|
I

T

|

I

i
|

|
f
i

i 1' |
i

AD-Aﬁ’SS 977
|

NAVAL POSTGRADUATE SCHOOL

Monterey, California

ATIC

© OTE

THESIS ';:.m71994

EE

DESIGN AND IMPLEMENTATION OF VISUAL
OBJECTED-ORIENTED LOGO USING PROGRAPH

by
Emily M. Black
and

Thierno Fall

September 1994

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited

g4-34470 | m
0 R A 94

b

i
L

REPORT DOCUMENTATION PAGE Form Approved OMB No 0703 |

i

“Pubhc reporung burden for this collection ol informaton < estimuted 10 Average | hour Perresponsy. niiading Ing LNy 100 roviewing
!il!\SlIUCIlOZZ. searching existing data sources. gathening ang mi np the Sate needed. anc comviel
H:nt‘omwl:o:x Send comments regarding this burden estmate o0 .
fitor reducing this purden, te Washingion headgguarters yemn.ces Directorate tor intor

~ 4]

fDaves Highway, Suite 1204 Arungron, VA 22202430 2 anct we 0doe o Managemen: ane Buoger Paneswors Kesonouor Proves
JOTOS-0TE8 Wasraingion DO 20507

CoooLernon o

L OLET ASPEST 0 RS COLel o Saupeslions

anen Operatons ans Reports L 20° Jetterson

I

L

[\T AGENCY USE ONLY rLeave blank "2 REPORIT DALER FORFEPORT IYPE AND DATES L VERED

I igter L Ty

) epiember 1om \fasters Thesis

\r: TITLE AND SUBTITLE Design and Implementation of Visug! Chject-tinented 1 OGO TOPTNTYING NTUNVIEERS

Using Prograph (U

o AUTHORS By N Buaoa and Thieme ba,)

L =

" PERFORMING ORGANIZATION NAME(S1 AND ADDRESS(ES: s PERFORMING ORGANIZATION |

" Navai Postgraduate Scheo! REPOR T NUMBER i

\ Monterev (A 939435000 N

{5 SPONSORING MONITORING AGENCY NAME'S) AND ADDRESS(ES) 10 SPONSORING MONITORING !

i None AGENCY REPORT NUMBER |
N A |

11 SUPPLEMENTARY NOTES The views expressed in this thesis are those of the authors and do not retlect the official policy or
[posiier of the Department of Defense or the US Governmen:

T
[

12a DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, i2b DISTRIBUTION CODE
distnbution unlimited | A
|

13. ABSTRACT /maximum 200 words)

This thesis addresses the problein of how best to teach beginning programmers the necessary skills of object onented programnung.
I'here 15 no established method of introducing object oriented concepts such as encapsulation, inheritance. and polvmorphism, or
providing an intuitive progression trom simple programs to complex problem solving.

The approach was 10 use two commercially available programming languages which we consider exemplity good object onented
prograinmung techniques, 1o teach beginners how to program. We selected LOGO. which has been used succeesstully in the past as a first
programming language for children. Then we added the concepts of visual programming throught he use of Prograph. a language which
rovides a visual, object onented, dataflow environment.

The main result of our research 1s the design and implementation of a prototype language called Visual Object Oriented LOGO
(VOOL). VOOL 1s intended for use at all levels of education to teach problem solving, object oriented concepts, and fundamental
t:og.rammmg skills. VOOL was implemented on a2 Macintosh in the pictorial, iconic language of Prograph and fully supports the goals of

is thesis

14. SUBJECT TERMS 15. NUMBER OF PAGES
object onented programming, visual languages, LOGO, Prograph. tuniie graphics. classes, objects. 110
pnhentance. encapsualtion, polvinorphism
16. PRICE CODE

17 SECURITY 18. SECURITY i 19. SECURITY 20 LIMITATION OF

CLASSIFICATION OF CLASSIFICATION OF THIS ; CLASSIFICATION OF f\BSTRACT

REPORT PAGE | ABSTRACT | UL

Unclassified Unclassified ' Unclassified :

NSN 7540-01-280-5500 Stancarc Form 298 (Rev 2-89)

Prescnbed by ANS! Std 236.1R

Ay =1 for public release: distribution is unlimited

Design and Implementation of
Visual Object-Oriente.. LOGO using Prograph

Emily M. Black
Lieutenant Commander, United States Navy
B.A.. Wellesley College. 1979

and
Thierno Fall
Captain, © -1 Army
B.S..Lycee D¢ - .enegal. 1979

Civil Engineering. Poiy _.anic Senegal. 1985

Submitted in partial fulfiliment of the
requirements for the degr<e of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September, 1994

il

ul

M. Black

——daul

Authors: % (4} Mﬁ«ﬁ
Emil

Thierno Fall

Approved By: m

C. ﬁo{n Thésis Advisor

Roger ij ,rSccond Reader

Ted Lewis, Chairman,
Department of Computer Science

iii

v

ABSTRACT

This thesis addresses the problem of how best to teach beginning programmers the
necessary skills of object oriented programming. There is no established method of
introducing object oriented concepts such as encapsulation, inheritance. and
polymorphism. or providing an intuitive progression from simple programs to complex
problem solving.

The approach was to use two commercially available programming languages which
we consider exemplify good object oriented programming techniques, to teach beginners
how to program. We selected LOGO, which has been used successfully in the past as a
first programming language for children. Then we added the concepts of visual
programming through the use of Prograph, a language which provides a visual, object
oriented, dataflow environment.

The main result of our research is the design and implementation of a prototype
language called Visual Object Oriented LOGO (VOOL). VOOL is intended for use at all
levels of education to teach problem solving, object oriented concepts, and fundamental
programrning skills. VOOL was implemented on a Macintosh in the pictorial, iconic

language of Prograph and fully supports the goals of this thesis.

-

TABLE OF CONTENTS

I INTRODUCTION . e ettt 1
A . BACKGROUND ... e e e o]
B. OBJECTIVES . e e e 2
C.ORGANIZATION OF THE THESIS i 2
II. DESCRIPTION OF THE ORIGINALLOGO)
A.DESCRIPTIONOFLOGOcitiii e ii e e e o 5
1. Turtle Graphics 5
2. Sample Turtle Program 6
3. Functional Abstraction 8
B. LOGO OBJECT ORIENTED PROGRAMMING 10
LObject LOGO .. .o 10
2. LOGO Inheritance 12
3.LOGO Multiple Inheritance 13
4. Method Override 14
IILSTRENGTHS AND SHORTCOMINGSOFLOGO 17
A.STRENGTHSOFLOGO ittt i e e 17
1.LOGO s Modular 17
2.LOGO Supports Nesting 17
3.LOGO s Imteractive 18
4. LOGO Supports Graphics 19
5. LOGO Supports List Processing 19
6. LOGO Develops Problem Solving Skills 19
7. LOGO 1s a General Purpose Programming Language 20
B. SHORTCOMINGS OFLOGOottt it i 20
1.LOGO's Functionality, 21

2. LOGO's Object Oniented Concepts 21
a. Turtle's Abstract Data Type 22
b. Turtle’s Object Class 22
c. Inheritance 23
d. Data Abstraction, 23
IV. VISUAL PROGRAMMINGttt i i, 25
A. WHAT IS A VISUAL PROGRAMMING LANGUAGE? 25
1. Definition 25

2 History 2
B. ADVANTAGES OF VISUAL PROGRAMMING 26

vii

C. GOAL OF VISUAL OBJECT ORIENTED LOGO (VOOL)27
V.DESIGN OF VISUALOBJECTLOGO, 29
A. PROGRAPH AS A FOUNDATION i, .29

1. Prograph's Class System 30

2. Prograph's Attributes 32

3. Prograph's Methods 32
B.THE TURTLEASAMODELttt ittt 34

1. Turtle Class Hierarchy 34

2. Turtle Attributes and Methods 36
VI.IMPLEMENTATIONOFVOOL 39
A.OBJECTS AND CLASSES ... i i e e e i 39

1. Thename: 40

2. Theattnibutes: 40
J.Themethods: 40
B.INHERITANCE ittt ittt ieraenanennennnnn o, 4]

C. ENCAPSULATION/ABSTRACTION ... ittt ittt ieieiiininen 44
D.POLYMORPHISM ittt ittt it tn e inennnnen ., 50

E ITERATION .. i i i i ittt e s et iaenane 51

F o SELECTION .. ittt ittt ettt taiannen ., 53
VII. CONCLUSION AND RECOMMENDATIONS 59
A. VISUAL APPROACH: PROSANDCONS iiiiiiiiiiiiininnen .. 59
B.BUILDING THE PROTOTYPEttt iiiiiiiniinnnnnn .. 60

G ASSESSMENT .ttt it ittt tie et rieraeteenranenennen .., 61

D. RECOMMENDATIONS ... ittt ittt ci it aiinnae 62
APPENDIX A-USER COMMAND AND METHOD DEFINITIONS 65
APPENDIX B - TURTLE GRAPHICS' SOURCE CODE coen 69
LISTOFREFERENCES i ceel 93
BIBLIOGRAPHY i - 95
INITIAL DISTRIBUTIONLIST 97

viil

LIST OF FIGURES
1. Turtle Graphics Commands for Square Processcccceviviiiiiiininiiniinnciiinne 8
2. Object Instances of Turtle CLIFF and JEFFccccoooiiiiin 12
3. The Inheritance Hierarchy Relating HOPPER, FLYER, TURTLE 13
4. The Multiple Inheritance Hierarchy for BIRD ..o 14
5. Prograph's Graphical Class Hierarchycocoeiomeiiiininiiniiiniciie 31
6. Prograph's Attribute Definitionscoooeveecuiiiiiiinmiiiiiiiniie e 33
7. Prograph’s Method Definitionsccccceeeermimmiiimiceininineniciecnneee e 33
8. Turtles' Class HIETarchycoccoieoiiieeveericrinni ettt cseteessee e s senecesaneen 35
9. Main_Turtle's Attribute Definitionscccccoievviinimiuiininiiinenniniinnecireceeieneenne 37
10. Main_Turtle's Method Definitionscccoviviriniinnicnenincciiiieeee e, 37
11. Turle_1's Method Definitionscccecoervcvmnniiinnnnniinicninnnenesneesneecneeessssanee 38
12. Turtle_1's Attribute DEfINILIONSc.ccooceerevmirninniiniineinieeeenescessesseesseeeseessesssanns 38
13. Tteration FOT CirCle.... ..o oiiiiieiriieneineteneceteeneessrececneesseeteneerens sesneesessneesntasen aene 45
14, TURtIe_1 / POLYZOM «.coiiniierieieirreeecrencsnecrneceenntesscassesnes s et esne s saseessasameesesssassnnnns 45
15. POLYBOM ..coiiiinneeiiiieiieccreeeetteees s st eeesvanesssateesosbantaecsesstasesamassasssabassannmacensssssaeses 46
1O, SQUATE ..ottt cercsretee st resse s s s st e e s s s bt s s sss s s s bare s s sabaesssrnenes 46
17. DIAW TTAUN ettt raes e ssraressses e sse e e s st ssssansssmssessssssnnaennn 49
18. Tteration / POIYZONcoouriivreiiieirinenreecttstceieerteneresseesbesssee st e e mnesesesbesnnens 52
19. Iteration FOr POLYZOMN.....c..ccicviiiinrrrietiereencettnieneaeeseee e s reeseesene s enesssnenannne 54
20. ROLALOTooiiiiireiiiiitteriietitenccttae s s et e esssant e s esta s sssssastessesbtsssseneesassssbaesesssnseanassteens 54
ix

CIEration [CIrCle (oo et A
S CITCLES e e 56
. Compute Coord (SEIECION)cccoiiiiiiieiiiiiie e s e 58

ACKNOWLEDGMENT

This thesis has an international flavor, bringing together minds from the shores of Hong
Kong, Senegal Africa. and the tiny state of Rhode Island, (a foreign land in itself) We
wish to thank Dr. Wu, the Emperor of Enlightenment, for his invaluable guidance during
our months-long Ouest for the Thesis Grail. Professor Stemp, our second reader, also
deserves credit for his thoughtful suggestions for improvement, and for reading the

finished product without going cross-eyed.

Of course, our spouses, John Black and Aissatou F.Sabara, deserve special

reccgnition for admitting that they know us. Many thanks to both of them for their

unquestioning support, and their blind faith that we knew what we were doing!

xi

I. INTRODUCTION

A. BACKGROUND

In 1967 Seymour Papert introduced Turtle geometry with the development of the
programming language Logo at Massachusetts Institute of Technology. The initial intent
was to develop a computer language that would be both suitable for children, yet powerful
enough for professional programmers. Logo is described as having "no threshold" --
preschool children can use it -- and "no ceiling”" -- computer scientists can use it for their
work. The turtle is simply a computer-controlled cybernetic animal. It exists within the
cognitive Logo environment in which communication with the turtle takes place. Turtle
geometry is a computational style of geometry in which the turtle has its own position and
heading. It provides a straightforward meaning to attach to each individual procedure,
namely a picture. Children can identify themselves with the turtle and are thus able to
bring their knowledge about their bodies and how they move into the process of learning
formal geometry. The basic foundation for turtle geometry lies with the idea that specific
problems of interest to the novice can be tackled by simple programs.

Logo is a widely recognized programming language for children, designed to
develop both their problem solving skills as well as their general programming skills. The
language has met many of its original goals, but is somewhat outdated by today's
computer standards, especially as it does not integrate the concepts of object-oriented

programming.

B. OBJECTIVES

The purpose of this research is to study the benefits and shortcomings of the
programming language Logo, and to update it by proposing a fully visual programming
system which supports object oriented concepts. This system, titled Visual Object
Oriented Logo (VOOL), has the primary objective of providing an intuitive environment in
which students of all skill levels can learn the concepts of an object oriented language. The
visual, object oriented, data flow programming environment of Prograph was used for the
implementation of this prototype, because it provided the necessary base classes for
interface design, as well as the primitive operations for graphics drawing functions.

To meet our objectives, this thesis addresses the following issues: first, it provides a
description of the original language Logo, second, determines the merits and shortcomings
of the language Logo, and then suggests possible solutions to the shortcomings through a
prototype; third, evaluates the benefits of visual object oriented design; fourth, describes
the design and the implementation of the proposed prototype; and finally, identifies the
targeted users of the upgraded Logo language. Each specific issue will be developed in

detail throughout later chapters.

C. ORGANIZATION OF THE THESIS

Chapter II of this thesis describes the original Logo language, followed by the

objectives, strengths and shortcomings of Logo in Chapter III. Chapter IV contains the

goals of visual object-onented Logo Chapter V' discusses the design of the prototvpe.
then Chapter V1 focuses on the prototvpe's implementation. including amphfving

examples Finally, Chapter VII summarizes the research and provides conclusions and

recommendations

I1. DESCRIPTION OF THE ORIGINAL LOGO

l.ogo was developed at the Massachusetts Institute of Technology under the
direction of Seymour Papert Papert's intent was to create a "mathland” where students

could actively explore mathematical concepts.

A. DESCRIPTION OF LOGO

Logo is a full-featured computer language derived from Lisp, the language of
artificial intelligence. Logo was developed to be both powerful and easy to use, hence it is
found in educational settings from kindergartens to universities. Although the language
itself is not limited to any particular subject, it is most commonly used for exploring
mathematics, since Logo's turtle graphics provide a natural mathematical environment. In
particular, it is an ideal tool for studying geometry through manipulating the turtle to draw

various shapes.

1. Turtle Graphics

Logo's best-known feature is the Turtle, a triangular cursor used to create graphics
in a programming area called Turtle Geometry. Originally, the Turtle was viewed as a
computer-controlled "cybernetic animal" that leaves a trace on the display screen and
responds to Logo commands to make it move or rotate. The motion of a pen on a sheet of

paper is simulated by commanding the Turtle to move FORWARD, or to turn LEFT or

RIGHT The user specifies how many units to move ahead. or how many degrees to turn
As the Turtle moves (FORWARD, BACK) or rotates (RIGHT, LEFT), it leaves a trace
of its path, and in this way can be used to make drawings on the display screen Even
young children can quickly iearn to move and turn the Turtle using easily-remembered.
intuitive commands, and can generate quite detailed pictures. Using these commands, a
child can explore the properties of regular planar shapes ranging from simple squares.
triangles, and hexagons to complex patterns reminiscent of the designs made by
Spirograph drawing wheels.

Turtle space is defined by the dimensions of the screen on which the graphics will
appear. Screen dimensions are generally stated as x and y axis coordinates representing
horizontal and vertical positions respectively, and with the ongin at x = 0, y =0 The
Turtle can then be moved around the screen using one of two possible frames of reference.
In the first method, the user specifies an x-y position on the screen, and the Turtie moves
directly to that point regardless its current location or heading. Alternatively, the user can
specify distances to move and angles tc turn, which are then executed based on the
Turtle's current location and heading. Basically, the first method uses the grid origin as the

reference point, and the second method uses the Turtle itself as the reference point.

2. Sample Turtle Program

The commands FORWARD and BACK require an input from the user to specify
how many units the Turtle should move in the indicated direction. The commands RIGHT

and LEFT require the number of degrees that the Turtle should rotate. For example,

typr 8 FORWARD SO moves the turtle forward SO pixels (screen dots). and tvping

RIGHT 90 turns the Turtle 90 degrees clockwise

If we consider maneuvening the Turtle to draw a square, the following commands

must be executed

1

2

8

FORWARD 50

RIGHT 90 that completes the left side of the square.

FORWARD 50

RIGHT 90 that completes the top side of the square.
FORWARD 50

RIGHT 90 that completes the right side of the square.
FORWARD 50

RIGHT 90 that completes the bottom side of the square.

By combining these steps with the command REPEAT, the same square can be

drawn using only one line of code.

REPEAT 4 [FORWARD 50 RIGHT 90]

1. FD 50 RT %0
2. FD S0 RT 90 !

3. FDSORT % 3!

4. FD S0 RT 90

-or-

REPEAT 4 [FD 50 RT 90)

Figure 1: Turtle Graphics Commands for Square Process.

3. Functional Abstraction

Due to Logo's extensibility, the user can add new commands by creating short
programs or sets of instructions called procedures. Some procedures can call other
procedures as their helpers to solve a new general problem. Each procedure has a name
which is used as the shorthand for calling all lines of code within it; this is a form of
encapsulation. Once you have defined a procedure, it becomes part of the computer's
working vocabulary and can be used as if it were a primitive. Building a library of
procedures encourages code reusability and facilitates more time-efficient coding of future
programs. Procedures can be viewed as the building blocks of larger programs.

A procedure is composed of three parts: a title line, which consists of the word TO
followed by the name you chose for the procedure, a body, which is the sequence of

commands that comprises the definition; and the word END which indicates completion of

the procedure Simplv typing the name of the procedure tells Logo 1o automatically
execute each line of the procedure in turn, just as if vou had tvped them individually on the
keyboard

For example, here is the procedure that will draw our familiar square

TO SQUARE
REPEAT 4 [FD 50 RT 90}

END

Now, to draw a square, you only need to type the single word SQUARE.
Whenever you use this command, the turtle draws a square with side S0. You can use
SQUARE just like any other Logo command, even including it in other procedures.

Generalizing a procedure can add to the command's power by giving the user more

control and flexibility. You can change the definition of SQUARE to enable it to draw

squares of all different sizes. The new SQUARE procedure takes an input that allows the

user to specify the desired length of a side:

TO SQUARE :SIDE
REPEAT 4 [FORWARD :SIDE RIGHT 90]

END

The procedure is evaluated just like any Logo command that takes an input. that is.

to draw a square of side 25, you type SQUARE 25.

B. LOGO OBJECT ORIENTED PROGRAMMING

1. Object LOGO

The original Logo Turtle did not support object oniented programming concepts. It
was designed as an educational tool of considerable power and wealth of expression, to be
used easily at any level of the educational system.

As object oriented programming became an increasingly powerful and popular
programming methodology, Object Logo was introduced as a type of object oriented
system. Object Logo includes all the features found in original Logo, but goes beyond
them in incorporating the concepts of object oriented programming.

Object Logo supports two of the most basic concepts in object oriented
programming: objects and inheritance. An object is a collection of procedures and data
that works together to implement some kind of behavior. An object's procedures represent
the things that the object knows how to do. Once you have defined a type of object, you
can make multiple copies, (also called multiple instances), of the object to produce
multiple creatures that have the same behavior. Object Logo's data objects include not

only numbers and character strings, but also compound structures. Since Object Logo

10

procedures can themselves be represented and manipulated as lists. users attain
considerable direct control over the way commands are interpreted

The Turtle is an easily understood example of a Logo object, so we will focus
primarily on Turtle objects and the methods inherited from them. The best way to show
how objects behave in the Logo environment, is to create several Turtles and make them
interact. To create a new object, you can use one of two Logo commands: KINDOF or
ONEOF. The difference between the two commands is that. with KINDOF, you must
explicitly ask the object to EXIST in order to initialize values for the object's variables,
ONEOF will automatically make the object EXIST [Abel, pg. 99]. For example, you can
create a Turtle named JEFF to be a KINDOF Turtle, and ask JEFF to EXIST. (To
indicate a word in Logo, you type the character string prefixed by a quotation mark). At
this point you can give commands to JEFF, using ASK to indicate which object you're

asking:

MAKE "JEFF KINDOF TURTLE
ASK JEFF [EXIST]
ASK JEFF [FORWARD 100]

ASK JEFF [LEFT 45)

TALKTO is another way to issue commands to an individual object. Once you

specify the particular object you're talking to, all commands go directly to that object until

11

you specify otherwise The following example shows the interaction of two instances of
Turtle named CLIFF and JEFF; each of them was asked to draw a square (The two
objects were created prior to the TALKTO commands, and CLIFF was forwarded 100

units, while JEFF was turned 45 degrees then forwarded 100 units).

TALKTO :CLIFF Y
SQUARE 30

TALKTO :JEFF

SQUARE 20

Figure 2 : Object Instances of Turtles CLIFF and JEFF.

2. LOGO Inheritance

Inheritance is the ability to define new kinds of objects in terms of
previously-defined objects. Figure 3 shows an example of the inheritance hierarchy relating
three objects named Hopper, Flyer and Turtle. Turtle is said to be the parent of Hopper
and Flyer. Whenever you ask an object to perform a command, the object first checks to
see if it has a command by that name. If none is defined, then it checks its parent, then its
parent's parent, and so on. For example, a Flyer knows how to SWOOP because SWOOP
was defined for Flyer, whereas a Flyer knows how to FORWARD because its parent,

Turtle, knows how to FORWARD and the trait was inherited.

12

TURTLE

FORWARD
LEFT
RIGHT
BACK

HOPPER FLYER
MOVE MOVE %
SPIN SWOOP ‘

Figure 3 : The Inheritance Hierarchy Relating HOPPER, FLYER, TURTLE.

3. LOGO Multiple Inheritance

Inhenitance rules can be more complex when an object has multiple parents. For

instance, you can make a Bird that is both a kind of Hopper and a kind of Flyer.

MAKE "BIRD KINDOF (LIST :HOPPER :FLYER)

This example shows that you can make something with multiple parents by giving
KINDOF a list of parents, rather than just a single parent. As you car: see on Figure 4, a
Bird can go FORWARD, BACK, LEFT, and RIGHT, (which it inherits from Turtle); a
Bird can SPIN, (which it inherits from Hopper), and a Bird can SWOOP, (which it inherits

from Flyer). A potential conflict exists, since MOVE is inherited from both Hopper and

13

Flyer and might contain disparate definitions The conflict is resolved by a rule requiring

Bird to MOVE like Hopper, because Hopper was the first parent named in the list

| TURTLE
| FORWARD
LEFT
RIGHT
| BACK
HOPPER FLYER
MOVE MOVE
SPIN SWQOOP
BIRD

Figure 4: The Multiple Inheritance Hierarchy for Bird.

4. Method Override

An object and its parent might both have methods with the same name. In this case,
the object will use its own method definition, rather than that of its parent. In Logo, if you
need to explicitly refer to the parent's method vice the object's method, you use the dot
notation with the prefix USUAL. For example, you can make a new object, Creeper, that
is a kind of Turtle, and teach it to go FORWARD differently than a regular Turtle, as in

the second line:

14

___'__ﬁ

MAKE "CREEPER KINDOF TURTLE

ASK :CREEPER [TO FORWARD DISTANCE]
REPEAT :DISTANCE [USUAL.FORWARD 1]

END

The notation USUAL.FORWARD in the third line indicates that the procedure

definition for FORWARD should be used from a parent object. This concept of referring

to a specific method definition using the dot notation is called method overriding.

15

16

IIILLSTRENGTHS AND SHORTCOMINGS OF LOGO

Logo is a language that encourages students to explore, learn, and think In the
following sections, we'll discuss some characteristics that contribute to its success, then

identify some of its limitations.

A. STRENGTHS OF LOGO

1. LOGO is Modular

A Logo language program is not necessarily written as one large unit. Rather, it can
be divided into smaller pieces, and a separate procedure can written for each piece. A
procedure is a group of one or more instructions to the computer that the computer can
store to be executed at a later time. Logo users start with a vocabulary of primitives and
use them to develop new procedures to add to the vocabulary. Procedures can
communicate among themselves via inputs and outputs, and each new procedure becomes
an extension of Logo. Figures 1 and 2 provide an illustration of building procedures and

procedure calls using SQUARE.

2. LOGO Supports Nesting

We've already seen the use of the Logo REPEAT command to repeat a series of
steps for a specified numbers of times. Another way to cause repetition in Logo is to

define a procedure that includes a call to itself as the final line. This is called recursion and

17

is very useful because it allows an mvolved problem to be described in simple terms For
example, you can make the Turtle move in a square pattern over and over again until

explicitly stopped.

TO SQUARE :SIZE
FORWARD :SIZE
RIGHT 90
SQUARE :SIZE

END

In this case, the definition of SQUARE is "go forward, turn right, and do SQUARE
again " One disadvantage of this particular SQUARE, as opposed to REPEAT, is that it
goes on indefinitely and so is not a good building block to use in making complex
drawings.

When used properly with a stop condition, recursive procedures are a powerful tool
which can be used to obtain complicated effects, but they are also much harder to

understand and handle.

3. LOGO is Interactive

Any Logo command, whether built into the language or defined as a procedure, can

be evaluated by simply typing the command at the keyboard. It is easy to change or

18

correct a procedure in Logo, because the editing process is designed as part of the

language.
4. LOGO Supports Graphics

Turtle graphics allows users to order a Turtle to move forward or backward and
turn left or nght. As stated previously, the Turtle can leave a trace, or it can move without
a trail. With simple commands, the user can "teach" the turtle to draw very complex
drawings. These drawings can be created with or without reference to any coordinate

system.

5. LOGO Supports List Processing
Logo provides operations for manipulating character strings that Logo calls
"words." Logo also has the ability to combine data into structures called "Lists." These

lists can be used to create very complex data structures.

6. LOGO Develops Problem Solving Skills

Logo's best known feature is the Turtle. By identifying themselves with this object,
even children can use their knowledge of how a turtle behaves to move it across the
screen. Children learn to program in Logo by experimenting with maneuvering the Turtle.
Thanks to the turtle, Logo becomes very friendly and easy to understand, and offers
immediate feedback through helpful messages. Many studies have been conducted in
classrooms from kindergarten to elementary school, researching how Logo helps children
develop their problem solving abilities. Results show that children using Logo exhibit

statistical gains over non-Logo users.

19

Children who draw pictures with a Logo turtle unconsciously assimilate important
mathematical concepts such as angles and estimation. In addition, by telling the Turtle to
go forward 1000 units, forward 200 units, and left 30 degrees, many children are using
number in a meaningful way for the first time; they receive feedback on the relative sizes

of numbers that they never get doing school arithmetic [diSe 86, pg. 9].

7. LOGO is a General Purpose Programming Language

The primitives and concepts of the language are encountered in the context of
working procedures. Completely predefined procedures are presented to the beginner, to
be typed into the computer and used. In fact, experimenting these pre-written procedures
is a good way of learning how they work. This approach is not prescriptive, in that
students are allowed to develop their own way of grouping the primitives. The procedures
presented are carefully chosen and deliberately ordered to illustrate particular concepts,
increasing in complexity as the student progresses. By reading, using, modifying, and
extending these procedures, the beginner can develop his or her own understanding and

knowledge of the language and of programming concepts in general.

B. SHORTCOMINGS OF LOGO

Despite Logo's benefits and successes in the educational environment, we think there
still exist some limitations of the language. This is primarily due to the fast development of

today's computer standards, especially the emergence of object oriented programming.

20

1. LOGO's Functionality

We think that the power of Logo is limited by constraints on the amount of
memory, and constraints of the processing power that, in part, forced Logo's designers to
slight some areas. Logo is limited in building large structures and abstract objects that are
difficult to manipulate. Logo is a list-based interpreted language where each line is
processed as it is entered into a work window.

We also believe that Logo's syntax and semantics could be improved. For example,
Logo includes only two limited conditional expressions for allowing users to write
programs that perform test controls. The first expression is IF <condition> <action>: if the
test condition is true, then the action is executed. A variation is IFELSE <condition>
<action1> <action2>: if the test condition is true, then actionl is performed; otherwise,
action2 is performed. The second expression is TEST <condition> IFTRUE <action]>
IFFLASE <action2>: this tests a condition to be used in conjunction with IFTRUE and
IFFALSE. These conditional expressions are only useful for basic test cases, but are not
powerful enough for complex test operations.

The REPEAT command of Logo and the recursive procedures for executing
multiple operations are also only useful for basic operations, due to the limitations of the

control loop.

2. LOGO's Object Oriented Concepts

The original Logo was an early programming language, developed before the

growth of object oriented programming languages. Object oriented programming (OOP) is

21

a data-centered view of programming in which data and behavior are strongly linked Data
and behavior are conceived of as classes whose instances are objects In the original
Logo, the concepts of object-oriented programming are poorly defined in that there is no
specific link between data and behavior, and there is no distinction between object and
class.

a. Turtle's Abstract Data Type

In Logo, the user doesn't have access to the Turtle's attribute types nor to its
predefined operations. This lack of access to the Turtle's data structure makes it difficult
to explore the object oriented features. The user interacts with the Turtle only through the
editor where he types a set of instructions and sees the result on the display screen. In our
prototype, however, the user has the opportunity to check, and modify if necessary, the
different attributes and methods that characterize the turtle. At run time, the user is not

only able to see the data being input, but can also evaluate or modify it.

b. Turtle's Object Class
The concept of an object in Logo can lead to confusion, because Logo does not
define the concept of a class. Although objects and classes are two different notions, there
is a distinct relationship between them. In our model, a class defines a type of object and a
set of operations associated with that object. An object of a class is referred to as an
instance of that class. The object is defined in terms of its attributes and methods. Even

though a system class with its inheritance hierarchy is clearly predefined in the Prograph

22

environment, the student should be able to define his or her own object class with its own
characteristics, without being forced to link it to an existing object class

¢. Inheritance

Although the concept of inheritance is defined in Logo, the type derivation
mechanism 1s in a nigid form. The fundamental idea behind inhenitance is code reuse, yet in
Logo the user does not have any control over which components are inherited This
significantly limits the flexibility and practicality of reusing code. In addition, the language

does not have a specific system class available to the user for modifications.

d. Data Abstraction

Logo has strong functional abstraction because all the low level impiementation
of commands and instructions is hidden from the user. The notion of data abstraction,
however, is not specifically addressed, thus preventing the student from accessing beyond
the command line level. This notion of data abstraction is clearly described in our system,
allowing the user to access precisely what is needed to perform the job, and to modify the

underlying code, if necessary.

23

24

IV. VISUAL PROGRAMMING

A. WHAT IS A VISUAL PROGRAMMING LANGUAGE?

1. Definition

Visual programming is a very general term with no consensus on exactly what it
means. Visual programming languages have many forms and methodologies, depending on
the application for which they will be used. Chang segments visual languages into the

following four classifications:

¢ languages .t support visual interaction;
¢ visua! programming languages;
¢ visual information processing languages, and

¢ iconic visual information processing languages.

Visual Object Oriented Logo (VOOL), implemented using the Prograph environment, falls
into the fourth category.

In the context of this thesis, a visual programming language is defined to be "a
language which uses some visual representations (in addition to or in place of words and
numbers), to accomplish what would otherwise have to be written in a traditional

one-dimensional programming language.” [SHU, pg. 138].

25

2. History

Text-based programming languages developed in parallel with computer hardware.
and have been significantly influenced by the organization of this hardware As a result,
these languages are oriented towards simple, character-based input and output, and are
generally sequential in structure. In addition, they tend to rely on a combination of
mathematical formulas and natural language, resulting in a complex, inflexible syntax. The
advent of sophisticated, high resolution graphics and user interfaces has made possible the
direct use of pictures in programming. Pictonial programming has become a highly
researched area, and visual languages are shaking free from the legacy of traditional

programming approaches.

B. ADVANTAGES OF VISUAL PROGRAMMING

In many situations, people frequently prefer pictures to words. Pictures can be very
powerful, conveying information succinctly without loosing the primary message in a
padding of verbiage. Most importantly, pictures can bridge language barriers, or in the
case of youngsters, can bridge reading ability barriers. In the arena of computer science,
visual programming is an emerging new field for precisely these reasons. Its growing
popularity is aided by the falling costs of graphics related hardware and software.
Beginning programmers, and children in particular, usually face a large gap between the

idea they want to implement and knowledge of the syntax and semantics of a text-based

26

programming language It is difficult enough for beginners to analvze a problem, without
getting bogged down in how to solve it using linear code. A visual language supports
beginners with a premade vocabulary and system defined icons, which assist in organizing
thoughts and structuring the program. For example, in linear programming. something as
simple as incrementing a counter may require interspersing statements into three or four
separate places in the program. Computer architecture is driving the code writing, rather
than what is the natural way for a beginner to approach the problem. Intermingling code in
this manner tends to blend the structure of the program, obscuring how different
components of the problem solution interrelate with one another. Visual programming
represents individual components with separate icons, thus enabling the beginner to
actually see the interconnections between various parts of the program. The beginner can
then manipulate and connect the vanous icons without confusing the two issues of
structure and function. This is particularly beneficial when there are multiple connections

to a given icon.

C. GOAL OF VISUAL OBJECT ORIENTED LOGO (VOOL)

Our goal is to design an environment suitable for all levels of computer literacy, in
which a student can learn the concepts of object oriented programming in an intuitive
manner. VOOL combines the advantages of object oriented languages with the benefits of
visual programming described above. As a visual language, it is more intuitive for the

beginner, and as an object oriented language, it incorporates the main OOP concepts of

27

inhentance, polymorphism, and encapsulation VOOL supports code reuse and will
ultimately reduce the time needed to implement solutions

VOOL programs are built by pointing, moving and copying, with only minimal
labeling. This reduces the typical syntactical errors which commonly consume the time,
energy and patience of beginners. Once students are largely relieved of the mechanics,
they can then concentrate on mastering the concepts of object ortented programming. To
this end, VOOL provides a kernel class, in our case called Main_Turtle, which can be
used to experiment with object oriented features. As the beginner progresses to more
advanced levels of understanding. he can create his own classes and write his own

methods.

28

V. DESIGN OF VISUAL OBJECT LOGO

This chapter addresses three issues: first, characteristics of the programming
language Prograph, which we used for the design and implementation of our model;
second, a description of the model; and third, examples of key object oriented

programming concepts.

A. PROGRAPH AS A FOUNDATION

This section's intent is not to teach the concepts of the visual programming
language Prograph, but rather to provide a basic understanding of its programming
environment.

Prograph is a fully visual, object oriented dataflow language developed in the early
1980's and implemented on the Macintosh platform. It is an object-oriented language that
defines objects and methods with icons, offering an option to text-based programming
languages such as Logo. Prograph supports a highly visual programming system which has
multiple windows for viewing program execution states, visual syntax editors for
designing program data structures, and graphical expressions in the windows themselves.
The major categories of operations are assigned icons, which are then connected to create
the code; :he result is code in the form of a diagram of icons.

The language interpreter allows the user to see the results of execution immediately,

while the compiler builds complete stand-alone applications. This is in keeping with

Prograph'’s stated purpose of providing a programming environment which is intuitive and
easy to use, but which also preduces effective, useful programs. Prograph provides a
mixture of high and low level routines, even including some Macintosh system calls for
advanced interface programming. As a complete language, Prograph satisfies a wide range

of different programming requirements.

1. Prograph's Class System

A class in Prograph is defined as a type of object and a set of operations associated
with that object. The object is defined in terms of its attributes, while operations on that
object are defined in methods of that class. An object of a class is referred to as an instance
of that class.

Figure 5 shows the Prograph class system which provides a mean for constructing a
new class from an existing one, via the mechanism of inheritance. Each Prograph class is
represented by an hexagonal icon displayed in the class window. The lines connecting
individual classes within the hierarchy represent the inheritance links between various
classes. The left side of a class icon contains the attributes of that class, and the right side
contains it associated methods. All object oriented programming applications start out
with these minimum template classes.

A new class icon is created by clicking inside the class' window. The newly created
class is given a unique name and is defined by adding the appropriate attributes and

methods related to that class.

30

@ Classes

@@

@Ez

Edit Text Button

&

Scroll Text

Appheatlon Menu Henu Item Vlndov Item deov

@@

Text Canvas Chck Item Scroll List

@@
Radio Set Check Box ra Inc

Pop—up Menu '°°"

Figure 5: Prograph’s Graphical Class Hierarchy

31

2. Prograph's Attributes

An attribute is a named slot for holding a value, and an attribute's name must be
unique within the class. Figure 6 shows the results of double-clicking on the left half of the
class icon. There are two types of attributes: an instance artribute is represented by an
inverted triangle, and can have a different value for each instance of the class; a class
attribute is represented by the hexagonal shaped icons above the thin line, and has one
value which is shared by all the instances of the class. Inherited attributes have a
downward pointing arrow inside the inverted triangle. Attributes can be assigned initial
values by double-clicking on the icon and changing the value in the attribute editor. In
addition to simple data types, attributes can also be instances of other classes that already

exist as a composite object in Frograph.

3. Prograph's Methods

A method is a procedure or function associated with an instance of a class. As
shown in Figure 7, methods are represented by an icon that contains a small dataflow
diagram. A method is activated by double-clicking on the icon, at which point new code

can be written, or existing code can be read. A methods name should be unique.

32

V Application

<<Applicatio...

current
NULL

Q

front

\'4
name
NULL

v

owner
FALSE

N\

active?
NULL

\%

menu bar

)

Figure 6: Prograph’s Attribute Definitions

Application

All events
are passed

Handles command keys
and menu selections

1]

Notify ‘o this method

ﬂ l“ in the menu bar

Mouse Dowsand in the desktop.

About

Modify this method
to show your
about dialog.

Handles mouse down events

Menu Click
Returns the
front window

or NULL

Front ¥indow

Update Menus

Modify this method

to update your menus.

)

Figure 7: Prograph’s Method Definitions

33

B. THE TURTLE AS A MODEL

The design and implementation of the prototype for this thesis is based on creating
a Turtle object with specific attributes and specific messages, each of which can be defined
by the user. The Turtle itself is split into two levels of complexity: first, the Main_Turtle
has basic methods such as Move, GotoPos, TurnTo, PenUp, etc.. second, Turtle 1
contains additional behaviors such as making squares, polygons, circles etc. All the
methods are fully defined in Appendix A.

A beginning programmer can relate to the idea of steering a miniature Turtie around
on the screen, and this lays the groundwork for introducing the underlying concepts of
object oriented programming.

1. Turtle Class Hierarchy

The design of the class hierarchy was based on the need to create Turtle objects
that would have the necessary attributes and methods common to all subsequently created
Turtle objects. This design includes the drawing window which is used by all existing

Turtles for graphical display. Figure 8 shows the Turtle class hierarchy.

34

@2 Classes
ud
o
Application Menu Hen t em H’iov Yindow Item
. Opens the canvas that allows
1
@@ I::r:: ;zr;tt:;:rb a;i:hwh the display of the Turtle's
. commands :initialization, drawing .
Main_Turtle Move, GotoPos, TurTo,]
Turn Left, Turn Right, Canvas Yindow
PenUp and PenDown.
v Subclasss of MAin_Turtle which
inherits the basic commands, and
Turtle_1 contains the additional commands:
Polygon, Pen Color and Pen Size. E

Figure 8: Turtle Class Hierarchy

35

2. Turtle Attributes and Methods

Figures 9 and 10 show the graphical representation of the Main_ Turtle's class
atiributes and methods; they contain the necessary framework to define specific Turtle
instances. In addition, Main_Turtle serves as the superclass for all subsequent Turtle
classes, commencing with Turtle 1 which is a subclass with extended features. Each
attribute tvpe 1s initialized to a constant value for Main_Turtle, then set to a default value
for Turtle |. Turtle_1 inhenits all of its superclass’' methods, as well as providing
additional ones of its own to support more complex needs. Figure 11 shows these
additional methods.

Each Turtle object has some basic characteristics to support the drawing routines:
the name that identifies it; its location on the drawing screen; and the direction it is
heading. Turtles have other features such as setting the color of the pen, setting the width
of the pen, and seiting the pen on and off. These -ncthods are completely defined in

Appendix A.

36

V Main_Turtle

NULL

v

hame
{200 200}

location
0

\Y

heading
{11}

Y

tailvidth
"Black"

vV

trailColor
TRUE

V

Trail On?

< =

Figure 9: Main_Turtle’s Attribute Definitions

Main_Turtle

GoToPos Current position; does not draw
a line.

Turn Left

Penl

Initialize the pen to vahe
drawing ability

input : turtle

Output: turtle

Moves to the x, y coordinate
on screen, regardless of

Input: x, y coordinate

Turns left from the current
heading.
Input : Degrees

Disables the pen from
drawing.
input: turtle
Output: turtle

Moves the turtle in a

2

Move onpresent heading.
Input : Distance
_1 Turns to the true compass
L— direction indicated.
TurnTo [nput:Degrees

@ heading.

Turn Right input: Degrees

Input: turtie
PenDown Output: turtle

forward direction, based

Enables the pen to draw

Turns right from the current

=

<

Figure 10: Main_Turtle

37

=

’s Method Definitons

Turtie_1

2]

Pen Color

Changes the pen color.
Input : Color

Forms any polygon,
(e.g. square, circle)

Polygon Dased on user input.
Input : Side length,

Number of sides

Changes the thickness of the line.

l Line works like a calligraphy pen.

Pen Size Nput:Height, Width

=

<

|2

Figure 11: Tu

rtle_1’s Method Definitions

V Turtle_1

NULL

v

name
NULL

\

location
0

v

heading
NULL

M

tailwidth
NULL

M

trailColor
TRUE

M

Trail On?

A%

&

)

Figure 12: Turtle_1’s Attribute Defi nitions

38

e

VI. IMPLEMENTATION OF VOOL

Object oriented programming (OOP), a data-centered view of programming in
which data and behavior are strongly linked, is the programming methodology of choice in
the 1990s. The goal for all OOP languages is to provide faster development, improved
reliability and quality of end products, and easier maintenance and extension. The main
objective of implementing Visual Object Oriented Logo (VOOL) is to teach the concepts
of object-oriented programming: objects, classes, inheritance, abstraction/encapsulation

and polymorphism.

A. OBJECTS ANT _ASSES

It is natural to view the world as a collection of objects. Even children too young to
program can see, feel, and differentiate between many objects every day. For the beginning
programmer, objects provide an intuitive means of organizing thoughts and relating a real
world problem to the program to be written. From prior every day experience, the
beginner understands that objects have individual characteristics and behaviors, and that
they can communicate with each other. From there, it is a natural step to cluster similar
objects into groups, called classes.

A class is an abstraction of a specific group of objects which share common

characteristics. As a minimum, a class includes the following:

39

1. The name:

Each class must have a unique name for reference purposes.

2. The attributes:

A set of features for the class are called attributes. Each object will acquire the same
set of attributes, although the actual data values contained in these attributes can vary from
object to object.

3. The methods:

A library of behaviors for the objects in the class are called methods. The methods
are the operators which the class objects are capable of performing, and typically have a
number of arguments, or parameters. Although each object has access to every method in
its class library, it does not necessarily need them all for a given application.

The class serves as a template for objects which have not yet been instantiated, and
identifies the skills and behaviors to be expected when an object is instantiated in the
course of writing a program. Classes provide the ability to generalize from a few specific
cases to a category of similar cases. In addition, attributes and methods common to all
members of the class only need to be stored once, rather than repeated for each object.

Figure 8 shows the three features of a class in our implementation. We created a
class and named it Main Turtle. The diagram represents its attributes with a triangle and its
methods with a square. These attributes and methods are then further defined in Figures 9
and 10. Whenever the user wishes to create an instance of this class, he/she knows exactly

what the attributes will be and which methods will be available for manipulation.

40

In our implementation, only one object per class may be displaved at a given

time in the active window. Initially, this ensures that the programming environment :s kept
simple and the beginner is not overwhelmed with complex options. A more advanced user,
however, might appreciate the ability to have multiple objects of the same class. e g two
or three turtles, active in the window at the same time, or even multiple objects from
different classes. This would provide the opportunity for objects to interact with each

other.

B. INHERITANCE

Inheritance is a powerful tool in object oriented programming, enabling the
construction of new classes based on the existing hierarchy. The necessity to redesign and
recode is reduced, resulting in code reusability and timelier, more efficient programming.
In addition, inheritance provides a logical structure for organizing information. Designing
a well-defined inheritance hierarchy can assist the beginner in analyzing a problem and
programming a solution.

New classes, called subclasses, inherit the methods and attributes of the class above
it in the hierarchy. These subclasses can then be specialized by extending their behavior
and representation, thus tailoring them to the application at hand. Inheritance means that
methods defined in the parent class, (and all ancestor classes), are automatically part of the
subclass without needing to repeat the code. One way to specialize a subclass, however, is

to override an inherited method. This is achieved by using the same method name, but

41

wrting different code. the new code applies onlv to that subcle (o anv tuture
descendants of it). For example, there could be a method named "“love Shape”. which iy
located fairly high in the inheritance hierarchy. Moving a squua': and moving a circle
require slightly different code for execution, so Move_Shape coula be specialized at
subsequent levels in the heirarchy to fit the specific situation A message to an object will
execute the most recently defined method of that name Onlv upon failing to find the
appropriate method in a class, will the message search higher in the hierarchy until it finds
the matching nam..

So far, this discussion has dealt only with single inhentance, meaning that each
subclass has one and only one immediate parent class. It is also possible for a class to
inherit from two or more parent classes; this is called multiple inheritance. The resulting
subclass contains the union of its parents methods and attributes, as well as any new
methods and attributes defined for that subclass.

Although multiple inheritance may be desirable in certain rare cases, it significantly
complicates the structure of a program and can lead to inheritance conflicts. For example,
two methods with the same name but different code may inadvertently be combined in one
subclass. To guard against such an occurrence, effort must be diverted from productive
code writing and expended on conflict resolution strategies. It is our opinion that multiple
inheritance has more drawbacks than benefits; it is better to restructure the program and

avoid it completely.

42

Figure 8 shows the inheritance hierarchy for our implementation Main Turtle. at
the top of the hierarchy, contains what we considered to be the core capabilities and
attributes needed for a turtle object, (Figures 9 & 10). With these features, a beginner has
an object on the screen which he can then manipulate with simple visual code Each piece
of code has a direct effect on the object, for example turning it right or left, thus providing
satisfying feedback to the beginner. When the beginner is ready for additional capabilities,
he can progress to the next level in the hierarchy.

Turtle_1 is a direct descendant of Main Turtle, and inherits all of its attributes and
methods. As Figure 12 indicates, however, Turtle 1 does not inherit the actual values of
the attributes; rather, they are reset to null or a default setting. Turtle 1 does inherit the
ability to perform all the methods defined in Main Turtle. As shown in Figure 11, these
methods do not need to be redefined for descendants, which is a primary advantage of
inheritance. Turtle_1 can then increase its capabilities by adding methods particular to that
class, in this case Pen Color, Pen Width, and Polygon.

The relationship between Main Turtle and Turtle_1 demonstrates to the beginner
the concept of inheritance. The beginner is able to play with a working model and observe
inheritance in action, rather than just trying to grasp the idea from a book. For example, in
order to execute the method Polygon, Turtle 1 must call on the methods Move and Turn
Right which it inherited from Main Turtle. Based on user input for the parameters, the

result in this case is a square, (Figures 13-16).

43

Once the beginner feels comfortable with the concept of inheritance through using
the classes provided, he can then apply his new-found knowledge and create classes of his
own. These classes could descend directly from Main Turtle, or could continue down the

tree from Turtle_1.

C. ENCAPSULATION/ABSTRACTION

Encapsulation is the process of hiding all the details of an object that do not
contribute to its essential characteristics. It is also referred to as abstraction or information
hiding, where the object is a kind of black box. It provides the means by which the internal
details of a specific method, and/or the different attributes of an object, are implemented
and hidden from the outside objects. Encapsulation supports code reliability and
extensibility, and also allows for integration.

The reliability of the end product is determined by reliable modules and reliable
methods of integrating those modules together. In addition to the dependability of
individual modules, there should be a proven means of putting individual modules together

into a working whole with a smooth and easy integration.

44

Iteration 1:1

|

VLTSS LSS LTS AL LA LTSS LSS LSLAAY.

100
5 ? 60
T numb ? 6
side sides angle T 9§

Figure 13: Iteration for Circle.

Turtle_1/Polygon 1:1
LA SIS S LS LSS LSS LSS LSS SIS SIS SIS SISIS VS, g
turtle side length nurnb sides
A
& B
L

Figure 14: Turtle_1/ Polygon.

45

polygon 1:1

atd
turtle side angle numb
length sides
turtle dist
degrees
turtle to turn
heading right
T
new heading
<
& B

Figure 15: Polygon.

O —

Figure 16: Square.

We used Main_Turtle's methods and attributes in Figure 9 & 10 to illustrate the
notion of encapsulation. The user doesn't need to know how the different methods or
attributes of Main_Turtle are implemented; he simply needs to know the names of the
messages to be passed, and what will be returned by the object. For instance, with the
visuality of Prograph, the user can see what values are flowing into an operation and what
values are returned to the output terminal. As shown in Figure 17, the method Move, like
all other methods of Main_Turtle, is receiving one input from the left terminal of type
Main_Turtle object, a second input from the right terminal provided by the user, and
finally produces an output of type Main_Turtle object. This kind of implementation of the
methods is specific to our prototype, but not necessary bound to it. The design is
determined by the developer.

Each method constitutes a specific and independent module with its own
implementation. Each of the methods can be used as a seperate module over and over
again by many objects without modifying its implementation. Draw Train in Fi_ure 17
shows how the methods Init, Move, TurnTo and Turn Right work within the Main_Turtle.
During execution of the universal method Draw Train, the user can see the different values
flowing into or from any operator by double clicking the desired terminal.

Similarly, the user may or may not know the different names of Main_Turtle's
various attributes, but can still send messages to a specific object. He doesn't need to

know how each of them is implemented in order to use them.

47

The modularity concept of producing code guarantees the reliability of the module
and allows the modification and improvement of the code without affecting the user's
access to the object. We can assume that each individual module is reliable and can be
easily extended and smoothly integrated to other applications without compromising the
reliability of the final product.

Using encapsulation to maintain modularity provides the necessary working
environment for many developers to concentrate on seperate modules that would be
integrated later in the same project.

Even if there is no public and private specification in the Prograph environment, as
in C++, it is possible to prevent the user from accessing the hidden sector to ensure
greater module reliability. All modules would be in the "execute only” form, where the
user is allow to access them, but can not modify their internal implementation.

The implementation of this prototype would provide a developer with the necessary
built in modules to construct a more complex program. With the encapsulated classes, we
can focus on teaching the notion of object oriented programming instead of confusing the

user with all the low level implementation.

48

Draw Train 1:1
o R =
Main_Turtle) {200 60}]
! 135
> 7/
ITurn Leftﬁ 175
A I -
% 2 90
X o -
||
&

Figure 17: Draw Train.

49

D. POLYMORPHISM

Polymorphism is the phenomenon that occurs when messages of the same name are
sent to different objects. Each objec responds with an appropriate method for its class.
Polymorphism supports code sharing and extensibility, and has two aspects: the
non-polymorphic operator that always refers to the universal method (designed to be used
by any object class), and the polymorphic operator which refers to different methods.

A polymorphic operator is always prefixed with one forward slash (/) to refer to a
method defined in the class of an object, or two forward slashes (/) to refer to a method
defined in the class system. A non-polymorphic operator is invoked on its own without a
slash, and always refers to the universal method. Polymorphism allows developers to add
methiods with the same name to classes that share some commonality and therefore use the
same name to denote the specific function. Which method to execute depends to the
object that flows into the operation.

The extensibility of a module is characterized by the fact that outdated or faulty
modules can be replaced with a new module without requiring any changes to other
modules. When the same module requires additional functionality, a new module could be
created with the same name to replace the first module, by sharing the original code and
adding more features. This characteristic of extensible modules will allow easier program

maintenance and extension.

50

e

In almost all our examples provided, we illustrate the polymorphic operator with
the single forward slash. The non-polymorphic operator is only used for the

implementation of the prototype with the universal method Get Canvas Window.

E. ITERATION

Iteration plays an essential role in practical programming by reducing the amount of
code needed to perform identical steps. The ability to repeat a certain segment of code not
only reduces the apparent complexity of the program, but also decreases the chances of an
error being reintroduced into previously debugged code. Error reintroduction could occur
lines if code had to be marually retyped each time repetition was desired.

In VOOL, iteration provides a powerful tool to the programmer, enabling a
beginner to create complex pictures with relative ease and speed. The model in Figure 18
depicts one such example. This figure is actually composed of one simple pentagon
rotated around a common point, but the result is a multi-faceted display of interwoven
patterns.

The method "Polygon" is defined for Turtle_1 and allows the user to provide input
for the desired size and number of sides. Once one polygon is drawn, the user then needs
to turn the turtle slightly, (using an inherited method from Main Turtle), and repeat the
process. This is where the power of a looping ability comes into play. The Prograph

programming environment provides a system level icon to perform this task.

51

The icon itself is multi-layered in appearance with circling arrows, giving an

intuitive indication
that the local method will be repeated for the specified number of times. Figures 19 and 20
show the code used to produce the rotated pentagon.

Once the user grasps the concept of iteration, he can use it to write versatile,
time-saving methods. For example, the method "rotator" can produce very different results
depending upon the user's input. Simply by changing four parameters, the same method

will draw a flower-like arrangement of circles, (see Figures 21 and 22).

F. SELECTION

The beginner must first concentrate on writing simple code with a linear
progression. In the case of VOOL, this would mean a program that flows from the top of
the screen to the bottom, following only one path. Once the beginner is ready to solve
slightly more complex problems, however, he must have the ability to provide different
paths of action depending on decision criteria. These paths of action would most likely
involve multiple screens and require the user to exercise some logic in constructing the

conditional executions.

53

Iteration 1:1

ﬁ'
S5
100 ¥ 30
v numb 7 16
side sides angle T O
to iterations
length rotate
_Q—
[
Figure 19: Iteration for Polygon.

rotator 1:1

e 2 Lo g uls
turtle side numb angle iterations
length sides to
rotate
1
, L} L 3
|
F
<
[

Figure 20: Rotator.

Iteration 1:1

YA LLT SIS LIS LA SIS LLT S VLAY,

5

60
T numb ?
sides angle
to

rotate

SLSSSSLSSSSSSLLS LSS LSS SIS LSS SSS TS S s

7 7))

6

A

iterations

&/

o)

<

[

Figure 21: Ieration / Circle.

55

Figure 22: Circles.

The Prograph environment provides a complete and flexible range ot tunctionality
with its case structures, control annotations. and "Match" operations The "Move" method
defined for Main Turtle provides an example of path selection. When the user orders the
turtle to move, the code to be executed depends upon the turtle's heading since there are
four trigonometric solutions based on the four quadrants of a granh. Figure 23 shows the
first of the four possible paths. Use of the "next case on failure" teature is demonstrated
here. I¢ the turtle's current heading is within the specified range, then the first case is
executed; if the comparison is a failure, however, then control passes to the next case for
further comparison.

Since "Move" is inherited from Main Turtle, VOOL allows the beginner 1o use it
without needing to understand what is within the method's "black box". This enables the
beginner to concentrate initially cn fundamental programming skills, and to receive
positive motivation by quickly accomplishing apparently advanced tasks. With a solid
groundwork of linear programming experience, the user is then ready to progress to more
advanced problem solving, including code requiring selection.

This chapter has discussed the core concepts of object oriented programming,
specifically: classes, objects, inheritance, abstraction, encapsulation, and polymorphism. In
addition, the key capabilities of iteration and selection were covered. In each case, the
discussion addressed how best to present these concepts to a beginning programmer, and

provided examples for clarification.

57

compute coord 1:4

B e S

y dist x heading

|

<

=

Figure 23: Compute Coord (Selection).

VII. CONCLUSION AND RECOMMENDATIONS

A. VISUAL APPROACH: PROS AND CONS

Using a visual approach to teach object ¢ -amming has many
advantages, but suffers from drawbacks as well.

On the positive side, the visual approach is an excellent means of introducing object
oriented concepts. The concepts of classes, objects, encapsulation, and polymorphism can
be abstract and difficult for a beginner to grasp. A visual programming language allows
the beginner to actually see a class hierarchy, and watch how objects interact with each
other. By manipulating objects which are visible on the screen, the beginner gains practical
experience with object oriented features such as polymorphism and inheritance.
Furthermore, it's easy to identify the attributes and methods that comprise an object,
(especially guided by Prograph's triangular and square icons), and watch how certain of
these components are passed along through inheritance. When learning a text-based object
oriented programming language, the beginner must struggle with these abstract concepts
without benefits of visual representation. This requires a certain level of mental
sophistication from the beginner, and perhaps experience with other programming
languages. While this may not be a problem for a college freshman, it is certainly a barrier
to a young grade school child. Children must see and do and experiment. An esoteric,
"chalk-talk" explanation would not only be above their level of comprehension, but would

most likely dull their enthusiasm for attempting anything further with the language.

59

The wvisual approach not only conquers the level of understanding barmier. but
circumvents two other barriers as well; those of language and reading ability. Beginning
programmers of any age, from first grade through college and beyond, may be learning in
a spoken language which is not their native tongue. A visual environment allows them to
concentrate on the concepts without the added difficulties of translating text and worrving
about syntax. Likewise, even youngsters who cannot yet read, can still draw simple shapes
and start developing an intuitive feel for object oriented programming,

On the negative side, visual programming skills are not immediately transferable to
text-based languages. Although the student would have a sound grasp of the object
oriented concepts themselves, he would still need to study the specifics of the text-based
language. This may not be a problem once visual object oriented languages become more
prevalent, but presently the most popular OOPLs, such as C++ and Smalltalk, all use
written code. Purely from a practical viewpoint, it would be beneficial for a programmer

to master both paradigms.

B. BUILDING THE PROTOTYPE

The primary difficulty in building our prototype was in learning the Prograph
environment. Prograph is very powerful, with many features designed to assist the
programmer; once we gained experience with these features, our task was actually
expedited. For example, Prograph provides a complete system library with base classes

and primitive operations, as well as an extensive error tracing capability. In addition,

60

working in a windows environment with a mouse and icons was easy and familiar.

facilitating the prototype development.

C. ASSESSMENT

How well does our prototype meet the original problem statement” To review. our
research was intended to address how best to teach beginning programmers the necessary
skills of object onented programming. To accomplish this, we first discussed a current
programming language, LOGO, used predominately in educational settings as a first
language for children. We then addressed LOGO's strong points and shortcomings, paying
particular attention to the use of a graphical turtle as a tool for conveying the potentially
abstract concepts of the object oriented methodology. Finally, we explored the benefits of
a visual approach to learning, and proposed a prototype called Visual Object Oriented
LOGO.

We feel our prototype is very successful in presenting object oriented concepts in an
intuitive manner that invites creative experimentation. The Main_Turtle is a real-world
object that has the potential to promote interaction with even the youngest programmer.
Turtle_1 guides the beginner to a slightly more advanced level, plus introduces the
concept of inheritance. With this sound groundwork, the user is then equipped to create
his own classes for further exploration.

Due to the power of Prograph, our prototype is capable of a wide range of

applications, and is thus suitable for use in elementary schools as well as at the college

61

level. A first grader could be challenged with drawing a square. while those in an
introductory college course could model more complex real-world problems True
beginners with no programming experience whatsoever can learn how to manipulate the
turtle and have fun. Fun is a key element, in that it establishes a positive attitude and
encourages a potentially life-long commitment to learning. Beginners who are new to
object oriented programming, yet have experience with other languages. can concentrate
on mastering the basic object onented concepts and can progress quickly to more
advanced programming.

The visual programming approach may not facilitate learning a specific text-based
language at a later date, but the value of our prototype is that it provides a solid
foundation in object oriented programming concepts. Mastery of these concepts is an
invaluable advantage in learning other languages, allowing the student to concentrate
simply on syntax and style. Overall, our prototype has the potential to make a significant

contribution towards educating the next generation of object oriented programrners.

D. RECOMMENDATIONS

Collecting empirical data to support the viability of our prototype would be a
lengthy process and is beyond the scope of this thesis. As a matter of future research,
however, it would be enlightening to conduct a study of how successfully this prototype
actually performs in teaching object oriented programming. Ideally, the study would

involve incorporating VOOL into the curriculum of classr »m first grade to college,

62

and would take place over the minimum of a year. A pilot program might have two groups
of students: those learning object oriented programming through traditional text-based
methods, and those using the VOOL approach. At various points throughout the study,
the two groups could be compared on the basis of how easily they assimilated and used
new concepts, how quickly they progressed from one level of difficuliy to the next, and
how easily they were able to transfer skills from one object oriented programming
language to another. Data could also be gathered on whether one approach was better
than the other for a particular age group, or whether there was a universally preferred
method.

It 1s our hypothesis that, were such a study to be conducted, it would showcase
VOOL as the desirable approach, simultaneously applicable to all age groups, skill levels,

and degrees of application complexity.

63

APPENDIX A - USER COMMAND AND METHOD DEFINITIONS
A. MAIN_TURTLE METHODS

1. Init

Description: Initializes the pen to start drawing from a particular
position in the drawing area.

Input: Turtle; Two numbers (X-vertical displacement and Y-horizontal
displacement)

Output: Turtle

2. Move

Description: Moves the turtle in a forward direction based on the nature
of the present heading.

Input: Turtle; Number (distance to move)

Output: Turtle

3. GotoPos

Description: Moves the turtle to X and Y coordinates on the screen
without drawing a line regardless of current position.

Input: Turtle; Two numbers (X-vertical displacement, Y-horizontal
displacement)

Output: Turtle

4. TurnTo

Description: Tumns the turtle's heading to the true compass direction
indicated in degrees.

Input: Turtle; Number (angle to tum to in degree)

65

Output: Turtle.

S. Turn Left

Description: Turns the Turtle's heading to left from the current heading.

Input: Turtle; Number (angle to tumn to 1n degree)

Output: Turtle

6. Turn Right

Description: Turns the Turtle's heading to ngth from the current
heading.

Input: Turtle; Number (angle to turn to in degree)

Output: Turtle

7. PenUp

Description: Disables the pen from drawing.

Input: Turtle

Output: Turtle

8. PenDown

Description: Enables the pen to draw.

Input: Turtle

Output: Turtle

B. TURTLE_1

1. Polygon

Description: Creates any types of polygon (square, rectangle, circle etc)
depending on the user's inputs.

Input: Turtle; Side length; Number of sides

66

Output: None
2. Pen Color and Pen Size

These methods have not been implemented yet.

67

68

APPENDIX B - TURTLE GRAPHICS’ SOURCE CODE

&) Universal

_’:l Called before execution Creates a new Drawing
&. begins. @ Window called CANVAS

Initial .
get canvas window

Shows the capabilities

T of Main_Turtle's l Demonstrates looping
methods . capabilities

Draw Train Iteration

Draws squares, circles

‘ triangles etc, depending
on input.

Draw Polygon

69

get canvas window 1:1

AASSSS TS S SSSSSS I SIS S SIS IS SIS SIS LI

Application

Canvas ¥Yindo...

fin—vinov /////)A‘

-
SSSSSSSLSSSSSS SIS L VAL ALL 1S AI S

3| B

Canvas Window

Initializes the

&) oo @

Ends the drawing
process.

init drawing end drawing

70

Canvas Window/init ¢

K P e e Ll L

canvas

71

Main_Turtle/Init 1:1
4
AL TS LS TLL LS LSS LSS LSS IS SS LS LSS SSSY.
L)
-
LSS LSS S LSS S LSS S S S S LSS SS LSS SIS S

Main_Turtle/GoToPos 1:1

turtle desired point to move to

Zpoint—to-ints”]

turtle with new location

72

Main_Turtle/Turn Left 1:3

turtle degrees to turn
counterclockwise

i
.

new turtle heading

73

Main_Turtle/Turn Left 2:3

turtle degrees to turn
heading counterclockwise

new turtle heading

Main_Turtle/Turn Left 3:3

turtle degrees to turn
heading counterclockwise

74

Main_Turtle/Turn Right 1:2

LSS SIS AL LIS LSS S SIS SIS SIS S ST @
turtle degrees to turn
heading rinht
add degrees
from turtle heading
................................ 5
& o

Main_Turtle/Turn Right 2:2

W

turtle degrees to turn
heading right

75

Main_Turtle/PenUp 1:1

76

Main_Turtle/Move 1:1

W ats

turtle dist

%et canvas vindovﬁ

perform move 1:1

b
IS TSISS IS LSS SIS LSS SII VTSI IS IS LSS AL S SIS SIS G
() -

turtle distance {
\ P
| f
@oint-to-ints%
P
i o T ~_
| Emm |

YY)

|

Zins-to-pointlz

AL LA LLLLSSLLIS LIS LSS LSS LI LSS s

compute coord 1:4

Y

dist

X

YA S S S LA S SIS S S LSS ST LSS S SASS SSISIST
U) o)

heading

compute coord 2:4

................

LA A oS LLLL SIS LSS LTS LA LS LS LSS SISV

T

A%

79

compute coord 3:4

YAS LS LSS LS SSSST LSS S LSS SSSSS IS SIS SIS SIS
) &/ () -

heading

quandrant1 1:1

y dist x

Werii Y

LA TSI S A ST SG A S S S S LSS LSS

convert_local 1:1

L T T D 2 o T A w8
)) LJ L)

.............................

..............................

81

quadrant2 1:1

i

y dist x heading

cuadrant3 1:1

5

y dist x heading

dist x

Zconvert_guadrant3 /

compute coord 4:4

y 'dist X heading 270

y dist x

/,Convert_ﬁoord

Convert_Coord 1:1

SIS SSSSSLSSSSSIS IS LSS LS SSSS LS LS LS LSS TS LSS SIS SLSSS,
- \J L ()

.......
...................

local move 1:2

VIS LS LSS SLL LSS SSLS LSS SLS LS AL LS LSS LS LI LSS SL LA LSS VS SAAT 0
a2 J L) J L)

SIS LLLS AL LIS S 1SS L 1SS LS 0

local move 2:2

LSSV SLSS T LSS LIS LS IS S S A S S S S LSLS S

Turtle_1/Polygon 1:1
ASIL LSS SIS SIS I LSSV S SIS IS SI SIS SIS SIS s
turtle side length numb sides
<
=

r polygon 1:1
als
turtle side angle numb
length sides
1
turtle
degrees
to turn
right
W
o

Turtlie_1/Pen Color 1:1

Turtie_1/Pen Size 1:1

TSSSSIISSSISILSIS SIS SSSSS SIS SSISSS T
)

SITLSSL IS SLSSLLLSSSS LSS VS S S S S ALY

w2 Iteration 1:1
<
:

|
2

I rotator 1:1

I VLSS SSS LIS SIS LS LS IS LS SSS LSS L1S SIS/ SIS/ S/
G L)) L) o

turtle side numb angle iterations
length sides to
rotate

2<>\
\><>
<>/

PN

[Abel 92]

[Clay 88]

(diSe 85]

[diSe 86]

[GF 87]

[Pape 93]

[Shu 88]
[Terr 90]
[TGS 89]
[TGS 89]

[TGS 91]

LIST OF REFERENCES

Abelson. H.. and Abelson, A., 4n Introduction Through Object Logo.
Paradigm Software Incorporated, 1992.

Clayson, J., Visual Modeling with LOGO, The MIT Press Cambridge, MA
1988.

diSessa, A. A., Principles for the Design of an Integrated Computational
Environment for Education, Laboratory for Computer Science, MIT Cambridge,
1985.

diSessa, A. A., From Logo to Boxer, a New Computational Environment,
Australian Educational Computing, 1986.

Goldenberg, E. P., and Feurzeig, W., Exploring Language with LOGO,
The MIT Press Cambridge, 1987.

Papert, S., Mindstorms; children, computers, and powerful ideas,
BasicBooks, A Division of HarperCollins Publishers, Inc, 1993.

Shu, N. C,, Visual Programming, Van Norstrand Reinhold Company Inc., 1988
Terrapin Software, Inc. Why use Logo? An overview of Logo in Education, 1990.
The Gunakara Sun Systems, Prograph Tutorial, 1989.

The Gunakara Sun Systems, Prograph Reference, 1989.

The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

93

94

BIBLIOGRAPHY

Abelson, H . and Abelson. A . Awn Introduction Through Object Logo.
Paradigm Software Incorporated, 1992

Chang. S | Principles of 'isual Programming Systems. Prentice-Hall, Inc . 1990

Chang. S., Ichikawa. T | and Ligomenides. P A . 'isual Languages. Plenum Press 1980
Clayson, J., F'sual Modeling with 1. OGO, The MIT Press Cambridge, MA 1988

Cox, P T, Giles, F. R, and Pietrzykowski, T., Prograph: A Siep Towards Liberating
Programming from Textual Conditiomng, Proceedings of the [IEEE Workshop on Visual

Languages, 1989,

diSessa, A A, Principles for the Design of an Integrated Computational
Lnvironment for Educanon, Laboratory for Computer Science, MIT Cambridge, 1985

diSessa, A. A., From Logo to Boxer, a New Computational Environment,
Australian Educational Computing, 1986.

Goldenberg, E. P., and Feurzeig, W., Exploring Language with LOGO, The MIT Press
Cambridge, 1987

Papert, S., Mindstorms, children, computers, and powerful ideas, BasicBooks, A Division
of HarperCollins Publishers, Inc, 1993

Shu, N. C., Visual Programming, Van Norstrand Retnhold Company Inc, 1988
Terrapin Software, Inc. Why use Logo? An overview of Logo in Education, 1990.
The Gunakara Sun Systems, Prograph Tutorial, 1989.

The Gunakara Sun Systems, Prograph Reference, 1989.

The Gunakara Sun Systems, Prograph 2.5 Updates, 1991

95

(3%}

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.......ooooviiiiiiiii i, 2

Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52, ..o

Naval Postgraduate School
Monterey, California 93943-5002

Chairman, Code CS.........ooveen. e ———————————

Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

C. Thomas Wu, Code CS/WU....ooooovviiiiii

Computer Science Department
Naval Postgaduate School
Monterey, California 93943-5002

Roger Stemp, Code CS/St.....viiiniiiiiiiieice e

Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

LCDR Emily Black, USN.......cooii e,

Communications School

Cushing Rd.

Naval Education and Training Center
Newport, Rhode Island 02841

CAPT Thierno Fall, Senegal Army.......ccccovivivinnvirninincneeninn,

Ambassade du Senegal

Mission Militaire

1825 Connecticut Ave, N.W. 216
Washington, D.C. 20009

97

