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ABSTRACT

The problem with the Model-bascd Mobile robot Language(MML) processor is that
the code is unstructured, causing the system to be unstable; it is very difficult to read
because of deficient source code documentation:; and because of poorly defined function
interfaces and extensive functional coupling, the system is hard to mainain.

To fix the MML processor, we performed a manual stat.c analysis of the existing
source code to understand its structure. ' - ~ased on the analysis. the software system
was restructured and the functonau. ivanced. Finally. =xplicit source code
documentation was added in the form of commenr. :.

There are several results with the new system. First, global variables are reduced from
152 to zero. Secondly, function interfaces are clearly detined and fuaction coupling is
enhanced. Finally. the source code is extensively documented. Followine from these

results, the new systermn is more stable, easier to read and understand, and sirpler to modify.
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I. INTRODUCTION

With the changing world environment, the military’s structure has changed to meet
those needs. In particular, with the demise of the USSR as a threat, US military forces have
decreased significantly in the recent past. With this down-sizing, the military is now
required to do more with less. This requirement has led the armed forces to rely more on
automation to fill the gap of reduced personnel and equipment. One key element to this
move to more automation, is autonomous vehicles. These vehicles will continue to play a
greater role in this nation’s defense. At the Naval Postgraduate School (NPS), the
Yamabico robot is an example of active research in the area of land based autonomous
mobile robots.

Yamabico is a real-time mobile robot that is able to sense its surrounding and plan its
motion. The software system that supports Yamabico is called the Model based Mobile
robot Language (MML). As an on going research project, many people have contributed to
research over the years. Unfortunately, software engineering practices have not always
been followed. As a result, MML has become very unstable and difficult to maintain,

causing a hinderance to research.

A. PROBLEM STATEMENT

The problem addressed in this thesis 1s how to construct a software system for an
autonomous mobile robot that is stable. readable and modifiable. Specifically, this research
is an improvement of the original Yamabico software system named MML 0. In our work.
the motion control rules are developed to provide path planning. as with various supporting
modules such as the geometric functions and sequential commands. The software system

developed as the result of this research is called MMLI1 1.

B. YAMABICO BACKGROUND

The Yamabico- 11 mobile robot translates in two dimensional space and is controlled

by MML. The Yamabico architecture consists of several systems. They are the CPU.




wheels, sonar, and Input/Output systems. In the next few paragraphs we will give a brief
overview of these systems, however, for more in-depth information, see (Scott, 93) and
(Book, Y4).

The CPU system consists of a SPARC-4 based mother-board, with power supplied by
two 12 volt motorcycle batteries. One communicates with the robot either through a 9600
baud port connected to a laptop Maclntosh Power Book, or a telnet connection from a Sun
work station. Compilation and downloading can be accomplished from any Sun work
station. Once the kernel is made, there is a process that automatically copies the kernel to
a holding directory. When the command is given to download the kernel, either from a Sun
work station or the laptop computer on the robot, the kernel is then downloaded over an
ethernet connection.

The wheels system includes a VME bus interface card that provides the user a ineans
of communication with the wheels system. Power is provided by two DC motors and a
motor control circuit card manipulates the motors based on information from the interface
card. Finally, the shaft encoders provide information that helps determine the speed and
distance travelled. (Scott, 93)

The sonar system is used to gather sonar information from the forward, rear, lateral,
and diagonal directions. This system consists of twelve 40kHz ultrasonic sensors. The

sonar interface card is used to collect information and control the sensors. (Book, 94)




Figure 1: Yamabico-11 Mobile Robot
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C. MML BACKGROUND

MML is a high level software system that controls the Yamabico robot. It's design
goal is to be a general purpose standard language for autonomous mobile robots.
independent of any physical attributes of the robot.

The hardware interrupts are used to provide the real-time aspect of MML. With these
interrupts, background processes achieve pseudo-concurrent processing. It is pseudo-
concurrent and not fully concurrent because no code for a process 1s ever interleaved with
another, because processes are not allowed to share the same priority. Hence. processes are
interleaved. but their code is not. Therefore, this type of process concurrence is limited to
the interrupts provided by the CPU architecture. (Scott, 93)

The MML architecture is rather simple conceptually. It is has two process levels:
foreground and background. The user program runs in the foreground and the motion
control functions operate in the background. There are two sets of function libraries that

provide the user with control of the robot. They are called immediate and sequential




functions. Immediate functions are executed immediately when they are read. However,

sequential functions are first stored in an instruction buffer and executed sequentially.

on-board
laptop

&
f Sun workf
station

User Program sonar

system

y 4

(For egroundProcess) 1 Instruction
o Buffer

| Motion Control Program

* Figure 2: MML System after (Lee:93) o
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Recent developments have significantly improved various aspects of the MML
system. First, Scott Book, in his research, developed a solid core system that localized
hardware dependencies. and reduced assembly code to a single module (Book. 1994).
Frank Kelbe, the Yamabico group software design coodinator, designed and implemented
data tracing functions for both the motion control and sonar modules. He also redesigned

the instruction buffer module and implemented timer functions.

D. ORGANIZATION OF THESIS

This thesis is organized around the construction steps taken for the new version of
MML. First, in the next chapter, we describe software attributes that are desirable in any
software system. Then in Chapter III, we analyze the original Yamabico code to understand
its structure. From this analysis, we develope a methodology in Chapter IV to constructing
MMLI11. Next, in Chapter V, we document the implementation phase, describing major
milestones reached in the process. We describe the resultant function specifications in
Chapter VI, and discuss the results in Chapter VII. Finally, we conclude in Chapter VIII

with a2 summary and recommendations for future research.
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II. DESIRABLE SOFTWARE ATTRIBUTES

For any software system. there are certain attributes that are desirable. They provide
a common standard by which all software systems can be compared to and judged. These
attributes are cohesion. coupling. modifiability, modularity, readability, and robustness.
An important term to understand when applying .hese attributes is the module. One must
consider logical relationships and physical storage properties in order to describe a module.
First, a module is a logical break down of routines that have a common functionality or
who’s functionalities are related. In reference to physical storage. modules are best if kept
as small as possible: one module per file(Scott, 93).

Cohesion measures the strength of relationships between code segments in the same
module. Two code segments are related if they reference the same element. Accordingly,
it 1s desirable for related segments to be collected in the same module to the element
referenced. Coupling describes the strength of references between modules. As coupling
increases, maintainability and readability decreases. There are two types of coupling:
common and control. Common coupling applies to references to internal data elements or
data structures by another module. Control coupling occurs when flags, used to modify the
behavior or actions of a routine, are used between modules. (Scott, 93) and (Book, 94)

A system is modifiable if changes can be made to one segment of code without
generating adverse side effects in another segment. The degree that a system is modifiable
1s directly related to the system’s measure of coupling and cohesiveness. Once produced, a
modifiable system is easily changed and maintained. Modularity is defined as the
partitioning of the system into small segments. There are two major goals associated “vith
modularity. First, this process is to design each segment around a particular logical function
performed by the system. The result is a system that has strong cohesion. The second goal
is to minimize the amount of coupling. This is done by using a clean and concise interface.

(Book, 94)




In the Yamabico research group. as with others. often the person who impiemented
part of the system is no longer available. For this reason. 1t 1s crucial that systems are
readable. A system Is readable when 1t -xhibits the same behavior during operation as
expressed in the source code. Small modules with independent. well defined and :learls
documented behavior are the most readable (Scott. 93). Systems that can detect eirors und
recover are considered robust. This requires the addition of exception handling turctions
and procedures to the system. These code segments allow the system to process exceptional

conditions such as division by zero or value out of limits (Scott. 93).




HI. ANALYSIS OF THE EXISTING SYSTEM

In this chapter we present two technigues used 1o help desenbe the structure o
MMLIO. This description ot the original svstem helps in the desten of NN
Speciticaily. we take the results of the analvsis in this chapter. and use 1t as a starting point
tor our design goals. The destrable attributes discussed in the previous chapter are the
ending point. We then report the results of the analysis on the code. This tnformation will

be used in the next chapter to develop a design philosophy.

A. CALL-HIERARCHY TRACING

Call-hierarchy tracing is an analysis techniqus to describe function categories. It is
used for identifying whether a called function's scope is local or global. This tracing method
also provides a physical picture of the present software system. Finally, it helps in
determining where to place functions. Function calls fall into one of three categories. They
are either local, module, or global.

A Jocal category happens when a function is called by only one other function. In
Figure 3, which is an example of the local category, function B is called only by function

A. With this category, one can place both functions in the same module. If a function is

A

Figure 3: Local category
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called by several other tunctions that all have related operations. they can be placed in the

same module. This tvpe ot tunctuon call talls into the module category. an example of

which 1y ginven in Frgure 4.
Module X

A

Figure 4: Module category

Finally, the global category occurs when a function is called by several functions that
have unrelated operations. An example of a global category function is given in Figure3,

with functions A-C, which are in different modules, call function D. Global category

10




functions are usually found in libraries of utility functions. (Scott. Y3)  An example in

Module 1 Module 2 Module 3

function A function B function C

: . :

S B—

| function D i
| 7 |
| / |
| /// |
b e e o v e e o o

Figure 5: Global category

MML is the geometry file which has all of the geometric utility functions used by several

different modules.

B. GLOBAL VARIABLE TRACING

Global variable tracing is used to categorize global variables in a software system.
Variables are either module or globally visible. These types of variables are not passed into
a function as a parameter nor declared locally. Globals need to be analyzed to see whether

they should stay global, local to a module, converted to a locally declared function variable,

11




or passed tn as a parameter. The goal is to minimize the use of global variables. The benefit
of reduced globals 1s increased readability and reliability. because of better defined

interfaces (Scott, Y3).

C. RESULTS OF ANALYSIS

There are several interesting results from the call-hierarchy and global variable tracing
analysis of MML10. First, there is an extensive use of globals variables used throughout
the entire system. Specifically. there are 152 global variables. with all motion control
variables being global. Secondly. all functions are globally visible. There are no static
definitions of variables or functions. As a result. all variables and functions defined have a
global scope: they can be seen and accessed by any other function in the system.

One significant implication 1s that function interfaces are blurred. Instead of passing
or locally declaring variables. most functions simply access and modify variables directly.
This directly influences coupling. Since code segments from different modules commonly
reference the same element. coupling is tight. Figure 6 provides an example of this
challenge in MMLI10.  The function that calculates the commanded velocity.

get_veloctiy(). in the motion control module, references elements in the instruction buffer




module directly without using a function interface. Accordingly. this causes a strong

MOTION CONTROL MODULE

hrough function interfaces

unction Interface
I A R R RN RN R EREEREREERENERNREERERN]

: INSTRUCTICN BUFFER
current_robot_path.pc = get_inst->c: MODULE

S S R RRE RS S5 S R 55 S s 75555 SRHRE RURI 5 P55 55 55 SRE500 288

unction interface
[ S R A N RN B RN BN BN

get_inst = head_inst;

get_inst are accessed directly by functio
in different modules

Figure 6: Example of blurred function interfaces in MML10

dependency between these two distinct modules. Since function interfaces are blurred by
the extensive use of global variables, function cohesion suffers also. For example, code that
enables the robot to rotate is found in the motion control module and the instruction buffer
module. However, this functionality belongs in one module.

Because of its structure, modifiability is very difficalt. One has to understand the

entire system prior to making any changes because an element manipulated in one module




may affect or be affected by another potentially unrelated function in another module.
Since all functions and variables are visible globally. one has to check the entire system
prior to making modifications. This is not only tedious and time consuming, it makes

modifying the code a much more difficult task that it should be.
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IV. METHODOLOGY

From the last chapter we understand the present structure of MMLI10 and its
shortcomings. We now take that information while considering the desired software
attributes, and in this chapter develop a methodology tfor constructing MML11. Although
all software attributes are umportant in a software system. some are more pertinent
depending on the particular situation. With MML. the environment that it is used in
significantly influences which software attributes need to be the center of focus.

The Yamabico research group is a dynamic environment. Members are continuously
joining or moving on to other projects. As a result. it 1s important to design a system with
the following assumptions: 1)Different people will be working on various parts of the
system at different times and 2) Few people have a need to know and understand the entire
system.

Understanding these assumptions. we can focus our attention on those software
attributes that best support our design assumptions. Specifically, we are most interested in
code that has excellent readability, modifiability, and coupling attributes. It is essential that
the code is very readable. Since different people are working on the code at different times,
one can not assume that the author of a particular code segment will be available to explain
its functions. Therefore. documentation is the critical link. Since one of the first steps in
modifying code is understanding what it does presently. documentation also enhances
modifiability. Finally, by having a software system that is easily modifiable, the research
process is enhanced.

With people specializing in different subsystems of MML. it is important that the
variables and code modified in their areas do not have unexpected negative effects on
routines in other unrelated parts of the system. A software system that displays loose
coupling provides this type of environment.

To obtain a system with the above mentioned desirable software attributes. design

goals are needed as a guide in the development of the new system. Our design goals are

—
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three-fold. They are the elimination ot global variables. clearly detfined function interfaces.
and highly explanatory documentation. These goals will best guide the development of

MML11 to obtain the software attributes and support our design assumptions.

A. GLOBAL VARIABLES

Our biggest and most challenging task 1s the removal of global variables from
MMLIO. In this version of MML. the structure of the software system is driven by
procedural control. In other words. the key decision making factor is how the tlow of
control is effected. This emphasis on flow of control minimizes the focus on data grouping.
If your code is developed with the grouping of data as the priority. you place your functions
in modules where they can best access the needed data for their operations. However. the
easiest way to develop a system where flow of control is the priority. is to have the least
amount of restriction on data accessibility. This is done in MMLI10 by making varniables
global. Additionally, with these variables being global. they are initialized in one location.
the system main module.

Understanding the present challenges with global variables in MML10 presented in
the previous chapter, our approach is focused more on the grouping of data. Since we want
to eliminate global variables, all variables have to be either declared locally in a function.
or module. To accomplish this, we have to first determine how we to group the data.
Initially, we consider breaking the data down into hardware and system related variables.
However, this quickly proves to be unmanageable because there are so many variables that
do not fit into either of these categories very well.

We next attempt to group variables based on the frequency they are used in a file. We
would declare a variable in a module that has the most references to that vanable. A tool
that is of great assistance is the unix grep command. This allows us to count the times that
the variable appears in a file. There are three cases that we face when attempting to group
these variables. In all three cases, the variables are initialized in the main module of

MMLIO0. First, in the easy case, when a variable is used only in one file. we statically

16




declare the variable locally to that file. Next. the more difficult case is when a variable 1s
used mostly in one file but also found in others. In this case, we still statically declare the
variable in the file where it is used the most. We then write function interfaces to allow
functions from the other modules to access the variable. The most difficult case. however.
is when different modules reference the same variable with about the same frequency. In
this case, we go into each module and determine how critical the variable is to calculations
in the local functions. For example, there could be two modules that reference a variable
the same amount of times. However, module I modifies the variable while module 2
references the variable. In such cases, the variable is more critical in module 1 because it is
not only accessed, but updated. Accordingly, the variable is placed in module 1 with
function interfaces written in module 1 for access by module 2.

After all variables are grouped into modules. the process 1s repeated at the module
level to determine whether a variable would stay visible at the module level or be declared
in a function. If the variable is only used in one function, then it is declared there. However,
when a variable is used by several functions, it retains its module level visibility. For
example, in the motion control module, this method is used to determine whether the
variable that held the value for the current vehicle configuration, (named vehicle) would
remain at module level or be declared in a function. After analyzing the code, we find that
several functions in the motion control module use vehicle. For this reason, vehicle is
declared local to the entire motion control module.

With all global variables removed, we still need to initialize variables. Different from
MML10, we require an initialization routine in each module in MML11. Although this
requires more code than the approach used in MML10, initializations are now easier to
manage. We are not concerned with a huge file of variable initializations anymore, but
instead with several smaller routines that are specifically related to the file that they

support. This makes maintaining and modifying them much easier.
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B. FUNCTION INTERFACES

In earlier versions of MML. data access can not be controlled through tuncnion
interfaces because global variables usurp the need to pass parameters. As a result. critical
regions are vulnerable. Specifically. a funcuon can be interrupted while updating a variable
because critical regions are not controlled. However, the goal with MMLI11 is to have all
data in functions to be either locally declared. passed in as a parameter. or local to the
module. Inter-module communications therefore. is limited to function interfaces. This
additional control in MML 11 ensures control in critical regions because variables can only
be accessed through a function interface. With this limited access. interrupts can be
disabled if deemed necessary. within the function.

This design goal has a significant impact on the structure of MMLI11. In MMLI10.
immediate functions are grouped together into one file. Since few parameters are passed in
the older version of MML and data grouping is not a concern, it is logical that these
functions are placed in the same file. However, in the design of MML11, we find that this
structure is unacceptable. The immediate functions fall basically into two categories. They
either work with data that is updated by the motion control module, or they maintain data
that is only assessed by motion control and other modules. As a result, we group the
functions that access variables that are updated by the motion control module. into motion
control. In this way, any other module that needs these variables access them through
function interfaces in motion control. The alternative would have been to maintain the
original structure with all of the immediate functions in one file. Function interfaces would
still have been written in the motion control module to provide access to variables for those
immediate functions that need them. We then would have to call these functions from
within the immediate function. The method we use thus allows us to cut out the extra
unneeded step in accessing variables that are controlled by motion control. The immediate
functions that do not access variables controlled by motion control are still kept in a

separate file.
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C. DOCUMENTATION

Our review of MML1U greatly influences our documentation goals for MMLI11. We
found it very challenging to understand MML 10 without someone available who is already
tamiliar with the code. Functions usually have spurse comments if any. Variable naming
also makes it difficult to follow because they are usually very short and non-descrintive.
Therefore. with MML 11, following our assumption that people who wrote the code will not
be available. we decide to thoroughly comment our code and provide descriptive file.
function and variable names.

First. a naming convention has to be chosen. We decide to adopt one that has recenily
been designed for the Yamabico research group, because of its simplicity and ease in
duplication. Overall. more descriptive names are used. Full words are used as much as
possible, and names are chosen that best describe what exactly the variable, function or
constants does. For variables, the first letter is lower case. 1f more than one word is used in
the variable name, the first letter of each word other than the first word is capitalized. The
capital letters are used to distinguish the words instead of underscores. The benefit is that

it requires less space 101 variable names. Function names are the same as variables.
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Constants are written as all capitals. To distinguish between words if more than one word

is used for the constant name, underscores are used.

~ Variable name
TR R

aming convention example

Figure 7: Naming convention

Our comments are written with the assumption that the reader is unfamiliar with
MML. Also, we provide descriptive isames to variables and functions so that their names
describe what they do. Each declared variable in a module is documented. Functions also
are extensively documented, not only to explain the purpose, but, if appropriate, to give
normal uses of the functions. In critical areas, function calls were documented to help the
reader. For example, in the main routine of the motion control module, all of the steps of
the motion control theory are represented. During each motion control interrupt, this
routine is what is called. Because of its critical role in the MML system, each line of this
routine is documented to help guide the reader through the module. For example, for each
function call, we identify in which module the called function is located.

All locally declared static function prototypes are provided brief documentation so
that a reader does not have to search through the entire module to find the full
documentation. Function prototypes also provide an added benefit of argument checking.
MML10 is written in a non-standard version of the C language. Function prototypes, in this

version, do not require an argument to listed in the parameter list, even if arguments are
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passed into the function. The advintage ot using prototypes under ANSI C is that they
allow the complier to perform compile-time type checking on the arguments of a function.
The compiler will check all calls to the function to make sure it has both the correct number
and types. Depending on the severity. the compiler may issue a simple warning, such as
when an integer is expected, but a chararacter is passed. An error may be issued, instead,
for mistakes such as the wrong number of parameters. This type checking simply makes

the code more reliable by having the compiler find problems before testing. (Kelbe, 94)

travelled in the last motion control cycle */
static CONFIGURATION
Jocalize(CONFIGURATION robot, double deltaS, double deltaTheta);

/* calculates the next commanded linear velocity value. */
static double getLinearVelocity(double actualVelocity,
double lastCommandedVelocity);

/* calculates the distance remaining on a path to reach a configuration.
Used with bline calculation. */
static double restOfPath(void);

/* determines whether the vehicle needs to decelerate.
Used in bline calculation */
static int needsToDecelerate(double actualVelocity);

Function prototypes in our header files are documented similar to functions in our
program files. Specifically, the commented section above the function name in the program
files is used in the header file prototype. We do this to provide the most complete
documentation for the reader in the header file. Our goal is for a reader to be able to

understand and apply functions found in a file simply from reading the header file.




V. IMPLEMENTATION

A. DATA STRUCTURES

With the re-engineering of MML, fewer software structures were needed. Most of
MML was described using only five basic data structures. In this section we explain these

structures.

1. Point
The POINT structure is used to describe a position in two dimensional cartesian

coordinates. The structure is made up of two doubles named X andY.

double X
double Y

Figure 9: Point

2. Velocity
The VELOCITY structure is used to describe a two dimensional velocity vector.
The data structure is made up of two doubles that represent the linear and rotational

elements of velocity. They are appropriately named Linear and Rotational, respectively, in

the VELOCITY structure.

1 double Linear

double Rotational

3. Configuration
The CONFIGURATION is the standard structure for describing location and
direction for an object. It consist of Posit, which is of type POINT, which identifies an

objects position in two dimensional cartesian coordinates. Next, there is a double called

o
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Theta that describe’s the object’s orientation in relation to the X coordinate. Finally, there
is another double in the CONFIGURATION structure called Kappa that represents the

curvature of an object’s path. , o
 CONFIGURATION .
OINT Posit

double Theta

double Kappa

4. Parabola
The PARA structure is used to describe a parabola. A common use of the PARA
data stucture is as a configuration that the robot follows. Specifically, it is another type of

path that is available in the library of functions for motion types. It consist of a Focus which

is of type POINT and a Di hich is of CONFIGURATION.

POINT Focus
CONFIGURATION Directr

z

5. Path Element

The PATH_ELEMENT data structure is used to describe and store the various
types of movements. This data structure consist of config which is of type
CONFIGURATION. It holds the configuration of the path that the robot is to follow.
PATH_ELEMENT also contains pathType, which is of type PATH_TYPE. A
PATH_TYPE is a data structure used to identify the various paths that are available to the
robot. It consist of the mode which is of type MODE and class which is of type CLASS.
Type MODE is an enumeration type that gives a name to each path that the robot follows.

Presently, the modes that are available include NOMODE, STOPMODE, PATHMODE,
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ROTATEMODE, KSPIRALMODE, and PARAMODE. Type CLASS, which is also an
enumeration type, is used to name and categorize the various PATHMODE types. The list

of classes include NOCLASS, LINECLASS, CIRCLECLASS, and BLINECLASS.

CONFIGURATION config
PATH_TYPE pathType

MODE mode

NOMODE, STOPMODE, PATHMODE, ROTATEMODI
KSPIRALMODE, PARAMODE

CLASS ciass

A5
>

NOCLASS,LINECLASS,CIRCLECLASS,BLINECLASS

6. Significance
With the above mentioned data structures, all motions that are presently
performed by the Yamabico robot, can be described and represented. More importantly,
because of the modular design, additions and maintenance of these data structures is

simplified
B. GEOMETRIC FUNCTIONS

1. Pointers Use Reduced

Pointers are used extensively in the original version of MML. This is because the
language that it was written in, a non-ANSI C, does not support structure passing. As a
result, one would need the following type of function interfaces:

CONFIGURATION * defineContig(POINT position, double theta, double
kappa, CONFIGURATION *configPtr)




“

Notice that a pointer to a CONFIGURATION was returned. However, a pointer
to a CONFIGURATION was also passed in. At first glance. we assume that the pointer to
H the CONFIGURATION that is passed in, is a duplicated effort because one should just be
able to declare a a CONFIGURATION type in the function defineConfig and return its

address. However, this would cause a logical error because once the function returns, the
value that the pointer is pointing to is discarded with the function. One is left pointing to
garbage. ~o without the ability to pass structures, it is very awkward handling them in
function calls. However, with the ability to pass the structures, such as a

CONFIGURATION type, the above function interface is written as follows:
CONFIGURATION defineConfig(POINT position, double theta, double kappa)

As one can see, the interface is simpler, and easier to read and understand.

2. Duplicated Functions

In the original version of MML, there are functions that are duplicated. Although
they have different names, they perform exactly the same function. In the new version of
MML, the duplicated functions are eliminated. One example are the normalize functions.
There were two called normalize() and norm(). After inspection, we determined that they

perform the same task and have the same logic.

3. Functions Added

There are also geometric functions that are new to the updated version of MML.
They are included to support new functionalities added to MML. For example, there is a
function that calculates the circular arc. This function is used in conjunction with the
composition function to create a new way to localize the position of the robot during its
motion control cycle interrupt. This method is cleaner and more efficient. Also, a function
to determine the signed difference between a point and a configuration, is added. This is

included mainly to support the parabola calculations, however is available to all modules.




C. MOTION CONTROL

Among other things, the design goals would help produce a software system that is
easily maintainable. This is very crucial in an ongoing research project such as Yamabico.
One area that is critical i1s the means of representing and categorizing motion control
commands. The use of modes and classes is used as a means of describing the various
control commands. The mode describes the basic types of motions commands. They
include path, stop. rotate. kspiral, and parabola modes presently. Path modes are further
broken down into classes. These class descriptions presently include line, circle and
backward line path tracking. The benefit of using this taxonomy is that it encourages a
modular design. Specifically, when new motion commands need to be added to the library

of commands. a new mode or class only needs to be added.

1. Line

In our implementation of these commands, the simplest case--the line-- was
chosen first. Sequential commands provide a means of putting motion commands into the
instruction buffer, to be later extracted sequentially and passed to the motion control
module. However, since the sequential commands had not been implemented yet, it was
necessary to hard code the line command directly into the motion control module. With this
done, we first tested the robot by allowing it to track a line that was configured parallel to
the robot's configuration with no offset. This enabled us to ensure that the robot could
follow a straight line. When this was accomplished, we allowed the robot to follow a line
that was configured parallel to the robot but offset by thirty centimeters. With this test, we
confirmed that the robot could correct it's path to follow a line that was offset. Finally, we
commanded the robot to follow a line that was not only offset but not parallel. When this

was accomplished, testing for the simple line case was complete.

2. Bline

The backward line (bline) tracking command gives the robot not only a

configuration to follow, but a location to stop. With the bline command, the robot will stop
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at the location described by the bline configuration. During our implementation, we

initially had challenges with the robot not stopping. This was because we had overlooked

changing the mode to stop mode (thus commanding the robot to stop) when the robot had
reached the bline configuration. Once this correction was implemented, the bline command

worked as expected.

D. SEQUENTIAL COMMANDS

As discussed earlier, sequential commands were a library of functions that allow the
user to interface with the robot. When commands were issued, they were placed into the
instruction buffer. They were then extracted and executed sequentially. Our plan was to test
the line and bline commands called sequentially using the sequential commands and the
instruction ouffer. First, we tested the sequential line command. Our only challenges
centered around properly initializing functions. This challenge continued throughout our
entire implementation phase. With the line case, the instruction buffer module was not
being initialized. Next the bline sequential command was implemented with no significant
challenges. The testing of theses commands was broken down into three stages. First, the
robot transitioned from one line that it was following to another. Second, the robot had to

transition from a line to a bline. Finally, it was tested from a bline to another bline.
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VI. FUNCTION SPECIFICATIONS

In this chapter we list the user and system functions of MMLI11. With each
specification, we provide the ANSI C sysntax for the function and a description of the

function.
A. USER FUNCTIONS

1. Set Robot’s Configuration (Immediately)
Syntax: void setRobotConfiglmm(CONFIGURATION)
Description:
This function immediately sets/updates the robot’s configuration. This can be

done while the robot is at rest or moving.

2. Get Robot’s Configuration
Syntax: CONFIGURATION getRobotConfig(void)
Description:

This function returns the current configuration of the robot.

3.  Set Configuration (Immediately)
Syntax: void setConfiglmm(CONFIGURATION NewConfig)
Description:
This function enables the user to update the robot’s position and theta. However,

the Kappa is not adjusted with this command.

4. Track a Line
Syntax: void line(CONFIGURATION config)
Description:
Basically the robot follows a directed path element defined by the configuration
that is passed as a parameter. The robot leaves this element when it comes to a transition

point or when an immediate motion function are called. The robot’s speed is automatically




reduced to allow the robot to make sharp turns. This is retlected by the dependency between
Kappa and the robot’s speed. In simple terms, the robot’s speed must be reduced to allow

it to move safely with larger values of Kappa.

5. Track a Backward Line Segment

Syntax: void bline(CONFIGURATION config)

Description:

The robot follows this directed path element.defined by the configuration that is
passed as a parameter. The robot will track the line contiz until it passes config itself and
will transter to the next path segment. If there is no next path segment, the robot will start
to slow down at the configuration config and eventually stop with the current acceleration
rate. Precisely speaking., the robot leaves the segment config when the robot’s image

reaches config (or is downstream of config).

6. Stop the Robot
Syntax: void stop(void)
Description:
When this function is processed from the instruction buffer, it calls the
immediate command of stop. In doing so, the rotational and linear goal velocities are set to

Zero.

7. Set the Robot’s Configuration
Syntax: void setRobotConfig(CONFIGURATION config)
Description:
The robot’s configuration is set to the value of the parameter config. This

function is processed only if the robot is in a stopped position.

8. Stop the Robot(Immediately)

Syntax: void stopImm(void)

Des ription:




This function immediately updates the goal velocity to zero in order 1o stop the
robot. The sequential command stop() calls stopImm() once the sequential command

function pair is read from the instruction buffer. Also, users can call stoplmm() directly.

9. Set Linear Velocity(Immediately)
Syntax: void setGoalLinVellmm(double linearVelocity)
Description:
This function sets the goal velocity that the robot will attempt to achieve when

it is following a path. This sets the speed of the robot immediately.

10. Get Linear Velocity
Syntax: double getGoalLinVel(void)
Description:

This functio . retrieves the current goal linear velocity that the robot is following.

11. Set Rotational Velocity(Immediately)
Syntax: void setGoalRotVellmm(double rotational Veloctiy)
Description:
This function sets and updates the goal rotational velocity that the robot will

attempt to achieve when it is following a path.

12. Get Rotational Velocity
Syntax: double getGoalRotVel(void)
Description:
This function retrieves the current goal rotational velocity that the robot is

following.

13. Set Linear Acceleration(Immediately)

Syntax: void setGoalLinAccImm(double linearAcceleration)

Description:




This function sets and updates the goal linear acceleration that the robot will

attempt to achieve when 1t is following a path.

14. Get Linear Acceleration
Syntax: double getGoalLinVel(void)
Description:
This function retrieves the current goal linear acceleration that the robot is

following.

15. Set Rotational Acceleration(Immediately)
Syntax: void setGoalRotAcclmm(double rotational Acceleration)
Description:

This function sets and updates the goal rotational acceleration that the robot will

attempt to achieve when it is following a path.

16. Get Rotational Acceleration
Syntax: double getGoalRotAcc(void)
Description:
This function retrieves the current goal rotational acceleration that the robot is

foilowing.

17. Set Size Constant(Immediately)
Syntax: void setSizeConstantimm(double SizeConstant)
Description:
This function sets the size constant which is used, among other things, to

influence the sensitivity of the steering function.

18. Get Size Constant

Syntax: double getSizeConstant(void)

Description:




This function retrieves the current size constant that is being used 1n mouon

control.

19. Set Total Distance(Immediately)
Syntax: void setTotalDistancelmm(double distance)
Description:
This function sets the total distance travelled by the robot to the value pussed as

a parameter.

20. Get Total Distance
Syntax: double getTotalDistance(void)
Description:

This function returns the total distance travelled by the robot.

21. Halt Motion(Immediately)

Syntax: void haltMotionlmm(void)

Description:

This function brings the robot to a rest. It is different from the stop functions in
that it’s purpose is a temporary halt with the assumption that you will continue or resume
the motion. Accordingly, the original goal velocity is saved to be later used by the resume
motion command to allow the robot to continue travelling at the same speed as it was

travelling before it halted.

22. Resume Motion(Immediately)
Syntax: void resumeMotionlmm(void)
Description:
This function is to be called only after a halt velocity command. It allows the

robot to resume the speed it was travelling before the haltMotionImm() was given.

23. Parabola(Immediately)

Syntax: void parabolalmm(PARA newParabola)

2
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Description:
This 1s the immediate function that commands the robot to follow the parabola

configuration passed in the parameter.

24. Euclidean Distunce
Syntax: double euDis(double x1. double y1. double x2 double y2))
Description:
This tunction computes the Euclidear: distance between two given points
25. Normalize
Syntax: double norm(doubie angle)
Description:
This function, when given an angle in radian, returns a normalized angle

between -7t and 7. This is the most common normalizing function used in the system.

26. Positive Normalize
Syntax: double positiveNorm(doubie angle)
Description:

This function, when given an angle in radian. returns a normalized angle

between 0 and 27T.

27. Negative Normalize
Syntax: double negativeNorm(double angle)
Description-
This functior, when given an angle in radian, returns a normalized angle
between -27t and 0.
28. Normalize P1/2

Syntax: double normPlover2(double angle)

Description:

(98]
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This function normalizes the input angle between -Pl/2 and PI/2. This was

specifically designed for parabola tracking calculations.

29. Signed Difference
Syntax: double signedDiff(CONFIGURATION config, POINT pt)
Description:
The signed difference function calculates the size distance between a point and
a configuration. If the value returned by the function is positive, that means that the point
i1s to the left of the configuration. If the value returned is negative, then the point is to the

right of the configuration.

30. Define Configuration

Syntax: CONFIGURATION defineConfig(double x, double y, double theta,
double kappa)

Description:

When passed the values that define a configuration (x,y,theta, and kappa), this

function allocates and assigns a configuration. It returns a configuration.

31. Define parabola
Syntax: PARA defineParabola(double xf.double yf, double xd, double yd,
double td)
Description:
When passed the values that define a parabola (xf, yf, (the focal point), xd, yd.
td (the directrix), this function allocates and assiens a parabola. It returns a pointer to a

parabola.

32. Reverse orientation

Syntax: CONFIGURATION reverseOrientation(CONFIGURATION original)

Description:




The purpose of this function is to reverse the orientation of a given cou.iguration
by 180 degrees. You pass in the original configuration and then the reversed configuration

18 returned.

33. Find symmetric configuration

Syntax: CONFIGURATION findSymConfig(double a, double alpha)

Description:

This function finds the symmetric configuration of an original configuration.
The parameter -- a -- is the distance from either configuration to the intersection of both
lines determined by the two configurations. The parameter -- alpha -- is the angular
difference between both orientations. One drawback to this function is that it is not possible
to represent a symimetric configuration whose alpha is equal to. FindSymConfig1() is used

to cover these situations.

34. Find symmetric configuration 1

Syntax: CONFIGURATION findSymConfigi(double a, double alpha)
Description:
This function performs the same operation as findSymConfig(), except that it

overcomes the drawback of not being able to handle the situation when alpha equals.

35. Inverse

Syntax: CONFIGURATION inverse(CONFIGURATION original)

Description:

The purpose of this function is to calculate the inverse of a given configuration
such that: original * inversed = Identity. The parameter --original -- is the original

configuration in global coordinates. This function returns the inversed configuration.

30. Compose

Syntax: CONFIGURATION compose(CONFIGURATION *first,
CONFIGURATION #*second)




Description:

The purpose of this function is to calculate the composition of two
configuraticns. Specifically, the function takes parameter --first-- and composes it with
parameter --second-- to calculate and return the composed value. A typical example of the
usage of this function is to determine the goal position of a configuration in global
coordinates. In such an example, the first argument would be the original configuration and
the second argument would be the goal configuration in the original configuration’s local
coordinate system. The returned value would then be the goal configuration in global

coordinates.

37. Circular arc

Syntax: CONFIGURATION *circularArc(double 1, double alpha)

Description: Given alpha and the arc length 1, this function calculates the final
configuration (see figure below). The main purpose of this function is to be used in
conjunction with compose function to form the new localization function. In this case,
length would actually be delta-s and alpha would be delta-theta. CircularArc() would
determine the configuration after the incremental move in the local coordinate system of

the original configuration. Then compose() would then take the original configuration (in




global coordinates) and the incremental configuration (in local coordinates) to determine

the incremental configuration in global coordinates.

Figure 14: Circular arc after (Kanayama, 94)

B. SYSTEM FUNCTIONS

1. Initialize the Motion Control System
Syntax: void InitMotion(void)
Description:
This function initializes the motion control system. Specifically, InitMotion()
initializes all of the variables local to motion control module to their default values. Also
in this initializing function, SetMotionIintMechanism() is called which establishes the

synchronous interrupt mechanism for motion control. Next, the wheels subsystem is
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initialized with the InitalizeWheels() function call. Finally, the wheels of the robot are

enabled withe the MotionOn() function call.

2. Motion Control Interrupt

Syntax: void MotionSysControl(void)

Description:

Function MotionSysControl(void) is the interrupt handler workhorse and is
called from the assembly interrupt handler shell. Its first task is to update the change in
position and orientation through calls to the module responsible for movement. It then uses
this information in the motion control laws to derive the commanded linear and rotational
velocities required for this motion control cycle. Finally, it passes these computed

velocities back to the movement module for execution.

3. Set Path Element

syntax: void setPathElement(PATH_ELEMENT newPath)

Description:

The function setPathElement() is one of several functions that act as an interface
for modules outside of MotionSysControl() to access variables that are within
MotionSysControl(). Specifically, setPathElement() sets the value of the current path

element in motion control to the path element passed in as a parameter.

4. Get Path Element
Syntax: PATH_ELEMENT getPathElement(void)
Description:
Similar to setPathElement, getPathElement acts an interface for functions
outside of the motion control module. The function returns the current path element in the

motion control module.

5.  Get Current Image

Syntax: CONFIGURATION getCurrentlmage(void)




Description:

This function is also an interface for functions outside of the motion control

module. This function returns that current image that is in the motion control module.

6.

Initialize Motion Support Commands

Syntax: void InitMotionSpt(void)
Description:

This function initializes the variables used in motionsupport.c.

Update Total Distance
Syntax: void updateTotalDistance(double deltaDistance)

Description:

This function adds the value of the parameter to the running total distance.

Get Parabola Configuration(Immediately)
Syntax: PARA getParabolalmm(void)
Description:

This function retrieves the latest parabola that has been processed by the robot.

It was developed for the paraRule() function in motion control.

9.

10.

Motion On
Syntax: void MotionOn(void)

Description:

This function enables the wheels on the robot. It is called in InitMotion().

Motion Off
Syntax: void MotionOff(void)
Description:

This function disables the wheels on the robot. It is called in main.c after user().
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11. Blink the LED

Syntax: void blinkLED(void)

Description:

This function controls the output from the interrupt driven motion control
system. Specifically, this function turns a LED on for a second and off for a second,
repeatedly while the motion control interrupt is being called. This is helpful for debugging
purposes. If the light stops blinking, you know that the motion control system is not being

called.

12. Limit Robot Movement
Syntax: double limit(double ystar)
Description:
This function is used by the steering function to keep the robot from doing loops
when the distance between the robot’s position and the path that the robot is following is

very large.
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VII. RESULTS

With the new version of MML, many significant improvements are achieved. First,
2lobal variables are reduced from 152 to zero. Using the global variable and cali nierarchy
trace, we limit all variable visibility to a module or function level scope. This directly
enhances coupling because dependencies between modules caused by global variables is
eliminated Any function from an outside module has to access these variables through
function interfaces. Also, data flow is further controlled by statically declaring variables
and funct'ons. Modifiability is improved because a developer needs only to be concerned
with variables in the module he or she is working in. Finally, functional cohesion is
improved because data are encapsulated and functions are structured logically. For
example. in MMLIO, there are several occasions where code that supports a motion
command is found in various modules. One in particular is the rotate command. Some of
its code is in the motion control module and the rest is in the instruction buffer module. In
MML11, all of the rotate command related code in located in the motion control module.

Recent work on the new MML provide testimony to MML improvements. For
example, members of the Yamabico group read 2nd understood the new code without
having the implementor available. They attribute this high degree of understanding and
readability to the extensively documented code in the form of comments. Also, members
have already began adding new functionality to the new MML. For example, one member
is adding parabola tracking logic to motion control. Instead of having to study the entire
motion control module, we simply define the interfaces needed. He is only concerned with
the interfaces--receiving the information he needs for his function, and providing the data
needed in the calling path tracking function. Finally, the new MML is stable. It runs
correctly consistently, and does what is expected. Furthermore, since little or no
adjustments to already tested code is necessary, new functions and modules are running

quickly with fewer initial run-time errors.
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A major focus throughout the design and implementation of MML11 has been the
grouping of data. As a result. most data 1s encapsulated with the same module as the
functions that use them For example. motion control related data is located with motion
control related funcuoens i the mouon control module. This is true throughout the entire
Yamabico subsystems . . svolved. as a consequence. is an object onented designed
system. Although ANS) .. not an Object Orniented Language (OOL), our design has
followed this methodology through the grouping of data. This makes it easy to move MML

to an OOL in its next upgrade.
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VIII. CONCLUSIONS

A. SUMMARY

Our initial goal was to construct a software system for a real-time mobile robot that
was stable, readable, and easily modifiable. We first examined those attributes that were
desirable in any software system. Then we analyzed MMLI10 using global variable and
call-hierarchy tracing. Considering the desired software attributes, the structural challenges
of MML 10, and the design assumptions for the MML end users, we developed design goals
for MMLI1 1. Following from the results of the previous chapter, we achieved our goal. The

new system was more stable, easier to read and understand, and simpler to modify.
B. FUTURE RESEARCH

There are two areas of recommend future research. First, a graphical simulator for
Yamabico based on MMLI11, would be a possible area of research. Considering the
modular design of MML, this would not be a monumental task.

With the completion of this thesis, MML is now completely written in ANSI C. In
restructuring the code, data has been encapsulated providing a object designed software
system. Yamabico lends itself to this type of design methodology, because its subsystems.
such as wheels, sonar, etc., provide a modular structure in which to design the software.
The next logical step would be to write MML in an Object Oriented Language (OOL) such

as C++.




APPENDIX A. MOTION CONTROL RELATED MODULES

A. DEFINITIONS.H

/tﬁtttatﬁtﬁ.'-'Qt-tat.n.-ﬁt.ntt'cn'n-tcatttntattttttnt'tntt'ttt.t'ﬂt

Fite Name: definitions.h
Description: This file contains standard definitions and data type
declarations used throughout the rest of the MML system.

tttﬁ.ntﬁQta-taaﬁi'QQQ'iaat'tﬁ"tti*:'.atiat.ﬁttit"tttﬁtt'twﬁtﬁtttﬁt.ttitata't/

#itndef __DEFINITIONS_H
#define ___DEFINITIONS_H

/* Always include this because it is needed by most modules */
#include “constants.h”

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long LONG;
typedef unsigned long *ADDRESS;

typedet enum MODE {NOMODE, STOPMODE, PATHMODE, ROTATEMODE,
PARAMODE, BIDIRMODE, KSPIRALMODE} MODE;
typedef enum CLASS {NOCLASS, LINECLASS, CIRCLECLASS, BLINECLASS} CLASS;

typedef enum {¢ .SE = 0, TRUE} BOOLEAN;

typedef struct {
MODE  mode;
CLASS class;
} PATH_TYPE;

typedef struct {
double Linear;
double Rotational;
} VELOCITY;

typedef struct {
double X;
double Y;
} POINT;

typedef struct{
POINT Posit;
double Theta;
double Kappa;

} CONFIGURATION;

typedef struct{
POINT Focus;
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CONFIGURATION Directrix:
} PARA;

typedef struct{
CONFIGURATION config:
PATH_TYPE pathType;
} PATH_ELEMENT,;

#endif

MAIN.C

/ttt'ﬁ*ﬁt'tt.’ﬁit't."t'itiwt*ﬁﬁtﬁtﬁt'i'ﬁt‘.itﬁﬁt'tttiit'i"t.itﬁ.t't.'ﬁl't'tiﬁi

File Name: main.c

Description: This file contains main(). Its purpose is to initialize all
sub-systems and then pass cantrol to user(). Once user() is
complete, the routine returns control to the resident debugger.

Qtﬁttﬁ&twﬁiaftiﬁttt'*'ttiitt*t'*tﬁttti"tﬁit'ittﬁt'fttt*ﬁt*iﬁ*titttatttttttitt't/

#include “definitions.h”
#include “memsys.h”
#include “serial.h”
#include “queue.h”
#include “trace.h”
#include “motion.h”
#include ‘time.h”
#include “sonar.h”
#include “system.h”

/™* Local Prototypes ***/
void user(void);

void ___main(void);

void Unexpected(void);

int

main()

{ InitCPUY();
InitTime();
InitQueue(); /* init instruction buffer */
InitTrace(); /" init trace mechanism */

InitMemsys(); /* memory manager - lites LED 5 */




InitMotion(); /* int motion, wheels. and motion logging */

#ifdef SONAR
InitSonar();
#endit

Dicableinterrupts():

/* All functions above here must initialize variables only. They
should not rely on any interrupt handlers, timers, etc. */

InitHardware(); /* init interrupt handlers and HW registers */
/* Handfes ALL hardware including maotion,
serial and sonar */

#ifdef TIMER
/* fineTiming is used for timing the motion control cycle */
InitClocktick(0Q});
#endif

Enablelnterrupts():

MotionOn();

user();

MotionOff();

IOclose(); /* dump all the data files to the host */
rexit(); /* clean-up */

retum 0;

/"i*i"i*tiﬂi'ﬁ*tti'ﬁﬁt't**ifiltt**'*tt*t*'tttﬁﬁi*tt*ﬁttitt"ﬁt"ﬁ"*ttittitﬁtt'

Routine ____main is required when using the ‘gec’ compiler. This is because the
compiler inserts a call to this routine at the beginning of the main function
defined for the program. This is normally taken care of by linking in the

bootstrap object modules, however these are not added to a program that
operates without an operating system such as the mmil program. Therefore, since
this routine is called, the only requirement is for this routine to simply

return back to the main program.

*i*tttﬁtttﬁittt*ttiﬁ**ttitt*itt:t‘*tttt*iﬁ*tttfﬁttiﬁi*tﬁ't'ﬁttiﬁiﬁ»t'*tﬁ*Ottt'*ﬁ/

void __main()
{/" empty */}

46




/tt.""t--tt"'t').'..tt'.t"u-t..t-.ttt-t'.tt--tt.-'ttt.t't"t-t.t"-'t't-tt't

Function Unexpected is the C version of Scott's blank interrupt handler

E e L L R L e T L I T T
i

void Unexpected(void)
{7 empty "/}

MOTION.H

/-'tﬁttqgnuﬁﬁ'c'.t-attua'-.'-tﬁtutna"-nn.-tt-'ttta.'--'ttt-'i----a--t--at-t-:-

File Name: motion.h

Description: This file contains the prototypes/interface for the functions
available in the motion
control module.

I L T TN T T s

#itndef _ MOTION_H
#define __ MOTION_H

#include “definitions.h”

A R e L L s e R T P T T e 2 R 2 2
/

Function: InitMotion()

Purpose: initializes the motion subsystem by assigning default values to the local variables
and establishing the interrupthandling mechanism.

Parameters: none

Returns: void

Comnments:

'Q-iﬁtattaiittittiiﬁt'ﬁﬁtqtai-titttﬁﬁ'tﬁtt"itﬁtttﬁ'wa'tttitttttti'tt*'iﬁttﬁtt/

void  InitMotion(void);

/tt"ﬂtnﬁttﬁa*tﬁwﬁtttw"*tttﬂtwttfittatﬁytt'tt’t'ttttﬁtﬁi"Qtttttt*itﬁttﬁ.tttti

Function: MotionSysControl()

Purpose: the interrupt handler workhorse and is called from the assembly interrupt
handler shell.

Parameter: none

Returns: void

Comments:

t**it*tﬁi*’iiiiitt"*'**ﬁ'#tttt'i*tiit't'i'it*"’*‘tﬁ't'itw*t'*ﬁii'**tﬁﬁiﬁ'ﬁt'/

void  MotionSysControl(void);

/*ttt"'tﬁﬁﬁ"{ii'**ﬁtt**ti*ﬁﬁiﬁttﬁt'ﬁ*ﬁtﬁ*iti'it'tt'i'ﬁiﬁ*'f'ﬁi*ittit**tt"tﬁ

INTERFACE FUNCTIONS SECTION
The following section defines the functions that provde an interface to values

within in the motion control modules by functions in other modules. These
routines are public.
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'.tﬁ.'iQ"#tt'ﬁtit'iitlbt't't.iﬁ*ﬁi.itttt'*tﬁi*ttt**.Qw'titiiﬁ.t".t'*ii'tti'/

/tit**tiwaik*iﬁaﬁ*a*btﬁttatauinﬁtttt'ﬁt'ntt*twtitttQttttttt*n*attt**tttta*ﬁta

Function: setPathElement()

Purpose: Sets the value of the current path element in motion contro! to
the path element passed in as a parameter.

Parameters: PATH_ELEMENT newPath

Returns: void

Comments:

iii*tti*Qt*ti**'it*ﬁ.tﬁt*Qittti*tit*t***iiti't*'tti*tiﬁﬁti*t*ttiﬁ**ittﬁﬁﬁ*ﬁ*i/

void setPathElement(PATH_ELEMENT newPath);

/t*t'tit't*ﬁt'*t'ﬁ*tt***tﬁw**i*t*t«ﬁwt«*t*'*ﬁiiﬁwﬁ*tt*ﬁatﬁtttt*tﬁ*ttﬁ*t*ttﬁ*wt

Function: getPathElement()

Purpose: retrieves the current path element in the motion contro! module
Parameters: void

Returns: PATH_ELEMENT

Comments:

*iiﬁ**'ﬁiiit**ﬁtﬁ*i**i*&ﬁtﬁ*ﬁ*wﬁtﬁﬁ*it**tt*’b*t**itii*'*ﬁ*i&iﬁtﬁ*t****.*i*"t/

PATH_ELEMENT  getPathElement(void);

/t**t*ttttttk*it.*ttgiﬁ*ttttﬁi*tttkt*tai*t**ﬁttt*ﬁt*tt**itt**t**ikt*t*tttt*t

Function: getCurrentimage()

Purpose: retrieves the current image that is in the motion control module
Parameters: void

Returns: CONFIGURATION -- the current image

Comments.

*i'*tti*t'tiﬁ*tt'*ht**tﬁ‘**i*tt*kﬁ*'ii'tfi*"h**ttk****'ii'ﬁ*i&'fﬁ***ttt'***/

CONFIGURATION  getCurrentimage(void);

/i**tﬁiﬁfffiii"t*t*'hﬁit***ﬁ*t*tt'**itﬁit*ti******wit't*t'ttit‘*‘**i*ii*i****ﬂ

Function: setRobotConfigimm()

Purpose: To set and update the robot configurations
Parameters: CONFIGURATION NewConfig
Returns: void

Comments:

t"'*i‘ﬁ*ﬁﬁ*tti&*ttt******tt*t*tb#‘ktt**’*tttﬁﬁ***ﬁ*ﬁﬁ*i****t*iﬁttt*****tﬁ*iﬁi/

void setRobotConfigimm(CONFIGURATION NewConfig):

/Q*'tﬁt’*tﬁiiﬂ’ﬁt#ﬂ’t*tﬁtbi*’tﬁtttt**t'*iﬁtﬁtﬁ*tﬁ**iiﬁit**ttt*ﬂi**t*****ititt*i

Function: getRobotConfig()

Purpose: Retreives the current robot configuration

Parameters: Pointer the a variable where the current values for the robot's
configuration will be placed.

Returns: void
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_————-

Comments:

itt#t*ﬁt".*i'ﬁiiQt“'tﬁﬁ'ﬁ.ttttﬁiiﬂtﬁ*tﬁﬁiiﬁﬁﬂai*iﬁtﬁtﬁtttiitﬁttﬁt'*ﬁ.ht’i.*i/

CONFIGURATION getRobotConfig(void);

/i*'*ﬁiﬁt‘.iti'ii"ttﬁit'itt.'titt.Qiﬁt*ﬁt'iﬁt*ittiﬁi*"i't.""Q'ti"ﬁt'

Function: setConfiglmmy)

Purpose: To set and update the robot’s position and thata but not
it's kappa

Parameters: CONFIGURATION NewConfig

Returns: void

Comments:

-iittt"wttwu'ttttﬁtt.tt**ttwtatt.ﬁtittvtiwttﬁ*'iwﬁtﬁg.twa"ii'tttﬁwﬁﬁtatttttt/

void setConfiglmm(CONFIGURATION NewConfig);
#endif

MOTION.C

/**i*t*tti**ii*ﬁ'itttiﬁ*'ttit'*ﬁtﬁl.'tfit't*tQt*tt'*ﬁitﬂﬁf*t*t***ﬁi*tﬁiﬁi'**iﬁ

File Name: motion.c
Description: This file provides the routines and data structures needed to
provide the motion control capability for the robot.

**fﬁtﬁiiﬁ'titii*ﬁﬁ'ﬁtﬁ*ﬁ‘*iiﬁit***it*f**fﬁliﬁ***Q*t**i&t**‘.***ii*ii**ﬁ"t*i*'/

#include “definitions.h
#include “wheels.h”
#include “math.h”
#include “queue.h”
#include “motionlog.h”
#include “geometry.h”
#include “iosys.h”
#include “stdiosys.h”
#include “time.h”

#include “system.h”
#include “trace.h”

#include “motion.h”
#include “motionsupport.n”
#include “seqcmd.h”

/*"'Q'iii'ﬁt'ﬁ'i*tt'*itﬁit*ﬁﬁi"ﬁttﬁ*tiﬁtt'*ﬁfiii'*ﬁ*ti*'**it.&ﬁtt'*"‘*’ﬁ*ﬁi*

PRIVATE SECTION

The foliowing section defines the encapsulated definitions, data structures
and prototypes used in the system.

-ag'ouﬁﬁftt«*tﬁ-*ﬁ*a*ﬁtﬁaiwt'*ﬁwtfﬁ**tt*wt*ﬁtt*wtitq*tt*tfnﬁftt'i'nnnﬂt*ttwi*w/

/* constant values */
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#define SMALLERROR 0.0001
#define DEFAULT_LIN_ACC 10.0
#define DEFAULT_ROT_ACC 05
#define DEFAULT_GOAL_VEL_LIN 20.0
#define DEFAULT_GOAL_VEL_ROT 0.0

static double  aa,bb.cc.kk; /* used for steering function in PathRule() */
static VELOCITY Commanded; /*commanded velocities */
static double  kappaCommanded; /* commanded kappa */

static CONFIGURATION vehicle,
currentimage; /* local variables that hold the
vehicle and current image
values during motion control
cycles */

static PATH_ELEMENT currentPath; /* holds the current path element values */

#ifdef DEBUG

#define DEBUG_FILE “debug.log”
#define DEBUG_SIZE 0x10000
#define DEBUG_FREQUENCY 1

10handle debuglO;
#endif

#itdef TIMER
#include “clocktick.h”

#define TIMER_FILE ‘timer.log”
#define TIMER_SIZE 0x10000
#define TIMER_FREQUENCY 1

{0handle TimerLog;
#endif

/t.tt"ﬂtﬁ*ﬁﬁt“*ﬁ*ﬁ'ﬁi**tﬁﬁittii*i&'*tttuttt*t't*itﬁ*i'tt'*i.t*tt*itﬁﬁt*Qtﬁiiﬁ

The following static function declarations are the prototypes for the
encapsulated functions.

"'t*Qt'*i*ﬁ'ttiﬁ*iﬁ*ti**'*"i*t*'tﬁt*i’ﬁt***."'*i*tt't*tﬁ"ﬁt*iﬁiﬁ'*ﬁ**tﬁ**ﬂ*i/

/* calculates the vehicle’'s next configuration based on the distance
travelled in the last motion controi cycle */
static CONFIGURATION
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localize(CONFIGURATION robot, double deitaS. double deltaTheta);

/* calculates the next commanded linear velocity value. */
static double GetlinearVelocity(double ActualVelocity.
double LastCommandedVelocity):

/* calculates the distance remaining on a path to reach a configuration.
Used with bline calculation. */
static double restOfPath(void);

/* determines whether the vehicle needs to decelerate.
Used in bline calculation */
static int needsToDecelerate(double actualVelocity);

/* determines whether it's time to process the next instruction */
static void transition{void);

/* calles a motion rule function based on the mode of travel that the
vehicle is in */
static VELOCITY motionRules(VELOCITY Actual, VELOCITY Commanded):

/* motion rule for following a path */
static VELOCITY pathRule(VELOCITY Actual, VELOCITY Commanded});

I* motion rule for stopping */
static VELOCITY stopRule(VELOCITY Actual, VELOCITY Commanded);

/" motion rule for rotating */
static VELOCITY rotateRule(VELOCITY Actual, VELOCITY Commanded);

/* motion rule for following a K-spiral */
static VELOCITY spiralRule(VELOCITY Actual, VELOCITY Commanded}):

/* determines the Y-star for a vehicle following a line */
static double computelineYstar(void);

/* determines the Y-star for a vehicle following a circle */
static double computeCircleYstar(void);
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/* updates the vehicle image when it is following a line */
static void updatelineimage(void}:

/* updates the vehicle image when it is following a circle */
static void updateCirclelmage(void);

/ﬁiai'tgtt*iﬁttit«tt'ttttttttatt-.tQttﬁtwﬁtttt'aitttaat'tttt*ttitttt'ttﬁ't--'ti

MOTION CONTROL SECTION

The following section defines the functions that provide access to the
motion control system. These routines are public.

.‘tﬁﬁ‘iﬁtﬁ"t*titi.ﬁt**O*i.t*tttt'tt't't"ttQt'i'ﬁi'ﬁ’tt'.t.ﬁt"ﬁitttttiitﬁ{it/

/t'ﬁtttﬁttﬁ't*tttattkitﬁﬁ't**tttﬁtint'ttﬁtt**tﬁﬂﬁttﬁtttﬁttttt‘at*fttiitit*wt.tt

Function InitMotion() initializes all of the private global variables
in this module to the default values. It then calls SetTimer to
program the 5th timer on serial board #1(the second serial board)to generate
synchronous interrupts every 10ms. After the timer has been set up, the
interrupt handling routine is made available o the system by the call to
SetMotioninterruptHandier().

*ifi*'t*Q*tttit'***t*iii*t*tt#t'tiﬁ'**'*ﬁi*'ﬁittt'iiﬁi*'ti't'lti*.ﬁ'tttttﬁtit'/

void
InitMotion(void)
{

/* Inttialize motion related systems */
InitMotionsupport();
initSeqemdy();
initWheels();

/" Initializes the distance. Updated every motion control cycle by deltaS */
setTotalDistancelmm(0.0);

/* Initialize the goal velocities */
setGoalLinVellmm(DEFAULT_GOAL_VEL_LIN);
setGoalRotVellmm(DEFAULT_GOAL_VEL_RQOT);

I* Initialize the commanded velocities */
Commanded.Linear = 0.0;
Commanded.Rotational = 0.0;

/* Initalize the linear and rotational acceleration */
setGoalLinAcctmm(DEFAULT_LIN_ACC);
setGoalRotAcclmm(DEFAULT_ROT_ACC):

/* Initialize the size constant */
setSizeConstantimm(DIST_CONSTANT);

(%4}
28]




w

/* Initialize the commanded kappa */
kappaCommanded = 0.0;

/* Initialize the vehicle configuration */
vehicle.Posit.X = 0.0;
vehicle.Posit.Y = 0.0;
vehicle. Theta = 0.0;
vehicle. Kappa = 0.0;

/* Initalize the current path configuration */
currentPath.config.Posit.X = 0.0;
currentPath.config.Posit.Y = 0.0;
currentPath.config.Posit.Y = 0.0;
currentPath.config.Theta = 0.0;
currentPath.config.Kappa = 0.0;
currentPath.pathType.mode = STOPMODE;
currentPath.pathType.class = NOCLASS;

/* The following 4 variables are used in the steering function found
in the pathRule() which is in this module */

kk = 1.0/ getSizeConstant();
aa = 3.0 " kk;

bb =3.0 " kk * kk;

cc = kk " kk * kk;

/* enables the wheels. s turned off at the end of main.c after
user() is called */

/iti'i*iitt*'i*'ﬁtﬁtiﬁt*ii&i*iii**'ﬁtiﬁ*i**i*t/

/* Initialize data logging here if necessary */

/titfﬁti*ttt't*’ﬁﬁ*ttatﬁt ek ek wHERK /

#ifdef DEBUG
debuglO = I0open(DEBUG_FILE, DEBUG_SIZE, DEBUG_FREQUENCY);
#endif

#ifdef TIMER
TimerLog = IOopen(TIMER_FILE, TIMER_SIZE, TIMER_FREQUENCY);
#endif

}

JRREN AR RRN AN E RN RN AR RN AR AT R NI R TN AN N TR AN T I TR R AR AR NR AR T AR AR R A TR
‘

Function: MotionSysControl()
Purpose: the interrupt handler workhorse
Parameters: None




Return: void

Comments:it is called from the assembly interrupt handler shell. Its first task is
to update the change in position and orientation through calis to the module
responsible for movement. It then uses this information in the motion control
laws to derive the commanded linear and rotational velocities required for this
motion control cycle. Finally, it passes these computed velocities back to

the movement module for execution.

ti"ﬁ*tﬁttttttﬁﬁcfa'tﬁtit"t'ttt'titﬁttittt-ﬁttﬁttttﬁtﬁtiattt«n".-tni"ttttt't'/

void
MotionSysControi(void)

{
double deltaTheta;

double deitasS;

VELOCITY Actual; /* variable used to hold the actual vehicle velocity */
#ifdef TIMER

int tick = getCount();
#endif

/" updates the distance traveled by both wheels--found wheels.c */
UpdateMovement();

/*retumns the linear distance the vehicle has travelled between the last two
calls to UpdateMovement()--found in wheels.c */

deltaS = GetDistanceTraveled();

/* returns the difference between the changes in the distance of the left
and right wheels between the last two calls to UpdateMovement(). Found in wheels.c */

deltaTheta = GetOrientationChange();
/* Keeps track of the total distance traved by vehicle */
updateTotalDistance(deltaS);

"update the vehicle’s configuration based on the distance traveiled
during the last motion control cycle */;

vehicle = localize(vehicle, deltaS, deltaTheta);

I* next 2 lines calculate the actual velocity that robot maintained based
on the distance travelled over the last motion control cycle. */

Actual.Linear = deitaS / MOTION_CONTROL_CYCLE;
Actual.Rotational = deltaTheta / MOTION_CONTROL_CYCLE;

I logs the values of the vehicle configuration. Nata is

written to a buffer during each motion control cycle and
then downloaded to a file when the program ends. LogMotion
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is found in motionlog.c */
LogMotion{vehicle);

/* This can be relocated just about anywhere... */
#itdef DEBUG
I0printf(debuglO, “ “);
#endif

" motionRules returns the commanded velocities that will be
used in the next motion control cycle. Found in this module.*/

Commanded = motionRutes(Actual,Commandedy);

I* SetMovement() translates the commanded linear and
rotational velocities into commanded velocities for each
wheel. Found in wheels.c */

SetMovement(Commanded.Linear,Commanded.Rotational);
transition(); /* reads next instruction if needed. Found in this module.*/

/* Increments the “time” every motion control cycle for the
various timer functions. Found in time.c */

clockTick();

/" blinkLED is used to contro! output from interrupt driven
motion control system. It tums an LED on and off every
second. Function found in this module.*/

blinkLED(};

#itdef TIMER
iOprintf(TimerLog, “%f \n”, (tick - getCount()) / 250.0);
#endif

}

/iiii**'hﬁt'*ﬁii*ﬁ’*'ﬁt't“**'fﬁ'ﬁ.ﬁ'*tt*it**iﬁ RhkkkhhhRrhhdhwddddddhdd b kddddd

Function: localize()
Purpose: Calculates the next configuration of the vehicle based on the
distance that the robot travelled during the last motion
controi cycle
Parameters: CONFIGURATION robot --from the last motion control cycle
double delta$S -- linear distance travelled in last
motion control cycle
double deltaTheta --angular change in the last motion
control cycle
Returns: CONFIFURATION --of the vehicle based on the distance travlled
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during the last motion control cycle
Comments:
itt'.'t'!'ittiﬁit'.‘ti.'t‘*tﬁtttt"ttttit"ttttt’.tttttt*ttt#ttt'ht'tttt*t’/
CONFIGURATION
localize(CONFIGURATION robot, double deltaS, double deltaTheta)

{
CONFIGURATION tempRobot;

tempRobot = circularArc(deltaS, deltaTheta);
robot = compose(&robot, &tempRobot);
robot.Kappa = kappaCommanded;

return robot;

}

/ttittt.*ﬁttt*"ﬁ*tittttttﬁt.ti.'tttitt'tﬁ*'ttt'ﬁQt*ﬁ'tn'tit-ttitiaatitihit"t

Function GetLinearVelocity()calculates the linear component of the commanded
velocity.

#i‘**ﬁﬁ'iﬁﬁ.tﬁi"i*i'i*ii."i'*.'.'.fi'*ii‘t”"ﬁﬁﬁ'*"*'ﬁ'*ﬁt'i'i'ﬁtiﬁtﬁ'*ﬂ"/

static double
GetLinearVelocity(double ActualVelocity, double CommandedVelacity)
{

double stopDistance;

double deceleration;

double VelocityChange;

it (currentPath.pathType.class == BLINECLASS &&
needsToDecelerate(ActualVelocity))
{

stopDistance = restOfPathy();
if (stopDistance <= 0.0) {
CommandedVelocity = 0;
currentPath.pathType.mode = STOPMODE;
}
else {
deceleration = (ActualVelocity * ActualVelocity)/(2 * stopDistance);
CommandedVelocity = Max(CommandedVelocity - deceleration *
MOTION_CONTROL_CYCLE, 0);
}

}

else {
VelocityChange = getGoalLinAcc() * MOTION_CONTROL_CYCLE;

it (ActualVelocity < getGoalLinVel())
CommandedVelocity = Min(CommandedVelocity + VelocityChange,

getGoalLinVel());
else
CommandedVelocity = Max(CommandedVelocity - VelocityChange,
getGoalLinVel());
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}

retum CommandedVelocity;

}

/ttatiﬁtiﬁﬁ'ti-tttttﬁttttt'ti'itﬁ'tt'*.i'tt.ttttt AR RN EN AT TN AR N AR AR NN T AN TP RN

Function restOfPath() calculates the remaining distance to the ending
configuration for the BLINE class
it‘i'ﬁtttl".tﬁﬁitﬁii'*'i'i"'.i"'t't.'if'tt'ﬁtttt'tiitﬁ..t.tﬁ'titi."ttt'.tt/
static double
restOfPath(void)

return ((currentPath.config.Posit.X -
currentimage.Posit.X) * cos(currentimage.Theta) +
(currentPath.config.Posit.Y -
currentimage.Posit.Y) * sin(currentimage.Theta));

/ﬁt"ﬁ*tif‘itttﬁt"tt'itt'*Q"Q'"ﬁ.'Qt’t’ﬁ"t't't*Q.ti**"'tt'i.t‘tttﬁit'ﬁ"'*

Function: needToDecelerate()
Purpose: To determine whether the robot needs to begin decelerating. Such
as in a bline function.
Parameters: double actuaiVelocity (linear)
Returns: It returns 1 if it needs to decelerate. Otherwise, it returns 0.
Comments:

i ARl hdedol b b Thkdd hew bk dodeh ww W * w * /

static int
needsToDecelerate(double actualVelocity)

double decelerate = 0.0;

it (currentPath.pathType.class == BLINECLASS) {
it (2.0 * getGoalLinAcc() ™ restOfPath() <= actualVelocity * actualVelocity)
decelerate = 1;
}

return decelerate;

/*"ﬁi*'*"’tﬁﬁﬁ*".t*ﬁiﬁiQi"'*ﬁ."QQt'ﬁ.'i'it'*Q"’Q'**iﬁi'&"ﬁi“*tiw*t’**i

Function: transition()

Purpose: if the leaving point flag is true then read the next instruction

Parameters:

Returns: void

Comments:
t**Qiit"t'iﬁtt’*t'tiﬁtttt*Qtttftiti't'tt"t**ﬁ**ttt*ttti*tf'tﬁtttttt"'t'ﬁ**/
static void
transition()

{
switch(currentPath pathType.mode) {
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case STOPMODE:
Processinstruction();
break;

case PATHMODE:
switch(currentPath.pathType.class) {
case LINECLASS:
it (isAtTransitionPt())
Pracesslinstruction();
break;

case BLINECLASS:
break;

case NOCLASS:
case CIRCLECLASS:
default:
break;
} 7* class switch */
break;

case NOMODE:
case ROTATEMODE:
case PARAMODE:
case BIDIRMODE:
case KSPIRALMODE:
default:

break;

} /" mode switch */

}

/Q.'*'*'f*t'*ﬁiﬁ'tfiﬁ*fﬁfﬁﬁfi’ﬁi'ﬁ*t‘i’ﬁ**t'Qt**'*"i'tit'**ii'ﬁ.'i'it*f*i"i‘ﬁ

Function: motionRules()
Purpose: To calculate the linear velocity and rotational velocity based
on the type of motion that the robot is executing.
Parameters: VELOCITY actual, commanded
Returns: The commanded linear and rotational velocities,
Comments:
ﬁﬁ’.ti*t*t'tﬁfttﬁ*tt&ti'tittttti'tﬁi"ﬁtitnttttt*t**iﬁ*tQtt*i*’ﬁta*tﬁ*'itt"ti/
static VELOCITY
motionRules(VELOCITY actual, VELOCITY commanded)
{
switch(currentPath.pathType.mode) {
case STOPMODE:
commanded = stopRule(actual,commanded);
break;

case PATHMODE:

commanded = pathRule(actual,commanded);
break;
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case ROTATEMODE:
commanded = rotateRule(actual,commanded);
break;

case KSPIRALMODE:
commanded = spiralRule(actual,commanded);
break;

case NOMODE:
case PARAMODE:
case BIDIRMODE.:
default:

break;

}

retum commanded;

}

/t:ttiitﬁa'iﬁtﬁaattqthﬁatitﬁﬁi'tﬁtﬁﬁ'titttt'ﬁ-'w-'ti'tQitt".atttt'ttﬁﬁtt.tiﬁit

Function: pathRule()
Purpose: To determine the linear and rotational velocities needed to put or
keep Yamabico on the path.

Parameters: VELOCITY actual, commanded

Returns: The required linear velocity, rotational velocity

Comments:
t'it'tﬁ’i".t'*'ttgtitti*.’ﬁtl*tt’ttt*tt'iiiittt.ttitittitﬁ*’tttt't'tttttttﬁtﬁ/
static VELOCITY
pathRule(VELOCITY actual, VELOCITY commanded)

{
double ystar,dkappa, deltaDistance;

switch(currentPath.pathType.class) {
case BLINECLASS:
case LINECLASS:
ystar = computeLineYstar();
updateLinelmage();
break;

case CIRCLECLASS:
ystar = computeCircleYstar();
updateCirclelmage();
break;

case NOCLASS:
detault:
break;

}

dkappa = -aa * (vehicle.Kappa - currentimage Kappa)
-bb * norm(vehicle. Theta - currentimage. Theta)
-cc * limit(ystar);
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deftaDistance = MOTION_CONTROL_CYCLE * commanded.Linear;
kappaCommanded = vehicle.Kappa + dkappa * deltaDistance;

commanded.Linear = GetlinearVelocity(actual.Linear,commanded.Linear);
commanded.Rotational = kappaCommanded * commanded.Linear;

returmn commanded;

}

/'*tifi'ﬁ'.*..fiﬁ'i'.iﬁﬁ'."'t.."'.Q'iﬁQ'Qﬁ'i'IQtt't'.'t'iQﬁ"'i't'it"ﬁt'tﬁﬁ'

Function: stopRule()
Purpose: updates the commanded velocity to 0 (zero) to stop the robot
Parameters: VELOCITY actual, commanded
Returns: The required linear velocity, rotational velocity
Comments:
tft.t’ttti‘i*tii.iﬁiitti'*..ﬁi'iﬁttﬁ"'ttttt"ttittttitt'ttttit"i.tt*t'itt"tl
static VELOCITY
stopRule(VELOCITY actual, VELOCITY commanded)
{
commanded.Linear = 0.0;
commanded.Rotational = 0.0;
retum commanded;

}

/ﬁtﬁ*tQﬁﬁtiﬁ'tﬁ*'itiQ't‘tt’t"'it'QfQ'iit’tit'itﬁiﬁ’ti*tﬁ.ﬁ"iﬁ’ifﬁtﬁﬁ'ﬁ'ti"iﬁ

Function: rotateRule()
Purpose: updates the commanded velocity to rotate the robot
Parameters: VELOCITY actual, commanded
Returns: The required linear velocity, rotational velocity
Comments:
AR R A AT AR AN A /
static VELOCITY
rotate Rule(VELOCITY actual, VELOCITY commanded)
{

return commanded;

}

/ﬁ'i'*i'i*if"'tﬁ*ﬁ't"t'"QQ*Qt‘*QQtﬁi’tﬁ.tQtﬁtt’*i*ﬁiﬁftﬁ*tfiiiii't't*‘t'ﬁ.ﬁt

Function: spiralRule()

Purpose: To determine the linear and rotational velocities needed to put or
keep Yamabico on the path.

Parameters: VELOCITY actual, commanded

Returns: The required linear velocity, rotational velocity

Comments:

hhhhh bt hrhirhhdn fededr e whhkRNwrhdw i foded wrir ik e hh 'vw/

static VELOCITY
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spiralRuie(VELOCITY actual, VELOCITY commanded)
{

retum commanded;

}

/t'.atttttitt.tttt.tcttttattttat.ﬁ.tiit'n.tt-tﬁﬁaattiﬁt'ititi'ttttttntttﬁt'tt't

Function: computeLineYstar()
Pumpose: To determine the y* when the robot is tracking a line
Parameters: none
Returns: double
Comments:
AR ARARAAN AN AR AN T AT O RN ek ttttﬁ'ﬁtttﬁtttt*tﬁt'tttittiittttttii*ttttti/
static double
computelineYstar()
{
double ystar;
CONFIGURATION path = currentPath.config;

ystar = -(vehicle.Posit.X - path.Posit.X} *
sin(path. Theta) +
(vehicle.Posit.Y - path.Posit.Y) *
cos{path.Theta);

returmn ystar;

}

/.'iﬁiQﬁitit.tﬁiﬁti'ﬁtﬁitti'ii*ﬁit*ii"ﬁi*'*f'*itiiﬁ'tliﬁ"*"iﬁiﬁttﬁi*'ﬁﬁttﬁ*t

Function: computeCircleYstar()

Pumpose: To determine the y* when the robot is tracking a line

Parameters: none

Returns: double

Comments:
'Qﬁ.itt'QQtt'it't**"*tﬁtt*t'tt*i*ii*ti*tiii*iit'i*ttttt"tti'**t’*tttﬁﬁttﬁtti/
static double
computeCircleYstar()

/* not implemented yet */
return 0.0;
}

/'iii*'ﬁ't'ﬁQ.'Q'itiﬁii*ii**i'.*ti*t*'i'ttii'*tt"ttﬁ"i'ﬁ"'*t'ﬁ*iﬁ*‘i.ﬂti'it'

Function: updateLinelmage()

Purpose: To update the current image of the vehicle tracking a fine

Parameters: none

Returns: void

Comments:
ﬁ.ttﬁt"titti'tfi*Q*ﬁtittitt'i*ihtit*t’t'tktt'ﬁt'ﬁ*i**'iQii***tttt'ti'*tiitt*a/
static void
updatel.ineimage(void)
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{

double closest;
CONFIGURATION path = currentPath.config;

closest =({(vehicle.Posit.Y - path.Posit.Y) * cos(path.Theta)) -
((vehicle.Posit.X - path.Paosit.X) * sin(path.Theta)));

currentimage.Posit.X = vehicle.Posit. X + closest * sin(path.Thetaj;
currentimage.Posit.Y = vehicle.Posit.Y - closest * cos(path.Theta);
currentimage.Theta = path.Theta;

currentimage.Kappa = path.Kappa;

retum;

}

/ttﬁi*tttw*ﬁﬁttn*t‘**ta.itt'tat*ttitﬁt:aﬁaa*iaiwt WRARE AN TN AR NI

Function: updateCircielmage()

Purpose: To compute the current image of the vehicle tracking a circle

Parameters: none

Returns: void

Comments:
*\'*tt*ti*tﬁ"tﬁ*t'tit**ﬁ**ﬁ**ttt**‘hti*ikti***t*'t*'tﬁi*t'iﬁ*fi*ﬁtiiitiﬁiﬁ*i*tt/
static void
updateCirclelmage(void)
{

double gamma, radius;

POINT origin;

CONFIGURATION path = currentPath.config;

radius = (1.0 / path.Kappa);

origin.X = path.Posit.X - radius * sin(path.Theta);
origin.Y = path.Posit.Y + radius * cos(path.Theta);

gamma = atan2(vehicle.Posit.Y - origin.Y, vehicle.Posit.X - origin.X);
currentimage.Posit. X = origin. X + fabs(radius) * cos(gamma);
currentimage.Posit.Y = origin.Y + fabs(radius) * sin{fgamma);

currentimage. Theta = norm(gamma + (PI/2) * (path.Kappa/fabs{path.Kappa)));
currentimage.Kappa = path.Kappa;

/ﬁitt*ti**tﬁ*tqtiﬁ*ﬁtttiittti'*Qi*'tﬁiﬁfQtﬁ'ﬁ't*ittﬁﬁaﬁﬁti*tittt'*tﬁt'*t*ttt*ﬁ

INTERFACE FUNCTIONS SECTION

The following section defines the functions that provde an interface to values
within in the motion control modules by tunctions in other modules. These
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routines are pubilic.

i'ﬁi"ﬁtﬁ**ﬁ'i"'tﬁ"'i"'t'it'ﬁttttt‘ﬁ'ﬁ*iiﬁﬁ'i"ttt'ﬁtit"t.'ﬁiit'itﬁittﬁ't/

/ﬁﬁ*ttQttttﬁtt'tﬁ'tttt*ﬁiitﬁittﬁ*ﬁtaﬁttiittittiﬁtﬁt*-ﬁtw'ﬁﬁttt*'ﬁtttnttiiﬁwtﬁ

Function: setPathElement()
Purpose: Sets the value of the current path element in motion contro! to
the path element passed in as a parameter.

Parameters: PATH_ELEMENT newPath

Returns: void

Comments:
i'tt'itiittttttﬁttQﬁt*t'tﬁ«'*"iﬁi*i#ﬁi*&ti&tﬁ*ﬁt*'ttti'ﬁit'*iiiﬁtﬁi*itttatttl
void
setPathElement(PATH_ELEMENT newPath)
{

Disableinterrupts();

currentPath.config.Posit.X = newPath.config.Posit.X;
currentPath.config.Posit.Y = newPath.config.Posit.Y;
currentPath.config.Theta = newPath.config. Theta;
currentPath.config.Kappa = newPath.config.Kappa;
currentPath.pathType.mode = newPath.pathType.mode;
currentPath.pathType.class = newPath.pathType.class;

Enablelnterrupts();

/**t*t!ttt*ﬁ*‘i'i*ﬁ'ﬁiti*******i*'t*ﬁt**ﬁ*t**'**tit*ﬁiii**ﬁit***t*t"ﬁti’tti*i

Function: getPathElement()
Purpose: retrieves the current path element in the motion control module
Parameters: void
Returns: PATH_ELEMENT
Comments:
i*t**fi*ﬁt**ti'ﬁ'i*tuiititt*t!**t*ﬁ**iiﬁ****ﬁ*tt'**i*iti*iﬁ*ii*ttittt*t'tttti/
PATH_ELEMENT
getPathElement(void)
{

return currentPath;

}

/Qiﬁﬁttt’*.tﬁitttﬁ'tQﬁ"ﬁ#'ti*Q**'ﬁ*ti*ii*ﬁt'ﬁ**ﬁ'***it*tﬁit’*’i**'ﬁtﬁtt.*i*

Function: getCurrentimage()

Purpose: retrieves the current image that is in the motion contro! module
Parameters: void

Returns: CONFIGURATION -- the current image

Comments:

'it'ittt*i*"ﬁtat*i*wtitt*"*tit*t'tﬁti*{*tt*t"'(tQ'*ttif"'i*ttﬁ*t*t*i'itt/

CONFIGURATION
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getCurrentimage(void)
{

return currentimage;

}

/'i"iittiﬁ.iit*i'i'tﬁ*tﬁt"'tiﬁiii'i'tt'w< ad a2 22122 222222 2 2 e 2t

Function: setRobotConfigimm()

Purpose: To set and update the robot configuration

Parameters: CONFIGURATION NewConfig

Returns: void

Comments:
t*t*ttittttttt*ttt'iﬁtttttﬁtittt'ii’ﬁQ*'ti*tt*t*iit*ti‘tﬁtitﬁﬁitttli'tﬁﬁﬁitttt/
void
setRobotConfiglmm{CONFIGURATION NewConfig)

{
Disablelinterrupts();

vehicle.Posit. X = NewConfig.Posit. X;
vehicle.Posit.Y = NewConfig.Posit.Y;
vehicle. Theta = NewConfig.Theta;
vehicle.Kappa = NewConfig.Kappa;

Enableinterrupts();

/'tﬁitt‘i**fi*tﬁ**.*&*t*ttitit**ﬁﬁt**'iitﬁititﬁtt*'t***'*'*t*ttiiﬁ't*i}*ttt**it

Function: getRobotConfig()

Purpose: Retreives the current robot configuration

Parameters: Pointer the a variable where the current values for the robot’s

configuration will be placed.

Returns: void

Comments:
*'it't'ﬂi'fﬂtt#'t*ﬁ*ifkt*t*ttt*t*t‘*ﬁﬁ'tf*ﬁ**'i***ttﬁtti*"#*tﬁﬁ’ttt*ﬁ‘i*tttﬁt/
CONFIGURATION
getRobotConfig(void)
{

Disablelnterrupts();

return vehicle;

Enableinterrupts();

}

/ﬁifuti"wtﬁtatﬁ9*.tt'ﬁ'ttttti*tttt't'-ﬁﬁttﬁQtwq«t'ﬁﬁtuti*tt*tttttt*ﬁat*ﬁtttitt

Function: setConfigimmy()

Purpose: To set and update the robot's position and thata but not
it's kappa

Parameters: CONFIGURATION NewConfig

Returns: void

Comments:




E.
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void
setConfigimm(CONFIGURATION NewConfig)

{
Disableinterrupts();

vehicle.Posit.X = NewConfig.Posit.X;
vehicle.Posit.Y = NewContfig.Posit.Y
vehicle Theta = NewConfig. Theta;

Enableinterrupts();

MOTIONSUPPORT.H

/*Qﬁ"#"tt*'f'ﬁi*'iﬁ’iitﬁﬁttﬁ..*'i*if*'i*'ﬁ*ﬁﬁ'*'*"i*tﬂiﬁi’iﬁiiiti*"fﬁ*ﬁ'*'tt'

File name: motionsupport.h

Description: contains miscelianeous functions prototypes that support
motion control

Revision history:

t'tti.tiit*iti*iﬁﬁt*ﬁit*ﬁttatt'tﬁtﬁttt'*it*aiﬁit**'tt**tt*tﬁﬁt*t*t'ttttt*tt*tt/

#ifndef __ MOTIONSUPPORT_H
#define _ MOTIONSUPPORT_H

/**ﬁ***i"‘i"******i**l‘** Tt Rk A W IR o oo 2ok oSS ot s o s o A o sk sk A o ok b 0 b o S o ke o o S o o o o o ek

Function: InitMotionSpt()

Purpose: Initializes the variables used in motionsupport.c
Parameters: void

Returns: void

Comments:

’ii*ﬁi'ﬁt'it*ﬁi*****t*tiﬁt**i*t'**it**'********i'*’t*titl‘*ii*'f"fitiﬁ**t*tﬁtt/

void InitMotionsupport(void);

/if'ﬁ**iﬁ*t"iiﬁtfi**i"it*'tﬁtitﬁiﬁ**ﬁ'**t*ﬁ*ﬁ#.ﬁQﬁifﬁt'#'ﬁ*ii'ﬁ'****ﬁ"itﬁﬁ'tf’

Function: stopimmy()

Purpose: updates the goal velocity to zero inorder to stop the robot
Parameters: void

Returns: void

Comments: This is the immediate stop command

ARAARARRARARERRPERRREARTEERRAREAAT SRR R AREARATFEATE AR RPN *i*t'**t***l*'/

void  stop!mm(void);

/t'tt'tt'tﬁﬂﬁ’wﬁtggtaﬁ'thttﬁatiﬁﬁﬁt'i*'itﬁttﬁ'iit*iﬁ'ﬁtﬁttttw"**tﬁi*ﬁ*ititttﬁt

Function: setGoalLinVellmm()
Purpose: sets and updates the goal linear velocity of the robot
Parameters: double LinearVelocity
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Returns: void
Comments:

itit.ti'ii.tit'ii.ttt’.ttt"tt'liﬁ!tt.'tthitttt'itﬁt’ﬁitt't*tit*'tt'tt"t'ﬁtt'/

void setGoallLinVellmm(double LinearVelocity);

/iﬁ-ttQtiﬁ'*ﬁt#tt&tﬁt*t&t*tt*'tttﬁ-tqvt'tt"tytﬁttﬁ*ttitt'tﬁﬁ'tﬁtttt*'ﬁ'ttftiﬁt

Function: getGoalLinVel()

Purpose: Retreives the current goal linear velocity
Parameters: void

Returns: double

Comments:

i'*'iiﬁtiﬁi'*ﬁ.'ﬁﬁ.tﬁ*t'*ti'*'ﬁﬁiﬁ*t*.i**ﬁi**i'ﬁﬁﬁ**."ﬁti*ﬁ'tﬁf*t**ii.tﬁiﬁﬁit/

double getGoalLinVel(void);

/iiiﬁiiti**'tfﬁtiitﬁ'iiiittti*ﬁir*iiﬁ*tii***t#ttt*'**i‘*t't*ttﬁ*"*tit'tttfiit*

Function: setGoalRotVelimm()

Purpose: Sets and updates the goal rotational velocity
Parameters: double RotationalVelocity

Returns: void

Comments:

i***t"*ii.‘i’ﬁii*i*i*'**i***ti*'**ti*ﬁ'*i*t*tiﬁitf*tiiitﬁ*ii**ttt'ﬁ*ﬁii*ﬁ'ﬁiﬁ/

void setGoalRotVellmm(double RotationalVelocity);

/iii*tit*t‘t****ii'*'t"*ﬁiﬁ*t'**'*'fitﬁt'ﬁtQt'ﬁti*'itﬁi*t*t*ti*‘*i**tﬁt**tii'i

Function: getGoalRotVel()

Pumose: retreivies the current goal rotational velocity
Parameters: void

Returns: doubie

Comments:

*'*'it*‘ﬁt*fﬁ'****t***ﬁ**i***ﬁ*"ﬁ’tﬁﬁ*ﬁ*ﬁ**i**tt**i****Q.t'*ti*****i'**tﬁii*ﬁ/

double  getGoalRotVel(void);

/ﬁt‘*t"*iﬁi***ﬁﬁﬁiit*i"'ﬁ*t'tt‘ﬁtiiiiit't’*t*i"fiQit***ﬁ*'t’ftﬁ‘*'i"*it*tﬁt

Function: setGoalLinAccimm()

Purpose: Sets and updates the goal linear acceleration
Parameters: double LinearAcceleration

Returns: void

Comments:

*ﬁftt'ﬁ*tfﬁtti**ﬁtﬁi‘tttﬁtttitt*ﬁit"'iiﬁ***i***i**i***i'*"***ﬂ*Q'it'ttﬁ*ﬁt"/

void setGoallinAccimm(double LinearAcceleration);

/*t'fi""*ﬁ'f'fttt**t*i’i'*ﬁi*ti'*iﬁ’if’tiiﬂi*i**’fiﬁt"itfﬂtt*"i*Q*Qtf*tiﬁii

Function: getGoallLinAcc()

Purpose: retreives the current goal linear acceleration
Parameters: void

Returns: double

66




Comments:

tiﬁ'.ii'tif..t"i.iﬁi't'ttt'ttt.i't*t'tttatttttiitﬁttﬁiiii‘t‘.tti'ﬁ.ttittﬁitﬁt/

double getGoallinAcc(void);

/ﬁtﬁ"ﬁtit#tttttttttt.'tﬁttw""'tt'ttt*t.t'cﬁt'tttttﬁ'tt..cgt.v"'.tgatﬁtttctn

Function: setGoalRotAccimmy()

Purpose: Sets and updates the goal rotational acceleration
Parameters: double RotationalAcceleration

Returns: void

Comments:

f't.tt.'ﬁt'ﬁﬁtttttittfﬁf'**"ﬁ”ttﬁtﬁﬁ'iﬂttﬁtﬁit"ﬁttt’t‘ttt"’tt*tttitﬁ'*t.tt/

void setGoalRotAccimm(double RotationalAcceleration);

/ftt*t-‘tt,'tt.ttttnt*lt'ﬁ*ta’ttat"""it'tt'tt"i'ttitt'ﬁt&&tttt#ttt*tttﬁﬁ'a*

Function: getGoalRotAcc()

Purpose: Retreives the current goal rotational acceleration
Parameters: void

Returns: double

Comments:

tittﬁti**t't*ﬁtti*tttitﬁtit*wtattt*.ﬁaiwttt"fﬁttﬁt*tttt*'tttt"itntitt't'ﬁtt'/

double  getGoalRotAcc(void);

/Qit***'tﬁl**Q"t**i'ﬁ‘*t*****Q**t.if'fﬁtt***fit*t'tiii"*i*"i'iitttt'*t'&t'tﬂ

Function: setSizeConstantimmy)

Purpose: sets the size constant which influences the sensitivity of the
steering function

Parameters: double sizeConstant

Returns: void

Comments:

**tﬁf!itt'**'i*tﬁ*t'i*'*t't"tt'tﬁﬁ'i**9’i"tttﬁt'i*iifﬁtﬁ'iiﬁ*tﬁtitiii*"i**'/

void setSizeConstaniimm(double SizeConstant);

/'i'*iQt*'ttt*iiQ.ttﬂt*..ii*ﬁ***i‘i*ﬂﬁﬁ*tttt*ifiﬁ‘fiitiiﬁit'.t*iﬁtt*‘*ti'fit*ﬁi

Function: getSizeConstant()

Purpose: returns the current size constant being used in motion control
Parameters: void

Returns: double size constant

Comments:

ﬁﬁ*i*"**'***ﬁ’t*itiiitﬁ**iﬁ’*'ﬁt*it'ittt**tttﬁtitﬁQ*'ttt**t*t*i'*i*i****i**”/

double  getSizeConstant(void);

/t"tﬁaﬁ't*ﬁ'tﬁﬁtﬁ*itﬁ*'iittwttﬁtitatﬁttﬁﬁ'qQ&t*ttt*aﬁﬁtuaﬁtit*tﬁtaia'tﬁ’tt*ttt

Function: setTotalDistanceimmy)

Purpose: sets the total distance travelled by the rc 2 value passed
as a parameter

Parameteiv: double distance
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Returns: void
Comments:

i'.'Qﬁ'ttii't"i'ii"tt"t""'ﬁi"tﬁ't'i'ii'ti‘.it*"'titi'tit'.t'tt'ttitit"/

void setTotalDistancelmm(double distance);

/Qtt"i"ﬁt'di't"tttﬂtttttittﬁ't”t"'t'tt*’t’ﬂt't.i'.ti!it"'.'it'i'!ti"'t'ﬁ

Function: update TotalDistance()

Purpose: adds the value of the parameter to the running total distance

Parameters: double deltaDistance
Returns: void
Comments:

ii"t'iiQ't*"Qtii*t"ﬁﬁit'iititﬁi*'iit'*tﬁi’tﬁ.iti"!itt’tt't'tttt**t'i"t'tt/

void updateTotalDistance(double deltaDistance);

/t**tiiﬁtﬁttttﬁQ'ittQttttiﬁﬁttitttﬁgt'.tttﬁ.tgt‘t"ﬂt"ttitwtltt«'ﬁ'ﬁwttt*ﬁt't«

Function: getTotalDistance()

Purpose: returns the total distance travelled by the robot
Parameters: void

Returns: double totaiDistance

Comments:

ﬁ'*'**’Qﬁ"it**ﬁ'*tﬁ*i'*'ﬁ'ii""ﬁt'****iititii'iﬂ*i*"'iﬁ&ﬁ.'t*'tti*.ttii‘t't/

double  getTotalDistance{void);

/*ii*tiitt*‘f’ﬁ'i"ii**ﬁﬁ*iftt*itﬁ*iiﬁ'iﬁit'ttﬁttt*tQﬁ.i'ittt*i'*tﬁiﬁ*t"'ﬁ'iﬁ*

Fur.stion: getTotalDistancelmmy()

Purpose: returns the total distance travelled by the robot
Parameters: void

Returns: double totalDistance

Cornments:

Qtl*t"t*ﬁﬁiﬁﬁ*'tttt.'&w--ttiitvw—:i*tti**tﬁlttﬁ'a\it*'t'iﬁt’tttiﬁiﬁitfi*'#tti/

double  getTotalDistas: :imm(void);

/"ﬁv"ii*’ttt*ti’*'*'ti.i'tﬁﬁi*iititiiiﬁ*i*t"itt'""*it*ﬁﬁt'ﬁﬁttf".*iﬁ'*ftt

Function: haltMotionimmy)

Purpose: brings the robot to a rest. Is different from stop in that it's
original goal velocity is saved to be later used by the resume
command to allow the robot to continue travelling at the same
speed.

Parameters: void

Returns: void

Comments:

'i'*t*.iQi*'ft"*'t*tttﬁ"tﬁ*itﬁ*ﬁ*'iii**ﬁtﬁtttt*ﬁtﬁiQttt'*’Q*"Qtt*'ti*'*'ﬁ't/

void  haltMotionimm(void);

/*ﬁi"*'it.ﬁi‘i"t*iQit*f*'iit’*itt'ﬁiiﬁ*"*t'*tﬂita'*t*t..t*'iﬁ'i*tit'*tii'ttt

Function: resumeMotionimm()
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Purpose: Allows the robot to resume the speed it was travelling before the
haitMotionimm() command was given.

Parameters: void

Returns: void

Comments:

'.ﬁi"""t"iifﬁt’ittti.tiiiﬁi.t"i‘f'if'tﬁ'ﬁ'itttiht'ii'tttitiiiﬁ't'tﬁi.""/

void resumeMotionimm(void);

/itﬁ'ttttttt*tﬁ**tﬁt'ti*"tiitfitﬁtﬁ&t'tth'ti't*ttttttttttttt'ttttttfﬂ"t't'tQ.

Function: parabolaimm()

Purpose: Immediate command that allows the robot to foliow the parabola
passed in the parameter

Parameters: PARA newParabola

Returns: void

Comments:

'ittttt'ﬁi'iii*i*'tﬁ*ttt'tt"t.'t‘ﬁﬁttt*t'it'ﬁi'ﬁit"i*t"*ttit*ﬁ'*'t'ttﬁﬁtttﬁ/

void parabolatmm(PARA newParabola);

/‘Q*i'tt'i't*t"*i'i'i'*'*itttﬁ#i.ttﬁﬁtt*tﬁiQt*iﬁtifiﬁtit*i‘i*t*it'iiitt"ti'*i

Function: getParabolalmm()

Purpose: retrieves the latest parabola that has been processed by the robot

Parameters: void

Returns: PARA parabola

Comments: this function was developed for the paraRule() function in motion
control

*iﬁi*"tt.t’t*ﬁtii.i'tiiiitQ*ﬁﬁiﬁittQiﬁt*Q*titi'*i*ﬁﬁ‘**ﬁtiﬁ‘iﬁﬁt'h'ﬁ'ﬁtitttt./

PARA getParabolaimm(void);

/*i.*ﬁ't'*i*ﬁﬁi*"'t'*’i*’*i'iﬁi*'*'ﬂ*t#i*'i*ﬁfﬁﬁ.*ﬁ*"***"*in**'*ttttttiﬁ**’

Function: MotionOn()
Pumpose: enables the wheels
Parameters:void

Returns: void

Comments:

t.'.*tt'*tﬁi*ﬁ*"’*t"**i'iQt‘*ittitﬁ*""ﬂ*i.'t**iﬁﬁtiii'i'**'*ﬁ'..i*i*ti*fii/

void  MotionOn(void);

/*ii'*it"fQt*t'tiit"*ii**'ii"i'ittﬁ**Qt****Qt*'i*t**it**"i'tit'i*i*'*’t'..*

Function: MotionOff()
Purpose: disables the wheels
Parameters: void

Returns: void

Comments:

tﬂtf"ti'ttwt-t'tQtttw't*wttttt'*Qttiwtﬁtttn«*t*twtQﬁtitﬁt**t*"'t*.tﬁifﬂﬁﬁ&wa/

void  MotionOff(void);
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/ti*.t'Q"i't..ﬁ.ti.‘i'iﬁt.tiﬁt"."t"'tﬁttﬁtt"iiitt'."t..'t-tt'i.i‘tt't'

Function: blinkLED()
Purpose: To control the output from the interrupt driven motion control
system. LoopTest is sassigned zero every second.
Parameters: void
Returns: none
Comments:

l'tﬁﬁtti"ttt'iﬁt.'iﬁ."'ﬁﬁt"i'ﬁ.-iﬁﬁ'ﬁﬁt'ﬁ.'it'ﬁ'iti"t'""Qitiitit"i'l/

void  blinkLED(void);

/tti*'#ttit.it"ttittﬁiittitﬁ't"ttttttttttit't"n.'t'tttt'tﬁttit't.attﬁ.'ttt‘

FUNCTION: limit
PURPOSE: This function is used by the steering function to keep the robot
trom doing loops when ystar is very large
PARAMETERS: double ystar (unlimited)
RETURNS: double ystar (limited)
COMMENTS: originally written 7 December 92 - Dave MacPherson
updated for MML11 8 June 94 - Kevin Huggins

Qﬁ*'tiitﬁ"iﬁ"i".ti'i*i't*"t*"ﬁtiii"t‘ﬁﬁiﬁf"tt'ttt't.ﬁiQ'itﬁtii*ft'ﬁtﬁﬁ/

double limit(double ystar);

/t’t’it'ﬁ."’Q’*Q*ti*ﬁ.*.*'ii*t.'ii‘ﬁi*i"*ﬁi'i*ii*'ﬁﬁ'ittﬁi*iﬁ'it'***'i"'iiﬁ

Function: isAtTransitionPt()

Purpose: Is true if the transition point has been reached

Parameters: none

Returns: 1or0

Comments: Presently a dummy function untii the transition point calculation
module is finished, then it will be moved there.

t.ﬁﬁﬁ'ii’ﬁﬁtiﬁiiﬁ’ttt'i‘ﬁ'ifﬁ*ii’.Qﬁt’t’.t'iitﬁt'Qi*'*i'ﬁ'itit.i*ﬁiit*ﬁiiﬁi'ﬁ'/

int  isAtTransitionPt();

#endif

MOTIONSUPPORT.C

/’Q**Qﬂ"""*ﬁitt'tﬁtttt*tttéttﬁ't"'tﬁQt*"**ﬁ't’*ﬁiﬁtﬁt""‘ttt'ttﬁﬁ'*'ﬁt’ﬁi

File name: motionsupport.c
Description: contains miscellaneous functions that support motion control
Revision history:

* L g 4 * * LA i ﬁﬁ*'ﬁ*ﬁ.tti*ﬁi*itﬁ*ﬁﬁﬁﬁf’it'.'ii*ﬁiiit*ii/

#include “definitions.h”
#include “wheels.h”
#include “motionsupport.h”
#include “motion.h”
#include “system.h”
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BOOLEAN Halted;

static VELOCITY haltedVel,
static VELOCITY goaiVel,
goalAcc;

static PARA parabola;

static double desiredSizeConstant,
totalDistance;

staticint LoopTest,
testCount;

/.tti.i'iQi'a*ti.'t'tttiti."ttwtttt.ttttttﬁ.at«-'tﬁt'ﬁttttﬁtﬁttt'.ttttﬁ".ihtt

Function: InitMotionSpt()

Purpose: Initializes the variables used in motionsupport.c
Parameters: void

Returns: void

Comments:

ttttt-'ttthattﬁ’ittttﬁ"ttaﬁf"'t.ttwa'ttt*'tt'ittﬂt't"tt.ﬁ*t'tit'ﬁttttﬁatﬁﬁa/

void

initMotionsupport(void)

{
LoopTest = 0;
testCount = 0;

Halted = FALSE;
totalDistance = 0.0;
haltedVeil.Linear = 0.0;
haltedVel.Rotational = 0.0;
parabola.Focus.X = 0.0;
parabola.Focus.Y = 0.0;
parabola.Directrix.Posit.X = 0.0;
parabola.Directrix.Posit.Y = 0.0;
parabola.Directrix.Theta = 0.0;
parabola.Directrix.Kappa = 0.0;

/*at'*ﬁtt&.tﬁ*tﬁ*ttﬁﬁtttﬁt"iﬁ'ﬁt*tiftiﬁﬁatttiiﬁtﬁ*ttﬁﬁﬁititiﬁfﬁt.ﬁﬁb'nﬁuﬁtiaﬁ'

Function: stoplmmy()

Purpose: updates the goal velocity to zero inorder ta stop the robot

Parameters: void

Returns: void

Comments: This is the immediate stop command
ti'ttti*tt’tiﬁt*t't*itﬁtﬁi'i'iifﬁt'i*i’i'itﬁtiitti‘i'tiitt'tﬁtii*tittt't*'t‘t'/
void
stoplmm(void)
{

WheelsDisable();
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goalVel.Linear = 0.0;
goalVel.Rotatioral = 0.0;

}

/tttw'itatit'tttttuti't-ia.ﬁtttt.itttnntt'ttii'-'.tttn"-'ttt'ﬁi'-g-a..ttaﬁ."t

Function: setGoalLinVeltmmy()

Purpose: sets and updates the goal linear velocity of the robot

Parameters: double LinearVelocity

Returns: void

Comments:
't'ﬁt"titiaﬁtvtt'i't'ittttatt*wtnttnt.ttttttttttt'ﬁttttttﬁttt'ﬁwtﬁtﬁ’tﬁtt'iti/
void
setGoallinVellmm(double linearVelocity)

goalVel Linear = linearVelocity;

}

/if'iit'it"iii'ttt"'ﬁﬁ."*'tt""‘iit*it'tQ.'tﬁii'ii"ﬁ""iif'ﬁ't't'ﬁtttt*t'

Function: getGoalLinVel()

Purpose: Retreives the current goal linear velocity

Parameters: void

Returns: double

Comments:
ﬁ't‘"ti'ﬁ*'.‘**f'i'tﬁ'it"i*i'i'f't'ﬁ'*it*t'i't'i.ﬁ*it'it'thti"titﬁ'itﬁiiltit/
double
getGoalLinVel(void)
{

return goalVel.Linear;

}

/ﬁt.ﬁii'ﬁﬁﬁi'ﬁ'ﬁit*i‘.'*Qttﬁﬁt"'*'ti*iittt*'*Qit*t'ﬁi"'ﬁi'*'ﬁ**tttﬁﬁ"ﬁ"i"*ﬁ'i

Function: setGoalRotVellmm()

Purpose: Sets and updates the goal rotational velocity
Parameters: double RotationalVelocity

Returns: void

Comments:

ti‘**Q'l.‘.i‘*"*i‘*“I‘ﬁi'ﬁtt*'Q't'ﬁt't”iii*tiitfﬁ'iiit'*’i*i."'t'iit**tﬁtt’l’“’.*tﬁl

void
setGoalRotVellmm(double RotationalVelocity)
{
goalVel.Rotational = RotationalVelocity;
}

/Qﬁitﬁ'atttttttt.t:i*"'.ittiﬁbttatf:atﬁtp"ﬁqtﬁ**itttt*'tnﬁtﬁ***tt*tﬁ*t.t’tttt

Function: getGoalRotVel()

Purpose: retreivies the current goal rotational velocity
Parameters: void

Returns: double
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Comments:

iﬁi'it"'i"t'ﬁtt"'tiit't'tﬁt'.tttﬁﬁtt"tt‘itt'i'tii'ttiittttt'i'ti't'ttt't!./

double
getGoalRotVel(void)

{
}

/*ti"iiﬁ.ft'itﬁttiﬁQiittitii'.i'it"i"i'iﬁttiﬁttttitQ.it'itﬁt"t*ttt'ﬁtttitt.

return goalVel.Rotational;

Function: setGoalLinAccimmy)
Purpose: Sets and updates the goal linear acceleration
Parameters: double LinearAcceleration
Returns: void
Comments:
.Qt*iﬁﬁ.i"ﬁ'ﬁﬁ’*tt.t’t't'i.i"‘ﬁ'i"'t'i"'#tltﬁt"littttitttﬁttttthi't.t)’tt/
void
setGoalLinAccimm(double LinearAcceleration)
{

goalAcc.Linear = LinearAcceleration;

}

/*ﬁﬁﬁﬁtﬁtti'tt'ittittﬁt*tf*ﬁta*inﬁtﬁtﬁtttttttattt'attﬁttttnﬁtft.i*ﬁt&ttt*'tttii

Function: getGoalLinAcc()

Purpose: retreives the current goal linear acceleration

Parameters: void

Returns: double

Comments:
tiﬁtttitttf'ttt"it’*t'ﬁtttttit*"i*tt’tt*ﬁtitIt*#tt't.t't.it't't'*titttttntti/
double

getGoaltinAcc(void)

{

retum goalAcc.Linear;

}

/ti*t*ifI‘I*ﬁf*"ﬁi't*i"i't*'itt't*'.it".t**tiiiQ"'Q"Qti*it"l‘"i‘i'tit"ttﬁ"

Function: setGoalRotAccimm()

Purpose: Sets and updates the goal rotational acceleration
Parameters: double RotationalAcceleration

Returns: void

Comments:

E2 2 L2 2222 24 2] *f*':**tiw’ﬁittatt*ttiﬁtaitt'ﬂ'*w*i'tﬁit&ttt**aittt/

void
setGoalRotAccimm(double RotationaiAcceleration)

{

goalAcc.Rotational = RotationalAcceleration;

}

/f&itttt**iQtt*#itfwQ*tittt't'f.ﬁt'tti*tittﬁﬁt*ttt**ﬁ#w*ttt*ititﬁﬁt**ﬁttﬁ'ttitt

Function: getGoalRotAcc()
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Purpose: Retreives the current goal rotational acceleration
Parameters: void

Returns: double

Comments:
'iit""iittttiQ'ttt"tttttt'ttttttt'itittt"ttiittttttt'tttt'it't".-t.'nﬁ't'/
double

getGoaiRotAcc(void)

{

}

/tt'ttttttttt'ﬁt'ﬁat'tittﬁtﬁtitttttqittitita LR e e e e

return goalAcc.Rotational;

Function: setSizeConstantimm()
Purpose: sets the size constant which influences the sensitivity of the
steering function

Parameters: double sizeConstant

Returns: void

Comments:
"iitiiﬁti.i'tttttﬁtt.iﬁtt'iﬁtﬁtﬁtiiﬁtt"tﬂt'tﬁittt'ﬁ'ttttﬁt’itt'ttttti.i!*'t,/
void
setSizeConstantimm(double sizeConstant)

desiredSizeConstant = sizeConstant;

}

/t*iii*‘ﬁiiﬁ*iii*"tiiti’*'ﬁ*'*‘iiﬁ***'ﬁt*fii*"tQttitiii'iii’ﬁﬁ*ﬁﬁttti..t*ttﬁi

Function: getSizeConstant()

Purpose: returns the current size constant being used in motion control

Parameters: void

Returns: double size constant

Comments:
*t*t"ﬁ*t"*"*ttittit'fﬁ’t-ttitﬁ*ﬁiiiiitt**tfiiﬁﬂ'ttt*i'Qttiﬁ'iﬁ*t'tttﬂt**tﬁ’/
double
getSizeConstant(void)

{
}

returmn desiredSizeConstant;

/Ci'ﬁ"*fi*ﬁt'i*Qﬁ'it*t&'*f'iii'*t.tt*’*t*tﬁ*'*'t**'QQi"iiﬁﬁﬁti*'t*t*‘*tﬁi'itﬁ

Function: setTotalDistancelmm()
Purpose: sets the total distance travelled by the robot to the value passed
as a parameter

Parameters: double distance

Returns: void

Comments:
itt'tt**ﬁ*’titi"'tttit'titfiit‘t'tttii*ﬂi*ﬁ*t"**tltﬁ**Qttttwfif**tt*attttiﬁt/
void
setTotalDistanceimm(double distance)

{
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totalDistance = distance;

}

/ﬁ!itiﬁti.."‘.ﬁﬁﬁiﬁ'ttt"'i'tt"'.tﬁ*iitﬁt'tt'tt"tt'.lttttt.'ttl'tt'ti'tittﬁt

Function: updateTotalDistance()

Purpose: adds the value of the parameter to the running total distance

Parameters: double deltaDistance

Returns: void

Comments:
Q'itttﬁ'.itttQQ#*"'*.ﬁti"ﬁ*ﬁt'itttt't‘t'*t'ﬁﬁ"tt"ttt‘ttt'ttttttttt’t’t”.ﬁ/
void
updateTotalDistance(double deltaDistance)

{

totalDistance += deftaDistance;

}

/"ttﬁ‘t*tii'iiittii*it'ﬁﬁ'tit"t"tittt'i'*tti*""ttt'ttﬁt"‘ﬁit'*'*it"t.'i'

Function: getTotalDistance()
Purpose: returns the total distance travelled by the robot
Parameters: void
Returns: double totalDistance
Comments:
&&titt..Qf*ﬁtﬁtt*tﬁﬁﬁtittt**t't*tﬁt*ﬂttﬁttttifﬁi'*iitiittttt*ititﬁtiﬁﬁttittiﬁﬁ/
double
getTotalDistance(void)
{

return totalDistance;

}

/**f'*itttt**.'ﬁiti**tit*ﬁﬁiti*i*"i*tﬁ'ttﬁiﬁi*iﬁtttﬁtt*ti'ﬁ'i.ttt'ttﬁtttﬁﬁ’fi'

Function: haitMotionimmy)

Purpose: brings the robot to a rest. Is different from stop in that it’s
original goal velocity is saved to be later used by the resume
command to allow the robot to continue travelling at the same
speed.

Parameters: void

Returns: void

Comments:

(2 e T2 2P T  TR S22 2T 2 222 2 22022 s et s ety ys - * * * /
void
haltMotionimm(void)
{
if ('Halted) {

Halted = TRUE;

haltedVel.Linear = goalVel.Linear;

haltedVel.Rotational = goalVel.Rotational;

WheelsDisable();




}

/«it'tntwtaa*ﬁoaﬁiw*-QtﬁtQtwat**t'ﬁitc'.ﬁitﬁﬁt*tt*ttttttwiattﬁttt*a«n-a*.aat--t

Function: resumeMotionimm()
Purpose: Allows the robot to resume the speed it was travelling betore the
haltMotionimm() command was given.
Parameters: void
Returns: void
Comments:
ERRARAR IR ERN NIRRT AA IR AN A AR TN RN RARN at*twtttﬁw*t-i"ttattatt*ttﬁt't*ntiattiti/
void
resumeiintionimm(void)
{
if (Haited) {
Halted = FALSE;
goalVel.Linear = haltedVel.Linear;
goalVel.Rotational = haltedVel.Rotational;
WheelsEnable();
}
}

/**tfitt*t**ﬁ***ti**t**t***t******ﬂtt**itt*i**tﬁ*t.*tt*ﬁ*g:t*ttt****itttittﬁttﬂ

Function: parabolaimm()
Purpose: immediate command that allows the robot to foliow the parabola
passed in the parameter

Parameters: PARA newParabola

Returns: void

Comments:
*i***ﬁtttti*it*itf**‘tt***t*titﬁtti#iiit****t**wittt*t*rt'*tr***w*#iti*)**tﬁ**/
void
parabolalmm(PARA newParabola)

PATH_ELEMENT pathElement;
Disablelnterrupts();

pathElement. pathType.mode = PARAMODE;
setPathElement(r athElement);
parabofa = newlarabola;

Enabielnterrupts();

/iﬁﬁ.*ﬁt"tﬁ*i*f‘.’*iﬁ'i&tﬁtt"ﬁit&.'tﬁ"i'*tit'ﬁ'Qi't"t'ﬁ'i'.t'tﬂi"tttQt'tt!

Function: getParabolaimm()

Purpose: retrieves the latest parabola that has been processed by the robot

Parameters: void

Returns: PARA parabola

Comments: this function was developed for the paraRule() function in motion
control
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ﬁttt'ttittnatﬁﬁittﬁ'iitttt".Qitataaittattwt'aﬁt.'ttttﬁtﬁﬁtﬁt'tttttti-ﬁt'iﬁﬁti/

PARA
getParaboia. 'm’

{

return par. »ola;

}

/t't'ﬁ’.'tt‘t"tinitQtt"'t"it'ﬁt't'ﬁ'tl'tatﬁ"tt'l'ittﬁttﬁitttt.ﬁt'ﬁi'i"tt"

Function: MotionOn()
Purpose: enables the wheels
Parameters:void
Returns: void
Comments:
A YRR ER A R ke a
void
MotionOn(void)
{
WheelsEnable();

}

a2 e 2T R R LS L R e L L R e e e e e e e e et Al
/

Function: MotionOff()

Purpose: disables the wheels

Parameters: void

Returns: void

Comments:
'Q\Qﬁ"ﬁ*tiittﬁtti*ﬁ*.t*&t*ﬁt*t#*i*tth*’tﬁ*tﬁt*****i*'*ﬁ*t*it*ﬁttttt**ﬁtﬁ*t*iti/
void
MotionOff({void)

WheelsDisable();
}

/ﬁQat'.'tt'atﬁﬁﬁaﬁaﬁoaﬁitaqtfﬁaqt'tﬁ'aﬁtQtﬁttttﬁft"ittt**tt*tt*tt*tt*ﬁ*if*i

Function: biinkLED()
Purpose: To control the output from the inperrupt driven motion control
system. LoopTest is sassigned zero every second.
Parameters: void
Returns: none
Comments:
L T LSOy
void
blinkLED(void)
{
if (LoopTest++ >= ( (int)((1.0/MOTION_CONTROL_CYCLE) - 1)) {
changelLEDstate(7}:




LoopTest = 0;
}
}

/t'tttttt-u-'tttfutttﬁt'*itaa.Qtﬁttit.'.wttttta'tt*tﬁtt'ti'ﬁntﬁﬁtttttatt't't"

FUNCTION: fimit
PURPOSE: This function is used by the steering function to keep the robot
from doing loops when ystar is very large
PARAMETERS: double ystar (unlimited)
RETURNS: double ystar (limited)
COMMENTS: originally written 7 December 92 - Dave MacPherson
updated for MML11 8 June 94 - Kevin Huggins
iitiﬁti'ﬁtttﬁtﬁt't'ttﬁﬁtit'tttt'*Qtt"*ttttitt.tﬁﬁ.'ittittt't'wt'ttttit'w'ttt/
double
limit{(double ystar)
{
if(ystar > 2.0 * DIST_CONSTANT)
return(2.0 * DIST_CONSTANT);
if (ystar < -2.0 * DIST_CONSTANT)
return(-2.0 * DIST_CONSTANT);
return ystar;

}

/ta*'ﬁtttﬁit'*ﬁa*ftiﬁ.ti*iti*.*ﬁ*ﬁ*t'tt*tﬁaa'u'tﬁtt*t*tti'*tﬁttt'titt**'tttt.t

Function: isAtTransitionPt()
Purpose: Is true if the transition point has been reached
Parameters: none
Returns: 1orQ
Comments: Presently a dummy function until the transition point calculation
module is finished
tﬁ"t*ittitt*t'*ttti*t*ttﬁt*t******ii**Qttt*ttt*ttitf**ttt’tﬁtfﬁt***tﬁ**ﬁtﬁttt/
int
isAtTransitionPt()
:

if (testCount++ >= 600) retum 1;
else retumn 0;

}

SEQCMD.H

/ﬁtiii*ﬂt'*tiﬁtt'*t**'ﬁ""ﬁ*tﬁﬁ'.*Qiﬁﬁ*t't*fit**'**ﬁttﬁhﬁti*"."ti*ﬁ't'fﬁtiﬁ"'ﬁ

Module name: seqgcmd.h
Comments: has all of the public function prototypes

Q.Qt’*'tﬁi*"ﬁtﬁ'tiiﬁﬁt’t‘itﬁ'tﬁ"ﬁttt'ﬁ'tiiﬁﬁQﬁQfﬁ't'tit'tﬁtiit't"i"titiiﬁﬁ"*/

#ifndef _ SEQCMD_H
#detine __SEQCMD_H
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void InitSeqcmd(void);

void line{CONFIGURATION );

void bline(CONFIGURATION );

void stop(void);

void setRobotConfig{ CONFIGURATION config);

#endif

SEQCMD.C

/ﬂtft:*tt'*ft'i*t*tttitwait.tt*wt«ttttfﬁ*ﬁttﬁitttﬁwtt'xt.tq.'*thttiattrt.ttﬁt'o

File name: seqcmd.c
Descriptions: collection of all of the sequential commands that are
available to Yamabico
Revision history:
AR A AR AR d bbb hhrh A b '*t"ﬁﬁtﬁ***‘kﬁtﬁttii**'ﬁii'.'.t'ﬁ*t**t**\tt"tit"/
#include “definitions.h”
#include “queue.h”
#include “seqcmad.h”
#include “motion.h”
#include “time.h”
#include “iosys.h"
#include “motionsupport.h”

/* local variables */
static MODE lastMode;

* local prototypes */
static int LineProcess(PATH_ELEMENT);
static int BLineProcess(PATH_ELEMENT);
static int SetRobProcess(PATH_ELEMENT);
static int StopProcess(PATH_ELEMENT);

void
InitSegemd(void)

{
lastMode = STOPMODE;

}

/"ti*ttit"ﬁ""ti.'t"ti"'itﬁi'ii*'tiiitii*tﬁti't'ﬁ*iiiﬁ'.'itﬁtﬁt"ﬁttQQQ.*Q

Function:  line configuration function pair
Purpose:  To read and execute a sequential line command
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i'tﬁ‘tii'Q.tQ.'titt'ttﬁﬁ"tiltiﬁt'tﬁtttttttttttt'tttt.t'tt'tt‘tl-tt.'t"'.ﬁﬁtﬁ/
void
line(CONFIGURATION lineCaonfig)

{
PATH_ELEMENT pathElement;

pathEiement.config = lineConfig;
pathEiement.pathType.mode = PATHMODE;
pathElement.pathType.ciass = LINECLASS;

lastMode = PATHMODE;
AddInstruction(pathElement,LineProcess);

}

int

LineProcess(PATH_ELEMENT pathElement)

{

setPathElement(pathElement); /* update the path element in motion.c */
return 1;

}

/*ﬁti't'i'ttﬁii#'ti**.ttﬁ'ittii*tt'*ﬁ'iiﬁ*ttttiﬁﬁﬁfﬁ'*'i"ﬁiitit.ttt‘itt&ﬁ‘ﬁtﬁ

Function: bline configuration function pair

Purpose: To read and execute a sequential bline command
*t"ii*ii'ﬁti*ﬁit*t.*ﬁi*it'*’iﬁﬁtﬁitt*'ti't"*tih&*.iittﬁtt‘t.ttt*iﬁﬁtttﬁﬁt’iiﬁ/
void

bline(CONFIGURATION blineConfig)

{
PATH_ELEMENT pathEiement;

pathElement.config = blineConfig;
pathElement pathType.mode = PATHMODE;
pathElement.pathType.class = BLINECLASS;

lastMode = PATHMODE;
Addinstruction(pathElement,BLineProcess);

}

int
BLineProcess(PATH_ELEMENT pathElement)

{
setPathElement(pathElement);

return 1;

}

/tttittittﬁtﬁ.tt'u*ﬁQtaaﬂQtQtQQtiiﬁﬁ**.t*ttiﬁ*ttuf*tt*’*t*iQt*ﬁt**tt'ﬁéﬁﬁt*t

Function: stop vehicle function pair
Purpose: To read and execute a sequential stop command

tt"fhtt*tﬁﬁ*ﬁtit'.*.iutt*ﬁ-iiuﬁi*t&iitﬁit*ititﬁatiQ*Qittt*itt*t"'ﬁatttatt/

void
stop(void)
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{
PATH_ELEMENT pathElement;
pathElement.pathType.mode = STOPMODE,;

lastMade = STOPMODE;
AddInstruction(pathElement, StopProcess);

}

int
StopProcess(PATH_ELEMENT pathElement)

{
stoplmm();
setPathElement(pathElement)
retum 1;

}

/tit'*i"thitit'ﬁiiti.ii.'it"iiﬁt't"'ii'titt'ti"ti'ttttitittt"i"ﬁt""

Function: set robot configuration function pair
Purpose: To set the robots’ location when it is in a STOP mode

tttt‘t"t'tttﬁ.i*ﬁt#t'ﬁﬁﬁt'ﬁ’*ﬁﬁ’ﬁi.ﬁﬁﬂ’*tta*ttt.*'ttitﬁtiﬁ‘tt'ﬁ’tﬁ"*itii/

void
setRobotContig{CONFIGURATION contfig)

{
PATH_ELEMENT pathElement;

if (lastMode = STOPMODE) {
/* write some error message */
return;

}

pathElement.config = config;
pathElement.pathType.mode = STOPMODE;

lastMode = STOPMODE;
Addinstruction(pathElement, SetRobProcess);

}

int
SetRobProcess(PATH_ELEMENT pathElement)

{
setRobotConfiglmm(pathElement.config),

return O;

}

USER.C

/t't'tttwtatt"tQ’qieﬁtq't'ﬁﬁtt'tﬁﬂ&'wﬁf'ttiﬁttt'ttctthtt*ﬁ'tttttniﬁﬁt"'ttttﬁt

File Name: user.c
Description: This file contains a sample user program that can be used with
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p:

the new MML system created using ANSI C.

.ttti"tiﬁﬁtiitt'l!.'ltiﬁttﬁitttt'it'tQttittt'ttitii"t"i't't'tt*t’ii'tt.ttti/

#include “definitions.h”
#include “iosys.h”
#include “stdiosys.h”
#include “serial.h”
#include “motion.h”
#include “sonar.h”
#include “trace.h”
#include “geometry.h”
#include “time.h"
#include “seqcmd.h”
#include “system.h”
#include “immemd.h”
#include “motionsupport.h”
#include “motionlog.h”

#define ESC 0x1b

/t'ttt'iﬁﬁ*ﬁiﬁfﬁiﬁnﬁ*i'*QQiat'tt.tiﬁttiaﬁatﬁﬁ'tittant'«*'iﬁt'tt*tt**-it'ttittﬁ

Function: user()

Purpose:

Parameters: void

Returns: void

Comments: This user program commands the robot to follow a star path.
It follows the path offsetting where the robot “thinks” it at by using
the setConfig() command.

ﬁﬁiiﬁ*tﬁi*ti‘ttt*tﬁitt*'**"'iiﬁ't**.iiﬁt**ittt*ttt"iﬁt'ii'tiftt*t&ttﬁﬁt*iﬁ"*/

void
user(void)
{
int segments = 5;
CONFIGURATION star, justGo, currentPosit, jump;
start = defineConfig(0.0, 0.0, 0.0, 0.0);
justGo = defineConfig(0.0, 0.1, 0.0, 0.0);
jump = defineContig(0.0, 45.0, -1.5*HPI, 0.0);

printi(“ \12This is the set_config star program.”):

MotionLog(“star1.dat”, 5, 0);

setRobotConfig(start);

line(jus :Go);

do{
waitSec(10);
currentPosit = getRobotConfig();
printf("\n current x position is : %f", currentPosit.Posit.X);
printf(“\n current y position is : %f\n", currentPosit.Posit.Y);
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setRobotConfigimm(compose (&currentPasit, &jump)};
} while(--segments);
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APPENDIX B. GEOMETRIC FUNCTONS

GEOMETRY.H

/i'iti‘.lii".'iﬁ'it'i""'i*'t.ttt'ﬁittt'tﬁﬁt"t-t.t'ﬁ".'ﬁt't'tti'tﬁ"t't..'t

File Name: geometry.h
Description: This file contains the standard geometry functions that are
called by several functions.
ti*'i’*ﬁiiititlﬁ*ititi'i'ﬁttiﬁtti"ﬁ'tt.tii*t'tttttﬁ.tﬁﬁi'itt*"t*l'tiﬁ'itt.t'/
#itndef _ GEOMETRY_H
#define __ GEOMERTY_H

#include “definitions.h”

/t'tt**t'ﬁﬁ*'ﬁ'tttiiﬁ't**Qit't"it.i'itttt"'ittttti't"'t't'ﬁ.wtii'ttitﬁtiti't

Function: euDis()

Purpose: Computes the Eucledian distance between two given points
Parameters: doubfe x1,y1,x2,y2

Returns: double

Comments:

iitii'itiiii.i‘ﬁt.'tt*’.tiiﬁfi"t*t*.*tit*i'itﬁ*ii'tﬁi*t*ﬂtit't'ti*ttﬁt".t'ti/

double euDis(double x1, double y1,double x2, double y2);

/.Qt*'*ii't*ﬁ'*'ﬁ'*"*'i*t*tﬁ'i"*tt**"Qﬁt*itti'***'**ﬁﬁ'*'ﬁ*iit'tit'i***t’#ﬁ'

FUNCTION: norm()

PARAMETERS: double angle ---- the angle to normalize

PURPOSE: normalize the input angle between -Pl and PI

RETURNS: doublethe normalized angle in radians

COMMENTS: This is the most common normalizing function used in the system

it*iﬁi.t'i"*i'fiQ*ii'tit'i't"itt'ﬁtQ'Qﬁi'ittﬁii'f‘tﬁii‘i'itﬁ.iii'ﬁﬁt'ttt'ti*l

double norm(double angle);

/i*i’i'i'*ti"*i-ii't*ﬁt*'Qiﬁtiiitiiﬁ*iiitﬁitiﬁi*i't.i*tttiii't'tiiiﬁiit'*ttiﬁ'

FUNCTION: positiveNorm()

PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between 0 and 2P|
RETURNS: doublethe normalized angle in radians
COMMENTS: None

tt‘t.ttiwﬁt*t*"ttiiﬁi'tti.tﬁf.ttttitttit*"ﬁttnﬁtt.ittw*"t*ﬁtﬁatfitttfﬁtt*'t/

double positiveNorm(double angle);
/ti*tt"t'tQtiiii*t**tti'tiit'atiii'ii*iﬁt"tﬁ.ﬁ't'ﬁt'ttt'*ttt"ﬁi*'ttttﬁt*'tti
FUNCTION: negativeNorm()
PARAMETERS: double angle  ---- the angle to normalize
PURPOSE: normalize the input angle between -2P! and 0
RETURNS: doublethe normalized angle in radians
COMMENTS: None

Q'tt'*ttﬁittﬁﬁ*'tﬁ't*.tttttiitttttqﬁﬁﬁttttt‘a'«'ttn*ﬁt'ttwﬁtk’taaa'ﬁ'dtttﬁt*t'/

double negativeNorm(double angle);




/Qt'tt'tﬁit-ttwtt"'ttttt'ﬁttthtttt.g't'ttt'wtttﬁgtt.at.'ttttttn.-ttttﬁ-t'.tan'

FUNCTION: normPlover2()
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -PI/2 and Pi/2
RETURNS: double: the normalized angle in radians
COMMENTS: This was designed specifically for parabola calculations
ttttiﬁa't*ﬁ'ﬁ'ttittttttiitt"tit'tﬁt.tttttﬁttt'ttttl'tttt-tiﬁt'tt.itﬁtttiitt-i/
double
normPlover2(double angle);

/tﬁ!ikiﬁ"tiﬁiiiii!tﬁiiit*iititi't'ﬁit*tii'iitﬁittittittﬁi"ii"'t'd'.t'i‘iﬁit

FUNCTION: signedDiff()
PARAMETERS: CONFIGURATIONS directerix
POINT focus
PURPOSE: to calculate the size distance between a point and a configuration.
RETURNS: double: the signed difference
COMMENTS:
Qttt*'t.tt'titi'#QQQ'Qtttﬁ'tttitﬁtitt.t'tttt"ttttttii,t't'*"ﬁ'ttﬁi"fﬁtt'ﬁtit/
double
signedDiff(CONFIGURATION config , POINT pt);

/t"it't"tﬁ..tﬁ..ttﬁ'tﬁ.ﬁi't'."t'tit."tttﬁt't.tﬁtitﬁﬁ*'t'**'QtQ*Qttii.tt"'i

FUNCTION: defineContig()

PARAMETERS: double x,y.theta kappa --The values that define a
configuration

PURPOSE: To allocate nad assign a configuration

RETURNS: CONFIGURATION:a pointer to a configuration

COMMENTS: Was called def_configuration() in MML10

Q'Q"*ti"'tii"ﬁti""ﬁ‘.ﬁ'."‘."t’i*'ttt'i"i'tﬁ.iﬁiitt’**lt"i**i*ttitﬁ'ii/

CONFIGURATION  defineConfig(double x,double y,double theta,double kappa);

/*ﬁﬁﬁt**ifl.'ii.'t.i*itii*fﬁ'ﬁ*ﬁﬁ*iifiitii'tt'*tttﬁ*ﬁt'*"*.**'*i**'**i'.i*.iﬁt

FUNCTION: defineParabola()

PARAMETERS: double xf,yf ---defines the focus
double xd, yd, thetad ---defines the directrix

PURPOSE: To allocate assign a parabola

RETURNS: PARA:a pointer to a parabola type

COMMENTS: Was called def_parabola() in MML1u

it'"i"Q"**'i*tittt"Q*tﬂ*ﬁ*'f*i'ﬁ’*t*'*tt*f’*"'t**t**'*.*i’ﬁ**.*ti'i'tiiﬂﬁ/

PARA defineParabola({Jouble xf,double yf, double xd, double yd, double td);

/tﬁitt'ti*ﬁﬁtitittttattt*ni*!ﬁﬁtﬁﬁttttfﬁt.ﬁt**tiﬁ't'itt'*a"titita'tt'tiﬁ*ﬁﬁiﬁ'

FUNCTION: reverseOrientation()

PARAMETERS: CONFIGURATION original --the original configuration
PURPOSE: To reverse the orientation of a given configuration
RETURNS: CONFIGURATION: the reversed configuration
COMMENTS: Was called negate() in MML10

i**"ﬁ*'t*t'ﬁ'*’ittt'ti"i*i.f.*ﬁi't".t'tii’fﬁtt*iﬁ**'**'.tt't"'**t'ﬁt"tﬁ*t/

CONFIGURATION reverseOrientation(CONFIGURATION original);




/i.t."ﬁ't"ﬁit'.'t"'.ﬁ'tﬁﬁ"titttti"t"t'tti'.tit'itt't'ttt"'t"tttt""-'t

FUNCTION: findSymConfig()
PARAMETERS: double a -- distance from either point to the intersection of
both lines determined by the two contigurations
doubie alpha --The angular ditference between both orientations
PURPQOSE: This function finds the symmetric configuration of a configuration
described by alpha and a above.
RETURNS: CONFIGURATION: sym_config -- the symmetic configuration
COMMENTS: Was called def_sym() in MML10
One drawback to this function is that it is not possible to
represent a symmetric configuration whose alpha is equal to PI.
find_sym_config1() is used to cover these situations

Q‘ﬁ.i*'ﬁ*Qtti‘.itt'tt‘ittt*ittﬁtt)ttt*t'ttﬁ.tﬁ'ﬁ’tﬁttttt'ititiﬁ'i'ittt."i‘itt/

CONFIGURATION  findSymContig(double a, double alpha);

/i‘i'ﬁ‘t*t'*litf‘ttﬁi'ﬂi'ttii'.Qtﬁﬁ.ﬁ't"'ttQﬁt*ti'ﬂ"itt."".'"'t'i'."ﬁ"'i

FUNCTION: findSymConfig1()
PARAMETERS: double d -- distance from the origin (base configuration) to
the symmetric configuration.
double alpha --The angular difference between both orientations

PURPQOSE: This finds the symmetricconfiguration of a configuration
described by alpha and a above.

RETURNS: CONFIGURATION: sym_config --the symmetic configuration

COMMENTS: Was called def_sym1() in MML10
This function overcomes the drawback of the original
find_sym_config() of not being able to handle the situation when
alpha equals PI

ttttﬁ#'t:'t*ttt't*'ita'ttti*t't*ﬁtf*'tt'ttt*ﬁ""t'ﬁt'ttﬁtﬁ*ttt&'*ttttttt*ttftl

CONFIGURATION findSymConfig1(double d, double alpha);

/*tt*it"tit"ﬁitt**Qtiti**ti'i*tﬁ't'itiit'**i*ii""'ﬁ"***"*"'tii.*iﬁ'.ttti

FUNCTION: inverse()
PARAMETERS: CONFIGURATION ~original —-the original configuration
in global coordinates
PURPOSE: To calculate the inverse of a given configuration
RETURNS: CONFIGURATION: the inversed configuration
such that;
original ™ inversed = Identity
COMMENTS: None

tiﬁ'tfﬁ'tt*tttt*ti***titttt'tit#ﬁt*t‘ttittﬁﬁi"ﬁtt*g'tti'ﬁt'*tﬁtt'tt'tﬁitﬁt'**l

CONFIGURATION  inverse(CONFIGURATION original);

/'**.'*iit**il'**tiit'tﬁt*"t't'ttt'**Q*Ril*ttt'ﬁi'*ﬁ**'**"."i’*i*!***t‘titﬁ.

FUNCTION: compose()
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PARAMETERS: CONFIGURATION “tirst -- pointer to the first configuration
“second -- pointer to the second configuration
*third -- pointer to the third configuration
PURPOSE: To calculate the composition of the first and second
configurations
RETURNS: CONFIGURATION: pointer to third configuration which is the
composition of the first and second configurations
COMMENTS: A typical example of the usage of this function is to determine
the goal position of a configuration in global coordinates. in
such an example, the first argument would be the original
configuration and the second argument would be the goal
configuration in the original configuration’s local coordinate
system. The resultant third argument would then be the goal
configuration in global coordinates. .Was called comp() in MML10

ttittt'ﬁQtt‘itﬁﬁit'iu"t‘tt*i*t'it't.ttittﬁﬁt"'tt!titt!’tﬁﬁ'ttﬁ’t*tﬁt”ttt'ii/

CONFIGURATION  compose(CONFIGURATION *first, CONFIGURATION “second);

/inﬁ't'if.ttatitﬁt*ttﬁﬁtﬁt*fittttt*ﬁt'ttiittn'ttt'tiittatﬁtQtﬁﬁﬁtatttatttanattt

FUNCTION: circularArc()
PARAMETERS: CONFIGURATION length --the arc length
alpha --the end orientation
config --pointer to the resultant configuration
PURPOSE: Given the arc length and alpha, to calculate the final
configuration
RETURNS: CONFIGURATION: pointer to the final configuration
COMMENTS: The main purpose of this functionis to be used in conjunction
with compose() to fomr a new next(). In this case, length would
actually be delta-s and alpha would be defta-theta.
CircularArc() would determine the configuration after the incre-
mental move in the local coordinated system of the original
configuration. Then compose() would take the original
configuration (in global coordinates) and the incremental
configuration (in local coordinates) to determine the
incremental configuration in global coordinates.

i*ﬁ*iii**'#'ifiit*t"ﬁi’ﬁti'ﬁ***'ii*t**'*ti**t*tttﬁtiﬁi*'tifﬁiii'.**i.*’*tiﬁ‘t/

CONFIGURATION  circularArc(double length, double alpha);

#endif

GEOMETRY C

/**Q*Q.Qit*ii*.&i*iittiﬁii*ﬁt‘*it**iit*iﬁﬁ'ﬁ'ﬁ'ttt*t*ﬁ'tﬁ‘i'ﬁ'*'#ﬁ*ﬁii*t*iﬁt.t&

File Name: geometry.c
Description: This file contains the standard geometry functions that are
called by several functions.

f'#t*t&'ttttt'*ﬂitfﬁﬁt*ﬁt*iﬁﬁ”ﬁ*ﬁtiﬁ*t*iiﬁ’*t*ﬁﬁi**ﬁﬁﬁitit'***iii*tit*i'titﬁﬁ/
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/*#include “math68881.h"™/
#include “definitions.h”
#include “geometry.h”

/"Q‘Qﬁ'itﬁl'."tt"'ttt'tttittﬁtti"t'nt"tt".Q'li.."ttlt't"t."l't.ttttttﬂ

Function: euDis()

Purpose: Computes the Eucledian distance between two given points
Parameters: double x1,y1,x2,y2

Returns: double

Comments:
double
euDis{double x1, double y1.double x2, double y2)
{
return sqrt((x1 - x2) * (x1 - x2) + (y1 -y2) * (y1 - y2)};
}

/'tﬁ*t"ttﬁtitttt*tt'ﬁa't'tatiﬁﬁttﬂtt*tfitrttatitﬂtttt'tﬁtt'tﬁ'tt'Q'tnttﬁtt.'t'

FUNCTION: norm()
PARAMETERS: double angle  ---- the angle to normalize
PURPOSE: normalize the input angle between -Pl and Pl
RETURNS: doublethe normalized angle in radians
COMMENTS: This is the most common normalizing function used in the system
This performs that same as norm() and normalize)() in MML10.
*tii.k*tﬁitiiQ'i*i**tt!i'**'iﬁ’tt'*ii'*i*"ﬁtiiit'tt'l"l’ttit'tttttitt'ﬁitii'bitt/
double
norm(double angle)
{
while ((angle >= PI) || (angle < -Pl))
{
if (angle >= Pl})
angle -= DPI;
else
angle += DPI;
}

return angle;

/I’*'Q'*i'i‘f'ﬁi'ﬁ'*Q.**.**tit**'t'tf*ii"'*it***tf CARANRENERAS kR A A A b AT rtAd

FUNCTION: positiveNonn()

PARAMETERS: double angle  ---- the angle to normalize
PURPOSE: normalize the input angle between 0 and 2Pl
RETURNS: double:the normalized angle in radians
COMMENTS: Same functionality as pnorm(} in MML10

tttt*'ﬁtttﬁttﬁtt#tﬁ*tﬁ*t***t.ﬁﬁ**ai'*'sﬁttii**'tt'ﬁttﬁﬁ'qtﬁ*t*ti*ﬁ***t*cﬁﬁtt*t/

double
positiveNorm(double angle)
{
while ((angle >= DPI) || (angle < 0))
{
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if (angte >= DPI)
angle -= DPI;
else
angle += DPI;
}

return angle;

}

/ﬁt'attﬁti'ttaattﬁt*ttttt*'tti-tthttt'atit'ttt't"ttqtttttﬁtitnt-ttw'tttttntt-

FUNCTION: negativeNormy()
PARAMETERS: doubie angle  ---- the angle to normalize
PURPOSE: normalize the input angle between -2P| and 0
RETURNS: double:the normalized angle in radians
COMMENTS: Same functionality as nnorm() in MML10
.'t'ﬁ't'ttt*t.ti"i'ﬁt"ti'."i'iiti'iti'tti."'wtit'i'tt;t"ﬁt.i’ti.t"'iti't**/
double
negativeNorm(double angle)
{
while ((angle > 0) || (angle <= -DP}))
{
if (angle > 0)
angle -= DPI;
else
angle += DPI;
}

return angle;

}

/**iiﬁﬁﬁﬁii**tti't'iii*ﬁiﬁii"ii"ﬁi"*t**tii***iﬁﬁﬁt*ﬁ'*tiﬁﬁﬁ'*ﬁi’it'*itt."t!

FUNCTION: normPlover2()
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -P1/2 and P1/2
RETURNS: double: the normaiized angle in radians
COMMENTS: This was designed specifically for parabola calculations
tittﬁt1iitt"itﬁtt*'t.i"ﬁﬁ't.*t*tﬁﬁit*tii'Ct***titttiiti*ttt't*'t"t*iit'tttt/
double
normPiover2(double angle)

{
while ((angle > P1/2) || (angie <= -P1/2))

if (angle > Pi/2)
angle -= P,
eise
angle += PI;
}

return angle;

}

/ii‘*i.*ﬁi‘ﬁi‘t"t"t"*'ﬁi'tttﬁ'iﬁ'iwtiiﬂﬁ*tﬁtﬁittﬁt*ﬁti*it'*.ii**'.i*ﬁtttt"

FUNCTION: signedDiff()
PARAMETERS: CONFIGURATIONS directerix
POINT focus
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PURPOSE: to calculate the size distance between a point and a configuration.
RETURNS: double: the signed difference
COMMENTS:
R ORI R TN AR R AR A NN N A A AT SN AR R AT AR AN AT AN R A AR AT ORI AR E R RN A PN G RPN R NS t'tt.t.’./
double
signedDitf( CONFIGURATION config . POINT pt)
{
return (-(pt.X - config.Posit.X) * sin{config.Theta) +
(pt.Y - config.Posit.Y)" cos(config.Theta));
1

]

/Qtttt.t.-tQ'ittt'tt't.'i*tt.t'tt't"‘.'t.'t-tﬁﬁttt'ttt't""att..t't.at'ta"'.

FUNCTION: defineConfig()
PARAMETERS: double x,y.theta kappa --The values that define a
configuration

PURPOSE: To aliocate nad assign a configuration

RETURNS: CONFIGURATION:a configuration

COMMENTS: Was called def_configuration() in MML10
wtiit'wiﬁﬁtt.iﬁﬁttiitittttttitﬁ'ttit'.tt'iiitititaﬁ't*'ﬁﬁ'ﬁt..i-.«"tﬁ't."tt'/
CONFIGURATION
defineConfig(double x,double y,double theta,double kappa)

{
CONFIGURATION newConfig;

newConfig.Posit. X = x;
newConfig.Posit.Y = y;
newConfig.Theta = theta;
newConfig.Kappa = kappa;
return newConfig;

/ﬁtti'ﬁ*iﬁ'f*t.."’*'.*'l’l’*tt" ARERERRERRAERN AR AR R EAETEAARER SN A R h kb h Ry

FUNCTION: defineParabola()
PARAMETERS: double xf,yf ---defines the focus
double xd, yd, thetad ---defines the directrix

PURPOSE: To allocate assign a parabola

RETURNS: PARA: a parabola type

COMMENTS: Was called def_parabola() in MML10
AT Ah AT e AR ddd b D .t't'tt**ttt'ﬁtttit'ttt'***"*ﬁititt***tivt*#itittt/
PARA
defineParabola(double xf,double yf, double xd,

double yd, double td)

{
PARA newPara;

newPara.Focus.X = xf;
newPara.Focus.Y = yf,
newPara.Directrix.Posit.X = xd;
newPara.Directrix.Posit.Y = yd;
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newPara.Directrix.Theta = td:
newPara.Directrix. Kappa = 0.0.
return newPara;

}

jeweseetissasttasncantecictiatesetattvosee Ssesesernecsncens ssenecssvessccveres

FUNCTION- reverseOrientation()
PARAMETERS. CONFIGURATION onginal -- the onginal configuration
onentation changed ty 180 degrees

PURPOSE To reverse the orientation of a given conhiguration
RETURNS: CONFIGURATION the reversed contiguration
COMMENTS Was calied negatei; in MML10

CONFIGURATION

reverseOnemahon(CONFIGURATION orniginal)

{
CONFIGURATION reversed.

reversed.Posit. X = onginal.Posit.X.
reversed.Posit.Y = original . Posit.Y:
reversed.Theta = norm(original. Theta + Pl);
reversed.Kappa = original Kappa:

retumn reversed:

}

[reeneereeee e » * RN » * X212 221

FUNCTION: findSymConfig()
PARAMETERS: double a -- distance from either point to the intersection of
both lines determined by the two configurations
double alpha --The angular difference between both orientations
PURPQOSE: This function finds the symmetric configuraiion of a configuration
described by alpha and a above.
RETURNS: CONFIGURATION: symConfig -the symmetic configuration
COMMENTS: Was called def_sym() in MML10
One drawback to this function is that it is not possible to
represent a symmetric configuration whose aipha is equal to PL.
find symConf|g1 () is used to coverthese sntuatlons
......... A oy
CONFIGURATION
findSymConfig(double a, double alpha)
{

return defineConfig(a * (1.+ cos(alphay)), a * sin(alpha), alpha, 0.0);
}

/Q."'"t.tt'."'.'...""'.".""'.""Q'QtQ.'i'Q".'.'0'.".'i'it'!"""t"

FUNCTION: findSymConfig1()
PARAMETERS: double d -- distance from the origin (base configuration) to
the symmetric configuration.
double alpha --The angular difference between both orientations
PURPOSE: This finds the symmetric configuration of a configuration

9l




described by alpha and a above.
RETURNS: CONFIGURATION sym_conhig --the symmetic contiguration
COMMENTS Was called det_sym1{) in MML10
Thus function overcomes the drawback ot the onginal
tind_sym_contig() of not being able to handle the stuation when
alpha equals P!
CONFIGURATION
tindSymConhg1idouble d doubie alpha)

A double beta = alpha 2

return defineContig(d * cosibeta) d ° sinibeta) aipha 0 0

P Es e 00000l 00e0rttnetntatertncsectriestecestadedticansttotnnsessesscssosses

FUNCTION inverse{i
PARAMETERS CONFIGURATION originat --the original configuration
in global coordinates
PURPOSE To calculate the inverse of a given conhiguration
RETURNS CONFIGURATION: the inversed contiguration
such that:
onginal * mnversed = Identity
COMMENTS: None
ceetereterecetttenttettetetatateretnttererrersreatatiotasattecntatstesveneanes)
CONFIGURATION
inverse(CONFIGURATION original)

{
CONFIGURATION inversed:

inversed.Posit.X = -original.Posit. X * cos(original. Theta) -original.Posit.Y *
sin(original. Theta);

inversed.Posit.Y = original.Posit.X * sin(original.Theta) -original.Posit.Y *
cos(original. Theta);

inversed.Theta = -original. Theta;
inversed.Kappa = -original.Kappa;

return inversed;

}

/'Q.""""..'....Q'.."'.."'Q.'QQ'*.ﬁ""'ttQQ'.'Qi'"tQ"i‘ﬁi'ii'i'ﬁfi'iii**‘ﬁ

FUNCTION: compose()
PARAMETERS: CONFIGURATION *first -- pointer to the first configuration
“second -- pointer to the second configuration
PURPOSE: To caiculate the composition of the first and second
configurations




RETURNS "IFIGURATION: contiguration which is the
comp: of the tirst and second contigurations
COMMENTS pical example of the usage ot this function is tc determine

the goai position of a configuration in global coordinates. in
such an example. the first argunent would be the original
conhiguration and the secend argument would be the goal
conhguration in the onginal configuration's ocai coordinate
system The resultant third argument would then be the goal

conhiguration in global coordinates Was called comp() in MMI 15

L Ry X Y R R R R Y Ty P Y T Y

CONFIGURATION
compose(CONFIGURATION ° tirst. CONFIGURATION ° second)

CONFIGURATION third.
double x y theta.
double xx yy it

x = second->Post X.
y = second->Post Y.
theta = tirst->Theta.

xx = cos(theta) * x - sin(theta) * y + first->Postt. X;
yy = sin(theta) * x + cos(theta) * y + first->Posit.Y:
tt = norm(first->Theta + second->Theta):

third.Posit. X = xx;
third.Posit.Y = yy;
third Theta = tt;

return third;
}

/'Q'Qttﬁﬁ"ttttttttt't." et w 22 2] - L e e e e I I Y P e T

FUNCTION: circularArc()
PARAMETERS: CONFIGURATION length --the arc length
alpha --the end orientation
config --pointer to the resuftant configuration
PURPOSE: Given the arc length and ailpha, to calculate the final
configuration
RETURNS: CONFIGURATION: pointer to the final configuration

COMMENTS: The main purpose of this function is to be used in conjunction
with compose() to form a new next(). In this case, length would

actually be delta-s and alpha would be delta-theta.

Circular_arc() would determine the configuration after the incre-

mental move in the local coordinate system of the original
configuration. Then compose() would take the original
configuration (in global coordinates) and the incremental
contiguration (in local coordinates) to determine the
incremental configuration in global coordinates.
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CONFIGURATION
circularArc(double length, double alpha)

{

return detineConfig((1- (alpha * alpha)/6) * length,
(0.5 - (alpha * alpha)/24) * alpha * length,
alpha, 0.0);
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APPENDIX C. FUNCTION NAME COMPARISON TABLES

The following tables list the function name comparisons between MML10 and

MMLI11. When there is no comparable function, an asterisk (*) is used as an indication.

MMLI11 MML10
localize() new_conhg()
getLinearVelocity commanded_velocity() B
restOfPath() rest_of_path()
needsToDecelerate() *
motonRules() get_velocity()
pathRule() *
stopRule *
rotateRule() *
spiralRule() *
computeLineYstar() npdate_delta_d()
computeCircleYstar() up 'ate_delta_d()
updateLinelmage() update_image()
updateCircleImage() update_image()
InitMotion() *
MotionSysControl() control()
updateMovement evauate_incremental_motion()
getDistanceTraveled() evauate_incremental_motion()
getOrientationChange() evauate_incremental_motion()
updateTotalDistance() evauate_incremental_motion()
SetMovement() evauate_pwmy)

Table 1: CORE MOTION CONTROL FUNCTIONS
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MML11 MML10
setGoalLinVellmmy() speed0()
setGoalRotVellmm() r_speedO()
setGoalLinAccImm() acc0()
setGoalRotAcclmm() r_acc0()

setPathElement() *
getPathElement() get_line0()
stopImm() stop0()
setRobotConfgImm() set_rob0()
getRobotConfig() get_rob0
setConfiglmm() set_c()
setSizeConstant size_const()
haltMotionImm() halt()
resumeMotionlmmy() resume()
line() line()
bline() bline()
stop() stop()
setRobotConfig() set_rob()

Table 2: MOTION CONTROL RELATED FUNCTIONS




MMLI11 MML10
euDist() eu_dis()
norm() norm(), normalize()
positiveNorm() pnorm()
negativeNorm() nnorm()
normPlover2() *
signedDiff() *
defineConfig() def_configuration()
defineParabola() def_parabola()
reverseOrientation() negate()
findSymConfig def_sym()
inverse() inverse()
compose() comp()
circularArc() *

Table 3: GEOMETRIC FUNCTIONS
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