
NAVAL POSTGRADUATE SCHOOL
Monterey, California

00='nt

THESIS 'LECTE
NOV 07 19,

CONSTRUCTING A REAL-TIME
MOBILE ROBOT SOFTWARE SYSTEM

by

Kevin LaMonte Huggins

September 1994

hesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

111111 14-34419 Ilj
I llllltlill~lill~l I'9 4 t _ 3

Best
Avai~lable

COPY

jForm Approved
REPORT DOCUMENTATION PAGE j OMIBNo 07(94)188

Public repowin burden Io~lhra coilection ot indorrtnetion a Getsneted to average I hour Per reePonset MIndng the tvrm reviewing instructions searching existing dara "vices
gathering and maintainting the data needed. and oorivileting and reviewing th~e coliealion of intormation Send coriwnients regardin the burden .atirriaet of any other asped oft this
C. :tien of inlionruston, indudrtg suggestions fo reducing this burden to Was itergtow Heainduarters Servise. Dveiorate for Information (Iperallons and Reports 1215 Jeflterori
Davis Heghwaey, Svta 1204 Arlingon VA 22202-4=0 and to the Offic of Managenserrit and Budge Paperwoirk Reduction Project (0704 0188) Wah~nglor' DC 20503

1. AGENCY USE ONLY (Leave blank) 3.REPORT DATE 13. REPORT TWI ND DATES COVERED
F _September 1994 1 Master's Thesis ______________

4. TITLE AND SUBTITLE 5 FUNDING NUMBERS
Constructing a Real-Timne Mobile Robot
Software System (L1)

6. AUTHOR(S)
Huggins, Kevin La~lonte

7 PERFORMING ORGANIZATION NAME(S) AND ADORESSIES) B PIERFOR0MING OR4GANIZATION
Naval Postgraduate School REPORT NUMBER

Montere%.. (CA 93943-514N)

g SPONSORINGY MONITORING AGENCY NAME(S) AND ADORESS(ES) i0 SPONSORING MONITORING
AGENCY REPORT NUMBER

ii, SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, distribution is unlimited.

13. ABSTRACT (Maximu~m 200 words)

The problem with the Model-based Mobile robot Language(MML) processor is that the code is
unstructured, causing the system to be unstable; it is very difficult to read because of deficient source code
documentation; and because of poorly defined function interfaces and extensive functional coupling, the
system is hard to maintain.

To fix the MML processor, we performed a manual static analysis of the existing source code to
understand its structure. Next, based on the analysis, the software system was restructured and the
functionality enhanced. Finally, explicit source code documentation was added in the form of comments.

There are several results with the new system. First, global variables are reduced from 1 52 to zero.
Secondly. function interfaces are clearly defined and function coupling is enhanced. Finally, the source
code is extensively documented. Following from these results, the new system is more stable, easier to
read and understand, and simpler to modify.

14 SUBJECT TERMS 15 NUMBER OF PAGES
Autonomous v~ehicle, robot. ,.ott%%are enrigilering.. reil-time l vseri 107

15 PRICE CODIE

I? SECURITY CLASSIFICATION IS SIECURITY CLASSIFICATION is9 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
or REPORT OF TW4SPAGE OF ABSTRACT '1

I rit. lassitled I IK IdsII 1C Ik IIlavtihdII

Approved for public release: distribution K unlimited

CONSTRUCTING A REAL-TIME
MOBILE ROBOT SOFTWARE SYSTEM

by

Kevin LaMonte Huggins
('ap-amn. U.nited States Army

B.S.. United States Militar) Academy, 19M6

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1994

Author: h /

Kevin LaMonte Hug80

Approved By: Ut
"t- k Ka ma, Tff Advisor

Frank Kelbe, Second Reader

Ted Lewis, Chairman,

Department of Computer Science

Su limllllllln nmllii i ~ll i i llll• mI I

ABSTRACT

The problem with the Model-basvd Mobile robot Language(MML) processor is that

the code is unstructured, causing the system to be unstable: it is very difficult to read

because of deficient source code documentation: and because of poorly defined function

interfaces and extensive functional coupling, the system is hard to maintain.

To fix the MML processor, we performed a manual stat.ic analysis of the existing

source code to understand its structure. " ":ised on the analysis, the software system

was restructured and the functionaai. ,aanced. Finally. explicit source code

documentation was added in the form of commer. i.

There are several results with the new system. First, global variables are reduced from

152 to zero. Secondly, function interfaces are clearly dctined and fuaction coupling is

enhanced. Finally. the source code is extensively documentcd. Followin:, from these

results, the new system is more stable, easier to read and understand, and sirrpIer to modify.

By...............

A '" , A , 1_•+ -----------

Ava: *¾ur
Dist s pfcia;

|||.o

TABLE OF CONTENTS

I. INTRODUCTION .. I

A. PROBLEM STATEM ENT I

B. YAM ABICO BACKGROUND .. I

C. M M L BACKGROUND .. 4

D. ORG ANIZATION OF THESIS ... 6

II. DESIRABLE SOFTW ARE ATT'RIBUTES ... 7

Ill. ANALYSIS OF THE EXISTING SYSTEM ... 9

A. CALL-HIERARCHY TRACING .. 9

B. GLOBAL VARIABLE TRACING ... I I

C. RESULTS OF ANALYSIS ... 12

IV. M ETHODOLOGY ... 15

A. GLOBAL VARIABLES ... 16

B. FUNCTION INTERFACES .. I

C. DOCUM ENTATION .. 19

V. IM PLEM ENTATION ... 22

A. DATA STRUCTURES .. II

B. GEOM ETRIC FUNCTIONS ... 24

C. M OTION CONTROL .. 26

D. SEQUENTIAL COM M ANDS .. 27

VI. FUNCTION SPECIFICATIONS ... 28

A. USER FUNCTIONS .. 2$

B. SYSTEM FUNCTIONS ... 37

V ii. R E S U L T S ... 4 1

VIII.CONCLUSIONS ... 43

A. SUM M ARY .. 43

B. FUTURE RESEARCH ... 43

iv

APPENDIX A. MOTION CONTROL RELATED MODULES 44

APPENDIX B. GEOMETRIC FUNCTONS .. 84

APPENDIX C. FUNCTION NAME COMPARISON TABLES 95

LIST OF REFERENCES .. 98

INITIAL DISTRIBUTION LIST .. 99

LIST OF FIGURES

Figure 1: Yam abico- 11 M obile Robot .. 3
Figure 2: M M L System after (Lee, 93) .. 5
Figure 3: Local category .. 9
Figure 4: M odule category .. 10
Figure 5: G lobal category .. 11
Figure 6: Example of blurred function interfaces in MMLlO 13
Figure 7: Nam ing convention .. 20
Figure 8: Static function prototype documentation examples 21
Figure 9: Point ... 22
Figure 10: Velocity .. 22
Figure 11: Configuration ... 23
Figure 12: Parabola ... 23
Figure 13: Path Elem ent... 24
Figure 14: Circular arc after (Kanayam a, 94) .. 37

Vi

I. INTRODUCTION

With the changing world environment, the military's structure has changed to meet

those needs. In particular, with the demise of the USSR as a threat, US military forces have

decreased significantly in the recent past. With this down-sizing, the military is now

required to do more with less. This requirement has led the armed forces to rely more on

automation to fill the gap of reduced personnel and equipment. One key element to this

move to more automation, is autonomous vehicles. These vehicles will continue to play a

greater role in this nation's defense. At the Naval Postgraduate School (NPS), the

Yamabico robot is an example of active research in the area of land based autonomous

mobile robots.

Yamabico is a real-time mobile robot that is able to sense its surrounding and plan its

motion. The software system that supports Yamabico is called the Model based Mobile

robot Language (MML). As an on going research project, many people have contributed to

research over the years. Unfortunately, software engineering practices have not always

been followed. As a result. MML has become very unstable and difficult to maintain.

causing a hinderance to research.

A. PROBLEM STATEMENT

The problem addressed in this thesis is how to construct a software system for an

autonomous mobile robot that is stable, readable and modifiable. Specifically, this research

is an improvement of the original Yamabico software system named MML 1(0. In our work,

the motion control rules are developed to provide path planning, as with various supporting

modules such as the geometric functions and sequential commands. The software system

developed as the result of this research is called MMLI 1.

B. YAMABIC() BACKGROUND

The Yamabico- I I mobile robot translates in two dimensional space and is controlled

by MML. The Yamabico architecture consists of several systems. They are the CPt.

wheels, sonar, and Input/Output systems. In the next few paragraphs we will give a brief

overview of these systems, however, for more in-depth information, see (Scott, 93) and

(Book, 94).

The CPU system consists of a SPARC-4 based mother-board, with power supplied by

two 12 volt motorcycle batteries. One communicates with the robot either through a 9600

baud port connected to a laptop Macintosh Power Book, or a telnet connection from a Sun

work station. Compilation and downloading can be accomplished from any Sun work

station. Once the kernel is made, there is a process that automatically copies the kernel to

a holding directory. When the command is given to download the kernel, either from a Sun

work station or the laptop computer on the robot, the kernel is then downloaded over an

ethernet connection.

The wheels system includes a VME bus interface card that provides the user a means

of communication with the wheels system. Power is provided by two DC motors and a

motor control circuit card manipulates the motors based on information from the interface

card. Finally, the shaft encoders provide information that helps determine the speed and

distance travelled. (Scott, 93)

The sonar system is used to gather sonar information from the forward, rear, lateral,

and diagonal directions. This system consists of twelve 40kHz ultrasonic sensors. The

sonar interface card is used to collect information and control the sensors. (Book, 94)

S . . . ,I t I i

Figure 1: Yamabico- 11 Mobile Robot

i l l a l l3

C. MML BACKGROUND

MML is a high level software system that controls the Yamabico robot. It's design

goal is to be a general purpose standard language for autonomous mobile robots.

independent of any physical attributes of the robot.

The hardware interrupts are used to provide the real-time aspect of MML. With these

interrupts, background processes achieve pseudo-concurrent processing. It is pseudo-

concurrent and not full), concurreijt because no code for a process is ever interleaved with

another, because processes are not allowed to share the same priority. Hence. processeN are

interleaved, but their code is not. Therefore, this type of process concurrence is limited to

the interrupts provided by the CPU architecture. (Scott, 93)

The MML architecture is rather simple conceptually. It is has two process levels:

foreground and background. The user program runs in the foreground and the motion

control functions operate in the background. There are two sets of function libraries that

provide the user with control of the robot. They are called immediate and sequential

4

functions. Immu-ediate functions are executed immediately when they are read. H-o\,ever,

sequential functions are first stored in an instruction buffer and executed sequentially.

(F aregop Prce ser Program sonn

&. U U U U U m u snmu inin u~

(Foreground Process)Intuio

Motion Control Program~

s haft encoemtr

Figure 2: MML System after (Lee, 93)

Recent developments have significantly improved various aspects of the MML

system. First, Scott Book, in his research, developed a solid core system that localized

hardware dependencies. and reduced assembly code to a single module (Book, 1994).

Frank Kelbe, the Yarnabico group software design coodinator, designed and implemented

data tracing functions for both the motion control and sonar modules. He also redesigned

the instruction buffer module and implemented timer functions.

D. ORGANIZATION OF THESIS

This thesis is organized around the construction steps taken for the new version of

MML. First, in the next chapter, we describe software attributes that are desirable in any

software system. Then in Chapter III, we analyze the original Yamabico code to understand

its structure. From this analysis, we develope a methodology in Chapter IV to constructing

MML 11. Next, in Chapter V, we document the implementation phase, describing major

milestones reached in the process. We describe the resultant function specifications in

Chapter VI, and discuss the results in Chapter VII. Finally, we conclude in Chapter VIII

with a summary and recommendations for future research.

II. DESIRABLE SOFTWARE ATTRIBUTES

For any software system. there are certain attributes that are desirable. They provide

a common standard by which all software systems can be compared to and judged. These

attributes are cohesion, coupling. modifiability, modularity, readability, and robustness.

An important term to understand when applying 1hese attributes is the module. One must

con.ider logical relationships and physical storage properties in order to describe a module.

First, a module is a logical break down of routines that have a common functionality or

who's functionalities are related. In reference to physical storage, modules are best if kept

as small as possible: one module per file(Scott, 93).

Cohesion measures the strength of relationships between code segments in the same

module. Two code segments are related if they reference the same element. Accordingly,

it is desirable for related segments to be collected in the same module to the element

referenced. Coupling describes the strength of references between modules. As coupling

increases, maintainability and readability decreases. There are two types of coupling:

common and control. Common coupling applies to references to internal data elements or

data structures by another module. Control coupling occurs when flags, used to modify the

behavior or actions of a routine, are used between modules. (Scott, 93) and (Book, 94)

A system is modifiable if changes can be made to one segment of code without

generating adverse side effects in another segment. The degree that a system is modifiable

is directly related to the system's measure of coupling and cohesiveness. Once produced, a

modifiable system is easily changed and maintained. Modularity is defined as the

partitioning of the system into small segments. There are two major goals associated with

modularity. First, this process is to design each segment around a particular logical functio, n

performed by the system. The result is a system that has strong cohesion. The second goal

is to minimize the amount of coupling. This is done by using a clean and concise interface.

(Book, 94)

"" • • I a I i I |p i7

In the Yamabico research group. as \ ith others. otten the person m ho imppleented

part of the systemn i, no longer a\ ailable. For this reason. it is crucial that sstems are

readable. A system is readable when it 'xhibits the same beha\ior during operation ai

expressed in the source code. Small modules with independent. well defined and -learl\

documented behavior are the most readable (Scott, 93 . Systems that can detect errors and

recover are considered robust. This requires the addition of exception handling fuections

and procedures to the system. These code segments allow the system to process exceptional

conditions such as division by zero or value out of limits (Scott. 93).

ii1. AN'AIAY•IS)F HileEXISTIN(; S•. IF\I

In this chapter .% e present t%,%o tOj. hnique, used. to, help dj, nb" the jt..u , tUir I

.IMLM II). This description ot the orginal ,,\,tern help,, in the dcst.,n (,I \1\11,!I

Specificailv. %ve take the iesults ot the anal\svis in this, chapter. and use it as. a ,,tartinLg po•nt

for our desi-n. -,oals. The desirable attributes discussed in the prex bus chapter are the

ending point. We then report the results of the analysis on the code. This information iill

be used in the next chapter to develop a design philosophy.

A. CALL-HIERARCHY TRACING

Call-hierarchy tracing is an analysis technique to describe function categories. It is

used for identifying whether a called function's scope is local or global. This tracing method

also provides a physical picture of the present software system. Finally, it helps in

determining where to place functions. Function calls fall into one of three categories. They

are either local, module, or global.

A local category happens when a function is called by only one other function. In

Figure 3, which is an example of the local category, function B is called only by function

A. With this category, one can place both functions in the same module. If a function is

A

Figure 3: Local category

9

alled hw % ereal othei tunl. tlon that all ha% e related operatiuns. they can be placed in the

Naimne module. Thin tvpc kit tunction c.all talk into the module category, an example of

which i\ i\ en in Figure 4.

Module X

A

B

C

D

E

F

Figure 4: Module category

Finally, the global category occurs when a function is called by several functions that

have unrelated operations. An example of a global category function is given in Figure3,

with functions A-C, which are in different modules, call function D. Global category

10

functions are usually found in libraries of utility functions. (Scott. 93) An example in

Module I Module 2 Module 3

function A function B function C

function D

I I

I I
L -. - - -

Figure 5: Global category

MML is the geometry file which has all of the geometric utility functions used by several

different modules.

B. GLOBAL VARIABLE TRACING

Global variable tracing is used to categorize global variables in a software system.

Variables are either module or globally visible. These types of variables are not passed into

a function as a parameter nor declared locally. Globals need to be analyzed to see whether

they should stay global, local to a module, converted to a locally declared function variable,

11

or passed in as a parameter. The goal is to minimize the use of global variables. The benefit

of reduced globals is increased readability and reliability, because of better defined

interfaces (Scott. 93).

C. RESULTS OF ANALYSIS

There are several interesting results from the call-hierarchy and global variable tracing

analysis of MMLI(J. First, there is an extensive use of gobals variables used throughout

the entire system. Specifically, there are 152 global variables, with all motion control

variables being global. Secondly. all functions are globally visible. There are no static

definitions of variables or functions. As a result, all variables and functions defined have a

global scope: they can be seen and accessed by any other function in the system.

One significant implication is that function interfaces are blurred. Instead of passing

or locally declaring variables, most functions simply access and modify variables directly.

This directly influences coupling. Since code segments from different modules commonly

reference the same element, coupling is tight. Figure 6 provides an example of this

challenge in MMLI10. The function that calculates the commanded velocity.

get_veloctiy(). in the motion control module, references elements in the instruction buffer

12

module directly without using a function interface. Accordingly. this causes a strong

MOTION CONTROL MODULE Pre Verab, daato hul ednf
MRhrough function interfaces

Function Interface

INSTRUCTION B UFFER
current robot path.pc t inst->c: MODULE

Figure6:Examplef unction interfaces M Ml

deeneny etee.tes two... d:ist•incti moue.Snefunction interfacesaebuedy

get inst =thead inst;

asget-inst are accessed directly by function
indifferent modules

Figure 6: Example of blurred function interfaces in MMLI0

dependency between these two distinct modules. Since function interfaces are blurred by

the extensive use of global variables, function cohesion suffers also. For example, code that

enables the iobot to rotate is found in the motion control module and the instruction buffer

module. However, this functionality belongs in one module.

Because of its structure, modifiability is very difficult. One has to understand the

entire system prior to making any changes because an element manipulated in one module

13

may affect or be affected by another potentially unrelated function in another module.

Since all functions and variables are visible globally, one has tD check the entire system

prior to making modifications. This is not only tedious and time consuming, it makes

modifying the code a much more difficult task that it should be.

14

IV. METHODOLOGY

From the last chapter we understand the present structure of MMLt10 and its

shortcomings. We now take that information while considering the desired software

attributes, and in this chapter develop a methodology for constructing MMLI 1. Although

all software attributes are important in a software system. some are more pertinent

depending on the particular situation. With MML. the environment that it is used in

significantly influences which software attributes need to be the center of focus.

The Yamabico research group is a dynamic environment. Members are continuously

joining or moving on to other projects. As a result. it is important to design a system with

the following assumptions: 1)Different people will be working on various parts of the

system at different times and 2) Few people have a need to know and understand the entire

system.

Understanding these assumptions, we can focus our attention on those software

attributes that best support our design assumptions. Specifically. we are most interested in

code that has excellent readability, modifiability, and coupling attributes. It is essential that

the code is very readable. Since different people are working on the code at different times,

one can not assume that the author of a particular code segment will be available to explain

its functions. Therefore. documentation is the critical link. Since one of the first steps in

modifying code is understanding what it does presently. documentation also enhances

modifiability. Finally, by having a software system that is easily modifiable, the research

process is enhanced.

With people specializing in different subsystems of MML. it is important that the

variables and code modified in their areas do not have unexpected negative effects on

routines in other unrelated parts of the system. A software system that displays loose

coupling provides this type of environment.

To obtain a system with the above mentioned desirable software attributes, design

goals are needed as a guide in the development of the new system. Our design goals are

I-,

three-fold. Thev' are the elimination of global variables, clearly defined function interfaces.

and highly explanatory documentation. These goals will best guide the deselopment of

MMLI I to obtain the software attributes and support our design assumptions.

A. GLOBAL VARIABLES

Our biggest and most challenging, task is the removal of global variables from

MMLlO. In this version of MML, the structure of the software system is driven by

procedural control. In other words. the key decision making factor is how the flow of

control is effected. This emphasis on flow of control minimizes the focus on data grouping.

If your code is developed with the grouping of data as the priority, you place your functions

in modules where they can best access the needed data for their operations. However. the

easiest way to develop a system where flow of control is the priority, is to have the least

amount of restriction on data accessibility. This is done in MML1O by making variables

global. Additionally, with these variables being global, they are initialized in one location,

the system main module.

Understanding the present challenges with global variables in MML10 presented in

the previous chapter, our approach is focused more on the grouping of data. Since we want

to eliminate global variables, all variables have to be either declared locally in a function,

or module. To accomplish this. we have to first determine how we to group the data.

Initially, we consider breaking the data down into hardware and system related variables.

However, this quickly proves to be unmanageable because there are so many variables that

do not fit into either of these categories very well.

We next attempt to group variables based on the frequency they are used in a file. We

would declare a variable in a module that has the most references to that variable. A tool

that is of great assistance is the unix grep command. This allows us to count the times that

the variable appears in a file. There are three cases that we face when attempting to group

these variables. In all three cases, the variables are initialized in the main module of

MMLIO. First, in the easy case, when a variable is used only in one file. we statically

16

declare the variable locally to that file. Next. the more difficult case is when a variable is

used mostly in one file but also found in others. In this case, we still statically declare the

variable in the file where it is used the most. We then write function interfaces to allovN

functions frorn the other modules to access the variable. The most difficult case. how\ever.

is when different modules reference the same variable with about the same frequency. In

this case, we go into each module and determine how critical the variable is to calculations

in the local functions. For example, there could be two modules that reference a variable

the same amount of times. However, module 1 modifies the variable while module 2

references the variable. In such cases, the variable is more critical in module I because it is

not only accessed, but updated. Accordingly, the variable is placed in module I with

function interfaces written in module I for access by module 2.

After all variables are grouped into modules. the process is repeated at the module

level to determine whether a variable would stay visible at the module level or be declared

in a function. If the variable is only used in one function, then it is declared there. However,

when a variable is used by several functions, it retains its module level visibility. For

example, in the motion control module, this method is used to determine whether the

variable that held the value for the current vehicle configuration, (named vehicle) would

remain at module level or be declared in a function. After analyzing the code, we find that

several functions in the motion control module use vehicle. For this reason, vehicle is

declared local to the entire motion control module.

With all global variables removed, we still need to initialize variables. Different from

MMLI0, we require an initialization routine in each module in MML 11. Although this

requires more code than the approach used in MML1O, initializations are now easier to

manage. We are not concerned with a huge file of variable initializations anymore, but

instead with several smaller routines that are specifically related to the file that they

support. This makes maintaining and modifying them much easier.

17

B. FUNCTION INTERFACES

In earlier versions of MML, data access can not be controlled through function

interfaces because global variables usurp the need to pass parameters. As a result. critical

regions are vulnerable. Specifically, a function can be interrupted while updating a variable

because critical regions are not controlled. However, the goal with MMLI I is to have all

data in functions to be either locally declared, passed in as a parameter. or local to the

module. Inter-module communications therefore, is limited to function interfaces. This

additional control in MMLi 1 ensures control in critical regions because variables can only

be accessed through a function interface. With this limited access. interrupts can be

disabled if deemed necessary, within the function.

This design goal has a significant impact on the structure of MML11. In MML110.

immediate functions are grouped together into one file. Since few parameters are passed in

the older version of MML and data grouping is not a concern, it is logical that these

functions are placed in the same file. However, in the design of MML1 !, we find that this

structure is unacceptable. The immediate functions fall basically into two categories. They

either work with data that is updated by the motion control module, or they maintain data

that is only assessed by motion control and other modules. As a result, we group the

functions that access variables that are updated by the motion control module, into motion

control. In this way, any other module that needs these variables access them through

function interfaces in motion control. The alternative would have been to maintain the

original structure with all of the immediate functions in one file. Function interfaces would

still have been written in the motion control module to provide access to variables for those

immediate functions that need them. We then would have to call these functions from

within the immedliate function. The method we use thus allows us to cut out the extra

unneeded step in accessing variables that are controlled by motion control. The immediate

functions that do not access variables controlled by motion control are still kept in a

separate file.

18

C. DOCUMENTATION

Our review of MMLlt gzreatly influences our documentation goals for MMLI 1. We

found it very challenging to understand MMLILM without someone available who is already

familiar with the code. Functions usually have sparse comments if any. Variable naming

also makes it difficult to follow because they are usually very short and non-descrrntive.

Therefore, with MMLI 1, following our assumption that people who wrote the code will not

be available, we decide to thoroughly comment our code and provide descriptive file.

function and variable names.

First, a naming convention has to be chosen. We decide to adopt one that has recently

been designed for the Yamabico research group, because of its simplicity and ease in

duplication. Overall, more descriptive names are used. Full words are used as much as

possible, and names are chosen that best describe what exactly the variable, function or

constants does. For variables, the first letter is lower case. If more than one word is used in

the variable name, the first letter of each word other than the first word is capitalized. The

capital letters are used to distinguish the words instead of underscores. The benefit is that

it requires less apace for variable names. Function names are the same as variables.

19

Constants are written as all capitals. To distinguish between words if more than one word

is used for the constant name, underscores are used.

Variable name

Function name
Naming convention examples oi.n:u.es(

from MMLI1 I____..

Constant

Figure 7: Naming convention

Our comments are written with the assumption that the reader is unfamiliar with

MML. Also, we provide descriptive Jiames to variables and functions so that their names

describe what they do. Each declared variable in a module is documented. Functions also

are extensively documented, not only to explain the purpose, but, if appropriate, to give

normal uses of the functions. In critical areas, function calls were documented to help the

reader. For example, in the main routine of the motion control module, all of the steps of

the motion control theory are represented. During each motion control interrupt, this

routine is what is called. Because of its critical role in the MML system, each line of this

routine is documented to help guide the reader through the module. For example, for each

function call, we identify in which module the called function is located.

All locally declared static function prototypes are provided brief documentation so

that a reader does not have to search through the entire module to find the full

documentation. Function prototypes also provide an added benefit of argument checking.

MMLIO is written in a non-standard version of the C language. Function prototypes, in this

version, do not require an argument to listed in the parameter list, even if arguments are

20

passed into the function. The adwvntage of using prototypes under ANSI C is that they

allow the complier to perform compile-time type checking on the arguments of a function.

The compiler will check all calls to the function to make sure it has both the correct number

and types. Depending on the severity, the compiler may isue a simple warning, such as

when an integer is expected, but a chararacter is passed. An error may be issued, instead,

for mistakes such as the wrong number of parameters. This type checking simply makes

the code more reliable by having the compiler find problems before testing. (Kelbe, 94)

sIe cniuainbae-n-the distance..
travelled in the last motion control c cle

~tatic CONFIG URA TION
ilocalize(CONFlGURATlON robot, double deltaS, double deltaTheta);

1* calculates the next commanded linear velocity value. */
static double getLinearVelocity(double actualVelocity,

double lastCommandedVelocity);

1iV* calculates the distance remaining on a path to reach a configuration.
.Used with bline calculation. */

static double restOfPath(void) :

determines whether the vehicle needs to decelerate.
Used in bline calculation *1

.static int needsToDecelerate(double actualVelocity);

.e8:.sta~ticfunction prototype documentation

examples

Function prototypes in our header files are documented similar to functions in our

program files. Specifically, the commented section above the function name in the program

files is used in the header file prototype. We do this to provide the most complete

documentation for the reader in the header file. Our goal is for a reader to be able to

understand and apply functions found in a file simply from reading the header file.

21

V. IMPLEMENTATION

A. DATA STRUCTURES

With the re-engineering of MML, fewer software structures were needed. Most of

MML was described using only five basic data structures. In this section we explain these

structures.

1. Point

The POINT structure is used to describe a position in two dimensional cartesian

coordinates. The structure is made up of two doubles named X andY.

POINT

double X

double Y

Figure 9: Point

2. Velocity

The VELOCITY structure is used to describe a two dimensional velocity vector.

The data structure is made up of two doubles that represent the linear and rotational

elements of velocity. They are appropriately named Linear and Rotational, respectively, in

the VELOCITY structure.

VELOCITY
double Linear

double Rotational

Figure 10: Velocity

3. Configuration

The CONFIGURATION is the standard structure for describing location and

direction for an object. It consist of Posit, which is of type POINT. which identifies an

objects position in two dimensional cartesian coordinates. Next, there is a double called

22

Theta that describe's the object's orientation in relation to the X coordinate. Finally, there

is another double in the CONFIGURATION structure called Kappa that represents the

curvature of an object's path.

CONFIGURATION
POINT Posit

double Theta

double Kappa

Figure 11: Configuration

4. Parabola

The PARA structure is used to describe a parabola. A common use of the PARA

data structure is as a configuration that the robot follows. Specifically, it is another type of

path that is available in the library of functions for motion types. It consist of a Focus which

is of type POINT and a Directrix which is of type CONFIGURATION.

POINT Focus
CONFIGURATION Directrix

Fig'ure 12: Parabola

5. Path Element

The PATHELEMENT data structure is used to describe and store the various

types of movements. This data structure consist of config which is of type

CONFIGURATION. It holds the configuration of the path that the robot is to follow.

PATHELEMENT also contains pathType, which is of type PATHTYPE. A

PATHTYPE is a data structure used to identify the various paths that are available to the

robot. It consist of the mode which is of type MODE and class which is of type CLASS.

Type MODE is an enumeration type that gives a name to each path that the robot follows.

Presently, the modes that are available include NOMODE, STOPMODE, PATHMODE.

23

ROTATEMODE, KSPIRALMODE, and PARAMODE. Type CLASS, which is also an

enumeration type, is used to name and categorize the various PATHMODE types. The list

of classes include NOCLASS, LINECLASS, CIRCLECLASS, and BLINECLASS.

PATHELEMfEWT

CONFIGURATION config

PATHTYPE pathType

MODE mode

NOMODE, STOPMODE, PATHMODE, ROTATEMOD
KSPIRALMODE, PARAMODE

CLASS class
NOCLASS,LINECLASSCIRCLECLASSBLINECLASSI

Figure 13: Path Element

6. Significance

With the above mentioned data structures, all motions that are presently

performed by the Yamabico robot, can be described and represented. More importantly,

because of the modular design, additions and maintenance of these data structures is

simplified

B. GEOMETRIC FUNCTIONS

1. Pointers Use Reduced

Pointers are used extensively in the original version of MML. This is because the

language that it was written in, a non-ANSI C, does not support structure passing. As a

result, one would need the following type of function interfaces:

CONFIGURATION * defineConfig(POINT position, double theta, double

kappa, CONFIGURATION *configPtr)

24

Notice that a pointer to a CONFIGURATION was returned. However, a pointer

to a CONFIGURATION was also passed in. At first glance, we assume that the pointer to

the CONFIGURATION that is passed in, is a duplicated effort because one should just be

able to declare a a CONFIGURATION type in the function defineConfig and return its

address. However, this would cause a logical error because once the function returns, the

value that the pointer is pointing to is discarded with the function. One is left pointing to

garbage. Su without the ability to pass structures, it is very awkward handling them in

function calls. However, with the ability to pass the structures, such as a

CONFIGURATION type, the above function interface is written as follows:

CONFIGURATION defineConfig(POINT position, double theta, double kappa)

As one can see, the interface is simpler, and easier to read and understand.

2. Duplicated Functions

In the original version of MML, there are functions that are duplicated. Although

they have different names, they perform exactly the same function. In the new version of

MML, the duplicated functions are eliminated. One example are the normalize functions.

There were two called normalize() and normo. After inspection, we determined that they

perform the same task and have the same logic.

3. Functions Added

There are also geometric functions that are new to the updated version of MML.

They are included to support new functionalities added to MML. For example, there is a

function that calculates the circular arc. This function is used in conjunction with the

composition function to create a new way to localize the position of the robot during its

motion control cycle interrupt. This method is cleaner and more efficient. Also, a function

to determine the signed difference between a point and a configuration, is added. This is

included mainly to support the parabola calculations, however is available to all modules.

25

C. MOTION CONTROL

Among other things, the design goals would help produce a software system that is

easily maintainable. This is very crucial in an ongoing research project such as Yamabico.

One area that is critical is the means of representing and categorizing motion control

commands. The use of modes and classes is used as a means of describing the various

control commands. The mode describes the basic types of motions commands. They

include path, stop, rotate. kspiral, and parabola modes presently. Path modes are further

broken down into classes. These class descriptions presently include line, circle and

backward line path tracking. The benefit of using this taxonomy is that it encourages a

modular design. Specifically, when new motion commands need to be added to the library

of commands, a new mode or class only needs to be added.

1. Line

In our implementation of these commands, the simplest case--the line-- was

chosen first. Sequential commands provide a means of putting motion commands into the

instruction buffer, to be later extracted sequentially and passed to the motion control

module. However, since the sequential commands had not been implemented yet, it was

necessary to hard code the line command directly into the motion control module. With this

done, we first tested the robot by allowing it to track a line that was configured parallel to

the robot's configuration with no offset. This enabled us to ensure that the robot could

follow a straight line. When this was accomplished, we allowed the robot to follow a line

that was configured parallel to the robot but offset by thirty centimeters. With this test, we

confirmed that the robot could correct it's path to follow a line that was offset. Finally, we

commanded the robot to follow a line that was not only offset but not parallel. When this

was accomplished, testing for the simple line case was complete.

2. Bline

The backward line (bline) tracking command gives the robot not only a

configuration to follow, but a location to stop. With the bline command, the robot will stop

26

at the location described by the bline configuration. During our implementation, we

initially had challenges with the robot not stopping. This was because we had overlooked

changing the mode to stop mode (thus commanding the robot to stop) when the robot had

reached the bline configuration. Once this correction was implemented, the bline command

worked as expected.

D. SEQUENTIAL COMMANDS

As discussed earlier, sequential commands were a library of functions that allow the

user to interface with the robot. When commands were issued, they were placed into the

instruction buffer. They were then extracted and executed sequentially. Our plan was to test

the line and bline commands called sequentially using the sequential commands and the

instruction buffer. First, we tested the sequential line command. Our only challenges

centered around properly initializing functions. This challenge continued throughout our

entire implementation phase. With the line case, the instruction buffer module was not

being initialized. Next the bline sequential command was implemented with no significant

challenges. The testing of theses commands was broken down into three stages. First, the

robot transitioned from one line that it was following to another. Second, the robot had to

transition from a line to a bline. Finally, it was tested from a bline to another bline.

27

VI. FUNCTION SPECIFICATIONS

In this chapter we list the user and system functions of MML 11. With each

specification, we provide the ANSI C sysntax for the function and a description of the

function.

A. USER FUNCTIONS

1. Set Robot's Configuration (Immediately)

Syntax: void setRobotConfiglmm(CONFIGURATION)

Description:

This function immediately sets/updates the robot's configuration. This can be

done while the robot is at rest or moving.

2. Get Robot's Configuration

Syntax: CONFIGURATION getRobotConfig(void)

Description:

This function returns the current configuration of the robot.

3. Set Configuration (Immediately)

Syntax: void setConfiglmm(CONFIGURATION NewConfig)

Description:

This function enables the user to update the robot's position and theta. However,

the Kappa is not adjusted with this command.

4. Track a Line

Syntax: void line(CONFIGURATION config)

Description:

Basically the robot follows a directed path element defined by the configuration

that is passed as a parameter. The robot leaves this element when it comes to a transition

point or when an immediate motion function are called. The robot's speed is automatically

28

reduced to allow the robot to make sharp turns. This is reflected by the dependency between

Kappa and the robot's speed. In simple terms, the robot's speed must be reduced to allow

it to move safely with larger values of Kappa.

5. Track a Backward Line Segment

Syntax: void bline(CONFIGURATION config)

Description:

The robot follows this directed path element.defined by the configuration that is

passed as a parameter. The robot will track the line confV. until it passes config itself and

will transfer to the next path segment. If there is no next path segment, the robot will start

to slow down at the configuration config and eventually stop with the current acceleration

rate. Precisely speaking, the robot leaves the segment config when the robot's image

reaches config (or is downstream of config).

6. Stop the Robot

Syntax: void stop(void)

Description:

When this function is processed from the instruction buffer, it calls the

immediate comrunand of stop. In doing so, the rotational and linear goal velocities are set to

zero.

7. Set the Robot's Configuration

Syntax: void setRobotConfig(CONFIGURATION config)

Description:

The robot's configuration is set to the value of the parameter config. This

function is processed only if the robot is in a stopped position.

8. Stop the Robot(Immediately)

Syntax: void stoplmm(void)

Des-ription:

29

This function immediately updates the goal velocity to zero in order to stop the

robot. The sequential command stop() calls stoplmm0 once the sequential command

function pair is read from the instruction buffer. Also, users can call stoplmm() directly.

9. Set Linear Velocity(Immediately)

Syntax: void setGoalLinVellmm(double linearVelocity)

Description:

This function sets the goal velocity that the robot will attempt to achieve when

it is following a path. This sets the speed of the robot immediately.

10. Get Linear Velocity

Syntax: double getGoalLinVel(void)

Description:

This functio. retrieves the current goal linear velocity that the robot is following.

11. Set Rotational Velocity(Immediately)

Syntax: void setGoalRotVellmm(double rotationalVeloctiy)

Description:

This function sets and updates the goal rotational velocity that the robot will

attempt to achieve when it is following a path.

12. Get Rotational Velocity

Syntax: double getGoalRotVel(void)

Description:

This function retrieves the current goal rotational velocity that the robot is

following.

13. Set Linear Acceleration(Immediately)

Syntax: void setGoalLinAcclmm(double linearAcceleration)

Description:

30

This function sets and updates the goal linear acceleration that the robot will

attempt to achieve when it is following a path.

14. Get Linear Acceleration

Syntax: double getGoalLinVel(void)

Description:

This function retrieves the current goal linear acceleration that the robot is

following.

15. Set Rotational Acceleration(Immediately)

Syntax: void setGoalRotAcclmm(double rotationalAcceleration)

Description:

This function sets and updates the goal rotational acceleration that the robot will

attempt to achieve when it is following a path.

16. Get Rotational Acceleration

Syntax: double getGoalRotAcc(void)

Description:

This function retrieves the current goal rotational acceleration that the robot is

following.

17. Set Size Constant(Immediately)

Syntax: void setSizeConstantlmm(double SizeConstant)

Description:

This function sets the size constant which is used, amon- other thins. to

influence the sensitivity of the steering function.

18. Get Size Constant

Syntax: double getSizeConstant(void)

Description:

31

This function retrieves the current size constant that is being used in motion

control.

19. Set Total Distance(Immediately)

Syntax: void setTotalDistancehm (double distance)

Description:

This function sets the total distance travelled by the robot to the value passed as

a parameter.

20. Get Total Distance

Syntax: double getTotalDistance(void)

Description:

This function returns the total distance travelled by the robot.

21. Halt Motion(Immediately)

Syntax: void haltMotionlmm(void)

Description:

This function brings the robot to a rest. It is different from the stop functions in

that it's purpose is a temporary halt with the assumption that you will continue or resume

the motion. Accordingly, the original goal velocity is saved to be later used by the resume

motion command to allow the robot to continue travelling at the same speed as it was

travelling before it halted.

22. Resume Motion(Immediately)

Syntax: void resumeMotionlmm(void)

Description:

This function is to be called only after a halt velocity command. It allows the

robot to resume the speed it was travelling before the haltMotionlmm0 was given.

23. Parabola(Immediately)

Syntax: void parabolalmm(PARA newParabola)

32

Description:

This is the immediate function that commands the robot to follow the parabola

configuration passed in the parameter.

24. Euclidean Distance

Syntax: double euDis(double xl. double y.1, double x2 double y2))

Description:

This function computes the Euclidean, distance between two given points

25. Normalize

Syntax: double norrn(doubie angle)

Description:

This function, when given an angle in radian, returns a normalized angle

between -it and I[. This is the most common normalizing function used in the system.

26. Positive Normalize

Syntax: double positiveNorm(double angle)

Description:

This function. when given an angle in radian. returns a normalized angle

between 0 and 271.

27. Negative Normalize

Syntax: double negativeNorm(double angle)

Description

This function, when given an angle in radian, returns a normalized angle

between -27t and 0.

28. Normalize PI/2

Syntax: double normPlover2(double angle)

Description:

33

This function normalizes the input angle between -PI/2 and P1/2. This was

specifically designed for parabola tracking calculations.

29. Signed Difference

Syntax: double signedDiff(CONFIGU RATION config, POINT pt)

Description:

The signed difference function calculates the size distance between a point and

a configuration. If the value returned by the function is positive, that means that the point

is to the left of the configuration. If the value returned is negative, then the point is to the

right of the configuration.

30. Define Configuration

Syntax: CONFIGURATION defineConfig(double x, double y, double theta,

double kappa)

Description:

When passed the values that define a configuration (x,y,theta, and kappa), this

function allocates and assigns a configuration. It returns a configuration.

31. Define parabola

Syntax: PARA defineParabola(double xf,double yf, double xd, double yd,

double td)

Description:

When passed the values that define a parabola (xf, yf, (the focal point), xd, yd,

td (the directrix), this function allocates and assigns a parabola. It returns a pointer to a

parabola.

32. Reverse orientation

Syntax: CONFIGURATION reverseOrientation(CONFIGURATION original)

Description:

34

The purpose of this function is to reverse the orientation of a given coi-Aguration

by 180 degrees. You pass in the original configuration and then the reversed configuration

is returned.

33. Find symmetric configuration

Syntax: CONFIGURATION findSymConfig(double a, double alpha)

Description:

This function finds the symmetric configuration of an original configuration.

The parameter -- a -- is the distance from either configuration to the intersection of both

lines determined by the two configurations. The parameter -- alpha -- is the angular

difference between both orientations. One drawback to this function is that it is not possible

to represent a symmetric configuration whose alpha is equal to. FindSymConfigl () is used

to cover these situations.

34. Find symmetric configuration I

Syntax: CONFIGURATION findSymConfig 1 (double a, double alpha)

Description:

This function performs the same operation as findSymConfig0, except that it

overcomes the drawback of not being able to handle the situation when alpha equals.

35. Inverse

Syntax: CONFIGURATION inverse(CONFIGURATION original)

Description:

The purpose of this function is to calculate the inverse of a given configuration

such that: original * inversed = Identity. The parameter --original -- is the original

configuration in global coordinates. This function returns the inversed configuration.

36. Compose

Syntax: CONFIGURATION compose(CONFIGURATION *first,

CONFIGURATION *second)

35

Description:

The purpose of this function is to calculate the composition of two

configuratiens. Specifically, the function takes parameter --first-- and composes it with

parameter --second-- to calculate and return the composed value. A typical example of the

usage of this function is to determine the goal position of a configuration in global

coordinates. In such an example, the first argument would be the original configuration and

the second argument would be the goal configuration in the original configuration's local

coordinate system. The returned value would then be the goal configuration in global

coordinates.

37. Circular arc

Syntax: CONFIGURATION `;circularArc(double 1, double alpha)

Description: Given alpha and the arc length 1, this function calculates the final

configuration (see figure below). The main purpose of this function is to be used in

conjunction with compose function to form the new localization function. In this case,

length would actually be delta-s and alpha would be delta-theta. CircularArc0 would

determine the configuration after the incremental move in the local coordinate system of

the original configuration. Then composeo would then take the original configuration (in

36

global coordinates) and the incremental configuration (in local coordinates) to determine

the incremental configuration in global coordinates.

y

N

N N\ r

N
N

N
N

YII

xlx

Figure 14: Circular arc after (Kanayama, 94)

B. SYSTEM FUNCTIONS

1. Initialize the Motion Control System

Syntax: void InitMotion(void)

Description:

This function initializes the motion control system. Specifically, InitMotion0

initializes all of the variables local to motion control module to their default values. Also

in this initializing function, SetMotionlntMechanism0 is called which establishes the

synchronous interrupt mechanism for motion control. Next, the wheels subsystem is

37

initialized with the InitalizeWheels() function call. Finally, the wheels of the robot are

enabled withe the MotionOno function call.

2. Motion Control Interrupt

Syntax: void MotionSysControl(void)

Description:

Function MotionSysControl(void) is the interrupt handler workhorse and is

called from the assembly interrupt handler shell. Its first task is to update the change in

position and orientation through calls to the module responsible for movement. It then uses

this information in the motion control laws to derive the commanded linear and rotational

velocities required for this motion control cycle. Finally, it passes these computed

velocities back to the movement module for execution.

3. Set Path Element

syntax: void setPathElement(PATHELEMENT newPath)

Description:

The function setPathElement() is one of several functions that act as an interface

for modules outside of MotionSysControl() to access variables that are within

MotionSysControl(). Specifically, setPathElemento sets the value of the current path

element in motion control to the path element passed in as a parameter.

4. Get Path Element

Syntax: PATHELEMENT getPathElement(void)

Description:

Similar to setPathElement, ,etPathElement acts an interface for functions

outside of the motion control module. The function returns the current path element in the

motion control module.

5. Get Current Image

Syntax: CONFIGURATION getCurrentlmage(void)

38

Description:

This function is also an interface for functions outside of the motion control

module. This function returns that current image that is in the motion control module.

6. Initialize Motion Support Commands

Syntax: void InitMotionSpt(void)

Description:

This function initializes the variables used in motionsupport.c.

7. Update Total Distance

Syntax: void updateTotalDistance(double deltaDistance)

Description:

This function adds the value of the parameter to the running total distance.

8. Get Parabola Configuration(Immediately)

Syntax: PARA getParabolalmm(void)

Description:

This function retrieves the latest parabola that has been processed by the robot.

It was developed for the paraRule0 function in motion control.

9. Motion On

Syntax: void MotionOn(void)

Description:

This function enables the wheels on the robot. It is called in InitMotiono.

10. Motion Off

Syntax: void MotionOff(void)

Description:

This function disables the wheels on the robot. It is called in main.c after usero.

39

11. Blink the LED

Syntax: void blinkLED(void)

Description:

This function controls the output from the interrupt driven motion control

system. Specifically, this function turns a LED on for a second and off for a second,

repeatedly while the motion control interrupt is being called. This is helpful for debugging

purposes. If the light stops blinking, you know that the motion control system is not being

called.

12. Limit Robot Movement

Syntax: double limit(double ystar)

Description:

Th;s function is used by the steering function to keep the robot from doing loops

when the distance between the robot's position and the path that the robot is following is

very large.

40

VII. RESULTS

With the new version of MML, many significant improvements are achieved. First,

global variables are reduced from 152 to zero. Using the global variable and cah hierarchy

trace, we limit all variable visibility to a module or function level scope. This directly

enhances coupling because dependencies between modules caused by global variables is

eliminated Afnv function from an outside module has to access these variables through

function interfaces. Also. data flow is further controlled by statically declaring variables

and funct.ons. Modifiability is improved because a developer needs only to be concerned

with variables in the module he or she is working in. Finally, functional cohesion is

improved because data are encapsulated and functions are structured logically. For

example, in MML10, there are several occasions where code that supports a motion

command is found in various modules. One in particular is the rotate command. Some of

its code is in the motion control module and the rest is in the instruction buffer module. In

MML 11, all of the rotate command related code in located in the motion control module.

Recent work on the new MML provide testimony to MML improvements. For

example, members of the Yamabico group read and understood the new code without

having the implementor available. They attribute this high degree of understanding and

readability to the extensively documented code in the form of comments. Also, members

have already began adding new functionality to the new MML. For example, one member

is adding parabola tracking logic to motion control. Instead of having to study the entire

motion control module, we simply define the interfaces needed. He is only concerned with

the interfaces--receiving the information he needs for his function, and providing the data

needed in the calling path tracking function. Finally, the new MML is stable. It runs

correctly consistently, and does what is expected. Furthermore, since little or no

adjustments to already tested code is necessary, new functions and modules are running

quickly with fewer initial run-time errors.

41

A major focus throughout the design and implementation of MMLl 1 has been the

grouping of data. As a result, most data is encapsulated with the same module as the

functions that use them For e\ample. motion control related data is located with motion

control related funcuonN m thr mnotlon control module. This is true throughout the entire

Yamabico subs\ stemn X .'\ C ed. as a consequence, is an object oriented designed

system. Although ANSi . not an Object Oriented Language (OOL), our design has

followed this methodolog.\ through the grouping of data. This makes it easy to move MML

to an OOL in its next upgrade.

42

VIII. CONCLUSIONS

A. SUMMARY

Our initial goal was to construct a software system for a real-time mobile robot that

was stable, readable, and easily modifiable. We first examined those attributes that were

desirable in any software system. Then we analyzed MML10 using global variable and

call-hierarchy tracing. Considering the desired software attributes, the structural challenges

of MML 10, and the design assumptions for the MML end users, we developed design goals

for MML 11. Following from the results of the previous chapter, we achieved our goal. The

new system was more stable, easier to read and understand, and simpler to modify.

B. FUTURE RESEARCH

There are two areas of recommend future research. First, a graphical simulator for

Yamabico based on MML 11. would be a possible area of research. Considering the

modular design of MML, this would not be a monumental task.

With the completion of this thesis, MML is now completely written in ANSI C. In

restructuring the code, data has been encapsulated providing a object designed software

system. Yamabico lends itself to this type of design methodology, because its subsystems,

such as wheels, sonar, etc., provide a modular structure in which to design the software.

The next logical step would be to write MML in an Object Oriented Language (OOL) such

as C++.

43

APPENDIX A. MOTION CONTROL RELATED MODULES

A. DEFINITIONS.H

File Name: definitions.h
Description: This file contains standard definitions and data type

declarations used throughout the rest of the MML system.

#ifndef _DEFINITIONS_H
#define _DEFINITIONSH

/* Always include this because it is needed by most modules */

#include "constants.h"

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long LONG;
typedef unsigned long *ADDRESS;

typedef enum MODE {NOMODE, STOPMODE, PATHMODE, ROTATEMODE,
PARAMODE, BIDIRMODE, KSPIRALMODE} MODE;

typedef enum CLASS {NOCLASS, LINECLASS, CIRCLECLASS, BLINECLASS} CLASS;

typedef enum {f cE =0, TRUE} BOOLEAN;

typedef struct {
MODE mode;
CLASS class;

}PATHTYPE;

typedef struct {
double Linear;
double Rotational;

} VELOCITY;

typedef struct
double X;
double Y;
POINT;

typedef struct{
POINT Posit;
double Theta;
double Kappa;
CONFIGURATION;

typedef struct{
POINT Focus;

44

CONFIGURATION Directrix:
} PARA:

typedef struct{
CONFIGURATION config:
PATHTYPE pathType;
PATHELEMENT;

#endif

B. MAIN.C
**

File Name: main.c
Description: This file contains main). Its purpose is to initialize all

sub-systems and then pass control to usero. Once user() is
complete, the routine returns control to the resident debugger.

#include "definitions.h"
#include "memsys.h"
#include "serial.h"
#include "queue.h"
#include "traceh"
#include "motion.h"
#include "time.h"
#include "sonar.h"
#include "system.h"

/*** Local Prototypes *
void user(void);
void _main(void);
void Unexpected(void);

int
maino

InitCPU0;

InitTimeo;

InitQueue(; /* init instruction buffer */

InitTrace0; /* init trace mechanism */

InitMemsyso; /* memory manager - lites LED 5 */

45

InitMotion0; /* init motion, wheels. and motion logging /

#ifdef SONAR
InitSonar0;

#endif

Disablelnterrupts()

/* All functions above here must initialize variables only. They
should not rely on any interrupt handlers, timers, etc. */

InitHardware); P init interrupt handlers and HW registers 1
/* Handles ALL hardware including motion,

serial and sonar /

#ifdef TIMER
/* fineTiming is used for timing the motion control cycle */

lnitClocktick(O);
#endif

Enablelnterruptso:

MotionOn);

usero;

MotionOff0;

lOcloseo; /* dump all the data files to the host */

rexit0; /* clean-up */

return 0;

Routine main is required when using the 'gcc' compiler. This is because the
compiler inserts a call to this routine at the beginning of the main function
defined for the program. This is normally taken care of by linking in the
bootstrap object modules, however these are not added to a program that
operates without an operating system such as the mml program. Therefore, since
this routine is called, the only requirement is for this routine to simply
return back to the main program.

void main()
/* empty */

46

•**•, .,ti,• ~t.. • *..** ... * * =..Q..,t = .*l . w.. ,w

Function Unexpected is the C version of Scott's bla;nk interrupt handler

void Unexpected(void)
(1/ empty /}I

C. MOTION.H

File Name: motion.h
Description: This file contains the prototypes/interface for the functions

available in the motion
control module.

#ifndef MOTION H

#include "definitions.h"

**

Function: InitMotion0
Purpose: initializes the motion subsystem by assigning default values to the local variables

and establishing the interrupthandling mechanism.
Parameters: none
Returns: void
Comments:

void InitMotion(void):

Function: MotionSysControl0
Purpose: the interrupt handler workhorse and is called from the assembly interrupt

handler shell.
Parameter: none
Returns: void

Comments:

void MotionSysControl(void);

**

INTERFACE FUNCTIONS SECTION

The following section defines the functions that provde an interface to values
within in the motion control modules by functions in other modules. These
routines are public.

47

***** ********************.********* *** * * ******* * ***** * /**

Function: setPathElementO
Purpose: Sets the value of the current path element in motion control to

the path element passed in as a parameter.
Parameters: PATHELEMENT newPath
Returns: void
Comments:

************************* **** ********************

void setPath Element(PATHEL EM ENT newPath);

* **.*******

Function: getPathElement0
Purpose: retrieves the current path element in the motion control module
Parameters: void
Returns: PATHELEMENT
Comments:

PATHELEMENT getPathElement(void);

Function: getCurrentlmageO
Purpose: retrieves the current image that is in the motion control module
Parameters: void
Returns: CONFIGURATION -- the current image
Comments.

**

CONFIGURATION getCurrentlmage(void);

Function: setRobotConfiglmm0
Purpose: To set and update the robot configurations
Parameters: CONFIGURATION NewConfig
Returns: void
Comments:

*******t************************4*• **- *********************

void setRobotConfiglmm(CONFIG URATION NewConfig):

1

Function: getRobotConfig0
Purpose: Retreives the current robot configuration
Parameters: Pointer the a variable where the current values for the robot's

configuration will be placed.
Returns: void

48

Comments:
**

CONFIGURATION getRobotConfig(void);

Function: setConfiglmm0
Purpose: To set and update the robot's position and thata but not

it's kappa
Parameters: CONFIGURATION NewConfig
Returns: void
Comments:

********************************,*******************/***

void setConfiglmm(CONFIGU RATION NewConfig);

#endif

D. MOTION.C

File Name: motion.c
Description: This file provides the routines and data structures needed to

provide the motion control capability for the robot.

#include "definitions.h"
#include "wheels.h"
#include "math.h"
#include "queue.h"
#include "motionlog.h"
#include "geometry.h"
#include "iosys.h"
#include "stdiosys.h"
#include "time.h"
#include "system.h"
#include 'trace.h"
#include "motion.h"
#include "motionsupport.h"
#include "seqcmd.h"

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the syntem.

S**

/* constant values */

49

#define SMALLERROR 0.0001
#define DEFAULTLINACC 10.0
#define DEFAULTROTACC 0.5
#define DEFAULTGOALVELLIN 20.0
#define DEFAULTGOALVELROT 0.0

static double aa,bb,cc,kk; /* used for steering function in PathRule() */

static VELOCITY Commanded; /*commanded velocities 1

static double kappaCommanded; /* commanded kappa */

static CONFIGURATION vehicle,
currentlmage; /* local variables that hold the

vehicle and current image
values during motion control
cycles */

static PATHELEMENT currentPath; /* holds the current path element values */

#ifdef DEBUG
#define DEBUGFILE "debug.log"
#define DEBUGSIZE Oxl 0000
#define DEBUGFREQUENCY 1

IOhandle debuglO;
#endif

#ifdef TIMER
#include "clocktick.h"

#define TIMERFILE "timer.log"
#define TIMERSIZE Oxl 0000
#define TIMERFREQUENCY 1

IOhandle TimerLog;
#endif

S***

The following static function declarations are the prototypes for the
encapsulated functions.

***********************.*************** ***** ***** *******************.*

/* calculates the vehicle's next configuration based on the distance
travelled in the last motion control cycle */

static CONFIGURATION

50

localize(CONFIGURATION robot, double deltaS. double deltaTheta);

/* calculates the next commanded linear velocity value. /
static double GetLinearVelocity(double ActualVelocity.

double LastCommandedVelocity):

/* calculates the distance remaining on a path to reach a configuration.
Used with bline calculation. */

static double restOfPath(void);

/* determines whether the vehicle needs to decelerate.
Used in bline calculation *1

static int needsTo Decelerate(double actualVelocity);

/* determines whether it's time to process the next instruction */
static void transition(void):

/* calles a motion rule function based on the mode of travel that the
vehicle is in */

static VELOCITY motionRules(VELOCITY Actual, VELOCITY Commanded):

/* motion rule for following a path */
static VELOCITY path Rule(VELOCITY Actual, VELOCITY Commanded);

/* motion rule for stopping */
static VELOCITY stopRule(VELOCITY Actual, VELOCITY Commanded);

/P motion rule for rotating */
static VELOCITY rotateRule(VELOCITY Actual, VELOCITY Commanded):

/* motion rule for following a K-spiral */
static VELOCITY spiralRule(VELOCITY Actual, VELOCITY Commanded):

/* determines the Y-star for a vehicle following a line *
static double computeLineYstar(void);

/* determines the Y-star for a vehicle following a circle */

static double computeCircleYstar(void);

51

/* updates the vehicle image when it is following a line */
static void updateLinelmage(void):

/* updates the vehicle image when it is following a circle 1
static void updateCirclelmage(void);

*****************************.***************************

MOTION CONTROL SECTION

The following section defines the functions that provide access to the
motion control system. These routines are public.

.********

Function InitMotiono initializes all of the private global variables
in this module to the default values. It then calls SetTimer to
program the 5th timer on serial board #1 (the second serial board)to generate
synchronous interrupts every 1 Oms. After the timer has been set up, the
interrupt handling routine is made available to the system by the call to
SetMotionlnterruptHandler0.

**************************************,**************I****

void
InitMotion(void)
{

/* Initialize motion related systems */
InitMotionsupporto;
InitSeqcmd0;
InitWheels0;

/' Initializes the distance. Updated every motion control cycle by deltaS */
setTotalDistancelmm(0.0);

/* Initialize the goal velocities */

setGoalLinVelImm(DEFAULTGOALVEL LIN);
setGoalRotVelImm(DEFAULTGOALVELROT);

/* Initialize the commanded velocities */
Commanded.Linear = 0.0;
Commanded.Rotational = 0.0;

/* Initalize the linear and rotational acceleration */
setGoalLinAcclmm(DEFAULTLINACC);
setGoalRotAcclmm(DEFAULT.ROTACC);

/* Initialize the size constant */
setSizeConstantlmm(DISTCONSTANT);

52

/* Initialize the commanded kappa /
kappaCommanded = 0.0;

/* Initialize the vehicle configuration */

vehicle.Posit.X = 0.0;
vehicle.Posit.Y = 0.0;
vehicle.Theta = 0.0;
vehicle.Kappa = 0.0;

/* Initalize the current path configuration */
currentPath.config.Posit.X = 0.0;
currentPath.config.Posit.Y = 0.0;
currentPath.config.Posit.Y = 0.0;
currentPath.config.Theta = 0.0;
currentPath.config.Kappa 0,0;
currentPath.pathType.mode STOPMODE;
currentPath.pathType.class = NOCLASS;

/* The following 4 variables are used in the steering function found
in the pathRule0 which is in this module *

kk = 1.0 / getSizeConstanto;
aa = 3.0 * kk;
bb = 3.0 *kk * kk;
cc= kk * kk * kk;

/* enables the wheels. Is turned off at the end of main.c after
user() is called *

/* Initialize data logging here if necessary */

#ifdef DEBUG
debuglO = lOopen(DEBUG_FILE, DEBUGSIZE, DEBUGFREQUENCY);

#endif

#ifdef TIMER
TimerLog = IOopen(TIMER_FILE, TIMERSIZE, TIMERFREQUENCY);

#endif

Function: MotionSysControl()
Purpose: the interrupt handler workhorse
Parameters: None

53

Return: void
Comments:it is called from the assembly interrupt handler shell. Its first task is
to update the change in position and orientation through calls to the module
responsible for movement. It then uses this information in the motion control
laws to derive the commanded linear and rotational velocities required for this
motion control cycle. Finally, it passes these computed velocities back to
the movement module for execution.

void
MotionSysControl(void)

double deltaTheta;
double deltaS;
VELOCITY Actual; /* variable used to hold the actual vehicle velocity */

#ifdef TIMER
int tick = getCount0;

#endif

/* updates the distance traveled by both wheels--found wheels.c */

UpdateMovement0;

/*returns the linear distance the vehicle has travelled between the last two

calls to UpdateMovemento--found in wheels.c */

deltaS = GetDistanceTraveledo;

/* returns the difference between the changes in the distance of the left
and right wheels between the last two calls to UpdateMovemento. Found in wheels.c */

deltaTheta = GetOrientationChangeO;

/* Keeps track of the total distance traved by vehicle */

updateTotalDistance(deltaS);

/*update the vehicle's configuration based on the distance travelled
during the last motion control cycle */;

vehicle = localize(vehicle, deltaS, deltaTheta);

r next 2 lines calculate the actual velocity that robot maintained based
on the distance travelled over the last motion control cycle. *

Actual.Linear = deltaS / MOTIONCONTROLCYCLE;
Actual.Rotational = deltaTheta / MOTIONCONTROLCYCLE;

/* logs the values of the vehicle configuration. nata is
written to a buffer during each motion control cycle and
then downloaded to a file when the program ends. LogMotion

54

is found in motionlog.c /

LogMotion(vehicle);

/* This can be relocated just about anywhere... */

#ifdef DEBUG
Iaprintf(debuglO, "");

#endif

r motionRules returns the commanded velocities that will be

used in the next motion control cycle. Found in this module.*/

Commanded = motionRules(Actual,Commanded);

r* SetMovemento translates the commanded linear and
rotational velocities into commanded velocities for each
wheel. Found in wheels.c */

SetMovement(Commanded.Linear,Commanded.Rotational);

transition(; /* reads next instruction if needed. Found in this module.*/

r Increments the 'lime" every motion control cycle for the
various timer functions. Found in time.c */

clockTick0;

/* blinkLED is used to contro! output from interrupt driven
motion control system. It turns an LED on and off every
second. Function found in this module.*/

blinkLED(O;

#ifdef TIMER
IOprintf(TimerLog, "%/of \n", (tick - getCounto) / 250.0);

#endif

}

Function: localize0
Purpose: Calculates the next configuration of the vehicle based on the

distance that the robot travelled during the last motion
control cycle

Parameters: CONFIGURATION robot --from the last motion control cycle
double deltaS -- linear distance travelled in last

motion control cycle
double deltaTheta --angular change in the last motion

control cycle
Returns: CONFIFURATION --of the vehicle based on the distance travlled

55

during the last motion control cycle
Comments:

CONFIGURATION
localize(CON FIGURATION robot, double deltaS, double deltaTheta)

CONFIGURATION tempRobot;

tempRobot =circularArc(deftaS, deltaTheta);
robot = compose(&robot, &tempRobot);
robot.Kappa = kappaCommanded;

return robot;

Function Geti-inearVelocity~calculates the linear component of the commanded
velocity.

static double
Getl-inearVelocity(double ActualVelocity, double CommandedlVelocity)

double stop~istance;
double deceleration;
double VelocityChange;

if (currentPath.pathType.class == BLINECLASS &&
needsToDecelerate(ActualVelocity))

stop~istance =restOfPatho;
if (stopDistance <= 0.0)(

Commandled Velocity = 0
currentPath.pathType. mode = STOPMODE;

else
deceleration = (ActualVelocity * ActualVelocity)/(2 *stopDistance);

CommandedVelocity = Max(CommandedVelocity - deceleration*
MOT!ONCONTROLCYCLE, 0);

else{
VelocityChange = getGoalLinAcc() * MOTIONCONTROLCYCLE;

if (ActualVelocity < getGoalLinVelO))
CommandedVelocity = Min(CommandedVelocity + VelocityChange,

getGoalLinVelO));
else

Commanded Velocity = Max (Commanded Velocity - VelocityChange,
getGoalLinVel());

56

}return CommandedVelocity;

Function restOfPath0 calculates the remaining distance to the ending
configuration for the BLINE class

static double
restOfPath(void)
{

return ((currentPath.config.Posit.X -
currentlmage.Posit.X) * cos(currentlmage.Theta) +
(currentPath.config.Posit.Y -
currentlmage.Posit.Y) * sin(currentlmage.Theta));

}

Function: needToDecelerate0
Purpose: To determine whether the robot needs to begin decelerating. Such

as in a bline function.
Parameters: double actualVelocity (linear)

Returns: It returns 1 if it needs to decelerate. Otherwise, it returns 0.
Comments:

static int
needsToDecelerate(double actualVelocity)
{

double decelerate = 0.0;

if (currentPath.pathType.ciass == BLINECLASS)
if (2.0 * getGoalLinAcc0 * restOfPatho <= actualVelocity * actualVelocity)

decelerate = 1;
}

return decelerate;
}

Function: transitiono
Purpose: If the leaving point flag is true then read the next instruction
Parameters:
Returns: void
Comments:

static void
transitiono
{

switch(currentPath.pathType.mode) {

57

case STOPMODE:
ProcessInstructiono;
break;

case PATHMODE:
switch(currentPath.pathType.class)

case LINECLASS:
if (isAtTransitionPto)

Processlnstructiono;
break;

case BLINECLASS:
break;

case NOCLASS:
case CIRCLECLASS:
default:

break;
/* class switch /

break;

case NOMODE:
case ROTATEMODE:
case PARAMODE:
case BIDIRMODE:
case KSPIRALMODE:
default:

break;
} /* mode switch */

Function: motionRules0
Purpose: To calculate the linear velocity and rotational velocity based

on the type of motion that the robot is executing.
Parameters: VELOCITY actual, commanded
Returns: The commanded linear and rotational velocities,
Comments:

static VELOCITY
motionRules(VELOCITY actual, VELOCITY commanded)
{

switch(cu rrentPath.pathType.mode) {
case STOPMODE:

commanded = stopRule(actual,commanded);
break;

case PATHMODE:
commanded = pathRule(actual,commanded);
break;

58

case ROTATEMODE.
commanded = rotate Rule(actual,commanded),
break;

case KSPIRALMODE:
commanded = spiralRule(actual,commanded);
break;

case NOMODE:
case PARAMODE:
case BIDIRMODE:
default:

break;
}
return commanded;

Function: pathRuleO
Purpose: To determine the linear and rotational velocities needed to put or

keep Yamabico on the path.
Parameters: VELOCITY actual, commanded
Returns: The required linear velocity, rotational velocity
Comments:

static VELOCITY
pathRule(VELOCITY actual, VELOCITY commanded)

double ystar,dkappa, deltaDistance;

switch(currentPath.pathType.class) {
case BLINECLASS:
case LINECLASS:

ystar = computeLineYstaro;
updateLinelmageo;
break;

case CIRCLECLASS:
ystar = computeCircleYstaro;
updateCirclelmage0;
break;

case NOCLASS:
detault:

break;
)

dkappa = -aa * (vehicle.Kappa - currentlmage.Kappa)
-bb * norm(vehicle.Theta - currentlmage.Theta)
-cc * limit(ystar);

59

deltaDistance = MOTIONCONTROLCYCLE * commanded.Linear;
kappaCommanded = vehicle.Kappa + dkappa * deitaDistance;

commanded. Linear = GetLinearVelocity(actual.Linear,commanded.Linear);
commanded. Rotational = kappaCommanded * commanded.Linear;

return commanded;

Function: stopRuleO
Purpose: updates the commanded velocity to 0 (zero) to stop the robot
Parameters: VELOCITY actual, commanded
Returns: The required linear velocity, rotational velocity
Comments:

static VELOCITY
stopRule(VELOCITY actual, VELOCITY commanded)

commanded.Linear = 0.0;
commanded.Rotational = 0.0;
return commanded;

I

Function: rotateRuleo
Purpose: updates the commanded velocity to rotate the robot
Parameters: VELOCITY actual, commanded
Returns: The required linear velocity, rotational velocity
Comments:

static VELOCITY
rotate Rule(VELOCITY actual, VELOCITY commanded)
{

return commanded;}

Function: spiralRule0
Purpose: To determine the linear and rotational velocities needed to put or

keep Yamabico on the path.
Parameters: VELOCITY actual, commanded
Returns: The required linear velocity, rotational velocity
Comments:

static VELOCITY

60

spiralRule(VELOCITY actual, VELOCITY commanded)
{

return commanded;

Function: computeLineYstar0
Purpose: To determine the y* when the robot is tracking a line
Parameters: none
Returns: double
Comments:

static double
computeLineYstaro

double ystar;
CONFIGURATION path = currentPath.config;

ystar = -(vehicle.Posit.X - path.Posit.X) *

sin(path.Theta) +
(vehicle.Posit.Y - path.Posit.Y) *

cos(path.Theta);
return ystar;

Function: computeCircleYstar0
Purpose: To determine the y* when the robot is tracking a line
Parameters: none
Returns: double
Comments:

static double
computeCircleYstarO

/* not implemented yet */
return 0.0;

Function: updateLinelmage0
Purpose: To update the current image of the vehicle tracking a line
Parameters: none
Returns: void
Comments:

static void
updateLinelmage (void)

61

double closest;
CONFIGURATION path = currentPath.config;

closest =(((vehicle.Posit.Y - path.Posit.Y) * cos(path.Theta)) -
((vehicle.Posit.X - path.Posit.X) * sin(path.Theta)));

currentlmage.Posit.X = vehicle.Posit.X + closest sin(path.Theta);
currentlmage.Posit.Y = vehicle.Posit.Y - closest * cos(path.Theta);
currentlmage.Theta = path.Theta:
currentlmage.Kappa = path.Kappa;

return;

.**************

Function: updateCirclelmageO
Purpose: To compute the current image of the vehicle tracking a circle
Parameters: none
Returns: void
Comments:

static void
updateCirclelmage(void)

double gamma, radius;
POINT origin;
CONFIGURATION path = currentPath.config;

radius = (1.0 / path.Kappa);

origin.X = path.Posit.X - radius * sin(path.Theta);
origin.Y = path.Posit.Y + radius cos(path.Theta);

gamma = atan2(vehicle.Posit.Y - origin.Y, vehicle.Posit.X - origin.X);

currentlmage.Posit.X = origin.X + fabs(radius) * cos(gamma);
currentlmage.Posit.Y = origin.Y + fabs(radius) * sin(gamma);
currentlmage.Theta = norm(gamma + (PI/2) * (path.Kappa'fabs(path. Kappa)));
cu rrentlmage. Kappa = path.Kappa;

INTERFACE FUNCTIONS SECTION

The following section defines the functions that provde an interface to values
within in the motion control modules by functions in other modules. These

62

routines are public.

/*********** ***** *** *** *** ***** ***** ** *** *** **

Function: setPathElement0
Purpose: Sets the value of the current path element in motion control to

the path element passed in as a parameter.
Parameters: PATHELEMENT newPath
Returns: void
Comments:

void
set PathElement(PATHELEM ENT newPath)

Disable Interruptso;

currentPath.config.Posit.X = newPath.config.Posit.X;
currentPath.config.Posit-Y = newPath.config.PositY;
currentPath.config.Theta newPath.config.Theta;
currentPath.config.Kappa newPath.config.Kappa;
currentPath.pathType.mode = newPath.pathType.mode;
currentPath.pathType.class = newPath.pathType.class;

Enablelnterruptso;
I

Function: getPathElement0
Purpose: retrieves the current path element in the motion control module
Parameters: void
Returns: PATHELEMENT
Comments:

PATHELEMENT
getPath Element(void)
{

return currentPath;

Function: getCurrentlmage0
Purpose: retrieves the current image that is in the motion control module
Parameters: void
Returns: CONFIGURATION -- the current image
Comments:

CONFIGURATION

63

getCurrentlmage(void)
{

return currentlmage;}

Function: setRobotConfiglmm0
Purpose: To set and update the robot configuration
Parameters: CONFIGURATION NewConfig
Returns: void
Comments:

void
setRobotConfiglmm(CONFIGURATION NewConfig)
{

Disable Interrupts0;

vehicle.Posit.X = NewConfig.Posit.X;
vehicle.Posit.Y = NewConfig.Posit.Y;
vehicle.Theta NewConfig.Theta;
vehicle.Kappa = NewConfig.Kappa;

Enablelnterruptso;
}

** •*********

Function: getRobotConfig0
Purpose: Retreives the current robot configuration
Parameters: Pointer the a variable where the current values for the robot's

configuration will be placed.
Returns: void
Comments:

CONFIGURATION
getRobotConfig(void)
{

Disable Interrupts);
return vehicle;
Enable lnterrupts0;

}

Function: setConfiglmmo
Purpose: To set and update the robot's position and thata but not

it's kappa
Parameters: CONFIGURATION NewConfig
Returns: void
Comments:

64

void
setConfiglmm(CONFIGURATION NewConfig)

Disable lnterruptso;

vehicle.Posit.X = NewConfig.Posit.X;
vehicle.Posit.Y = NewConfig.Posit.Y;
vehicle.Theta = NewConfig.Theta;

Enablelnterrupts0;

E. MOTIONSUPPORT.H

File name: motionsupport.h
Description: contains miscellaneous functions prototypes that support

motion control
Revision history:

#ifndef _MOTIONSU PPORT_H
#define -MOTIONSUPPORT_H

Function: InitMotionSpt0
Purpose: Initializes the variables used in motionsupport.c
Parameters: void
Returns: void
Comments:

void InitMotionsupport(void);

Function: stoplmmO
Purpose: updates the goal velocity to zero inorder to stop the robot
Parameters: void
Returns: void
Comments: This is the immediate stop command

void stoplmm(void);

Function: setGoalLinVellmmo
Purpose: sets and updates the goal linear velocity of the robot
Parameters: double LinearVelocity

65

Returns: void
Comments:

void setGoalLinVellmm(double LinearVelocity);

Function: getGoalLinVel()
Purpose: Retreives the current goal linear velocity
Parameters: void
Returns: double
Comments:

double getGoalLinVel(void);

************************* ** •.**** * *** * * * **** *** ***** **** ** ** *

Function: setGoalRotVellmm()
Purpose: Sets and updates the goal rotational velocity
Parameters: double RotationalVelocity
Returns: void
Comments:

*r***w *** **** **** *** ** ****** ********************

void setGoalRotVellmm(double RotationalVelocity);

Function: getGoalRotVel()
Purpose: retreivies the current goal rotational velocity
Parameters: void
Returns: double
Comments:

double getGoalRotVel(void);

Function: setGoalLinAcclmm0
Purpose: Sets and updates the goal linear acceleration
Parameters: double LinearAcceleration
Returns: void
Comments:

void setGoalLinAcclmm(double LinearAcceleration);

Function: getGoalLinAcc0
Purpose: retreives the current goal linear acceleration
Parameters: void
Returns: double

66

Comments:

double getGoalLinAcc(void);

Function: setGoalRotAcclmm0
Purpose: Sets and updates the goal rotational acceleration
Parameters: double RotationalAcceleration
Returns: void
Comments:

void setGoalRotAcclmm(double RotationalAcceleration);

Function: getGoalRotAccO
Purpose: Retreives the current goal rotational acceleration
Parameters: void
Returns: double
Comments:

double getGoalRotAcc(void);

Function: setSizeConstantlmmo
Purpose: sets the size constant which influences the sensitivity of the

steering function
Parameters: double sizeConstant
Returns: void
Comments:

void setSizeConstanilmm(double SizeConstant);

Function: getSizeConstanto
Purpose: returns the current size constant being used in motion control
Parameters: void
Returns: double size constant
Comments:

double getSizeConstant(void);

Function: setTotalDistancelmm0
Purpose: sets the total distance travelled by the rc • value passed

as a parameter
Paramete;.,;: double distance

67

Returns: void
Comments:

void setTotalDistancelmm(double distance);

Function: updateTotalDistance()
Purpose: adds the value of the parameter to the running total distance
Parameters: double deltaDistance
Returns: void
Comments:

void updateTotalDistance(double deltaDistance);

Function: getTotalDistance()
Purpose: returns the total distance travelled by the robot
Parameters: void
Returns: double totalDistance
Comments:

double getTotalDistance(void);

Fu, .-tion: getTotalDistancelmm0
Purpose: returns the total distance travelled by the robot
Parameters: void
Returns: double total Dki 3 nce
Comments:

******************* .** .- ***************.* **************

double getTotalDislao, ,imm(void);

Function: haltMotionimmO
Purpose: brings the robot to a rest. Is different from stop in that it's

original goal velocity is saved to be later used by the resume
command to allow the robot to continue travelling at the same
speed.

Parameters: void
Returns: void
Comments:

void haltMotionlmm(void);

Function: resumeMotionlmm0

68

Purpose: Allows the robot to resume the speed it was travelling before the
haltMotionimmo command was given.

Parameters: void
Returns: void
Comments:

void resumeMotionlmm(void);

Function: parabolalmm0
Purpose: Immediate command that allows the robot to follow the parabola

passed in the parameter
Parameters: PARA newParabola
Returns: void
Comments:

void parabolalmm(PARA newParabola);

Function: getParabolalmmO
Purpose: retrieves the latest parabola that has been processed by the robot
Parameters: void
Returns: PARA parabola
Comments: this function was developed for the paraRule0 function in motion

control

PARA getParabolalmm(void);

Function: MotionOnO
Purpose: enables the wheels
Parameters:void
Returns: void
Comments:

void MotionOn(void);

Function: MotionOff()
Purpose: disables the wheels
Parameters: void
Returns: void
Comments:

/*

void MotionOff (void);

69

Function: blinkLEDO
Purpose: To control the output from the interrupt driven motion control

system. LoopTest is sassigned zero every second.
Parameters: void
Returns: none
Comments:

void blinkLED(void);

FUNCTION: limit
PURPOSE: This function is used by the steering function to keep the robot

from doing loops when ystar is very large
PARAMETERS: double ystar (unlimited)
RETURNS: double ystar (limited)
COMMENTS: originally written 7 December 92 - Dave MacPherson

updated for MML1 1 8 June 94 - Kevin Huggins

double limit(double ystar);

Function: isAtTransitionPt0
Purpose: Is true if the transition point has been reached
Parameters: none
Returns: 1 or 0
Comments: Presently a dummy function until the transition point calculation

module is finished, then it will be moved there.

int isAtTransitionPto;

#endif

F. MOTIONSUPPORT.C

File name: motionsupport.c
Description: contains miscellaneous functions that support motion control
Revision history:

#include "definitions.h"
#include 'Wheels.h"
#include "motionsupport.h"
#include "motion.h"
#include "system.h"

70

BOOLEAN Halted;

static VELOCITY haltedVel;
static VELOCITY goalVel,

goalAcc;

static PARA parabola;
static double desiredSizeConstant,

totalDistance;
static int LoopTest,

tes.Count;

.*****

Function: lnitMotionSpt0
Purpose: Initializes the variables used in motionsupport.c
Parameters: void
Returns: void
Comments:

void
InitMotionsupport(void)
{

LoopTest = 0;
testCount = 0;

Halted = FALSE;
totalDistance = 0.0;
haltedVel.Linear = 0.0;
haltedVel.Rotational = 0.0;
parabola.Focus.X = 0.0;
parabola.Focus.Y = 0.0;
parabola.Directrix.Posit.X = 0.0;
parabola.Directrix.Posit.Y = 0.0;
parabola.Directrix.Theta = 0.0;
parabola.Directrix.Kappa = 0.0;

}

Function: stopimmO
Purpose: updates the goal velocity to zero inorder to stop the robot
Parameters: void
Returns: void
Comments: This is the immediate stop command

void
stoplmm(void)
{

WheelsDisableo;

71

goalVel.Linear = 0.0;
goalVel.Rotatioral = 0.0;

Function: setGoalLinVellmm0
Purpose: sets and updates the goal linear velocity of the robot
Parameters: double LinearVelocity
Returns: void
Comments:

void
setGoalLinVellmm(double linearVelocity)

goalVel.Linear = linearVelocity;}

Function: getGoalLinVel()
Purpose: Retreives the current goal linear velocity
Parameters: void
Returns: double
Comments:

double
getGoalLinVel (void)
{

return goalVel.Linear;

Function: setGoalRotVellmm0
Purpose: Sets and updates the goal rotational velocity
Parameters: double RotationalVelocity
Returns: void
Comments:

void
setGoalRotVellmm(double RotationalVelocity)

goalVel.Rotational = RotationalVelocity;

Function: getGoalRotVel()
Purpose: retreivies the current goal rotational velocity
Parameters: void
Returns: double

72

Comments:

double
getGoalRotVel(void)

return goalVel. Rotational;}

Function: setGoalLinAcclmm0
Purpose: Sets and updates the goal linear acceleration
Parameters: double LinearAcceleration
Returns: void
Comments:

void
setGoalLinAcclmm(double LinearAcceleration)

goalAcc.Linear = LinearAcceleration;

Function: getGoalLinAcco
Purpose: retreives the current goal linear acceleration
Parameters: void
Returns: double
Comments:

double
getGoalLinAcc(void)

return goalAcc.Linear;

Function: setGoalRotAcclmmO
Purpose: Sets and updates the goal rotational acceleration
Parameters: double RotationalAcceleration
Returns: void
Comments:

*** ************

void
setGoalRotAcclmm(double RotationalAcceleration)
{

goalAcc. Rotational = RotationalAcceleration;

Function: getGoalRotAcc0

73

Purpose: Retreives the current goal rotational acceleration
Parameters: void
Returns: double
Comments:

te*•t~***** * * * * ****ttt.tt~t*****••tt•t .. ***t..t•t•~ /

double
getGoalRotAcc(void)

return goalAcc. Rotational;

Function: setSizeConstantlmmO
Purpose: sets the size constant which influences the sensitivity of the

steering function
Parameters: double sizeConstant
Returns: void
Comments:

void
setSizeConstantlmm(double sizeConstant)
{

desiredSizeConstant = sizeConstant;}

Function: getSizeConstantO
Purpose: returns the current size constant being used in motion control
Parameters: void
Returns: double size constant
Comments:

double
getSizeConstant(void)
{

return desiredSizeConstant;}

Function: setTotalDistancelmm0
Purpose: sets the total distance travelled by the robot to the value passed

as a parameter
Parameters: double distance
Returns: void
Comments:

void
setTotalDistancelmm(double distance)

{

74

totalDistance = distance;
}

Function: updateTotalDistanceO
Purpose: adds the value of the parameter to the running total distance
Parameters. double deltaDistance
Returns: void
Comments:

void
updateTotalDistance(double deltaDistance)
{

totalDistance += deltaDistance;

****************************** ************** ************************

Function: getTotalDistance()
Purpose: returns the total distance travelled by the robot
Parameters: void
Returns: double totalDistance
Comments:

double
getTotal Distance (void)

return totalDistance;

Function: haltMotionlmmO
Purpose: brings the robot to a rest. Is different from stop in that it's

original goal velocity is saved to be later used by the resume
command to allow the robot to continue travelling at the same
speed.

Parameters: void
Returns: void
Comments:

void
haltMotionlmm(void)

if (!Halted)
Halted = TRUE;
haltedVel.Linear = goalVel.Linear;
haltedVel.Rotational = goalVel .Rotational;
WheelsDisableo;

75

Function: resumeMotionlmm0
Purpose: Allows the robot to resume the speed it was travelling before the

haltMotionlmm) command was given.
Parameters: void
Returns: void
Comments:

void
resumel\ -tionlmm(void)

if (Halted)
Hafted = FALSE;
goalVel.Linear = haltedVel.Linear;
goalVel. Rotational = haltedVel.Rotational;
WheelsEnaiole();

Function: parabolalmm0
Purpose: Immediate command that allows the robot to follow the parabola

passed in the parameter
Parameters: PARA newParabola
Returns: void
Comments:

void
parabolalmm(PARA newParabola)

PATHELEMENT psthElement;

Disablelnterrupts0;

pathElement.pathType.mode = PARAMODE;
setPathElement(r athElement);
parabola = newParabola;

Enablelnterruptso;

Function: getParabolalmm()
Purpose: retrieves the latest parabola that has been processed by the robot
Parameters: void
Returns: PARA parabola
Comments: this function was developed for the paraRule(function in motion

control

"7 6

PARA
getParaboa. "ml

return par, .•jla;

**

Function: MotionOnO
Purpose: enables the wheels
Parameters :void
Returns: void
Comments:

**************************************4*4*4**************

void
MotionOn(void)
{

WheelsEnable0;}

Function: MotionOff0
Purpose: disables the wheels
Parameters: void
Returns: void
Comments:

void
MotionOff(void)
{

Wheels Disable():
}

/4*****************4****4*4*4** *** *** * * ***** ***** ***4*****4**** ****

Function: blinkLEDO
Purpose: To control the output from the inperrupt driven motion control

system. LoopTest is sassigned zero every second.
Parameters: void
Returns: none
Comments:
***44* ***444*4/

void
blinkLED(void)

if (LoopTest++ >= ((int)((1.0/MOT!ONCONTROLCYCLE) - 1)))
changeLEDstate(7):

LoopTest = 0;

FUNCTION: limit
PURPOSE: This function is used by the steering function to keep the robot

from doing loops when ystar is very large
PARAMETERS: double ystar (unlimited)
RETURNS: double ystar (limited)
COMMENTS: originally written 7 December 92 - Dave MacPherson

updated for MML1 1 8 June 94 - Kevin Huggins
*********************************** ***********I**

double
limit(double ystar)

if(ystar > 2.0 * DISTCONSTANT)
return(2.0 * DISTCONSTANT);

if (ystar < -2.0 * DISTCONSTANT)
return(-2.0 * DISTCONSTANT);

return ystar;

Function: isAtTransitionPt0
Purpose: Is true if the transition point has been reached
Parameters: none
Returns: 1 or 0
Comments: Presently a dummy function until the transition point calculation

module is finished

int
isAtTransitionP10
I

if (testCount++ >= 600) return 1;
else return 0;

}

G. SEQCMD.H

Module name: seqcmd.h
Comments: has all of the public function prototypes

#ifndef _SEQCMD_H
#define _SEQCMD_H

78

void InitSeqcmd(void);

void line(CONFIGURATION);
void bline(CONFIGURATION);
void stop(void);
void setRobotConfig(CONFIGURATION config);

#endif

H. SEQCMD.C
**

File name: seqcmd.c
Descriptions: collection of all of the sequential commands that are

available to Yamabico
Revision history:

#include "definitions.h"
#include "queue.h"
#include "seqcmd.h"
#include "motion.h"
#include "time.h"
#include "iosys.h"
#include "motionsupport.h"

/* local variables */
static MODE lastMode;

/* local prototypes */
static int LineProcess(PATHELEMENT);
static int BLineProcess(PATHELEMENT);
static int SetRobProcess(PATH_ELEMENT);
static int StopProcess(PATHELEMENT);

void
InitSeqcmd(void)

lastMode = STOPMODE;

********************** ************** ****************************** ******

Function: line configuration function pair
Purpose: To read and execute a sequential line command

79

void
line(CONFIGURATION lineConfig)
f
PATHELEMENT pathElement;

pathElement.config = lineConfig;
pathElement.pathType. mode = PATHMODE;
pathElement.pathType.class = LINECLASS;

lastMode = PATHMODE;
Addlnstruction(pathElement, LineProcess);

}

int
LineProcess(PATHELEMENT pathElement)

{
setPathElement(pathElement); /* update the path element in motion.c */
return 1;

Function: bline configuration function pair
Purpose: To read and execute a sequential bline command

void
bline(CONFIGURATION blineConfig)
{
PATHELEMENT pathElement;

pathElement.config = blineConfig;
pathElement.pathType.mode PATHMODE;
pathElement.pathType.class = BLINEGLASS;

lastMode = PATHMODE;
Addlnstruction(pathElement,BLineProcess);
}

int
BLine Process(PATHELEM ENT pathElement)
{
set PathElement(pathElement);
return 1;
}

Function: stop vehicle function pair
Purpose: To read and execute a sequential stop command

void
stop(void)

80

{

PATHELEMENT pathElement;

pathElement.pathType.mode = STOPMODE;

lastMode = STOPMODE;
Addlnst ruction(pathElement, StopProcess);

int
StopProcess(PATHELEMENT pathElement)
{

stoplmm0;
setPathElement(pathElement)
return 1;

}

****************************** ********* ********** ***** **************

Function: set robot configuration function pair
Purpose: To set the robots' location when it is in a STOP mode

void
setRobotConfig(CONFIGU RATION config)

PATHELEMENT pathElement;

if (lastMode != STOPMODE)
/* write some error message */
return;

I

pathElement.config = config;
pathElement.pathType. mode = STOPMODE;

lastMode = STOPMODE;
Addlnstruction(pathElement, SetRobProcess);

int
SetRobProcess(PATHELEM ENT pathElement)
{
set RobotConfiglmm(pathElement.config),
return 0;
}

I. USER.C

File Name: user.c
Description: This file contains a sample user program that can be used with

81

the new MML system created using ANSI C.

#finclude "definitions.h"
#finclude "iosys.h"
#finclude "stdiosys.h"
#finclude "serial.h'
#finclude "motion.h"
#finclude "sonar.h"
#include "trace.h"
#finclude "geometry.h"
#finclude 'time.hW
#finclude "seqcmd.h"
#include "system.h"
#finclude "immcmd.h"
#include "motionsupport.h"
#finclude "motionlog.h"

#define ESC Oxi b

Function: usero
Purpose:
Parameters: void
Returns: void
Comments: This user program commands the robot to follow a star path.
It follows the path off setting where the robot "thinks" it at by using
the setConfigo command.

void
user(void)

mnt segments = 5
CONFIGURATION start, justGo, currentPosit, jump;

start = defineConfig(0.0, 0.0, 0.0, 0.0);
justGo = defineConfig(0.0, 0.1, 0.0, 0.0);
jump = defineConfig(0.0, 45.0, -1.5*HPl, 0.0);

printf(" \l2This is the set config star program."):

MotionLog("starl .dat", 5, 0);
setRobotConfig(start),
Iineojue 'o);

do{
waitSec(l 0);
currentPosit = getRobotConfigo;
printf("\n current x position is :%of", currentPosit.Posit.X);
printf("\n current y position is : %f\n", currentPosit.Posit.Y);

82

setRobotConfig Imm(co mpo se (¤t Posft,&jump));
1while(--segmerits);

83

APPENDIX B. GEOMETRIC FUNCTONS

A. GEOMETRY.H
S************************* *****************************

File Name: geometry.h
Description: This file contains the standard geometry functions that are

called by several functions.

#ifndef _GEOMETRY_H
#define _GEOMERTY_H

#include "definitions.h"

** * ********

Function: euDiso
Purpose: Computes the Eucledian distance between two given points
Parameters: double xl ,yl ,x2,y2
Returns: double
Comments:

double euDis(double xl, double yl,double x2, double y2);

FUNCTION: norm()
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -PI and P1
RETURNS: double.the normalized angle in radians
COMMENTS: This is the most common normalizing function used in the system

double norm(double angle);

FUNCTION: positiveNorm0
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between 0 and 2PI
RETURNS: doublethe normalized angle in radians
COMMENTS: None

double positiveNorm(double angle);

FUNCTION: negativeNormo
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -2PI and 0
RETURNS: double.the normalized angle in radians
COMMENTS: None

double negativeNorm(double angle);

84

FUNCTION: normPlover2()
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -PI/2 and PI/2
RETURNS: double: the normalized angle in radians
COMMENTS: This was designed specifically for parabola calculations

double
normPlover2(double angle);

FUNCTION: signedDiffO
PARAMETERS: CONFIGURATIONS directerix
POINT focus
PURPOSE: to calculate the size distance between a point and a configuration.
RETURNS: double: the signed difference
COMMENTS:

double
signedDiff (CONFIGURATION config, POINT pt);

FUNCTION: defineConfig0
PARAMETERS: double x,y,theta,kappa --The values that define a

configuration
PURPOSE: To allocate nad assign a configuration
RETURNS: CONFIGURATION:a pointer to a configuration
COMMENTS: Was called def-configuration0 in MML10

CONFIGURATION defineConfig(double x,double y,double theta,double kappa);

FUNCTION: defineParabola0
PARAMETERS: double xf,yf ---defines the focus

double xd, yd, thetad ---defines the directrix
PURPOSE: To allocate assign a parabola
RETURNS: PARA:a pointer to a parabola type
COMMENTS: Was called defparabola(in MML1u

PARA defineParabola(Jouble xf,double yf, double xd, double yd, double td);

FUNCTION: reverseOrientationo
PARAMETERS: CONFIGURATION original --the original configuration
PURPOSE: To reverse the orientation of a given configuration
RETURNS: CONFIGURATION: the reversed configuration
COMMENTS: Was called negate() in MML10

CONFIGURATION reverseOrientation(CONFIGURATION original);

85

FUNCTION: findSymConfigO
PARAMETERS: double a -- distance from either point to the intersection of

both lines determined by the two configurations
double alpha --The angular difference between both orientations

PURPOSE: This function finds the symmetric configuration of a configuration
described by alpha and a above.

RETURNS: CONFIGURATION: sym contig -- the symmetic configuration
COMMENTS: Was called deflsym0 in MML10

One drawback to this function is that it is not possible to
represent a symmetric configuration whose alpha is equal to Pl.

find-symconfigl () is used to cover these situations

CONFIGURATION findSymConfig(double a, double alpha);

FUNCTION: findSymConfigl(0
PARAMETERS: double d -- distance from the origin (base configuration) to

the symmetric configuration.
double alpha --The angular difference between both orientations

PURPOSE: This finds the symmetricconfiguration of a configuration
described by alpha and a above.

RETURNS: CONFIGURATION: symconfig --the symmetic configuration
COMMENTS: Was called def syml() in MML10

This function overcomes the drawback of the original
findcsym config0 of not being able to handle the situation when
alpha equals PI

CONFIGURATION findSymConfigl (double d, double alpha);

FUNCTION: inverse()
PARAMETERS: CONFIGURATION *original -the original configuration

in global coordinates
PURPOSE: To calculate the inverse of a given configuration
RETURNS: CONFIGURATION: the inversed configuration

such that;
original * inversed = Identity

COMMENTS: None

CONFIGURATION inverse(CONFIGURATION original);

FUNCTION: compose()

86

PARAMETERS: CONFIGURATION *first -- pointer to the first configuration
*second -- pointer to the second configuration
*third -- pointer to the third configuration

PURPOSE: To calculate the composition of the first and second
configurations

RETURNS: CONFIGURATION: pointer to third configuration which is the
composition of the first and second configurations

COMMENTS: A typical example of the usage of this function is to determine
the goal position of a configuration in global coordinates. In
such an example, the first argument would be the original
configuration and the second argument would be the goal
configuration in the original configuration's local coordinate
system. The resultant third argument would then be the goal
configuration in global coordinates. .Was called compo in MML10

CONFIGURATION compose(CONFIGURATION *firstCONFIGURATION *second);

**

FUNCTION: circularArc0
PARAMETERS: CONFIGURATION length --the arc length

alpha --the end orientation
config --pointer to the resultant configuration

PURPOSE: Given the arc length and alpha, to calculate the final
configuration

RETURNS: CONFIGURATION: pointer to the final configuration
COMMENTS: The main purpose of this functionis to be used in conjunction

with compose() to fomr a new next(. In this case, length would
actually be delta-s and alpha would be delta-theta.

CircularArco would determine the configuration after the incre-
mental move in the local coordinated system of the original
configuration. Then composeo would take the original
configuration (in global coordinates) and the incremental
configuration (in local coordinates) to determine the
incremental configuration in global coordinates.

CONFIGURATION circularArc(double length, double alpha);

#endif

B. GEOMETRY-C

File Name: geometry.c
Description: This file contains the standard geometry functions that are

called by several functions.

87

/*#include "math68881 .h"*
#include "definitions.h"
#include "geometry.h"

Function: euDiso
Purpose: Computes the Eucledian distance between two given points
Parameters: double xl ,yl ,x2,y2
Returns: double
Comments:

double
euDis(double xl, double yldouble x2, double y2)

return sqrt((xl - x2) * (xl - x2) + (yl - y2) * (yl - y2));

FUNCTION: norm()
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -PI and PI
RETURNS: double.the normalized angle in radians
COMMENTS: This is the most common normalizing function used in the system

This performs that same as normo and normalize)() in MML10.

double
norm(double angle)
{

while ((angle >= PI) 11 (angle < -P1))

{
if (angle >= PI)

angle -= DPI;
else

angle += DPI;

return angle;
}

FUNCTION: positiveNorm0
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between 0 and 2PI
RETURNS: double.the normalized angle in radians
COMMENTS: Same functionality as pnorm0 in MML10

•************************************** ********************

double
positiveNorm(double angle)
{
while ((angle >= DPI) II (angle < 0))

88

if (angle >= DPI)
angle - DPI;

else
angle += DPI;

return angle;

FUNCTION: negativeNorm()
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -2PI and 0
RETURNS: double the normalized angle in radians
COMMENTS: Same functionality as nnorm0 in MML10

double
negativeNorm(double angle)
{

while ((angle > 0) 11 (angle <= -DPI))
I
if (angle > 0)

angle -= DPI;
else

angle += DPI;

return angle;
}

FUNCTION: normPlover2()
PARAMETERS: double angle ---- the angle to normalize
PURPOSE: normalize the input angle between -PI/2 and PI/2
RETURNS: double: the normakized angle in radians
COMMENTS: This was designed specifically for parabola calculations

double
normPlover2(double angle)

while ((angle > PI/2) 11 (angie <= -PI/2))

if (angle > PI/2)
angle -= PI;

else
angle += PI;

}
return angle;

}

************* ***************** ***********************

FUNCTION: signedDiff()
PARAMETERS: CONFIGURATIONS directerix

POINT focus

89

PURPOSE: to calculate the size distance between a point and a configuration.
RETURNS: double: the signed difference
COMMENTS:

double
signedDiff(CONFIGURATION config, POINT pt)

return (-(pt.X - config.Posit.X) * sin(config.Theta) +
(pt.Y - config. Posit. Y)* cos(config.Theta));

FUNCTION: defineConfigo
PARAMETERS: double x,y,theta,kappa --The values that define a

configuration
PURPOSE: To allocate nad assign a configuration
RETURNS: CONFIGURATION:a configuration
COMMENTS: Was called defconfiguration0 in MML10

CONFIGURATION
defineConfig(double x,double y,double theta,double kappa)
{
CONFIGURATION newConfig;

newConfig.Posit.X = x;
newConfig.Posit.Y = y;
newConfig.Theta = theta;
newConfig.Kappa = kappa;
return newConfig;

FUNCTION: defineParabola0
PARAMETERS: double xf,yf ---defines the focus

double xd, yd, thetad ---defines the directrix
PURPOSE: To allocate assign a parabola
RETURNS: PARA: a parabola type
COMMENTS: Was called defjparabola0 in MML10

PARA
defineParabola(double xf,double yf, double xd,

double yd, double td)

{
PARA newPara;

newPara.Focus.X = xf;
newPara.Focus.Y = yf;
newPara.Directrix.Posit.X = xd;
newPara.Directrix.Posit.Y = yd;

90

newPara.Directrix.Theta = td.
newPara.Directrix.Kappa 0 .0
return newPara,

..
FUNCTION reverseOrnentationo
PARAMETERS. CONFIGURATION original -- the original configuration

orientation changed by 180 degrees
PURPOSE To reverse the orientation oa a given configuration
RETURNS CONFIGURATION the reversed configuration
COMMENTS Was called negatej; in MML10

CONFIGURATION
reverseOnrentation(CONFIG U RATION original)

CONFIGURATION reversed.

reversed.PositX = onginal.Posit X
reversed Posit.Y = originalIPosit.Y '
reversed.Theta = norm(onginal. Theta + P1):
reversed.Kappa = originalKappa.
return reversed:

FUNCTION: findSymConfigo
PARAMETERS: double a -- distance from either point to the intersection of

both lines determined by the two configurations
double alpha --The angular difference between both orientations

PURPOSE: This function finds the symmetric configuration of a configuration
described by alpha and a above.

RETURNS: CONFIGURATION: symConfig -the symmetic configuration
COMMENTS: Was called def sym0 in MML10

One drawback to this function is that it is not possible to
represent a symmetric configuration whose alpha is equal to PI.

find-symConfigl 0 is used to cover these situations

CONFIGURATION
findSymConfig(double a, double alpha)

return defineConfig(a * (1 .+ cos(alpha)), a * sin(alpha), alpha, 0.0);

FUNCTION: findSymConfigl()
PARAMETERS: double d -- distance from the origin (base configuration) to

the symmetric configuration.
double alpha --The angular difference between both orientations

PURPOSE: This finds the symmetric configuration of a configuration

described by alpha and a above
RETURNS- CONFIGURATION sym_ config --the symmetic configuration
COMMENTS Was called det syml() in MML10

This function overcomes the drawback of the original
find-symconfig() of not being able to handle the situation when
alpha equals PI

CONFIGURATION
findSymConfil idouble d double alpha)

double beta = alpha 2

return detineConfig(d * cosibeta' d * sin(beta) alpha 0 Q)

FUNCTION inversei i
PARAMETERS CONFIGURATION original --the original configuration

in global coordinates
PURPOSE To calculate the inverse of a given configuration
RETURNS CONFIGURATION the inversed configuration

such that:
original ' inversed = Identity

COMMENTS. None
... /
CONFIGURATION
inverse(CONFIGURATION original)
I
CONFIGURATION inversed:

inversed.Posit.X = -original.Posit.X cos(original.Theta) -original.Posit.Y *
sin(original.Theta);

inversed.Posit.Y = original.Posit.X sin(original.Theta) -original.Posit.Y *
cos(original.Theta);

inversed.Theta = -original.Theta;
inversed.Kappa = -original.Kappa;

return inversed;

FUNCTION: compose()
PARAMETERS: CONFIGURATION *first -- pointer to the first configuration

• second -- pointer to the second configuration
PURPOSE: To calculate the composition of the first and second

configurations

92

RETURNS FIGURATION configuration which is the
comp, ,)f the first and se,;ond configuraions

COMMENTS ,pical example of the usage of this function is to determine
the goal position of a configuration in global coordinates. In
such an example. the first argument would be the original
configuration and the seccnd argument would be the goal
configuration in the original configuration's tocai coordinate
system The resultant third argument would then be the goal
contiguration in global coordinates Was called comp() in MMI ., G

CONFIGURATION
compose(CONFIGURATION " first CONFIGURATION secondi

CONFIGURATION third
double x y theta

double xx yyfti

x = second->Posit X.
y = second->Posit Y.
theta = ftrst->Theta,

xx = cos(theta) o x - sin(theta) * y + first->PosdtX.
yy = sin(theta) x + cos(theta) "y + first->Posit.Y.

tt = norm(first->Theta + second->Theta):

third.Posit.X = xx:
third.Posit.Y = yy:
third.Theta = ft:

return third;

I..........*..f........*.....

FUNCTION: circularArc0
PARAMETERS: CONFIGURATION length --the arc length

alpha --the end orientation
config --pointer to the resultant configuration

PURPOSE: Given the arc length and alpha, to calculate the final
configuration

RETURNS: CONFIGURATION: pointer to the final configuration
COMMENTS: The main purpose of this function is to be used in conjunction

with composeo to form a new nexto. In this case, length would
actually be delta-s and alpha would be delta-theta.
CirculararcO would determine the configuration after the incre-
mental move in the local coordinate system of the original
configuration. Then composeo would take the original
configuration (in global coordinates) and the incremental

configuration (in local coordinates) to determine the
incremental configuration in global coordinates.

93

CONFIGURATION
circularArc(double length, double alpha)
f

return def ineConf ig((l - (alpha alpha)/6) * length,
(0.5 - (alpha * alpha)/24) alpha * length,
alpha, 0.0);

94

APPENDIX C. FUNCTION NAME COMPARISON TABLES

The following tables list the function name comparisons between MMLIO and

MML 11. When there is no comparable function, an asterisk (*) is used as an indication.

MMLI I MMLIO

locallizek() new_config()

getLinearVelocity commanded- vel oci ty 0

restOfPath() rest..ofpath()

need sToDecelerate()

motionRules() get-velocity()

pathRule()

stopRule*

rotateRule()

spiralRule()

computeLineYstaro iipdate-delta-do

computeCircleYstar() up 'ate-delta-d(

updateLinelmage() update jmageo

updateCirc le Image(update-jmage()

InitMotion()

Motion SysControl() controW(

updateMovement evauate-incremental _motion(

getDistanceTraveled() evauate incremental-motiono

getOrientationChange() evauate-incremental-motion()

updateTotalDi stance() evauate incremental motion()

SetMovementQ evauate-pwm()

Table 1: CORE MOTION CONTROL FUNC`TIONS

95

MML11 MML-1O

setGoalLinVellmm() speedOO)

setGoalRotVellnm() r~speedO()

setGoalLinAcclmm() accO()

setGoalRotAcclmm() r-accOO)

setPathElement()

getPathElement() getilineO()

stoplmm() stopOO)

setRobotConfglmm() set robO()

getRobotConfigo get-robO

setConfiglmm() set-c(

setSizeConstant size-const()

haltMotionlmm() halt()

resumeMotionlmm() resumeO

line() lineo

bline() blineO

stop() stop()

setRobotConfig()T set-rob()

Table-2: MOTION CONTROL RELATED FUNCTIONS

96

MMLII MML1O

euDisto eu-dis()

norm() normo, norrnalize()

positiveNorm() pnorrn(

negativeNorm() nnormo

normPlover2()*

signedDiff()

defineConfigo def-configuration()

defineParabola() def~parabolac)

reverse~rientation() negate()

findSymConfig def-sym()

inverseo inverseo

compose() comp()

circularArc()

Table 3: GEOMETRIC FUNCTIONS

97

LIST OF REFERENCES

[Book 94]Book, S., Improving Software Characteristics of a Real-time System Using
Reengineering Techniques., Master's Thesis, Naval Postgraduate School, Monterey,
Califormia, March 1994.

[Kanayama 94]Kanayama, Y, "Mathematical Theory of Robotics: Introduction to 2D
Spatial Reasoning", Lecture Notes of the Advanced Robotics Course, Department of
Computer Science, Naval Postgraduate School, Winter Quarter 1994.

[Kelbe 94]Kelbe, F, Private verbal communications.

[Lee 94]Lee, T., The Stable and Precise Motion Control for an Autonomous Mobile Robot,
Master's Thesis, Naval Postgraduate School, Monterey, California, March 1994.

[Scott 93]Scott, R. C., Reengineering Real-Time Software Systems, Master's Thesis,
Naval Postgraduate School, Monterey, California, September 1993.

98

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr Yutaka Kanayama, Code CS/KA 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

LCDR Frank Kelbe, Code, CS/Ke
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

CDR, C Company, 306 MI Bn 2
Attn: Cpt Kevin L. Huggins
Fort Huachuca, AZ 85613

Mrs. Janet H. Lester
1924 Goldsmith Lane
Unit 30
Louisville, KY 40218

Mrs. Emma Sandoval
Apartado 6-6925
El Dorado Panama
Republic of Panama

Mr. James Huggins
303 Pow Hatan Dr.
Poquoson, VA 23662

99

Mrs. I. Forrest
942 Milford Lane
Louisville, KY 40207

Mr. Roy Shelton Jr.
15748 St. Mary's
Detroit, MI 48227

100

