
ESC-TR-94-208 M91-35

to The Importance of Architecture in DOD Software

-n By

0 -Dr. Barry M. Horowitz

September 1994

Prepared for

Director of Engineering and Program Management
Electronic Systems Center

Air Force Materiel Command
United States Air Force

Hanscom Air Force Base, Massachusetts

I C
.-.'•LLCTE I

0O7,1994~

_F :•94-34432

DTIC . . .LITY 5

Project No. 022N
Prepared by

The MITRE Corporation

- Approved for public release; Bedford, Massachusetts
distribution unlimited. Contract No. F19628-94-C-0001

94 11 4 082

When U.S. Government drawings, specifications
or other data are used for an% purpose other
than a definitelv related government procure.
ment operation, the government therebs incur%
no responsibility nor any obligation whatsoever.
and the fact that the government ma' have for-
mulated. furnished, or in an- wa, supplied the
said drawings, specifications. or other data is
not to be regarded bs implication or otherwise
a-. in an% manner licensing the holder or an%
other person or conveying ans rights or permis-
sion to manufacture, use. or sell an% pIatented
invention that ma% in an% was he related
thereto

Do not return this cop% Retain or destros [

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

ROBERT J. KE 5
Director
ESC Software Center

FOR THE COMMANDER

ANTHONY D. AL VUCCI, SES
Director of Engineering
and Program Management

iorte 4JDro•i•d

REPORT DOCUMENTATION PAGE j Fr0m 4 04018

1. AGENCY USE ONLY (Leave b4ank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED

September 1994 Final
4. TITLE AND SUITITLE S FUNDING NUMBERS

The Importance of Architecture in DOD Software F19628-94-C-0001
022N

6 AUTHOR(S)

Horowitz, Dr. Barry M.

7 PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 9 PERFORMING ORGANIZATION
REPORT NUMBER

The MITRE Corporation M91-35
202 Burlington Road
Bedford, MA 01731-1420

9 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING MONITORING

Director of Engineering and Program Management (ESC/ENS) AGENCY REPORT NUMBER

Electronic Systems Center, AFMC ESC-TR-94-208

5 Eglin Street
Hanscom AFB, KA 01731-2116

11. SUPPLEMENTARY NOTES

12a DOISTRIBUTION AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This paper argues that in the face of declining military budgets and increasingly
diverse threats, the key to making defense systems more flexible, while keeping
costs down, is to procure and design software architectures. "Architecture" is
defined, and a number of examples are given to demonstrate the effects of
architectures on various DOD systems. The paper concludes with recommendations
for increasing architectural awareness in DOD procurements.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada Defense Systems 22
DOD Procurement Software Architecture 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
Of REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NS% 7540 O" :go 5500 Stanoarc "•om 298 (Rev 2-89)

ab .AN% Sid Z39-115

PREFACE

DOD's automated systems are likely to face more varied military threats than in the past that will require the
ability to make system changes rapidly. In addition, defense budgets are likely to continue to decrease. It is
unponrum then. for both mission effectiveness and cost savings, that these systems be built with as much
flexibility as possible to incorporate new capabilities and new technology. This paper proposes that an increased
focus on digital system architecture can markedly improve system flexibility as well as yield significant cost
savivgs.

The author. Dr. Barry M. Horowitz. is President and Chief Fxecutive Officer of The MITRE Corporation.

/ - KNOWLEDGMENTS

This document has been prepared by The MITRE Corporation under Project No. 022N, Contract No.
F!9628-94-C-000I. The contract is sponsored by -'- Electroni Systems Center, Air Force Materiel Command,
United States Air Force, Hanscom Air Force Base, Mass..chuseus 0173! -3010.

Many people at MITRE contributed data and ideas to this document. Sg* ial thanks are expressed to Judith
A. Clapp. Dr. Richard J. Sylvester, and Gerard R. Lacroix.

r-C

D'ICL ABVA

D8 Y b l l r

AvcSi'tdbilty
Av,:ail a 'tlj or

O;st Specdal

iii

TABLE OF CONTENTS

SECTION PAGE

INTRODUCTION: A NEW DIRECTION FOR DOD SOFTWARE ACQUISITION I

DOD SOFTWARE: MORE IMPORTANT - AND MORE EXPENSIVE 1

The Value of Software I
The Cost of Software 2

ARCHITECTURE: THE INVISIBLE COMPONENT 5

Architecture: A Definition 6
Architecture: Ramifications 8
The Complexity of Architecture 8

ARCHITECTURE: THE WAITING SOLUTION 10

Technical Focus 10
Faulty Emphasis 10
Commercial Architecture 11
Availability of Tools I I

RECOMMENDATIONS: FINDING AND APPLYING ARCHITECTURE 12

System Specification 12
Early Satisfaction of Architectural Rcquircmenst 12
Contractor Incentives 13
Getting Started 13

REFERENCES 14

V

LIST OF FIGURES

FIGURE PAGE

1. Growth of C' Software Size 2

2. Software Life Cycle Cost Distribution 2

3. Software Maintenance Activities 3

4. DOD Software Expenditures 3

5A. Structure Versus Cost to Change 4

5B. Structure Versus Defects 4

5C. Structure Versus Time to Change 4

6. Ada Development Versus Modification 4

7A. Release Interval Versus System Age 5

7B. Increasing Complexity with Age 5

8. Hardware and Software Structure 6

9. Digital System Architecture 7

10. IBM View of Software Architecture 7

11. Data Flow Reference Model 9

12. Joint STARS System Architecture 9

13. Technical Focus (Estimated) 10

14. Effect of Control Structure on Errors 13

vi

INTRODUCTION: A NEW DIRECTION FOR DOD SOFTWARE: MORE IMPORTANT -
DOD SOFTWARE ACQUISITION AND MORE EXPENSIVE

Our world is changing. The military threat to The Value of Software
the United States posee oy the Soviet Union for
nearly fifty years is diminished, but there are new Software provides modem defense systems
threats from rapidly evolving Third World countries with a flexibility that cannot be achieved in any
that require rapid changes to military systems. other reasonable way. Operation Desert Storm pro-
Crises such as the recent events in the Persian Gulf vides several excellent examples.
highlight the need for flexible systems that can be
changed quickly to meet the military's unantici- Patriot is an Army corps-level missile system
pated challenges. In addition, the defense budget primarily designed to counter aircraft. Given the
continues to be reduced - the government has less inherent capability of the missile itself, the design-
money to spend on systems. ers gave some thought to employing it to shoot

down incoming enemy missiles. The Scud attacks
The answer to this dual challenge - to make during the war, however, focused everyone's atten-

systems more flexible and to reduce the cost of tion on this threat with much more urgency.
defense systems - lies in the design of the digital
system architecture, which includes the composition Patriot's designers developed a new software
of hardware and software components, the structure package that increased the Patriot's effectiveness to
that interconnecLu them, and the rules by which they counter the Scud threat- When radar tracks began to
interact. All too often, both government and indus- show that the Scuds were breaking up on re-entry,
try focus too narrowly on achieving the initial the designers further tuned the package to recognize
requirements for systems and give little thought to and attack the Scud warhead, and not the debris that
being able to adjust to what the system may be accompanied it.
required to do five or ten years later, or to what
happens as hardware may no longer be supportable Without the modified software, Patriot would
or advanced technology may become available for have been less effective. Yet the designers were
incorporation into the system. able to implement this capability quickly and at a

surprisingly low cost No new missiles or radars
Architecture design is the key to achieving the were required. The software improvements could

cost savings and operational flexibility inherent in go to the war region in a briefcase,
digital systems. If the system is properly structured,
then hardware components can be added or up- Another example of this flexibility also in-
graded without expensive changes to the rest of the volves Patriot, though at the much higher level of
system. A good architecture allows a system de- command, control, communications, and intelli-
signed to counter one threat to counter a different gence (C0I). To improve Patriot's ability to react to
threat through localized modifications to the soft- the Scud attacks, which proceeded at much higher
ware that change the functional capability of the speeds than the targets normally confronting Pa-
system or allow it to interoperate with other sys- triot, U.S. space satellites were redirected to watch
tems. What is more, under the right circumstances, for Scud launches. When a launch was detected, the
these changes can be made very quickly. satellite relayed the targeting cues over a satellite

link to the appropriate Patriot battery, leading to a
successful interception. Minor software modifica-
tions permitted a network to be set up.

There are other, less dramatic examples of the The Cost of Software
value of software's inherent flexibility that came
out of Desert Storm. Navy attack aircraft had been Since the DOD has been buying more and
set up for years to attack Soviet targets, either at sea more software, its total expenditure on software has
or on land. A cassette data tape provided the attack been increasing, and software is expensive. With
computers with the information they needed to shrinking military budgets, we have to find ways to
launch their stunningly accurate attacks on targets use more software and yet reduce its cost.
that had only recently been identified.

Typically, two-thirds of what is spent on

Software was also the key to the effectiveness software is believed to be spent after the system
of Air Force jamming aircraft. Programmed for becomes operational, during the maintenance phase,
operations against Soviet-bloc radars, the jam- as illustrated in figure 2.
mers were faced with a mixture of Soviet, French,
British, and Italian equipment. Software changes
enabled the equipment to perform its task against
this new threat far more quickly - and less expen- D6%1 3%ttnin

sively - than could have been done otherwise. Im,•ww-,io

Precisely because of its flexibility, the DOD is
buying more software in its systems and imple-
menting functions in software that had previously
been performed in hardware. Figure I shows this
tiend in a number of systems. For example, the lat-
est version of the Cobra Dane radar system uses
more software than did the original release, and
the new Milstar terminal uses more software to
perform more functions than did its predecessor,
AFSATCOM. Desert Storm demonstrated that the
flexibility software offers us is real and of great
value to the military. It will become more so if we
continue to have crisis scenarios that are a lot maasnm
harder to predict and cause us to apply our systems so8 Ar,. MO 67%

in unplanned ways.

Figure 2. Software Life Cycle Cost Distribution

oORAD
cucWO Looking at the distribution of software main-

ThoumrBl tenance activities is itself illuminating. About two-
of 10M thirds of the software maintenance effort for a

scum oo comn.& system is typically spent on modifying the originai
Lnm DAsystem to provide new capabilities and to add new

Sof Cae o A- technology, at least twice the effort spent on mak-AFSATCOM S ...
100 - Tewm/ M~LST:R ing repairs. Figure 3 confirms this data for an Army

a I TrmemT command and control system.
0 I I

¶960 1970 196 ¶9 M00

Taking these two sets of data together suggests
Soume: MffK A that about 45 percent of the effort spent on software

is used to change the system after it has been deliv-

Figure 1. Growth of C3 Software Size

Oth~er3% 30-

Documentation System 27- SImprovements 67% 24

21
18

Billions 15-

of 12.
Dollars 1

9

6
3

0 *, ., , ,, ,

80 81 82 83 84 85 86 87 88 89 90
Fiscal Year

MITRE estimate based on: Bureau of Econormic Analysis Input-Output. GNP.
Dfcrt C01orrection and DOD expenditure data; 1987 Survey of Current Business. Department of

21% Commerce; Census of Service Industries. Department of Commernce; Handbook

of Labor Statistics. Depart•ent of Labor; and Census of Population, Occupation
by Industry Matrix.

Figure 4. DOD Software Expenditures

Source: Day

50,000 lines. When the changes were made, the cost,

Figure 3. Software Maintenance Activities time, and number of defects found in the delivered
system were measured. Then, the structure of the

ered. Experience also shows that we often spend software was improved, and the changes were again
part of the system development effort making made. It cost only half as much to modify the struc-
changes in response to changing or better under- tured software and it took less than half the time. As
stood requirements. We probably spend more tkan an added benefit, there were about one-eighth the
50 percent of our software effort to change the number of errors in the structured software.
capabilities of a system over its developmental and
operational lifetime. Another indication of increases in productivity

that may accrue from well-structured software is
If we can design software systems to take only shown in figure 6. The points on the graph represent

half as much effort to modify, we can reduce the software size and productivity for development of
life cycle cost of the entire software system by 25 some systems programmed in Ada. One of those
percent. When applied to the total amount the DOD systems, the Command Center Processing and Dis-
spends on software, this improvement can yield play System Replacement (CCPDS-R), was devel-
enormous cost savings. oped with special aLtention to designing a system

architecture and tools to facilitate its modification.
While it is difficult to determine accurately The original system was then significantly modified

how much the DOD spends on software, MITRE to produce two new versions. Productivity data for
staff made a rough analysis that indicates the total the two modified versions of the system are shown in
amount to be approximately $30 billion per year boxes in figure 6. The high overall productivity is
(see figure 4). If we can in fact reduce the life cycle due in part to the architecture that accommodated
cost of software by 25 percent, the total savings will these changes and in part to tools that facilitated
range between five and eight billion dollars every making changes. Further benefits were realized
year. because the architecture made general system ser-

vices more accessible and consequently the applica-

The example in figure 5 illustrates how these tion modifications were smaller than they might
savings might be possible. Three thousand lines of otherwise have been. The productivity data were
new code were required to be added to a system of adjusted for the reused and tool-generated software.

3

100 350

75 30o0
C• Structured

*To~gcomnun~ci~ons CPSR
25 so

2aGianie SeNry
0 0 01 CCPM-R

- ASOS
SO "Sertinel •tpenS

Source: Rock-Evans. Hales 0

40 60 80 100 120 140 160 160 200 220 240 200 280 300

ThousaNs of Equivalent DehNved

Figure 5A. Structure Versus Cost to Change Source w.itLlrm (KEDSI)

Figure 6. Ada Development Versus Modification

Unstructured
40 I would have liked. Requests for changes to systems

were made early in the campaign, and estimates
30

were provided that said it would take 18 months to
Defects 20 make the desired changes. This was obviously

sourc0uro unacceptable, and the military found it hard to
I___,__._.____-______ .-___._.____ understand why it should take so long, given that

0oc Ens Hesoftware is supposed to offer great flexibility.

Software does provide flexibility, but it must

Figure 5B. Structure Versus Defects be designed from the start with an architecture that
allows it to do so. Furthermore, everyone concerned
must preserve the integrity of the architecture;

i5 Unstructured otherwise, flexibility can be lost through the pro-
cess of change. As an example, figures 7A and 7B

10 are plots of the time it took to create each release
Emonrt h) jed of an IBM operating system and the number of

mt modules affected in each release. The graphs show

0 _......................__ a p ro g re ss io n ; th a t is , it to o k lo n g e r a n d lo n g e r to
modify the system as the system grew older. This

Source: Rock-Evans, Hales was due to the growing complexity of the system
- more and more modules had to be changed for

Figure 5C. Structure Versus Time to Change each new release. The software structure degener-
ated, which made it more difficult to determine

This is even more impressive when the usual which modules had to be repaired. In addition, the
negative relationship between productivity and pattern of regression testing had to be more exten-
system size is taken into account. sive since so many parts of the system had been

affected by the modifications.
While important, the dollar cost of making

changes to the system is only one concern; time is This complexity and uncertainty translates
another. Operation Desert Storm provided many into more time and money, and this process begins
examples of how well the flexibility of software a vicious circle - modifying the system makes
served the allied cause, but there were also cases the next modification even more difficult, time-
where we were not able to exploit software as we consuming, and expensive.

4

400 This is not tosay that the DOD does not
receive a system architecture. Every system has
some form of architecture, but the architecture the

Days DOD receives may be quite convoluted and inflex-
Relass ible by the time the system moves from concept to

100 fieldable implementation. The DOD does not
specifically buy an architecture because there are

I Io no explicit specifications for its characteristics, no
10 5formal tests of its capabilities, and no formal con-

Releases trol of its structure to prevent arbitrary changes

source: Lehman. Belady once it has been defined. This is one reason why
architecture is fundamentally invisible - opera-

Figure 7A. Release Interval Versus System Age tional users are not often aware that an architecture
is even present if it does not directly affect the
functional capabilities they are using.

1.0
Yet architecture is the main determinant of a

system's characteristics. The efficiency of the
1 0.8 system, and thus its performance, depend on

how the architecture handles resource utilization;
architecture determines how the system sustains

0.6 operations when parts of the system fail. The
architecture also determines how maintainable the
system is; that is, 1) how much effort is required to

0.4 find and fix errors; 2) how easy it is to add new

0 capabilities through software; and 3) how much is
required to move the software to different computer

0.2 hardware. Although they may be invisible to the

user, these characteristics, which are all determined

0by architecture, are very visible to developers and

maintainers who must modify and add to the

Age in days operational capabilities of the system.

Source: Lehman. Belady If the DOD wants to buy architectures, it will

Figure 7B. Increasing Complexity with Age first have to know how to ask for them, specify
them, test them, demonstrate them, and prevent

ARCHITECTURE: THE INVISIBLE them from degenerating; in short it will have to
COMPONENT perform all the operations that it performs now

when buying other products.
The DOD does not usually buy architectures

it buys systems that meet explicit functional and In addition, DOD must perform a new task that
performance requirements specified by the user or is currently not part of its acquisition strategy -

the acquisition agent. In most cases, the DOD does maintain explicit control of the architecture for the
not ask for an architecture to be delivered; it should life of the system. One way of accomplishing this
therefore come as no surprise that very few archi- is to add architecture to the other aspects of the

tectures are delivered, system that are controlled by the configuration

5

management system. Since the maintenance phase ers. At this level, the defense industry generally
contains a large fraction of the system's software does a fairly thorough job of understanding archi-
costs, the ultimate maintainer of the system - and tecture, mainly because developers need to under-
thus, the government - must eventually assume stand how much hardware of which types they
control of the architecture. This will require a sig- need to buy.
nificant change in the way the government currently
views architecture and its importance. Figure 9 is another view of the digital system

architecture for the same aircraft, showing both the
Architecture: A Definition application software in the previous figure and the

software that performs system-wide functions. The
There is no single, commonly accepted functions can be described as grouped into layers;

definition of a digital system architecture. In the in this view, software in any layer may utilize soft-
broadest sese, ,architecture is a system or style ware only in its own layer or the layer below it. The
of buildino .aving certain characteristics of computers in the lowest layer represent the segrega-
structure. When applied to digital computer systems, tion of hardware from software to increase their
architecture includes the hardware and software independence and to enhance software portability.
components, their interfaces, and the execution This is an example of the first part of the definition
concept that underlies system processing. of architecture - the arrangement of hardware and

software components (namely, the structure).
The simplest level of system architecture

defines how the hardware and software that make The second element in the definition deals with
up the system are partitioned into components, and the interfaces among key elements - for exanple,
how software components are assigned to hard- data communications according to a standard proto-
ware components. Figure 8 is an oversimplified col (MIL-STD-1553). All computer-to-computer
example (only primary functions are shown) of a messages in the aircraft's avionics architecture must
fighter aircraft's federated hardware and software use this protocol; hence, adding new computers and
structure, which consists of separate computers new functions to the system is relatively simple
networked on a standard bus with individual soft- (from a communications perspective) as long as the
ware functions assigned to the individual comput- data bus has the needed capacity.

Data Bus

I IINS FCC FCR SMVS
Stores

Stations

E RIEO CADC HUD

INS Inertial Navigation Set RIEO - Radar/Electro-Optical Display
FCC Fire Control Comfuter CADC - Central Air Data Computer

FCR Fire Control Radar HUD - Head-Up Display
SMS - Stores Management System

Figure 8. Hardware and Software Structure

6

INS FCC FCR

APPLICATION APPLICATION APPLICATION

EXECUTIVE SOFTWARE

DATA BUS COMMUNICATION SOFTWARE

Figure 9. Digital System Architecture

The third element in the definition of architec- Figure 10 also illustrates the concept of ser-
ture is the execution concept. In the sample avionics vice layers in the part of the architecture that is
system previously shown, this concept is based on developed uniquely for one class of application
the cyclic execution of each function, precisely timed (such as command centers or communications
to repeat the computation on a planned schedule. systems). These or other services must include

error detection and recovery, interprocess com-
Taking structure, interfaces, and execution con- munications, scheduling, and synchronization of

cept together produces one definition of architecture. processes. At this level of architecture, we must
rely on the applications designers for standards

Of course, different vendors interpret the within their design, as well as the quality control
software part of the architecture in different ways. procedures to assure adherence to their standards.
Figure 10 illustrates an IBM view of software
architecture. In many cases, commercial companies ArchtcturaJ Element
can provide off-the-shelf components for the general A .ari-
system capabilities of DOD systems; in addition, IPi&
groups of commercial hardware and software PMrammrg FurionS Area

vendors are defining standard interfaces among Ip1Serice

layers and components. These open system arch;- Comon ACpkaCtio TOM

tectures may provide the flexibility necessary to M

integrate, with a minimum of effort and system Common Systems Interface
disruption, new hardware and software components
with improved capability or maintainability. For I-
example, the International Standards Organization User "it
(ISO) Open Systems Interconnection reference AccessE
model defines the functions of each layer and the ?sjSt1s
protocols for peer-level layers of a communications
interface. Standards of this type permit the upgrading Operaing System
of elements of the system at particular layers without .
requiring the alteration of elements at other layers. Figure 10. IBM View of Software Architecture

7

Architecture: Ramifications the right functions on their data; it is also useful for
estimating and controlling the time the system will

The lack of a good architecture has a serious take to respond to an input. What complicates the
bearing on the cost, effectiveness, and availability of design of an architecture to meet response times is the
DOD systems For many applications where high large number of such strings that may be awaiting
reliability and availability are necessary, the archi- execution at the same time (as when many sensor
tectural concepts must incorporate failure man- reports are received or must be transmiutted) and the
agement as well as other mission requirements. contention over which string will use shared resources
Trouble follows when this is not part of the initial such as computers and commrnications lines.
architectural design.

To understand the timing aspects of a system, it
Error handling is a critical component of any is often necessary to develop a simulation that mod-

system, since errors will inevitably occur. Most sys- els the system architecture and the load on hardware
tems have software to detect errors and to recover and software components or to execute benchmark
from an error when it is detected (for example, when a software on the actual hardware. The validity of the
numerical value goes beyond expected bounds or results depends on how accurately the load, the data
when an operator pushes the wrong button). Given the flows, the hardware speed and capacity, and the tim-
critical nature of most DOD systems, it is crucial to ing of individual processes are represented in the
keep the system in operation when errors occur. When model - even the most elaborate model yields use-
we leave it to each programmer who has developed a less results if the parameters are not accurate. The
part of a system to determine how to handle errors, designer of the architecture must be given accurate
the result is an unintegrated set of sometimes widely information to design the architecture and to evaluate
varying procedures that are often completely incom- its performance; in other words, it is essential that
patible and even dangerous. there be good communications between modelers

and architects or designers.
Recently, MITRE scanned the software for a

large, safety-critical command and control system, Since the demands on the hardware resources
and identified over 200 instances in the code that will change over time, the architecture must provide
handled errors incorrectly. In many cases, the system the flexibility necessary to upgrade hardware to
detected the errors and then ignored them, or passed faster or larger processors to accommodate require-
them to another part of the system that could not ments for increased processing loads or faster re-
handle them. What was missing was a consistent, co- sponse time. Similar increases in bandwidth may be
herent, system-wide error-handling strategy, a critical necessary in communications hardware to provide
attribute of architecture. Furthermore, there was no for increased loads. Models that correspond to an
method of ensuring that individual programmers ad- architecture can be useful in planning for and evalu-
hered to the failure management standards that should ating the effect of changes in the hardware configu-
have been established with the architecture. ration of a system architecture to meet new demands.

Data flow diagrams can show the execution con- The Complexity of Architecture
cept of the architecture of a system (see figure 11). In
this view, the sequence of processing, and which Perhaps the main reason that we fail to address
hardware and software components are involved as these different aspects of system architecture lies in
specific data moves through a system, are apparent. the increasingly complex nature of the systems we
This end-to-end view of the system's treatment of an build. Figure 12 illustrates the top level system archi-
external input is called a string; in actuality, there are tecture of the Joint Surveillance Target Attack Radar
many levels of detail that can be represented by a System, or Joint STARS. The actual architecture in-
hierarchy of data flows for the same string. A string is cludes many more computers, many different data
useful for assuring users that the system will perform busses, and a large number of other components

8

- - - - - - - - - - - ----- -
MICROVAX

Tabulr

(MENU)

RequestScrseen
Managr SttionManager
(SMG) cotrol(bMGR)

SCRMGFISCRMGR

GKS

S 1 Chommandsc$

O0 -s Display Generation (DGNI)

-Process - --- it ~ a

1 sec?

Figure 11. Data Flow Reference Model

WAAR SUBSYSTEM O&0 C SUBSYSTEM e' COMMUNICATIONS SUBSYSTEM

IIC; Xtr xcrD" Dik DikCommunscalons ADT DS

Voi Bus

Figur 12. JonMTRSSseCrcietr

9S

(not shown in the figure) to perform IL% demanding
mion. The result is a large. complicated %y.,em
thmt makes it difficult for developers to consider the
many differnt aspects of architecture.

At the same time. the larger and more compii-
caled the system. the more important good structure
becomes. Developing and maintaining structure EDom A.pv¶.

may be very difficult in a system of such complex- , e
ity, but the rewards for doing so are even greater.
These rewards include higher quality dunring the ini-
tial development, lower life cycle software costs,
and the increased likelihood that the system will TO*

remain in operation far longer (due to its greater
flexibility and ease of upgrading). Furthermore, the Figure 13. Technical Focus (Estimated)
reuse of known and expandable architectures will
reduce the amount of new software that has to be As the figure shows, the failure to consider
developed and increase the quality of the systems architecture throughout the program's development
that use them. has serious ramifications as time goes on. The per-

formance and control problems described earlier
begin to mount, and the contractor is often forced

ARCHTITE : Tto "ill on Red Teams and other desperate measures
SOLUTION to modify the original architecture. Since it is done

Technical Focus in haste and then only to allow the product to meet
the specifications, this last-minute change in archi-
tecture does little to ensure the necessary efficiency

At the start of a development program, when and flexibility, and usually results in further degen-
considering architecture pays the greatest dividends, eration of the basic design.
the technical focus in the typical DOD program is
often not on architecture. Rather, functional and Faulty Emphasis
performance requirements are generally focused on
by both DOD and the contractor (refer to figure 13). Both government and industry typically put

almost all their efforts into the initial performance
This lack of attention to architecture occurs and functionality of a program in spite of the fact

because the government expresses its requirements that these will change substantially over the life of
in terms of specific, measurable system functions the system. At the same time, there is a near-total
and performance requirements that matter to the lack of attention to an architectural baseline that
immediate user, and not in terms of flexibility, would form a stable foundation for incorporating
which matters to the maintainer and next-generation the system's changing requirements.
user. Government standards, such as DOD-STD-
2167A, require proof that a design satisfies all What we do ask for does not address the
functional requirements, not that it is adaptable to important architectural issues. For example, we
change. Design documentation and reviews track state that the system shall be modular but don't
individual system and software components, with state a good way to partition it into modules that
less attention on the overall architecture until the will allow future expansion and change.
components are integrated.

10

We also specify requrements for system Commercial Architecture
growth in an ineffective way that does not relate to
operational capabiliues such as adding new mes- It has recently become evident that commercial
sage types or increasing message traffic. Timing software users have become more concerned with
and sizing margins - for example, half the time architecture. As users become familiar with yen-
and twice the memory - cannot ensure that the dors' capabilities, their expectations increase. In
resources provided are allocated in such a way that turn, many software vendors are now providing
they can be used to meet future requirements, software interface standards that enable inter-

operability across different computer hardware
With the advent of distributed systems, timing families and allow users to pi(choose among

and communications bandwidth margins become competing software vendors
important in providing for future growth. The gov-
ernment needs to assure that growth is expressed These commercial architecture trends can do
in operational terms, and not just in physical terms. nothing but help DOD software efforts, because

DOD is a large buyer of software and hardware that
Because of the government emphasis on meet- support these interoperability standards. Even em-

ing immediate requirements within schedule and bedded, special-purpose militarized systems rely
cost, even industry perceives that the government heavily on commercial systems to assist in software
is not seriously interested in controlling mainte- support. The DOD cannot try to take the lead be-
nance costs. In a 1990 Air Force Scientific Advi- cause these standards are driven by the commercial
sory Board study of software maintenance, 123 marketplace; however, the DOD can use to advan-
businesses were asked what the government thinks tage the opportunities in the commercial market for
is important when awarding software contracts: open architecture standards. Unfortunately, these

commercial standards cannot include the service
Overall project cost 6.2 out of 7 standards that are heavily application-dependent;

these must be left to the application designer to
Proposed product performance 5.5 establish and implement.

Contractor experience in area 5.5

Timeliness 5.3 Availability of Tools

Last contract an advantage 4.8 The commercial market is also in the lead in

Project software development 4.6 providing tools that support the designer in gen-
cost erating and documenting architectures. There are

Contractor software capability 4.4 tools to enable developers to analyze the linkage
between different software modules, the control

Ease of software maintenance 3,4 flow, the flow of data, and the timing of the

Software maintenance cost 3.3 various operations, and to assess and improve

Software portability 2.9 architecturs.

Their view of the government's stress on cost and Many tools can only perform their analyses

system performance, rather than long term main- after the software is already written. These tools
can still be used to understand what has been devel-tenance, is readily apparent. oped and to evaluate how easily it can be modified,

before it is fielded or later. The investment may be
small, and the potential payoff large. The following
table lists some representative examples of avail-
able tools:

11

Name Vendor Analyzes control the architectural configuration over the life

Logisope Velog Module structure, ph cycle of the system. We believe this can be done.

coverage System Specification

ACT/BAT McCabe Flow graphs, structure
graphs Since contract requirements drive the entire

ADAS CADRE Dynamic behavior, development of a system, the surest way to ensure

timing adherence to a sound architecture is to put architec-
tural requirements in the system specification. This

STATEMATE i-Logix Structure, dynamic does not mean that the specification will define the
behavior exact architecture to be used, but rather that it will

CPN Meta Dynamic behavior, specify what the architecture is to do. In cases when
simulation the application domain is well understood and a

Adagen MarkV Ada static structure, sound architecture is already available, the govern-

dynamic behavior ment may find it in its best interest to be more re-
strictive than in other situations lacking such a clear

CARDtools Ready Timing threads precedent.

TAGS Teledyne, Dynamic behavior,
Brown simulation To specify accurately the criteria architectures

must meet, we must also determine how to qualify
The government must acquire these tools and use them. There are few measures of system designs
them if it is going to buy architectures ani that accurately predict flexibility and expandability.
understand them. We will have to depend on a combination of tech-

niques, including demonstrations that the system
In addition to commercially available tools, can be modified as well as analyses of features of

project-specific tools can improve the productivity the architecture. We are beginning to establish rela-
of software development for a specific architectural tionships between measurable features and rate of
design. Referring to the CCPDS-R program again, errors as well as ease of change. As figure 14
the contractor developed a tool to automatically shows, the more calls a module makes on other
generate the communications software that linked modules, the more errors occur.
applications. The applications programmer needed
only to list the elements of data that were required Early Satisfaction of Archittctural
from each application and were necessary to each Requirements
application. The tool used this information to gener-
ate efficient and correct communications following To reap the maximum possible benefit from
a standard pattern. architectural requirements, we should specify that

contractors cannot write large amounts of applica-
tions software until they have developed an architec-

RECOMMENDATIONS: FINDING AND ture that the DOD has evaluated and approved. The
APPLYING ARCHITECTURE only applications software that would be written

before this point would be that necessary to help
Good architecture potentially can provide evaluate the architecture and reduce other serious

significant cost savings as well as greatly increased risks, not to perform the actual task at hand. We can
system flexibility. To obtain these benefits, we no longer afford the risk of developing architecture
must put architectural requirements in system and applications concurrently; on the other hand, if
specifications, emphasize the early satisfaction of contractors have successful architectures and control
these architectural requirements, give contractors procedures that they have used before, they can use
incentives to use proven architectural concepts, and them again. In fact, the quality and effectiveness of a

12

One Call Contractor Incentives

Contractors will have to be given incentives to
change from their current emphasis on meeting imme-
diate requirements to a longer term view. They will
have to set up their own controls to keep applications
software writers from corrupting the architecture; in

Medium other words, during development, contractors will have
Fault Rate the architecture under configuration control. Rules and

36% standards have to be defined as part of the architecture.
Tools should facilitate the integration and modification
of components within the architecture so we know that

2-7 Calls the standards of the architecture are observed.

Contractors who have good architectural aware-
ness should be treated better than those who do not.
The development community needs to start working
on architecture with the software maintainers to ensure
that we deliver to them whatever is necessary for them

Medium to sustain and use the architecture.
Fault Rate

7 Getting Started

It is recommended that the DOD put together a
Many CaFalt government and industry team to develop specifica-

tion and contractual language for buying architectures.
12 Approaches for evaluating and testing architecture

need to be agreed upon as well. We are confident that
.. e.umte this can be done and we have begun to develop an

Fault Ra example. This team should also see that we use the
33% experience that we have acquired on programs to

determine what the contractors and the government
have done to create good architectures, and to define
the criteria for evaluating architectures.

Source: Card We also need to consider buying single architec-
tures for closely similar clusters of systems to reduce

Figure 14. Effect of Control Structure on Errors the cost of buying and maintaining unique architec-
tures for each. For existing systems, we must work to

previous architecture as well as the tools available to introduce architectural improvements without disrupt-
support development of applications within the ing operational use of the systems.
architecture should be an important factor in the
selection of contractors on a program. It is crucial that industry participate as part of the

team that would create the specification language and
We should also control these architectures after evaluation criteria. The insight of a joint government-

we evaluate and approve them. Changes would be industry working group on architecture will be of
weighed against the need for future flexibility considerable benefit to the DOD during this time of
throughout the life of the program. changing missions and increased need for flexible

systems.

13

REFERENCES

Arthur, L. J. Software Evolution. the Software
Maintenance Challenge. New York: John Wiley &
Sons, 1988.

Card, D. N. Measuring Software Design Quality.
Englewood Cliffs, NJ.: Prentice-Hall, 1990.

Day, R. A History of Software Maintenance for a
Complex U.S. Army Battlefield Automated System,
Proceedings of the Conference on Software Mainte-
nance. New Jersey: IEEE, 1985.

DOD-STD-2167A, Defense System Software De-
velopment, 1988.

Lehman, M. M., and Belady, L. A. Program Evolu-
tion - Processes of Software Change. New York:
Academic Press, 1985.

Rock-Evans, R., and Hales, K. Reverse Engineer-
ing: Markets, Methods, and Tools. England: Ovum,
Ltd., 1990.

United States Air Force Scientific Advisory Board.
Report of the Ad Hoc Committee on Post-Deploy-
ment Software Support. U. S. Government Printing
Office, 1990.

14

