, (Figures 13-16).

43

Once the beginner feels comfortable with the concept of inheritance through using

the classes provided, he can then apply his new-found knowledge and create classes of his

own. These classes could descend directly from Main Turtle, or could continue down the

tree from Turtle_1.

C. ENCAPSULATION/ABSTRACTION

Encapsulation is the process of hiding all the details of an object that do not

contribute to its essential characteristics. It is also referred to as abstraction or information

hiding, where the object is a kind of black box. It provides the means by which the internal

details of a specific method, and/or the different attributes of an object, are implemented

and hidden from the outside objects. Encapsulation supports code reliability and

extensibility, and also allows for integration.

The reliability of the end product is determined by reliable modules and reliable

methods of integrating those modules together. In addition to the dependability of

individual modules, there should be a proven means of putting individual modules together

into a working whole with a smooth and easy integration.

44

Iteration 1:1

J,/j/,/., (180e 200•.•//)

1005 7T fi0
--v- numb 7- 6

side sides angle
lntto iterationslngrotate

Figure 13: Iteration for Circle.

(Turtle-1l/Poilgon 1:1

turtle side length numb sides

360

ol on

Figure 14: Turtle_1 I Polygon.

45

]J polygon 1:1

turtle side angle numb
length sides

turtle dist

1Me,.

degrees
turtle to turn
headingrih

new heading

Figure 15: Polygon.

Figure 16: Square.

46

We used MainTurtle's methods and attributes in Figure 9 & 10 to illustrate the

notion of encapsulation. The user doesn't need to know how the different methods or

attributes of MainTurtle are implemented; he simply needs to know the names of the

messages to be passed, and what will be returned by the object For instance, with the

visuality of Prograph, the user can see what values are flowing into an operation and what

values are returned to the output terminal. As shown in Figure 17, the method Move, like

all other methods of MainTurtle, is receiving one input from the left terminal of type

MainTurtle object, a second input from the right terminal provided by the user, and

finally produces an output of type MainTurtle object. This kind of implementation of the

methods is specific to our prototype, but not necessary bound to it. The design is

determined by the developer.

Each method constitutes a specific and independent module with its own

implementation. Each of the methods can be used as a seperate module over and over

again by many objects without modifying its implementation. Draw Train in Fi6,ire 17

shows how the methods Init, Move, TurnTo and Turn Right work within the MainTurtle.

During execution of the universal method Draw Train, the user can see the different values

flowing into or from any operator by double clicking the desired terminal.

Similarly, the user may or may not know the different names of MainTurtle's

various attributes, but can still send messages to a specific object. He doesn't need to

know how each of them is implemented in order to use them.

47

The modularity concept of producing code guarantees the reliability of the module

and allows the modification and improvement of the code without affecting the user's

access to the object. We can assume that each individual module is reliable and can be

easily extended and smoothly integrated to other applications without compromising the

reliability of the final product.

Using encapsulation to maintain modularity provides the necessary working

environment for many developers to concentrate on seperate modules that would be

integrated later in the same project.

Even if there is no public and private specification in the Prograph environment, as

in C++, it is possible to prevent the user from accessing the hidden sector to ensure

greater module reliability. All modules would be in the "execute only" form, where the

user is allow to access them, but can not modify their internal implementation.

The implementation of this prototype would provide a developer with the necessary

built in modules to construct a more complex program. With the encapsulated classes, we

can focus on teaching the notion of object oriented programming instead of confusing the

user with all the low level implementation.

48

(•Draw Train 1:1I

•a~o-'r~rt~•(2oo060)

/..... 150

150

•/.Turn.o 100• "

xv 175

K/Wur-nRgtR 3
90

145

495

2-70 I

D. POLYMORPHISM

Polymorphism is the phenomenon that occurs when messages of the same name are

sent to different objects. Each objec responds with an appropriate method for its class.

Polymorphism supports code sharing and extensibility, and has two aspects: the

non-polymorphic operator that always refers to the universal method (designed to be used

by any object class), and the polymorphic operator which refers to different methods.

A polymorphic operator is always prefixed with one forward slash (/) to refer to a

method defined in the class of an object, or two forward slashes (//) to refer to a method

defined in the class system. A non-polymorphic operator is invoked on its own without a

slash, and always refers to the universal method. Polymorphism allows developers to add

methods with the same name to classes that share some commonality and therefore use the

same name to denote the specific function. Which method to execute depends to the

object that flows into the operation.

The extensibility of a module is characterized by the fact that outdated or faulty

modules can be replaced with a new module without requiring any changes to other

modules. When the same module requires additional functionality, a new module could be

created with the same name to replace the first module, by sharing the original code and

adding more features. This characteristic of extensible modules will allow easier program

maintenance and extension.

50

In almost all our examples provided, we illustrate the polymorphic operator with

the single forward slash. The non-polymorphic operator is only used for the

implementation of the prototype with the universal method Get Canvas Window

E. ITERATION

Iteration plays an essential role in practical programming by reducing the amount of

code needed to perform identical steps. The ability to repeat a certain segment of code not

only reduces the apparent complexity of the program, but also decreases the chances of an

error being reintroduced into previously debugged code. Error reintroduction could occur

lines if code had to be manually retyped each time repetition was desired.

In VOOL, iteration provides a powerful tool to the programmer, enabling a

beginner to create complex pictures with relative ease and speed. The model in Figure 18

depicts one such example. This figure is actually composed of one simple pentagon

rotated around a common point, but the result is a multi-faceted display of interwoven

patterns.

The method "Polygon" is defined for TurtleI and allows the user to provide input

for the desired size and number of sides. Once one polygon is drawn, the user then needs

to turn the turtle slightly, (using an inherited method from Main Turtle), and repeat the

process. This is where the power of a looping ability comes into play. The Prograph

programming environment provides a system level icon to perform this task.

51

Figure 18: Iteration / Polygon.

52

The icon itself is multi-layered in appearance with circling arrows, giving an

intuitive indication

that the local method will be repeated for the specified number of times Figures 19 and 20

show the code used to produce the rotated pentagon.

Once the user grasps the concept of iteration, he can use it to write versatile,

time-saving methods. For example, the method "rotator" can produce very different results

depending upon the user's input. Simply by changing four parameters, the same method

will draw a flower-like arrangement of circles, (see Figures 21 and 22).

F. SELECTION

The beginner must first concentrate on writing simple code with a linear

progression. In the case of VOOL, this would mean a program that flows from the top of

the screen to the bottom, following only one path. Once the beginner is ready to solve

slightly more complex problems, however, he must have the ability to provide different

paths of action depending on decision criteria. These paths of action would most likely

involve multiple screens and require the user to exercise some logic in constructing the

conditional executions.

53

Iteration 1:1

Turtlel1

(180 200)

i n it

5

1oo -7- 30
Snumb 16

side sides angle "-length to iterations
Jrotate

I

Figure 19: Iteration for Polygon.

M rotator 1:1

Y Y Y Y
turtle side numb angle iterations

length sides to

/Po1 .j~~ rotatein in

K311

im

Figure 20: Rotator.

54

Iteration 1:1

J 60

-1 numb 26
side sides angle -7
length to iterationsrotate

otator

Figure 21: Ieration / Circle.

55

Figure 22: Circles.

56

The Prograph environment provides a complete anJ flexible range of functionalitV

with its case structures, control annotations, and "Match" operations The "Move" method

defined for Main Turtle provides an example of path selection When the user orders the

turtle to move, the code to be executed depends upon the turtle's heading since there are

four trigonometric solutions based on the four quadrants of a graph. Figure 23 shows the

first of the four possible paths. Use of the "next case on failure" teature is demonstrated

h,-e. If the turtle's current heading is within the specified range, then the first case is

executed; if the comparison is a failure, however, then control passes to the next case for

further comparison.

Since "Move" is inherited from Main Turtle, VOOL allows the beginner to use it

without needing to understand what is within the method's "black box". This enables the

beginner to concentrate initially cn fundamental programming skills, and to receive

positive motivation by quickly accomplishing apparently advanced tasks. With a solid

groundwork of linear programming experience, the user is then ready to progress to more

advanced problem solving, including code requiring selection.

This chapter has discussed the core concepts of object oriented programming,

specifically: classes, objects, inheritance, abstraction, encapsulation, and polymorphism. In

addition, the key capabilities of iteration and selection were covered. In each case, the

discussion addres'ed how best to present these concepts to a beginning programmer, and

provided examples for clarification.

57

MJ compute coord 1:4

Y dist x heading

0

90

y x

Figure 23: Compute Coord (Selection).

58

VII. CONCLUSION AND RECOMMENDATIONS

A. VISUAL APPROACH: PROS AND CONS

Using a visual approach to teach object -amming has many

advantages, but suffers from drawbacks as well.

On the positive side, the visual approach is an excellent means of introducing object

oriented concepts. The concepts of classes, objects, encapsulation, and polymorphism can

be abstract and difficult for a beginner to grasp. A visual programming language allows

the beginner to actually see a class hierarchy, and watch how objects interact with each

other. By manipulating objects which are visible on the screen, the beginner gains practical

experience with object oriented features such as polymorphism and inheritance.

Furthermore, it's easy to identify the attributes and methods that comprise an object,

(especially guided by Prograph's triangular and square icons), and watch how certain of

these components are passed along through inheritance. When learning a text-based object

oriented programming language, the beginner must struggle with these abstract concepts

without benefits of visual representation. This requires a certain level of mental

sophistication from the beginner, and perhaps experience with other programming

languages. While this may not be a problem for a college freshman, it is certainly a barrier

to a young grade school child. Children must see and do and experiment. An esoteric,

"chalk-talk" explanation would not only be above their level of comprehension, but would

most likely dull their enthusiasm for attempting anything further with the language.

59

The visual approach not only conquers the level of understanding barrier, but

circumvents two other barriers as well those of language and reading ability Beginning

programmers of any age, from first grade through college and beyond, may be learning in

a spoken language which is not their native tongue. A visual environment allows them to

concentrate on the concepts without the added difficulties of translating text and worrying

about syntax. Likewise, even youngsters who cannot yet read, can still draw simple shapes

and start developing an intuitive feel for object oriented programming.

On the negative side, visual programming skills are not immediately transferable to

text-based languages. Although the student would have a sound grasp of the object

oriented concepts themselves, he would still need to study the specifics of the text-based

language. This may not be a problem once visual object oriented languages become more

prevalent, but presently the most popular OOPLs, such as C++ and Smalltalk, all use

written code. Purely from a practical viewpoint, it would be beneficial for a programmer

to master both paradigms.

B. BUILDING THE PROTOTYPE

The primary difficulty in building our prototype was in learning the Prograph

environment. Prograph is very powerful, with many features designed to assist the

programmer; once we gained experience with these features, our task was actually

expedited. For example, Prograph provides a complete system library with base classes

and primitive operations, as well as an extensive error tracing capability. In addition,

60

working in a windows environment with a mouse and icons was easy and familiar,

facilitating the prototype development.

C. ASSESSMENT

How well does our prototype meet the original problem statement? To review, our

research was intended to address how best to teach beginning programmers the necessary

skills of object oriented programming. To accomplish this, we first discussed a current

programming language, LOGO, used predominately in educational settings as a first

language for children. We then addressed LOGO's strong points and shortcomings, paying

particular attention to the use of a graphical turtle as a tool for conveying the potentially

abstract concepts of the object oriented methodology. Finally, we explored the benefits of

a visual approach to learning, and proposed a prototype called Visual Object Oriented

LOGO.

We feel our prototype is very successful in presenting object oriented concepts in an

intuitive manner that invites creative experimentation. The MainTurtle is a real-world

object that has the potential to promote interaction with even the youngest programmer.

Turtle-I guides the beginner to a slightly more advanced level, plus introduces the

concept of inheritance. With this sound groundwork, the user is then equipped to create

his own classes for further exploration.

Due to the power of Prograph, our prototype is capable of a wide range of

applications, and is thus suitable for use in elementary schools as well as at the college

61

level. A first grader could be challenged with drawing a square, while those in an

introductory college course could model more complex real-world problems True

beginners with no programming experience whatsoever can learn how~ to manipulate the

turtle and have fun. Fun is a key element, in that it establishes a positive attitude and

encourages a potentially life-long commitment to learnuing. Beginners who are newk to

object oriented programming, yet have experience with other languages, can concentrate

on mastering the basic object oriented concepts and can progress quickly to more

advanced programming.

The visual programmning approach may not facilitate learning a specific text-based

language at a later date, but the value of our prototype is that it provides a solid

foundation in object oriented programming concepts. Mastery of these concepts is an

invaluable advantage in learning other languages, allowing the student to concentrate

simply on syntax and style. Overall, our prototype has the potential to make a significant

contribution towards educating the next generation of object oriented programmners.

D. RECOMMENDATIONS

Collecting empirical data to support the viability of our prototype would be a

lengthy process and is beyond the scope of this thesis. As a matter of future research,

however, it would be enlightening to conduct a study of how successfully this prototype

actually performs in teaching object oriented programming. Ideally, the study would

involve incorporating VOOL into the curriculum of classr)m first grade to college,

62

and would take place over the minimum of a year. A pilot program might have two groups

of students: those learning object oriented programming through traditional text-based

methods, and those using the VOOL approach. At various points throughout the study,

the two groups could be compared on the basis of how easily they assimilated and used

new concepts. how quickly they progressed from one level of difficulty to the next, and

how easily they were able to transfer skills from one object oriented programming

language to another. Data could also be gathered on whether one approach was better

than the other for a particular age group, or whether there was a universally preferred

method.

It is our hypothesis that, were such a study to be conducted, it would showcase

VOOL as the desirable approach, simultaneously applicable to all age groups, skill levels,

and degrees of application complexity.

63

64

APPENDIX A - USER COMMAND AND METHOD DEFINITIONS

A. MAINTURTLE METHODS

1. Init

Description: Initializes the pen to start drawing from a particular

position in the drawing area.

Input: Turtle; Two numbers (X-vertical displacement and Y-horizontal

displacement)

Output: Turtle

2. Move

Description: Moves the turtle in a forward direction based on the nature

of the present heading.

Input: Turtle; Number (distance to move)

Output: Turtle

3. GotoPos

Description: Moves the turtle to X and Y coordinates on the screen

without drawing a line regardless of current position.

Input: Turtle; Two numbers (X-vertical displacement, Y-horizontal

displacement)

Output: Turtle

4. TurnTo

Description: Turns the turtle's heading to the true compass direction

indicated in degrees.

Input: Turtle; Number (angle to turn to in degree)

65

Output- Turtle.

5. Turn Left

Description: Turns the Turtle's heading to left from the current heading.

Input. Turtle, Number (angle to turn to in degree)

Output: Turtle

6. Turn Right

Description: Turns the Turtle's heading to rigth from the current

heading.

Input: Turtle; Number (angle to turn to in degree)

Output: Turtle

7. PenUp

Description: Disables the pen from drawing.

Input: Turtle

Output: Turtle

8. PenDown

Description: Enables the pen to draw.

Input: Turtle

Output: Turtle

B. TURTLE_1

1. Polygon

Description: Creates any types of polygon (square, rectangle, circle etc)

depending on the user's inputs.

Input: Turtle; Side length; Number of sides

66

Output: None

2. Pen Color and Pen Size

These methods have not been implemented yet.

67

68

APPENDIX B - TURTLE GRAPHICS' SOURCE CODE

SPUniversal

Called before execution n Creates a new Drawing

begins. [L Window called CANVAS

Initial get canvas window

Shows the capabilities
of Main-Turtle's Demonstrates looping
methods .Bcapabilities

Draw Train Iteration

Draws squares, circles
triangles etc, depending
on input.

Draw Polygon

69

get canvas window 1:1

Application

Nurrent

Canvas Vindo...

S Canvas Window

SInitializes the Ends the drawing
drawing into the process.
canvas

!nit drawing end drawing

70

Canvas Window/init c

find-item
canvi

c-.b:f7/ egin-drwin- -a w- n g 2,2a

SCanvas Window/end

find -canvas

w -end-drawing

(find canvas 1:1

canvas

rfind-itemrn

7 1*

Main-.Turtle/lnit 1:1

'Cation oint-to-intsn

Ccat MOfteToM

Iý ocation~

turtle with new location~

72

oMain-Turtle/Turn Left 1:3

turtle degrees to turn
heading counterclockwise

7/)ead ing•

3610

new turtle heading

73

MainTurtle/Turn Left 2:3

turtle degrees to turn
heading counterclockwise

I 360

.P

new turtle heading

,ým

SMainTurtle/Turn Left 3:3

turtle degrees to turn
heading counterclockwise

new turtle heading

74

MainTurtle/Turn Right 1:2

turtle degrees to turn
heading rinht
in 4add degrees

eado uheading romht

ll36 Tl1

1/

ead

new heading

Main7Turtle/Turn Right 2:2

? y
turtle degrees to turn
heading right

~new heading

75

Main-Turtle/PenUp 1:1

turtle

SMain...Turtle/PenDown 1:1

turtle

TRUE

7rail

n

76

Nlain-Jurtle/Moue 1:1

turtle dist

et canvas window

unit rawi

erform move F

l/1end dravin

77

ZJperform move 1:1

tute4itac

inr

- Oe'a ion 78

compute coord 1:4

cj ? ? g

y dist x heading

0

90

uaandnt
X

y x

Jcompute coord 2:4

y dist x heading

90
1 Muadrant2

79x

79

Scompute coord 3:4

dist x heading

180

270

uadrant3

II Mlqm x)

Scompute coord 4:4

dist x heading 270

IIS

8 6 D

80

M2) quandranti 1:1

y dis heading

180

c rdist xn

I I

]3 convert-local 1:1

8!

- - m mi a 8 1

~Jquadrant2 1:1

y dist x heading 9

ocal-.convert

~Jlocal-convert 1:1

82

quodront3 1:1

y dist x heading

IS

~1conuertujuadront3 1:1

K313

~Jcompute coord 4:4

9y y
y Idist x heading 270

dis x

f,5 converL.Coor1:

~Jlocal move 1:2

yx Y, x

TRUE UX

uM oveToM33-)m LineTo

Slocal move 2:2

trail y x Y. x
is off

peveTop

85

Turtle-Il/Polygon 1:1

turtle side length numb sides

360

0g

I])polygon 1:1

turtle side angle numb
length sides

turtle dist

degrees
turtle to turn
heading right

/NOTurm Rfiphtvf

new heading

r///////•//////////////R6 //

Turtle-I/Pen Color 1:1

color

STurtle-I /Pen Size 1: 1

XwailVidth

*iut-t.-intsm

emSizea

Iteration 1:1

'Turtle1...

(230 210)

100 30
-- T-- 4. 7- 32

side sides angle -7-

"Mirtrotate

I]) rotator 1:1

turtle side numb anie iterations
legth sides to

rotate

88

89

90

91

92

LIST OF REFERENCES

[Abel 92] Abelson. H.. and Abelson, A., An Introduction Through Object Logo,
Paradigm Software Incorporated, 1992.

[Clay 88] Clayson, J., Visual Modeling with LOGO, The MIT Press Cambridge, MA
1988.

(diSe 85] diSessa, A. A., Principles for the Design of an Integrated Computational
Environment for Education, Laboratory for Computer Science, MIT Cambridge,
1985.

[diSe 86] diSessa, A. A., From Logo to Boxer, a New Computational Environment,
Australian Educational Computing, 1986.

[GF 87] Goldenberg, E. P., and Feurzeig, W., Exploring Language with LOGO,
The MIT Press Cambridge, 1987.

[Pape 93] Papert, S., Mindstorms; children, computers, and powerful ideas,
BasicBooks, A Division of HarperCollins Publishers, Inc, 1993.

[Shu 88] Shu, N. C., Visual Programming, Van Norstrand Reinhold Company Inc., 1988

[Terr 90] Terrapin Software, Inc. Why use Logo? An overview of Logo in Education, 1990.

[TGS 89] The Gunakara Sun Systems, Prograph Tutorial, 1989.

[TGS 89] The Gunakara Sun Systems, Prograph Reference, 1989.

[TGS 91] The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

93

94

BIBLIOGR.-APH1i

Abelson, H , and Abelson. A , A4n hIoductlion ihrough Olbect L.ogo.
Paradigm Software Incorporated, 1992

Chang, S , l'.rincqesx of 1',siual Programming Sisten.s, Prentice-Hall, Inc , 1990

Chang, S., Ichikawa. T, and Ligomenides. P A. ' tsual Languages. Plenum Press, 198o

Clavson, J., lisual A'Iodehing with L.6O, The MIT Press Cambridge, MA 1988

Cox, P T, Giles, F. R, and Pietrzykowski, T., Prograph: A Step Towards Liberating
trogrammringfrom Textuia/ Condinoning, Proceedings of the IEEE Workshop on Visual
Languages, 1989.

diSessa, A. A., Principles for the D)esign of an Integrated Computational
Environment for Education, Laboratory for Computer Science, MIT Cambridge, 1985

diSessa, A. A., 1rom Logo to Boxer, a New C om/)utational Environment,
Australian Educational Computing, 1986.

Goldenberg, E. P., and Feurzeig, W., Exploring Language with LOGO, The MIT Press
Cambridge, 1987

Papert, S., Mindstorms; children, computers, and powerful ideas, BasicBooks, A Division
of HarperCollins Publishers, Inc, 1993.

Shu, N. C., Visual Programming, Van Norstrand Reinhold Company Inc., 1988

Terrapin Software, Inc. Why use Logo? An overview of Logo in Education, 1990.

The Gunakara Sun Systems, Prograph Tutorial, 1989.

The Gunakara Sun Systems, Prograph Reference, 1989.

The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

95

96

INITIAL DISTRIBUTION LISI

Defense Technical Inform ation Center ..
Cameron Station
Alexandria, Virginia 22304-6145

" Library, Code 52
Naval Postgraduate School
Monterey. California 93943-5002

3. C hairm an, C ode C S .. 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

4. C. Thomas W u, Code CS/W u ... 2
Computer Science Department
Naval Postgaduate School
Monterey, California 93943-5002

5. Roger Stem p, Code CS/St ... 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

6. LCDR Em ily Black, USN ... I
Communications School
Cushing Rd.
Naval Education and Training Center
Newport, Rhode Island 02841

7. CAPT Thierno Fall, Senegal Army .. 2
Ambassade du Senegal
Mission Militaire
1825 Connecticut Ave, N.W. 216
Washington, D.C. 20009

97

