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ABSTRACT

A relatively simple time domain method is developed to calculate the time of arrival for

radar signals. The error present in the estimate of the time of arrival for a single pulse

and a burst of pulses are developed and the effects of SNR. PRF. pulsewidth. and

sampling frequency are examined. T nival is used with multiple sensors and the

Kalman filter to estimate the location of the emivLer. Algorithms estimate the location of

an emitter given the Time Difference of Arrival (T'•OA) of a single pulse as well as the

TDOA of bursts of pulses received as the emitter scans past the rt-ceive's. The algorithms

were tested on simulated data.
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I. INTRODUCTION

A. BACKGROUND

During the Persian Gulf War UAVs (Unmanned Aerial Vehicles) proved useful by

providing battlefield surveillance, targeting information, and naval gunfire spotting.

They were able to provide the battlefield commander with up to the minute intelligence

and offered the battlefield commander an over the horizon intelligence gathering asset

that possessed the flexibility that he required to respond to the constantly changing

circumstances and priorities of the battlefield. UAVs also provided a medium range

aerial reconnaissance and intelligence gathering capability that was not hindered by the

long lead time required for other reconnaissance assets. Current UAV capabilities are

primarily limited to optical and infra-red surveillance, but the UAV would be very useful

in electronic intelligence (ELINT) gathering. UAVs could remain on station listening to

the enemy's electronic emissions for long periods of time, deep in enemy territory,

without risking aircraft and pilots.

One application of electronic intelligence gathering is locating radar emitters from

time difference of arrival (TDOA) observations. A time domain technique is presented

here that uses the Kalman filter to estimate the location of a radar emitter from the time

difference of arrival for a burst of pulses between two or more receivers, and time

difference of arrival of individual pulses between two or more sensors. The background

information and models used to develop the Kalman filter are presented, and the resulting

.. .......



Kalman filter algorithms are tested for a variety of problem configurations. Conclusions

are drawn about the usefulness of the algorithms and recommendations are made for

further testing and evaluation.

B. RADAR EMITTER SIGNAL CHARACTERISTICS

The signal characteristics most important in the emitter location problem are the

Pulse Repetition Interval (PRI), and the pattern and rate at which the emitter scans a

target. These characteristics determine which estimation technique will be most

effective, and they affect the ability of these algorithms to accurately estimate the location

of the emitter.

The PRI is the period of time between successive pulses. This value can range from

tens of milliseconds for long range search radars to microseconds for pulse Doppler

radars. Range in many radar systems is determined by measuring the time required for a

pulse to strike a target and return, and the unambiguous range of a radar system is

determined by the length of the PRI. The longer the PRI the longer the unambiguous

range of the radar. Similarly, the PRI affects the allowable separation of the sensors used

to detect the pulse TDOA. The longer the PRI the greater the allowable separation of the

sensors.

The vast majority of radar systems are designed to scan a volume of space to look for

targets. All of these systems use a search mode that is used to scan the volume of space

around the emitter in a regular pattern. Most radar emitters spend the majority of their

operation in this mode and it is in this mode that most emitters can be passively detected.

2



The method that the emitter uses to scan and search for a target is important in the

problem of estimating its location from its emitted signals. Radar systems typically scan

their main beam mechanically or electronically.

Mechanically scanned radar systems designed for target location typically scan in

azimuth in a circular pattern. Their antennas are rotated by motors and actuators in a

circular manner, and are designed to provide 360 degree search coverage. Special radar

systems designed for altitude finding, or tracking and fire control will not necessarily

scan in azimuth alone. Most of these systems use electronically scanned antennas to steer

the main beam of the radar, and can scan in elevation as well as azimuth. These systems

can have very complex scan patterns that can be changed as required. This thesis will be

primarily concerned with mechanically scanned radar emitters that scan circularly in

azimuth. The majority of the emitters encountered will be of this type. The principles

developed to locate these emitters can also be applied to emitters with more complex scan

patterns.

As an emitter scans its main beam past a target, the amplitude of the pulses that

strike the target will generally vary from zero to a maximum that occurs near the center of

the main beam. Figure 1 shows the typical burst of pulses detected as the emitter scans

past a receiver. The frequency of these bursts is a function of the scan rate of the emitter,

and the width of the burst is a function of the scan rate of the emitter and the beamwidth.

3
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Figure 1. Burst of pulses from a scanning emitter

C. EMITTER LOCATION PROBLEM DESCRIPTIONS

Two basic approaches are used to estimate the location of the emitter from the

TDOA of its signal. In the first approach the TDOA for the burst of pulses detected as

the emitter scans past receivers is used to estimate the location of the emitter. The second

approach uses the TDOA for individual pulses between two sensors on widely separated

platforms to estimate the location of the emitter.

1. Burst TDOA Problem Description

The first TDOA filtering problem assumes that multiple receivers are used and

that they are widely separated. The TDOA for the burst of pulses detected at each

receiver are measured and used to estimate the location of the emitter. In this burst

TDOA filtering problem, the following assumptions are made:

1. Enough information is obtained from the received signals to associate TDOA
observations with the proper emitter, and thus the multi-emitter problem is
reduced to a single emitter problem.

4



2. The receivers are referenced to a common time base All time of amval
measurements are referenced to this common time base

3. Global Positioning System (GPS) is used to determine the locations of the
receivers. These estimates of the recelvcr locations are assumed to be exact and
error introduced b2y the GPS is ignored.

4. The emitter scans in azimuth at a constant rate.
5. The PRI is constant for the entire length of the burst.

The receivers may be mounted on UAVs, aircraft, ground sites, or space platforms. For

the UAV mounted receivers, the desired maximum detection range is assumed to be

500 kilometers. The algorithms developed are tested for ranges of 500 kilometers as well

as shorter ranges of 150 kilometers and 30 kilometers.

2. Single Pule TDOA Problem Description

The pulse TDOA problem estimates the location of the emitter by measuring the

TDOA for an individual pulse between two sensors. The sensors are spaced close enough

so that the TDOA can be measured for a single pulse without ambiguity. The following

assumptions are made in the problem development:

1. Enough information can be obtained from the received signals to associate TDOA
observations with the proper emitter, and thus the multi-emitter problem is
reduced to a single emitter problem.

2. The receiver platforms are referenced to a common time base. All time of arrival
measurements are referenced to this common time base.

3. Each receiver platform has two sensors and the TDOA for individual pulses
between the two sensors can be measured accurately.

4. GPS is used to determine the locations of the receiver platforms. These estimates
of the -.eiver locations are assumed to be exact and error introduced by the GPS
is ignored.

The algorithms are tested for ranges of 500 kilometers as well as shorter ranges of 150

kilometers and 30 kilometers.



1i. TDOA ESTIMATION

A. TIME OF ARRIVAL ESTIMATION AND ERROR MODELS

The Kalman filter can be used to estimate the location of the emitter from TDOA

observations. Kalman filter theory, however, assumes that the noise corrupting

observations is Gaussian distributed. Before applying the Kalman filter to the emiter

location problem, an analysis of the error statistics of the TDOA observations is

necessary. This determines if the noise present in TDOA observations can be

approximated as Gaussian. One method of estimating the TDOA for emitter bursts and

pulses is presented. The effect of noise on this estimation method's accuracy is explored,

and the probability densities calculated are compared to Gaussian distributions.

1. Time of Arrival Measurement

TDOA measurements between widely separated receivers and sensors are used to

estimate the location of the emitter. Since the receivers need to be widely separated to

improve the accuracy of the location estimates and the orthogonality of the TDOA

observations, physically linking the receivers together is not feasible. Therefore, it is

important that the receivers are accurately referenced to some external time base. An

onboard time base can be used to estimate the time of arrival (TOA) of signals, but drift

would introduce error into the estimates of the TOA and subsequently the TDOA

observations. To minimize drift, internal clocks aboard the receivers can be periodically

6



corrected with references to a more accurate external time base. If the receivers are

mounted on UAVs equipped with GPS, the GPS system time could be used as the

external time base. This approach is assumed for the balance of the development.

The TDOA observations in the burst TDOA filtering problem are on the order of

milliseconds and tens of milliseconds. The error typically present in the GPS system

time is much smaller than the typical TDOA observations and synchronizing all of the

receivers to the GPS system time would not introduce appreciable error into the

observations. For these observations, the receivers are assumed individually

synchronized to the GPS system clock.

For the pulse TDOA observations, the length of the typical observations are a

few microseconds or less. Using the GPS system time to estimate the time of arrival of a

pulse at a sensor would introduce unacceptable error in the TDOA observations. This is

because the error present in the GPS system clock would be on the same order as the

observation it is being used to measure. To avoid ambiguity in the pulse TDOA

observations, the sensors must be placed relatively close together. For the balance of the

developments here the sensors will be assumed physically linked to the receiver platform,

and the TOA observations for both sensors will be referenced to the same on board time

base.

2. Pulse TOA Estimation

Envelope detection of the pulses received by the sensors is assumed. The

envelopes of the received pulses are sampled and digitally encoded. An estimate of the

7



TOA for a pulse can be obtained from the time at which a sample is detected above a set

threshold. This method of estimating the TOA is highly sensitive to the sampling rate

and noise present in the sampled pulse. Spurious noise that is above threshold gives false

TOA indications. Algorithms can be developed to test for false indications by examining

multiple samples and announcing the arrival of a pulse only if a specified number of

above threshold samples are detected. A more accurate estimate of the TOA can be

obtained by integrating the samples of the pulse and calculating the TOA of the centroid

of the pulse. The improvements gained from integration are similar to the improvements

obtained in radar systems when pulse integration is used. All of the information present

in the pulse is utilized and the effective signal to noise ratio is increased.

The time of arrival of the centroid of a sampled pulse can be found from

equation (1):

t(k)z(k)
TOA = k=-- k(1)

Where TOA = the Time Of Arrival (TOA) of the pulse centroid,
z(k) = the magnitude of the kth sample,
t(k) = the time at which the kth sample was taken, and
N = the number of samples in the pulse.

In the following development of the error present in the estimate of the pulse

TOA, detected pulses are assumed to have the shape shown Figure 2. To these pulses,

white, Gaussian distributed noise is added and its effect on the TOA is calculated.

8



tK 0

Pulse Width 1.0 microseconds

1.0T

Sampled Pulse

Sarnpling Frequency 8.0 MHz

Figure 2. Pulse envelope and sampled pulse

The sampling interval is assumed to be much smaller than the pulse width so a

sufficient number of samples of the pulse are taken and the sampled pulse is a reasonable

representation of the original pulse. The sampling is assumed to be triggered by, and

aligned with, the rising edge of the pulse. This assumption ignores the error introduced in

the TOA when the first samples of the pulse are taken at some random point within the

pulse.

9



Each sample of the pulse is considered a random variable as shown in

equation (2).

z(k) = zo(k) + v(k) (2)

Where z(k) = the random variable representing the amplitude of the kth sample,
z,(k) = the deterministic variable that is the true amplitude of the kth

sample, and
v(k) = the white Gaussian random variable that represents the noise

present in the amplitude of the kth sample. The noise has zero
mean and a variance of V, i.e.. E[v(k)21 = V.

Since each sample of the pulse is modeled as a random variable, the time of arrival of the

centroid of the pulse, calculated in equation (1), is also a random variable. A detailed

derivation of the probability density of the pulse TOA is presented in Appendix A.

The peak signal to noise ratio is used as a means of representing the noise power

present in the samples of the pulse. As shown in-ji Figure 2, the peak amplitude of the

pulse is assumed to be one. The peak signal to noise power ratio is calculated from the

following equations:

C _ E[zo(k)2J (3)
N ) E[V(k) 2]

Where z,(k) the true amplitude of the peak sample of the pulse, and
v(k) = the zero mean white noise sample with variance V, and
E[ ] the expectation operator.

In decibels the peak signal to noise power ratio is given as:

=(____l E[EIz(k)2]1 (4)P) o E[V(k) 2 ]

I0



Since the peak amplitude of the pulse is one and the noise v(k) is a random variable with

zero mean and a variance V, the peak signal to noise power ratio reduces to:

(SPC) =_l0log,o[V] 5

The MATLAB program Puldist.m, listed in Appendix E, calculates the

probability densitiy functions plotted in Figure 3. These curves depict the probability that

the TOA of a pulse, calculated using equation (1), will fall within a specified range. The

mean and standard deviation of the probability density functions are also calculated and

Gaussian distributed density functions having the same mean and standard deviation are

superimposed on the plots.

45 Sampling Frequency 8 MHz

40.

Calcu~d Denmy wd35 -Gassen Appmx
S/N 25 dB

30. MGM ,, 0.5000
Si z 0.0093

25

220

15

S/N 15dB
10 Mean = 0.4I99

S t~d=O00291
5

0
0.35 0.4 0.45 0.5 0.55 06 0.65

Cenbroid Time of Amrval (microseconds)

Figure 3. Pulse TOA probability densities vs. Gaussian
approximations, pulsewidth 1.0 psec
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The Gaussian density functions are nearly indistinguishable from the actual

probability density functions, so the pulse TOA can be considered Gaussian distributed in

the Kalman filter developments. In Appendix A, a complete analysis is conducted of the

effects of peak signal to noise ratio and sampling rate on the probability density function

of the pulse TOA.

3. Burst TOA Estimation

As the main beam of an emitter sweeps past a receiver, the receiver detects a

burst of pulses. The number of pulses received is a function of the beam width and scan

rate of the emitter. The amplitude of the pulses change as the main beam of the emitter

sweeps past the receiver. A burst typical for circularly scanning emitters is shown in

Figure 1. The envelope of the burst can be approximated with the upper half ofa sine

wave.

r {7,(SR) "
x(t) = s5 L- -W-tJ (6)

Where x(t) = the amplitude of the envelope of the burst,
BW = the beamwidth of the main beam of the emitter in radians,
SR = the scan rate of the emitter in radians/sec, and
t = the time in seconds.

An estimate of the burst TOA can be obtained from the time of arrival for the

first pulse of a burst, but this method of t,-timating the TOA assumes that for each

receiver the same pulse in the burst will be detected first. Because of lower signal

strength, more distant receivers may not detect some pulses as the start of the burst and

the estimate of the TOA will be in error by some multiple of the PRI. Estimating the

12



centroid of the envelope of the burst and its time of arrival yields a better estimate of the

TOA because the shape of the envelope detected by all of the receivers is the same, and

only the amplitude of the envelope changes as a function of distance from the emitter.

An estimate of the TOA of the burst envelope is found by integrating the sampled

pulses and their time of arrival over the length of the burst. If enough pulses are present

in the burst, the centroid of the pulses lies sufficiently close to the centroid of the

envelope. Integration of the pulses also reduces the effect of the noise by averaging its

effect over a longer period of time, and effectively improving the signal to noise ratio by

ignoring the interpulse periods where only noise is present.

Since the burst is considered a collection of sampled pulses, equation (1) is used

to estimate the time of arrival of the centroid of the burst. The equations and algorithms

used to calculate the probability density function, mean, and standard deviation of the

pulse TOA are used to calculate these properties for the burst TOA.

The MATLAB program Burdist.m, listed in appendix E, generates the burst in

Figure 4 and calculates its probability density for peak signal to noise ratios of 15 and

25 dB.

The burst has the following characteristics:

Burst Length: 2.0 milliseconds
Pulsewidth 1.00 microseconds,
Pulse Repetition Frequency 6000 Hz,
Maximum Amplitude 1.00
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Figure 4. A burst of pulses with a 6.0 kHz PRF and
a 1.0 microsecond pulsewidth

The envelope of the burst is calculated using equation (6), and the peak signal to

noise ratios are calculated using equations (4) and (5). The burst in Figure 4 assumes that

the pulses are spaced evenly throughout the envelope of the burst. If this is the case, the

centroid of the pulses coincide with the true centroid of the envelope. For emitters with

long PRIs where few pulses are present in the burst, this assumption may not be valid,

and the error introduced could be significant. In all further developments emitter

characteristics are chosen so that this error is insignificant.

For the probability density function of the burst shown in Figure 4, the mean and

standard deviation are calculated, and Gaussian distributions having the same mean and

standard deviation are simultaneously plotted. Figure 5 is a plot of the burst TOA
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probability density function and the Gaussian approximation for a peak signal to noise

ratio of 15 dB. Figure 6 is the plot of the burst TOA probability density function and

Gaussian approximation for a peak signal to noise ratio of 25 dB.

Sampling Frequency 8 MHz

Calculald Density and
M Gaussian Approx

20 S/N 15dB -

Mean = 1.0002

15 Std = 0.0164

CO

0.9 0.95 1.0 1.05 1.1I
CenboDW Thise of Anival (milliseconds)

Figure 5. Burst TOA probability density vs. Gaussian approximation,
2.0 millisecond burst, 6.0 kliz PRY and 1.0 microsecond pulsewidth
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Figure 6. Burst TOA probability density vs. Gaussian approximation,
2.0 millisecond burst, 6.0 kHz PRF, and 1.0 microsecond pulsewidth

The burst TOA probability density functions are nearly indistinguishable from

the Gaussian probability density function. The burst TOA can be considered Gaussian

distributed in the Kalman filter development. In Appendix A a more complete analysis is

conducted of the effects of peak signal to noise ratio, pulse width, and PRF on the

probability density functions of the burst TOA.

B. BURST AND PULSE TDOA

As demonstrated in the previous sections, the TOA of pulse or burst can be

approximated as a Gaussian random variable. If the TOA for each burst or pulse is

considered independent, the TDOA can be calculated using the following equation:
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TDOA = ZA - ZB (7)

Where zA = TOA of burst or pulse A, and
z = TOA of burst or pulse B.

Time of arrival A and B can be bursts generated by an emitter scanning two different

receivers, or the bursts generated by different scans of the emitter past the same receiver.

Time of arrival A and B can also be the time of arrival for two different pulses at the

same sensor or the time of arrival of a single pulse at two different sensors.

If the TOA is expressed as the sum of a constant value which corresponds to the true

TOA, and a zero mean Gaussian random variable, then the TOA is:

ZA = ZOA + VA (8)

Where zA = the observed time of arrival,
zo7 = the true time of arrival, and
vA = the noise present in the observed time of arrival.

This noise has zero mean and variance VA.

The noise term vA is considered to be white noise, with zero mean and uncorrelated

increments. Therefore, the expected value, E[vAvB], is zero. The mean of the estimate of

the TDOA are:

pTDoA= E[ZA -ZB ]=E[ZoA - ZoB ]+E[VA]-E[vB] (9)

PTDOA = ZOA - ZOB (10)

Therefore, the expected value of the TDOA is the difference between the true times of

arrival for the two bursts, i.e. the true TDOA.

The variance of the estimate of the TDOA is:
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UTDOA = E[ (TOA- TDOA)] (11)

FTDOA= E[ (VA- vB)2] (12)

Since the increments of the noise are independent, and E[vAvB] = 0, the resulting variance

of the TDOA estimate is:

O•OA- E[ v 2 + 2 ]=V (13)
aTWOAE[A+VB]I VA+VB (3

Therefore, the TDOA of a burst or a pulse is a Gaussian random variable with a

mean value equal to the true TDOA, and a variance equal to the sum of the variances of

the burst or pulse time of arrival estimates.
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III. EMITTER LOCATION

The TDOA for a radar signal is the difference in the amount of time that a radar

signal takes to reach two receivers. This research utilizes the time difference of arrival

for bursts of pulses between two widely separated receivers and the TDOA for individual

pulses between two closely spaced sensors to estimate the location of an emitter. Both of

these TDOAs are functions of the emitter and receiver locations and the emitter

characteristics. In the approaches pursued here only the two dimensional problem is

considered, and the effect of altitude is ignored.

A. BURST TIME DIFFERENCE OF ARRIVAL (TDOA)

1. Problem Geometry

The TDOA of a radar signal burst for two widely separated receivers is primarily

due to the amount of time required for the emitter to scan the two receivers. If the

assumption is made that the emitter scans only in azimuth, then the TDOA is only a

function of the scan rate of the emitter and the angle formed between the emitter and the

two receivers. The scan rate is the angular rate of rotation of the emitter, and the angle

formed by the emitter and the two receivers can be determined from the coordinates of

the emitter and receivers. If the scan rate of the emitter is assumed constant and known

a priori or from some other estimation method, then the TDOA becomes a function of
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only the location of the emitter and the receivers. Figure 7 is the geometric relationship

between the receivers, and the emitter.

Y Emitter

S(xt.yt)

Rb

(xb~yb)

Receiver A PR901w B Sx

Figure 7. Burst TDOA geometry

Since the scan rate is known, the TDOA for an emitter scanning two receivers is

only function of the angle 0 formed by the emitters and the receivers. This angle can be

found by applying vector geometry. If the positions of the receivers are known, the cross

product of the position vectors from the two receivers to the target can be used to express

the angle formed by the two receivers and the emitter in terms of the unknown quantities,

the x and y coordinates of the emitter. The angle 0 is calculated from the following

equations:
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5ab= Ia-I IKbI sin(O) (14)

a = (xt - xa)i + (yt- ya)j (15)

Rb = (xt - xb)i + (yt - yb)j (16)

I j k
RaXRb = (xt - xa) (yt - ya) 0 (17)

(xt-xb) (yt-yb) 0

(xt- xa)(yt - yb) -(yt- ya)(xt - xb)
sin() =[(xt - xa)2 + (yt - ya)2]1"2 [(xt - xb)2 + (yt - yb)2j 2  (18)

Where Ra = The position vector from receiver A to the emitter,
Rb = the position vector from receiver B to the emitter,
0 = the angle formed by the receivers and the emitter,
xt, yt = the x and y coordinate of the emitter,
xa, ya = the x and y coordinate of receiver A,
xb, yb the x and y coordinate of receiver B, and
SR = the scan rate of the antenna in rad/sec.

If 0 is small, the TDOA is found from the following equation.

TDOA= -O- I [ (xt-xa)(yt-yb)-(yt-ya)(xt-xb) (19)SR SRI [(xt-xa)2 +(ytya)2/2[(-x-Xb)2+-(yt-yb)2]/2J 1

2. Loci of Constant TDOA

From --quation (19) the burst TDOA for two widely separated receivers being

scanned by a constantly rotating emitter is directly proportional to the angle formed by

the two receivers and the emitter. In Appendix B an approximate relationship is

developed to plot the loci of points where an emitter could lie and produce a specific

TDOA observation. These loci of constant TDOA are shown in Figure 8.
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Figure 8. Loci of constant TDOA for an emitter scanning at a constant rate,
scan rate 360 degrees/sec, receiver separation 1.0 kilometers

These loci demonstrate that for a single TDOA observation there exist an infinite

number of possible location for the emitter. Another observation or measurement is

required to uniquely estimate the location of the emitter.

If more than two receivers are used, a TDOA observation is available for each

combination of receiver pairs. Plotting the loci of constant TDOA for each of the

receiver pairs, multiple intersections occur, but all of the loci intersect at a common point,

the location of the emitter. This is shown in Figure 9.
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Figure 9. Loci of constant TDOA for an emitter scanning at a constant rate,
scan rate 360 degrees/second, receiver locations as shown

3. Orthogonality of TDOA Observations

The performance of the Kalman filter varies based upon the quality of the

observations available. Generally, the observations with the highest orthogonality

perform the best. If data processing time or capability is limited, it is advantageous to use

the observations with the highest orthogonality. The loci of constant TDOA are one way

of visualizing and calculating the orthogonality of the observations.

A measure of the orthogonality of the TDOA observations is obtained from the

dot product of the unit vectors tangent to the loci of constant TDOA. These vectors are

calculated from the slope of the line tangent to the loci at the estimated location of the
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emitter. Once the unit vectors tangent to the loci are found, their dot product yields the

cosine of the angle formed by the two loci. The equation for the dot product is given

below:

Rt, o Rt2 = cosO (20)

Where Rt1 = The unit vector tangent to the loci number 1,
Rt2 = the unit vector tangent to loci number 2, and
0 = the angle formed by the two loci.

The cosine of the angle formed by the loci is an indication of the orthogonality of

the loci. If the cosine of 0 is close to one then the loci are nearly parallel, and if the

cosine of 0 is zero the loci are orthogonal and lie at right angles to each other.

The unit vectors tangent to the loci are found using the following equation:

Rt= I + (21)

Where Rt = the unit vector tangent to the loci, and

m = the slope of the loci, dyt/dxt at the emitter.

The equations for the slope of the loci at an arbitrary point are developed in

Appendix C and presented here:

dyt = [t - xa)2sin W - 2(xt - xa)(yt - ya)cos W - (yt - ya)2sin W]
dxt - [(yt - ya)2cos ' - 2(xt- xa)(yt - ya)sin W, - (xt - xa)2cos '] (22)

Where xt, yt = the x and y coordinates of the emitter,
xa, ya = the x and y coordinates of receiver A,
xb, yb = the x and y coordinates of receiver B, and
S= the bearing from receiver A to receiver B.

The bearing from receiver A to receiver B is calculated from the following equation:

arctan 'Yb- Ya (23)
2 xb - xa4
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4. Ambiguity in TDOA Observations

Ambiguity in the burst TDOA observations is present if another burst is received

by one of the receivers before all of the receivers detect the first burst. In the burst

TDOA problem each of the receivers is scanned only once per rotation of the emitter.

Ambiguity is possible if the distance separation between the receivers causes a burst from

the next scan of the emitter to be received by a closer receiver before a distant receiver

detects the burst from the first scan. This occurs if the time required for the signal to

travel from one receiver to the next is greater than the time required for the emitter to

complete one scan. This is unlikely. In even the fastest scanning emitters the scan rate is

unlikely to be greater than 10 revolutions per second. For an emitter with a scan rate of

10 revolutions per second, the separation required to introduce ambiguity in the burst

TDOA is 30,000 kilometers.

B. SINGLE PULSE TIME DIFFERENCE OF ARRIVAL (TDOA)

1. Problem Geometry

If two sensors are illuminated at the same time by the beam of an emitter sending

out pulsed signals, the pulse TDOA is the difference in the amount of time required for a

single pulse to reach the two sensors. Since electromagnetic waves travel at

approximately the speed of light, the TDOA is a function of the difference in the distance

that the pulse must travel. The difference in distance the pulse must travel is calculated

from the geometry of the problem. Figure 10 is a diagram of the geometry of the

problem.
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Figure 10. Single pulse TDOA geometry

The time difference of arrival for a pulse at sensors A and B is calculated from

equation (24).

"TDOA = [(xt- xa)2 + (yt- ya)2] l/ _ [(xt _Xb)2 + (yt- yb)2]fl (24)
c

Where TDOA = the time difference of arrival,
xt, yt = the x and y coordinates of the emitter,
xa, ya = the x and y coordinates of sensor A,
xb, yb = the x and y coordinates of sensor B,
c = the speed of light.
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2. Loci of Constant TDOA

Given a pulse TDOA observation and sensor geometry, the possible location of

the emitter is not unique and a locus of possible emitter locations exists. Figure 11 is a

plot of equation (24) for constant values of TDOA and the sensor configuration shown.

The sensors are separated by 500 meters. For the TDOA observations shown, the

location of the emitter lies anywhere along these hyperbolic loci.

Loci of Constant TDOA
1000,

00b - 0 TDOA in nanoseconds I

= /9°
E00

: 4oo • 12000

20. esr10

2 Sensl 10
A nsor

200 400 600 800 1000
x position (meters)

Figure 11. Loci of constant pulse TDOA,
sensor separation 500 meters

If more than two sensors are used it is possible to determine a unique estimate of

the emitter's location. The scenario shown in Figure 12 uses two widely separated

receiver platforms with two sensors attached to each of the receiver platforms. With this
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configuration, the loci of constant TDOA intersect at a single point and a unique estimate

of the emitter's location can be obtained from the pulse TDOA observations.

7

TDOA in nuaxoseconds
92=15 11.2.0

E

.cc

A A B

i Recm #I Serwns1 Recomir #2 Sensomr-I1

x coordinate (kilometers)

Figure 12. Loci of constant TDOA for two receiver platforms,
sensor separation 500 meters

3. Orthogonality of the Loci of Constant TDOA

As previously developed in the burst TDOA problem the orthogonality of the

TDOA observations can be related to the orthogonality of the loci of constant TDOA.

The dot product of the unit vectors tangent to the loci give the cosine of the angle

between the loci and a good indication of the orthogonality of the TDOA observations.

The unit vectors tangent to the loci are calculated using equation (21). The equations for
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the slope of the loci of constant TDOA are developed in Appendix C. The slope of the

loci, dxt/dyt, is given by the following equation:

dyt (yt.- ya)2cos - (xt -xa)(yt- ya)sin W
dX= (xt - xa)(yt - ya)cos W - (xt - xa)2sin W (25)

Where xt, yt = the x and y coordinates of the emitter,
xa, ya = the x and y coordinates of sensor A,
xb, yb = the x and y coordinates cf sensor B, and

S= the bearing from sensor A to sensor B.

The bearing from sensor A to sensor B is calculated from the following:

xLyb-ya)] (26)

4. Ambiguity in Single Pulse TDOA Observations

Ambiguity in pulse TDOA observations develops if a second pulse is detected by

one of the sensors before both of the sensors detect the first pulse. This can occur if the

amount of time required for a pulse to travel from one sensor to the next is longer than the

PRI. Therefore, the separation of sensors determines the highest PRF that signals can

have and still be detected without ambiguity.

=R I c
PPI = Rab (27)

Where Rab = the distance between sensor A and sensor B, and
c = the speed of light.

For sensors separated by a distance of 500 meters the smallest PRI an emitter could have

and be detectable without ambiguity is 1.66 microseconds. This corresponds to a PRF of

approximately 600 kHz.
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Estimates of the PRI of the emitter can be calculated from the time interval

between pulses at each of the sensors. Therefore, the PRI can be estimated independently

and used to test the TDOA observations for ambiguity.
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IV. KALMAN FILTERING

A. THE EXTENDED KALMAN FILTER

There are several methods of linearizing a nonlinear problem to allow the Kalman

filter to be us-zd. The problem itself can be linearized by expanding the equations of state

in a Taylor series around some norm. This approach is often used to derive equations of

state in aircraft stability and control problems. The nonlinear equations of state are

expanded and derived for pertubations around some equilibrium trim point. As long as

the pertubations from the trim point are within acceptable limits this linear approximation

will be acceptable and linear Kalman Filter theory can be applied. In the Extended

Kalman Filter, the plant and full nonlinear equations of state are used, but the Kalman

filter gain is calculated using a linear approximation of the model. The general equations

of state are given by:

x(k + 1) = f(x(k), w(k), k) (28)

Where: x(k) = state of the system,.
w(k) = the plant driving noise.
The function f(s) can be a nonlinear function of the states, the noise, or k.

The general equations for the observations are given by:

z(k) = h(x(k), v(k), k) (29)

Where: z(k) = the measurements of the system, and
v(k) = the measurement noise of the system.
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The function h(e) can be a nonlinear function of the states, the measurement noise, or k.

The measurement noise and the plant driving noise are assumed to be zero mean white

noise.

The extended Kalman filter is given by equations (30) through (32). These equations

utilize the nonlinear relationships to predict the states and observations of the the system.

The smoothed estimates of the states are calculated using the Kalman gain calculated

with a linearized version of the Kalman gain equation.

x(k + I lk) = f(i(klk), k) (30)

i(k+ llk)= h(i(k+ l1k),k) (31)

i(k+ Ilk+ 1) = i(k+ llk)+ G(k+ l)(z(k+ 1)-4k+ 1lk)) (32)

Where x(klk) = the current estimate of the states,
x(k + 1I k) = the predicted estimate of the states,
z(k + 1) the observed measurements,
G(k + 1) = the Kalman gain,
w(k) , the plant driving noise, is assumed to be zero mean.
v(k), the measurement noise, is assumed to be zero mean.

Equation (30) is used to predict the next state of the system, given the current state of

the system and the -current input. Since the plant driving noise is assumed to have zero

mean, it is assumed that the plant driving noise does not contribute the expected value of

the next state. The next observation is predicted using equation (31). This equation uses

tic predicted state of the system. The measurement noise is assumed to have zero mean,

and does not contribute to the the expected value of the observation. The smoothed

estimates of the states of the system are found with equation (32). This equation uses the

32



Kalman gain which is calculated using equations (33) through (35). These equations use

first order linear approximations of state prediction and observation equations. The

covariance prediction equations and the Kalman gain equations are given as:

P(k + I lk)=4 k)4T + Q (33)

P(k+ Ilk+ 1)= [I- G(k + 1)I]P(k + Ilk) (34)

G(k+ H HP(k+llk)HT+R (35)

Where P(klk) = the current estimate of the covariance of the estimation error,
P(k + Ilk) = the predicted covariance, given the current value,
P(k + 11k + 1) = the predicted covariance given the current observation,
Q = the covariance of the plant driving noise,
R = the covariance of the measurement noise,

o =o(x(k), u(k), ~) )],n

(u k)x(k) , x(k)=xcklk). u(k)=u(k) =O , and

A = h(x(k), v(k), k)
H =x(k) I x(k)ffx(klk), V(k)0O

To initialize the Kalman filter, initial estimates for the states and the covariance

matrix must be provided. The values chosen are generally-

i(010) = E[x(O)], and (36)

P(010) = E[{x(O) -_ (010)} {x(O) -_ (010)} T ] = coV[x(O)] (37)

The Kalman filter provides optimal performance, and guarantees convergence and

stability, but the extended Kalman filter does not. In many applications the extended
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Kalman filter provides accurate estimates of the states, but may not guarantee

convergence and stability. Generally the convergence and stability are highly dependent

on the values chosen for the initial estimates of the states, and covariance. In any

application of the extended Kalman filter, the convergence and stability of the solutions

must be thoroughly explored for as wide a range of initial conditions as is possible.

B. ERROR ELLIPSOIDS

The error ellipsoid is a means of visualizing the error in the estimate of the states of

the Kalman filter. The uncertainty in the estimate is expressed in the error covarianc- P.

The error covariance matrix P is the expected value of the covariance of the error in the

states.

P = E[(i - R)(i - ()T ] (38)

Where i = the state estimate of the Kalman filter,
T= the mean of the states of the Kalman filter

If the noise entering the Kalman filter is Gaussian then the estimates of the states of

the Kalman filter also have a Gaussian distribution. This is because a linear

transformation of a set of Gaussian random variables will result in another set of

Gaussian random variables.
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The equation for the probability density function for a joint Gaussian random

variable is:

fX(x) = 1  exp [-1/2((x - I)Tp-I (x -))] (39)(2n)NmJdet P[

Where x = the vector of N random variables,
= the expected value of x, E[x], and

P = the error covariance matrix of x.

The error covariance matrix is given by the following:

p11 P12 PIN

P21 P22 ... P2N

P = (40)

PNI PN2 PNN

Where Pij = E[(xi- Yi)(xj - Rj)]

A surface in N space can be found where the probability of x will be a constant. This

surface exists over the values of x for which the argument (x_- •)TPI (X - ) is a constant.

The total probability that the values of x are lie on the surface defined is found by

integrating the probability density function over the entire surface. These surfaces of

constant probability are called error ellipsoids of constant probability. If the argument

(x - R)TP-I(X - R) is set equal to the constant c2 then the probabilities that the value of x

will lie within the ellipsoid formed in N space is given in Table 1.

35



c

1 2 3

1 0.683 0.955 0.997
N 2 0.394 0.865 0.989

3 0.200 0.739 0.971

Table 1. PROBABILITIES FOR ERROR ELLIPSOIDS

In the Kalman filter application pursued here the estimates of the location of the

emitter are joint Gaussian random variables. The mean of the steady state estimate of the

location of the emitter is considered the true location of the emitter, and the difference

between the estimate of the location of the emitter and the mean of the steady state

estimates is the error. This error term is used to form the error covariance in

equation (38). Redefining the error in the estimate of the location of the emitter, the

argument of the joint probability density function is:

C2 = (Y-Tp-! R) (41 )

Where x = the error in the estimate of the emitter location,

P = the error covariance matrix P[ P12 and

c = a constant.

When the argument in equation (41) is expanded and the inverse of the P matrix is

found, the following equation results:

c2_ 1 [ Yt P22 -P 12  Rt (42)
P II P22 - P'122
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This further reduces to:

c2 = P22 t 2 -2P U2 t~t +Pllý2 (43)
pulp22 _p~2

To facilitate plotting this equation, the y estimate of the location of the emitter is solved

for in terms of the x coordinates of the emitter. Equation (43) is rewritten in the form of a

quadratic equation Ay2 + By + C = 0 where

A P11  B= -2P 1 2Rt C P22xt2 c2
Pl I P22 -P122 PlIP 22 P2 PlIP22 12

The quadratic formula is used to calculate the value of yt in terms of xt and the elements

of the error covariance matrix. The following equation results:

-P 11x ±2 2__-__ ______(44)

The maximum and minimum values of the error xt are found from the locations where

X12- Pj= c2 . If xt2 > PjIc 2 a real solution to equz'*on (44) will not exist.
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V. SIMULATION RESULTS

A. THE BURST TDOA KALMAN FILTER

1. Extended Kalman Filter Equations

An extended Kalman filter algorithm is developed to estimate of the emitter

location from burst TDOA observations. Simulated data is used to test the accuracy and

stability of the algorithm. The TDOA measurement noise is assumed to be white

gaussian. The following assumptions are made to simplify the problem:

1. The emitter scans in azimuth at a constant rate.
2. An estimate of the scan rate of the emitter is known a priori.
3. Some method is used to calculate the TDOA of the radar signal between the two

receivers, and the error on this TDOA observation is modeled as additive white
Gaussian noise with variance R.

4. The emitter is stationary.
5. The x and y coordinates of the emitter and receivers are measured with respect to

a fixed coordinate reference.
6. The exact locations of the receivers are known for all points in time.

These assumptions simplify the problem, but do not reduce its usefulness, because the

algorithm can easily be modified to account for these assumptions.

The estimated state and observations are calculated from the following:

x(k + 1) = i(k) = ýt(k) (5
[ it(k) 1

!abk (xt- xa)(yt- yb)- (yt- ya)(xt- xb) 1 (6Z ,,b(k ) . .. . . . . . _ 2 i2]] /2 + v ab trk ) (4 6 )
S [L [(xt - xa)2 + (yt - ya)2 ][(xt - xb) + y-yb)2]] J
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-= (xt - xa)(yt - yc) - (yt - ya)(xt - xc) 1
SRI• = -• [[(xt - Xa)2+(yt - ya)2][(xt _ xc)2 + (yt - yc) 2]] +/(4

1I[ (xt - xb)(yt - yc) - (yt - ybXxt - xc) 1
Z(k) = SR [[(xtt- xb)2 + (yt - yb)2][(xt- xc)2 + (yt- yc) 2]] 7 1 +vic(k) (48)

Where xt, yt = the estimate of the emitter's x and y coordinates,
SR = the scan rate of the emitter,
v= the measurement noise present in the TDOA observation

between two receivers,
xa, ya = the x and y coordinates of receiver A,
xb, yb = the x and y coordinates of receiver B,
xc, yc = the x and y coordinates of receiver C,
xt, yt, xa, ya, xb, yb, xc, and yc are all functions of k.

Since the emitter is stationary, the state transition matrix in equation (45) is the

identity matrix. Therefore, the predicted estimate of the emitter's location is the same as

the current estimate of the location. Since the coordinates of receivers A, B, and C are

known at all points in timet and the scan rate is known a priori, the predicted TDOA

observations are only functions of the predicted states.

The Kalman filter is implemented as three separate Kalman filters linked

together. Each receiver processes the received observations separately. They calculate

Kalman gains and an error covariance matrix from its observations, and then use these to

calculate an estimate of the location of the emitter. This estimate is then passed to the

next receiver. This algorithm is used because it facilitates implementation in hardware.
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The equations necessary for the Extended Kalman Filter implementation are:

P(k + I lk) = P(klk) + Q (49)

P(k+ Ilk+ 1)= [I-GG,(k+ l)HI• ]P(k + Ilk) (50)

Gxx(k + 1) = P(k+ 1Ik)H•4HxxP(k + lk)H•X +VX ] (51)

Where P(k+ Ilk) = the predicted error covariance,
P(kjk) = the current error covariance,
Q = the covariance of the state disturbances,
G.(k+l) = the Kalman Gain calculated for the TDOA observation

between two of the receivers,
V = the covariance of the measurement noise for the TDOA

observation between two of the receivers,
H ahlOk) Oh(k)1

The algebraic equations that make up the partial derivatives in H.1 are extensive and are

omitted here for cl ' The derivation of H., is included in Appendix D.

The flow chart for the Kalman filtering algorithm is shown in Figure 13. This

flowchart provides the basic logic flow of the Kalman filtering algorithm. In an actual

implementation, TDOA observations are available, and only the portion contained within

the dotted outline is required. The additional portion of the algorithm generates the

observations used to test the algorithm.
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Generate Receiver
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Calculates smoothed estimate
estimated l n of the emitter of error covariance PK using

Kalrnan Gains

[Returns and waits for the next I
observation.

Figure 13. Flowchart for burst TDOA Kalman filter
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2. Burst TDOA Simulations

The following scenario is used to test the burst TDOA Kalman filter algorithm.

Three receivers are used and all three of the available TDOA observations are used to

estimate the location of the emitter. The initial locations of the receivers and their

velocities and bearings are shown in Figure 14.

Y

Receiver A
(0,0) km
V = 30 rn/sec
Bearing 90 deg.

Receiver C
(-20,-20) kmN
V = 42 rn/sec
Bearing -135 deg. Receiver B

(20,-2) Krn
V = 42 rn/sec
Bearing -45 deg

Figure 14. Initial location and velocity of receivers

The emitter locations are shown in Figure 15.
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Y

Scenario #1
Range 500 km
Bearing 90 deg

Secnano #3
Range 150 kn
Bearing 30 deg

Scenario #2
Range 30 kmr
Bearing 60 deg

SX

Emitter Locations (not to scale)

Figure 15. Emitter locations for burst TDOA filtering scenarios

The following characteristics are used for the emitter. These characteristics are

typical for long range search radar.

Beamwidth 2.0 deg.
Scan Rate 360 deg/sec.
PRF 2000 Hz
Pulsewidth 1.0 microsecond
Peak Signal to Noise Ratio 15 dB

Although the a•gorithm has the capability to account for different signal strengths

and resulting error variances, all of the receivers are considered identical with identical

signal to noise ratios. An 8 MHz sampling rate is assumed. The algorithms developed in

Appendix A are used to calculate the variance of the error present in the TDOA

observations for the signal to noise ratio and the -ampling rates chosen. In the tests of

Kalman filtering algorithm, this error is modeled as zero mean white Gaussian noise, that
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is added to the true TDOA observations. The variance of the TDOA observation noise is

5.660 x 10. for all of the scenarios.

For all of the scenarios the a priori estimate of the emitter location is chosen as

(0,10) kilometers. The filter parameters Q, the covariance of the state excitation, and Po,

the initial error covariance, are varied until the filter converges well. All of the scenarios

are run for twenty five TDOA observations. Given the scan rate of the emitter, the

real-time length of the simulation is twenty five seconds.

Three plots are presented for each scenario. The frst plot is an X-Y plot of the

estimates of the coordinates of the emitter. This plot demonstrates the track of the final

estimate of the emitter location after all three TDOA observations are processed for each

time step. In this plot the loci of constant TDOA that correspond to the final steady state

TDOA observations are also plotted. Some of the loci do not intersect exactly at the

emitter. The equations used to plot the loci assume that the distance to the emitter is

much greater than the separation of the receivers, and in some of the scenarios this

assumption is not valid. The loci visually illustrate the relationship between the TDOA

observations and give a visual indication of the orthogonality of the observations. The

3c error ellipsoids are also plotted for the 1 st, 8th, 15th, and 22nd estimates of the emitter

location. These ellipsoids provide a visual indication of the accuracy of the location

estimate.
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The second plot is the estimate of the x and y coordinates of the emitter vs. the

number of TDOA observations. This plot gives a visual indication of how rapidly the

estimates of the emitter location converge on the true coordinates of the emitter.

The third plot is an X-Y plot that shows the true emitter coordinates, the loci of

constant TDOA, and the estimates of the emitter coordinates in the vicinity of the mean

steady state estimate of the emitter coordinates. The 3a error ellipsoid is plotted for the

steady state estimate, and the length of the major and minor axis of the error ellipsoid

give an indication of the maximum error in the estimate.
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a. Scenario#1

In the first scenario the performance of the burst TDOA filter is tested for an

emitter at a range of 500 kilometers from the origin and a bearing of 90 degrees from the

x coordinate axis. The initial error covariance matrix, Po, and the variance of the state

excitation, Q, are varied until the filter converges to a steady state value within ten

observations. The plots presented in figures 16 through 18 are representative of the

results obtained. The filter converges very well, and as shown in figures 16 and 18 the

estimate of the location of the emitter converges to the true location of the emitter. The

values that gave the best convergence were:

Po=[ 0  1.00 x 10'°m2,and Q= [400 ]0x 106m2.

As shown in Figure 16, the 3a error ellipsoids grow larger as the estimate of

the location of the emitter grows closer to the actual location. Because the distance to the

emitter is large in relation to the separation of the receivers, the TDOA observations are

very close to each other. The estimated location of the emitter does not approach the true

location until the error covariance matrix and subsequently the Kalman gains grow large

enough to amplify the very small differences in the TDOA and drive the states of the

filter. A high value for Q is required to drive the error covariance matrix high enough. If

a smaller value of Q is used, the filter reached a steady state value far from the true

location of the emitter.
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Figure 16. Scenario #I Estimates of the location of the emitter
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Figure 17. Scenario #1 Estimates of emitter coordinates vs. observations
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Figure 18. Scenario #1 Close-up of steady state estimate of emitter location
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b. Scenario #2

In the second scenario, the performance of the burst TDOA filter is tested at

an intermediate range. The emitter location is chosen at a range of 150 kilometers from

the origin and at a bearing of 30 degrees from the x coordinate axis. The coordinates of

the emitter are (130, 75) kilometers. The initial error covariance matrix, Po, and the

variance of the state excitation term, Q, are varied until the filter converges to a the

correct location within approximately ten observations. The plots presented in figures 19

through 21 are representative of the results obtained. The values that give the best results

are:

PO 1.0 100 ] x 102om, and Q .5 .0 x 104 m 2.

The filter performed very well. The orthogonality of the TDOA observations

in the vicinity of the emitter is high, and the estimate of the emitter location converged to

the proper location quickly and smoothly. The final steady state estimate is stable and no

numerical problems are present. The 3a error ellipsoids are not visible in figure 19

because of the scale of the figure.
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Figure 21. Close-up of the steady state estimate of emitter location
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c. Scenario #3

In the third scenario the performance of the burst TDOA filter is tested for an

emitter at close range. The emitter location is chosen at a range of 30 kilometers from the

origin and at a bearing of 60 degrees from the x coordinate axis. The initial error

covariance matrix, Po, and the variance of the state excitation term, Q, are varied until the

filter converged to the correct location of the emitter within approximately ten

observations. The plots presented in figures 22 through 24 are representative of the

results obtained. The values that give the best results are:

Po=[l 0 ]xl05mand Q [00] m2.01.0 0 40,an Q

Although the loci of constant TDOA plotted in figure 22 do not intersect at

the emitter, they indicate that the orthogonality of the TDOA observations is high and

accurate results are expected. Figure 23 shows that the estimates of the emitter location

converged to the correct location of the emitter rapidly and smoothly. Because of the

large scale of the plot, the 3a error ellipsoids are not visible in figure 22.
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Figure 24. Close-up of the steady state estimate of emitter location

54



3. The Burst TDOA Filter Results

The simulations presented here in no way test all the possible implementations of

this filtering algorithm. Further evaluation of the algorithm is necessary to fully evaluate

its performance and capabilities given the wide variety of possible emitter locations,

receiver configurations, and emitter characteristics. From the anadysis conducted some

general observations can be drawn.

For the burst TDOA Kalman filter the orthogonality among the TDOA

observations is generally very good. For the three randomly chosen receiver locations,

the orthogonality of the TDOA observations are not heavily dependent on the location of

the emitter. As the locations of the receivers remained constant and the bearing to the

emitter is varied throughout a 90 degree arc, and there does not appear to be any

particular bearings where the orthogonality of all three observations would decrease to

the point where the performance of the filter degrades. For all bearings and ranges

examined at least two of the TDOA observations had good orthogonality.

The accuracy of the filter is heavily dependent on the values chosen for Q, the

covariance of the state excitation. If this value is too low, the filter reaches a steady state

value, but the steady state value is not the correct location of the emitter. As Q is

increased, the steady state estimate of the location of the emitter reaches a stable point

around the true emitter location. The magnitude of Q directly affects the magnitude of

the error covariance P, and as Q is increased the error covariance and the 3cr error

ellipsoids for the steady state estimate increase in size.
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The filter performs well for the receiver configurations and emitter locations

tested. Even at the maximum range, where the receivers are spaced closely in comparison

to the distance from the emitter, the error present in the final estimate of the location of

the emitter is reasonable. For scenario #1 the length of the 3a error ellipsoid, which

represents effectively the maximum error in the estimate given the noise present in the

observations, is roughly 30 kilometers in bearing direction and 10 kilometers in range.

These represent errors of about 3 degrees in bearing and 2 percent in range. In scenarios

#2 and #3, the distance to the emitter decreases relative to the separation of the receivers

and the maximum error decreases to about 0.5 and 0.20 degrees in bearing, and 2 percent,

and 0.3 percent in range respectively.

These results are accomplished filtering the TDOA observations one at a time.

This filtering technique tends to skew the error ellipsoids to align them with the loci of

constant TDOA that corresponded to the last TDOA observation. This places the major

axis of the error ellipsoid along this loci and tends to increase the error along that loci. If

all three of the TDOA observations are processed simultaneously as the filter reaches a

steady state solution, the error covariance and thus the error ellipsoids and maximum

error present in the estimate can be decreased further.
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B. SINGLE PULSE TDOA KALMAN FILTER

1. Extended Kalman Filter Equations

An extended Kalman filter algorithm is developed to estimate of the emitter

location from pulse TDOA observations. Simulated data is used to test the accuracy and

stability of the algorithm. The following assumptions are made to simplify the problem:

1. Two receiver platforms are used, and each receiver platform is equipped with two
sensors to detect the pulse TOA.

2. The error present in the pulse TDOA observation is modeled as zero mean
additive white Gaussian noise with variance R.

3. The emitter is stationary.
4. The x and y coordinates of the emitter and receivers are measured with respect to

a fixed coordinate system, and the coordinates of the sensors are known exactly.
5. The PRI is long enough that ambiguity is not present in the pulse TDOA

observations.

These assumptions simplify the problem, but do not reduce its usefulness, because the

algorithm developed can easily be modified to account for these assumptions.

The estimated state and predicted observation are calculated from the following:

i(k+ 1)=i(k)= t(k) (52)

i(k + Ilk) = [(it(k) - xa~k)) 2 + (t) - ya(k))'] '- [(it(k) - xb(k))2 + (&(k) - yb(k)) 2 (53)

The Kalman filter equations are:

x(k + I Ik + 1) = O(k + l1k) + G(k + l)[z(k + 1) - i.(k +lIlk)] (54)

P(k + lI k) = P(klk) + Q (55)
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P(k+ Ilk+ )= 1-G(k + )(k)]P(k + k) (56)

G(k + 1)= P(k + 1 lk)I(k)T[lH(k)P(k + I Ik)I(k)T + R (57)

Where it(k) ^ (k = the estimate of the x and y coordinates of the emitter,
z(k+1) - the TDOA observations for receiver platforms 1 and 2,
z(k + I lk) = the predicted TDOA based upon the estimates of emitter

location.
xa, ya = the x and y coordinates of the sensor A of the receiver platform,
xb, yb = the x and y coordinates of the sensor B of the receiver platform,
G(k+1) = the Kalman gains,
P(klk) = the error covariance,
H(k) = the gradient of the observation equation,
Q = the covariance of the plant noise,
R = the covariance of the measurement noise,
c = the speed of light,
xa, xb, ya, yb are all functions of k.

The gradient of the observation equation H(k) is calculated from the following equations.

[ I ((it(k)--xa) (it(k)-xb) I ((t(k)-ya) ( ýk)-yb)) ] (58)
H (k) = C\ R* Rb(k) 'E (\ R *~) Rt(k)

Where, Ra(k) = [(jt(k) - xa)2 - (+t(k) -- ya)2]1/ , and (59)

Rb(k) = [(it(k) - xb) 2 + (jt(k) - yb)2] 1/2 (60)

The flowchart for the pulse TDOA Kalman filter algorithm is identical to the

flowchart used for the burst TDOA Kalman filter shown in Figure 13. The simulation

calculates the pulse TDOA observation using the known locations of the emitter and

sensors. Zero mean white Gaussian noise is aried to the calculated observations and the

filter estimates the location of the emitter from these noisy observations. The variance of

the measurement noise is calculated from the emitter parameters and an assumed signal to
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noise ratio. The filteiing algorithm is tested for a number of emitter locations. In each

scenario the initial error covariance matrix and the variance of the plant excitation noise

are varied until the filter converges to the emitter's true coordinates

2. Pulse TDOA Kalman Filter Simulations

Three scenarios are used to test the performance of the pulse TDOA Kalman

filter. The receiver locations remain the same for all of the scenarios and are shown in

Figure 25. The sensors are stationary for all of the scenarios. The sensors are separated

by 500 meters, and the receiver platform separation is 20 kilometers.

y

Sensor Coordinates are given in meters

Sensor A Sensor B Sensor A Sensor B

(0,0) (500,0) (20000,0) (20500,0)
Receiver Platform I Receiver Platform 2

Figure 25. Receiver platform and sensor configuration
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The emitter locations chosen to test the pulse TDOA algorithm are shown in Figure 26.

Y

Scenario #1
Range 500 km
Bearing 90 deg

Secnario #3
Range 150 km
Bearing 30 deg

Scenario #2
Range 30 km
Bearing 60 deg

Sx

Emitter Locations (not to scale)

Figure 26. Emitter locations for the single pulse TDOA Kalman filter

The emitter has the following characteristics. These characteristics are typical for long

range search radar.

Beamwidth 2.0 deg.
Scan Rate 360 deg/sec.
PRF 2000 Hz
Pulsewidth 1.0 microsecond
Peak Signal to Noise Ratio 15 dB

All of the sensors are considered identical with identical peak signal to noise

ratios. An 8 MHz sampling rate is assumed. The algorithms developed in Appendix A

are used to calculate the variance of the error present in the TDOA observations for the

sampling rate and signal to noise ratio chosen. In the tests of the Kalman filtering
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algorithm, this error is modeled as zero iT =an white Gaussian noise, and is added to the

true TDOA observations. The variance of the TDOA observation noise is 1.694 x 10"

for all of the scenarios.

For all of the scenarios the a priori estimate of the emitter's location is

(10,5) kilometers. This a priori estimate provided good convergence for a wide range of

emitter locations. The variance of the plant excitation noise Q, and the initial error

covariance are varied until the filter converges to the actual coordinates of the emitter.

All three of the scenarios are run for sixty TDOA observations. For the emitter

characteristics chosen, this represents a real run time of 30 milliseconds.

Three plots are presented for each of the scenarios examined. The first plot is an

X-Y plot of the estimates of the coordinates of the emitter. This plot demonstrates the

track of the final estimate of the emitter location after both TDOA observations are

processed at each time step. The loci of constant TDOA that correspond to the final

steady state TDOA observations are also plotted. These loci illustrate the relationship

between the TDOA observations and give a visual indication of the orthogonality of the

observations. Also, the 3ca error ellipsoids are plotted for the 1st, 20th, 39th, and 58th

estimates of the emitter location. These ellipsoids provide a visual indication of the

accuracy of the location estimate.

The second plot is the estimate of the x and y coordinates of the emitter vs. the

number of TDOA observations. This plot gives a visual indication of how rapidly the

states of the filter converge to the true coordinates of the emitter.

61



The third plot is an X-Y plot of true emitter coordinates, the loci of constant

TDOA, and the estimates of the emitter coordinates in the vicinity of the mean steady

state estimate of the emitter coordinates. The 3a error ellipsoid is plotted for the steady

state estimate. The length of the major and minor axis of the error ellipsoid give an

indication of the maximum error in the estimate.

a. Scenario #1

In the first scenario the performance of the pulse TDOA filter is tested for an

emitter located at a range of 500 kilometers from the origin at a bearing of 90 aegrees

from the x coordinate axis. The initial error covariance matrix, Po, and the variance of

the state excitation, Q, are varied until the filter converges to a steady state value. The

plots presented in Figures 27 through 29 are representative of the results. In each

simulation, a total of sixty observations are filtered. The values that give the best results

are:

Po- 50 5.0 1 X10 20 m2, and Q-[10 1.0 ]x 108m2.

[ 5.0 0 [ .0
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Figure 27. Scenario #1 Estimates of emitter location
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Figure 29. Scenario #1 Close-up of steady state estimate of emitter location
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The filter performs well, but the error in the steady state estimate is high, and

the estimate of the y coordinate of the emitter, shown in Figure 28, converges very

slowly. Because the distance to the emitter is large in relation to the separation of the

receivers, the TDOA observations are very close to each other. The estimated location of

the emitter does not approach the true location of the emitter until the error covariance

matrix and subsequently the Kalman gains grow large enough to amplify the very small

differences in the TDOA to drive the states of the filter near the true location. A large

value for Q is required to drive the error covariance matrix high enough. If a smaller

value of Q is used, the filter reaches a steady state far from the true location of the

emitter. Because of the magnitude of the error covariance matrix, the 3a error ellipsoids

grow large. The major axis of the steady state error ellipsoid is nearly 400 kilometers.

Considering that the distance to the emitter is only 500 kilometers, a location estimate

with that much possible error has limited usefulness.

In a second attempt, the separation of the receiver platforms is increased to

300 kilometers to determine if greater separation of the receiver platforms can increase

the orthogonality of the TDOA observations and improve the performance of the filter.

The separation of the sensors is maintained at 500 meters. The results of the simulation

are shown in Figures 30 through 32. The value chosen for Q in this simulation is

2.0 2.0 x 106. The value chosen for Po is the same as the previous simulation.
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Figure 30. Scenario #1 Estimates of emitter location for 300 km receiver separation
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Figure 32. Scenario #1 Close-up of steady state estimate of emitter location for 300 km
receiver separation
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As shown in Figure 31 the estimates of the emitter coordinates approached the

true coordinates of the emitter more quickly and directly than the previous simulation.

This is largely due to the greater orthogonality of the TDOA observations. The steady

state 3a error ellipsoid plotted in Figure 32 is considerably smaller than in the previous

simulation and the major axis of the error ellipsoid is only 51 kilometers.

b. Scenario #2

In the second scenario the performance of the burst TDOA filter is examined

with the emitter located at an intermediate range. An emitter is located at a range of 150

kilometers from the origin and a bearing of 30 degrees from the x coordinate axis. The x

and y coordinates of the emitter are (130, 75) kilometers. As in the first simulation, the

initial error covariance matrix, Po, and the variance of the state excitation term, Q, are

varied until the filter converges to the true coordinates of the emitter. The values that give

the best convergence are:

Po= 1.001 x 100m2, and Q= 1001x107m2.
0 1.0 1.0

The plots presented in Figures 33 through 35 are representative of the results

obtained.
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2C00

Major Axis = 140 ki
150 Minor A::s= 24k - -

e t=Ma of emiu

.-.

CS50-

30 cum eihpimoa&

loci of cmtmtA TDOA

50 .50 100 150 2W 250

x coordinate (kilomcters)

Figure 35. Close-up of the steady state estimate of emitter location.
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The filter performs well, but the error in the steady state estimate is high, and

the estimates of the x and y coordinates of the emitter, shown in Figure 34, converge very

slowly. The distance from the receiver platforms to the emitter is much less than in

scenario #1, but the orthogonality of the TDOA observations is low because of the

location of the emitter in relation to the receivers. As shown in figures 33 and 35, the loci

of constant TDOA are nearly parallel in the vicinity of the emitter. Although the filter

converges to a steady state value close to the actual emitter location, the error covariance

is very high. The major axis of the 3a error ellipsoid for the steady state estimate is

approximately 140 kilometers. Considering that the distance to the emitter is only 150

kilometers, a location estimate with an error ellipsoid this large has limited usefulness.

As shown in the first scenario, greater separation of the receiver platforms can

increase the orthogonality of the TDOA observations and improve the performance of the

filter. When the separation of the receiver platforms is increased to 150 kilometers and

the separation of the sensors maintained at 500 meters, the performance improves

dramatically. The results of the simulation are shown in figures 36 through 38. The final

value chosen for Q is 5.0 0 x 10. The value chosen for Po is the same as the

previous simulation.
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Figure 37. Scenario #2 Estimates of emitter coordinates vs. observations with
150 km receiver separation

t Major Axis = 16.7 km

85 Minor Aft = 7.4 krn

8 g

l 75
S. -

~70 '

65 ',

koa ofcwu"st TDOA60[...,

115 120 125 130 135 140 1"
x coordinate (kilometers)

Figure 38. Close-up of the steady state estimate of emitter location with 150 km receiver
separation
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As shown in Figure 37, the estimates of the emitter coordinates approach the

true values more quickly and directly than the previous simulation. This is largely due to

the greater orthogonality of the TDOA observations. The 3a error ellipsoid plotted in

Figure 38 is considerably smaller than in the previous simulation. The major axis of the

error ellipsoid is only 16.7 kilometers.

c. Scenario #3

In the third scenario the performance of the pulse TDOA filter is tested for an

emitter located at close range in comparison to the separation of the receivers. The

emitter location is located at a range of 30 kilometers from the origin and at a bearing of

60 degi ý,es from the x coordinate axis. The x and y coordinates of the emitter are (15, 26)

kilometers. As in the previous simulations, the initial error covariance matrix and the

variance of the state excitation term, are varied until the filter converges to the true

coordinates of the emitter. The values that give the best convergence are:

Po = 1.0 10 ]x10 m' adQ [400 l]M2.1.0 xlO m2, and Q-=
.0040

The plots presented in Figures 39 through 41 are representative of the results

obtained.

As shown in Figure 40 the estimate of the emitter location converges to the

true coordinates of the emitter quickly. Increasing the value of Q improves the

convergence of the filter, but also increases the error present in the final estimate and

increases the size of the error ellipsoid. For the values of Q chosen the major axis of the

3a error ellipsoid is only 1.4 kilometers.
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Figure 39. Scenario #3 Estimates of the emitter location.
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Figure 41. Close-up of the steady state estimate of the emitter location
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3. Pulse TDOA Filter Results

The simulations presented here do not test all the possible implementations of

this filtering algorithm. Further evaluation of the algorithm is necessary to fully evaluate

its performance and capabilities given the infinite variety of possible emitter locations,

receiver configurations, and emitter characteristics. From the analysis conducted some

general observations can be drawn.

The pulse TDOA filter accuracy and effectiveness is heavily dependent on the

orthogonality of the TDOA observations. As the orthogonality of the TDOA

observations decreased, the error present in the estimate increased. When the receiver

platforms are closely spaced relative to the distance to the emitter, the loci are nearly

parallel to each other and the TDOA observations have low orthogonality. To obtain

good filtering results the spacing between the receiver platforms has to be increased.

The receiver locations chosen for the single palse TDOA filtering problem

yielded areas where the orthogonality of the TDOA observations is low. In these areas,

the ability of the algorithm to estimate accurately the location of the emitter is limited.

These blind areas can be avoided with different sensor configurations or more receivers.

The accuracy of the algorithm filter is also heavily dependent on choosing the

correct values for the covariance of the state excitation, Q. If this value is too low, the

filter reaches steady state, but the steady state estimate of the location is far from the true

location of the emitter. As Q is increased. the algorithm reaches a steady state around the

emitter's true location, but the error covariance and the error present in the final estimate
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rises much higher. Consequently the size of the 3o error ellipsoids and the maximum

error present in the final estimates are much larger.

The final approaches used in each of the scenarios yield good results. In the

second approach used in scenario #1, the accuracy obtained from the filtering is

approximately 3 degrees in bearing and about 10 percent range. For scenario #2 the error

is approximately 5 degrees in bearing and 5 percent in range, and in the third scenario, the

error is approximately 2 degrees in bearing and 3 percent in range.

The pulse TDOA algorithm filters the TDOA observations one at a time. This

filtering technique tends to skew the error ellipsoids and align them with the loci of

constant TDOA that corresponded to the last TDOA observation. This places the major

axis of the error ellipsoid along this loci and tends to increase the error in that direction.

If both of the TDOA observations are processed simultaneously as the filter reaches

steady state, the error covariance and the error ellipsoids can be decreased.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Both of the Kalman filtering algorithms considered here perform well. Given the

proper parameters, both algorithms accurately estimate the location of the emitter to a

reasonable degree of accuracy. The orthogonality of the TDOA observations is the

largest factor that affects the accuracy of the final estimates.

Overall, the geometry of the burst TDOA filtering problem yields TDOA

observations with better orthogonality. Even when the distance to the emitter is much

larger than the distance between the receivers, the orthogonality of the TDOA

observations are good. In the burst TDOA filtering problem, the orthogonality of the

observations is not as sensitive to the location of the emitter in relation to the receivers.

The receiver configuration provides good orthogonality for a wide range of emitter

locations. To obtain good orthogonality in the pulse TDOA filtering problem, the

receivers require wide separation.

The major disadvantage of the burst TDOA filter is the slow rate at which

observations are obtained. Observations are obtained at the scan rate of the emitter, and

for the scenarios examined, this means that only one observation is made per second. For

the simulations pursued, the total run time is 25 seconds, but reasonably accurate

estimates of the location are available within about 10 observations. The number of
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observations required to reach steady state could be reduced further with better a priori

estimates.

The most attractive feature of the pulse TDOA filter is the rate at which observations

are obtained. Observations are available at the rate of the PRF of the emitter, and for the

scenarios pursued here, the pulse TDOA filter could obtain 2000 observations for every

observation obtained by the burst filter.

It may be possible to combine the two filtering algorithms and utilize the best

features of both. As stated previously, with only two receivers the location of the emitter

can not be determined uniquely from the burst TDOA observations. However, if the

receivers are equipped with multiple sensors, as in the pulse TDOA filtering problem,

bearing estimates could be obtained and the location of the emitter along the burst TDOA

locus could be uniquely determined.

B. RECOMMENDATIONS

The analysis and development conducted here is limited in its scope. Further testing

and evaluation are required to more accurately evaluate the algorithms and models

presented. Specifically, the following are recommended

1. Further evaluation and testing of the burst and pulse TDOA algorithms be done to
assess their performance for a wider variety of receiver and emitter configurations
and scenarios.

2. Perform a detailed analysis of the effect of a priori estimates on the convergence
and accuracy of both filters.

3. Explore the possibility of using the orthogonality of the TDOA observations, to
pick the best observations to filter and its effect on the performance of the filter.

4. Obtain more detailed models of the error present in the burst and pulse TDOA
observations, and determine their effect on the performance of the filter.

5. Explore the possibility of combining the two filtering approaches to take
advantage of the best features of both.
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APPENDIX A. TOA PROBABILITY DENSITY

A. PULSE TOA PROBABILITY DENSITY

1. Derivation of Probability Density

The pulses received and detected by the sensors are assumed to have the

envelope shown in Figure A-1.

tK= 0

Pulse Width 1.0 microseconds

1 .0T - " 1

Sampled Pulse

Sampling Frequency 8.0 MHz

Figure A-1. Pulse envelope and sampled pulse

The sampling interval is assumed much smaller than the pulse width so the sampled

pulse is a reasonable representation of the original pulse. The higher the sampling
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probability density function of the pulse TOA, each sample of the pulse is considered a

random variables as shown in equation (A-1).

z(k) = zo(k) + v(k) (A-1)

Where z(k) = the random variable representing the amplitude of the kth sample,
zo(k) = the deterministic variable that is the true amplitude of the kth

sample, and
v(k) - the white Gaussian random variable that represents the noise

present in the amplitude of the kth sample. The noise has zero
mean and a variance of V, i.e.. E[v(k)2] = V.

The mean and variance of z(k) are:

Pzek) = E[z.(k) + v(k)] = E[zo(k)] + E[v(k)] = zo(k) (A-2)

o3(k) = E[ (z(k) - I14 ))(z(k) - pL(k))] (A-3)

GO) = E[ (zo(k) + v(k) - zo(k))(zo(k) + v(k) - z0(k))] = E[v(k)2] = V (A-4)

Each sample is uncorrelated.

E[z(k)z(k + r)] = E[zo(k)zo(k + T)] = 0 (A-5)

Since they are Gaussian random variables, they are independent.
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Equation (A-6) is used to calculate the time of arrival for the centroid of the pulse.

N

I t(k)z(k)

k-I

Where TOA = the time of arrival for the pulse centroid,
X = numerator of the pulse centroid TOA equation,
Y = denominator of the pulse centroid TOA equation,
t(k) - the time at which the kth sample of the pulse is taken,
z(k) = the amplitude of the kth sample of the pulse, and
N = the number of samples in the pulse.

The time base from which the time of the samples are measured is arbitrary, but is

common for all TOA measurements. This value is assumed deterministic and is therefore

known exactly for each sample.

The numerator and denominator of equation (A-6) are themselves Gaussian random

variables. As shown in reference [11, if W is a linear combination of independent

Gaussian distributed random variables,

W = ajX(l) + a2X(2) + a3X(3) + ..... aX(n) (A-7)

then W is a Gaussian distributed random variable with a mean and variance given by:

w= a I gX(I) + a2Ptx(2) + a3LX(3) + ..... an4X(n) (A-8)

2W 2 2 2 2 2 2 a2o 2

W aICTx(I) + a 2ax(2) + a 3 aX(3) +.... nX(n) (A9)

Based upon these relations the mean and variance of the numerator and denominator of

equation (A-6) are given by:
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N
lpx = I t(k)zo(k) (A- 10)

k-I

N

P = y-Z0)(12
k=I

N
py= Y- z.(k) (A- 12)

k-I

2 =Nay = E V=NV (A-13)
k=1

Equation (A-6), the estimate of the TOA of the pulse centroid, is the ratio of two

Gaussian distributed random variables. The joint probability density function for two

Gaussian distributed random variables x and y is:

{x J , [(_.2-2(-}(A" (P)]
f(x, y) = (-' XO O . (A-14)

21caxay(l - p 2)1/2

Where p, I• = the mean of x and y,
a. ay = the standard deviation of x and y,
p = the correlation coefficient which is given by:

cov[xy] E[(x - p.,)0' - ýty)(A15
P- x~ry - x(3y (-5

For equation (A-6), the covariance and correlation coefficient are calculated from the

following:

N N N N
cov[X, Y] = E[(X t(k)z(k) - F, t(k)zo(k))(X z(k) - Y zo(k))] (A-I16)

k-I k=l k1i

[N 
N

cov[X, Y] = E[1•X t(k)v(k))(=, v(k))] (A-17)
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Since the noise term v(k) is considered white noise with zero mean and variance V, the

cross terms in the multiplication in equation (A- 17) will be zero and the resulting

covariance is:

N N
cov[X, Y] = Y- t(k)v(k)2 = Y t(k)V (A-18)

k-I k-I

Thus the correlation coefficient is:

N N

V I t(k) _ t(k)
k-I = (A- 19)

V2 N y t(k)2  N t~k) 2

k=1

The correlation coefficient does not depend upon the variance of the noise V only on the

number of samples and the sampling interval.

From reference [2], the probability density function, f,(z), for the ratio of two random

variables, Z = is found from the following equation:

fz(z) = J Iylf(zy, y)dy (A-20)

Where f(zy,y) is the joint probability density function f(xy) with the variables zy

substituted for x.
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The probability density finction for the pulse centroid TOA is:

2(I...P2)[(- OX 2-PpY! ) +I~ 2111
f2 (Z) f Jy ~ 7~a( .

2)12  +( ) jdy (A-2 1)

Where z = the pulse centroid TOA,
y = the denominator of the pulse centroid TOA equation,

p, = the mean of the numerator and denominator of the centroid TOA
equation, calculated from equations (A- 10) and (A- 12),

a' ay2 the variance of the numerator and denominator of the centroid
TOA equation, calculated from equations (A- 11) and (A-13), and

p = the correlation coefficient calculated from equation (A-i 5),

A closed form solution for this integral is not available, so a MATLAB program is used to

numerically calculate the probability density function. The MATLAB program Puldist.m,

in Appendix E, calculates the probability density function for the pulse centroid TOA.

2. Effect of Signal to Noise Ratio on Probability Density

The plots in Figure A-2 demonstrate the effect of the peak signal to noise ratio on

the probability density function of the pulse TOA. Samples of white Gaussian noise are

added to the 1.0 microsecond pulse shown in Figure A-I. The variances of the noise are

chosen to give peak signal to noise ratios of 15, 20, 25, and 30 dB. The variance of the

noise is calculated from the peak signal to noise ratio with equation (A-22).

S) 101oglO V (A-22)

dN) M =LV]

Where V = the variance of the noise required to give the specified peak
signal to noise ratio for the unit pulse.
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Figure A-2. Pulse TOA probabilit densiy for peak
signal to noise ratios of 15, 20, 25, and 30 dB

As expected, as the signal to noise ratio increases, the variance of the error present in the

estimate of the TOA decreases and the estimate of the pulse TOA becomes more accurate.

3. Calculated Mean and Standard Deviation of Sampled Pulses

The mean and standard deviation are calculated for the one microsecond pulse

shown in Figure A-I. A variety of peak signal to noise ratios and sampling rates are used.

For all of the sampled pulses the mean time of arrival for the centroid is 0.5 microseconds.

The calculated standard deviations are shown in Table A-I.
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Sampling Rate

S/N 4 MHz 8 MNHz 12 MHz 16 MHz

15 dB 0.05873 0.02910 002241 001883

20 dB 003221 0,01629 001258 001058

25 dB 001819 0.00925 000713 000598

30 dB 001062 000542 000412 000344

TABLE A-I. ST NDARD DEVIATION FOR 10 MICROSECOND
SAMPLED UNIT PULSE (microseconds)

The pulse TOA standard deviations listed in Table A-I indicate that there is a

tradeoff between sampling rate and peak signal to noise ratio If a lower sampling rate is

used, a larger peak signal to noise ratio is required to obtain the same TOA error level

There exists an inversely proportional relationship between the variance of the pulse TOA

error and the peak signal to noise ratio. From Table A-I, the relationship between the

variance of the TOA error and the peak signal to noise ratio for a sampling rate of 8 MHz.

Var=,m _ (0.02910)2 = 9.897 f (25dB - 15dB)
Var 25, (0.00925)2

B. BURST TOA PROBABILITY DENSITY

1. Derivation of Probability Density

The algorithm that calculates the probability density function for the sampled

pulse is used to calculate the probability density function for a burst of pulses. The

MATLAB program Burdist.m, listed in Appendix E, generates the burst shown in
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Figure A-3 and calculates the p1 "ility density function for a variety of peak signal to

noise ratios, PRFs and pulse wiu•as.

1.01

0.0

07i

I I0.5

104

0.2k

0.1

0.5 1.0 1.5 2.0

time (mfftsceeds)

Figure A-3. A burst of sampled pulses from a scanning emitter

The envelope of the burst is approximated as the upper half of a sinewave, and

the peak signal to noise ratios are calculated using equation (A-22).

2. Effect of Signal to Noise Ratio on Burst TOA Probability Density

Figure A-4 demonstrates the effect of signal to noise ratio on probability density

of the burst TOA. The probability densities for the burst in Figure A-3 are calculated for

peak signal to noise ratios of 15, 20, 25, and 30 dB. The noise variances required are

calculated using equation (A-22).

89



150 Sampling Frequency 8 MHz

30 dB

0100

f '25 dB

20 dB

15 dB
0

0.95 1.0 1.05
Cwntrod Time of Arrival (milliseconds)

Figure A-4. Burst TOA probability densities for a 2 millsecond burst
with a pulsewidth of 1.0 microseconds, and a PRF of 6 kHz.

As expected, as the signal to noise ratio is increased, the variance of the error

present in the estimate of the TOA decreases and the estimate of the burst TOA becomes

more accurate.

3. Effect of PRF on the Bunt TOA Probability Density

The probability density is calculated for a burst with a variety of pulse repetition

frequencies (PRF). The PRFs chosen are 3, 6, 9, and 12 kHz. Plots showing the bursts

used are presented in Figure A-5.
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Figure A-S. Bursts used to examine the effect of PRF
on the TOA probability density

The other burst characteristics are:

Burst Length: 2.0 milliseconds
Pulsewidth 1.00 microseconds,
Peak Signal to Noise Ratio 25 dB,
Sampling Rate 8 MHz

91



The calculated probability density functions for the bursts in Figure A-5 are plotted in

Figure A-6.

120 SampOn Frequency 8 MHz

100. Peak S/N -25 dB 12000 Hz

1O 9000 Hz

SM000 Hz

20

01
095 1.05

Centroad Tuie of ArrW (mi mAAnds)

Figure A-6. Burst TOA probability densities for
PRFs of 3, 6, 9, and 12 kHz.

As the PRF increases the standard deviation of the burst TOA error decreases.

With an increase in the PRF more energy is contained in the burst and the effect of the

noise present diminishes.

4. Calculated Mean and Standard Deviation of Sampled Bunts

The means and standard deviations are calculated for the bursts in Figure A-5 for

a variety of peak signal to noise ratios. The mean time of arrival for the centroid of the
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burst is 1.0 milliseconds for all of the bursts. The standard deviations are listed in

Table A-2.

Sampling Rate

S/N 3000 Hz 6000 Hz 9000 Hz 12000 Hz

15 dB 0.02392 0.01665 0.01353 0.01185

20 dB 0.01337 0.00925 0.00755 0.00655

25 dB 0.00754 0.00524 0.00428 0.00373

30 dB 0.00428 0.00300 0.00248 0.00218

TABLE A-2. STANDARD DEVIATION FOR 2.0 MILLISECOND
SAMPLED UNIT BURST (milliseconds)

The data in Table A-2 show that the PRFs and the variances of the burst TOA are

inversely proportional. The relationship between the PRF and the variance of the burst

TOA is shown below for a signal to noise ratio of 20 dB:

Var1 2ooo = (000655)2 = 0.240 ; 3000 Hz
Var30oW (0.01337)2 12000 Hz

Similar to the relationship between the PRF and the variance of the burst TOA, the peak

signal to noise ratio and the variance of the burst TOA are inversely proportional. For a

PRF of 6000 Hzý

Var. I = (0.01665)2 =10.0-(25dB-l5dB)
Var25dB = (0.00524)2
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5. Effect of the Pulsewidth on the Probability Density

The probability density function of the burst TOA is calculated to e&amine the

effect of tL, pulsewidth on the probability density. A burst is generated with the following

characteristics:

Burst Length: 2.0 milliseconds
Peak Signal to Noise Ratio 20 dB,
Pulse Repetition Frequency 6000 Hz,
Sampling Rate 8 MHz

For this burst the pulse width is varied from 1.0 microseconds to 4.0

microseconds and the probability density function is calculated and the mean and standard

deviations are examined. The probability densities for each of the bursts are plotted in

Figure A-7.
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Figure A-7. Burst TOA probability densities for
pulse widths of 1.0, 2.0, 3.0, and 4.0 microseconds

As shown in Figure A-7, the effect of the pulsewidth on the probability density

function is similar to the effect of the PRF and the peak signal to noise ratio on the

probability density function. As the pulsewidth increases, the standard deviation of the

probability density decreases. As the pulse width, and effectively the power present in the

burst increases, the estimate of the TOA of the centroid of the burst becomes more

accurate. The pulsewidth and the variance of the TOA of the burst centroid are inversely

proportional. The relationship between the pulse width and the variance of the probability

density function is shown below for a signal to noise ratio of 20 dB and a PRF of 6000

Hz:
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Var4.o_ (0.00472)2 = 0.240 m I*0 psec
Var 0.o (0.00926)2 4.0 psec
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APPENDIX B. LOCI OF CONSTANT TDOA

A. BURST TDOA PROBLEM

The burst TDOA for two widely separated receivers being scanned by a constantly

rotating emitter is directly proportional to the angle formed by the two receivers and the

emitter.

y Emitter

Ra

Rb

S Rab Receiver B

x
Receiver A

Figure B-I. Angular relationships, burst TDOA problem
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Using the geometry in Figure B-1, a relationship exists between the bearing and range

from receiver A to receiver B, the bearing and range to the emitter, and the angle 0.

Ra Rabsin(n - (0 + • ,)-sin(0--j(Bl

Where SR = the scan rate of the emitter in radians/second,
Ra = the range to the emitter,
* = the bearing to the emitter,
Rb = the range to receiver B,
W= the bearing to receiver B, and
0 = the angle formed by the receivers and the emitter.

When this equation is rearranged:

tan(0) sin w) (B-2)

If the assumption is made that the angle 0 is small, then the tangent of 0 is

approximately equal to the angle 0 and the TDOA can be found from the following

equation:

TDOA - e sin(O-,) (B-3)

SR -SR[IZa-cos(ý-W)]

Equation (B-3) is used to plot all of the possible locations that an emitter could be located

given a TDOA observation.

B. PULSE TDOA PROBLEM

A simple relationship exists that can be used to plot the loci of constant TDOA for the

pulse TDOA problem. The pulse TDOA problem geometry is shown in Figure B-2.
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Figure B-2. Pulse TDOA problem geometry

From the law of cosines:

nb 2 = Ra 2 + Rab 2 - 2RARab cos( - W) (B-4)

The difference between Ra and Rb is the distance that a pulse must travel to reach the

more distant receiver A. The amount of time required to travel this distance is the pulse

TDOA. This distance D can be found from the following equation:

D = (TDOA)c (B-5)

Where TDOA = the pulse time difference of arrival,
c = the speed of light.
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Therefore, Rb is:

Rb-Ra-D (B-6)

Substituting into equation (B-4):

(Ra - D)2 = Ra2 + Rab2 - 2RaRab cos(+ - W) (B-7)

- = Rab2 - 2RaD + D2

arcos 2RaRab I+14 (B-9)

Equation (B-8) can be used to plot the possible locations of an emitter given the locations

of the sensors and the TDOA.
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APPENDIX C. TDOA ORTHOGONALITY

A. BURST TDOA ORTHOGONALITY

Equation (C-I) is an approximate relationship used to calculate the loci of constant

TDOA for the burst TDOA problem.

TDOA= (C-1)
S s )( )

Where SR = the scan rate of the emitter in radians/second,
Ra = the range to the emitter,
) = the bearing to the emitter,

Rb = the range to receiver B,
W= the bearing to receiver B, and
0 = the angle formed by the receivers and the emitter.

A measure of the orthogonality of the TDOA observations can be found by taking the

dot product of the unit vectors tangent to the loci of constant TDOA at the coordinates of

the emitter. These vectors can be calculated from the slope of the line tangent to the loci

at the point of interest. The dot product of the unit vectors tangent to the loci will yield

the cosine of the angle formed by the two loci. The equation for the dot product is given

below:

Rt, * Rt2 = cosO (C-2)

Where Rt1 = The unit vector tangent to the loci number 1,
Rt2 = the unit vector tangent to loci number 2, and
0 = the angle formed by the two vectors.

The cosine of the angle formed by the vectors tangent to the loci is an indication of the

orthogonallity of the loci. If the cosine of the angle formed by the loci is close to one then
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the loci are nearly parallel If the cosine of 0 is zero the loci are orthogonal and lie at right

angles to each other. The slope, dytldxt, of the loci of constant TDOA was found by

expressing equation (C-I) C Cartesian coordinates and implicitly differentiating. An

assumption is made to simplify the problem. If the distance from receiver A to the emitter

is much larger than the distance to receiver B, the ratio Ra/Rab will be much larger than

one, and equation (C-I) can be approximated with equation (C-3).

TDOA = Rab sin( - W) (C-3)

SR(Ra)

For a given loci the TDOA, Rab, and SR will be constant and are not a function of the

location of the emitter. The equation can be rewritten in the following form:

SR(TDOA) - siný cos W - sin WcosO (C4)

Rab Ra

The following substitutions are made to solve for the equation in terms of the location of

the emitter xt and yt.

sino = (yt- ya) cos= (xt- xa) Ra = [(xt- Xa)2 + (yt- ya)2]J 2  (C-5)Ra Ra

The resulting equation is:

SR(TDOA) (yt - ya)cos w - (xt - xa)sin w
Rab [(xt -_xa)2 + (yt - ya)2 ]

The cosw and the siny terms are retained to make the derivations more clear. Implicit

differentiation was used to calculate the derivative dyt/dxt of equation (C-6). The term on
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the left side of equation (C-6) is a constant and therefore its derivative is zero. The final

derivative is given by equation (C-7).

dyt = [(xt- xa)2 sinw - 2(xt- xa)(yt- ya)cos w- (yt- ya)2 sin W1 (C-7)
dxt [(yt - ya) 2cos w - 2(xt - xa)(yt - ya)sin W - (Xt - Xa) 2cOs W] (

Where xt, yt = the x and y coordinates of the emitter,
xa, ya = the x and y coordinates of receiver A, and

S= the bearing from receiver A to receiver B.

The bearing from receiver A to receiver B is calculated from the following equation:

warctan[yb- ] (C-8)

The unit vector tangent to the loci of constant TDOA at the coordinates of the emitter is

given by the following equation:

_t 1I •+ m - (C-9)4TTi +m I m

Where Rt = the unit vector tangent to the loci, and
m = the slope of the loci dyt/dxt at the emitter.

B. PULSE TDOA ORTHOGONALITY

The dot product of the unit vectors tangent to the loci of constant TDOA give the

cosine of the angle between the loci of constant TDOA and a good indication of the

orthogonality of TDOA observations. The unit vectors tangent to the loci are calculated

from the slope of the loci. The slope of the loci of constant TDOA can be found by taking

the derivative dyt/dxt of equation (C-10).
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"DOA = [(,_XI)2 + ya)2] -[(xt-xb) 2 +yyb 12  (C- 10)
c

Where xt, yt = the x and y coordinates of the emitter,
xa, ya = the x and y coordinates of sensor A,
xb, yb = the x and y coordinates of sensor B, and
c = the speed of light.

An assumption will simplify the problem and yield an approximate, but simpler solution.

If the distance from the sensors to the emitter is much larger than the distance between the

sensors, the approaching pulses can be considered plane waves, and the TDOA for the

pulses arriving at the sensors can be calculated from the geometry in Figure C-1.

To Emnitter

( t-Y

(xb~yb)

Sensor A

(xaya)

0 X

Figure C-I. Pulse TDOA geometry for emitter at a long distance
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The TDOA calculated from the geometry in Figure C-1.

TDOA = bcos(-) (C-1 l)

Where Rab = the distance from sensor A to sensor B,
0, = the bearing to the emitter,

= the bearing from sensor A to sensor B, and
c = the speed of fight.

Using trigonometric identities and the substitutions in equations (C-12) and (C-13),

equation (C- 11) can be rewritten as equation (C-14).

cos,= (xt-xa)
[(xt - xa)I + (yt - ya)2]'1 (C-12)

sio =(yt- ya)
[(Xt_ -xa)2 + (yt_- ya)2]i (C-13)

cO7DOA) (xt- xa)cos w + (yt- ya)sinwRab [(Xt_ -xa)2 + (yt -ya2]• (¢24

Implicit differentiation is used to calculate the derivative of equation (C-14). The

derivative of the left hand side is zero because for a given loci the terms on the left hand

side of equation (C-14) are constant. The equation for the slope of the loci of constant

TDOA is given in equation (C-15).

dyt = (yt - ya) 2cos W - (xt -xa)(yt - ya)sin Wd = (xt -xa)(yt -ya)Cos W- (Xt- Xa)2 sin • (C- 15)

Where xt, yt = the x and y coordinates of the emitter,
xa, ya - the x and y coordinates of sensor A,
xb, yb - the x and y coordinates of sensor B, and
W = the bearing from sensor Ato sensorB.
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The bearing from sensor A to sensor B is calculated from the following:

S -arctan (xb - xa) (C- 16)

The unit vector tangent to the loci of constant TDOA at the coordinates of the emitter is

given by the following equation:

RFt =-- m (C-17)

Where Rt = the unit vector tangent to the loci, and
m - the slope of the loci at the emitter.
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APPENDIX D. BURST Hxx DERIVATION

The equation that calculates the TDOA observations as a function of the receiver

locations, the emitter locations, and the scan rate of the emitter, is given by:

1 = (xt - xa)(yt - yb) - (yt - ya)(xt - xb)TDOA= t(xt - xa) + (yt-ya)2 ]1[(Xt -Xb)2 +(yt-yb) 2] 2 I (D-l)

Where xt, yt = the x and y coordinate of the emitter,
xa, ya = the x and y coordinate of receiver A,
xb, yb - the x and y coordinate of receiver B, and
SR = the scan rate of the emitter in rad/sec.

The following MATLAB function was used to evaluate the partial derivative of the

observation equation (D-1). The terms and derivatives in the MATLAB function were

calculated using a symbolic processor contained in the software package MATHCAD.

function [HxHy] = hk3(xt,ytxayaxb,yb,SR);

% A function to calculate the derivative of the observation equation
% This finction assumes that all of the receivers are allowed to move, and
% Their locations are known. The scan rate is known a priori.

% Richard W. Williamson
% Date: 18 February 1994
% Date Revised: 18 July 1994

% This program evaluates the partial derivatives of equation (D- 1)

% Define extra variables for clarity.

xa2 = xa"2;
ya2 = ya^2;
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xb2 = xbA2;
yb2 = ybA2;

At2 = xtA2;
xt3= xtA3;

yt2 = ytA2;
yt3 = ytA3;

% Denominator of the original TDOA function; Equation (D- 1)
G = ( (XtXa)A2 + (yt~ya)A2 )*( (xt-xb)A 2 + (yt-yb) 2 );

dgdx = -4*xt~ytyb + 8*xt*xa~xb - 2*xa~xb2 - 2*xa*yt2 - 2*xa*yb2
2*xa2*xb - 2*yt2*xb - 4*yt~ya~xt - 2*ya2*xb + 4*xt2 -..

6*xt2*xb + 2*xt*xb2 + 4*yt2*xt + 2*xt*yb2 - 6*xt2*xa +.

2*xa2*xt + 2*ya2*xt + 4*xa*yt*yb + 4*yt~ya*xb;

dgdy = -2*xt2*yb - 4*xt*xa*yt - 2*xa2*yb - 4*yt*xt*xb - 2*ya*xt2 -

2*ya*xb2 +8*yt*ya*yb - 2*ya*yb2 - 2*ya2*yb + 4*yt3 +...
4*xt*yt + 2*xa2*yt + 2*yt~xb2 - 6*yt2*yb + 2*yt*yb2-
6*yt2*ya + 2*ya2*yt + 4*xt~xa~yb + 4*ya~xt*xb;

% Numerator of the original TDOA function; Equation (D- 1) expanded out
f = xt*(ya-yb) + yt*(xb-xa) + (xa*yb-xb*ya);

dfdx = (ya-yb);
dfy = (xb-xa);

% The calculated numerators of the derivative functions

numdhdx = G~dfdx - O.5*Pdgdx;

numdhdy = G*dfdy - O.5*f~dgdy;

% Evaluate the partial derivatives

Hx = (l/SR)*numdhdx/(sqrt(G'T^3));

Hy = (lI SR)*numndhdy/(sqrt(GA3));
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APPENDIX E. MATLAB PROGRAMS

% Burst.m

% Name: Richard W. Williamson
% Date: 18 Feburary 1994
% Date Revised: 18 July 1994

% This program implements an extended Kalman filter to estimate
"% the location of an emitter from the TDOAs of a burst between three
"% receivers. The position of the receivers are known exactly.
"% The algorithm generates noise free TDOA observations and adds white
% Gaussian noise to the observations. The variance of the white Gaussian
% noise is specified in the program and can be different for each receiver.
% Twenty-five observations are processed.

% The sensors are initially located at the following coordinates:

% Receiver A (500, 100)
"% Receiver B (20000, -2000)
"% Receiver C (-20000, -20000)

% The TDOA measurements are corrupted by white Gaussian noise.
% The variance of the noise for all TDOA observations is 1.694e-1 5.

% The emitter was located at a range of 500 kilometers from the origin
% and at a bearing of 90 degrees measured from the x-axis.
% The coordinates of the emitter were:

% Emitter: (0, 500) kilometers.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% The program outputs four figures.

% figure(l) The plot of the estimates of the x and y coordinates of the
% emitter
% figure(2) The Kalman gains calculated for each observation
% figure(3) An X-Y plot of the estimates of the coordinates of the emitter.
% This plot also includes the loci of constant TDOA and the
% 3a error ellipsoids for the 1st, 8th, 15th, and 22nd estimate
% of the location.
% figure(4) A closeup of the steady state estimate of the emitter location.
% The plot is centered on the steady state estimate of the
% emitter location and the 3a error ellipsoid corresponding
% to the steady state estimate is plotted.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The program calls four subroutines.

% tdoa3.m Calculates the time difference of arrival of a burst
% between two receivers. The locations of the receivers
% are arbitrary. The TDOA is calculated from the locations
% of the receivers, the location of the emitter, and the scan
% rate.

% hk3.m Calculates the derivative of the observation equation given
the locationof the two receivers, the scan rate, and the

% estimated location of the emitter.

% bloci.m Calculates the loci of constant TDOA given the TDOA
% observation and the locations of the receivers.

% ellip.m Calculates the error ellipsoids given the location of the point
% of interest, the error covariance matrix, and the number of
% standard deviations required.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
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clear;

% Range and bearing to the target
Rt = 500000;
Bmgt = 90;
xt = Rt*cos(Bmgt*pil80);
yt = Rt*sin(Bmgt*pil80);

% The number of observations processed.

k = 1:25;
len = length(k);

% The coordinates of receivers A, B, and C as a function of k
xa = 500*ones(1,len) + 00*k;;
ya = 1 00*ones(1 len) + 30*k;;
xb = 20000*ones(1,len) + 30*k;
yb = -2000*ones(1 ,len) - 30*k;
xc = -20000*ones(1 ,len) - 30*k;
yc = -20000*ones(1 ,len) - 30*k;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initializing variables

Po = 1.00e+20*eye(2); % The initial error covariance matrix
0 = 4.0e+06*eye(2); % Variance of the state excitation noise.
RKab = 5.660e-09; % The variance on the TDOA error Rcvr A-B
RKac = 5.660e-09; % The variance on the TDOA error Rcvr A-C
RKbc = 5.660e-09; % The variance on the TDOA error Rcvr A-C
Srate = 2*pi; % The scan rate of the emitter

X = zeros(2,Ien); % The state : jatrix
Pk = zeros(2,2); % The error covariance matrix
HK = zeros(3,2); % The linearized derivative of h(k)
g = zeros(2,Ien); % The Kalman gains
z_tru = zeros(3,Ien); % The vector of true observations
Z = zeros(3,len); % The vector of noisy observations
Zhat = zeros(3,len); % The vector of estimated observations
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% Calculation of the observations noise free observations
for k = 1:len,

z_tru(1,k) = tdoa3(xt,yt,xa(k),ya(k),xb(k),yb(k),Srate);
z_tru(2,k) = tdoa3(xtyt,xa(k),ya(k),xc(k),yc(k),Srate);
z_tru(3,k) = tdoa3(xt,yt,xb(k),yb(k),xc(k),yc(k),Srate);

end;

% Calculate the noise on the TDOA estimates
rand('normal');
n = sqrt(RKab)*rand(3,len);

% Form the matrix of noisy observations.

Z = ztru + n;

% A priori estimate of the location of the emitter

Xo = [0 10000]';

% Initialize the Extended Kalman filter

Pk = Po; % Initialize the Pk the error covariance matrix.
X(:,I) = Xo; % Initialize the state vector

for k = 1:len,

k

% Processes the observation for receiver A and B

O-Z Calculates the derivative of the Rcvr A-B TDOA equation wrt x and y
[hi ab h2ab] = hk3(X(1 ,k),X(2,k),xa(k),ya(k),xb(k),yb(k),Srate);

% Forms the Hk matrix
HKab = [hlab h2ab];

% Calculates the next PK based upon the previous PK

Pk = Pk + Q;
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% Calculates the kalman gains

GKab = Pk*HKab'*inv( HKab*Pk*HKab' + RKab);

"% Calculates the estimate of the observation based upon the
"% estimate of the states.
Zhat(1,k) = tdoa3(X(1 ,k),X(2,k),xa(k),ya(k),xb(k),yb(k),Srate);

% Calculates an update of the state based upon the difference in
% the actual observation and the estimate of the observation.
X(:,k) = X(:,k) + GKab*( Z(1,k)-Zhat(l,k) );

% Updates the variance matrix Pk based upon the observation
Pk = (eye(2) - GKab*HKab)*Pk;

% Processes the observation for receiver A and C

% Calculates the derivative of the TDOA equation wrt x and y
[hiac h2ac] = hk3(X(1 ,k),X(2,k),xa(k),ya(k),xc(k),yc(k),Srate);

% Forms the Hk matrix
HKac = Ih1ac h2ac];

% Calculates the next PK based upon the previous PK

Pk = Pk + Q;

% Calculates the kalman gains

GKac = Pk*HKac'*inv( HKac*Pk*HKac' + RKac);

% Calculates the estimate of the observation based upon the
% estimate of the states.
Zhat(2,k) = tdoa3(X(1,k),X(2,k),xa(k),ya(k),xc(k),yc(k),Srate);

% Calculates an update of the state based upon the difference in
% the actual observation and the estimate of the observation.
X(:,k) = X(:,k) + GKac*( Z(2,k)-Zhat(2,k) );

% Updates the variance matrix Pk based upon the observation
Pk = (eye(2) - GKac*HKac)*Pk;
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% Processes the observation for receiver B and C

% Calculates the derivative of the TDOA equation wrt x and y
[hibc h2bc] = hk3(X(l ,k),X(2,k),xb(k),yb(k),xc(k),yc(k),Srate);

% Forms the Hk matrix

HKbc = [hlbc h2bc];

% Calculates the next PK based upon the previous PK

Pk = Pk +;

% Calculates the kalman gains

GKbc = Pk*HKbc'*inv( HKbc*Pk*HKbc' + RKbc);

% Calculates the estimate of the observation based upon the
% estimate of the states.
Zhat(3,k) = tdoa3(X(1 ,k),X(2,k),xb(k),yb(k),xc(k),yc(k),Srate);

% Calculates an update of the state based upon the difference in
% the actual observation and the estimate of the observation.
X(:,k) = X(:,k) + GKbc*( Z(3,k)-Zhat(3,k) );

% Updates the variance matrix Pk based upon the observation
Pk = (eye(2) - GKbc*HKbc)*Pk;

% Projects the next state based upon the current state

X(:,k+l) = X(:,k);

% Save the error covariance matricies
if k == 1

P = Pk;
else,

P = [P;Pk];
end;

% Save the Kalman gains

g(:,k) = GKbc;

end; % End of the filtering routine
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Output the filtered estimates of x and y

t = 1:len;
figure(l)
ptot(t,X(1,t)Jl 000,t,X(2,t)/l 000)
axis([1 25 -50 600])
pause;

% Plot of the Kalman gains

figure(2)
cig
plot(t,g(1,:),t,g(2,:))

title('Kalman Gains')
xlabel('Number of Observations')
ylabel('Magnitude')
pause

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate the steady state estimate of emitter location

xtavg = mean(X(1,k-10:k));
ytavg = mean(X(2,k-10:k));

% Calculate the coordinates of the loci of constant TDOA based

% upon noise free TDOA observations

Tab = bloci(xa(k),ya(k),xb(k),yb(k),ztru(1,k),Srate);

Tac = bloci(xa(k),ya(k),xc(k),yc(k),z_tru(2,k),Srate);

Thc = bloci(xb(k),yb(k),xc(k),yc(k),z_tru(3,k),Srate);

% Plot the locus of emitter locations and actual emitter locations

figure(3)
clg
% Plots coordinates of the estimates of the emitter location
% axis([-500 500 -30 1000]);
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plot(X(1 ,:)/1000,X(2,:)/1000,'r')
hold on

% Plots the actual emitter location
plot(xt/l 000,yt/I 000,'*g')

% Plots the final locations of the receivers
plot(xa(k)/1 000,ya(k)/1 000,'*g')
plot(xb(k)/l 000,yb(k)/1 000,'*g')
plot(xc(k)/1 000,yc(k)Il 000,'*g')

% Plots the locus of possihle emitter locations
plot( Tab(i, :)I1 000, Tab(2, :)/1 000,':b')
plot( Tac(1 ,:)1000, Tac(2,:)/1000,':b')
plot( Tbc(1, :)/1000, Tbc(2, :)11000,':b')

% Plot three sigma error elipsoids for various points

C = 3.00; % The number of standard deviations plotted in error ellipsoids
for k= 1:7:len-1,

P1 = [P(2*k-1,1) P(2*k-1,2); P(2*k,1) P(2*k,2)]; % The Pk Matrix

[xg,yl,y2,Emax,Emin] = ellip(P1,C,X(1,k),X(2,k)); % Calculate ellipse

plot((xg)/1000, (yl)I1000,'g-',(xg)/1000,(y2)11000,'g-') % Plot the ellipse

end;

% axis;
hold off
axis(I-250 250 -50 600]);
pause

% Plot the locus of emitter locations and actual emitter locations

figure(4)
clg
% Plots coordinates of the estimates of the emitter location

plot(X(1 ,:)/1000,X(2,:)/1000,r')
hold on
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% Plots the actual emitter location
plot(xt/I 000,yt/I 000,'*g');

% Plots the locus of possible emitter locations
plot( Tab(1 ,:)I1000, Tab(2,:)/1000,':b');
plot( Tac(1, :)I1 000, Tac(2, :)I1 000.':b');
plot( Tbc(1 ,:)I1 00, Tbc(2, :)I1 000,':b');

% Plots ihm error ellipsoids

[xg ,yl ,y2, Emax, Emin] = ellip(Pk,C,xtavg,ytavg);

plot((xg)I1 000,(yl )I1 OOO,'g-',(xg)I1 000,(y2)Il 000,'g-')

Major = sprintf('%5.l f ,Emax/1 000);
Minor = sprnnff('%5. If , Emin/l 000);

text((xt-0.5O*Emax)I1 000,(yt+0.85*Emax)I1 000,rMajor Axis = Major' km'J)
text((xt-O.5O*Emax)I1000,(yt+O.75*Emax)/1000,rMirior Axis =' Minor' kin')

% axis;
hold off

axis([(xt-Emax)/1 000 (xt+Emax)I1 000 (yt-Emax)/1 000 (yt+Emax)/1 000]);
% axis('square')
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% tdoa3.m

"% Name: Richard W. Williamson
"% Date: 18 Feburary 1994
"% Date Revised: 18 July 1994

% This program calculates the burst observation equation h(x(k)).

% Input: The coordinates of receiver A (meters): xa, ya
% The coordinates of receiver B (meters): xb, yb
% The coordinates of the emitter (meters): xt, yt
% Scan rate of the emitter: SR

% Output The burst time difference of arrival for
% the specified receiver loactions. T

function T = TDOA3(xt,yt,xa,ya,xb,yb,SR)

% Numerator of the observation equation
f = xt*(ya-yb) + yt*(xb-xa) + (xa*yb-xb~ya);

% Denominator of the observation equation
G = ( (xt-xa)A2 + (yt-ya)A2 )*( (xt-xb)A2 + (yt-yb)A2);

% Calculate the TDOA
T = f/(SR*sqrt(G));

%
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% HK3.m

"% Name: Richard W. Wiliamson
"% Date: 18 Feburary 1994
"% Date Revised: 18 July 1994

% This program calculates the derivative of the observation equation h(x(k)).

% Input: The coordinates of receiver A (meters): xa, ya
% The coordinates of receiver B (meters): xb, yb
% The coordinates of the emitter (meters): xt, yt
% Scan rate of the emitter: SR

% Output The vector of partial derivaties of h(x(k))

% with respect to xt and yt. [Hx,Hy]

function [Hx,Hy] = hk3(xt,yt,xa,ya,xb,yb,SR);

% A function to calculate the derivative of the
"% H matrix. This function does not assume that one of
"% The receivers is fixed with respect to the stationary
"% coordinate system. This assumes that the scan rate is known.

% This program is an implementation of equation ( )

% Define variable for easier understanding

xa2 = xaA2;
ya2 = yaA2;

xb2 = xbA2;
yb2 = ybA2;

xt2 = xtA2;

xt3 = xtA3;

yt2 = ytA2;
yt3 = ytA3;
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% The original TDOA function;

G = ( (xt-xa)A 2 + (yt-ya)A 2 )*( (xt-xb)A 2 + (yt-yb)A 2)

dgdx = -4*xt*yt*yb + 8*xt~xa*xb - 2*xa'xb2 - 2*xa*yt2 - 2*xa'yb2
2*xa2*xb - 2*yt2*xb - 4*yt*ya*)ct - 2*ya2*xb + 4*xt3 -

6*xt2*xb + 2*xt*xb2 + 4*yt2*xt + 2*xt*yb2 - 6*xt2*xa +*

2*xa2*xt + 2*ya2*xt + 4*xa*yt*yb + 4*yt*ya*xb;

dgdy = -2*xt2*yb - 4*xt*xa*yt - 2*xa2*yb - 4*yt*,ct*xb - 2*ya*xt2 -

2*ya'xb2 +8*yt*ya*yb - 2*ya*yb2 - 2*ya2*yb + 4*yt3 +..
4*xt*yt + 2*xa2*yt + 2*yt*xb2 - 6*yt2*yb + 2*yt*yb2 -

6*yt2*ya + 2*ya2*yt + 4*xt*xa*yb + 4*ya*xt*xb;

f = xt*(ya-yb) + yt*(xb-xa) + (xa'yb-xb'ya);

dfdx = (ya-yb);

dfdy =(xb-xa);

% The calculated numerators of the derivative functions

numdhdx = G*dfdx - O.5*f'dgdx;
numdhdy = G'dfdy - O.5*fdgdy;

% The actual derivative functions

Hx = (1/SR)*numdhdxl(sqrt(G A3));

Hy = (1/SR)*numdhdy/(sqrt(G A3));
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% Bloci.m

"% Name: Richard W. Williamson
"% Date: 18 Feburary 1994
"% Date Revised: 18 July 1994
%

% This program calculates the coordinates of the loci of constant TDOA for
% a pair of receivers.

% Input: The coordinates of receiver A (meters): xa, ya
% The coordinates of receiver B (meters): xb, yb
% The Time Difference of Arrival (sec): TD
% Scan rate of the emitter: SR

% Output The vector of x and y courdinates of the loci
% of constant TDOA. T

function T = bloci(xa,va,xb,yb,TD,Srate)

% Polar plot of the receivers, the emitter,and the locus of possible
% emitter location.

% The angles of phi to be plotted.
phi = 0:pi/100:pi;

% Calculates the range and bearing to the receivers.

Rab = sqrt( (xb-xa)A2 + (yb-ya)A2);

psi = atan2(yb-ya,xb-xa)*ones(1,1:length(phi));

% Initialize the range variables
Ra = zeros(1,length(phi));

Ra = Rab*( sin(phi-psi)/tan(TD*Srate) + cos(phi-psi));

dxa = xa*ones(1,1 :length(phi));
dya = ya*ones(1,1 :length(phi));

% Plots the locus of possible emitter location.
T = [Ra.*cos(phi)+dxa ; Ra.*sin(phi)+dya
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% pulse.m

% This program implements an extended Kalman filter to estimate
% the location of an emitter from the TDOA of a pulse between two
% sensors. Two receiver platforms are used and the their location is
% known exactly. Each receiver platform consists of two sensors The
% algorithm generates noise free TDOA observations for the known receiver
% and emitter locations and adds white Gaussian noise to the observations.
% The variance of the white Gaussian noise is specified in the program
% and can be different for each receiver platform. Sixty obsevations
% are processed.

% The sensors are located at the following coordinates:

% Receiver 1 Sensor A (0,0)
% Receiver I Sensor B (500,0)
% Receiver 2 Sensor A (20000,0)
% Receiver 2 Sensor B (20500,0)

% The TDOA measurements are corrupted by white Gaussian noise.
% The variance of the noise for both receivers is 1.694e-1 5.

% The emitter was located at a range of 30 kilometers from the origin
% and at a bearing of 60 degrees measured from the x-axis.
% The coordinates of the emitter were:

% Emitter: (15, 26) kilometers.
%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% The program outputs four figures.

% figure(I) The plot of the estimates of the x and y coordinates of
% the emitter
% figure(2) The Kalman gains calculated for each observation
% figure(3) An X-Y plot of the estimates of the coordinates of
% the emitter.
% This plot also includes the loci of constant TDOA and the
% 3a error ellipsoids for the first, 20th, 39th, and 58th
% estimate of the emitter.
% figure(4) A closeup of the steady state estimate of the emitter
% location. The plot is centered on the steady state
% estimate of the emitter location and the 3a error
% ellipsoid corresponding to the steady state estimate
% is plotted.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The program calls two subroutines.

% ploci.m Calculates the loci of constant TDOA given the TDOA
% observation and the locations of the receivers.
% ellip.m Calculates the error ellipsoids given the location of the point
% of interest, the error covariance matrix, and the number of
% standard deviations required.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize the variables

c = 3.00e+08; % The speed of light
R1 = 1.694e-15; % The covariance of measurement error receiver 1
R2 = 1.694e-15; % The covariance of measurement error receiver 2
Q = 5.0e+02*eye(2); % Variance of Plant excitation noise
P0 = 5.0e+20*eye(2); % Initial error covariance

% Choose to calculate the error covariance of 3 sigma
C = 3.0;

t = (0:60); % Time vector total of 61 observations
I = ones(1 ,len); % occurring 50 micro seconds apart
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% Initialize storage for Kalman gains and the states.
g = zeros(2,length(t));
X = zeros(2,1en);

% Emitter location
Rt = 30000; % Range to the emitter
Bt = 60.00; % Bearing to the emitter from the origin

xt = Rt*cos(Bt*pi/1 80); % X coordinate of the emitter
yt = Rt*sin(Bt*pi/180); % Y coordinte of the emitter

% A priori estimate of the location of the target;

X0 = [10000;5000];

% The location of the emitter specified for all point in time

xal = 0*1 + 0*t; % Receiver 1 Sensor A moves in a straight line
yal = 0*1 + 0*t; % at a constant speed

xbl = 500*1 + o*t; % Receiver I Sensor B moves in a straight line
ybl = 0*1 + 0*t; % at a constant speed

xa2 = 20000*1 + 0t; % Receiver 2 Sensor A moves in a straight line
ya2 = 000.00*1 + 0*t; % at a constant speed

xb2 = 20500*1 + 0*t; % Receiver 2 Sensor B moves in a straight line
yb2 = 000*1 + 0*t; % at a constant speed

% Calculate the TDOA observations for the two receivers

% Equation

"% ,(k+ ilk)= [(r•_)-,xa(k)). + (y)-__- [(i<)-_xb(k)) + • _O(9t W
C

"% Calculate the observations for receiver 1

Zi = (11c)*( sqrt( (xt-xal).^2 + (yt-yal).A2) -...

sqrt( (xt-xbl).A2 + (yt-ybl).A2) );

% Calculate the observations for receiver 2

Z2 = (ilc)*( sqrt( (xt-xa2).A2 + (yt-ya2).A2) -..
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sqrt( (xt-xb2).A2 + (yt-yb2).A2));

% Inject zero mean, noise into the observations
rand('normalr):
nl = sqrt(R1)*rand(1,len);
n2 = sqrt(R2)*rand(1 ,len);

Z1n = Z1 + nl;

Z2n =Z2 + n2;

% Initialize the Kalman filter

X(:, 1) = XO; % A priori estimate of the emitter location
PK = P0; % Initial error covariance matrix

% Calculate the filtered estimates of the emitter location

for k = 1:len-1,

% Process TDOA observation Receiver #1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate the HK matrix for receiver platform 1

% Equation H(k) = [C . Rb(k)) " E Ra(k) Rb(k)

"% Equation Ra(k) =[(*(k) - Xa) + ( ~t(k) ya)2 1/

" Equation Rb(k) = [(it(k) - xb)2 + (3't(k) - yb)2 "r

Ral = sqrt( (X(1, k)-xal (k)).A2 + (X(2,k)-yal (k)).A2);
Rbl = sqrt( (X(1,k)-xbl(k)).A2 + (X(2,k)-yb1(k)).A2);

hlx (I1c)*( (X(1,k)-xal(k))./Ral - (X(1,k)-xbl(k))./Rbl);
hly = (1c)*( (X(2,k)-yal(k))./Ral - (X(2,k)-ybl(k))./Rbl);

HK = [hix hly];

% Calculate the estimates of the TDOA based upon the estimate

% of emitter location and location of receiver platform 1
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% Equation

% ^(k+ Ilk) = [(i*) ,g1)) 2 +(Ntk) _ Y*~))2]If [(iO~) - xb(k)) 2 + (jtO) - yb(k)) 112]
C

Zhatl = (1/c)*(sqrt( (X(1,k)-xal(k))A2 + (X(2,k)-yaI (k))A2)-...
sqrt( (X(1,k)-xbl(k))A2 + (X(2,k)-ybl(k))A2 ));

% The new error covariance is the same as the old plus Q.
PK = PK + Q;

% Calculate the Kalman gains
GK = PK*HK'*inv(HK*PK*HIK + R1);

% Calculate the updated error covariance matrix
PK = (eye(2) - GK*HK)*PK;

% Calculate a smoothed estimate of the bearing to the emitter
X(:,k) = X(:,k) + GK*(Zln(k)-Zhatl);

% estimate of the emitter location for receiver #2 is same as previous
X(:,k) = X(:,k);

% Process TDOA observation receiver #2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

"% Calculate the HK matrix for receiver platform 2

% Equation H(k)= C ,a(k (kxb) C ((k) Rb(k))

"% Equation Ra(k) = [(it(k) - xa) 2 + (C't(k) - ya)2] "

" Equation Rb(k) = [(it(k) - xb)2 + 5t(k)- yb- ]/

Ra2 = sqrt( (X(1,k)-xa2(k)).A2 + (X(2,k)-ya2(k)).A2);

Rb2 = sqrt( (X(1,k)-xb2(k)).A2 + (X(2,k)-yb2(k)).A2);

h2x = ( 11c)*( (X(1 ,k)-xa2(k)).lRa2 - (X(1 ,k)-xb2(k))./Rb2);

h2y = (1/c)*( (X(2,k)-ya2(k))./Ra2 - (X(2,k)-yb2(k)).lRb2);
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HK = [h2x h2y];

"% Calculate the estimates of the TDOA based upon the estimate
"% of the emitter location and location of receiver Platform 2

"% Equation

% i(k+1lk)= [(itOk)- x(k)) 2 + (ý)-a(k))2]'- [(it(k) - xb(k)) 2 + (;t(k) - )'

Zhat2 = (1/c)*(sqrt( (X(1,k)-xa2(k))A2 + (X(2,k)-ya2(k))A2)-...
sqrt( (X(1,k)-xb2(k))A2 + (X(2,k)-yb2(k))A2 ));

% The new error covariance is the same as the old plus Q.
PK = PK + Q;

% Calculate the Kalman gains

GK = PK*HK'*inv(HK*PK*HK' + R2);

% Calculate the updated error covariance matrix

PK = (eye(2) - GK*HK)*PK;

% Calculate a smoothed estimate of the bearing to the emitter
X(:,k) = X(:,k) + GK*(Z2n(k)-Zhat2);

% Estimate of the location for next observations is same as previous
X(:,k+l) = X(:,k);

% Save the error covariance matricies
if k == 1

P = PK;
else,

P = [P;PK];
end;

% Save the Kalman gains
g(:,k) = GK;

end; % end of the Kalman filtering routine
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot the output

% Plot of the estimate of the x and y coordinates
figure(l)
cig;
plot(t,X(1,:)11 000,t,X(2,:)ll000)
title(' Estimate of x and y coordinates');
xlabel('Number of Observations')
ylabel('X location in kilometers')
pause

% Plot of the Kalman gains
figure(2)
clg
plot(t,g(1 ,:),t,g(2,:))

title('Kalman Gains')
xlabel('Number of Observations')
ylabel('Magnitude')
pause

% Calculate the steady state estimate of emitter location
xtavg = mean(X(1,k-10:k));
ytavg = mean(X(2,k-10:k));

% Calculate the loci of constant TDOA based upon noise free TDOA
% observations

Rla = 5000:5000:40000;

% T1 is a vector of the X and Y coordinates of the loci.
T1 = ploci(xal (k),yal (k),xbl (k),ybl(k),Zl(k),Rla);

R2a = 5000:5000:40000;
% T2 is a vector of the X and Y coordinates of the loci.
T2 = ploci(xa2(k),ya2(k),xb2(k),yb2(k),Z2(k),R2a);
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% X-Y Plot of the estimate of the coordinates of the emitter
figure(3)

% True emitter location
subplot( 111), plot(xt/I 000,yt/1 000,'*')

hold on
% Plots the final locations of the sensors
plot(xal(k)1l000,yal(k)/1000,'r*',xbl(k)/1000,ybl(k)/1000,'r*')
plot(xa2(k)/1 000,ya2(k)/l 000,'r*',xb2(k)/l 000,yb2(k)/1 000,'r*')

% A priori estimate of emitter location
plot(XO(1)/1 000,XO(2)/1 000,+')

% Estimates of emitter location
plot(X( 1, :)/1 000,X(2, :)/1 000)

% Plot three sigma error elipsoids for various points
for k = 1:19:len-1,

% Selects the error covariance from those saved in vector P.
P1 = [P(2*k-1,1) P(2*k-1,2); P(2*k,1) P(2*k,2)];'

% Calculates the coord. of ellipse.
[xg,yl,y2,Emax,Emin] = ellip(P1 ,C,X(1,k),X(2,k));

% Plots on graph
plot((xg)/1000,(yl)/1000,'g-',(xg)/1000,(y2)/1000,'g-') end;

% Plots the loci of constant TDOA
plot(TI (1,:)/1 000,TI (2,:)/1 000,':')
plot(T2(1, :)I 000,T2(2, :)II 000,':')

hold off
title('Estimate of Position of the Emitter: tgt')
% axis;
axis([0 30 0 30]);
pause;
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% Plot the closeup of the estimate of the emitter location
figure(4)

% True Emitter location
subplot( 111), plot(xt/l 000,yt/1 000,`*')

hold on
% Estim ; of emitter location
plot(X( 000,X(2,:)I1 000);

% Calculate and plot error ellipsoids for steady state estimate

[xg,yl ,y2,Emax,Emin] = ellip(PK,C,xtavg,ytavg);
plot((xg)/1000,(yl)1000,'g-',(xg)/1000,(y 2 )/1000,'g-')

% Plot on the graph the major and minor axis.
Major = sprintf('%5. lf',Emax/1000);
Minor = sprintf('%5.1f',Emin/1000);

text((xt-0.50*Emax)/1 000,(yt+0.85*Emax)/1 000,['Major Axis = ' Major' km'])
text((xt-0.50Emax)/1 000,(yt+0.75*Emax)/1 000,[Minor Axis =' Minor' km'])

% Plot the loci of constant TDOA
plot(TI (1,:)/1000,TI (2,:)/1000,':')
plot(T2(1,:)I1 000,T2(2,:)/1 000,':')

hold off
title('Closeup of Position of the Emitter;')
% axis;
axis([(xt-Emax)/1 000 (xt+Emax)/1 000 (yt-Emax)/1 000 (yt+Emax)/l 000]);
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% Ploci.m

"% This program calculates the coordinates of the loci of constant TDOA for
"% a pair of sensors.

% Input: The coordinates of sensor A (meters): xa, ya
% The coordinates of sensor B (meters): xb, yb
% The Time Difference of Arrival (sec): TDOA
% The range from sensor A over which
% the loci of constant TDOA will be plotted: R

% Output The vector of x and y coordinates of the loci
% of constant TDOA. T

function T = ploci(xa,ya,xb,yb,TDOA,R);

% Calculate the distance from sensor A to Sensor B
Rab = ones(1,length(R))*sqrt((xb-xa)A2 + (yb-ya)A2);

% Calculate the bearing of sensor B from sensor A
psi = ones(1 ,length(R))*atan2(yb-ya,xb-xa);

% Calculate the difference in path length for the pulse
D = 3.0e+08*TDOA*ones(1,length(R));

Equation arccos [(R-D)-R2Rab
-2RaR +

% Calculate the bearing required for each range
phi = acos( ( (R-D).A2 - (R).A2 - Rab.A2 )./( -2*R.*Rab ) ) + psi;

J = ones(1 ,length(R));

% Calculate the x and y coordinates
T = [R.*cos(phi)+xa*J; R.*sin(phi)+ya*J];
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% ellip.m

% This program calculates the coordinates of the 2D error ellipsoids given the
% error covariance matrix and the location of the estimate.

% Input: The 2D Error Covariance Matrix PK
% The number of standard deviations C
% The x and y coordinates of the estimate xt, yt

% Output The x vector along which the ellipsoid is
% plotted. xgout
% The y vectors corresponding to the upper
% and lower parts of the ellipsoid yl out, y2out
% The length of the major axis of the ellipse Axmax
% The length of the minor axis of the ellipse Axmin

function [xgout,yl out,y2out,Axmax,Axmin] = ellip(PK,C,xt,yt)

"% Inputs the error covariance matrix, the number of
"% standard deviations, and the location where plotted

"% Calculate the inverse of the error covariance matrix
P = inv(PK);
P11 = P(1,1);
P12 = P(1,2);
P21 = P(2,1);
P22 = P(2,2);

"% Calculate the upper and lower limits on the x axis

"% Equation xt p I 7
f = sqrt(P11"CA2);

% Define the vector along the x axis over which the ellipsoid lies
xg = -f:(2*f)/1000:f;
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% Calculate the upper and lower curves of the ellipse.

Plxt (PII P22- P'12) l2 _•2)

%Equation yt =(± P2 n i?) 2 2

yl = -(P12/P11)*xg + sqrt( ((P11"P22 - P12^2)/P1IA2)*...
(P1 l*CA2*ones(1,length(xg)) - xg.A2) );

y2 = -(P12/P11)*xg - sqrt( ((P11"P22 - P12A2)/P11A2)*...
(P1 lCA^2*ones(1,length(xg)) - xg.A2) );

% Calculate the distance of the ellipse from the center

kellip = sqrt( xg.^2 + yl .^2);

% Calculate the major and minor axis of the ellipse

Axmax = abs(2*max(Rellip));
Axmin = abs(2*min(Rellip));

% Calculate the coordinates of the ellipse over the estimate

yl out = yl+yt*ones(1 ,length(xg));

y2out = y2+yt*ones(1,length(xg));

xgout = xg+xt*ones(1,1ength(xg));
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% Burdist.m

"% Name: Richard W. Williamson
"% Date: 18 February 1994
"% Date Revised: 18 February 1994

% This program generates a simulated burst of pulses generated by a
% circularly scanning emitter. The length of the burst is 2.0 milliseconds the
% maximum amplitude is 1.0, and the PRF varies from 3 kHz to 12 kHz.
% The program calculates the probability density function for the centroid of
% the burst for a peak signal to noise ratio of 20 dB.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The program outputs one figure.

% figure(1) A plot of the probability density function for the burst centroid.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input Variables:

% BW = Beam width in degrees
% SR = Scan rate of emitter in degrees/sec.
% PRF = Pulse Repetition Frequency in Pulses/sec
% PW = Pulse width in seconds.
% FS = Sampling Frequency in samples/sec

% Output Variables:

% Bur = The noise free Burst vector

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;

% Initialize the variables

BW= 1.00;
SR = 500.0;
PRFk = [3000 6000 9000 12000]
PW = 1.0e-06;
FS = 8.0e+06;
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muz = [O 0 0 0];
sigz = [0 0 0 0];

zk = (0.90:(1.10-0.900)1200:1.10)I1000;
dtz = zk(2)-zk(1);

for m = l:length(PRFk)

PRF = PRFk(m);

% Calculated Variables

BurLen = BW/SR; % Burst length in seconds;
NBur = BurLen*FS; % Number of samples per burst

N.PW = PW*FS; % Number of samples per pulse width
NPRF = (1/PRF)*FS; % Number of samples per PRF

Bur = zeros(1 ,NBur); % Initialize the Burst vector
t = O:NBur-1; % Initialize the time vector

% Load the individual pulses in the burst vector.

for I = I:NPRF:NBur,
Bur(I:I+NPW-1) = ones(1 ,NPW);

end;

% Define burst envelope and form noise free burst vector

Bur env = 1.0*sin(pi*t/NBur);
Bur= Bur.*Burenv;

dt= 1/FS;
% The variance of the noise power added to the pulse
V = 0.010;

ns Bur;

N = length(ns); % Length of the burst.
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% Numerator = x Denominator = y;
% Initialization of the mean and sigma variables
mux = 0;
muy = 0;
sigx = 0;
sigy = 0;
coV = 0;

"% Calculate the statistics of the numerator and
"% the denominatior of the centroid equation.

Np = 0;

fork= 1:N,

Np = Np + 1;

if ns(k) > 0;

mux = mux + k*dt*ns(k);
sigx = sigx + ((k*dt)A2)*V;
muy = muy + ns(k);
sigy = sigy + V;
cov = cov + k*dt*V;

end;

end;

sigx = sqrt(sigx);
sigy = sqrt(sigy);

rho = cov/(sigx*sigy) % The correlation coefficient

c_bar = mux/muy

dty = (10*sigy)160;
yk = (muy-5*sigy):dty:(muy+5*sigy);

p = zeros(length(yk),length(zk));
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% Calculate the probability distribution for f(zy,y)

for I = I :length(zk),

for k = l:length(yk),

y = yk(k);
z = zk(l);
gl = (y*z-mux)/sigx;
hl = (y-muy)/sigy;

fxy = (1/(2*pi*sigx*sigy*sqrt(1 -rhoA2)))*...

exp( ( -1/(2"(1-rhoA2)) )*(glA2 -2*rho*gl*hl + hMA2));

p(k,I) = fxy;

end;
end;

% Initialize the variables.
z = zeros(1 ,length(zk));

% Integrate the probability distribution across y to
% calculate the marginal density for z the centroid variable.

for I = I:Iength(zk),
H =0;
for k = l:length(yk)-l,

H = H + dty*( yk(k)*p(k,l) + yk(k+l)°p(k+1,I) )/2;

end;
z(1) = H;

end;
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% Check the summation of the f(z) density

F = 0;

% Change the scale on the z axis scaled in terms of millisecond
t = zkl1 000;

for k = I :length(zk)-I,

F = F + dtz*( z(k) + z(k+l) )/2;
muz(m) = muz(m) + (t(k)+t(k+I ))*dtz*( z(k) + z(k+I) )14;

end,

F
muz

for k = I :length(t)-I,

sigz(m) = sigz(m) + ((t(k)-muz(m))A2)*dtz*( z(k) + z(k+I) )/2;

end;

sigz(m) =sqrt(sigz(m))

w = -0. 5*( ( t-muz(m) *ones(, ,length(zk)) )/sigz(m) ).A2;

d~app = (I /(sqrt(2*pi)*sigz(m)))*exp(w);

tgz(m,:) = z'dtz;

tgapp(m,:) = d..app*dtt;

end

% Output the probability density functions

figure(1)
plot(t,tgzldft)
xiabel('Centroid Time of Arrival (milliseconds)')
ylabel('Probability Density (I /milliseconds)')
title('Sampling Frequency 8 MHz')
text(1 .025,20,'3000 Hz')
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text(. .01 5,32,'6000 Hz')
texi(1 .O10,44,'9000 Hz')
text(1. 005,60,'l12000 Hz')
text(0.96,60,'Peak S/N = 20 dB')
axis([0.95 1.05 0 200.0])

% sigzout = sprinff('%5.4f,sigz(1 ));
% muzout = sprintf('%5.4f,muz(1 ));

% text(1.25,3,'S/N 15 dB')
% text(1 .25,2.5,flMean =' muzout])
% text(1.25,2.0,rStd = sigzoutj)
% text(-0.25,5.0,'Calculated Density')
% % text(-0.25,3.0,'Gaussian Approximation')
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% Puldist.m

"% Name: Richard W. Williamson
"% Date: 18 February 1994
"% Date Revised: 18 February 1994

% This program generates a simulated pulse. The length of the pulse is
% 1.0 microseconds the maximum amplitude is 1.0, and the sampling rate is
% 8.0 MHz. The probability density function is calculated for peak signal to
% noise ratios of 15, 20, 25 and 30 dB.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The program outputs one figure.

% figure(1) A plot of the probability density function for the pulse centroid.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

% Initialize the variables

muz = [0 0 0 0];

sigz = [0O 0 0];

Vk = [0.03162 0.0100 0.003162 0.001001

% Initialize the variables.

Dyk = [3:(9-3)/60:9; 3:(9-3)/60:9; 4:(8-4)160:8; 5:(7-5)/60:7];

zk = 3:(7-3)/200:7;
z = zeros(length(Vk),length(zk));

for m = 1 :length(Vk),

yk = Dyk(m,:);
dtz = zk(2)-zk(1);
dty = yk(2)-yk(1);

dt= 1.00;
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% The variance of the noise power added to the pulse
V = Vk(m);

% The pulse without noise.
s [00.51 11110.50];
N = length(s); % Length of the pulse.

% Generation of the noise

ns = s;

"% Numerator = x Denominator = y;
"% Initialization of the mean and sigma variables
mux = 0;
muy = 0;
sigx = 0;
sigy = 0;
cov = 0;

% Calculate the statistics of the numerator and

% the denominatior of the centroid equation.

fork= 1:N,

mux = mux + k*dt*ns(k);
sigx = sigx + ((k*dt)A2)*V;
muy = muy + ns(k);
sigy = sigy + V;
coy =cov + k*dt*V;

end;

sigx = sqrt(sigx);
sigy = sqrt(sigy);

rho = covl(sigx*sigy); % The correlation coefficient

c-bar = mux/muy;
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% Calculate the probability distribution for f(zy,y)

for I = 1.length(zk),

for k = l:length(yk),

y = yk(k);
z = zk(I);
gl = (y*z-mux)/sigx;
hl = (y-muy)/sigy;

fxy = (1l(2*pi*sigx*sigy*sqrt(I -rho^2)))*...
exp( ( -1/(2*(1-rhoA2)) )*(glA2 -2*rho*gl *hl+ hlA2));

p(kI) = fxy;

end;

end;

"% Integrate the probability distribution across y to
"% calculate the marginal density for z the centroid variable.

for I = l:length(zk),

H =0;
for k = 1:length(yk)-l,

H = H + dty*(yk(k)+yk(k+l))*( p(k,I) + p(k+1,I))/4;
end;
z(m,I) = H;

end;

% Check the summation of the f(z) density
% and compute the mean of the distribution
F = 0;

% Change the scale on the z axis

t = (zk-ones(1,length(zk)))/(N-1);

for k = l:length(zk)-l,

F = F + dtz*(z(m,k) + z(m,k+l) )12;
muz(m) = muz(m) + (t(k)+t(k+l))*dtz*( z(m,k) + z(m,k+l) )14;

end;
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for k = 1 :length(t)-1,

sigz(m) = sigz(m) + ((t(k)-muz(m))A2)*dtz*(z(m,k) z(rrn,k+l) )/2;

end;

sigz(m) = sqrt(sigz(m))
tg(rn,:) = m,)

end;

figure(1)
t = (zk-ones(1 ,length(zk)))/(N-1);

plot(t, dtz'tg/dtt)
title('Sampling Frequency 8 MHz')
xlabel('Centroid Time of Arrival (microseconds)')
ylabel('Probability Density (1 /microseconds)')

% The statistics for 15 dB
sigzout = sprnnff('%5.5f,sigz(1));
muzout = sprintf('%5.4f,muz(1 ));

text(0.545,25,'SIN = 15 dB')
text(0.545,20,['Mean = 'muzout])

text(0.545,15.CStd =6 sigzoutj)

% The statistics for 20 dB
sigzout = sprintf('%5.5f',sigz(2));
muzout = sprinff('%5.4f,muz(2));

text(0.545,45,'S/N = 20 dB')
text(0. 545,40, ['Mean = Umuzout])

text(0.545,35,['Std =' sigzoutj)

% The statistics for 25 dB
sigzout = sprinff('%5.5f',sigz(3));
muzout = sprintf('%5.4f ,muz(3));

text(0.545,65,'S/N = 25 dB')
text(0.545,60,rMean =' muzout])
text(0. 545,55, rStd ='sigzaut])
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% The statistics for 30 dB
sigzout = sprintf('%5.5f',sigz(4));
muzout = sprintf('%5.4f',muz(4));

text(0.545,85,'S/N = 30 dB')
text(0. 545,80, ['Mean =' muzout])
text(O.545,75,['Std = sigzoutj)

% axis([0.4 0.6 0 90])
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