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ABSTRACT

Signature

ARTIFICIAL NEURAL NETWORK METAMODELS OF
STOCHASTIC COMPUTER SIMULATIONS

Robert A. Kilmer, Ph.D.

University of Pittsburgh

A computer simulation model can be thought of as a relation which connects input

parameters to output measures. Since these models can become computationally

expensive in terms of processing time and/or memory requirements, there are many

reasons why it would be beneficial to be able to approximate these models in a

computationally expedient manner. This research examines the use of artificial neural

networks (ANN), to develop a metamodel of computer simulations. The development and

use of the Baseline ANN Metamodel Approach is provided and is show, n to outperform

traditional regression approaches. The results provide a solid foundation and

methodological direction for developing ANN metarnodels to perfon-n complex tasks such

as simulation 'optimization'. sensitivity analysis, and simulation aggreit-±ion/rt,.jction.
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1.0 INTRO)DUCTIO)N

1.1 Problem Statement

The interactions and relationships among components of most real world systems

are too numerous and complex for a human to recognize, much less understand. Thus.

simplifications or approximations of systems, called models, are used to examine problems

associated with the design, operation, maintenance, or modification of systems. Many of

these models are implemented as computer simulations that accurately reflect much of the

detailed interactions and activities of the components of the system. Essentially these

computer simulations are mechanisms for converting system input parameters into output

measures.(1)*

According to Box and Draper, there are two basic approaches to building a model

of a system: mechanistic and empirical.( 2) In the mechanistic approach, enough is known

about the system to develop an explicit representation that tries to mimic its operation or

processes. When the necessary information of the physical mechanism of the system is not

known, then an empirical model that relies only on the observations of the inputs and

outputs of the system can be constructed if there is enough observational data on the real

system. For large, complex systems it is usually necessary to combine both approaches in

order to realistically model the system. The development and use of both types of

modeling approaches are depicted in Figure 1. As can be seen in Figure 1, the main

difference between the two approaches is in the creation or development of the model,

rather than the operation of the completed models.

*Parenthetical references placed superior to the line of text refer to the bibliography.
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Development of the model.F:>@
MCAISTIC MDL

Ei '---MOELOUTPUT

*$4$TMI M EM ICAL ~ f
SYSTEM OUTPUT }JOIDDE N=110ý OUTPU

USED WHEN OPERATING THE MODEL

Figure 1 Mechanistic and Empirical Modeling Approaches

Mechanistic models are generally preferred over empirical models because of the

clear and apparent connections to the real system. However, a major drawback to many

mechanistic models is that they can be extremely slow to operate, thus requiring

tremendous amounts of computer resources.

Consider a fairly common situation where a slow but accurate mechanistic

computer simulation model of the system exists and there is very litt!e observational data

of the real system. One approach to resolving this situation would be to build an empirical

model using the data from the real system. However the lack of real system data would

probably produce a poor empirical model. Another approach would be to take advantage

of the existing mechanistic computer simulation to obtain data for use in developing an

accurate and fast operating empirical model. In this approach the empirical model is

actually a metamodel (i.e., a model of the computer simulation model), rather than a direct

model of the system.
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For more than twenty years, metamodels based primarily on response surface

techniques, have been used to examine computer simulations. Most response surface

methods currently use linear regression to build empirical models of computer

simulations.(3 ) The central idea of this research is to use Artificial Neural Networks

(ANN) to construct the empirical model of the computer simulation, since ANN are

essentially capable of performing non-parametric, nonlinear regression.( 4) Figure 2

shows the metamodeling approach and tenninology for the regression and ANN empirical

models.

First, obtain simulation data ...

Input MECHANISTIC
COMPUTER Output
SIMULATION Otu

then, develop an empirical model using observed simulation data.

Simulation Independent
Input = Variable EMPIRICAL

REGRESSION Predicted Value

Simulation Dependent MODEL
Output = Variable

Simulation siuu
Input StimulusEMPIRICAL

ANN Response
Simulation MODEL

Output - Target

Figure 2 Constructing Metamodels of Computer Simulations

While beyond the scope of this dissertation, the ultimate goal is to use ANN

approximations in lieu of mechanistic computer simulations in performing such complex

and time consuming advanced tasks as simulation 'optimization,' sensitivity analysis, and

simulation aggregation/reduction. In order to attain this goal, it is necessary to study and
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understand the limitations and strengths of ANN approximations to perform the most

elementary, yet fundamental, tasks of simulation. Computer simulations are used to

perform the following basic tasks:

To predict the output measure of a system for a given input parameter setting.

To determine the output measure's average value and variance for a given input
parameter setting.

To determine if the output measure for a given input parameter setting is
significantly different than a specified value of interest to a decision maker.

To determine sensitivity of the output measure to change in the input parameters.

The problem that this dissertation addresses is how to perform these basic

simulation tasks with ANN approximations of a computer simulation rather than

performing these tasks directly with the computer simulation. This dissertation provides

the foundation for using ANN approximations of a computer simulation to perform

advanced simulation tasks.

1.2 Importance of Computer Simulation

Computer simulation has been identified in surveys as the most widely used tool of

industrial engineers and management scientists.( 5) Computer simulation has several

advantages over other techniques for examining systems. Often computer simulation is

the only means for examining a real world system. Sometimes, this is due to the size and

complexity of the system, since some systems cannot be accurately represented by an

analytical mathematical model. On other occasions, this is due to the fact that the system

does not exist or the conditions under which the system will operate are too dangerous,



costly or infrequent to permit direct experimentation with the system. Examples include

the United States space station, conducting nuclear war, and designing the tunnel under

the English Channel between England and France. Other advantages of simulation include

the ability to have complete control over the experimental conditions and to study system

operation over long time horizons.Y6•

There are a wide variety of application areas such as the military, service

industries, manufacturing organizations, and transportation companies throughout the

world that make extensive use of computer simulations. For example in the military,

computer simulations are used to conduct training for individual soldiers in tanks and

aircraft, examine operation plans and force structures, as well as to evaluate future

weapons systems.(7 ) The main reason these computer simulations are being used is that

they provide realistic results and, in many cases, provide them at a lower cost than

alternative approaches.

1.3 Problems with Computer Simulations

Simulation models often are expensive to develop and use, in terms of personnel,

time, and other resources. Sometimes too much confidence is placed on the results of a

computer simulation simply because these results were produced by a large, very detailed

computer program. Computer simulation models also have the opposite type of problem:

the results are not accepted because decision makers consider the large, detailed computer

program to be a 'black box.' Additionally proper interpretation of computer simulation

output usually requires training and experience in using statistical methods to prevent
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people from doing such things as interpreting the results of one replication of a stochastic,

simulation as being 'the answer.'("'

Simulation is typically considered a 'means of last resort' due to the cost of

building, verifying, validating, and using simulation models. Hillier and Lieberman

succinctly state: "... simulation is a slow and costly way to study a problerm", 9M The longer

it takes to run a computer simulation on a particular computer platform, the more difficult

it is to perform the necessary checks involved with verifying and validating the cornputcr

simulation. Another problem is that these simulations can grow so large theit they exceed

the memory capacity of the computers, or the commercial modeling languages, that are

available to the users of the simulation. Even after expending the resources to obtain a

valid model, slow response time or large memory requirements, caused by the complexity

of the computer simulation, can prevent, or seriously impede, such activities as perforling

quick turn-around studies, sensitivity analyses, model aggregation, and simulation

'cptimization'.

1.4 Need for Better Approximations to Computer Simulation Models

For more than 30 years, computer simulation models have been used to predict

how systems would perform under certain conditions. Many of these models have been

accepted as valid representations of the underlying system because the model accurately

reflects the behavior of the systern as it operates over time. Over the past several years. in

combination with response surface methods, these models have also been used, not only to

predict the behavior of a system for a given set of input parameters, but also to prescribe
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the input parameter settings that would result in good or 'optimal' output values of the

model with respect to the particular problem of concern.

However, because of the detailed information that is necessary for precise

prediction over time, it is difficult to find 'optimal' solutions to these predictive models.

What makes it so difficult to 'optimize' a predictive model is that they are usually

computationally expensive and have a very large number of possible solutions in the input

parameter space. In 1989, Jacobson and Schruben state that "Although there has been a

significant amount of research in the area (simulation optimization), no general approach

has been developed into an efficient and practical algorithm."0 0) This situation still holds

five years later. Thus, there is a need to reduce the computational burden of computer

simulations to permit identification of good solutions for designing, operating, and

maintaining large, complex systems.

Typically, computer simulation 'optimization' is currently conducted through

response surface methodologies (RSM) using regression model approximations of the

computer simulation. The regression model approach in RSM has been used successfully

for such purposes as performing sensitivity analyses within a limited region of the input

parameter space, determining constraint satisfying solutions, and simulation

,optimization'.(' 1) The regression model approach has not been used to perform global

estimation or approximation. The regression model approach has typically been limited to

fist- and second-order regression models.(02) Myers, Khuri and Carter state: "There

appears to be some need for the development of non-parametric techniques in RSM.

Most of our analytic procedures depend on a model. The use of model-free techniques
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and, in particular, the inposed symmetry associated with a second-degree polynomial."(13)

The possible approaches to solving the problems caused by the computational

burdens of computer simulations are to obtain more powerful hardware, rewrite the

computer simulation to be more computationally efficient, or to develop a small and/or

fast approximation to the computer simulation. In many cases, the first and second

approaches have already been taken or were impractical due to a lack of capital funds or

the ability of available simulation programmers. In addition, if a computer simulation has

achieved a high degree of user acceptance due to extensive verification and validation

efforts, there is a certain amount of reluctance to make significant modifications to the

computer simulation. Thus, the third approach, approximating computer simulations,

needs to be examined.

As Simon puts it, "When our goal is prescription rather than prediction, then

we can no longer take it for granted that what we want to compute are time series ...

But facts must be faced. Intelligent approximation, not brute force computation is still

the key to effective modelling. ,(14)

1.5 Using ANN to Approximate Computer Simulations

One possible non-parametric approach, which is the focus of this research, is to

have an artificial neural network "learn what the computer simulation knows" by training

on the inputs and outputs of the computer simulation. As Padgett and Roppel state:

"Neural networks in all categories address the need for rapid computation, robustness, and
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adaptability. Neural models require fewer assumptions and less precise information about

the systems modeled than do some more traditional techniques."('15)

The idea of using an ANN to approximate a computer simulation may initially

seem routine to researchers with an extensive background in neural networks. The reason

for such an assessment is that there are many examples of researchers using computer

simulations in order to obtain data to train their networks.(0 6.17,s1 ) The majority of these

cases involved research in modifying or developing new ANN methodologies, techniques,

or procedures. Thus, instead of expending valuable time and effort to obtain data from a

real system, these researchers obtained their data from computer simulations that were

built with the sole purpose of "feeding" an ANN. However, while it might be fairly trivial

to build a computer simulation to provide training data to an existing ANN, this does not

mean that it will be easy to build an ANN that will be able to receive and learn the

relationships of an existing, complex stochastic computer simulation.

ANN have been used quite extensively to perform function approximation.

However, computer simulations of the type examined in this dissertation are more difficult

to approximate. There are three major differences between using ANN to approximate

stochastic simulations and using ANN to perform ordinary function approximation. First,

due to the stochastic nature of the computer simulation, a given set of inputs yields

different outputs, thus compounding training. Second, training and testing data are

computationally expensive to generate, and therefore must be leveraged. Third, training

and testing data are usually designed; i.e., are not randomly chosen from the problem

domain.( 19 )
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While the largest payoffs for a computer simulation approximation tool are likely

to be in the complex areas of simulation optimization, sensitivity analysis, and model

aggregation, it is necessary that a solid foundation be established for using the

approximation tool, either in lieu of, or in conjunction with, the computer simulation.

Therefore, it is essential to know how to use the approximation tool to perform the most

rudimentary computer simulation tasks.

The major contribution of this dissertation is that it provides an empirically based

methodology and discusses the capabilities, limitations, advantages and disadvantages, for

using ANN approximations of computer simulations to perform the basic simulation tasks

of prediction and comparison of alternatives. An additional contribution is the

development of the foundation for using ANN approximations of computer simulations for

performing advanced simulation tasks.

1.6 Overview of the Dissertation

This dissertation contains eight chapters and three appendices. Chapter I provides

a general introduction to the problem of approximating computer simulations with

Artificial Neural Networks. A detailed literature review of computer simulation,

approximation theory, and approximation approaches is given in Chapter 2. The research

issues, methodology and tools used to conduct the research are detailed in Chapter 3.

Chapters 4 and 5 cover the description, experiments, results and lessons learned from the

problem used to develop the baseline Artificial Neural Network metamodel approach.

Chapter 6 delineates the baseline ANN metamodel approach. Chapter 7 provides the

results of applying the baseline ANN metamodel approach on a demonstration problem,
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and conclusions derived from the research effort as well as areas for potential future

research. The appendices and bibliography follow Chapter 8.

1.7 Restrictions of the Research

Since the focus of this research effort is on developing a tool that could be used to

approximate a computer simulation, it is assumed that the topology of the internal

relationships and procedures within the computer simulation have been determined and

will not be modified (i.e., the computer simulation to be approximated has already been

finalized, verified, and validated). Therefore, this research did not address problems

associated with building computer simulation models. Nor does it deal in detail with

problems of verification and validation of computer simulation models. Further, it is

assumed that only the values of the input parameters that are provided to the computer

ýsmulation can be changed.

The prediction of output values will only be done for those output values

determined at the termination of the simulation. Predicting a series of values of the output

measure over time is a subject for future research efforts.

This research only examined terminating, stochastic, discrete-event computer

simulations. A description of these terms is provided in Chapter 2. This research focused

on the type of computer simulation typically used for addressing industrial

engineering/management science/systems analysis problems. However, this same

approach should be generalizable to other areas.
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This research uses feedforward, multi-layered, fully connected artificial neural

networks trained via the backpropagation learning algorithm. The reasons for having

chosen such a network paradigm are discussed in Chapter 3.

1.8 Summary

This chapter provides an introduction to the problem of interest. Specifically, it

presents an overview and demonstrates the need for approximating computer simulations

with artificial neural networks. A brief discussion of the topics of computer simulation

and its importancc, modeling approaches, and the fundamental idea of using the results of

a computer simulation to provide data for building an empirical model of a system are

also provided. An overview of the dissertation document is provided as well as a

discussion of the restrictions of the research effort.
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2.0 LITERATURE REVIEW

2.1 Computer Simulation

Simulation has been defined by Pegden as: "the process of designing a model of a

real system and conducting experiments with this model for the purpose of understanding

the behavior of the system and/or evaluating various strategies for the operation of the

system."( 20 ) Just about anything can be simulated on a computer. Computer simulations

range from models of simple mathematical functions, such as y = sin(x)+4x, to complex

models of the universe.

There are various ways that computer simulations can be classified. Law and

Kelton provide a way to categorize computer simulations using four dichotomous

characteristics:(2 1)

(1) Deterministic versus Stochastic. Deterministic simulations provide a unique

solution for a given input, no matter how many replications are performed, whereas the

stochastic simulation contains probabilistic elements, and therefore provides only an

estimate of the output variable.

(2) Static versus Dynamic. A static simulation is a representation of a system

where time does not have an impact, while a dynamic simulation is affected by the passage

of time within the simulation.
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(3) Discrete versus Continuous, or Mixed. This is a characteristic of dynamic

computer simulations. In discrete simulations, the variables can change only at specific

points (at most a countably infinite number of points) in time, whereas in continuous

simulations, the variables change continuously (i.e., without a break or jump between

values) over time. A mixed simulation contains some variables which are discrete and

some which are continuous.

(4) Terminating versus Non-terminating. This is a characteristic of dynamic

computer simulations. A terminating simulation is one where there exists a natural

termination criteria for the system that is being simulated. A non-terminating simulation

does not have a natural termination criteria and so analytical or heuristic methods are used

to determine when to stop the simulation.

To a great extent the answer to the question "what is computer simulation?"

depends on the respondent. Each area of specialization such as aeronautics, chemistry,

economics, nuclear engineering, medicine, physics, or warfare has its own repertoire of

computer simulation models that are used in research and applications. Due to the

characteristics of the problems in each area, certain types of models will perform better

than others and will, therefore, tend to dominate a field of specialization. For instance, in

the fields of operations research, systems analysis, and industrial engineering, which

developed concurrently with the use of computers, Quade states "... simulation is the

process of representing item by item and step by step the essential features of whatever it

is we are interested in... ,"(22) Thus, researchers in these fields tend to think of computer

simulations as mechanistic models of systems. In this dissertation it is assumed that the

term computer simulation means a mechanistic, stochastic, dynamic, discrete, terminating
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simulation since the majority of simulations in the field of industrial engineering are of this

type. Discrete-event models are by implication dynamic as well as discrete. Thus, this

research considers mechanistic, discrete-event, stochastic, terminating computer

simulations.

In the past, many organizations had the luxury of making decisions on the basis of

studies of long duration, and thus, the computer simulation models that were used in

conducting these long duration studies did not need to be very fast. This situation was

especially pronounced for examinations of very large and complex systems such as rain

forests, space stations, and military operations. Today, with more managers becoming

comfortable with the use of computers and computer simulation models, as well as the

increasing pressures of global competition, there is a greater demand to have results from

computer simulations in a shorter amount of time.(23-28) If the computer simulation is too

slow, as can typically be the case when portions of the simulation employ large Monte

Carlo modules to generate responses, then the results may not be available in time to assist

the decision maker.

Computer simulations are also used to perform sensitivity analysis for large

complex systems.(29) Sensitivity analysis means being able to answer the "what if'

questions that a decision maker might ask concerning the issues that are being

investigated. This typically requires making many different runs and replications of each

variation of the input parameter settings. Thus, if the computer simulation is slow, the

amount of sensitivity analysis that can be performed will be limited. Sensitivity analysis of

computer simulations currently can be very expensive.(6)
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Computer simulation models for very large, complex systems are sometimes

constructed by building a series of models for different system components, usually called

modules, and then linking them together to form an aggregate model of the system. While

each of the individual modules might perform quite effectively, the aggregate model might

be very slow and possibly exceed the memory requirements of the computer. Thus, there

is a need for model reduction techniques to make the larger and more computationally

expensive modules more efficient.(30, 31)

Over the past several years, computer simulation models have also been used, not

only to predict the behavior of a system for a given set of input parameters, but also to

prescribe the input parameter settings that would result in "optimal" output values of the

model with respect to the particular problem of concem.( 32) It should be noted that what

is meant by an "optimal" solution in the context of simulation is really closer to a

"superior" solution rather than the "best" solution interpretation typically found in the field

of optimization. However, because of all the detailed information necessary for precise

prediction over time, it is difficult to find optimal solutions to these models. Just as

humans become overloaded with information about the real world when it is necessary to

predict the behavior of such systems, these computer simulation models may be processing

too much irrelevant information when it comes to prescribing solutions to posed problems.

2.2 Artificial Neural Networks

A neural network is a computational mechanism that achieves power and flexibility

through the use of parallel and sequential processing elements. The field of neural

networks is also known as parallel distributed processing or connectionism.(33) The initial
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focus of neural networks was, and the work of many current researchers is, on developing

artificial structures that model the actual operation of a biological brain. Many other

research efforts, including this one, make no claims about their neural networks reflecting

features of how the brain actually operates. To emphasize the distinction, the latter group

of networks are referred to as artificial neural networks (ANN).

The earliest work in neural networks was reported in 1943 by McCulloch and Pitts

who developed networks which today are called "McCulloch-Pitts nets." While these nets

are very simple by current standards, the noted mathematician John von Neumann proved

that redundant McCulloch-Pitts nets can perform arithmetic calculations with high

reliability, but not necessarily as efficiently as traditional sequential computing

algorithms.(34) Currently, there are many different kinds of neural networks with various

architectures and learning algorithms that are used for many different purposes in a wide

variety of applications.(35,36) Cheng and Titterington provide an excellent discussion of

neural networks from a statistical perspective by examining the similarities and differences

between traditional statistics and artificial neural networks.( 37)

It should be noted that in the field of neural networks the term "computer

simulation" has typically been used in two different ways. The more prevalent use is to

indicate a software implementation of an ANN on a sequential processing computer to

distinguish it from a hardware implementation on a parallel processing computer or

chip.(38) A secondary use is to describe one of the mechanisms for obtaining data to test

an ANN methodology, technique, or structure. This is typically done when it is difficult or

impossible to obtain real world data. This secondary interpretation is closer to the manner

in which the term "computer simulation" is used in this research.
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Even though there seems to be a wide variety of objects that claim to be artificial

neural networks with differing terminology, the following definition appears to encompass

most, if not all, of the various artificial neural networks. An artificial neural network can

be defined as a directed graph consisting of nodes (or units) that are connected in some

manner with the following properties( 39):

1. Each node i has an associated state variable with activation level, Ai.

2. Each connection between nodes i and j has a real-value weight, wij.

3. Each node i has an associated real-value bias, Vi.

4. Each node i has a transfer function, t(Aj, wij, Vi).

The transfer function is usually non-linear and is used to determine Ai, the new

state variable, based on the summation of all inputs into node i: the state, Aj, of all nodes j

connected into node i; the weights, wij, of the connections coming into node i; and the

bias of node i, Vi. Thus, Ai = t(AJ, wij, Vi). A depiction of a typical node which in this

example has two inputs is given in Figure 3.(40) The activation level for the node in Figure

3 is given in equation 2-1.

2

Ai WtY( wij xAj)+Wio ×Vi)(-
j=l



I I )

19

A,

input 2 Node i
Figure 3 A Typical ANN Node

While there is very little that an individual node can do, by combining many

different nodes, ANN are capable of approximating complex functions. The nodes of an

ANN are typically placed into one of three types of layers. The input layer only receives

stimuli or information from outside the network. The output layer is used to provide

results from the network. The hidden layer(s) is used to permit different operations to be

performed on the data. The hidden layer derives its name from the fact that it is invisible

to the world outside of the network. In other words, the hidden layer neither receives nor

transmits any information directly outside of the network. Some types of ANN do not

use a hidden layer of nodes. If, for all layers of the network, all the nodes in one layer of

the network are connected to all the nodes in the succeeding layer of the network, then the

network is called a fully connected neural network. Following the convention used in

Zurada, only the hidden and output layers are counted when describing the number of

layers in the network.(41) For example, a network with an input layer, two hidden layers

and an output layer would be referred to as a three layer network.

One way to characterize networks that are organized into layers is with regard to

the direction of the flow of information between the layers of the network. If the flow of
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infortnation about the state of the node cannot be fed back to itself either directly or

indirectly through other nodes, then the network is called a feedforward network.

Otherwise, the network is called a feedback network 242) Figure 4 graphically depicts a

fully connected, multi-layered, feedforward ANN (43)

hidden layer

input layer
I 0
N output layer u
P T
U P
T = U

V E T
E V
c E

T C
0Z TR 0

R

feed forward

Figure 4 Typical Feedforward ANN

Researchers have developed many different approaches for "teaching" an ANN to

"learn" the relationship between the inputs and outputs of a system. The outputs of the

system are typically re.erred to as "targets" in the connectionist literature. In the situation

called "supervised learning," input and target pairs of data are available for the system of

interest. The data is shown (i.e., provided) to the network one pair at a time to provide

an opportunity for the network to "learn" the relationship that exists between the input

and target data. In this research, a training point consists of both the input vector and the

corresponding target vector. The information about the outside world is provided to the
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ANN through the activation values of the input and output nodes (i.e., through the Ai).

The knowledge of the network is stored in the weights of the network (i.e., in the wij).

Typically, a network starts in a randomized state of initial weights and is trained iteratively

until reaching an "intelligent" state.

A very popular, nearly "standard", training mechanism is called "backpropagation"

or the "generalized delta rule." First developed by Werbos(44) and publicized widely by

Rumelhart and McClelland,(45) the generalized delta rule is usually used for feedforward,

fully-connected networks and is divided into two stages. In the first stage of training, as is

depicted in Figure 5, one input data vector is presented to the input nodes of the network,

and processed in a forward direction through the network with the states of the nodes

being passed from one node to the next until the output nodes have newly assigned state

values or activation levels, called the response vector. The response values of the output

nodes are then subtracted from the corresponding target values, resulting in an error value

associated with each output node.

The second stage of training, depicted in Figure 6, propagates the squared error

from each output node backwards through the network, and adjustments are made to the

weights and thresholds of the network using gradient descent to reduce the size of the

total squared error of the network.(45) Selecting a new training point and applying both

training stages to the new training point continues until the training stoppage criteria is

achieved. Typical training stoppage criteria include convergence for all of the training

data to less than a pre-specified error level or after performing a pre-deterinined, large

number iterations through the training data.
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Once the training is concluded, a check on the generalizability of the trained ANN

is usually performed by testing another set of data, distinct from the training set, using th".

weights determined by the training procedure. This test is conducted in the exact same

way as the first stage of training, but consists of only one pass through the network, as

depicted in Figure 7. The input data is provided to the network and the activations are

propagated only one time for each input data vector and the resulting response is

compared to the target to obtain the error of the ANN on each test point.

Finally, as is depicted in Figure 8, the trained network is used in an operational

mode to obtain predicted responses to input vectors for which target vectors are not

available. This is similar to testing the network in that there is only one pass for each

point in the data set. However, in this case there are no target vectors to use to determine

the accuracy of the ANN.
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Figure 7 ANN Testing
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This research used the backpropagation method of training feedforward, fully

connected ANN for the following reasons. First, several researchers have already

successfully used these networks for performing arbitrarily well the task of approximating

continuous functions and have shown that they are in fact "universal approximators."(46-54)

Second, the widespread availability of software for performing backpropagation will

enable computer simulation researchers unfamiliar with ANN to quickly and easily use and

apply the results of this research effort. Third, it has been shown that backpropagation is

equivalent to the Robbins-Munro stochastic approximation procedure for solving the

nonlinear least squares regression problem.(4) Fourth, the focus of this research is not on

finding the "best! ANN for approximating computer simulations, but on determining how

to use ANN to approximate computer simulations and discovering the advantages,
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disadvantages and limitations of such an approach. Therefore, to emphasize that this is

not a study of ANN methodology, but rather a study of how to use ANN to approximate

"omputer simulations, a well-accepted, conceptually easy to understand, "standard," ANN

.hat may not be the most efficient at continuous function approximation was used.

There are two major drawbacks of the backpropagation algorithm that have caused

researchers to examine alternative training procedures. The first problem is possible

convergence to local minima rather than the global minimum of the error surface and the

second problem is computational expense and the consequent time to train using

backpropagation.( 55) It was once conjectured that backpropagation trained networks

would always converge to the global minimum. It has been shown that this is true in many

practical applications but there are cases when they do converge to local minima because

it is essentially a gradient descent procedure.(56) One of the reasons that backpropagation

is computationally expensive is that the network architecture, in terms of the number of

hidden nodes, is determined on a trial and error basis. Much of the research has been

directed at examining various methodical procedures. One approach used in this research

is to start with the smallest possible network, train that network, add another node to the

network, and repeat the process until performance begins to worsen. This simple

approach and other more sophisticated techniques such as adding or trimming hidden

nodes during training are discussed by Hush and Horne.(57) Other researchers have

developed such modifications to the traditional backpropagation training algorithm as

Quickprop,(58) RPROP,(59) Double BackProp,(6°) and others based on sophisticated non-

linear optimization procedures. (61-65)
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Other neural network approaches to function approximation have also been

developed. One of the most promising of these alternatives to backpropagation is Radial

Basis Function (RBF) neural networks. Poggio and Girosi have published several articles

on Radial Basis Function artificial neural networks that have the best approximation

property for continuous multivariate function approximation. 5 1.52.66) However, there is

no guarantee that these networks will also have the best approximation property for

discrete multivariate functions. Also the RBF neural networks are not nearly as well

known as the backpropagation neural networks. For these reasons the RBF neural

networks are not examined in this research. They do appear to hold promise especially in

their ability to provide confidence interval estimates for their responses.(67)

This research used networks with two hidden layers even though it has been shown

that one hidden layer networks can approximate any continuous function.( 68 ,69 ) However,

one hidden layer networks may require an infinite number of nodes to be able to

approximate a given function. In contrast, two hidden layer networks do not require the

assumption of the availability of an infinite number of hidden nodes(70 ) and those networks

can solve most real world approximation problems with only the two hidden layers.(71)

According to Padgett and Roppel: "A neural network can be thought of as an

advanced simulation technique incorporating ideas from many fields and capitalizing on

modern-day parallel processing and microelectronics capabilities."(1 5) Since there are

researchers who are examining the use of the neural network techniques for performing

simulation,'(72) it is obvious that issues such as when should the ANN approach be used to

directly perform the simulation and when should the ANN technique be used to
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approximate another simulation model, will arise. This research will provide information

that will be helpful in addressing these types of issues.

Four examples in the literature have been found where an ANN was constructed

for the purpose of approximating or estimating the results of a computer simulation

model. The first example, by Fishwick, found that a backpropagation trained neural

network was not as effective as a regression model in approximating a deterministic

computer simulation. However, it should be noted that the author appears to have only

trained one network and did not change any of the default settings of the neural network

software package used in the research.(73) In the second example, Pierreval and

Huntsinger examined the issue of whether the data used to train neural networks as

metamodels of computer simulations should be factorial design points or randomly

generated points. While randomly generated points seemed to produce better networks in

terms of generalizability to test set data, it appears that this was due mostly to the fact that

the random training sets were larger than the factorial design training sets.(74 )

In the third example, Badiru and Sieger reported good results when using a neural

network trained on economic models.(75)

In the fourth example, Hurrion showed that "it is possible to fit a neural network

to model the generalized response of parameter changes in a visual interactive

simulation."(76) The simulation was a stochastic, discrete event, terminating model of a

train depot developed as a demonstration of "visual interactive sinulation."( 77) A random

number of trains arrived at the depot each day to receive coal and the depot remained

open until all of the trains had departed the depot. The output from the simulation was the

length of time the depot remained open each day.
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Hurrion conducted two experiments in approximating the simulation of a coal

depot with a backpropagation trained fully connected feedforward artificial neural

network. The first experiment was designed to show that a simulation could be

approximated by a neural network. Five different input factors were chosen with each

factor having three different levels. The simulation was replicated nine times at each of

the 35 (i.e., 243) design points and the mean and variance, of the time the coal yard

remained open was calculated over the nine replications. The 99% lower and upper

confidence limits for each of the design points were also calculated. Artificial neural

networks were then constructed to try to approximate the simulation results of mean,

lower confidence limit and upper confidence limit of the time the coal yard was open.

The network architecture that was able to learn the relationships between the input factors

and the output responses had five input nodes, one for each of the input factors, thirty

hidden nodes in each of two hidden layers, and three output nodes. The output nodes

corresponded to the mean and the two confidence limits. The result for the training set

was that the neural networks prediction of the mear, always fell within the original

simulation's 99% confidence intervals. in addition, the mean predicted by the neural

network for a test set of six different combinations of input parameters that were not

included in the training set, also fell within the 99% confidence intervals of the original

simulation. The test set was small in comparison to the training set and all of the values

were internal to the values included in the training set. This experiment showed that "it is

possible to fit a neural network to obtain the general response of a simulation's output

over a wide range of input factors."( 78)

Hurrion also demonstrated an incremental approach of building a series of neural

network approximations to a computer simulation, where each neural network
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approximation was used to guide the selection of future points for simulation and addition

to the training set. One purpose of this demonstration was to show that the neural

network approximation could be used as a tool for facilitating the interaction between the

developer and client of a computer simulation model by providing very quick replies to

"what if" questions posed by the client.(76)

In addition to using ANN to approximate the output of a system for a given set of

input parameter values, some work has demonstrated the potential for using ANN to

performing inverse mappings (i.e., for a given set of system output measures predict the

corresponding system input values).(79-81) In one case, an approach using

backpropagation trained ANN to learn the inverse of the simulation of a manufacturing

facility job shop was demonstrated.( 82) In this example, the simulation had three input

parameters that were varied and four output measures that were generated by the

simulation. The three input parameters were the number of resources in each of three

separate work centers of the job shop. The four output measures were mean tardiness

time, mean flow time, mean resource utilization and workload completion time.

Two neural network architectures were used to learn the inverse of the simulation.

Both neural networks had four input nodes corresponding to the output measures of the

simulation and three output nodes correspcnding to the input parameters for the

simulation. One network had one hidden layer of eight nodes and the other network had

one hidden layer of fifteen nodes. The approach consisted of starting with a small initial

training set of five (output, input) training pairs. Once the network learned the small

training set, the network was used to predict the inputs to the simulation that would

generate a set of desired output measures.
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The simulation was then run at the predicted input parameter settings to obtain

another observation of simulation output measures. The inputs generated by the ANN and

the new outputs from the simulation were then added to the training set and used to train a

new neural network. This iterative procedure continued until the outputs from the

simulation that used the inputs generated by the ANN matched the desired outputs of the

simulation.

The prelin-dnary results of this example showed that the approach has promise

since both of the networks showed improvement in the output measures of the network-

predicted input parameter settings of the second iteration over the first iteration of the

procedure. As Chryssolouris et at. point out, the procedure of using computer simulations

to provide the data for training artificial neural networks has the potential for reducing the

number of simulations required when using simulation to support manufacturing system

design.(82)

One example was found in the literature in which an artificial neural network was

used to replace a portion of the rule base of a discrete event computer simulation.(83) A

portion of the expert system module of the U. S. Army's Combined Arms and Support

Task Force Evaluation Model (CASTFOREM) was used off-line to train an ANN to make

classification decisions. The decision that the ANN was trained to make was when the

Orange forces should withdraw when being attacked by the Green forces. The inputs to

the ANN were the number of Orange losses, number of Green losses, and the distance

between the two forces. The output of the ANN was a classification of either to withdraw

or not withdraw. The ANN was trained with the backpropagation training procedure and

demonstrated that ANN can be made as reliable as current artificial intelligence symbolic
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methods. A second type of ANN was added to the model to permit the network to learn

from the experience of the decisions made during the operation of the computer

simulation. The second ANN had the same architecture as the first ANN with the addition

of a goal node and goal sub-nodes. The goal that was used in this example was to

maximize the difference between the Orange losses and the Green losses. An

unsupervised training algorithm was used to permit the network architecture to adapt to

the information provided by additional replications of the computer simulation. An

unsupervised training process does not require a teacher that knows what the outputs

should be for the training inputs. This example demonstrates that artificial neural

networks could be used to develop "adaptive simulations."(84)

A final application of ANN that is of relevance to this dissertation is the use of

neural network! as r- Hlers. Much work has been done using actual system data to

develor neural network controllers on systems as diverse as robots, automobiles, aircraft,

space stations and manufacturing plants.(85-8 7) One group of researchers used neural

networks trained on computer simulations to develop heuristic rules for scheduling a

flexible manufacturing system.(88) One conceptual paper by Wan and Cochran, without

any experimental results, outlines an approach to develop a controller for a system using a

simulation of the system and a neural network approximation to the simulation.(8 9)

2.3 Metamodels

A metamodel is a "model of a model."(90) Blanning first used the term to refer to

models of decision models and discussed computer simulation decision models as

examples where metamodels could be used to perform sensitivity analyses.(91,92) Earlier,
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Meisel and Collins had used the term "repro-model" to refer to a model of a model and

described repro-modeling as the "process of developing an approximation to. or

condensation of, a complex (sometimes dynamic) computer-based model."''9 -1 It appears

that metamodel has superseded repro-model as the commonly used term for a model of a

model. On the basis of thirty experiments, Friedman and Pressman demonstrated the

usefulness and applicability of metamodels in simulation analysis.(94) Pratt and Mize

discuss a methodology developed for using metamodel of simulations of manufacturing

systems.(95) Yu and Popplewell provide a summary review of the research that has been

done in the field of simulation metamodels.(96)

Some researchers define a metamodel as a "regression model of the actual

simulation model."(97) While it is true that the most popular technique used in

metamodeling simulations is linear regression, there are alternative ways of developing a

model of a model. In particular, this dissertation explores the use of artificial neural

networks as metamodels of computer simulations. Barton discusses the state-of-the-art in

metamodeling and provides an excellent review of several alternative metamodeling

methods. He suggests the following criteria which might prove useful in choosing from

among competing metamodeling techniques:(3)

1. The ability to gain insight from the form of the metamodel.
2. The ability to capture the shape of arbitrary smooth functions based on observed

values which may be perturbed by stochastic components with general distributions.
3. The ability to characterize the accuracy of fit through confidence intervals, etc.
4. The robustness of the prediction away from observed (x,y) pairs.
5. The ease of computation of the metamodel.
6. The numerical stability of the computations, and consequent robustness of

predictions to small changes in the parameters defining the metamodel.
7. The existence of software for computing the metamodel, characterizing its fit,

and using it for prediction.
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It is assumed that the goal in metamodeling is to obtain a function f. that will

transform model inputs, X, into model outputs, Y, with a certain amount of error, F, as

depicted in equation 2-2.

Y = f(X) + F- (2-2)

While some work has been done with predicting multiple output measures of

computer simulations,(9 8) the typical approach has been to develop separate metamodels

for each element of the simulation output measure vector.(3 ) Thus, for the discussion in

this section, equation 2-3 which has the output measure, y, and the error of the

approximation, e, as scalars, will be used, rather than equation 2-2 which has the output

measure and error as vectors.

y = f(X) + E (2-3)

2.3.1 Linear Regression

Due to the popularity of linear regression, many researchers have come to think of

metamodels as "models of simulation models, which express the input-output relationship

in the form of a regression equation."( 99) Since linear regression is a sound, well

established statistical method, there are many textbooks that have detailed derivations of

the relevant equations and formulas. Only the basic elements of polynomial multiple linear

regression are discussed here. The notation and the derivation of the regression equations

found in this section are based on Draper and Smith.(I(MI) In regression, there are two

types of variables: the independent or predictor variables (X) and the dependent or

response variable (y) that are related by the equation 2-3.
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Suppose there are n observations of pairs (x,,yi) with m elements in each vector x,

and that there are k power functions Zj(x,) of the independent variables. For example, for

a first-order regression equation, the power functions would be Z,(x) = 1, Z (xi) = xiI,

Z 2(xi) = Xi2, ... , Zm(Xj) = xim. For higher order regression equations, the power functions

might be (xi 1)2, (Xi1 )3 , or (Xi1)
2(Xi2 ). The regression problem is to find the values of the

coefficients 13 that provide the least squared error to the solution of the system of

equations given in equation 2-4. The corresponding matrix form of the system of

equations is given in equation 2-5, where Y is an (n x 1) column vector, Z is an (n x k)

matrix, 03 is a (k xl) column vector and E is an (n x 1) column vector. The regression

solution to the."- equations is given in equation 2-6. It should be noted that the reason this

is called linear. regression is that the equation is linear, not in terms of the predictor

variables, but in terms of coefficients of the equation. Also, it is called multiple regression

because there is more than one independent variable.

yi= Zp(xi) +Ei Fori=1,2 ...... n (2-4)

Y = Zj3+E (2-5)

[3=(Z' Z)-1 z" Y (2-6)

The standard assumptions made in regression are that the errors have a mean of

zero and a common variance and that the errors are no+ correlated with each other. (101)

The assumption that the errors will have a common variance is often invalid when

approximating computer simulations. While not totally effective, weighted least



35

squares("° 2) or transformations of the dependent variable(1 113) are sometimes used when the

assumption of common variance cannot be made. Additionally, a typical assumption is

made that the errors are distributed normally with mean of zero and a common variance.

This final assumption permits the construction of confidence intervals for the coefficients

of the model as well as for the predictions of the model. In those cases where normality of

errors cannot be assumed, an alternative approach is to use the generalized linear model

which assumes that the errors come from any family of exponential distributions rather

than restricting them to the normal distribution.

While there are many strengths of polynomial regression models, there are also

some weaknesses. Low-order polynomials have a very limited number of surface shapes

that can be approximated, while high order polynorrials have the tendency for errors to

increase rapidly as the independent variables are mov,-d away from an observation used to

build the regression model.(3)

The field of regression is continuing to grow and expand as evidenced by work in

such areas as nonlinear regression( 4A,10 -5 ) and nonparametric regression.( 1116.107)

2.3.2 Response Surface Methodology (RSM)

Using the term metamodel to mean a "model of a model" is relatively new.

However, the most popular metamodel approach of using low-order linear regression

models in response surface methods (RSM) was formally developed in 1951 by Box and

Wilson to optimize the yield of chemical processes through a series of physical

experiments.(10 8) Since then response surface methods have been extended to include

using regression models to optimize computer simulations. The purpose of RSM is to find
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the levels of the experimental factors that will yield the best value of the response or

output of a system. The response surface methodology with computer simulation basically

entails a repetitive process of performing the following steps:(5 ())

1. Conduct a set of designed experiments that finds the output response value by

running the computer simulation at various levels of the input parameters for multiple

replications.

2. Approximate the relationship between the input parameters and the output

measures in the current region of interest with a model of the system. Typically. the

approximating models have been first-order regression models.

3. Find a direction in the input parameter space of the model that yields improved

solutions (e.g., in the direction of the gradient, if trying to maximize the response).

4. Move in the direction of improved response and return to Step 1. If there is no

direction of improved response, then develop second-order regression models to obtain a

more accurate characterization of the response surface. Use this second-order regression

equation is to determine if the found region is a locally optimal.

For optimizing computer simulations with single output measures, first-order

regression models are good tools for determining the direction of search in response

surface methods because they can be developed very quickly and it is very easy to

determine the direction of improvement once the model is developed. Although most of

the work in RSM has been with optimizing one dimensional output measures, some work

has been done on optimizing computer simulations with multiple output measures.102)

Improved results have been reported when using different variance reduction techniques
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such as combining common random numbers and antithetic variates in response surface

methods.(12,11o,11 l)

A good approximation in RSM is needed only in a small region of interest since the

regression models are constantly being replaced as the search for the optimum progresses

across the input space. Hood and Welch provide an excellent description and example of

using RSM with computer simulations.(1 12)

2.3.3 Taguchi Models

Just as with response surface methods, the Taguchi method was not originally

developed to be used with computer simulations, but with physical systems.U 13) Taguchi

developed a very successful method of designing quality into products that was easier to

understand and use by practicing engineers. The Taguchi method using direct physical

experiments is well documented.0 14,1 15) Recently, the Taguchi method has been

successfully used in system design with computer simulation experiments.(1 16-119) At the

core of Taguchi's method is the precept that rather than try to eliminate the sources of

variability in product performance the focus should be on trying to develop products that

are not sensitive to the effects of uncontrolled variation. The Taguchi method uses the

same model as equation 2-4 and assumes the errors of the models have a mean of zero

(i.e., E(Ci) = 0). Instead of assuming that the variance of the errors is a constant however,

it assumed that the variance depends on the value of the independent variables

(i.e., Var(Si) = G2 (Xi)). Taguchi incorporates the information about the variance of the

system by introducing equation 2-7 where the Y is the sample average and the S2 is the

sample variance over the multiple observations at each combination of the independent

variables.
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10* iog[E(Y2 = Ifpxzp(x) (2-7)
p=l

The other variables in equation 2-7 are described in the section on linear

regression. Under Taguchi's approach, it is expected that some independent variables, x,

will have small coefficients of Tp in equation 2-7 and large coefficients of

f in equation 2-5. Those independent variables with small coefficients of gamma are

termed "insensitive to noise." By adjusting the remaining independent variables to

maximize the left side of equation 2-7, the analyst can then set the independent variables

to produce the desired minimimum or maximimum of the response in equation 2-5.(3,12o)

"The Taguchi approach provides an alternative framework to traditional design of

experiments and response surface methods, within which neural network metamodeling

can be used.

2.3.4 Approximation Theory

This established field of mathematics is concerned with problems associated with

approximating continuous, multivariate functions whose values are known at a finite

number of points. This requires determining the values of a fixed number of parameters

W, so that an approximating function, F(X,W), provides the best' approximation or

estimation to the desired function, f(X).(121) Often the approximating function F(X,W) is

a linear combination of basis functions, gi(X), for example F(X,W) = FZaixgi(X), where

the ai are real valued constants. This approach is used in many of the classical methods of

approximating functions including polynomial approximation, spline approximation, kernel

based approximation, and Fourier methods.(122) These and other classical methods suffer

from the need to correctly specify the functional form of the model that will be used in the
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approximation procedure. In most cases the correct functional form of the model depends

on the data observed from the function. Also, many of the methods assume that the

observed function values are correct (i.e., there is no noise in the data).

The computer simulations examined in this research are stochastic and so they are

not strictly functions. Many of the simulations found in the industrial engineering

literature are of systems with discrete, rather than continuous, input values. In addition, a

linear combination of basis functions can be implemented efficiently via a three layer,

artificial neural network, where each basis function is represented by a node in the hidden

layer of the network.0 23) For these reasons, the approaches used within the field of

approximation theory were not explored further for application to approximating

computer simulations.

2.4 Summary

This chapter provides a survey of the literature concerning the topics involved in

this dissertation. The chapter contains discussion of the broad areas of computer

simulation, metamodels and artificial neural networks each of which are relatively new

fields of research beginning in the 1940s, 1960s and late 1980s, respectively. The history

of each of these fields as well as the definitions of key terms and a review of the literature

relevant to this research are covered. The field of computer simulation is shown to be

quite wide in its scope and applicability to many diverse disciplines. The limitations of

computer simulations for performing studies quickly, sensitivity analyses, and optimization

of systems are delineated. The discussion of artificial neural networks includes a detailed

exposition of the backpropagation training methodology and several examples of other
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researchers using ANN in conjunction with computer simulations. The discussion of

metamodels includes the history and terminology of metarnodels, regression, response

surface methodology and approximation theory.
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3.0 RESEARCH METHODOLOGY, ISSUES AND TOOLS

3.1 Methodology of Research

The general research methodology of this dissertation is to develop an approach to

approximating computer simulations using ANN. This is done in two stages. First,

investigating issues through experimentation on a computer simulation of a relatively

simple engineering system. The second stage is to demonstrate the approach on a

computer simulation of a much more complex engineering system. Seven tasks were

defined and are discussed below.

3.1.1 Basic Research Tasks

The first task was to identify the issues that need to be considered for any generic

approach to approximating discrete event, stochastic computer simulations and the

specific issues that might be unique to an artificial neural network (ANN) approach. A

listing of the identified issues is provided in Section 3.2.

The second task was to obtain detailed computer simulation models of two real

world systems that were representative of the types of problems typically examined using

terminating, stochastic, discrete-event computer simulations in the field of industrial

engineering. The first system examined was a relatively simple inventory system. This

system was selected to be able to make comparisons to the problem used in Chapter 12,

"Experimental Design and Optimization" by Law and Kelton.0(14) This system was

analyzed in-depth in order to gain insight into how to approximate a computer simulation

with an ANN model. In this manner, the first system was used as a problem for
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developing the methodology for approximating computer simulations with ANN. The

description of the system and its computer simulation are presented in Chapter 4. The

second system examined in this research was the emergency deparunent of a large

teaching hospital. This system is representative of large, complex systems and was used as

a research demonstration problem to examine issues of "scale-up" and applicability of the

methodology to, "real world" problems. The description of the system and its computer

simulation are presented in Chapter 7.

The third task was to develop, build, and use simplified representations of the

development problem computer simulation model based on the ANN techniques. A series

of experiments was performed on a two-input parameter version of the inventory system

simulation. These experiments considered various ways of presenting the output of the

simulations to the ANN and predicting multiple outputs. The detailed description and

results of these experiments are also presented in Chapter 4.

The fourth task was to use the ANN approximations of the inve, ,ory system in

place of the original computer simulation model to perform basic computer simulation

tasks of prediction and comparison of alternatives. Part of this task was to compare the

results of the ANN approximation to a second-order multiple linear regression model

approximation. The second-order multiple linear regression model was used for

comparison purposes since it is the highest order regression model typically used in

Response Surface Methods. The final set of experiments used ANN approximations to

make predictions and prediction intervals for the four input parameter inventory system

simulation are discussed in Chapter 5.
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The fifth task was to develop a methodology for approximating computer

simulations with ANN, based on the results of the experiments on the development

problem. The resulting approach is presented in Chapter 6.

The sixth task was to apply the approach of ANN approximation of computer

simulations to the demonstration problem (i.e., emergency department system). The

results of applying the ANN approximation approach to the demonstration problem are

also provided in Chapter 7.

The final task was to synthesize the lessons learned from performing the basic

simulation tasks with ANN approximations to computer simulations to provide a

framework for using ANN approximations to perform more complex simulation tasks such

as sensitivity analysis, simulation "optimization," and model aggregation/reduction. These

results are discussed in Chapter 8.

3.1.2 Assumptions and Restrictions of the Research

Since the focus of this research effort was to develop a tool that could be used to

approximate a computer simulation, it was assumed that the topology of the internal

relationships and procedures within the computer simulation were determined and would

not be modified (i.e., the computer simulation to be approximated has already been

finalized, verified, and validated). Consequently, this research did not address problems

associated with buildirg computer simulation models. It was assumed that only the values

of the input parameters that were provided to the computer simulation could be changed.
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The prediction of output values was only done for those values determined at the

end of the simulation. Predicting intermediate results of the output measures over time is

a subject for future research efforts.

This research only examined terminating, stochastic, discrete-event computer

simulations. A description of these terms is provided in Chapter 2. This research focused

on the types of computer simulations typically used for addressing industrial

engineering/managemnent science/systems analysis problems. However, this same

approach could be utilized and should be fruitful in other areas.

Feedforward, multi-layered, fully connected artificial neural networks trained via

the backpropagation learning algorithm were used in this research. Specifically, the basic

backpropagation method popularized by Rumelhart, Hinton and Williams(45) for training

feedforward, fully connected ANN was used for the reasons specified in Chapter 2.

This research used a comprehensive, one-step, experimental design for selecting

the points to be simulated and subsequently used for developing approximations to the

computer simulation. An alternative approach, which was not used in this research, is

sequential experimental design which incorporates information about the responses of the

simulation from preliminary design points to guide the selection of subsequent design

points. The sequential experimental design approach is typically preferred when

conducting computer simulation sensitivity analysis and when using response surface

methods.(025) The work in this research addresses how to do the comprehensive

experimental design and the first step in the sequential experimental design.



45

3.2 Research Issues

The following research questions were identified for consideration and/or experimentation:

How should the simulation output data be presented to the ANN during training'?

How many outputs should be predicted by a single network'?

Can the ANN predict the descriptive statistics commonly used in cornputer

simulations (e.g., mean, variance, minimum, maximum)?

What should the network architecture be for the ANN?

How many different combinations of the input parameters (i.e., experimental

design points) should be used during training?

How many replications of the computer simulation of each combination of the

input parameters should be used during training?

How well does the ANN approximation perform in making predictions of

simulation output measures?

How well does the ANN approximation perform in making prediction intervals of

simulation output measures?

How does an ANN approximation compare with second-order multiple regression

approximations of computer simulations?

3.3 Research Tools

Two commercial products were used extensively in this research:

SIMANXINEMA10 and BrainMakerc. A description of each of these tools and a

discussion as to why they were selected is provided below.
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3.3.1 SIMAN/CINEMA Simulation Language

SIMAN/CINEMA has been developed by Systems Modeling Corporation of

Sewickley, PA, as a general-purpose simulation modeling language with additional

features that make it very useful for modeling manufacturing systems. The SIMAN

(SIMulation ANalysis) portion of the package is used to create the actual simulation while

the CINEMA portion is used to provide an animation of the simulation.(126 )

A simulation language as opposed to a programming language such as FORTRAN

or Pascal was chosen for use in this research since the majority of work in the simulation

of industrial engineering applications uses higher-level simulation languages.

The SIMAN simulation language was chosen for use in this research for the

following reasons. SIMAN was one of the first major simulation languages available for

use on microcomputers, and it is used extensively in the industrial engineering and

manufacturing fields.(126) SIMAN operates on a wide variety of computer platforms, and

the programs are compatible across the different classes of computers. Hence, S IMAN is

available to many researchers who might be interested in pursuing this research. It is

possible to model almost any kind of system using SIMAN, due to its ability to utilize the

two major approaches used in discrete-event simulation: the event-scheduling approach

and the process interaction approach. SIMAN is relatively easy to use, and has a good

debugging facility. Another reason for selecting SIMAN/CINEMA is the ability to use

CINEMA to animate the simulation for the purpose of verifying and validating computer

simulations. SIMAN also employs Zeigler's theoretical concepts about systems by placing

the system information into two separate component frames of the simulation.( 27) The

physical elements of the system and their interconnections comprise a functional
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description of the system in a "model" frame. The input parameters and the data

associated with the conditions under which the simulation is to be conducted are placed in

an "experiment" frame.0••)2 This feature greatly assists in performing research experiments

by insuring that changes to the input parameters do not alter the processing steps of the

simulation.

The SIMAN package used in this research was SIMAN IV with runtime processor

version 1.3. The CINEMA package used in this research was CINEMA IV version 1.2.

The simulations were all run on a 486/33mhz personal computer under DOS 5.0.

The SIMAN model and experiment frames for the research development problem

(i.e., the inventory system) are contained in Appendices A and B, respectively.

3.3.2 BrainMaker Neural Network Computing Package

BrainMaker is a commercial software product from California Scientific Software

of Nevada City, CA for backpropagation neural networks. Unlike some of the other

commercially available products that permit a wide variety of different artificial neural

network paradigms, the BrainMaker product has concentrated exclusively on the

backpropagation method of training ANN. As a result, BrainMaker is a very flexible and

widely accepted platform for use in performing research on artificial neural network issues

and problems concerning backpropagation training of ANN. One of the major differences

between standard backpropagation and BrainMaker's backpropagation, is that BrainMaker

uses a smoothing factor (usually called momentum) to provide a means of performing

exponential smoothing for the inputs used in training the ANN. Another difference is that

BrainMaker only attempts to learn a particular training point if it is not within the pre-
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specified toleraitce of its intended target. The other major difference is that standard

backpropagation only terminates when all of the training outputs are within the pre-

specified tolerance of their targets. BrainMaker can also be instructed to terminate

training when a pre-specified number of passes through the data have occurred.i 12,

BrainMaker was selected for use in this research for the following reasons. First, it

is a widely available and accepted product, so that other interested researchers can

examine, verify and continue this research effort. BrainMaker has been extensively tested

and has been found to correctly implement the backpropagation training algorithm. The

graphical user interface for BrainMaker is very user-friendly. The ability to conduct

training and testing in batch mode using DOS batch files also permits training hundreds of

ANN in a systematic and efficient manner. BrainMaker has several flexible stopping

criteria options: 1) either the MAE (Mean Absolute Error) tolerance on all or a pre-

specified proportion of input vectors; 2) train until reaching a pre-specified number of

presentations; 3) train and save. This last option permits postprocessing of the training

results in order to find the best trained network. A final reason for using BrainMaker was

the ability to automatically generate "C" code for the trained network for use in future

optimization and direct integration with database and spreadsheet programs. The

BrainMaker software package used in this dissertation was BrainMaker Professional

version 2.53. All cases of training and testing using Br-,iaMaker were performed on 386

and 486 personal computers under DOS 5.0.

The derivation of the backpropagation method of training is well documented in

the literature and is not repeated here.(45,130,131) The essential elements of the
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backpropagation method of training as implemented in the BrainMaker software used in

this research are described here for a fully connected feedforward network)0 32)

Initialization Step: All weights, wij, which is the weight of the connection going

from node j to node i, are initialized to random values between -8.0 and 8.0. Training

tolerance (Tol = 0.1), maximum training cycles (Max Cycles=99999), training rate or

gradient step size (Ti = 1.0) and smoothing factor (pt = .9) are set, where the values in the

parentheses indicate default values. Also to count the number of training cycles, an

internal counter variable is initialized to zero (i.e., Training Cycles = 0). To determine

how many training points have not been learned to the desired tolerance, a counting

variable is set to zero (i.e., Number Bad = 0) The transfer function is selected with the

logistic function given in equation 3-1 as the default with f = 1.0. The training and test

data are scaled to the interval [0,1].

1
t(x)= (3-1)(l+eq~x)

Step 1. Feed input vector values forward through the network one layer at a time

from the input layer to the output layer to obtain activations at each node and the response

vector values. A training point, (Ip, Tp), is selected from the training set of size P. The

formulas for calculating the input layer, hidden layer, and output layer activations are

given in equations 3-2, 3-3, and 3-4 respectively. Note that Ri(p) is the response of the ith

output node for the pth training point. The fan-in of a node includes all of the arcs that

come into the node.
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Ai(p, = li(Pj (3-2)

Ai(p) = t(( I wijxAj(p))+wioxVi) (3-3)
Sfftan-inlJI ]node if

Ri (p) = Ai(P)=t(( Y-' wij×Aj(p))+Wio ×Vi) (3-4)
• E frm- in],

Jnode ;{ j

Step 2, Compute the squared error, E(p), for training point p according to the

formula given in equation 3-5 where J equals the number of output nodes.

E Xp) = J I (Tj(p)-Rj(p)) (35)
2j= 1

If E(p) > Tol, then this pattern has not been learned to the desired tolerance level

and the variable Number Bad is set equal to Number Bad + I and proceed to Step 3.

If E(p)< Tol, then this pattern was learned to the desired tolerance so go to Step 5.

S Calculate the error signals for all output and hidden nodes, beginning at

the output layer and working backward through the network, one layer at a time. The

error signals are calculated for the output nodes with equation 3-6 and for the hidden

nodes with equation 3-7.
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8j(P) = Rj(p)x (1- Rj(p)) x(Tj(p)-Rj(p)) (3-6)

8j(p) =A j(p)x( (6i(p) x wij) (3-7)
i ffan-out 1

Inode j J

Ste 4. Once all of the error signals for each of the hidden and output nodes are

calculated in Step 3, the weights between each of the nodes are adjusted using the

formulas in equations 3-8 and 3-9. If an exponential smoothing factor is used then

equations 3-8 and 3-10 are used to adjust the weights. A wij(P) is defined as the change

to the weight from node j to node i as a result of pattern p.

wij = wij + Awij(p) (3-8)

A wij (p) = 7 x 6i (P) x Aj(p) (3-9)

A wij(P) = Ti X [(0(-II)Xii(p)XA j(p))+(QtxAwij (p-1))] (3-10)

Step 5. If p < P, then return to Step I and select the next training point. If p = P,

then go to Step 6.

S Check the stopping criteria. If Number Bad = 0, then all training points

have been learned to the desired training tolerance and so training should stop.

If Number Bad > 0, then at least one training point has not been learned to the training

tolerance. Let Training Cycles = Training Cycles +1. If Training Cycles < Max Cycles,
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then go to Step I and begin another training cycle with the first training point, otherwise

stop.

The adjustment to the weights in Step 4 occurs as each training point is presented

to the network in what is known as pattern training. To implement true gradient descent

on the squared error surface would require the summation of the amount to change the

weights for each of the training points with the actual change only being made at the end

of each training cycle or epoch, in what is known as batch training. While BrainMaker has

an option to perform training in this manner, it was not used in this research since it is

more likely to become trapped in a local minimum of the error surface and it typically

results in an increase in training time.(1 33)

3.4 Summary

This chapter provides an overview of the research issues and the methodology

used to conduct the research in this dissertation. The research issues were developed and

refined throughout the researLt; effort. The methodology for conducting the research was

to use an inventory computer simulation to perform a series of experiments in building

ANN metamodels in order to develop a baseline ANN metamodel approach and to then

demonstrate the use of the approach on a more complicated computer simulation, namely

of an emergency department. Detailed discussion is included on the assumpti")ns and

restrictions of the research which are initially stated in Chapter 1. Specific details are

provided on the two commercial software packages used to perform the iesearch,

SIMAN/CINEMA and BrainMaker. The SIMAN/CINEMA package was used to perform

the stochastic computer simulations for the research problems. The BrainMaker package

implements backpropagation training on feedforward artificial neural networks.
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4.0 DEVELOPMENT PROBLEM - INITIAL EXPERIMENTS IN
APPROXIMATING AN (sS) INVENTORY SYSTEM

The approach taken in this research was to use a simple, yet realistic, model of a fairly

complex engineering system as a testbed for various methods to approximate computer

simuilations using artificial neural networks. This chapter covers the initial experiments

performed in approximating the computer simulation of an (s,S) inventory system with

ANN. Using this particular system permitted the focus to be on developing the

methodology of ANN approximation of computer simulations and not on computer

simulation issues.

4.1 Description of the (s,S) Inventory System

The system used as a development problem in this dissertation was taken from

Chapter 12 "Experimental Design and Optimization" by Law and Kelton.( 134) The system

is a probabilistic lot size-reorder point system, an (s,S) inventory system where s = reorder

point quantity, and S = order up to quantity, with a time horizon of 120 months. It is

difficult to obtain optimal solutions for these types of systems.(135) While progress has

been made in developing algorithms for determining optimal policies of certain infinite

time horizon versions of the (s, S) inventory problems, computer simulation is still

necessary for examining many of the possible variants of the (s, S) inventory problem.0 36)

Law and Kelton constructed a series of first- and second- order regression model

approximations, or metamodels, of a computer simulation of the inventory system. By

increasing the number of data points, they were able to demonstrate that the metamodels

could provide increasingly accurate approximations of the computer simulation.
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The inventory system is representative of companies that sell a single product, with

the problem of deciding how many items to obtain from their supplier in each of the next n

months in order to minimize the total cost of the inventory system. There are several

input and output parameters associated with this system. The input parameters of the

simulation of the system include the following:

s = reorder point,

S = order up to quantity,

I = inventory level,

Z = reorder quantity,

d = S-s = reorder quantity when I = s,

D = size of demands,

td = time between demands,

to = time between order decisions,

tL = time lag for delivery,

k = setup cost,

i = incremental cost per item ordered,

h = holding cost,

u = underage cost (cost of having to backlog orders),

n = time horizon for analysis purposes.

In Law and Kelton's sample problem, the parameters s and d were the only

parameters that were treated as decision variables. The remaining input parameters were

treated as uncontrollable factors and were assumed to be fixed at constant values. The

following section describes the settings used for these uncontrollable factors, in Law and

Kelton and in this dissertation.
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The initial inventory level was set at Io = 60. In this system it is assumed that the

company receives demands for its products on a periodic basis with the time between

demands, td, distributed exponential with a mean of 0.1 month. The size of each demand,

D is distributed according to equation 4-1.

JI with probability Y6

with probability X (4-1)

3 with probability Y,

4 with probability Y6

The time between order decisions, to, is one month. A stationary (s,S) policy is

used to decide how much to order at the beginning of each month. In other words, given

that I is the inventory at the beginning of the month, then the amount to order for that

month, Z, is determined by equation 4-2.

S-I ifl<s
Zj= ifI!s (4-2)

In this system, the company determines each month whether or not it should place

an order, and if so, how much to order. If an order is placed, then the time it takes for the

order to arrive at the company, tL, is distributed uniformly between 0.5 and I month. The

total order cost is equal to k + iZ. In this problem k = $32 and i = $3. The holding cost

per item per month held in inventory is given as h = $1. The underage cost is given as u =

$5 per item per month in backlog (i.e., on order). The underage costs include such items

as extra bookkeeping costs and loss of goodwill costs. The planning horizon or time that

the system would operate under the various strategies of operating the inventory system

was set at n = 120 months.
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Some of the relevant output measures that could be calculated for this system,

over the planning horizon, include:

Average total cost (C),

Average ordering cost,

Average holding cost,

Average shortage cost,

Average inventory level,

Minimum inventory level,

Maximum inventory level.

Law and Kelton used the computer simulation of the inventory system to obtain

estimates of the output measure, average total cost per month (C) for various settings of

the decision variables s and d. Since Law and Kelton used the inventory system to discuss

the process of experimental design, they labeled the average total cost as R (for response

of the computer simulation).

4.2 Computer Simulation of the Inventory System

The inventory system computer simulation used in this dissertation was written in

the SIMAN simulation language for the reasons discussed in Chapter 3. Output statistics

of different input parameter settings from a computer simulation can be categorized as

either independent or dependent observations. In simulation, independent observations

have been used quite widely due to the applicability of straightforward statistical tests for

comparing alternatives. Dependent observations have been used for the purpose of

v u1wice reduction. One frequently used technique for producing dependent observations



57

is the common random number approach, one component of which is to use the same

starting point in the same random number streams for each input parameter setting in a

simulation run. Using the common random number approach would probably provide a

more stable, but less robust, set of observations from the computer simulation since the

variance is typically reduced. However, this research examined only the independent

observations approach. One way that independent observations are obtained is to select

different starting points in the same random number streams for each input parameter

setting. In this research, independent observations for each input parameter setting were

obtained by selecting the random number streams and running the simulation program

through all of the desired replications by having the computer simulation iteratively read

the input parameter settings from an external file. In this way the random number stream

was never reset to the original starting point and thus created independent observations for

all the replications of all of the input parameter settings. In some cases, due to memory

restrictions of the computer, additional replications were made using different random

number streams in order to preserve independence between the replications made for each

input parameter setting. The same procedure was followed for all of the experiments

performed in this research. For illustrative purposes the SIMAN computer programs and

external data files that were used to produce the independent observations for this section

are provided in Appendix A in Figures A l through A3.

Validation of the SIMAN computer simulation was performed by comparing the

output from the SIMAN simulation to the results given by Law and Kelton. Since Law

and Kelton only provided the output of single simulation replications, a direct statistical

comparison of the two is not possible. However, Law and Kelton did report the results of

building first-and second-order regression models on multiple replications for different
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input parameter settings. The approach used to validate the SIMAN simulation model of

the inventory system was to build the same first- and second-order regression models on

the SIMAN simulation data and compare the regression results to those found in Law and

Kelton.

The two sets of input parameters given in Table 1 were simulated and used to build

regression models. Each parameter setting consisted of a different combination of values

of the input parameters s and d. The output measure of system performance, that was

provided by the simulation, was the 120 month average, of monthly total cost, C. The

SIMAN simulation results, where C is the average of C over ten replications, as well as

the two input parameter settings for data sets A and B, are provided in Table 1.

Table 2 shows the regression models that were used by Law and Kelton to develop

metamodels of the computer simulation. The Law and Kelton and SIMAN simulation

results of ten replications of data set A, the first four input parameter settings from Table

1, were approximated using the first-order multiple linear regression model given in Table

2. The second-order multiple linear regression model in Table 2 was used to model the

simulation results of five replications (from Law and Kelton) and ten replications (from

SIMAN) of data set B, the second set of 36 input parameter settings from Table 1. It is

not clear why Law and Kelton used only five replications at the 36 input parameters when

all of the rest of their examples used ten replications. To maintain consistency between

the models of the two data sets, ten replications were used in this dissertation for each

model. The regression model results for the SIMAN data for data sets A and B are

provided in Tables 3 and 4, respectively.
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Table I SIMAN Simulation Results for Data Sets A and B
s d __

reorder order Cost
point quantity,

Data Set A 20 10 136.56
20 50 120.81

60 10 145.20
60 50 149.01

s d s d i
reorder order Cost reorder order Cost
point quantity point quantity

Data Set B 0 5 233.17 60 5 140.34
0 20 175.69 60 20 144.49
0 40 147.69 60 40 145.52

0 60 137.36 60 60 151.42
0 80 134.14 60 80 158.92

0 100 136.28 60 100 167.97
20 5 147.41 80 5 161.40
20 20 124.25 80 20 163.70
20 40 119.73 80 40 165.50
20 60 122.65 80 60 172.46
20 80 127.06 80 80 179.13
20 100 135.84 80 100 188.19
40 5 127.13 100 5 181.54
40 20 127.02 100 20 184.18
40 40 126.49 100 40 185.19
40 60 131.86 100 60 191.47
40 80 140.30 100 80 200.84
40 100 148.64 100 100 207.93

Table 2 Regression Models Used For Each Data Set
DATA SET REGRESSION MODEL

A Cost = b0 + bl*s + b2 *d + error

B Cost = b0 + bl*s + b2 *d + bl 2 *s*d + bI*s2 + b22*d2 + error
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Table 3 Regression for Data Set A Using SIMAN Simulation Results
Multiple R Square. 0.89 _______ __

R Square 0.80

Adjusted R Square 0.39

Standard Error 9.78

Observations 4
df Sum of Mean F P-Value

Squares Square

Regression 2 375.10 187.55 1.96 0.45 ....

Residual 1 95.73 95.73
Total 3 470.83

Coefficients Standard t Statistic P-value Lower Upper
Error 95% 95%

Intercept 123.95 13.17 9.41 0.00 -43.42 291.31
s 0.46 0.24 1.88 0.16 -2.65 3.57
d -0.15 0.24 -0.61 0.58 -3.26 2.96

Table 4 Regression for Data Set B Using SIMAN Simulation Results
Multiple R Square 088

R Square 0.78

Adjusted R 0.75
Square

Standard Error 13.94

Observations 36
df Sum of Mean F P-Value

Squares Square
Regression 5 20916.50 4183.30 21-535 4.15E-09

Residual 30 5827.49 194.25

Total 35 26743.99

Coefficients Standard t Statistic P-value Lower Upper
Error 95% 95%

Intercept 189.40 9.22 20.54 4.15E-21 170.57 208.23
s -1.51 0.26 -5.72 1.83E-06 -2.05 -0.97
d -1.18 0.30 -3.95 0.0003 -1.79 -0.57
sd 0.010 0.00 4.80 2.91E-05 0.005 0.014
S2 0.014 0.00 6.17 4.65E-07 0.010 0.019

d2 0.007 0.00 2.59 0.0141 0.001 0.012
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As can be seen from Tables 3 and 4 both models have approximately the same

multiple R square values. The regression models in Tables 3 and 4 were built using the

averages of the 10 replications at each data point. The same results in terms of the model

coefficients result if the individual replications are used instead of the averages. However,

in the regression model built on individual replications, the apparent goodness of the

model increases due to a more significant F statistic caused by an increase in the degrees

of freedom. In summary, the models provided by regression are the same for both

averages and individual replications.

TABLE 5 Estimates of Regression Model Coefficients

DATA SIMULATION REGRESSION MODEL

SET DATA

"A SIMAN Cost= 123.95+0.46s-0.15d

"A LAW & KELTON Cost = 125.37+0.44s-0.22d

B SIMAN Cost= 189.40-1.51s-1.18d+.OlOsd+.014s2+.007d 2

B LAW & KELTON Cost= 188.51-1.49s-1.24d+.OlOsd+.014s 2+.007d2

A summary of the regression results for each model in Table 2 is provided in Table

5 for both SIMAN and Law and Kelton simulation data.U37) There is close agreement in

the coefficients of the regression equations for the SIMAN simulation data and the Law

and Kelton simulation data for both data sets A and B. As can be seen from Tables 3 and

4, the 95% confidence intervals for each of the regression coefficients of the SIMAN data

contain the regression coefficients obtained by Law and Kelton. Thus, for a Type I error

of o = 0.05, we do not have enough evidence to reject the null hypothesis that the SIMAN

and Law and Kelton regression models are the same. This indicates that the SIMAN

computer simulation models used in this research provide results that are similar to those

produced by the computer simulations developed by Law and Kelton.
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It should be noted that the last three values in the equation for Law and Kelton for

data set B in Table 5 are mislabeled in the Law and Kelton textbook.134) This can be seen

by solving for the minimum of the function. The minimum value for the function in the

textbook is found at s = 148 and d = - 42. By making the changes found in the table, in

row D*, the minimum value is found at s = 29 and d= 68. These changes are also

consistent with the contour diagrams of the function found in textbook and in Figure 9a

discussed below.

Figure 9 shows three surface and contour plots of the space formed by s, d and

cost as determined by direct simulation, a regression metamodel and an ANN metamodel.

Figure 9a shows the surface plot and a contour plot of 420 equally spaced points on the

(s,d) grid with the height of the surface and the contour lines representing the cost for

each combination of s and d as determined by ten replications of direct simulation. This is

basically the target that the metamodels are attempting to approximate. The regression

model approximation to the target from Table 5, which was built on the 36 data points of

set B, is shown in Figure 9b. As can be seen in Figure 9b, the model is smoother and has

values that are too low in the lower left hand corner and values that are too high in the

upper right hand comer. An artificial neural network approximation built on the same 36

data points of set B, is shown in Figure 9c. Visually, it appears that the ANN metamodel

captures the essence of the surface better than the regression metamodel. In addition, the

mean absolute error of the ANN evaluated at all 420 test points is 3.20 while the MAE is

8.64 for the regression model.( 138)
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4.3 Experiments with Two Simulation Input Parameters

This set of experiments consisted of two different experiments. The first

experiment consisted of predicting a single simulation output, mean cost. The second

experiment predicted four typical descriptive statistics produced by computer simulations

(i.e., mean, standard deviation, minimum, maximum).

The simulation of each input parameter setting consisted of operating the inventory

system for a period of 120 months, or ten years of simulated time. The statistics used in

these two experiments are calculated on the basis of the 120 months of operating the

inventory system within each replication. Thus, at the end of each replication over the 120

months there is a minimum cost month, a maximum cost month and it is possible to

calculate the average monthly cost and the standard deviation of the monthly costs.

Finally, for each input parameter setting, multiple replications are performed and each of

the relevant statistics are captured for each replication.

The purpose of these experiments is to examine the manner and the amount of

simulation data to use in training an ANN to predict typical computer simulation outcome

measures. One obvious way was to use just the average output values of the computer

simulation replications at each input parameter setting. This seemed to eliminate

information that the ANN might be able to take advantage of in building a better model of

the computer simulation. Thus, the opposite extreme of using all of the simulation

replications was also considered. Preliminary experiments showed that unlike regression,

ANN metamodels built using averaged replication data performed differently than ANN

built on individual replications. Concern about the effect of extreme points in the

simulation data led to consideration of additional methods which used only the fifty
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percent of the data that was nearest to the mean value. Finally, combinations of using

averages and replications were also considered.

Specifically, five different methods of presenting simulation data to ANN were

examined. The methods ranged from presenting all the individual replications to just the

averages of the replications. The five presentation methods were:

Presentation Method 1 - Average output of all simulation replications.

Presentation Method 2 - All simulation replications and the average of all

simulation replications.

Presentation Method 3 - Half of the simulation replications nearest to the average

and the average of all simulation replications.

Presentation Method 4 - All simulation replications.

Presentation Method 5 - Half of the simulation replications nearest the average.

For each presentation method, the effect of increasing the number of simulation

replications was examined. The number of replications of the computer simulation used

for each input parameter setting was n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, and 25.

The input parameter settings that were used to obtain data from the computer

simulation to train the ANN for these experiments are shown in Table 6. As can be seen

from Table 6, only two input parameters were allowed to vary: s and d. For illustrative

purposes, the results of the computer simulation for each of the combinations of the input

parameters shown in Table 6 for Experiment 1 and Experiment 2 for the average of 25

replications are provided in Appendix A, Table A l and Table A2, respectively.
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Table 6 Training Input Parameter Settings for Experiments I and 2
Input Parameter Combinations of Trainin Input Parameter Settings

s 20 40 60 80 20 40 60 80
d 20 20 20 20 40 40 40 40

s 20 40 60 80 20 40 60 80
d 60 60 60 60 80 80 80 80

The data used to test the ANN was obtained by running the computer simulation at

the input parameter settings shown in Table 7. The test data was used to examine the

ability of the ANN to generalize to previously unseen examples. The test set consisted of

points that were completely internal to the training set and points that were completely

external to the training set. The third grouping that was evaluated was the combination of

all of the internal and external points. It was assumed that the average of the outputs of

500 replications for each input parameter setting of the test set from the computer

simulation were the "right" answers. The metric for comparison purposes was the mean

absolute error (MAE) of the difference between the outputs of the ANN and the computer

simulations "right" answers. The test set "right" answers are provided in Appendix A,

Tables A3 and A4, for experiments I and 2 respectively. A graphical portrayal of the

location of the various training and test sets is given in Figure 10.

Table 7 Testing Input Parameter Settings for Experiments I and 2
Data Set Input Combinations of Testing Input Parameter

Parameter Settings
Internal s 30 50 70 30 50 70 30 50 70
9points d 30 30 30 50 50 50 70 70 70

External s 10 50 90 10 90 10 50 90
8po ints d 10 10 10 50 50 90 90 901
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Figure 10 Training and Testing Points for Experiments I and 2

4.3.1 Experiment #1: Presentation Methods of Output Measures

The purpose of this experiment was to determine if there was a preferred way of

presenting the replications of the computer simulation output measures as training data to

ANN whose purpose was to predict a single simulation output. The SIMAN computer

simulation of the system described in Section 4.2 was approximated by an ANN model

using five dif -rent methods of presenting the training data. The five methods of

presenting the computer simulation output data, C the average monthly cost, during the

training of the ANN are shown in Table 8. The average cost over n replications used in
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presentation methods 1, 2 and 3 is defined in equation 4-3.

n

ICj,k(i)

Cj,k = i=l n(4-3)jk n

Table 8 Methods of Presenting Simulation Output Data to ANN (Training Data)
Presentation Method Input: Output:

PM 1 si, dk
Cj,k averaged over n replications

PM2 sj, dk
Cj,k averaged over n replications

_______________ ______ & Cj,k(i) for each replication, i.
PM 3 sj, dk --

Cj,k averaged over n replications

& Cjk(i) for the n/2 nearest replications toCj,k

PM 4 sj, dk Cjk(i) for each replication, i.

PM 5 sjdk Cj,k(i) for the n/2 nearest replications to Cj,k

sj, dk represents a specific input parameter setting.
n varied from 1 up to 25.

For this experiment, a total of 59 distinct ANN were trained, 13 for presentation

method 4, 12 for presentation methods 1 and 2, and 11 for presentation methods 3 and 5.

However, the tables and figures showing the results for experiment I show 13 ANN for

each presentation method, for a total of 65 ANN. The reason is that when the number of

replications is only one, then the average is the same as individual replications and thus the
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network for one replication from presentation method 4 was used as the network for one

replication for all five of the presentation methods. Similarly the network for two

replications from presentation method 4 was also used as the network for two replications

for presentation methods 3 and 5.

All networks were fully connected and were constructed with two input nodes,

two hidden layers with two nodes each, and one output node as shown in Figure 11. The

learning rate was 1.0 and the smoothing factor was 0.9. Training continued until the

network deemed a response as correct to within a training tolerance of 0.1 or 5000 passes

through the entire data set. See Figures A4 and A5.

hidden layers

input layer

N Output layer 0
P U

U T
T P

U
V T
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C V
T dc E

0 C
R T

0

Figure 11 Schematic of ANN Used for Experiment 1

All of the ANN converged to the training tolerance of 0. 1 for all of the

presentation methods in experiment 1. The results of experiment I are summarized in

Appendix A, Table A7. Figures 12 through 15 are based on the information provided in

Table A7.
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Figure 12 shows the results of evaluating the trained ANN on the training set. As

can be seen from Figure 12 the values of MAE for the training set fall between 5 and 10.

It appears that adding additional replications only improves the performance of

presentation methods 2 and 4 when the training tolerance is fixed at a specified level.

15
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12 0 PM 2

< 10
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I -9" A --- 0-- PM 4

7 ,L PM 5
6
5 I I I I I

0 5 10 15 20 25
Number of Simulation Replications

Figure 12 Training Set Results for Experiment 1

As can be seen in Figure 13 there is a cost associated with the improvement in the

MAE for the networks trained using presentation methods 2 and 4. The cost is the

increase in the number of presentations, or time required for the backpropagation

algorithm to terminate the training process.
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The next group of charts, Figures 14 through 16, show the benefit of increasing

the number of replications that are used for each training point on the ability of the trained

ANN to perform on the test set. These figures show the results of testing each of the

networks trained with the 5 different presentation methods. Figure 14 shows the results of

the internal test set, Figure 15 shows the results of the external test set and Figure 16

shows the results of the combined test set. As can be seen in Figure 14, the ANN

performance on the internal test set is between 5 and 10 MAE and from Figure 15, the

results on the external test set are between 11 and 14 MAE. Obviously, and expectedly,

the ANN are able to predict the computer simulation output values better for points that

are internal to the training set rather than external to the training set. Thus we can say that

ANN perform better as interpolating mechanisms rather than extrapolating mechanisms.

The ANN performance on the combined test set ranges between 8 and 12 as can be seen

in Figure 16. All three of the Figures 14, 15, and 16, indicate that presentation methods 2

and 4 do better than presentation methods 3 and 5 which did better than presentation
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method 1. The conclusion from this experiment is that for a fixed value of the training

tolerance with all networks converging to that training tolerance. it is better to use all of

the replications of the data (presentation methods 2 through 5) rather than just the

averages (i.e., presentation method 1). An additional conclusion is that ANN should be

used with caution when performing extrapolations beyond the data on which they were

trained. It also appears that there is very little difference between presentation methods 2

and 4 or between presentation methods 3 and 5. Thus from this experiment it appears that

including the average along with the individual replications provides very little difference

in learning the relationship between the inputs and outputs of the computer simulation.
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Figure 14 Internal Test Set Results for Experiment I
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4.3.2 Experiment #2: Predicting Descriptive Statistics Typically Produced by
Computer Simulations (Mean, Standard Deviation, Min and Max)

The major difference between experiment 1 and experiment 2 is that experiment 2

used the ANN to predict three additional aspects of the desired measure of effectiveness.

Both experiment I and 2 predict the mean value of the cost of operating the inventory

system for 120 months. Experiment 2 also predicted the standard deviation, minimum and

the maxllwm value of the cost for the same time period. These measures of cost are

typical outputs provided by most computer simulation packages as the output of a single

replication of the simulation. An example of the training data used for experiment 2 is the

averages (i.e., presentation method 1) of the four different aspects of cost for 25

replications which is given in Table A2 of appendix A. The distinction between the

internal, external and combined test points was examined in experiment I but was not

considered in experiment 2. The only test set examined in experiment 2 was the combined

test set which is provided in Table A4 in Appendix A.

For this experiment, a total of 59 different ANN were developed. All networks

were fully connected and were constructed with two input nodes, two hidden layers with

ten nodes each, and four output nodes. These networks have five times as many hidden

nodes as were used in experiment 1, because it is a much harder problem to learn four

outputs than to learn one output. Initial trials with a varying number of hidden nodes in

each hidden layer yielded 10 hidden nodes per layer as a good starting point for this

particular problem. Each input node corresponded to one of the input parameters (s, d),

and each output node corresponded to one of the output parameters (mean, standard

deviation, minimum, maximum). The learning rate was 1.0 and the smoothing factor was

0.9. Training continued until the network deemed a response as correct to within a
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training tolerance of 0.1 for each of the four outputs or 5000 passes through the entire

data set (See Figures A6 and A7).

The only presentation method to have all of the networks converge to the training

tolerance of 0.1 for experiment 2 was the first presentation method. The results of

experiment 2 are summarized in Appendix A, Table A8 for the training sets and Table A9

for the test set. The charts in Figures 17 through 25 are based on the information

provided in Tables A8 and A9. The results in Tables A8 and A9 suggest, as was seen in

experiment 1, that there is very little difference between presentation methods 2 and 4 or

between presentation methods 3 and 5. Therefore, the figures showing the results for

experiment 2 do not include presentation methods 4 and 5.

The results of the network evaluations of the training set for the various number of

simulation replications for presentation methods one, two and three for the mean, standard

deviation, minimum value, and maximum value of cost are shown in Figures 17, 18, 19

and 20, respectively. From these graphs it appears that there is some interference taking

place between the various output measures that the neural networks are trying to learn. It

appears from the fairly random nature of the Mean Absolute Error (MAE) for mean cost

and minimum value of cost as seen in Figures 17 and 19 that this experiment has produced

ANN that are not very consistent even for very small changes in the number of replications

used to develop the ANN. This erratic behavior occurs for all of the presentation methods

including the converging presentation method 1. The MAE for the outputs of standard

deviation of cost and maximum value of cost as shown in Figures 18 and 20 are much

moie stable. An examination of the root mean square error (RMSE) for these measures in

Table A7 and A8 in Appendix A, show that RMSE is much larger than MAE for the
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standard deviation and maximum value of cost. This indicates that some of the errors are

very large for these measures.
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Figure 20 Training Set Results for Experiment 2 for Maximum Value of Cost

The amount of presentations (i.e., the number of training patterns shown to the

network) required to terminate training for experiment 2 are given in Figure 21. It should

be noted that the scale for Figure 21 differs considerably from the scale used on Figure 13

which is the corresponding figure from experiment 1. Many more presentations of the
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data were needed to termii Lrning in experiment 2 than it did in experiment 1. In

addition, many of the networks actually did not a,hieve the desired tolerance of 0.1 for all

four of the output measures but instead terminated training by reaching the training

termination criteria of 5,000 presentations of the data set to the ANN. Presentation

methods 2 and 4 have more data than presentation methods 3 and 5, which have more

data than presentation method 1. Consequently, they are correspondingly higher in terms

of the number of presentations of data to the ANN '4'ring the training phase. Presentation

method 1 was the only method that consistent). ged to the training tolerance of 0.1.
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Figure 21 Presentations Required to Terminate Training for Experiment 2

The results for the test set of the three presentation methods for the mean,

standard deviation, minimum, and maximum value of cost are given in Figures 22, 23, 24,

and 25, respectively. The first observation that can be made from these figures is that in

the vast majority of cases the largest error for all four of the measures of cost is found
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with presentation method 1. There does not appear to be much of a difference in the

performance of presentation methods 2 and 3. The second observation is that the erratic

performance of the ANN in predicting mean and minimum cost that was present in the

training data is also present in the testing data. Comparing the appropriate charts (i.e.,

Figure 17 versus 22, Figure 18 versus 23, Figure 19 versus 24 and Figure 20 versus 25),

it is apparent that there is a larger degradation in the performance of networks on testing

data compared to training data for mean value and minimum value of cost than for the

standard deviation and maximum value of cost.
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Figure 22 Test Set Results for Experiment 2 for Mean Cost
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Figure 25 Test Set Results for Experiment 2 for Maximum Value of Cost

Experiment I and 2 both used ANN to predict mean cost of operating the

inventory system for 120 months. The direct comparison of the results from these two

experiments on predicting the mean value of cost for presentation methods 1, 2 and 3 is

made in Figures 26 through 28 for the training set and in Figures 29 through 31 for the

test set. The only truly valid comparison that can be made between the first two

experiments is with presentation method 1, since it was the only presentation method that

converged to the training tolerance in both experiments. It is apparent from Figures 26

through 28 that the approach used in experiment 1, having the ANN predict just one

output, is much more stable for the training set than the approach used in experiment 2,

which had the ANN predict four different outputs. It is also apparent from Figures 29

through 31 that the approach used in experiment I is much more stable for the test set

than the approach used in experiment 2. Thus, it appears from these results that trying to

predict single outputs only performs better than the multiple output approach when the

number of simulation replications is large. The reason this has occurred is that, even

though the training tolerance was the same for this measure of cost for both experiments 1
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and 2, the networks for experiment 2 had to meet the training tolerance for an additional

three measures. Since the single output ANNs all converged for all five presentation

methods, it appears that there is room for additional training to take place by just reducing

the training tolerance below 0.1. On the other hand, the multiple output ANN from

experiment 2 did not consistently converge within the allowable 5,000 runs through the

training data. Therefore, it appears that there would be little advantage to reducing the

training tolerance below 0.1 when training on multiple outputs without lengthening the

maximum number of epochs.
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Since stable predictors are preferable to unstable predictors, in general, the main

conclusion to be derived from experiments 1 and 2 is that the approximation of multiple

simulation output measures should be done with one ANN for each output measure, rather

than one ANN for all of the output measures.

A second conclusion is that the method used in these two experiments for selecting

the best network for each presentation method and set of training data is inadequate. In

these experiments, it appeared that presentation methods 2 and 4, which used all of the

simulation replications, produced better ANN. However, these presentation methods also

did not consistently converge in experiment 2 and terminated training at an arbitrary

predetermined number of runs (5,000 in this case) through the training data. This arbitrary

stopping point is 5,000 steps away from a randcm starting point on the error surface that

the ANN is trying to minimize and as a result may not be very close to the minimum error.

While the lack of convergence in experiment 2 may have been due to trying to predict four
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different output values, the following discussion shows that it could be due to another

problem. That is, by virtue of the stochastic nature of computer simulations, there are

different values produced by the computer simulation for the outl ut of a specific

combination of input parameter settings. For any given set of training data, there is at

least one input parameter setting that has the largest difference between its multiple

outputs, say MAXRANGE. If the desired training tolerance is smaller than

MAXRANGE/2 then the network will fail to converge if all of the simulation output

replications (i.e., presentation methods 2 or 4) are used as the training set. Thus, even

though in these first two experiments presentation methods that use all of the replicated

data did better than the presentation method that used the averages, it is quite possible that

for a particular training tolerance level the presentation methods could not converge. The

result would then be the final network, which in a sense is just a random point on the path

from the starting point to the minimum on the error surface. There is no guarantee that

such a point would be a very good point. In addition, if the training tolerance is small

enough, it is possible for presentation method I to not converge within a pre-specified

number of runs through the training data.

One way to avoid this problem is to pick a particular architecture for the ANN, use

the termination criterion of "maximum number of runs" and write the results of the

training performance to a file after each run through the training data. A search through

the training results file will determine which run through the data produced the network

with the best performance on the training set. Training without testing would then be

conducted for tho number of runs required to reach the best network. This procedure will

be referred to as "best net training" and is used throughout the remainder of the

dissertation. Another procedure that is similar is called "test and save" in which the
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network is tested at pre-specified intervals and the networks are sived to individual files.

If the networks are saved after each training run through the data, then the networks

resulting from "best net training" and "test and save training" will be the same. Using the

"test and save" training procedure does not require a second training session to obtain the

weights of the best network. However, with the "test and save" procedure, it takes a lot

of time to write the individual networks to different files, it takes a lot of memory to hold

all of the files, and if the interval between testing networks is larger than one, then there is

no guarantee of finding the best network. For these reasons "test and save" was not used

in this research.

Further, adding just one example of the average value to the training set did not

seem to help the learning process (i.e., presentation method 2 seemed to perform almost

exactly like presentation method 4 and presentation method 3 seemed to perform almost

exactly like presentation method 5). Therefore, presentation methods 2 and 3 were not

considered in the remainder of the dissertation work. Also, presentation method 5 was

bounded by presentation methods 1 and 4 in the sense that the networks createdi by

presentation method 5 produced MAE that fell consistently between the MAE produced

by networks developed using presentation methods I and 4. Therefore, presentation

method 5 was not considered in the remainder of the dissertation.

One possibility of future research is to examine various increases in the number of

copies of the mean value being added to the training set.
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4.4 Synopsis of Conclusions from Initial Experiments on Inventory System

The following conclusions were derived from the experiments conducted in this

chapter.

1. ANN should be used to perform interpolations rather than extrapolations from

the training set.

2. Adding the additional data point of the average value of the output for each

parameter setting provides little if any benefit in developing ANN. That is, there appears

to be very little difference between presentation methods 2 and 4 or between presentation

methods 3 and 5.

3. It is better to have several ANN, each predicting only one computer simulation

output measure rather than having one ANN that is used to predict several measures.

4. There is insufficient evidence from these preliminary experiments to suggest

that any one of the presentation methods is definitively better than the rest. The

presentation method that tended to be the quickest (presentation method 1) and the

presentation method that tended to produced the most accurate ANN (presentation

method 4) will be considered in the remaining experiments.

5. The method used in experiments I and 2 for selecting the best ANN can be

improved. Rather than limiting the possibilities to a "converged to the training tolerance"

of a "reached training termination criteria" network, the results after each run through the

training set should be saved. Searching through the resultant file would enable the "best
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trained net" to be found. Retraining the initial network without testing and writing results

to a file would permit the "best trained net" to be obtained. This is called the "best net

training" approach to training ANN.

4.5 Summary

This chapter contains a discussion of the (s,S) inventory system which is used as a

vehicle for developing an approach to building ANN metamodels of computer simulations.

A three dimensional visual comparison between adirect simulation, a second-order

regression metamodel, and an ANN metamodel demonstrated that for this problem the

type of regression models used in response surface methods are not as accurate as ANN

metamodels. The two experiments discussed in this chapter used two input parameters, s

and d, and one output measure, cost. The first experiment examined various methods of

presenting the simulation data to ANN. The result of the first experiment is that the

networks trained on all of the individual replications of the computer simulation performed

better than networks trained on just the average values or on half of the data closest to the

averages. The second experiment examined the issue of predicting multiple outputs with

one ANN or predicting with several ANN, each of which predicts a single output. By

comparing the results of the ANN developed in the first and second experiments it is

apparent that there is a confounding of learning is taking place when trying to predict

multiple outputs with one ANN. The conclusion to be drawn is that it is better to develop

separate networks when trying to predict multiple outputs. The final result of the

experiments discussed in this chapter is the development of the "best net training"

approach to developing ANN metamodels.
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5.0 DEVELOPMENT PROBLEM - FINAL SET OF EXPERIMENTS IN
APPROXIMATING AN (s,S) INVENTORY SYSTEM

The experiments in this chapter examine the ability of the ANN approximation

method to handle increased model complexity in terms of the number of input parameters.

To increase the complexity of the inventory model, the "controllable" input parameters k

(setup cost) and u (underage cost) were added to the existing model with the other

"controllable" input parameters of s (reorder point) and d (reorder quantity). This chapter

focuses on estimating both the mean cost and variance of mean cost of inventory plans.

Most users of discrete event stochastic simulations are interested in estimating

both the expected value and the variability of that expected value for specific combinations

of values of input parameters. In stochastic simulation, the expected value (arithmetic

mean) and the variance can be calculated as a by-product of multiple simulation runs. In a

neural network metamodel of the type proposed in this research, outputs are deterministic,

i.e., there is no attempt to replicate the stochastic aspects of the simulation. However, it is

desirable to calculate a measure of the variability, as well as the expected value, for any

particular response. Using the expected value and variance together allows for the

construction of statistical prediction and confidence intervals for any system output. The

capability to estimate both expected value and variance is provided by estimating each by a

separate metamodel. Thus, for a given combination of input values, one neural network

metamodel estimates the mean cost of the inventory plan, while another neural network

metamodel estimates the variance of the mean cost.
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5.1 Experiments with Four Simulation Input Parameters

The following experiments (3 through 6) were performed with the four input

parameter inventory computer simulation. First, the number of hidden nodes needed to

predict the simulation output is determined in experiment 3. In experiment 4 the mean

cost of the (s,S) inventory system is predicted using ANN and is used to examine the

tradeoffs between increasing the number of replications and increasing the number of data

points. In experiment 5 the variance of the mean cost of the (s,S) inventory system is

predicted using neural networks. In experiment 6 the ANN metamodels are used to make

prediction intervals for the cost of the (s,S) inventory system.

For this experiment, and all subsequent experiments, the only presentation methods

used were presentation method 1 (average of output data) and presentation method 4 (all

individual replications). In this problem mean cost is calculated, for each particular input

parameter setting, according to equation 5-1 and the variance of the mean cost, also called

the squared standard error, is calculated according to equation 5-2, for ten replications.

10

jci
Mean= C = i=1 (5-1)

10

10
1o(Ci-O-C

i=l

Var(C) = (SE) 2 = 9 (5-2)
10

The data used to train and test the ANN for the experiments on the 4 input

parameter inventory system simulation was obtained using the SIMAN computer
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simulation programs given in Appendix B, Figures B I and B2. This simulation is identical

to the one used for the 2 input parameter inventory system except that the code was

modified to accommodate the larger number of input parameters. In these experiments a

reparameterization of the factor u was used to prevent having unreasonable combinations

of u and k. The reparameterization was to let w = k/u. In the 2 input parameter inventory

computer simulation the parameter k was always at the value $32 and the input parameter

u was always equal to the value $5 (and so the parameter w was 32/5, or 6.4).

The values of the four input parameters selected for training and testing neural

networks are shown in Table 9. Using ten values of s, ten values of d, five values of k and

five values of w, a total of 2,500 different combinations of input parameter values were

simulated ten times to obtain a total of 25,000 replications of training data. To examine

the tradeoffs of more data points versus additional replications, the training data was

divided into smaller non-disjoint sets. Table 9 shows several sets of values for each

parameter. The parameter s, has three sets of values, one set of size 2, one set of size 4

and one set of size 10. Similarly, d, k and w have three, four, and four sets of values

respectively. Thus, there are 144 (3x3x4x4) combinations of the different sets of values of

the input parameters. Table 10 shows the thirteen combinations of the sets of training

input parameter values that were considered in the experiments involving the 4 parameter

inventory system computer simulation. Each training set is a subset of any training set that

is below or to the right of it in Table 10. The one exception to this rule is training set J,

since it is a combination of training sets E and I, each of which contains the training set A,

with one of the two sets of training set A removed. Training set J was included to

examine the advantage of having detailed information about each input parameter without

the disadvantage of having very large amounts of data, as is the case with training set M.
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Table 9 Trainin and Testing Values for 4 Input Parameter Inventory Simulation
Input Parameter/ Number of Parameter Values
Data Type Values

train 2 20 80
train 4 20 40 60 80
train 10 20 27 33 40 47 53 60 67 73 80
test 5 10 30 50 70 90

train 2 20 80
train 4 20 40 60 80
train 10 20 27 33 40 47 53 60 67 73 80
test 5 i0 30 50 70 90

k
train 2 16 80
train 3 16 48 80
train 4 16 32 64 80
train 5 16 32 48 64 80
test 6 8 24 40 56 72 88

w
train 2 4 17
train 3 4 10.5 17
train 4 4 8 13 17
train 5 4 8 10.5 13 17
test 6 3 6 9 12 15 18

s = reorder point d = reorder quantity
k = setup cost w = parameterization of u-underage cost, where w = k/u

Table 10 Training Sets for 4 Input Parameter Inventory Simulation
Number of Values of 2 values of s 4 values of s 10 values of s
Input Parameters 2 values of d 4 values of d 10 values of d

2 values of k A (16) D (64) 1(400)
2 values of w
3 values of k B (36) F (144) K (900)
3 values of w
4 values of k C (64) G (256) L (1600)
4 values of w
5 values of k E (100) H (400) M (2500)
5 values of w

J (484) = E+I-A

(Numbers in parentheses in the table indicate the number of points in the training set)
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Due to computer memory restrictions, the computer simulation program was run

in separate batches of 10 replications for the training data and 20 replications for the

testing data. To obtain independent replications, the random number streams shown in

Table B 1 were used for the different batches. To reproduce the computer simulation

results from SIMAN that were obtained in this research would require putting the input

data in an ASCII file in the same order that is shown in Table B2 in Appendix B. In Table

B2, all of the parameters begin with the smallest values. The first three parameters are

then held fixed and the values for parameter w are increased from the smallest to the

largest value. Then k is increased to its next highest value and the process is repeated to

the parameter w. This iterative process is repeated for all values of k, and then all values

of d and then all values of s. The process is repeated until all possible combinations are

achieved. The results of the first 90 data points for the 10 replications of the training set

are shown in Table B2. All of the data for the training sets was obtained by running the

simulation on training set M, and then dividing the results appropriately to form the other

training sets. An example of one of the training sets, specifically training set A, is shown

in Table 11 with the results of 10 replications of the computer simulation in terms of the

mean cost and the variance of the mean cost. Training set A is a 24 design which is the

standard full factorial design used in traditional response surface methods. Other more

sophisticated designs such as Box Behnkin and star point designs may be more

appropriate if optimization of the response surface is the goal. Training set F is shown in

Table B3 in Appendix B. Training set F is a 32 x 42 design. The data has been shuffled in

both Table 11 and Table B2 for ANN training purposes. M, the largest training set is a

102 x 52 design.
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Table I1 Example of 4 Parameter Inventory Training Set - (Training Set A)
Training Input Parameters (Output Values of Cost

Data Point s d k W C Var(C)

1 20 8O 8(0 17 14().277 0.953
2 8() 80 80 17 192.377 0.664
3 20 80 80 4 161.124 6.4901
4 80 80 80 4 192.633 0.618
5 20 80 16 17 118.079 0.210(
6 80 80 16 17 175.904 0.737
7 20 80 16 4 121.533 0.772
8 80 80 16 4 176.024 0.397
9 20 20 80 17 161.961 2.011
10 80 20 80 17 200.964 2.681
11 20 20 80 4 217.053 11.277
12 80 20 80 4 202.047 2.943
13 20 20 16 17 98.33 0.921
14 80 20 16 17 152.539 0.579
15 20 20 16 4 1019 109 0.534
16 80 20 16 4 153.05 0.425

The test sets for these experiments were constructed using the combinations of the

test set parameter values for each of the input parameters given in Table 9. There are 900

(5x5x6x6) points in the entire test set. Each point in the test set can be categorized in

terms of the number of parameters whose values are beyond the range of any of the

parameter values in the training sets. The result is a division of the test set into the five

groups of data listed in Table 12. An example of the input parameters for a test set and

the simulation results of mean cost and variance of the mean cost, are given in Table 13

for the test set with all four values of the input parameters external to the training set.

Test set 0, from Table 12 is a wholly interpolative test set. The results of the simulation

runs for the test set with 0 parameters external to the training sets are shown in Table B4

in Appendix B.
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Table 12 Subdivisions of Test Set for 4 Parameter Inventory Simulation
Test Set Number of Points in Test Set

(Number of parameters with value
external to training set values)

0 144
1 336
2 292
3 112
4 16

TOTAL 900

Table 13 Test Set with 4 External Values for 4 Parameter Inventory Simulation
Testing Input Parameters Output Values of Cost

Data Point s d k w C Var(C)

1 10 10 8 3 115.13 2.06
2 10 10 8 18 87.92 0.71
3 10 10 88 3 518.13 100.11
4 10 10 88 18 219.77 6.19
5 10 90 8 3 118.09 0.62
6 10 90 8 18 111.30 0.51
7 10 90 88 3 216.72 19.20
8 10 90 88 18 143.18 1.57
9 90 10 8 3 151.95 0.33
10 90 10 8 18 151.84 0.25
11 90 10 88 3 230.04 0.50
12 90 10 88 18 230.01 0.62
13 90 90 8 3 188.05 0.49
14 90 90 8 18 188.03 0.49
15 90 90 88 3 207.83 0.63
16 90 90 88 18 207.92 0.72

A traditional backpropagation training algorithm was used with a smoothing

factor and a unipolar sigmoidal transfer function as given in equation 3-1, with a training

tolerance of 0.02. For some prediction problems it is difficult for the ANN to achieve very

high values or very low values of the target output due to the undershoot phenomenon.
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The default setting for the range of normalization of both the inputs and outputs in the

BrainMaker package is to use the minimum and maximum values observed in the training

data. In these experiments, the test data extends beyond the range of the training data

both in terms of inputs and outputs. Thus, for this research the range of normalization for

the input values was extended so that the minimum value was set at 10% of the range

lower than the minimum value of the train and test sets combined and the maximum value

was set at 10% of the range higher than the maximum value of the train and test sets

combined. For instance, for the input parameter s, the training set values had a minimum

of 20 and a maximum of 80, while the test set had a minimum of 10 and a maximum of 90.

Since the range of the combined train and test sets was 80 (90-10), BrainMaker used a

minimum value of 2 (10 -. 1 x 80) and a maximum value of 98 (90 +. 1 x 80) to scale the

input parameter s. The factor of 10% of the range beyond the minimum and maximum

values found in the test set was used after several trials using factors of 0%, 10%, and

20%. Similar trials were conducted to examine the factor to use for the output values

with the result that a 10% factor for adjusting the minimum and maximum of the mean

cost of operating the inventory system performed best. For predicting the variance of the

mean the factor used to adjust the range of the inputs remained at ± 10%, but the target

output used 10% lower than the minimum and 20% higher than the maximum since these

values yielded the best results. The remainder of these experiments used these

adjustments to the scaling factors for both the inputs and outputs of the ANN.

5.2 Experiment 3: Determining the Number of Hidden Nodes Needed to
Predict the Simulation Output Measure

In this experiment the ANN architecture has four input nodes, two hidden layers

with a varying number of nodes, and a single output node. The objective of this
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experiment was to determine how many nodes to use in the hidden layers. In this

experiment training sets A and M from Table i0 were used. These training sets were the

smallest and largest training sets, with 16 and 25(X) data points respectively. A total of Six

ANN were developed using these two training sets. Two of the ANN were developed

using the mean and the individual replications of training set A. Four of the ANN were

developed using the mean and the individual replications of training set M with two of

these ANN using shuffled data and two of them using unshuffled data.

Each of the networks in this experiment were trained for 50 epochs. The networks

were evaluated after each epoch, and the one which performed best on the training set was

saved as the final trained network. The average number of epochs required to reach the

minimum training error was 26.

The results on the test set in terms of Mean Absolute Error for the ANN trained on

the unshuffled data of set M are shown in Figure 32. As can be seen in the figure, the

best number of hidden nodes is five for both the averages and individual replications.

After this initial experiment, it was clear that the number of hidden nodes that would work

best for this data was between 2 and 10, and so, the succeeding examinations of the

number of hidden nodes was restricted to this range. After examining Figure 32, it

became apparent from the erratic behavior of networks trained on individual replications

that the ANN might have better and more stable performance if the training data was

shuffled for such a large training set. The results for data set A and the shuffled and

unshuffled data set M are provided in Figures 33 and 34. Figure 33 shows that all three of

the ANN trained on averages achieved the smallest MAE with five hidden nodes. Figure

34 shows that two out of three achieved the smallest MAE with five hidden nodes and the



other achieved the smallest MAE with four hidden nodes for the ANN trained on

individual replications. In addition, Figures 33 and 34 show that shuffling the data

improves the results by reducing the test set MAE and for the individual replications,

providing more stable performance. In all six cases good performance in terms of MAE

was achieved using five hidden nodes.

Based on these results the following ANN architecture is used in the remaining

experiments of predicting cost with the four input parameter inventory simulation: four

input nodes, two hidden layers of five nodes each, and a single output node. In addition,

since it was observed that the networks trained on data set A achieved their best level of

performance at 50 epochs, which was the maximum number of epochs for this experiment,

succeeding experiments increased the maximum number of epochs to 750.
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Figure 32 Results of Experiment 3 for Training Set M (Unshuffled Data)
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5.3 Experiment 4: Predicting Mean Cost of the (s,S) Inventory Simulation

In this experiment the training data was presented to the network using

presentation method 1 and presentation method 4. All 13 of the training sets shown in

Table 10 were used to develop ANN to predict the cost of operating the inventory system.

Each set of training data was also organized into three different subsets: the first two

replications comprised the first subset, the first six replications made up the second subset,

and finally, all ten replications were used in the third subset. Thus, a total of 78 (2x 13x3)

ANN were constructed for this experiment.

Each of the networks in this experiment were trained for 750 epochs. The

networks were evaluated after each epoch, and the one which performed best on the

training set was saved as the final trained network. The average number of epochs

required to reach the minimum training error was 418 epochs for the networks trained on

averages and 253 epochs for the networks trained on individual replications. Due to the

larger individual replication data sets, this translated to an average number of

presentations of each input data point to reach the best trained network of 418 for the

networks trained on averages and 1,743 for the networks trained on individual

replications. Several networks were trained to 7,500 epochs and in each case the best

network was achieved within the first 750 epochs.

5.3.1 Examining Four Input Dimension ANN Results on a 2 Dimensional Surface

Before examining the results of this experiment, the following discussion compares

how well the ANN trained using four dimensional input predicts the two dimensional

surface of the ten replications of 420 points of direct simulation shown in Figure 9a. It

should be noted that all 420 points plotted in Figure 9a had the same values for the
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parameters k and w. The parameter k was set to 32 and the parameter w was set to 6.4.

The closest values in training set F to these settings are with k equal to 16 or 48 and w

equal to 8. Also there are only 16 different values in the (s,d) space in data set F. Table

14 compares the regression and ANN metamodels developed with the 36 points from

Chapter 4, shown in Figures 9b and 9c respectively, with the ANN metamodel developed

on the individual replications of training set F. Based on the three criteria of mean

absolute error, maximum absolute error and variance of error, the ANN developed on

training set F outperformed the regression developed with 36 points but did not do as well

as the ANN developed with 36 points. Figure 35 shows the predictions made by the

neural network developed for this experiment using the ten individual replications of data

set F. In spite of the sparseness of the training data and its dissimilarity with the test set,

the plot of predicted values for the ANN trained on the individual replications of training

set F appears to be reasonably close to the direct simulation plots of 420 points shown in

Figure 9a and appears to be at least as good as the plot constructed using the regression

on 36 points shown in Figure 9b.

Table 14 Comparison of Chapter 4 and Chapter 5 Networks
Metamodel Method Regression ANN ANN

Training Set Chapter 4 Chapter 4 Chapter 5
Set B Set B Set F

Total Number of Training points 36 36 144
Number of Different (s,d) Training 36 36 16

Points
MAE (Entire Test Set) 8.64 3.20 5.09

Maximum Error (Entire Test Set) 52.15 12.02 52.02
Variance of Error (Entire Test Set) 33.71 4.64 32.66

MAE (Internal Points) 9.00 3.12 3.21
Maximum Error (Internal Points) 23.33 8.29 9.57
Variance of Error (Internal Points) 24.91 4.09 4.57
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Figure 35 Surface Plot of Mean Cost Based on Training Set F

5.3.2 Results of Experiment 4

The training sets of average values had the advantage of being smaller and typically

converged more quickly in terms of the total number of data presentations to the network

than the training sets of individual replications. The plot in Figure 36 shows that all but

one of the individual replications training sets took longer to reach the best trained

network than for those nets trained on the average of the ten replications. Similar results

were found for the nets trained on two and six replications.
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Figure 36 Number of Presentations of the Training Data To Reach the Best Trained
Network in Experiment 4 for Training Sets Based on 10 Replications

One might expect to get the same results for predicting the mean cost of the

inventory policies of the test set data from both types of presentation methods, except that

the replication training would take much longer. This, in fact, did not happen. There

were fundamental differences in the performance of the networks, depending on the

method used to present the information to the networks during training. The individual

replications networks were more consistent in their ability to accurately predict total cost

for the test set. Initially this seemed counterintuitive. For the individual replications case,

training could not expect to reach a pre-specified training tolerance for all points since for

each training point there are ten (for the ten replication case) identical input vectors, each

with a different target output. Thus, if the training tolerance is larger than half the

distance between the minimum and maximum output values for a particular set of input

parameter values, it will be impossible to correctly learn all ten of the outputs for that

particular input parameter setting.
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The output of the computer simulation for cost of the inventory system ranged in

value from 88 to 518. The average cost of all the points in the test set was 159. Figures

37, 38 and 39 show the networks trained on individual replications typically doing much

better than the networks trained on averages. All of the figures show the results in

alphabetical order of the training sets which are also in non-decreasing order of the size of

the training set. Figure 37 shows the results for the entire test set, while Figure 38 shows

the results for the test set consisting of all points with either zero or one value external to

the training sets and Figure 39 shows the results for all test points with either two, three or

four values external to the training sets.

As can be seen in Figure 37 only two of the networks, training sets E and K,

perform better with averages than with individual replications. Also as the number of

data points is increased the MAE decreases except for training sets E and 1. It is likely

that training sets E and I do poorer than networks trained on fewer data points because

they have too much information on some inputs. This can be seen by examining the data

sets in Table 10. Training set E might have too much information about the parameters k

and w. and not enough information about parameters s and d, while training set I might

have too much information about the parameters s and d and too little information about

parameters k and w.

The results in Figure 38 indicate that for a more interpolative test set, all training

sets with at least as many points as training set F (144 points) do better than those trained

on fewer than 144 points. For this test set, networks trained on averages only do better

than networks trained on individual replications for data sets E and K.
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It is expected that the less extrapolation is performed the better the ANN

metamodels performance will be. With the exception of training sets A and B, all of the

ANN metamodels do much better at predicting the mostly internal points of test sets with

0 or 1 external factors in Figure 38 than they do at predicting the test sets with two, three

or four factors external in Figure 39. It should also be noted that the reduction in test set

error resulting from additional data points is much greater for the interpolative test set

than for the extrapolative test set. The reduction from training set A to training set M is

approximately 75% (from 16 MAE to 4 MAE) in Figure 38 and is approximately 25%

(from 16 MAE to 12 MAE) in Figure 39.

The results for the more extrapolative test set indicates that it takes considerable

more training data to obtain a definitive reduction in the test set error than it did for the

interpolative test set. Figure 39 shows that improvement occurs when the training set is at

least as large as training set K (900 points). For this extrapolative test set, networks
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trained on averages only do better than networks trained on individual replications for data

set K.

For all of the test sets it appears from Figures 38 and 39 that networks trained on

very little data (Training Sets A, B and C) or on a lot of data (Training Sets L or M) are

not much different for the two data presentation methods. However, for the training sets

from D through K there does appear to be a difference between training on averages and

training on individual replications.

The result of increasing the number of replications at each point is shown in

Figures 40 through 43. Figures 40 and 41 show the results for presentation method 1

(averages) with the entire test set and the test set with 0 factors external, respectively.

Similarly, Figures 42 and 43 show the results for presentation method 4 (individual

replications). All four of the figures demonstrate that training neural networks is a

stochastic versus a deterministic process. Figures 40 and 41 show that there is not much

benefit to increasing the number of replications when training on the averages. Figures 42

and 43 indicate that there is a slight benefit to increasing the number of replications when

training the ANN is based on individual replications. For other problems the effect of

additional replications could be much more pronounced. These results indicate that for

this problem there is much more variability between the input data points than there is

within the replications performed at a particular data point. It should be noted that the

error on the purely interpolative test set as shown in Figures 41 and 43 is quite small for

both presentation methods once sufficient data points (at least 144 points with data set F)

are provided as the training set.



310

25
Number of Replications

20----

15 -s--o----6

a b c d e f g h I j k I m

Training Data Sets

Figure 40 Results for Entire Test Set with PM I-Averages for Varying Number of
Replications in Experiment 4

S~Number of Replicationas

~j22

S15 " "--0" 6

C]

01

S10"
SIlt-

5

0 t I I I I I I I I I
a b c d e f g h I j k I m

Training Data Sets

Figure 41 Results for 0 External Factors Test Set with PM I-Averages for Varying
Number of Replications in Experiment 4



112

30

25

Number o~f Rteplication,

20

- - 6

10 10

a b c d e f 9 h i j k I m

Training Data Sets

Figure 42 Results for Entire Test Set with PM 4-Individual Replications for
Varying Number of Replications in Experiment 4

30 T

__25

Number of Replications

220

i15 -~-6

-10

I.-.-..-

5

0I i It I I I I

a b c d e f g h i j k I m

Training Data Sets

Figure 43 Results for 0 External Factors Test Set with PM 4-Individual Replications
for Varying Number of Replications in Experiment 4



113

5.4 Experiment 5: Predicting the Variance of Mean Cost of the Four Parameter
Inventory Simulation

This experiment is designed to predict the variance of the mean cost of operating

the inventory system as predicted by the computer simulation. Note that variance as well

as the mean of the computer simulation model output changes over the response surface

of the simulation model. The change in the variance of the mean as the parameters s and d

are changed is shown graphically in Figure 44. This plot of simulation output of variances

is comparable to the plot in Figure 9a of the simulation output of mean cost. The plot in

Figure 44 is based on one observation of the variance of the mean of 10 replications at

each of 420 points discussed in Chapter 4. Since the plot in Figure 44 is based on only

one observation from the computer simulation at each of the 420 points, it is expected that

the surface in Figure 44 is much more irregular than the shape of the true surface of the

variance of the mean.
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Figure 44 Surface Plot of Variance of Mean Cost Based on Direct Simulation
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5.4.1 Examining Four Input Dimension ANN Variance Results on a 2 Dimensional
Surface

Figure 45 shows the predictions made by the neural network developed using the

individual replications of data set F that correspond to the direct simulation results shown

in Figure 44. It should be noted that the variances plotted in Figure 44 are based on 10

replications at the 420 points described in Chapter 4. All of the points had the same

values for the parameters k and w. The parameter k was set to 32 and the paiameter w

was set to 6.4. The closest values in training set F to these settings are with k equal to 16

or 32 and w equal to 8. Also there are only 16 values in the (s,d) space. In spite of the

sparseness of the training data and its dissimilarity with the test set the plot of predicted

values for the ANN trained on the individual replications of training set F appears to

mimic the surface of the simulation response.

6
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Figure 45 ANN Predictions of Variance using Training Set F
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5.4.2 Results of Experiment 5

Separate networks were used to estimate the variance of the expected cost

prediction of the computer simulation of the inventory system. The networks had the

same architecture and the same training strategy of those in experiment 4. The target

output of the simulation was s2 /n as defined in equation 5-2, i.e., the sample variance

divided by the number of replications in the set. In this experiment the number of

replications used to develop the variance of the mean was 10. Other statistics also could

have been used such as the standard error (i.e., square root of the variance of the mean),

sample variance (i.e., the number of observations times the variance of the mean), or the

sample standard deviation (i.e., the square root of the sample variance). Because the

confidence intervals used in analyzing the results of computer simulations are calculated

using square root of the variance of the mean, it was appropriate to use it in this research.

Since the number of replications used to calculate the variance of the mean was always

ten, the interpretation of the networks trained on this data is that tney would estimate the

variance of the mean with a sample size of ten.

In experiment 4 networks trained on data sets A, B, C, and D appeared to not have

enough data while those trained on data sets E and 1 appeared to have too much of one

type of data. Networks trained on sets F, G, H, J, K, L, and M appeared to do well. To

reduce the workload but still be able to consider the advantage of adding additional data

points, only three of the training sets were used in succeeding experiments. Data set F

was chosen as the smallest data set that realized good performance. Data sets H and K

were selected since they added the most information possible to data set F in terms of the

input parameters s and d for set H and the input parameters k and w for set K. Examples

of the initial networks and the best trained networks are at Figures B6 and B7,
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res,,pectively. An example of the data (Set FI used to train the networks on the variance of

the mean is shown in Table B3 under the column Var(C ). The data used to tet the ANN

is described in Table 12. The test set values for the variance of the mean were obtained by

averaging the variance of the mean of ten different sets of ten replications each. The

variance of the mean of each set of ten replications was calculated using equation 5-2.

Two uf the test sets described in Table 12 are provided in this dissertation. The simulation

results for the te',' set with 0 factors external is at Table B4 under the column Var(C ).

The simulation results for the test set with 4 factors external is at Table 13 under the

column Var(C).

The range of the variance of the mean was from 0.03 to 48.93 with an average

value over the 900 points of the entire test set of 1.64. After experimenting with various

combinations of distances to extend the scaling range on the outputs, the best combination

found was 10% of the range lower than the minimum value and 20% of the range higher

than the maximum value.

Each of the networks in this experiment were trained for 750 epochs. The

networks were evaluated after each epoch, and the one which performed best on the

training set was saved as the fin;Ai trained network. The number of epochs required to

reach the minimum training error for each of the training sets is shown in Table 15. The

average number of epochs required to reach the minimum training error was 424 epochs.

The results of training and testing the three networks on the variance of the mean

are shown in Table 15. From these results it is apparent that there is not much gained by

increasing the number of data points from training set F to either training set H or training
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set K. The percentage of the average MAE of the networks trained using these data sets

to the mid-range value of the variance of the mean test set is 40% (100*0.66/1.64). This

indicates that predicting the variance is a difficult problem. The variance predictions did

not suffer much when going from the training set to the testing set, indicating good

generalization ability. The results on the various subsets of the test set are shown in Table

16. In addition to the performance of the ANN metamodels, the result of one adc.tional

set of ten replications of direct simulation of the test set points are also provided in Tables

15 and 16. As can be seen in Tables 15 and 16, the ANN metamodels typically produced

better results than the ten replication of direct simulation. As the number of input

parameters that are external to the training set increases, the mean absolute error of the

ANN metamodels increase as shown in Table 16. In addition, the mean absolute error of

the estimate provided by ten replications of direct simulation on the test points also

increases as the number of input parameters increases. This indicates that the variance of

the mean is more difficult to predict for the points where the number of external input

parameter values is large.

Table 15 Results for Training and Entire Test Sets for Variance Prediction
Training Set Number of Epochs Until Training Entire Test

Best Trained ANN MAE Set MAE
(900 pts)

F 545 0.46 0.67
H 648 0.61 0.65
K 79 (0.53 0.66

Average 424 0.53 J 0.66

Direct Simulation - - .80
10 Replications _
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Table 16 MAE Results for Test Subsets for Variance Prediction
Training Set Test Set Number of Factors External

0 1 2 3 4

F 0.23 0.40 0.71 1.67 2.63
H 0.15 0.32 0.69 1.89 2.66
K 0.25 0.35 0.79 1.67 1.73

Average 0.21 0.35 0.73 1.75 2.34
Direct Simulation 0.27 0.44 0.76 1.43 9.63
of 10 Replications I I I

For comparing the difficulty of developing metamodels of the mean to developing

metamodels of the variance of the mean, the results for predicting the cost with the same

training sets that were used to predict the variance of the mean are shown in Table 17. As

can be seen by comparing the results from Table 15 and 17 there is much more variability

between the MAE of the different ANN metamodels for predicting cost than for predicting

variance. While the size of the error is larger for predicting cost than for predicting

variance the percentage of the error to the average value in the test set is much smaller for

the cost metamodels than for the variance of the mean metamodels. The average MAE of

the networks trained using these data sets to the average value of the cost test set is

5.3 1% (100*8.45/159). The results for the subsets of the test set shown in Table 18

indicate that the direct simulation of ten replications does better than the ANN

metamodels especially as the number of external parameters in the test set increase. This

reinforces the previous observations that ANN metamodels perform interpolation fairly

well but may not extrapolate very well.



119

Table 17 Results for Training and Entire Test Sets for Cost Prediction
Training Presentation Number of Epochs Until Training Entire Test Set

Set Method Best Trained ANN I Set MAE MAE (9 00 pts)
F PM 1 152 6.61 11.59

Averages
F PM 4 58 3.97 6.51

Replications

H PM 1 73 5.59 11.03
Averages

H PM 4 241 3.66 6.66
Replications

K PM 1 34( 2.80 6.41
Averages

K PM 4 11 4.78 8.49
Replications

Average 145.7 4.57 8.45
Direct 10 - - 0.86

Simulation Replications I

Table 18 MAE Results for Test Subsets for Cost Prediction
Training Presentation Test Set # of Factors External

Set Method
0 1 2 3 4

F PM 1 4.62 7.37 13.96 22.91 41.83
Averages

F PM 4 2.25 4.04 7.37 14.39 27.02
Replications

H PM 1 6.31 7.22 12.52 21.04 36.54
Averages

H PM 4 1.70 3.69 7.61 15.90 31.71
Replications

K PM 1 1.90 3.48 7.18 15.41 30.35
Averages

K PM 4 2.47 5.37 10.20 18.10 30.99
Replications

Average 3.21 5.20 9.81 17.96 33.07
Direct -0.72 (0.75 0.94 1.14 1.27

Simulation I
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5.5 Experiment 6: Comparing Prediction Intervals from Direct Simulation with
those Developed from ANN Approximations of the Computer Simulation

To evaluate the overall perfo-rmance of the neural network metamodels, the neural

network estimates of total cost and of the variance of total cost were combined using

equation 5-3 to form neural prediction intervals. Prediction intervals are similar to

confidence intervals but instead of predicting how often the true mean would fall in an

interval they predict how often an observation from the distribution would fall in the

interval. While prediction intervals are not used by the simulation community as often as

confidence intervals are used, they do provide an efficient means of comparing the

accuracy of the intervals developed by the ANN with the intervals developed by direct

simulation. The prediction intervals were constructed for each of the 900 test vectors

using the neural network predictions for the mean and variance of the mean. In addition

similar prediction intervals were constructed directly from 10 additional simulation

replications made at each test vector.

Prediction Interval '/2 ×Var()xl 0 = t 9 1_/xs (5-3)

(Note that s is the estimate of the standard deviation of cost.)

The simulation generated prediction intervals were compared with the neural

generated prediction intervals by using 100 additional simulation replications at each test

point and counting the number of these which fell into each interval. If the simulation

prediction interval or the neural prediction interval were perfect, then a number of

replications equal to the confidence level would fall within the interval, with equal

numbers falling on either side of the interval. For example, an 90% prediction interval (at=

0.05) should include 90 of the 100 replications with 5 replications falling above the

interval and 5 replications falling below the interval, for each test point.
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The results for the estimation of the variance of the mean cost for training sets F,

H and K are given in Table 14 and the results for the estimation of the mean cost for the

same training sets are given in Table 15. While the neural network prediction intervals

were not :curate as those generated by the simulation, in many instances they were

quite rc,, , able. The goodness of the prediction intervals was more dependent on the

quality of the neural prediction of total cost, than that of the prediction of variance for this

problem. The networks which did poorly for estimation of total cost, also made poor

prediction intervals, as might be expected. In general, these were the networks trained on

mean value, rather than individual replications. Therefore, it is critical that the networks

estimating both the mean value of the simulation and the variance be validated and verified

as strongly as possible, before proceeding to building prediction intervals. Table 19 shows

the results of the 100 replications averaged over the 144 points of the interpolative test set

(no external values) for 90%, 95% and 99% confidence levels.

Table 19 Prediction Interval Results for Test Set 0
Train Conf. ANN_-_Replications Neural Nets - Mean Simulation Intervals

Set Level Low Interval High Low Interval High Lw Interval High

F 90 1.4 83.0 15.6 39.9 57.4 2.7 5.6 88.9 5,5
F 95 0.4 91.3 8.3 29.3 69.5 1.2 2.7 94.3 3.0
F 99 0.0 98.9 1.1 10.8 89.1 0.1 0.6 98.8 0.7
H 90 4.6 82.3 13.1 64.0 33.8 2.2 5.6 88.9 5.5
H 95 2.1 90.6 7.3 55.8 43.0 1.2 2.7 94.3 3.0
H 99 0.2 98.6 1.2 34.6 65.2 0.2 0.6 98.8 0.7
K 90 12.1 83.2 4.7 3.0 89.2 7.8 5.6 88.9 5.5
K 95 6.0 91.5 2.5 1.2 95.6 3.2 2.7 94.3 3.0
K 99 0.7 99.0 0.3 0.1 99.7 0.2 0.6 98.8 0.7

Two further observations from Table 19 can be made. First, the neural network

intervals are not likely to be correctly centered. That is, they are biased upwards or

downwards. Since the prediction intervals themselves are symmetric, this is an effect of
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the prediction of the total cost estimate being too high or too low. Second, the neural

network prediction intervals improve as the confidence level increases (and the interval

widens). This happens because the estimates of the neural network for total cost, while

not always accurate, are close to the target. As the interval widens, the neural network

metamodel becomes very similar to the simulation itself for constructing interval estimates.

To examine the effect of extrapolation, Table 20 shows the results of training set F

where the network was trained on individual replications. Test sets 0 through 4 results are

shown for the network and for the simulation prediction interval at a 95% confidence

level. Of course, since the simulation is generated directly, there is no extrapolation.

However, the neural network estimates monotonically suffer as more extrapolation is

required. This highlights the danger of using metamodels for extrapolation, especially

when more than one parameter is being extrapolated. Similar results were obtained for

training sets H and K.

Table 20 95% Prediction Interval Results for Training Set F (Replications)
Test Neural Nets - Replications Simulation Intervals
Set Low Interval High Low Interval High

0 0.4 91.3 8.3 2.7 94.3 3.0
1 3.0 81.0 16.0 2.6 93.5 3.8
2 7.2 67.3 25.5 3.1 93.9 3.1
3 13.3 51.4 35.3 2.8 93.5 3.7
4 18.3 37.3 44.0 1.8 94.9 3.4

All 5.5 73.7 20.7 2.8 93.8 3.4
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5.6 Synopsis of Conclusions from Experiments 3 through 6

It has been shown that a combined expected value/variance neural network

metamodel approach can be successful for establishing prediction intervals of discrete

event simulations. For this problem, training on the individual replications yielded more

precise predictions of expected values at the expense of longer training times (the size of

the training set for replications is ten times the size of the training set for means). It

probably would be possible to improve the variance metamodel by using sets of

replications for estimating the variance at each point; i.e., instead of a single estimate of

variance based on ten replications, one could take ten estimates based on 100 replications

(10 sets of 10). This approach would be considerably more expensive in terms of training

data requirements. Another approach that would not require as much training data is the

technique used in cross validation with test sets. As an example, generate 11 observations

and form all 11 possible subsets of size ten. Then determine the variance of each subset

and take the average value of the 11 variances of the subsets and use the average value of

the variances as the training data. A third approach would be to use more than one sample

size when developing the variance of the mean estimates. For example, generate 10

observations, and form all possible subsets of size 2, 3, 4,..., 10. Calculate the sample

variance of the mean for each of the subsets and then determine the average variance of

the mean for all subsets of the same size. If the average variance of the mean is similar

regardless of how many observations are in the sample, then use all of the data with the

original input parameters. If the average variance of the mean is quite different as one

changes the size of the sample, then the ANN would require an additional input, the size

of the sample used to calculate the variance of the mean. While this study was promising

clearly more work needs to be done on the trade-offs of precision and computational

effort when using neural networks as simulation metamodels.
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In most cases the networks trained on averages performed much worse than their

replication counterparts. One conjecture as to why this happens is the effect of extreme

values. The calculated mean of the ten replications gives equal probability mass (0. 10) to

each replication. A replication representing an extrerne outcorne will strongly influence

the mean. The neural network does not necessarily min-iic rnean value beh-tvior. Gradient

descent (the backpropagation training algorithm) will move to the error surface location

which best suits the majority of the observations. The network may find weights which

better reflect the true mean by ignoring (or partly ignoring) the extrerne replication.

Certainly, replication training gives more information to the network, since none of the

simulation data is discarded. In fact it is an open research issue as to what neural

networks are attempting to learn when being trained on individual replications. One

interesting question to consider is whether networks trained on individual replications are

learning the mean, a trimmed mean, or the median.

An additional intriguing idea is to train separate networks to learn the quantiles of

simulation output rather than just the mean and variance of the mean. In this way a farridy

of ANN could be used to produce the distribution of the simulation output as opposed to

just producing the mean and variance of the simulation output. If it is possible to obtain

the distribution of the simulation output then it would be possible to capture the stochastic

nature of the simulation. This would be important if one were trying to replace a

computationally expensive module in a larger computer simulation in which the stochastic

behavior of the module is necessary for interaction with the rest of the larger simulation.
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5.7 Summary

Four experiments using a four input parameter version of the (s.S)

inventory simulation were examined in this chapter. The experiments included

determining the number of hidden nodes to use in predicting the cost of the

inventory system, predicting the mean cost of the inventory system, predicting the

variance of the mean cost of the inventory system and building prediction intervals

for the mean cost of the inventory system. The results of determining the number

of hidden nodes shows that there tends to be a pattern to the mean absolute error

of the test set as the number of hidden nodes in each of the two hidden layers is

increased. The pattern of the test set MAE is that it starts to decrease until hitting

a minimum value and then continues to increase. This might initially seem

counterintuitive since more learning capability is added to the ANN as the number

of hidden nodes is increased and so one might expect the error to continually

decrease. While the error for the training set does tend to continue to decrease as

the number of hidden nodes is increased the inherent danger in doing so is that the

network is memorizing the training set data and then does a poor job at

generalizing to points that it has not been trained on. Thus, the result of this

experiment shows that with too few hidden nodes the ANN doesn't have enough

learning power and that if it has too many hidden nodes the ANN can learn the

training data too well in a process typically termed overfitting the data. This result

indicates the need to have a procedure for finding the best number of hidden nodes

to use in developing an ANN metamodel of a computer simulation.

The remaining experiments show that ANN procedure extends quite easily

from two input parameters to four input parameters and as is shown visually is

-- -- --.. ,,.,-- .~ n n Nmmmmmm mmmmmmmm m M N
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Section 5.3.1 without much lost in terms of accuracy. Neural network metamodels

were built for both the mean cost and the variance of the mean cost. As was

observed in Chapter 4, the networks constructed using individual replications

typically produce better metamodels than those trained on averages. The ANN

metamodels of mean and variance are used to form prediction intervals, which are

compared to those formed by direct simulation on the test set.
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6.0 BASELINE ANN METAMODEL APPROACH

The ANN approach to approximating discrete event computer simulations,

developed as a result of the experiments conducted on the inventory simulation in

Chapters 4 and 5, is specified in this chapter. This is a necessary step in this fledgling area

of research since there is no one "right" approach to an approximation or estimation

problem using ANN.

6.1 Description of the Baseline ANN Metamodel Approach

The baseline ANN metamodel approach has three main phases. These phases are:

to decide upon and obtain simulation input and output data; to develop the ANN

metamodels; and to evaluate the effectiveness of the ANN metamodels in order to

determine whether additional da - needed.

6.1.1 Phase 1 of the Baseline ANN Metamodel Approach

To determine and obtain simulation input and output data, the following steps are

carried out in this phase of the metamodel approach. The user of the system should be

involved in this phase in as much as the selection of which inputs and outputs are

important depends on the user.

1. Identify the outputs of the simulation that are of interest.

2. Determine which controllable and uncontrollable inputs would have an effect on

the outputs of interest. Select the inputs to be used in building the metamodel.
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3. Determine the minimum and maximum values that are of interest for each

selected input.

4. Determine how many values between the minimum and maximum values for

each selected input are needed for developing the ANN metamodels. If it is only

necessary to establish a linear approximation of the relationship between the input

parameter and the output measure, then no additional points other than the minimum and

maximum values would be needed. If more complicated approximations are desired (e.g.,

second-order, third-order or higher) then additional values will have to be included.

5. Identify the values between the minimum and maximum values for each

selected input that are needed for testing the ANN metamodels.

6. Calculate the total number of points in the selected input parameter space, for

both training and testing the ANN metamodels, by determining the number of possible

combinations of input parameter values in the training set and the number of possible

combinations of the input parameter values in the testing sets.

7. Determine the desired precision of the outputs.

8. Estimate the number of replications needed to achieve the desired precision for

each point in the selected input parameter space.
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9. Calculate the total number of replications required to be run on the simulation

based on the total number of points in the selected input parameter space and the

estimated number of replications required for each point.

10. Estimate the time and computer memory requirements for making the

computer simulation runs. If the requirements are unreasonable, then repeat steps I

through 9 until they are reasonable.

11. Run the simulation to obtain the results for the training and testing sets.

12. Perform post-simulation processing to obtain sample averages and variances

for each point in the selected input parameter spaces for each of the desired outputs. This

step could be eliminated if comparisons between alternative points are not a requirement

and the only information desired is an estimate of the output measures for different input

parameter settings.

6.1.2 Phase H of the Baseline ANN Metamodel Approach

ANN metamodels for each of the desired outputs are developed in this phase of

the approach. If time, or computing resources are limited, then averages and sample

variances should be used as the target output. If accuracy of the metamodel is very

important, then the individual replications and sample variances should be used. If the

only information desired is an accurate tool for estimating the output measures for various

input parameter settings, then the individual replication information should be used. The

following steps are performed for each of the different output measures that are to be

approximated by a metamodel.
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1. Randomize the cider of the data in the training set so the different values of the

input parameters are spread evenly throughout the file of the training data.

2. Select the minimum and maximum values for scaling the inputs and outputs to

the ANN training package. A rule of thumb is to use 10% of the range less than the

minimum value of the training and testing sets and 10% of the range more than the

maximum value of the training and testing sets. In short, the values used for scaling

should be set to + 10% beyond the range of the training and testing sets.

3. Select an initial setting for the maximum number of epochs for learning, where

an epoch is defined as one pass through the training data. In this research the maximum

number of epochs varied from 50 to 5,000. Select the training tolerance small enough to

ensure the networks do not terminate prior to reaching the maximum numoer of runs.

4. Initialize the ANN training architecture as follows:

Input layer having one node for each input parameter.

Two hidden layers each with two nodes. If there is some reason to believe

that the relationships in the data are too complex to be learned with only two nodes in

each hidden layer then the initial number of hidden nodes could be increased.

Output layer having one node.

5. Perform "best net training" using standard backpropagatirn with a smoothing

factor. Best net training simply means that at the end of each epoch the network is

evaluated on the training set and the results of the evaluation are written tc a file. If the

training is being done on individual replications theni the testing could be done on the



131

average values of the training set to prevent unnecessary computations. At the conclusion

of training, the results file is examined to determine at which epoch the smallest mean

absolute error (MAE) occurred for the training set. Training to this epoch results in the

"best trained net." Compare the number of epochs to the "best trained net" to the

maximum number of epochs training termination criterion. If the two numbers are close,

then the network might benefit from additional training and so the maximum number of

epochs should be increased and this step should be repeated.

6. Increase the number of nodes in each hidden layer by one and return to Step 5.

Stop this process when no improvement is observed in the test set over previous

iterations. If the test set is very small, an alternative is to stop the process when no

improvement is observed over previous iterations of a weighted average of the training

and test sets mean absolute error.

7. Retrain the initial network in a "learning only" mode, (i.e., no data is written to

results files) until reaching the "best trained net" epoch at which time it is saved as the

"best trained net." This step is necessary because the weights after each epoch are not

stored. This step is much faster than the "learn and evaluate" portion of the training

conducted in Step 5.

6.1.3 Phase 11 of the Baseline ANN Metamodel Approach

To evaluate effectiveness of the ANN metamodels and to determine if additional

training data is needed, the following steps are taken in this phase for each of the different

output measures.
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1. Evaluate the resulting networks in terms of mean absolute error and maximum

absolute error for the training and testing sets. If any of these measures exceed the desired

performance, then additional training data will be required in order to make the ANN

model attain the desired accuracy.

2. Construct confidence intervals and/or prediction intervals using the prediction

for the mean and the prediction for the variance of the mean. The validity of the

prediction intervals can be checked by obtaining additional independent observations from

the simulation and observing the number of observations that fall to the left, inside, or to

the right of the prediction intervals.

3. Conduct non-parametric tests on the ranked observations of the simulation data

compared to the ANN predictions for both the training and testing sets. If the ANN

metamodels do not perform well in comparison to the direct simulation then additional

training data will be required.

6.2 Assumptions of the Baseline ANN Metamodel Approach

There are several assumptions that were made in developing the ANN approach to

approximating stochastic discrete event computer simulations. These assumptions are

listed below:

1. The simulation to be estimated is a terminating simulation.

2. The input parameters of interest are known.
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3. The region of the input parameter space over which predictions of the

simulation are desired is known.

4. The simulation output measures of interest are known.

5. The simulation output measures being approximated are end of run measures

for terminating simulations. In other words, the ANN developed using this approach do

not attempt to mimic the behavior of the simulation as it operates over time. The ANN

metamodels attempt to predict the end state of the simulation with regard to a particular

output measure.

6. The precision with which the ANN approximation of the simulation output is

needed is known.

7. The variances of the simulation output are not necessarily equal.

8. The simulation output is a symmetric random variable.

6.3 Limitations of the Baseline ANN Metamodel Approach

The limitations of the baseline ANN approach to approximating discrete event

computer simulations are discussed below:

1. The output provided by the ANN developed using this approach are

deterministic and cannot be used directly to produce stochastic results.
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2. In the regression approach to metamodeling it is possible to characterize the

accuracy of the regression estimate through confidence and prediction intervals.

Characterizing the accuracy of an ANN estimate for a particular input parameter setting is

not possible using this basic approach.

3. The metamodels developed using this approach only provide an estimate of the

variance at one particular number of replications of the computer simulation. If increased

accuracy is desired then the approach would have to be repeated with an increased number

of simulation replications. If an estimate of the variance for a different number of

simulation replications is desired then the approach would have to be repeated for that

particular number of simulation replications.

6.4 Justification of the Baseline ANN Metamodel Approach

The baseline ANN metamodel approach for discrete event computer simulations

was developed as a result of the experiments conducted on the inventory simulation in

Chapters 4 and 5. As such it is a first step in developing ANN approximation approaches

for computer simulations. Only the major elements of the approach are discussed here

since the rationale for the approach is discussed in Chapters 4 and 5.

The method of "best net training" described in Phase II is a variant of "stopped

training" which has been described as one of the true innovations to result from neural

network research.(1 39) The purpose of such non-convergent methods is to develop a

model with good generalization performance rather than to converge on a truly optimal

solution for the training data. Many alternative variations of the approach could have been
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used but it is important for the sake of future research to establish a benchmark for

comparison purposes.

The reason that a systematic heuristic approach for determining the number of

hidden nodes is used is that there is no known algorithm for determ-ining the optimal

number of hidden nodes to use in an ANN. If too few nodes are used then the

performance of the network is poor due to an inability to capture the training informnation.

If too many nodes are used then the danger exists that the network will just memorize the

training data and therefore not do well at generalizing to previously unseen data.

6.5 Summary

T'he baseline ANN metamodel approach to approximating discrete event computer

simulations is described in this chapter. The three phases of the baseline ANN metamodel

approach are presented in detail. The fi-st phase of the approach is to determine which

simulation input and output data is of interest, estimate the number of replications to

obtaining training and testing data, and then running the computer to obtain the simulati(

data. The second phase of the approach is to develop the ANN metamodels for each of

the desired outputs. The steps for setting up the initial architecture, for performing best

net training, for determining how many hidden nodes in each hidden layer should be used,

and for obtaining the weights for the final ANN metamodel are discussed in the second

phase of the approach. The final phase of the baseline ANN metamodel approach is to

evaluate the accuracy of the metamodel to determine if it is a satisfactory representation of

the computer simulation and ultimately of the actual system being simulated. The

assumptions, limitations and justification of the baseline ANN metamodel approach are

also discussed.
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7.0 DEMONSTRATION PROBLEM - AN EMERGENCY DEPARTMENT (ED)

SYSTEM

The ANN approach described in Chapter 6 is applied to a large complex system to

demonstrate its applicability to real world problems and situations. Due to the complex

dynamics and interactions of inputs, activities and outputs of a typical hospital emergency

department (ED), some researchers and practitioners have turned to discrete event

stochastic simulation as a tool for examining the emergency room system. A simulation

allows various schedule, layout, staffing, procedure and equipment alterations to be tried

so that optimal control strategies for the ED can be developed without disrupting vital

care providing services. Previous work in simulating the emergency department includes

Weissberg (140) and Saunders, Makens and Leblanc.(14 1)

7.1 Description of the ED System

The emergency department on which the simulation work in this chapter is based is

a 750 bed medical center in Pittsburgh, Pennsylvania. The hospital offers comprehensive

medical and surgical services and the emergency department services over 4,200 patients

per month. The computer simulation used in this dissertation was built by a team of

students and faculty from the Industrial Engineering department of the University of

Pittsburgh.

7.2 Computer Simulation of ED System

The emergency department simulation used in this research is based on the

emergency department of a large teaching hospital in Pittsburgh, Pennsylvania. The
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emergency department is modeled with the SIMAN simulation language on an IBM PC

machine. The simulation is contained in two parts: the "model frame" and the "experiment

frame". The model frame contains all the basic constructs used to represent the actual ED

system. Patient related services and locations in the ED are represented in the model

frame in separate sections called stations. These stations include such areas as

registration, triage, treatment rooms, x-ray, etc. Building the simulation model frame in

this modular manner allows the simulation to be more easily verified and validated, and if

necessary, to be modified or expanded. The experiment frame contains data such as

arrival times, service times, and patient flow patterns as well as the constructs for

obtaining output data from the simulation. As a result the user can perform different

experiments with the simulation without actually changing the structure of the system as

represented in the model frame. The data related changes for the input parameters of the

simulation are made only to the experimental frame.

The simulation consists of the following: the ED physical facilities and layout,

servers (e.g., physicians and nurses), patients, and procedures for representing patient

arrivals, patient activities and treatments, server shift changes and server breaks. The

simulation is operated for a 24 hour warm-up period, beginning at 7:30 in the morning,

before statistics are taken for the second 24 hour period at which time the replication of

the simulation is terminated. Since the emergency department nearly empties out at this

time it is appropriate to use the terminating simulation approach for this situation. In

order to make development of simulation of the ED tractable, certain simplifying, but

realistic, assumptions were necessary. These assumptions along with the simulation

constructs are discussed below.
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7.2.1 Physical Layout of the ED

The physical locations of the ED consist of 18 treatment rooms (two of which

have two beds while the rest have one bed each), a waiting room, a registration desk, a

triage room, an x-ray area, and separate stations for the unit secretary, nurses, nurses aides

and physicians. The distances and corresponding transit times between each of the

locations in the ED are explicitly represented in the computer simulation.

7.2.2 Patient Representation in the ED

Patients are represented as entities that flow through the simulation model.

Although there are endless types of patients that visit the ED, it is possible to categorize

the patients into three modes of arrival - helicopter, ambulance/medic, and walk-in which

includes auto, bus, and jitneys. Patient arrival distributions for two hour blocks of time

throughout the day were obtained by fitting actual hospital data for a two month period.

The proportion of patient arrivals by each mode of arrival is determined by a discrete

probability mass function which is fixed for the 24 hour period.

For each arriving patient, an acuity level is assigned: emergent, urgent, or non-

urgent. The probability cf a patient having a particular acuity level is determined by a

fixed discrete probability mass function which depends on the patient's mode of arrival.

An additional categorization of patients is the type of care to be provided to the patient:

simultaneous care, where service is provided by multiple servers at the same time;

sequential care, where the patient is treated by only one server at a time; and observational

care, where nurses provide very little medical treatment other than to periodically check

the patient's condition. A final categorization is on the basis of patient disposition: left

without treatment; treated and released; admitted to intensive care; admitted to general
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care; and departed for morgue. Both the type of care provided and patient disposition are

determined by a discrete probability distribution based on the acuity level of the patient.

Some patients being admitted to the hospital arrive at the ED rather than the

patient admitting area. These direct admit patients (i.e., destination is admittance)

regardless of mode of arrival or level of acuity, have their own distinct flow through the

ED: they go to registration and either depart the ED immediately and go to the admittance

section of the hospital or are put in an ED treatment room, receive observational care and

then depart the ED and go to the hospital admittance section.

All patients whose initial destinations are not hospital admittance use the following

paths. The flow of helicopter and ambulance patients, from entry to the ED until arrival at

the treatment room, is to be assigned a treatment room and a nurse, to be transported to

the treatment room, and for the registration clerk to obtain registration information in the

treatment room. For walk-in patients, the flow from entry to the ED until arrival at the

treatment room depends on the acuity of the patient. If the walk-in patient's acuity level is

emergent, then after a short time at the triage station, the patient follows the path

described above for helicopter and ambulance patients. If the walk-in patient's acuity level

is not emergent then the patient goes to registration and then triage, waits (if necessary)

for a treatment roomr, is assigned a treatment room and a nurse, and finally is transported

to the treatment room. Once the patient arrives in the treatment room, the patient flow no

longer depends on mode of arrival, but depends on acuity level, x-ray requirements and

laboratory requirements.
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There are three categories of laboratory and x-ray requirements: none; routine; and

extensive. A category of lab requirements and a category of x-ray requirements are

assigned to each patient via discrete probability mass functions depending on the patient's

acuity level.

After receiving all necessary treatment the patient departs the ED for a destination

determined by a discrete probability distribution which depends on the patient's acuity

level. However, for the destinations of intensive care and general care, patients have to

remain in the ED if a bed is not available. The time for a bed to become available is based

on an exponential probability distribution whose mean is determined by the patient's acuity

level. A simplified depiction uf the flow of patients through the ED is shown in Figure 46.

Arrival Random Variable
(2 hour increments.)

1w Service Time
Random Variable

"•" Bed Wait Time

l Random Variable

Figure 46 Patient Flow Through the ED
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7.2.3 Workers in the ED

The facilities and staff are divided into two categories, those that provide service

from a fixed station (e.g., treatment rooms and secretaries) and those that travel

throughout the ED (e.g., physicians and nurses). Based on these distinctions, the

stationary servers are modeled as resources and the mobile servers are modeled as

transporters in the SIMAN simulation. This allows the mobile servers to move freely

throughout the ED as well as to transport patients from one location to another. There

are three types of physicians: attending; third year residents; and first or second year

residents. There are six types of nurses: charge nurse; triage nurse; emergent patient area

nurse; urgent patient area nurse; non-urgent patient area nurse and nurses aide. Service

times of physicians and nurses and clerks are modeled as exponential distributions with

means dependent on the acuity level and care type of the patient. Service times of

registration and admittance personnel are modeled as uniform distributions with ranges

dependent on arrival mode and acuity level of the patient. Server breaks are combined

with lunches to give each worker the unofficial standard 45 minute lunch/dinner break

rather than the officially prescribed 30 minute lunch break and two ten minute breaks.

7.2.4 Validation of the Simulation

Using the CINEMA companion to SIMAN, an animation of the ED simulation

was developed and shown to hospital personnel to obtain face validation of the computer

simulation from the system operators. In addition, output data from the simulation was

compared with observed data from the ED system. The quantity of patients and time in

the system for different patient categories were extracted from the hospital databases for

two months, and estimates were made of mean values. These were compared to the

estimates from the simulation model, where the simulation results were the averages of ten
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replications of 61, days or two months each. The comparisons are summarized in Table

21. These results show that the computer simulation accurately represents the actual ED.

Table 21 Simulation Com arison with Actual ED Database Records

Patient Number in Number in Database Average Simulation Average
Type Database Simulation System Time (Min.) System Time (Min.)

Emergent 415 451 159 164
Urgent 4091 4166 176 172
Non Urgent 3963 3959 116 123
Total 8469 8576 147 149

7.3 Demonstration of the Baseline ANN Metamodel Approach

In an environment such as the emergency department, where changes in the system

occur frequently and with little warning, tactical decisions need to be made quickly. The

simulation that was built to examine alternative solutions to problems in the emergency

department could not be run quickly enough to provide assistance to the ED management.

Thus a neural network metamodel of the ED simulation was constructed to demonstrate

the usefulness of the metamodel approach. The following discussion demonstrates the

application of the baseline ANN metamodel approach to the ED system.

7.3.1 Phase I of the Baseline ANN Metamodel Approach

The first phase of the baseline ANN metamodel approach requires close interaction

between the developer of the ANN metamodel and the operator of the system under

study. In this case the management of the ED wanted the simulation to be able to provide

a reliable estimate of the average time a patient spends in the ED, from arrival until

departure. Other simulation outputs of interest to ED personnel included, maximum time
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patients spent in the ED, average time patients spent waiting for service, and utilization of

rates of the rooms and staff. The ED staff were also interested in the patient related

statistics being provided by each acuity type. To keep the demonstration simple, only the

most important output of average patient time in the ED was used.

Many different inputs to the simulation were described in Section 7.2. These

inputs range from arrival distributions, to percentages of patients of each acuity level, to

time to complete various services, to numbers of staff personnel on duty, to the time and

duration of staff breaks. The selection of which inputs should be included in the

metamodel is guided by the practical application of the metamodel. For this case, the ED

staff wanted to understand the effect of changing four specific input variables which were

outside of the direct control of the ED personnel but were within the control of other

sections of the hospital. The four input parameters of the emergency department

simulation examined in this research were the means of an exponential random variable for

intensive care bed wait time, general care bed wait time, laboratory service time, and x-ray

service time. As was described in Section 7.2, when patients leave the ED they might end

up waiting in the ED for a period of time for a bed within the hospital to become available;

i.e., either intensive care bed wait time or general care bed wait time.

For each of the input parameters, the initial values of these parameters in t'lj

simulation were obtained from a series of regression models of the hospital's actual patient

times in the emergency department. The initial values of these parameters were selected

as one of the training points for the neural networks. To obtain minimum and maximum

values for the variables, each of the parameters was permitted to take on values that were

+100% of the initial settings in the simulation. While additional values could have been
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selected for developing the ANN metamodel of the computer simulation, the three values

per input parameter are enough to examine the relationship between the input variables

and the output measure. Since each of the four parameters had three possible values, the

total number of points in the training set was 81 data points. The plot of the training

points for each of the pairwise combinations of input parameters is shown in Figure 47.

The actual values of the input parameters and the response provided by ten replications uf

the simulation in terms of the mean and the variance of the mean time in the system is

provided in Table C1. The mean and the variance of the mean in Table Cl are determined

using equations 7-1 and 7-2. The number of replications was selected as ten since this

typically produced variances that were relatively small. The data was shuffled in the order

that was used to train the ANN.

In order to evaluate the generalization ability of the ANN, 80 test points were

selected from the region internal to the training set. The test points from a pairwise

comparison viewpoint are shown in Figure 48. The actual values of the input parameters

for the test set and the response provided by 100 replications of the simulation are shown

in Table C2. The mean and the variance of the mean in Table Cl are determined using

equations 7-3 and 7-4. It should be noted that equation 7-3 is actually calculating the

mean of ten averages of different sets of ten replications which is th, --',ve as calculating

the mean of the 100 replications. However, equation 7-4 is the mean of ten variances of

different sets of ten replications which is not the same as the variance of 100 replications.

The number of replications was chosen as 100 for the dissertation work however, in actual

application it would have been adequate to have ten replications for the test set. To

provide a comparison of how well direct simulation performs compared to the ANN

metamodels, an additional 20 replications were made and split into two groups of ten
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replications each. Estimates of the memory requirements and the time to run the

simulation for 10 replications of 81 training points and 120 replications of 80 testing

points indicated that this was a feasible task.
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Figure 47 Training Set Values for Emergency Department Simulation
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7.3.2 Phase 2 of the Baseline ANN Metamodel Approach

In this phase, all three types of ANN that could be developed using the Baseline

ANN metamodel approach are demonstrated. The first two ANN estimate the average

time a patient spends in the emergency department: one using the individual replications

and one using the average values of the simulation. The third ANN estimates the variance

of the average time a patient spends in the emergency department.
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The training data is shuffled to improve the learning process as ',hown in Table C l.

The minimum and maximum values for the output measures used to perform the scaling

for ANN training were selected to be +10% of the range beyond the minimum and

maximum values of the training and testing sets, respectively. The training tolerance was

set at 0.002 to ensure that the training would not ten , reaching the training

tolerance. The maximum number of epochs or runs through the training set was initially

set at 750. The initial BrainMaker files used for training for the individual replications,

averages, and variances are provided in Figures Cl, C3 and C5, respectively.

The architecture used for the ANN initially was four input nodes, two hidden

layers of two nodes each, and one output node. This network was trained using the "best

net training" technique and the best network for two nodes in each hidden layer was

evaluated on the test set. Another node was added to each hidden layer and the process

was repeated. The number of epochs to reach the best network was compared to the

maximum number of epochs permitted. For all three networks the best network was close

to the maximum number of epochs. Thus, the maximum number of epochs was increased

and training repeated with the maximum number of epochs being 1,000 for the ANN

predicting the mean time in the ED and 5,000 for the ANN predicting the variance of the

mean time in the ED. For these values of the maximum number of epochs, the networks

found their best nets at 870, 259, and 4,853 for the networks trained on individual

replications, averages and variances, respectively.

The results for the networks being used to predict mean time in the ED are shown

in Figure 49. As can be seen in Figure 49 four hidden nodes per layer results in the lowest

MAE on the test set. Ordinarily, the baseline ANN metamodeling approach would have
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stopped the search for the best number of nodes in the hidden layers at five nodes since

that is where the networks begin to do worse on the test set. For demonstration purposes

the process was continued, for selected values out to 22 hidden nodes. As Figure 49

shows, in this case the procedure appears to have selected the best number of hidden

nodes. The same process was performed for the network predicting the variance of the

mean time in the ED with the result being that the selected number of hidden nodes was

seven. The final trained networks for the networks trained on individual replications,

averages, and variances are provided in Figures C2, C4 and C6, respectively.

I Averages (PM 1) 0 Replications (PM 4)

10.. Best Number of Nodes.9 9

7 --06

3

2

0 I I

0 5 10 15 20 25

Number of Nodes per Hidden Layer

Figure 49 Hidden Nodes for Predicting Mean Time in ED for the Test Set

7.3.3 Phase 3 of the Baseline ANN Metamodel Approach

The results of the ANN training and testing are examined in the third phase of the

baseline ANN metamodel approach in order to determine if additional training data is

required. The results of testing the ANN for the networks predicting the mean and the

networks predicting the variance of the mean are provided in Tables C3 and C4,
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respectively. The summary results in terms of mean absolute error and maximum error

observed for the each of the ANN compared to the results of 100 replications of the

simulation are provide in Tables 22 and 23. Table 22 provides the results for all 80 test

points. Table 23 provides the results for 78 of the test points where the points with the

two worst errors have been removed. From Table 23 it can be seen that the mean

absolute errors of the networks predicting the mean time in the ED, of 2.13 and 1.81, are

very low in comparison to the average time in the ED which ranged in value from 115 to

180. The maximum errors of the same networks, 9.4 and 9.2 are also quite small. The

results are even more impressive when the two points with the worst testing errors are

removed as is shown in Table 23. The results for the variance predictions are not as

impressive. While the values for the variance of the test set ranged from 10 to 98, the

MAE was 8.6 and the maximum error was 95 as can be seen in Table 22. If the two worst

points are removed, the MAE drops to 6.7 and the maximum error drops to a more

respectable level of 33.1. This indicates that predicting the variance of the mean is much

more difficult than predicting the mean time in the ED.

Also shown in Tables 22 and 23 are the results of using two different sets of direct

simulation of the test set, each of size ten replications, to try to predict the "true" answers

obtained from direct simulation of 100 replications. Although this would not ordinarily be

done in the baseline ANN metamodel approach, the results are instructive. The ANN

outperform the ten replication direct simulation in every case except for the maximum

error of the variance when considering all 80 test points.
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TABLE 22 Corn arisons To "True" ED Simulation (100 Replications)
MAE Maximum Error

Estimation Data Used Mean Time Var (T) Mean Time Var (T)
Method In ED (T) In ED (T)

Direct Simulation Set A - 10 Replications 4.33 14.16 13.03 69.90
Direct Simulation Set B - 10 Replications 4.22 19.91 11.21 74.80
Direct Simulation Average MAE of Sets A&B 4.28 17.03 12.12 72.35

ANN Averages (PM 1) 2.13 9.40
ANN Individual Replications (PM 4) 1.81 9.20
ANN Variance (T) 1 8.6 95.0

TABLE 23 Comparisons To "True" ED Simulation (100 Replications) When Two
Worst Errors Are Removed

MAE Maximum Error
Estimation Data Used Mean Time Var (T) Mean Time Var (T)

Method In ED (T) In ED (T)
Direct Simulation Set A - 10 Replications 4.02 12.42 11.70 61.2
Direct Simulation Set B - 10 Replications 3.94 11.35 10.40 47.0
Direct Simulation Average MAE of Sets A&B 3.98 11.88 11.05 54.1

ANN Averages (PM 1) 1.92 6.80
ANN Individual Replications (PM 4) 1.60 4.80
ANN Variance (T) i 6.7 33.1

In addition to examining the summary statistics, Figures 50 and 51 provide a visual

comparison of the ANN to the "true" answers of 100 replication of computer simulation at

the test points. Figures 50a through 50d compare the test set predictions for the network

trained on the individual replications for each of the input variables. Figures 50a through

50d all indicate that the ANN are able to closely approximate the mean time in the ED as

determined by the computer simulation. Figures 51a through 51d compare the test set

predictions for the network trained on the variances for each of the input variables.

Figures 51 a through 51 d indicate that while the variance is a more difficult function to

estimate, the ANN does a fairly good job of predicting the variance computer
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simulation. Note for the neural network, the test set predictions are an interpolation task,

but for direct simulation, the test set is input and replicated as any set of inputs would be.
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Figure 50c Mean ED Time Results of Neural Network and Simulation for Test Set
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Figure 51a Variance Results of Neural Network and Simulation for Test Set
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Figure 51c Variance Results of Neural Network and Simulation for Test Set
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Figure Sid Variance Results of Neural Network and Simulation for Test Set

One of the primary uses of simulation is the development of confidence

intervals for the output variables. A comparison of the intervals generated through the

neural network metamodel and by direct simulation is a fundamental test of the

functionality of the metamodel approach. Confidence intervals are used to estimate the
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range within which one expects the mean to fall. In regression, prediction intervals are

used to estimate the range within which an individual observation would be expected to

fall. In the simulation and statistics fields tolerance intervals are used rather than

prediction intervals since the mean and variance are unknown. In regression the mean and

variance are assumed to be known when in fact they are not truly known.

Since ANN are also metamodels of the computer simulation, it is appropriate to

use prediction intervals for ANN. For comparison purposes prediction intervals are also

constructed in this research for the computer simulation output. Prediction intervals for

confidence factors of 80%, 90%, 95% and 99% were generated for the test set using the

first set of ten extra replications of the simulation and the two parallel neural metamodels

(one for expected time and the other for variance). Table 24 shows the comparison of

these intervals by the number of 100 separate simulation replications which fell within the

interval, fell on the low side of the interval and fell on the high side of the interval. Table

24 shows that the neural network was very accurate in terms of the appropriate number of

replications falling within the intervals, and the neural network trained on individual

replications was slightly more precise than that trained on means. In fact, for the 80% and

90% intervals the ANN did too well, in that the number falling in the interval was larger

than expected. For the 95% and 99% intervals the ANN were closer to the desired levels

than the intervals developed using direct simulation data. What this implies is the ANN

are too accurate at the 80% and 90% level, to be characterized as being generated by ten

replications and that a more appropriate number of replications to enter the t-table for the

ANN would be some number larger than ten.
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All the intervals in Table 24 do not reflect the symmetry expected in prediction

intervals, that is all intervals showed a marked differential in those observations on the

high side of the interval versus those on the low side of the interval. An examination of

the simulation output from those 100 replications show a positive skewness. This is not

unexpected since time in the ED has a definite lower bound in that the time cannot be

smaller than zero, but in some cases could be quite long. This highlights the need for

research into using the data from the large test set to build empirical e-tables that would be

used in the same way the standard t-table is currently used.

Table 24 Prediction Interval Results for Test Set

Conf. Neural Net - Replications Neural Net - Mean Simulation Intervals
Level Low Intervall High Low Interval High Low Interval High

80 5.0 85.9 9.1 4.8 85.8 9.4 8.6 79.2 12.3
90 1.1 93.6 5.3 0.9 93.4 5.7 3.4 88.3 8.3

95 0.2 96.6 3.2 0.2 96.5 3.4 1.4 92.6 6.0
99 0.0 98.8 1.2 0.0 98.7 1.3 0.2 97.2 2.6

The drawback to this procedure is that it still requires the assumption of symmetry

of the output data. In cases where the data is asymmetrical it may be possible to construct

prediction intervals using order statistics. For instance, instead of training neural networks

on the mean and variance which are then used to construct the prediction intervals, it may

be possible to train neural networks on the smallest and largest order statistics for each

point in the simulation training data. For data with ten replications at each point, the

intervals so obtained would be interpreted as 81.82% prediction intervals. (One would

expect 1/11 future observations to be smaller than the first order statistic of a sample and

1/11 future observations to be larger than the last order statistic of a sample, if the data
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comes from a continuous distribution. This leaves 9/11 future observations to fall

between the first and last order statistics.)

On the basis of these results of the summary statistics of MAE and maximum

error, the graphical comparison over the range of test set values for each of the input

parameters, and the prediction intervals it appears that there is no requirement to obtain

additional training data.

7.4 Results of ED System Demonstration

As can be seen from Table 22, the ANN using individual replications performs

better than the ANN trained on averages which collaborates the observations from the

experiments performed on the inventory simulation. In addition, the ANN metamodels

produced better results when trying to predict the "true" mean time in the system and the

variance of the mean time in the system than direct simulation of 10 replications. The

conclusion to be drawn from these results is that rather than perform direct simulation for

various additional combinations of the simulation input parameters, the ANN metamodels

could be used to give more accurate estimates of the average patient time in the system

without making any additional runs of the computer simulation.

As Figures 50 and 51 indicate, the neural network did extremely well on

generalizing its training to the test set. The expected value of time in the system was an

easier problem to learn, and therefore predictions are more accurate than for the variance.

Variance predictions could probably be improved by training the variance neural network

metamodel on sets of replications, i.e., use ten sets, of ten replications each, to develop ten
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different variance values for each input vector. This of course would also ilciease the

amount of work to develop the neural network metamodel since 100 replications, instead

of ten replications, would be required at each training and testing point.

7.5 Summary

This chapter contains the results of applying the baseline ANN metamodel

approach to a demonstration problem. The demonstration problem is based on a

computer simulation of an emergency department. The computer simulation is described

in terms of the physical layout, flow of patients, and workers in the emergency

department. The computer simulation is shown to be a valid representation of the

emergency department. The input parameters of concern were the intensive care bed wait

time, general care bed wait time, laboratory service time, and X-ray service time. The

output measure of interest was the time that patients spent in the emergency department.

A total of 81 training points and 80 testing points were selected. The baseline ANN

metamodel procedure was followed in developing ANN metamodels of the mean time in

the ED using both individual replications and average values. An additional ANN

metamodel was constructed to predict the variance of the mean time in the ED. The

results of following the baseline ANN training procedure were that the ANN predicting

mean time in the ED used four hidden nodes in each of two hidden layers and the ANN

predicting the variance of the mean time in the ED used seven hidden nodes in each of two

hidden layers. The ANN metamodels as well as two different sets of ten replications of

direct simulation of the test set were compared to the "true" response of 100 replications

of direct simulation. The results indicated that the ANN metamodels were better

predictors than ten replications of direct simulation for both the mean time in the ED and
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the variance of the mean time in the ED as shown in Tables 22 and 23.. This should not

be taken as a suggestion that the ANN metamodels are performing better than the

computer simulation. The only conclusion that should be inferred from these results is

that the ANN metamodel appears to be more accurate on the test set than ten replications

of the computer simulation. Additionally, the metamodels of the mean time in the ED and

the variance of the mean time in the ED were combined to develop prediction intervals.

The ANN and direct simulation prediction intervals were both skewed in that more of the

100 observations at each testing point fell to the right than fell to the left of the prediction

interval. This observation is not unexpected since time in system data does tend to be

skewed to the right since there is a definite lower bound of zero. This observation

highlights the need for researching non-paraimetric methods of constructing confidence

and predictions intervals for metamodels. This chapter has demonstrated the application

of the baseline ANN metamodel approach and shows how the approach can be beneficial

to the simulation of real world systems.
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8.0 SUMMARY AND CONCLUSIONS

The baseline ANN metamodel approach to approximating discrete event computer

simulations has been demonstrated in this research to be a viable and effective way to

develop accurate metamodels of computer simulations.

8.1 The Baseline ANN Metamodel Approach

The experiments discussed in Chapters 4 and 5 on the inventory computer

simulation were used to develop and refine the baseline ANN metamodel approach. The

specific steps entailed in the approach are provided in detail in Chapter 6. The baseline

approach involves using a backpropagation trained artificial neural network to learn the

relationship between the simulation inputs and output. The approach consists of three

phases. The first phase is to determine what simulation information is of interest in terms

of the inputs and outputs of the simulation, to estimate the time required to obtain the

simulation information and to obtain the information by running the computer simulation.

Training and testing data are obtained from the first phase. The second phase is to

develop a neural network approximation of the computer simulation using the data

obtained from the first phase as training examples to be learned by a backpropagation

trained, full connected, feedforward artificial neural network. The specific form of

training that is used is called "best net training." The third phase is to evaluate the results

of the trained ANN to determine if additional simulation data is required. The baseline

ANN metamodel approach was applied to a large emergency department simulation and

the results are provided in Chapter 7 to demonstrate the application of the approach on a

real world problem.
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8.2 The Performance of the Baseline ANN Metamodel Approach

The results of the (s,S) inventory development problem showed that in terms of

accuracy ANN metamodels outperform regression metamodels of the type typically used

in response surface methods. The results of this research also show that it is better to use

separate networks for different outputs than to have a combined network. In addition, it

was shown that networks trained on the individual replication output data had better

generalization performance than networks trained on just the averages of the simulation

output. As was shown in Chapter 7, the baseline ANN metamodel approach can do well

at approximating a computer simulation. In fact, for the demonstration problem, the ANN

metamodel trained on 81 data points each with ten replications was able to outperform

direct simulation of ten replications on 80 additional test points which were not included in

the training set.

It must be noted that neural networks and the other metamodeling techniques

commonly used are deterministic. The stochastic aspect of the simulation is lost, however,

the metamodel is much faster in operation than the simulation. Therefore, while possibly

losing precision when moving from the simulation to a metamodel, the user also loses the

rich stochastic framework of the simulation. Surrogates for the stochastic elements, such

as expected value, moments and percentiles, must be used in deterministic metamodels.

Thus the tradeoffs involve imprecision and simplification for increased speed.

One disadvantage of the ANN metamodel is that it is even more of a "black box"

than the original computer simulation. While sensitivity analysis can be performed using

the ANN metamodel, it does not have the advantage of the convenient interpretation of

the coefficients found in regression metamodels.
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8.3 Major Contributions of the Dissertation

The major contribution of this dissertation is the development of a baseline

approach for developing ANN metamodels of computer simulations. This baseline

approach can be used by other researchers for comparison purposes when developing their

own ANN metamodel approaches. This contribution was needed in the field of artificial

neural networks because there are many different existing and emerging ANN procedures

for performing approximation and estimation tasks. Another specific contribution is the

determination that it is best when approximating stochastic computer simulations to use

the "noisy" individual replications rather than the "quiet" average values. While the results

of this research indicate that ANN are appropriate for use as metamodels of stochastic

computer simulations, this research has identified many areas that require additional work

and experimentation to take proper advantage of ANN as metamodels.

8.4 Future Research Directions

There are many new research issues that have arisen as a result of the experiments

and work performed for this dissertation. The major areas of future research work are

divided into three categories: improvements on the baseline ANN metamodel approach,

extensions of the approach, and specific applications or uses of the approach.

8.4.1 Improvements of the Baseline ANN Metamodel Approach

A major area of research is in experimental design for neural networks as

metamodels of computer simulations. The need for research into experimental design
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considerations exists for all types of metamodels.( 142) The most critical need is for designs

that take into consideration both the development (i.e., training) and the evaluation (i.e.,

testing and validation) of metamodels. This becomes even more critical if the metamodels

are to be constructed using a training set for adjusting the weights and one test set for

determining when to stop training and a second test set for evaluation of the generalization

ability of the metamodel. Work should build on the research performed using traditional

designs from statistics and response surface methods and also those proposed by Taguchi.

A new procedure that could improve the performance of the ANN metamodel

approach is ensemble networks.(1 43) The basic idea is to build several different networks

and take the average of their output in order to build a more robust overall network

metamodel. This procedure was examined briefly in this research, but is not reported in

this document due to it being outside the scope of this research. One idea that was

considered in the work supporting this research was to combine the outputs of the

networks trained on the different subsets of the training set discussed in Chapters 4 and 5.

Other approaches could be to train different networks on different training parameters, on

different initial weights, or on different orderings of the training data.

Another area of potential research where success has been achieved with

regression metamodels used in RSM is the use of common random numbers and other

variance reduction techniques. In this research, all of the simulation data was generated as

independent observations for both the training and testing data.

Other research is needed to examine various iterative approaches for developing

improvements beyond the baseline ANN metamodeling approach. For instance, it might



164

make more efficient use of the computer simulation to start with small training and testing

sets, in terms of replications, and build ANN metamodels to use in performing factor

screening to eliminate those input factors that do not appear to make much of a difference

on the simulation output. After eliminating the irrelevant factors the baseline approach

could be used on the remaining factors with a substantial savings in total computer

simulation runs. Another issue that could be addressed using iterative methods, is to

determine what steps should be taken, if any, after developing an ANN and evaluating it

on the test set, to improve the ANN. Possible steps would include determining the regions

of the input space where the ANN is performing poorly and then deciding on the

appropriate corrective action such as obtaining more data points for training or more

replications for data points already in the training set.

Research is also needed on the use of extreme values observed from the

simulation. For instance in the hospital simulation one of the average output values for a

particular combination of the input training parameters, was much larger than all of the

other average output values. The research issue would be to determine if such values

should be included in the training set.

Another research issue that needs to be examined is a comparison between the

confidence intervals obtained using metamodels of the mean and variance versus the

confidence intervals obtained using metamodels derived from the lower and upper

confidence limits of each point in the input parameter training space as was done in

Hurrion's work.(76)
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Finally, another major area for future research is examining faster training

procedures and alternative types of neural networks that have been developed since the

introduction of backpropagation. Networks such as RPROP and radial basis function

(RBF) networks are two such candidates.

8.4.2 Extensions of the Baseline ANN Metamodel Approach

One area of research interest is to extend the application of the baseline ANN

metamodel approach to predictions over time as opposed to terminal values or values

averaged over the length of the simulation run.

A second extension of the ANN approximation approach is to model non-

terminating simulations. Some of the new approaches such as infinitesimal perturbation

analysis which use one long single run of the simulation rather than many replications may

be a useful way to obtain data for training a neural network metamodel of a simulation.

A third area for future extensions of the baseline ANN metamodel is to develop

empirical confidence and prediction intervals rather than intervals based on the Normal or

t-tables.

One of the drawbacks of the approach developed in this research is that it

transforms a stochastic computer simulation into a deterministic ANN metamodel. In

some applications, such as modules within a very large computer simulation, the stochastic

nature of the module is esser ,ial to the proper operation of the computer simulation.

Thus, another area of research is to build a family of ANN that would attempt to capture

more than just the mean and variance of the output of the simulation. This family of ANN
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would have n members, one for each of the n replications, and each member would be

trained on just one of the order statistics for all points in the input training space. In this

way the entire cumulative distribution function for each point in the input parameter space

could be estimated. Using this estimated cumulative distribution function and the inverse

transform method it would be possible to replace a large module in a computer simulation

with a stochastic rather than a deterministic approximation. This is an important

consideration since models are being used to do more than analysis. Simulation models

are being used for training in industry and to support large scale exercises in the military.

Future generations of such simulations which will incorporate advanced features such as

virtual reality will also need ways of aggregating models that are appropriately

stochastic.(144)

8.4.3 Applications of the Baseline ANN Metamodel Approach

One application of ANN metamodels that needs additional research is in response

surface methods. Based on the work in this research ANN trained for a very short time,

say only a few epochs, may very well provide an adequate estimate to perform response

surface optimization. Response surface methods estimate the shape of the response

surface in a small region and move away from that region toward improvement in the

measure of interest. Additional data is then gathered to estimate the surface in the new

region and the process is repeated until there is evidence that an optimum has been

reached. Based on the results of this research which found the errors of the training and

testing sets decreasing rapidly after one or two epochs it may be possible for ANN to

replace first-order regressions in finding the direction of improvement in response surface

methods. However, first-order regressions have the advantage of knowing the direction

of improvement by just calculating the derivative of the first-order regression equation. A
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more suitable use of ANN in traditional RSM would probably be as a replacement to the

second-order regressions which are used to determine if the RSM procedure has reached

the optimum and should terminate. In this portion of the RSM procedure, accuracy is

more important than speed. The results of this research have shown ANN metamodels

can be more accurate than second- order regression metamodels and therefore have the

potential for improving the termination portion of response surface methods. Additional

research is needed that compares ANN and regression metamodels in traditional response

surface methods.

Another area of research is the application of using neural networks trained on

computer simulations to "feed" non-gradient based optimization procedures such as

genetic algorithms and simulated annealing. In these approaches, the only thing needed by

the optimization procedure is an objective function or "fitness function" that informs the

optimization procedure of the value of the output measure or the "fitness" of a particular

combination of the input parameters.(145) In these types of optimization procedures, the

added information of the direction of improvement in first-order regression models is of

no benefit. The fitness function could be the direct simulation, however, that could cause

the optimization procedure to be very slow.

An alteinative is to use a metamodel of the simulation as the fitness function. The

metamodel would need to be more global in nature than the metamodels used in traditional

response surface methods. In traditional RSM, the search begins at one random point and

slowly moves along successive approximations of the response surface towards the

optimum. In a genetic algorithm based procedure, the search would begin at many

different points and find promising areas that would warrant additional investigation.
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After finding the most promising areas, it might be necessary to obtain additional

simulation runs to develop more accurate metamodels in the most promising areas. Thus,

the genetic algorithm approach would proceed from crude metamodels of a very large

region to increasingly accurate metamodels in smaller regions of the response surface.

Research into non-gradient based optimization procedures using ANN metamodels to

optimize computer simulation is needed to determine if such approaches would be

competitive with the traditional response surface methods.

In situations where limited system data is available, research efforts are needed to

explore ways of using that information in concert with computer simulation to improve the

validity of ANN metamodels. One simple approach is to adjust the results of the

computer simulation based on ANN trained on real system data. Suppose a small set of

input and output data, set A, is available for both the real sý stem and the computer

simulation. Train two different ANN: one on set Ar, from the real system and one on set

Ac, from the computer simulation. Additional data is obtained from the computer

simulation on a much larger data set B with each input point x having an average output of

y(x). Since the computer simulation may be a biased model of the true system, the

computer simulation results from data set B are adjusted using the neural networks

developed on the smaller data set A on the real system data and on the simulation data.

One adjustment of the output value of y(x) for each input point x of data set B that could

be made is shown in equation 8-1. The simulation data adjusted to be closer to the real

system data would then be used to train a third neural network. Such an approach could

be used to keep large computer simulations from being rebuilt every time there is a change

in the system. In addition, this type of approach could also be used as a procedure for

validating new computer simulations of existing systems.
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Adjusted y = y x ANN Trained on Real System Data (x) (8-)
ANN Trained on Computer Simulation Data (x)

One final application of metamodels created with the baseline ANN metamodel

approach that requires additional research is as on-line process controllers. In this

capacity the ANN are trained off-line using computer simulations and then are used on-

line to assist in the control of the process. In addition, the ANN metamodels could

continue to be improved and adjusted off-line as additional real system data and computer

simulation data becomes available. The conceptual approach presented by Wan and

Cochran should be applied and examined.(92)

8.5 SUMMARY

The ANN approach to approximating discrete event computer simulations has

been shown to be an effective way of developing accurate metamodels of computer

simulations. The results of experiments on a development problem of a simple simulation

led to the baseline ANN metamodel approach. The approach was used on a computer

simulation of a real system to clearly demonstrate the approach and its resulting benefits to

the simulation community. This chapter summarizes the baseline ANN metamodel

approach, the results of applying the approach, the contributions of the dissertation and

the specific suggestions for additional research in improving the baseline ANN metamodel

approach, for extending the approach to handle different types of problems, and for areas

in which the approach has application potential.
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APPENDIX A

DEVELOPMENT PROBLEM 2 PARAMETER INVENTORY SIMULATION
COMPUTER PROGRAMS AND RESULTS

BEGIN;
PROJECT, inv2par;
; The number of distinct training data points is 36.
; Total number of replications is REP x 36= 360.

VARIABLES: GET: !Determine which input point to read.
REP, 10: !REP = # reps to run each data point.
SmallS: !s = reorder point.
SmallD: !d = order quantity, if I = s.
1,60: !Inventory level.
Io: !Initial inventory level.
tba,.l: !Parameter for time between arrivals.
k,32: !Fixed portion of monthly order cost.
u,5: !Underage cost.
w: !Underage factor.
Z: !Amount to order this month.
BigS: 1S = order up-to quantity.
AvgInvPlus: !Equals I, if I>0, else it = 0.
AvgInvMinus:!Equals -I, if I<0, else it = 0.
OrderCost: !Monthly order cost.
COST: !Cumulative order cost.
TotalCost; !Avg annual total cost.

TALLIES:
1, Order Costs; !Tallies order cost each month.

DSTATS:I,I,INVENTORY: !Keeps track of inventory levels.
2,1*AvglnvPlus, !Calculates/tracks cost of overage.
Excess Inv Cost:!
3,u*AvgInvMinus,!Calculates/tracks ('("st of shortages.
Short Inv Cost;

FILES:
l,INPUTl,"inv2par.IN", DIR(17) !File to set
"(F3.0,lX,F3.0)": ! input parameters.
2, OUTPUTl,"inv2par", !File to receive Write

SEQFREE; I statements.

REPLICATE, 360,0,120; !Number of replications.
END;

Figure Al SIMAN Experiment Frame of 2 Input Parameter Inventory System
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BEGIN, No, inv2par;
;This is the model frame for the 2 input parameter inventory problem.
;The inputs to the simulation are s (reorder point) and d (reorder qty).
;In this model k(order costs) and w (factor representing ;u, underage
cost) are constanst with k=32 and w=6.4.
;The simulation output is average monthly cost, C.
;This uses 3 different Random Number Streams.
;This section obtains the input data at the beginning of each
;replication. This assumes that each data point is run for Rep # of
;replications.

CREATE, 1,0:,l; !Do once for each rep.
ASSIGN: GET=I+AINTkNREP-I)/REP); !Determines which input data to use.

!Every REP replications get next
! data point.

READ, INPUTI, !Gets data from file
"(F3.0,lX,F3.0,lX,F3.0,lX,F5.I)", ! labeled, INPUT1.
GET:SmallS,SmallD,k,w; !SmallS=s=reorder point

!SmallD=d=order quantity
ASSIGN: BigS=SmallS + SmallD: !BigS=order to quantity.

u=k/w;
DELAY: 0:

DISPOSE;

CREATE, ,EXPONENTIAL(tba,l): !Arrivals of demands.
EXPONENTIAL(tba,l); !Random Stream#1 = 1

BRANCH, 1,4: !Levels of demand.
!Random Stream#2 = 4

WITH,.167,dl: !Demand is 1.
WITH,.333,d2: !Demand is 2.
WITH,.333,d3: !Demand is 3.
WITH,.167,d4; !Demand is 4.

dl ASSIGN:I = I - 1: !Demand set to 1.
NEXT(d5);

d2 ASSIGN:I = I - 2: !Demand set to 2.
NEXT(d5);

d3 ASSIGN:I = I - 3: !Demand set to 3.
NEXT(d5);

d4 ASSIGN:I = I - 4: !Demand set to 4.
NEXT(dS);

d5 ASSIGN:AvgInvPlus=MX(0,I): !AvgInvPius=f, if 10,
else, AvgInvPlus = 0.

AvgInvMinus=MX(0,-I): !AvgInvMinus=-I, if 1<0,
else, AvgInvMinus=0.

DISPOSE;

CREATE, ,1.0:i.0; !Calculate cost at end
! of each month.

ASSIGN: OrderCost = 0;
BRANCH, 1:

IF,I.ge.SmallS,costl: !If inventory is large
! enough, go to costl.

ELSE,cost2; !If inventory is not
large enough, go to
cost2.

Figure A2 SIMAN Model Frame of 2 Input Parameter Inventory System
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costl ASSIGN:Z = 0; !Nothing ordered this month.
TALLY: 1, OrderCost:
DISPOSE;

cost2 ASSIGN:Z = (BigS-I); !Order Z amount.
ASSIGN:OrderCost= k+3*Z; !Cost spent on orders this month.
ASSIGN:COST = !Cumulative cost

COST + OrderCost; ! of orders to date.
TALLY: 1, OrderCost;
DELAY: UNIFORM(.5,1.0,8); !Wait for order arrival.

!Random Stream#3 = 8

ASSIGN: I = I + Z: !Increase inventory by Z
AvgInvPlus=MX(0,I) : !AvgInvPlus=I, if I>0,

, else AvgInvPlus = 0.
AvgInvMinus=MX(0,-I): !AvgInvMinus=-I, if I<0,

else AvgInvMinus = 0.
DISPOSE;

CREATE, ,120:1,1; !After 10 year period,
ASSIGN: TotalCost= . calculate average

TAVG(1)+DAVG(2)+DAVG(3); ! monthly total cost as
the sum of average;
order,overage &
underage costs.

WRITE, OUTPUT1,
"(IX,2(F5.l,lX),Fl0.5)":
SmallS, SmallD, TotalCost:
DISPOSE;

END;

Figure A2(Continued) SIMAN Model Frame of 2 Input Parameter Inventory
System
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Figure A3 Input Data File for SIMAN Simulation
of 2 Input Parameter Inventory System
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Table Al Simulation Results: Training Data for Experiment I
for Presentation Method I with 25 Replications

Simulation Input Simulation Output Measure
Parameters Cost = C

s d c
40 40 125.91
60 40 144.64
40 60 132.39
60 60 151.07
20 20 125.47
80 20 164.69
20 80 127.52
80 80 179.86
40 20 125.96
60 20 144.51
20 40 120.19
80 40 165.12
20 60 122.09
80 60 171.96
40 80 140.59
60 80 159.00

Table A2 Simulation Results: Training Data for Experiment 2
for Presentation Method 1 with 25 Replications

Simulation Input Simulation Output Measures
Parameters Cost = C

s d Std Dev (C) Min (C) Max (C)

40 40 125.91 101.33 12.04 299.16
60 40 144.64 103.04 18.24 314.08
40 60 132.39 118.56 13.22 351.55
60 60 151.07 119.12 22.37 371.81
20 20 125.47 67.27 7.19 272.12
80 20 164.69 61.01 44.72 282.73
20 80 127.52 128.05 13.15 406.54
80 80 179.86 134.18 35.42 468.60
40 20 125.96 62.06 12.12 239.90
60 20 144.51 59.97 25.29 259.47
20 40 120.19 94.20 9.00 309.46
80 40 165.12 104.07 33.48 338.61
20 60 122.09 112.52 11.21 353.54
80 60 171.96 120.33 36.89 396.69
40 80 140.59 132.31 14.63 407.56

1 _00 80 159.00 132.45 24.23 420.81
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Tab Simulation Results: ANN Testing Data for Experiment I
Simulation Input Parameters Simulation Output Measure

s d ?C
10 10 167.02
50 10 135.32
90 10 174.98
10 50 125.64
90 50 178.11
10 90 130.96
50 90 154.01
90 90 194.29
30 30 119.52
50 30 132.92
70 30 152.42
30 50 122.16
50 50 138.25
70 50 157.96
30 70 128.4i
50 70 145.36
70 70 165.47

Table A4 Simulation Results: ANN Testing Data for Experiment 2
Simulation Input Parameters Simulation Ouptut Measures

s d C Std Dev(C) MNin(C) Max(C)

10 10 167.02 58.95 14.21 337.35
50 10 135.32 28.57 31.14 210.65
90 10 174.98 29.23 70.91 270.68
10 50 125.64 100.64 13.29 352.63
90 50 178.11 112.88 41.14 394.50
10 90 130.86 135.18 16.62 461.30
50 90 154.01 138.99 19.48 445.72
90 90 194.29 140.77 46.63 510.70
30 30 119.52 86.15 9.38 271.21
50 30 132.92 88.40 14.00 276.34
70 30 152.42 88.96 27.81 299.00
30 50 122.16 107.79 11.04 318.12
50 50 138.25 111.45 15.58 330.39
70 50 157.96 112.04 27.96 353.84
30 70 128.45 123.46 12.21 374.61
50 70 145.36 125.74 17.58 387.89
70 70 165.47 126.74 30.87 411.06
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input number 1 2
output number 1 1
hidden 2 2

filename testfacts nn.tst
filename trainfacts j I a 113.fct
filename teststats j I a 113.sta

learnrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.100 0.1000 0.8000 100
testtol 0. 1000
maxruns 5000
smoothing 0.9000 0.9000 0.9000
addhidden sequence 0.1 200

function hidden l sigmoid 0.0000 1.0000 0.0000 1
function hidden2 sigmoid 0.0000 1.0000 0.0000 1
function output sigmoid 0.0000 1.0000 0.0000 1

dictionary input s d
dictionary output tc
display network progress

scale input minimum
05
scale input maximum
100 100
scale output minimum
50
scale output maximum
225
statistics 0 0 0
weights 4 1 2 2 2 1
-1.5510 0.6200 3.0620
3.1592 -4.5006 -0.3210
0.3232 5.6954 -6.7302
-1.4922 -1.0282 2.9280

0.1166 2.5932 0.2082
Figure A4 Initial Brainmaker Training File for Experiment I for
Presentation Method 1 with 25 Replications
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input number 12
output number I I
hidden 2 2

filename testfacts nn.tst
filename trainfacts j I a I 13.fct
filename teststats j I a 113. sta

learnrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.1000 0.1000 0.8000 100
testtol 0. 1000
maxruns 2688
smoothing 0.9000 0.9000 0.9000
addhidden sequence 0.1 200

function hidden i sigmoid 0.0000 1.0000 0.0000 1
function hidden2 sigmoid 0.0000 1.0000 0.0000 1
function output sigmoid 0.0000 1.0000 0.0000 1

dictionary input s d
dictionary output tc
display network progress

scale input minimum
05
scale input maximum
100 100
scale output minimum
50
scale output maximum
225
statistics 2688 863 167
weights 4 1 2 2 2 1
-2.7802 -0.0096 2.0540
2.4082 -4.9984 -1.2006

0.3232 5.6954 -6.7302
-2.9304 -0.5290 2.0776

0.7850 2.3508 -0.9942
Figure A5 Trained Brainmaker File for Experiment I for
Presentation Method 1 with 25 Replications
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Table A5 Example Brainmaker Results for Training Data for Experiment I for
Presentation Method I with 25 Replications

Input Parameters Predicted Target Absolute Squared
s d Cost Cost Difference Difference Difference

40 40 143.2 125.9 -17.3 17.3 299.29
60 40 151.7 144.6 -7.1 7.1 50.41
40 60 144.2 132.3 -11.9 11.9 141.61
60 60 153 151.1 -1.9 1.9 3.61
20 20 135.1 125.4 -9.7 9.7 94.09
80 20 157.9 164.6 6.7 6.7 44.89
20 80 137.3 127.5 -9.8 9.8 96.04
80 80 162.5 179.8 17.3 17.3 299.29
40 20 141.3 125.9 -15.4 15.4 237.16
60 20 149.3 144.5 -4.8 4.8 23.04
20 40 136.4 120.2 -16.2 16.2 262.44
80 40 160.3 165.1 4.8 4.8 23.04
20 60 137 122 -15 15 225
80 60 161.8 171.9 10.1 10.1 102.01
40 80 144.6 140.5 -4.1 4.1 16.81
60 80 153.6 159 5.4 5.4 29.16

Average 984 11,03

Table A6 Example Brainmaker Results for Testing Data for Experiment I for
Presentation Method 1 with 25 Replications

Input Parameters Predicted Target Absolute Squared
s d Cost Cost Difference Difference Difference
10 10 131.8 167 35.2 35.2 1239.04
50 10 143.7 135.3 -8.4 8.4 70.56
90 10 161.3 174.9 13.6 13.6 184.96
10 50 134.2 125.6 -8.6 8.6 73.96
90 50 164.9 178.1 13.2 13.2 174.24
10 90 134.6 130.8 -3.8 3.8 14.44
50 90 149 154 5 5 25
90 90 166.6 194.2 27.6 27.6 761.76
30 30 138.9 119.5 -19.4 19.4 376.36
50 30 146.4 132.9 -13.5 13.5 182.25
70 30 154.9 152.4 -2.5 2.5 6.25
30 50 140.1 122.1 -18 18 324
50 50 148 138.2 -9.8 9.8 96.04
70 50 156.9 157.9 1 1 1
30 70 140.5 128.4 -12.1 12.1 146.41
50 70 148.7 145.3 -3.4 3.4 11.56
70 70 157.9 165.5 7.6 7.6 57.76

Average 11.92 14.84
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Table A7 ANN Results for Experiment I
# of Patterns Shown ITraining Set External Test I Internal Test Combined Test

SReplications] Until Trained mae I nnse mae rmse. mae rinse mae mise
Presentation Method I (Train c,n averages)

1 2928 7.4 9.5 13.2 17.9 8.5 10.1 10.7 14.3
2 2608 9.1 10.6 13.7 17.7 9.2 10.9 11.3 14.5
3 2512 9,8 11.1 14.2 17.9 9.4 11.1 11.6 14.7
4 2464 9.7 11.1 14.2 17.9 9.2 11 11.6 14.6
5 2512 9.4 10.7 14.2 18.2 8.8 10.5 11.3 14.6
6 2608 9.3 10.6 14 17.9 9 10.7 11.3 14.5
7 2528 9.4 10.8 13.9 17.8 9.1 10.8 11.4 14.5
8 2432 9.7 11.1 14.1 17.9 9.2 10.9 11.5 14.6
9 2416 9.8 11.1 14.4 18 9.4 11.1 11.7 14.8
10 2448 9.8 11.1 14.4 18 9.4 11.2 11.8 14.8
15 2496 9.7 11 14.3 18 9.4 11.1 11.7 14.8
20 2528 9.7 11 14.5 18.1 9,3 11.1 11.7 14.8
25 2688 9.8 11 14.4 17.8 9.7 11.6 11.9 14.8

Presentation Method 2 (Train on averages and all individual re lication s)
1 2928 7.4 9.5 13.2 17.9 8.5 10.1 10.7 14.3
2 3168 8.3 10 13 17.6 8.6 10.2 10.7 14.2
3 3264 8.7 10.2 13.1 17.6 8.6 10.2 10.7 14.2
4 3440 8.4 9.8 13.3 18 8.1 9.6 10.5 14.2
5 3744 7.6 9 13.4 18.8 7 8.4 10 14.3
6 4032 7.4 8.8 12.7 18.5 7.1 8.5 9.7 14.1
7 4736 7.4 8.7 12.6 18.2 7.2 8.5 9.7 14
8 4752 7.5 8.8 12.8 18.7 6.9 8.2 9.7 14.1
9 4480 7.6 8.9 12.8 18.4 7.4 8.6 10 14.1
10 5632 7.4 8.7 12.7 18.3 7.3 8.3 9.8 13.9
15 5376 7.4 8.7 12.9 18.5 7.1 8.4 9.8 14.1
20 5824 7.4 8.7 12.8 18.5 7.2 8.4 9.9 14.1
25 13392 5.8 6.9 11.4 18.5 6 7 8.6 13.7

Presentation Method 3 (Train on averages and half of replications closest to the average)
1 2928 7.4 9.5 13.2 17.9 8.5 10.1 10.7 14.3
2 2848 8.4 10.2 13.1 17.7 8.6 10.3 10.7 14.2
3 2624 9.7 11.1 13.8 17.6 9.4 11.2 11.5 14.6
4 2784 9.3 10.7 13.7 17.6 9.1 10.8 11.2 14.4
5 2784 9.1 10.4 13.8 18.1 8.7 10.3 11.1 14.5
6 2752 8.9 10.3 13.8 18 8.6 10.2 11 14.4
7 2752 9.1 10.4 13.5 17.8 8.8 10.4 11 14.4
8 2800 9.1 10.4 13.9 18.1 8.5 10.1 11 14.4
9 2640 9.4 10.7 14.1 17.9 8.9 10.6 11.3 14.5
10 2592 9.2 10.5 14 18 8.8 10.4 11.2 14.5
15 2496 9.2 10.5 14.3 18.3 8.7 10.4 11.4 14.7
20 2800 8.9 10.2 14.3 18.6 8.3 9.9 11.1 14.6
25 3328 9 10.3 14.4 18.4 8.7 10.2 11.4 14.6
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Table A7(Continued) ANN Results for Experiment I
# of Patterns Training External Test Internal Test Combined Test

Simulation Shown Set Set Set Set
Replications Until Trained F [mae I rmse maeI rmse ae I rmse mae I rmse

Presentation Method 4 (Train on all individual replications)
1 2928 7.4 9.5 13.2 17.9 8.5 10.1 10.7 14.3
2 2848 8.4 10.2 13.1 17.7 8.6 10.3 10.7 14.2
3 3168 8.8 10.4 13 17.5 8.8 10.4 10.8 14.2
4 3072 8.6 10.1 13.2 17.8 8.4 9.9 10.6 14.2
5 3680 7.6 9 13.2 18.8 7 8.4 9.9 14.3
6 4128 7.3 8.7 12.8 18.4 7.2 8.5 9.8 14.1
7 3920 7.6 8.9 12.7 18.4 7.2 8.6 9.8 14.1
8 4224 7.6 8.9 12.7 18.5 7.1 8.4 9.7 14.1
9 4464 7.5 8.8 12.8 18.4 7.3 8.4 9.9 14
10 4800 7.6 8.9 12.9 18.5 7.2 8.5 9.9 14.1
15 5104 7.4 8.7 12.7 18.3 7.3 8.4 9.8 13.9
20 5184 7.5 8.8 12.9 18.6 7.2 8.4 9.9 14.1
25 12960 5.8 6.9 11.4 18.5 6 7 8.6 13.7

Presentation Method 5 (Train on half of individual replications nearest to the average)
1 2928 7.4 9.5 13.2 17.9 8.5 10.1 10.7 14.3
2 2848 8.4 10.2 13.1 17.7 8.6 10.3 10.7 14.2
3 2624 9.7 11.2 13.8 17.5 9.5 11.2 11.5 14.5
4 2624 9.3 10.8 13.7 17.7 9.2 10.9 11.3 14.5
5 2688 9.1 10.5 13.8 18 8.8 10.4 11.1 14.5
6 2976 9 10.4 13.7 17.9 8.8 10.4 11.1 14.5
7 2832 9.1 10.5 13.5 17.7 8.9 10.5 11.1 14.4
8 2688 9.2 10.5 13.7 17.9 8.7 10.4 11.1 14.4
9 2688 9.2 10.5 14 17.9 8.8 10.4 11.2 14.5
10 2400 9.3 10.6 14 17.9 8.9 10.6 11.3 14.5
15 2480 9.2 10.6 14.2 18.1 8.8 10.5 11.3 14.6
20 2784 9.1 10.4 14.2 18.3 8.6 10.3 11.2 14.6
25 3120 8.8 10.1 14.3 18.3 8.6 10.1 1 11.3 14.5
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input number 1 2
output number 1 4
hidden 10 10

filename testfacts nn.tst
filename trainfacts k I ma 13.fct
filename teststats k lmaI 13.sta

learnrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.1000 0.1000 0.8000 100
testtol 0. 1000
maxruns 5000
smoothing 0.9000 0.9000 0.9000
addhidden sequence 0.1 200

function hidden l sigmoid 0.0000 1.0000 0.0000 1
function hidden2 sigmoid 0.0000 1.0000 0.0000 1
function output sigmoid 0.0000 1.0000 0.0000 1

dictionary input s d

dictionary output tc dev min max

display network progress

scale input minimum
05
scale input maximum
100 109
scale output minimum
55.0 25.0 0.0 106.0
scale output maximum
281.0 211.0 89.0 813.0

Figure A6 Initial Brainmaker Training File for Experiment 2 for Presentation
Method I with 25 Replications
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statistics 0 0 0
weights 4 1 2 10 10 4
-5.0486 2.2434 -3.0836
1.3206 -0.0520 -2.0980

-2.7300 1.1026 1.6966
2.2674 2.6892 -4.444)

-4.4172 -1.5036 -3.6222
0.3994 1.6960 6.0102

-5.0910 -1.6560 4.2352
5.4370 2.0584 -3.1956
3.4502 2.1282 0.1236
1.9454 -4.5570 -2.7208

0.9874 0.7010 -0.9702 1.2382 0.8206 -0.7154 -0.338() -0.6474 - 1.1070 -3.5036 0.0232
0.6122 1.4126 -2.5616 -1.5422 1.4970 0.3614 0.5196 0.1796 3.8596 -0.8794 1.9872
-0.8006 1.3508 0.4114 0.4420 -2.0914 0.5342 -1.2392 -1.6560 1.0524 -0.2264 1.5990
2.0206-2.3522-0.2120-0.8800 0.5544 1.6720 2.1454 0.4494 1.9700 0.8230 -1.2886
2.0004 -1.4472 -1.2832 0.2836 -1.9874 -1.4870 -0.1832 0.4236 -2.8570 -1.1520 -2.6220
-0.4296 -0.1454 -1.0852 -2.4404 2.0194 -1.5880 -1.0892 2.8494 0.8626 -2.0160 1.3964
-0.0006 0.5876 -2.9450 -0.7756 2.2360 -1.0062 2.4906 -1.8470 -0.4832 -2.2580 0.9036
0.2686 0.7316 -2.1646 -0.6510-2.0454 0.5508 -0.3816 1.2086 1.0220 2.0226 -1.7508
0.1600 2.0396 -1.5036 -1.2152 1.2796 3.4722 -0.7574 -1.9202 -0.0592 1.0932 0.8092
1.3770 -1.6050 -0.9394 -2.4152 -0.3066 1.2474 3.8882 -1.6362 -0.0340 1.8940 0.3260

2.2424 2.4424 0.6054 1.1072 1.6270-2.3304 -3.0034 0.2i64 3.3362 -0.3492 0.5716
0.0210 -0.0344 0.6262 0.5802 0.7216 -1.4782 -0.2860 -0.8212 0.3552 0.8330 -0.1046

-0.6280 2.3244 0.5300 0.4770 0.4890 -2.6820 1.1336 0.1064 -1.8132 -0.5210 0.9874
-0.2144 1.0280 -1.8250 0.7846 1.3650-1.1714 1.7096 0.5652 0.0054 -1.1694 -3.3736

Figure A6(Continued) Initial Brainmaker Training File for Experiment 2 for
Presentation Method I with 25 Replications
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input number 1 2
output number 1 4
hidden 10 10

filename trainfacts k I ma I 13.fct
filename testfacts nn.tst
filename teststats k Imal 13.sta

learnrate 1,000( 50 1.0000 75 1.(X)00 90 1.0000
leamlayer 1.0000 1.0000 1.0000
traintol 0.1000 0.1000 0.80(0 100
tcsttol 0. 1000
maxruns 2140
smoothin& 0.9000 0.9000 0.9000
addhidden sequence 0. 1 200

function hidden 1 sigmoid 0.0000 1.0000 0.0000 1
function hidden2 sigmoid 0.0000 1.0000 0.0000 1
function output sigmoid 0.0000 1.0000 0.0000 1

dictionary input s d

dictionary output tc dev min max

display network progress

scale input minimum
05
scale input maximum
100 100
scale output minimum
55250106
scale output maximum
28121189813
Figure A7 Trained Brainmaker File for Experiment 2 for Presentation
Method I with 25 Replications
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statistics 2240 1547 139
weights 4 12 1010 4
-5.2680 2.8024 -3.7534
1.1550 -0.7332 -2.2190

-3.1484 1.3264 1.4234
2.1908 3.0162 -3.7854

-5.0694 -0.8594 -4.0312
0.2292 2.1124 6.2640
-4.9640 -1.7240 4.1696
5.4650 2.4524 -2.2600
3.8614 2.3420 1.1880
1.7192 -4.9576 -3.6284

0.9874 0.2812-1.0364 0.8224 0.8206 -1.6860 -0.1796 -1.4716 -2.0776 -3.5036 -0.9496
0.6122 1.3882 -2.7472 -1.3710 1.4970 -0.0796 0.0936 0.0970 3.5150 -0.8794 1.5420
-0.8006 1.3634 -0.0970 0.0784 -2.0914 0.3366 -1.5524 -1.6170 0.9102 -0.0260 1.3862
2.0206 -2.1420 0.1002 -0.3916 0.5544 1.9814 2.1012 0.5266 2.2802 0.8230 -0.9652
2.0004 -1.4504 -1.0554 0.7234 -1.9874 -1.8086 -0.2666 0.5562 -3.1470 -1.1520 -2.9424
0.2164 0.1384 -0.3286 -2.5166 2.0194 -0.6892 -0.2504 2.8940 1.5186 -1.3682 2.3 100
0.2212 0.6874 -2.9064 -0.7200 2.2360 -0.6990 2.5396 -1.6910 -0.1942 -2.4212 1.1720
0.2686 1.0542 -2.6706 -0.9172 -2.0454 0.7136 -0.4692 1.3474 1.1602 2.2346 -1.5594
0.1560 1.8596 -0.9346 -0.9466 1.2796 3.5140-0.3954-2.0462 0.0002 0.5172 0.8844
1.3770 -1.6244 -1.3452 -2.7112 -0.3066 0.9056 3.6504 -1.8450 -0.4022 1.4774 -0.0272

2.0104 1.5194 -0.1836 0.1990 1.6270 -3.1066 -2.3566 0.1806 2.6470 -0.5656 -0.3566
0.0362 0.3522 0.8252 0.9316 0.7216 -0.7906 -1.8386 -1.6984-0.5964-0.4344 0.3282

-0.4496 2.0892 0.3264 0.1256 0.4890 -2.6370 1.0610 1.5546 -1.7660-1.3060 0.5934
-0.0084 1.8710-1.0764 1.6994 1.3650 -0.2510 0.7236 -0.5572 -0.1712 -1.4162 -2.3592

Figure A7(Continued) Brainmaker Trained File for Experiment 2 for Presentation
Method I with 25 Replications
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Table AS ANN Results for Experiment 2 on the Training Set
# of Patterns Mean Cost Standard Minimum Maximum

Simulation Shown Deviation Cost Cost
Replications Until Trained mae Innse mae rmse Mae I rmse mae Tnmse

Presentation Method 1 (Train onAverages)
1 20816 6.4 9.2 13.8 26.9 7.3 10.6 4.9 32.8
2 2272 6.5 12.81 4.7 37.1 8.7 13.1 5.4 43.9

3 2784 10.9 12.4 3.9 34 12.5 12.8 4.6 41.9
4 2528 6.3 13.3 4.2 35.3 8.7 13.6 5 43
5 2160 10.5 14.2 4.4 35.5 11.9 14.6 5.2 43.8
6 2272 6.4 12.2 4.6 35.3 7.5 12.6 5.3 43.5
7 2304 11.2 14.1 4.6 36 12.6 14.5 5.3 44.3
8 2288 4 12.5 4.7 35.8 6.1 13 5.5 44.2
9 2160 8.9 14 5.1 36.6 10.2 14.6 5.8 44.3
10 2096 11.3 12.9 5.3 36.3 13.2 13.4 5.9 44.8
15 2336 12 11.6 4.7 35.1 13.7 12.3 5.5 43.6
20 2048 8.9 13.8 5 34.9 10.3 14.1 5.7 42.9
25 2240 8.6 14.2 4.7 35.9 9.6 14.5 5.5 43.7

Presentation Method 2 (Train on averages and all individual renlications)
1 20816 6.4 9.2 3.8 26.9 7.3 10.6 4.9 32.8
2 40320 5.7 7.5 4 38.7 7.7 9.1 4.9 42.3
3 320064 4.6 5.8 3.8 19.2 5.7 7.2 4.8 24.1
4 400080 6.3 3.2 3.8 23.3 7.2 4 4.8 27.4
5 480096 3.4 4.8 4 24.5 4.2 5.5 4.9 27.9
6 560112 8.4 8.5 3.8 17.8 9.5 9.1 4.7 23.9
7 640128 3.4 5.1 3.6 15.4 4.1 6.3 4.5 19.8
8 720144 7.7 3.8 4.1 24.4 8.4 4.5 5 28.9
9 800160 5.3 6.3 3.6 45.6 6.4 8.1 4.6 49.5
10 880176 7.2 3 3.8 27.9 8.5 3.9 4.8 32.1
15 960192 7.2 4.8 4 25.1 8.8 6.1 5 28.8
20 1040208 8.2 8.5 4.4 29.7 9 9.5 5.6 33.7
25 2480496 10.5 11.7 8.1 24.6 14.7 14.4 10.1 29.5

Presentation Method 3 (Train on averages & half of replications nearest average)
1 20816 6.4 9.2 3.8 26.9 7.3 10.6 4.9 32.8
2 20096 4.5 8.4 4.5 36.8 5.8 9.7 5.4 40.6
3 10336 5.4 7.8 4.1 37 7 9.1 5 40.1
4 240048 9 8.4 4.1 34.6 9.9 9.1 4.8 38.9
5 13200 5 8.9 4.4 28.3 5.7 10.2 5.3 32.3
6 31680 6.6 7.7 4.2 26 8 8.6 5 30.9
7 9536 7.4 7.5 3.8 26.6 9.3 8.5 4.7 31.4
8 27120 10.4 8.1 3.4 24.4 12.1 9.3 4.3 28.3
9 32480 9.4 9.1 3.4 18.2 10.9 10.1 4.2 22.9
10 19392 7 6.6 3.7 25.8 8.7 8.1 4.6 30.7
15 55680 9.7 6.9 3.3 19.1 11.2 8.2 4 23.3
20 560112 10.8 4.2 3.3 20.1 11.6 4.9 4.1 24.5
25 1280256 3.5 7.4 4.7 20.2 4.2 8.6 6.1 25.9
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Table A8(Continued) ANN Results for Experiment 2 on the Training Set
# of Patterns Mean Cost Standard Minimum Maximum

Simulation Shown Deviation Cost Cost
Replications Until Trained m ae I rinse mae inse mae in se

Presentation Method 4 (Train on all individual replications)
1 20816 6.4 9.2 3.8 26.9 7.3 10.6 4.9 32.8
2 20096 4.5 8.4 4.5 36.8 5.8 9.7 5.4 40.6
3 240048 2.9 7.4 4.5 24.4 3.8 8.5 5.4 29
4 320064 7.4 5.6 4.1 21.9 8.4 6.3 5 26.1
5 400080 3.4 5.2 4.1 21 4.1 6.3 5.1 25
6 480096 7 5.1 4.2 28.5 8.3 6.2 5.1 32.4
7 560112 5.2 8.1 3.7 19.9 6.4 9.5 4.9 25.6
8 640128 6.1 4.8 4.3 18.7 7.4 6 5.2 22.3
9 720144 3.9 6.7 3.8 30.5 5.1 8 4.8 34.9
10 800160 7.2 3.1 4.4 21.5 8.7 3.9 5.3 25.5
15 880176 8.5 8.9 3.7 34.1 9.7 10.1 4.9 38.3
20 960192 6.6 5.1 4.7 20.8 8.2 6.1 5.9 26.6
25 2400480 10.5 10.6 5.5 29.1 12.4 14.1 7.8 34.3

Presentation Method 5 (Train on half of replications nearest to the avera ;e)
1 20816 6.4 9.2 3.8 26.9 7.3 10.6 4.9 32.8
2 20096 4.5 8.4 4.5 36.8 5.8 9.7 5.4 40.6
3 9760 5.7 8.1 4.5 24.5 6.9 9.6 5.4 31.1
4 160032 4.7 11.5 4 27.1 5.8 11.9 5 31.4
5 8960 10.7 10.3 4.9 31.8 12.1 11.5 5.8 35.7
6 18432 8.5 6.6 4.7 23.8 9.9 8 5.5 30.4
7 11472 5.4 8.2 4.2 26.8 6.1 9.1 5 33.1
8 31680 8 8.9 3.9 26.6 9.8 10.3 4.8 30.9
9 42304 6.4 8.5 3.8 29.2 7.9 9.7 4.8 33.5
10 26400 10.4 8.3 3.5 29.5 12.1 9.5 4.3 35
15 S5440 8.3 8.5 3.6 31.9 10.1 9.6 4.4 36.1
20 480096 4.5 6.5 3.4 20.1 5.4 8 4.2 26.3
25 1200240 4.3 5.3 4 23.2 5.3 6.1 5.5 28.3
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Table A9 ANN Results for Experiment 2 on the Test Set
# of Mean Cost Standard Minimum Cost Maximum Cost

Simulation Deviation

Replications mae rnse mae I rmse mae rinse mae mise
Presentation Method 1 (Train on Averages)

1 10.1 11.5 4.4 35.1 14.9 12.9 7.9 50.7
2 11.1 15.4 6.7 45.2 18.3 19.1 10.6 58.4
3 15.9 15.5 6.2 46.2 21.4 19.4 9.9 57.9
4 10.9 16.8 7 43.7 17.8 20 10.5 55.4
5 12.8 17.6 6.6 46.2 18 21 10.1 59.2
6 9.6 15.3 7 46.9 15.5 19.2 10.3 59.4
7 13.5 17.4 6.8 47.5 18.5 20.8 10 60.6
8 8.4 15.5 7.1 47.7 15.4 19.8 10 60.3
9 12 17 6.9 47 17.4 20.7 10.1 60.2
10 14 16 6.8 47.6 17.3 19.7 9.7 60.5
15 14.4 14.4 6.7 47.9 17.8 18.9 9.5 60.9
20 12.2 16.9 6.8 46.9 17.6 20.1 9.7 60.3
25 11.5 17.2 6.6 47.3 16.8 20.5 9.5 60.2

Presentation Method 2 (Train on averap es and individual re lications)
1 10.1 11.5 4.4 35.1 14.9 12.9 7.9 50.7
2 9.7 11 3.8 44 18 14.3 6.2 53.1
3 9.1 8.2 3.7 26.8 15.9 10.5 6 39.2
4 8.3 5.7 4.3 30.4 14.2 8.8 6.7 36.1
5 8.1 8.9 2.6 24.7 12 12 4.2 29
6 11.1 9.2 3.6 22.6 13.2 9.9 6.5 33.5
7 7.2 5.7 2.8 17.8 12.4 7.6 5.6 24.4
8 10.5 6.8 4 28.8 13.7 9.3 7.1 35.2
9 9 10.6 4.7 44.8 13.7 15.3 7.4 49.9
10 10.8 5.5 3.4 28.1 16.3 7.8 4.9 32.6
15 12.4 6.9 2.9 26.6 18.9 8.1 4.1 32.7
20 11.8 10.6 4 30.3 16.4 11.1 5.2 35
25 15.3 15.1 7.5 49.2 26.9 27.6 8.9 106

Presentation Method 3 (Train on averages and half of replications nearest to average)
1 10.1 11.5 4.4 35.1 14.9 12.9 7.9 50.7
2 8.3 11.2 3.8 40.6 13.9 15 6.4 51.7
3 8.7 9.7 4.4 52 15.6 13.7 6.3 59.6
4 12.6 10.7 3.6 35.5 18 11.4 5.7 40.7
5 7.8 11.9 4.1 38.6 12.3 14 6.3 42.5
6 9.8 11.1 4.5 36.7 15.2 14 6.8 48.1
7 8.3 10.5 3.8 39.7 10.8 13.9 6.8 44
8 11.8 11.7 3.1 30.4 13.9 14.1 4.2 34.5
9 11.8 11.9 3.4 25.4 14.4 15.2 4.2 36.2
10 7.8 7.7 4 38.4 9.7 10 5.7 45.7
15 12.4 8.8 3 27.6 14.7 11.7 3.7 34.3
20 12.1 7.3 4.4 25.7 14.7 8.3 6.3 40.7
25 11.5 8.6 4.6 24.1 23.5 10.7 6.3 37.3
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Table A9(Continued) ANN Results for Ex eriment 2 on the Test Set
# of Mean Cost Standard Minimum Cost Maximum Cost

Simulation Deviation
Replications ~mae rmse mae I nnse mae rmse mae rmse

Presentation Method 4 (Train on all individual replications)
1 10.1 11.5 4.4 35.1 14.9 12.9 7.9 50.7
2 8.3 11.2 3.8 40.6 13.9 15 6.4 51.7
3 5.7 10.3 3 33.1 13.2 11.6 4.4 40.,1
4 11.6 8.9 3.8 26.4 17.2 11.9 6.1 31
5 6.2 7.7 2.7 22 11.9 10.4 4.3 27.,.
6 11.7 9.1 3.7 31.9 19.2 11.2 6.6 34.3
7 9.2 10.6 2.9 32.1 13.8 14.3 4.1 50.8
8 11.1 7.2 3.8 23.2 17.8 9.4 7 29.9
9 7.4 8.8 4.1 36.9 14.6 10.2 6.6 41
10 10.2 9.3 3.2 26.6 17.2 15.8 4 32.1
15 11.4 12.5 2.4 43.3 16.3 15.4 3.2 49.7
20 7.9 10.4 3.8 35.2 11.8 19.3 4.7 58.6
25 14.5 13.1 7.4 36.9 18.1 20.3 12.1 42

Presentation Method 5 (Train on the half of replications that are nearest to averae)
1 10.1 11.5 4.4 35.1 14.9 12.9 7.9 50.7
2 8.3 11.2 3.8 40.6 13.9 15 6.4 51.7
3 9.5 9 4.4 32 12 12.3 6 40.2
4 7.6 11.5 3.7 30.4 12.8 12.7 5.3 35.6
5 14.2 12.9 4 38.5 19.1 14.9 6.2 43.2
6 11.2 9.3 4 30.7 16.3 13.5 6.3 39.6
7 8.6 11.4 3.9 37.9 14.3 14.9 6.7 47.3
8 10 12.6 3.8 27.4 12.4 14.9 5.1 31.7
9 8 11.7 3.8 36.3 10.5 15.1 5.1 41.1
10 12.1 12.1 3.4 42 15.4 14.1 4.7 44.8
15 11 11.7 3.6 35.4 18.7 14.2 4.7 41
20 7.6 8 4.1 21.6 13.1 11.8 5.3 27.3
25 21.5 9.7 3.8 53.2 36.3 12.6 5.4 75.8
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APPENDIX B

DEVELOPMENT PROBLEM 4 PARAMETER INVENTORY
SIMULATION COMPUTER PROGRAMS AND RESULTS

BEGIN;
PROJECT, inv4par;
; The number of distinct training data points is 2500.
; Total number of replications is REP x 2500= 25000.

VARIABLES: GET: !Determine which input point to read.
REP, 10: !REP = # reps to run each data point.
SmallS: !s = reorder point.
SmallD: !d = order quantity, if I = s.
1,60: !Inventory level.
Io: !Initial inventory level.
tba,.l: !Parameter for time between arrivals.
k,32: !Fixed portion of monthly order cost.
u,5: !Underage cost.
w: !Underage factor.
Z: !Amount to order this month.
BigS: !S = order up-to quantity.
AvgInvPlus: !Equals I, if I>0, else it = 0.
AvgInvMinus:!Equals -I, if I<0, else it = 0.
OrderCost: !Monthly order cost.
COST: !Cumulative order cost.
TotalCost; !Avg annual total cost.

TALLIES:
1, Order Costs; !Tallies order cost each month.

I)STATS:I,I,INVENTORY: !Keeps track of inventory levels.
2,1*AvgInvPlus, !Calculates/tracks cost of overage.
Excess Inv Cost:!
3,u*AvgInvMinus,!Calculates/tracks cost of shortages.
Short Inv Cost;

FILES:
l,INPUTl,"inv4par.IN", DIR(17) !File to set
"(F3.0,lX,F3.0,iX,F3.0,1X, F5.1) ": ! input parameters.
2, OUTPUTl,"inv4par", !File to receive Write

SEQ,FREE; ! statements.

REPLICATE, 25000,0,120; !Number of replications.
END;
Figure BI Siman Experiment Frame for 4 Input Parameter Inventory Simulation
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BEGIN, No,inv4par;
;This is the model frame for the 4 input parameter inventory problem.
;The inputs to the simulation are s (reorder point), d ;(reorder qty),
;k (order costs) and w (factor representing ;u, underage cost).
;The simulation output is average monthly cost, C.
;This uses 3 different Random Number Streams.
;This section obtains the input data at the beginning of each
;replication. This assumes that each data point is run for Rep # of
;replications.

CREATE, 1,0:,i; !Do once for each rep.
ASSIGN: GET=I+AINT((NREP-I)/REP); !Determines which input data to use.

!Every REP replications get next
! data point.

READ, INPUT1, !Gets data from file
"(F3.0,lX,F3.0,1X,F3.0,1X,F5.1)", ! labeled, INPUT1.
GET:SmallS,SmallD,k,w; !SmallS=s=reorder point

!SmallD=d=order quantity
ASSIGN: BigS=SmallS + SmallD: !BigS=order to quantity.

u=k/w;
DELAY: 0:

DISPOSE;

CREATE, ,EXPONENTIAL(tba, 1): !Arrivals of demands.
EXPONENTIAL(tba,l); !Random Stream#1 = 1

BRANCH, 1,4: !Levels of demand.
!Random Stream#2 = 4

WITH,.167,dI: !Demand is 1.
WITH,.333,d2: !Demand is 2.
WITH,.333,d3: !Demand is 3.
WITH,.167,d4; !Demand is 4.

dl ASSIGN:I = I - 1: !Demand set to 1.
NEXT(dS);

d2 ASSIGN:I = I - 2: !Demand set to 2.
NEXT(d5);

d3 ASSIGN:I = I - 3: !Demand set to 3.
NEXT(dS);

d4 ASSIGN:I = I - 4: !Demand set to 4.
NEXT(d5);

d5 ASSIGN:AvgInvPlus=MX(0,I): !AvgInvPlus=I, if I>0,
else, AvgInvPlus = 0.

AvgInvMinus=MX(0,-I): !AvgInvMinus=-I, if I<0,
else, AvgInvMinus=0.

DISPOSE;

CREATE, ,1.0:1.0; !Calculate cost at end
! of each month.

ASSIGN: OrderCost = 0;
BRANCH, 1:

IF,I.ge.SmallS,costl: !If inventory is large
! enough, go to costl.

ELSE,cost2; !It inventory is not
IArge9 enough, .ot
cost2. ,

Figure B2 Siman Model Frame for 4 Input Parameter Inventory Simulation
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cost] ASSIGN:Z = 0; !Nothing ordered this month.
TALLY: 1, OrderCost:
DISPOSE;

cost2 ASSIGN:Z = (BigS-I); !Order Z amount.
ASSIGN:OrderCost= k+3*Z; !Cost spent on orders this month.
ASSIGN:COST = !Cumulative cost

COST + OrderCost; of ord-rs to date.
TALLY: 1, OrderCost;
DELAY: UNIFORM(.5,1.0,8); !Wait for order arrival.

!Random Stream#3 = 8

ASSIGN: I = I + Z: !Increase inventory by Z
AvgInvPlus=MX(0,I) : !AvgInvPlus=I, if 1>0,

! else AvgInvPlus = 0.
AvgInvMinus=MX(0,-I) : !AvgInvMinus=-I, if I0,

else AvgInvMinus = 0.
DISPOSE;

CREATE, ,120:1,1; !After 10 year period,
ASSIGN: TotalCost= . calculate average

TAVG(1)+DAVG(2)+DAVG(3); monthly total cost as
the sum of average;
order,overage &
underage costs.

WRITE, OUTPUT1,
"C(lX,4(F5.l,lX),Fl0.5)":
SmallS, SmallD, k, w, TotalCost:
DISPOSE;

END;

Figure B2 (Continued) Siman Model Frame for 4 Input Parameter Inventory
Simulation

TABLE B1 How Training and Testing Data was Generated from SIMAN
Data Type Number of Number of Random Number

Points Replications Streams Used
Training 2500 10 1, 4, 8
Testing 900 20 1, 4, 8
Testing 900 20 7, 3, 1
Testing 900 20 2, 6, 10
Testing 900 20 3, 7, 2
Testing 900 20 4, 8, 3
Testing 900 10 5,9,4
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TABLE B2 Siman Input and Output Data used for Training ANN for the 4 Input
Parameter Inventor Simulation (Ist 90 Points Run Through SIMAN Simulation)

Point s d k -w C Var(C) Point s d k w C Var(C)
1 20 20 16 4 109.11 0.53 1 46 20 27 80 4 198.59 6.53
2 20 20 16 8 102.03 1.28 47 20 27 80 8 168.14 3.26
3 20 20 16 10.5 101.64 0.68 -ý 48 20 27 80 10.5 159.46 3.47
4 20 20 16 13 100.57 0.45 49 20 27 80 13 155.27 3.96
5 20 20 16 17 98.33 0.82 50 20 27 80 17 150.90 1.64
6 20 20 32 4 135.67 5.72 51 20 33 16 4 110.01 0.93
7 20 20 32 8 120.06 1.46 1 52 20 33 16 8 102.63 0.73
8 20 20 32 10.5 117.85 0.69 1 53 20 33 16 10.5 101.41 0.42
9 20 20 32 13 116.29 1.65 1 54 20 33 16 13 99.44 0.62
10 20 20 32 17 114.83 0.32 55 20 33 16 17 100.16 0.15
11 20 20 48 4 161.18 2.38 56 20 33 32 4 129.14 2.44
12 20 20 48 8 143.88 0.97 57 20 33 32 8 118.17 0.94
13 20 20 48 10.5 137.42 2.34 i 58 20 33 32 10.5 115.48 0.86
14 20 20 48 13 134.19 0.99 . 59 20 33 32 13 113.71 0.89
15 20 20 48 17 130.56 1.51 60 20 33 32 17 109.99 1.06
16 20 20 64 4 190.49 4.53 . 61 20 33 48 4 153.27 7.62
17 20 20 64 8 161.76 4.90 . 62 20 33 48 8 133.04 2.89
18 20 20 64 10.5 155.04 2.12 .. 63 20 33 48 10.5 127.58 1.10
19 20 20 64 13 146.80 1.42 :.j 64 20 33 48 13 127.80 1.89
20 20 20 64 17 145.33 1.23 65 20 33 48 17 122.74 1.06
21 20 20 80 4 217.05 11.28 66 20 33 64 4 165.32 9.36
22 20 20 80 8 182.50 1.45 67 20 33 64 8 144.82 1.43
23 20 20 80 10.5 171.12 2.78 68 20 33 64 10.5 141.84 1.07
24 20 20 80 13 165.43 4.43 69 20 33 641 13 133.50 1.05
25 20 20 80 17 161.96 2.01 70 20 33 64 17 134.07 1.61
26 20 27 16 4 108.78 1.16 71 20 33 80 4 192.03 11.37
27 20 27 16 8 102.10 0.33 72 20 33 80 8 161.04 3.23
28 20 27 16 10.5 102.11 0.42 73 20 33 80 10.5 157.69 6.07
29 20 27 16 13 99.62 0.38 74 20 33 80 13 152.09 1.56
30 20 27 16 17 98.81 0.51 75 20 33 801 17 144.29 2.62
31 20 27 32 4 133.15 1.72 76 20 40 16 4 109.74 0.85
32 20 27 32 8 117.85 3.10 77 20 40 16 8 104.76 0.63
33 20 27 32 10.5 115.72 1.78 78 20 40 16 10.5 102.35 0.37
34 20 27 32 13 113.75 1.17 79 20 40 16 13 102.74 0.22
35 20 27 32 17 113.07 0.49 80 20 40 16 17 101.57 0.60
36 20 27 48 4 152.83 3.66 81 20 40 32 4 126.23 1.28
37 20 27 48 8 135.97 2.58 82 20 40 32 8 117.04 1.74
38 20 27 48 10.5 128.62 1.81 83 20 40 32 10.5 114.53 0.74
39 20 27 48 13 128.15 1.05 84 20 40 32 13 114.29 1.42
40 20 27 48 17 123.90 1.62 85 20 40 32 17 111.26 0.41
41 20 27 64 4 180.18 13.14 86 20 40 48 4 146.06 5.82
42 20 27 64 8 152.35 2.21 87 20 40 48 8 128.27 1.95
43 20 27 64 10.5 145.36 2.28 88 20 40 48 10.5 127.51 0.60
44 20127. 64 13 1141.12 1.21 1. 89 220 401 A• 13 123.36 2.00
45 20 27 64 17 1137.42 1.46 9 20 4048 17 1120.96 1.18
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Table B3 Simulation Data for Trainin Set F (144 ints shuffled)
S d k w C Var(C) s d k w C Var(C)

40 80 48 10.5 144.08 0.41 20 80 80 4 161.12 6.49
80 80 16 4 176.02 0.40 60 80 16 17 155.16 0.37
40 60 48 10.5 136.44 0.71 20 60 80 4 172.44 9.88
80 60 16 4 166.40 0.24 60 60 16 17 145.63 0.11
40 40 48 10.5 133.92 0.83 20 40 80 4 179.56 16.53
80 40 16 4 156.80 0.19 60 40 16 17 137.30 0.39
40 20 48 10.5 139.95 0.58 20 20 80 4 217.05 11.28
80 20 16 4 153.05 0.42 60 20 16 17 132.21 0.33
20 80 48 10.5 131.21 0.76 1 80 80 80 10. 192.66 0.60
60 80 16 4 154.45 0.42 40 80 16 17 136.11 0.63
20 60 48 10.5 126.76 2.18 80 60 80 10. 188.22 0.51
60 60 16 4 147.46 0.46 40 60 16 17 125.53 0.46
20 40 48 10.5 127.50 0.60 80 40 80 10. 185.55 0.76
60 40 16 4 136.83 0.55 40 40 16 17 116.01 0.33
20 20 48 10.5 137.42 2.34 80 20 80 10. 202.70 1.15
60 20 16 4 133.11 0.42 40 20 16 17 113.36 0.46
80 80 48 17 183.85 0.30 60 80 80 10. 173.13 0.74
40 80 16 4 134.56 0.34 20 80 16 17 118.08 0.21
80 60 48 17 176.49 0.47 60 60 80 10. 168.47 1.15
40 60 16 4 126.80 0.38 20 60 16 17 109.16 0.29
80 40 48 17 173.10 0.24 60 40 80 10. 166.21 1.42
40 40 16 4 117.71 0.59 20 40 16 17 101.57 0.60
80 20 48 17 176.64 0.58 60 20 80 10. 182.84 1.12
40 20 16 4 113.93 0.64 20 20 16 17 98.33 0.82
60 80 48 17 163.39 0.59 40 80 80 10. 152.67 0.77
20 80 16 4 121.53 0.77 80 80 48 4 184.56 1.13
60 60 48 17 155.38 0.43 40 60 80 10. 147.95 0.87
20 60 16 4 114.45 0.82 80 60 48 4 177.84 0.61
60 40 48 17 151.72 0.22 40 40 80 10. 147.71 0.51
20 40 16 4 109.74 0.85 80 40 48 4 172.53 0.21
60 20 48 17 155.53 1.20 40 20 80 10. 164.42 1.90
20 20 16 4 109.11 0.53 80 20 48 4 177.01 1.09
40 80 48 17 143.02 0.49 20 80 80 10. 144.85 1.09
80 80 16 10.5 175.65 0.12 60 80 48 4 162.82 0.92
40 60 48 17 138.02 0.50 20 60 80 10. 142.00 0.60
80 60 16 10.5 165.68 0.38 60 60 48 4 158.23 0.44
40 40 48 17 133.02 1.07 20 40 80 10. 148.23 1.25
80 40 16 10.5 157.32 0.37 60 40 48 4 152.67 0.74
40 20 48 17 137.39 0.63 20 20 80 10. 171.12 2.78
80 20 16 10.5 152.07 0.36 60 20 48 4 157.41 0.62
20 80 48 17 129.17 0.34 80 80 80 17 192.38 0.66
60 80 16 10.5 155.44 0.23 40 80 48 4 145.87 0.86
20 60 48 17 123.34 0.77 80 60 80 17 188.43 0.45
60 60 16 10.5 145,88 0.32- 40 60 48 4 138.00 0.87
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Table B3 (Continued) Simulation Data for Trainin Set F (144 oints)
s d k w C Var(C) s d k w C Var(C)

20 40 48 17 120.96 1.18 80 40 80 17 187.53 1.28
60 40 16 10.5 136.74 0.44 40 40 48 4 136.70 0.57
20 20 48 17 130.56 1.51 80 20 80 17 200.96 2.68
60 20 16 10.51 131.56 0.52 40 20 48 4 140.05 1.09
80 80 80 4 192.63 0.62 60 80 80 17 172.85 0.83
40 80 16 10.5 134.57 0.42 20 80 48 4 140.69 2.13
80 60 80 4 187.24 0.59 60 60 80 17 168.32 0.56
40 60 16 10.5 126.04 0.38 20 60 48 4 144.18 4.82
80 40 80 4 187.47 0.63 60 40 80 17 166.24 1.51
40 40 16 10.5 118.93 0.34 20 40 48 4 146.06 5.82
80 20 80 4 202.05 2.94 60 20 80 17 181.98 1.15
40 20 16 10.5 114.34 0.34 20 20 48 4 161.18 2.38
60 80 80 4 172.22 0.75 40 80 80 17 154.21 0.21
20 80 16 10.5 118.02 0.36 80 80 48 10.5 183.80 0.30
60 60 80 4 167.13 0.73 40 60 80 17 148.96 1.16
20 60 16 10.5 109.12 0.64 80 60 48 10.5 177.27 0.58
60 40 80 4 168.60 0.98 40 40 80 17 147.47 0.43
20 40 16 10.5 102.35 0.37 80 40 48 10.5 172.70 0.39
60 20 80 4 181.70 1.01 40 20 80 17 162.34 1.04
20 20 16 10.5 101.64 0.68 80 20 48 10.5 177.85 0.65

40 80 80 4 155.61 1.00 20 80 80 17 140.28 0.95
80 80 16 17 175.90 0.74 60 80 48 10.5 163.70 0.39
40 60 80 4 149.74 0.30 20 60 80 17 137.48 0.61.

......
80 60 16 17 166.38 0.07 iiiiil60 60 48 10.5 155.76 0.23

40 40 80 4 152.82 1.37 20 40 80 17 140.61 2.48
80 40 16 17 158.96 0.21 60 40 48 10.5 152.71 0.05
40 20 80 4 170.76 3.68 20 20 80 17 161.96 2.01
80 20 16 17 152.54 0.58 60 20 48 10.5 158.35 0.48
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Table B4 Test Set with 0 Parameter Values External to the Training Sets
S d k w C Var(C) S d k w C Var(C)

30 30 24 6 113.50 0.87 50 50 56 6 148.00 0.70
30 30 24 9 112.50 0.62 50 50 56 9 147.42 0.59
30 30 24 12 111.37 0.76 50 50 56 12 147.63 0.54
30 30 24 15 110.74 0.67 50 50 56 15 147.19 0.51
30 30 40 6 126.11 1.33 50 50 72 6 154.03 0.81
30 30 40 9 123.00 1.00 50 50 72 9 153.90 '.58
30 30 40 12 122.30 0.98 50 50 72 12 154.19 0.68
30 30 40 15 121.31 0.66 50 50 72 15 153.79 0.67
30 30 56 6 138.80 2.66 50 70 24 6 143.30 0.47
30 30 56 9 134.41 1.09 50 70 24 9 142.75 0.36
30 30 56 12 132.42 0.85 50 70 24 12 142.79 0.49
30 30 56 15 130.72 0.80 50 70 24 15 142.62 0.56
30 30 72 6 151.32 3.19 50 70 40 6 148.20 0.51
30 30 72 9 145.57 1.59 50 70 40 9 147.63 0.55
30 30 72 12 142.90 1.37 50 70 40 12 147.72 0.36
30 30 72 15 141.10 1.31 50 70 40 15 147.40 0.57
30 50 24 6 118.41 0.69 50 70 56 6 153.11 0.67
30 50 24 9 117.12 0.52 50 70 56 9 152.52 0.47
30 50 24 12 116.37 0.62 50 70 56 12 153.04 0.58
30 50 24 15 115.83 0.63 50 70 56 15 152.43 0.72
30 50 40 6 126.13 0.85 50 70 72 6 157.51 0.68
30 50 40 9 123.98 0.71 50 70 72 9 157.30 0.64
30 50 40 12 123.63 0.61 50 70 72 12 157.07 0.59
30 50 40 15 123.57 0.66 50 70 72 15 157.44 0.61
30 50 56 6 135.19 1.09 .. 70 30 24 6 147.89 0.46
30 50 56 9 132.43 0.95 70 30 24 9 148.33 0.38
30 50 56 12 131.32 0.85 70 30 24 12 147.83 0.46
30 50 56 15 130.37 0.69 70 30 24 15 148.35 0.49
30 50 72 6 143.63 1.20 70 30 40 6 156.52 0.39
30 50 72 9 140.38 1.27 70 30 40 9 156.99 0.67
30 50 72 12 138.56 1.13 /0 30 40 12 157.32 0.60
30 50 72 15 137.59 0.67 70 30 40 15 157.32 0.56
30 70 24 6 125.26 0.67 70 30 56 6 166.14 0.50
30 70 24 9 125.08 0.56 70 30 56 9 166.21 0.71
30 70 24 12 123.84 0.34 70 30 56 12 165.81 0.67
30 70 24 15 123.88 0.44 70 30 56 15 165.91 0.62
30 70 40 6 132.06 0.83 70 30 72 6 174.31 0.63
30 70 40 9 130.43 0.63 70 30 72 9 174.66 0.72
30 70 40 12 129.33 0.61 .... 70 30 72 12 175.16 0.83
30 70 40 15 129.48 0.55 70 30 72 15 174.96 0.86
30 70 56 6 138.39 1.05 70 50 24 6 154.75 0.43
30 70 56 9 136.17 0.71 70 50 24 9 155.19 0.36
30 70 56 12 135.02 0.69 70 50 24 12 154.99 0.46
30 70 56 15 134.96 0.76 70 50 24 15 155.11 0.55
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Table B4(Continued) Test Set with 0 Parameter Values External to the
Training Sets

s d k w C Var(C) S d k w C Var(C)

30 70 72 6 145.22 1.74 70 50 40 6 161.21 0.53
30 70 72 9 142.06 0.82 70 50 40 9 161.17 0.64
30 70 72 12 140.56 1.06 70 50 40 12 161.51 0.54
30 70 72 15 140.15 0.91 70 50 40 15 161.12 0.50
50 30 24 6 128.28 0.41 70 50 56 6 168.06 0.54
50 30 24 9 127.89 0.47 70 50 56 9 167.30 0.62
50 30 24 12 128.54 0.45 70 50 56 12 167.18 0.72
50 30 24 15 127.86 0.38 70 50 56 15 167.89 0.79
50 30 40 6 137.80 0.62 70 50 72 6 173.69 0.75
50 30 40 9 136.63 0.47 70 50 72 9 173.57 0.69
50 30 40 12 136.81 0.43 70 50 72 12 173.20 0.73
50 30 40 15 137.31 0.68 70 50 72 15 174.22 0.63
50 30 56 6 146.35 0.91 70 70 24 6 163.34 0.44
50 30 56 9 145.69 1.13 70 70 24 9 162.73 0.55
50 30 56 12 146.29 0.64 70 70 24 12 162.89 0.55
50 30 56 15 146.34 0.79 70 70 24 15 162.85 0.38
50 30 72 6 155.40 0.87 70 70 40 6 167.60 0.53
50 30 72 9 155.90 0.92 70 70 40 9 167.81 0.57
50 30 72 12 155.09 0.85 70 70 40 12 167.90 0.55
50 30 72 15 155.28 1.00 70 70 40 15 168.01 0.57
50 50 24 6 134.80 0.46 70 70 56 6 172.76 0.52
50 50 24 9 135.03 0.59 70 70 56 9 172.64 0.66
50 50 24 12 134.66 0.39 70 70 56 12 172.83 0.60
50 50 24 15 134.76 0.36 70 70 56 15 172.70 0.79
50 50 40 6 141.58 0.43 70 70 72 6 177.34 0.60
50 50 40 9 141.18 0.55 70 70 72 9 177.58 0.57
50 50 40 12 141.39 0.66 70 70 72 12 177.59 0.55
50 50 40 15 141.40 0.51 70 70 72 15 177.26 0.76
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nlf5.det
input number 1 4
output number 1 1
hidden 5 5
filename trainfacts m lb.fct
filename testfacts ml d.tst
filename teststats n I f5.sta
filename trainstats n I f5 sts
learnrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0200 0.0200 0.8000 100
testtol 0.0200
maxruns 750
smoothing 0.9000 0.9000 0.9000
testruns 1
function hidden 1 sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input s d k w
dictionary output tc
scale input minimum
2.0000 2.0000 0.000 1.5000
scale input maximum
98.000 98.000 96.000 19.500
scale output minimum
45.680
scale output maximum
554.17
statistics 0 0 0
weights 4 14 5 5 1
-2.3886 1.0226 -0.0402 -1.6250 -2.1146
0.8540 1.3142 1.7564 2.0830 -3.4422

-3.4214 -1.1646 -2.8056 0.3094 1.3136
4.6552 -3.9432 -1.2824 3.2806 4.2112
1.5944 -2.4754 2.6724 1.6484 0.0960

1.3756 -3.2220 -1.9236 1.3374 0.9496 -1.3140
1.6766 1.1110 -0.9690 -0.4576 -0.8770 -1.4986

4.7440 0.0316 0.8292 1.9126 -3.4686 -2.0884
2.0272 0.4896 0.7032 0.2432 5.2260-1.1908
2.6908-1.0842 1.8292 0.5574 0.5990-2.8316

0.7232 -1.6782 -2.2422 1.4250 -0.3066 2.1650
Figure B3 Initial BrainMaker Training File for Predicting Mean Cost
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n1f5.net
input number 1 4
output number 1 1
hidden 5 5
filename trainfacts m I b.fct
filename testfacts m Id.tst
filename teststats n5.sta
filename trainstats n5.sts
leamrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0200 0.0200 0.8000 100
testtol 0.0200
maxruns 58
smoothing 0.9000 0.9000 0.9000
testruns 58
function hidden 1 sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input s d k w
dictionary output tc
outputfile nlf5.out number none number number none 000
scale input minimum
2.0000 2.0000 0.000 1.5000
scale input maximum
98.000 98.000 96.000 19.500
scale output minimum
45.680
scale output maximum
554.17
statistics 83520 11670 58
weights 4 1 4 5 5 1
-1.6830 -3.2044 1.3186 -0.1604 -0.8976
-7.9998 -5.1952 -4.6116 -5.1224 -5.5262
-3.3516 -1.9562 -0.4174 -0.1970 1.9582
7.2766 0.5708 -2.2656 3.9482 0.8004
7.9994 6.5356 7.9994 4.3016 7.9994

1.4716 -7.9998 -4.6276 -0.4610 0.4430 -1.8644
7.3596 -4.3536 1.9686 -7.9998 -7.9998 -7.9998
-4.9430 0.0456 2.2070 3.2404 -2.6000 -0.9274
2.0272 -7.9998 -3.1106 -7.9998 -7.7506 -7.9998
2.6908 -0.8932 4.8906 -7.9998 -7.9998 -7.9998
5.6852 0.9166 -2.9240 4.2820 1.7166 -0.27 10

Figure B4 Trained BrainMaker File for Predicting Mean Cost Using Replications
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pIf5.net
input number 1 4
output number 1 1
hidden 5 5
filename trainfacts m lb.fct
filename testfacts m ld.tst
filename teststats pS.sta
filename trainstats p5.sts
leamrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learlayer 1.0000 1.0000 1.0000
traintol 0.0200 0.0200 0.8000 100
testtol 0.0200
maxruns 152
smoothing 0.9000 0.9000 0.9000
testruns 152
function hidden I sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input s d k w
dictionary output tc
outputfile plf5.out number none number number none 000
scale input minimum
2.0000 2.0000 0.000 1.5000
scale input maximum
98.000 98.000 96.000 19.500
scale output minimum
45.680
scale output maximum
554.17

statistics 21888 7266 152
weights 4 1 4 5 5 1
-7.9998 -4.9002 2.4908 -7.5008 1.1516
-6.0876 -5.6052 -5.1972 0.4470 -7.9998
-5.1606 -0.5892 -2.8364 -0.0016 3.6640
7.9994 2.2654-3.2764 7.9994 2.8010
7.9994 4.1814 7.9994 3.1772 7.9994

1.3756 -7.9998 -6.8974 -0.2350 -0.5386 -2.8802
5.2116 -2.1682 0.9246 -7.9998 -7.9998 -7.9998
-2.7630 0.0772 1.4322 2.9976 -2.5900 -0.9472
0.2592 -5.2496 -5.0276 -7.9998 -3.4742 -7.9998
2.6908 -0.9572 3.8272 -7.3514 -7.3996 -7.9998

3.5646 -0.1260 -2.9326 0.7674 -0.9014 0.0832
Figure B5 Trained BrainMaker File for Predicting Mean Cost Using Averages
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v I f.det
input number 14
output number 1 1
hidden 5 5
filename trainfacts v lf.fct
filename testfacts v .tst
filename trainstats v lf5.sts
filename teststats v I f5.sta
learnrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0020 0.0020 0.8000 100
testtol 0.0020
maxruns 750
smoothing 0.9000 0.9000 0.9000
testrunsk
functiontiddenl sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input s d k w
dictionary output var
scale input minimum
2.0000 2.0000 0.000 1.5000
scale input maximum
98.000 98.000 96.000 19.500
scale output minimum
-4.851
scale output maximum
53.816
statistics 0 0 0
weights 4 14 5 5 1
-2.3886 1.0226 -0.0402 -1.6250 -2.1146
0.8540 1.3142 1.7564 2.0830 -3.4422
-3.4214-1.1646 -2.8056 0.3094 1.3136
4.6552 -3.9432 -1.2824 3.2806 4.2112
1.5944 -2.4754 2.6724 1.6484 0.0960

1.3756 -3.2220 -1.9236 1.3374 0.9496 -1.3140
1.6766 1.1110 -0.9690 -0.4576 -0.8770 -1.4986

-4.7440 0.0316 0.8292 1.9126 -3.4686 -2.0884
2.0272 0.4896 0.7032 0.2432 5.2260 -1.1908
2.6908 -1.0842 1.8292 0.5574 0.5990 -2.8316

0.7232 -1.6782 -2.2422 1.4250 -0.3066 2.1650

Figure B6 Initial BrainMaker File for Predicting Variance (C)
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v I f5.net
input number 1 4
output number 11
hidden 5 5
filename trainfacts v lf.fct
filename testfacts v l.tst
filename trainstats v5.sts
filename teststats v5.sta
leamrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0020 0.0020 0.8000 100
testtol 0.0020
maxruns 545
smoothing 0.9000 0.9000 0.9000
testruns 545
function hidden 1 sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input s d k w
dictionary output var
outputfile v If5.out number none number number none 0 0 0
scale input minimum
2.0000 2.0000 0.000 1.5000
scale input maximum
98.000 98.000 96.000 19.500
scale output minimum
-4.851
scale output maximum
53.816
statistics 78480 69595 545
weights 4 1 4 5 5 1
-3.9144 -4.3062 -4.5060 -3.1040 -4.1776
-5.8854 -6.9462 -7.9994 -5.0092 -7.9994
7.9236 0.9502 -3.8764 7.9242 -1.1420
7.7452 0.7354 -4.4396 7.7452 0.2684
3.6664 -3.1624 -7.9994 1.7496 -7.9994

1.3756 -7.9994 -2.8502 2.2260 -0.9610 -2.8886
7.9994 1.3040-2.1364 1.5154 -2.8666 -3.3582
7.9994 7.9994 -2.2608 -3.1126 3.8222 0.0310
-7.9994 -7.9994 -0.6666 -2.4742 5.8654 -3.8292
2.6908 -0.8790 4.3396 -2.3684 1.0252 -6.1110

7.2670 6.7960 5.3484 7.2126 4.5642 -2.6802

Figure B7 Trained BrainMaker File for Predicting Variance (C)
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APPENDIX C

DEMONSTRATION PROBLEM ED RESULTS

Table CI ANN Training Data for Emergency Department
Simulation

ICBWT GCBWT LABT XRAYT T Var(T)

0 79 36 0 121.63 23.50
0 158 72 50 154.03 22.66
75 79 0 100 160.86 12.79
75 158 72 0 129.91 7.75
150 79 0 50 139.50 9.64
150 158 36 100 165.65 32.43
0 0 72 50 138.56 15.52
0 158 0 100 149.82 36.84

75 0 72 0 124.10 24.76
75 158 0 50 142.91 20.25
150 0 36 100 180.40 106.26
150 158 0 0 118.94 24.55
0 0 0 100 159.04 23.08
0 79 72 0 123.95 26.13

75 0 0 50 133.83 23.08
75 79 36 100 166.09 18.15
150 0 0 0 115.45 9.11
150 79 36 50 140.73 52.38
150 158 72 100 188.03 361.99
0 79 0 50 131.73 17.10
0 158 36 100 174.08 71.18

75 79 0 0 122.94 14.58
75 158 36 50 146.18 24.76
150 0 72 100 177.57 65.93
150 158 36 0 129.26 18.99
0 0 36 100 154.61 19.62
0 158 0 0 117.20 11.32

75 0 36 50 142.55 13.95
75 79 72 100 164.27 22.03
150 0 36 0 119.23 12.89
150 79 72 50 151.27 45.87
0 0 0 0 110.51 11.21
0 79 36 50 144.73 60.47
0 158 72 100 163.40 36.84

75 79 36 0 119.38 7.75
75 158 72 50 153.37 130.94
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Table CI(Continued) ANN Training Data for Emergency Department
Simulation
ICBWT GCBWT LABT XRAYT T Var(T)

150 79 0 100 167.83 31.90
150 158 72 0 131.87 45.03
0 0 72 100 157.37 12.79
0 158 36 0 114.94 10.06
75 0 72 50 142.04 19.93
75 158 0 100 172.05 18.36
150 0 72 0 133.25 43.88
150 158 0 50 138.34 17.20
0 0 36 0 115.60 17.83
0 79 72 50 147.56 25.81
75 0 0 too 151.27 23.19

75 79 72 0 130.71 12.37
150 0 0 50 145.09 41.25
150 79 36 100 175.17 52.91
75 79 36 50 153.88 51.23
0 79 0 100 166.38 53.64
0 158 72 0 131.36 8.06
75 79 0 50 137.83 15.00
75 158 36 100 168.85 48.50
150 79 0 0 113.64 6.59
150 158 36 50 143.13 12.47
0 0 72 0 117.71 9.74
0 158 0 50 144.29 11.74

75 0 36 100 158.90 38.94
75 158 0 0 114.15 8.06
150 0 36 50 138.05 9.22
150 79 72 100 175.46 32.01
0 0 0 50 135.87 27.70
0 79 36 100 168.70 31.69
75 0 0 0 112.18 16.05
150 0 72 50 145.53 14.58
75 158 72 100 171.97 25.18
150 79 36 0 124.03 3.44
150 158 72 50 152.94 7.33
0 79 0 0 111.97 9.43
0 158 36 50 139.94 22.35
75 0 72 100 167.18 46.61
75 158 36 0 118.21 4.91
75 0 36 0 114.00 12.26
150 158 0 100 178.73 85.47
0 0 36 50 135.50 20.56
0 79 72 100 164.27 13.84

150 0 0 100 161.73 72.34
75 79 72 50 142.70 20.88
150 79 72 0 128.89 14.58
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Table C2 ANN Testing Data for Emergency Department Simulation
ICBWT GCBWT LABT XRAYT T Var(T)

12 12.64 5.76 8 115.3 10.16
12 12.64 5.76 92 152.7 35.47
12 12.64 66.24 8 123.8 16.15
12 12.64 66.24 92 161.8 72.86
12 145.36 5.76 8 119.6 11.84
12 145.36 5.76 92 157 27.28
12 145.36 66.24 8 128.8 17.62
12 145.36 66.24 92 169.5 57.32
138 12.64 5.76 8 119.5 12.26
138 12.64 5.76 92 156.5 24.44
138 12.64 66.24 8 128.2 11.73
138 12.64 66.24 92 165.7 44.4
138 145.36 5.76 8 124.8 12.47
138 145.36 5.76 92 164 46.29
138 145.36 66.24 8 132.8 13.73
138 145.36 66.24 92 180.6 97.96

24.75 26.07 11.88 16.5 118.8 11.63
24.75 26.07 11.88 83.5 150.4 27.8
24.75 26.07 60.12 16.5 126.2 13.73
24.75 26.07 60.12 83.5 154.9 25.49
24.75 131.93 11.88 16.5 124.9 16.46
24.75 131.93 11.88 83.5 158.3 57.11
24.75 131.93 60.12 16.5 129.6 15.83
24.75 131.93 60.12 83.5 162.6 55.84
125.25 26.07 11.88 16.5 123.3 17.62
125.25 26.07 11.88 83.5 155.9 39.04
125.25 26.07 60.12 16.5 129.9 12.15
125.25 26.07 60.12 83.5 163 40.93
125.25 131.93 11.88 16.5 127.4 13.42
125.25 131.93 11.88 83.5 162.5 29.8
125.25 131.93 60.12 16.5 136.3 18.25
125.25 131.93 60.12 83.5 170 45.97

37.5 39.5 18 25 125.5 17.41
37.5 39.5 18 75 152.2 28.33
37.5 39.5 54 25 129.6 17.93
37.5 39.5 54 75 153 38.31
37.5 118.5 18 25 129.3 17.72
37.5 118.5 18 75 150.6 32.21
37.5 118.5 54 25 134.3 20.14
37.5 118.5 54 75 159.3 34.74
112.5 39.5 18 25 129.1 18.04
112.5 39.5 18 75 150.1 29.9
112.5 39.5 54 25 132 14.78
112.5 39.5 54 75 157 33.89
112.5 118.5 18 25 130.7 18.88
112.5 118.5 18 75 155.8 61.73
112.5 118.5 54 25 136.7 26.86
112.5 118.5 54 75 161 44.71
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Table C2(Continued) ANN Testing Data for Emergency Department
Simulation

ICBWT GCBWT LABT XRAYT T Var(T)
50.25 52.93 24.12 33.5 132.2 11.94
50.25 52.93 24.12 66.5 145 19.93
50.25 52.93 47.88 33.5 136.4 24.65
50.25 52.93 47.88 66.5 151.9 25.91
50.25 105.07 24.12 33.5 135.2 21.5
50.25 105.07 24.12 66.5 148.2 17.72
50.25 105.07 47.88 33.5 136.5 19.51
50.25 105.07 47.88 66.5 154 34.31
99.75 52.93 24.12 33.5 134.8 22.13
99.75 52.93 24.12 66.5 148.2 42.3
99.75 52.93 47.88 33.5 135.8 15.52
99.75 52.93 47.88 66.5 154.5 34.84
99.75 105.07 24.12 33.5 135.2 15.94
99.75 105.07 24.12 66.5 152 39.15
99.75 105.07 47.88 33.5 140.3 25.18
99.75 105.07 47.88 66.5 153.1 20.98

63 66.36 30.24 42 140.2 22.24
63 66.36 30.24 58 148.1 39.15
63 66.36 41.76 42 139.5 25.6
63 66.36 41.76 58 146.2 22.55
63 91.64 30.24 42 140.4 24.23
63 91.64 30.24 58 145.1 23.18
63 91.64 41.76 42 139.4 14.68
63 91.64 41.76 58 147.1 20.87
87 66.36 30.24 42 138.7 23.39
87 66.36 30.24 58 146.4 26.86
87 66.36 41.76 42 141.8 29.8
87 66.36 41.76 58 149.4 27.7
87 91.64 30.24 42 136.6 22.24
87 91.64 30.24 58 144.8 32.32
87 91.64 41.76 42 140 20.87
87 91.64 41.76 58 151.8 30.22
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input number 1 4
output number 1 1
hidden 4 4

filename trainfacts ee.fct
filename tesffacts ed.tst
filename trainstats fee.sts
filename teststats fee.sta
leamrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0020 0.0020 0.8000 100
testtol 0.0020
maxruns 1000
smoothing 0.9000 0.9000 0.9000
testruns 1
function hiddenl sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input int gen lab xray
dictionary output time

display network progress
scale input minimum
0.0000 0.0000 0.000 0.0000
scale input maximum
150.000 158.000 72.000 100.000
scale output minimum
102.72
scale output maximum
195.76
statistics 0 0 0
weights 4 1 444 1
-3.8554 -0.4276 -0.3262 0.9382 -0.8782
3.7434 1.4926 -3.1036 2.8272 -1.2676

-0.3316 -3.0782 -1.7292 0.1736 -0.7512
2.7450 4.5422 -4.1044 -0.1690 -2.7670

-0.4850 1.8116 0.0434 0.2844 -1.9114
-0.6790 -0.2360 -2.7194 0.7742 -2.0874
-2.1076 -0.5446 0.3944 -2.8502 1.2972
1.4124 2.2090 0.0920 -2.0208 5.7212

-5.1514 2.1156 1.7940-3.9106 1.7380

Figure CI Initial Brainmaker File for Predicting Mean Time in the ED(T) Using
Averages (PM 1)
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input number 1 4
output number 11
hidden 4 4

filename trainfacts ee.fct
filename testfacts ee.tst
filename trainstats fee.sts
filename teststats fee.sta
leamrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0020 0.0020 0.8000 100
testtol 0.0020
maxruns 870
smoothing 0.9000 0.9000 0.9000
testruns 870
function hidden 1 sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input int gen lab xray
dictionary output time
outputfile feetst.out number none number number none 0 0 0
scale input minimum
0.000 0.000 0.000 0.000
scale input maximum
150.00 158.00 72.000 100.00
scale output minimum
102.72
scale output maximum
195.76
statistics 70470 68283 870
weights4 1 444 1
-5.2926-1.4212 7.8330-5.3380 1.3412
7.9994 6.9524 7.9994 6.9524 4.7766

-0.1862 -0.2516 -0.9108 -3.1192 1.6252
7.9994 7.9994 0.3682 5.4096 -6.5080

-0.2046 -0.5696 3.7282 -0.2874 -2.4508
-0.2704 0.8236 -5.2504 1.0544 -2.6404
-1.6120 1.5260 1.7024-1.8156 1.0020
7.9994 6.4254 -1.4096 -3.5294 7.9994

-4.6394 5.6714 0.6206-2.5634 2.0570

Figure C2 Trained Brainmaker File for Predicting Mean Time in the ED(T) Using
Averages (PM 1)
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input number 1 4
output number 1 1
hidden 4 4

filename trainfacts ed.fct
filename testfacts ed.tst
filename trainstats fed.sts
filename teststats fed.sta

leamrate 1.000050 1.0000 75 1.000090 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0020 0.0020 0.8000 100
testtol 0.0020
maxruns 1000
smoothing 0.9000 0.9000 0.9000
testruns 1
function hidden 1 sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input int gen lab xray
dictionary output time
display network progress
scale input minimum
0.0000 0.0000 0.000 0.0000
scale input maximum
150.000 158.000 72.000 100.000
scale output minimum
69.01
scale output maximum
366.57
statistics 0 0 0
weights 4 1 4 44 1
-3.8554 -0.4276 -0.3262 0.9382 -0.8782
3.7434 1.4926 -3.1036 2.8272 -1.2676

-0.3316 -3.0782 -1.7292 0.1736 -0.7512
2.7450 4.5422 -4.1044 -0.1690 -2.7670

-0.4850 1.8116 0.0434 0.2844 -1.9114
-0.6790 -0.2360 -2.7194 0.7742 -2.0874
-2.1076 -0.5446 0.3944 -2.8502 1.2972
1.4124 2.2090 0.0920-2.0208 5.7212

-5.1514 2.1156 1.7940-3.9106 1.7380

Figure C3 Initial Brainmaker File for Predicting Mean Time in the ED(T) Using
Individual Replications (PM 4)
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input number 1 4
output number I I
hidden 4 4

filename trainfacts ed.fct
filename testfacts ed.tst
filename trainstats fed.sts
filename teststats fed.sta
leamrate 1.0000 50 1.000( 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0020 0.0020 0.8000 1(0
testtol 0.0020
maxruns 259
smoothing 0.9000 0.9000 0.9000
tesruns 259
function hiddeni sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input int gen lab xray
dictionary output time
outputfile fedtst.out number none number number none 0 0 0
scale input minimum
0.000 0.000 0.000 0.000
scale input maximum
150.00 158.00 72.000 100.00
scale output minimum
69.010
scale output maximum
366.57
statistics 209790 202263 259
weigh. 414441
1.6934 0.7606 0.3350 3.9244 -7.8650

-0.0602 -0.1542 -0.3926 -1.3950 0.5232
-7.9690 -7.9422 -7.3934 -5.2976 -7.9124
7.9994 7.9994 7.9994 7.9994 7.9994

-7.9998 5.0866 7.9994 0.9876 -4.0502
-0.0772 -0.4270 7.9994 0.6944 -2.4110
7.9994 7.9994-7.9998 7.9994 7.9994
-7.9998 -7.9940 -4.9252 0.6434 6.3642

-2.9682 1.5146 0.8182-3.3974 1.8776

Figure C4 Trained Brainmaker File for Predicting Mean Time in the ED( T) Using
Individual Replications (PM 4)
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input number 1 4
output number 11
hidden 7 7

filename trainfacts ef.fct
filename testfacts ef.tst
filename trainstats fef.sts
filename teststats fef.sta
leamrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.002 0.002 0.8000 100
testtol 0.002
maxruns 5000
smoothing 0.9000 0.9000 0.9000
testruns I

function hiddenl sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000
dictionary input int gen lab xray
dictionary output time
display network progress
scale input minimum
0.000 0.000 0.000 0.000
scale input maximum
150.00 158.00 72.000 100.00
scale output minimum
-32.41
scale output maximum
397.77
statistics 0 0 0
Figure CS Initial Brainmaker File for Predicting Variance of Mean Time in the ED



214

weights 4 1 4 7 7 1
-1.2012 0.4802 2.3716 2.4470-3.4860
-0.2486 0.1782 0.5914 -3.0934 0.2502
4.4116 -5.2132 -1.1560 -0.7960 2.2680
3.0090 -2.0234 1.7990 0.0904 2.0090
0.1612-1.1664 1.0076 3.3370 1.3286
-1.9856 -1.7714 -0.3244 -1.3322 -0.6422
-2.6060 -3.8554 -0.4276 -0.3262 0.9382

-0.6940 2.9596 1.1802 -2.4536 2.2350 -1.0024 -0.2620 -2.4334
-1.3670 0.1374 -0.5940 2.1702 3.5910-3.2446-0.1334-2.1874
-0.3834 1.4320 0.0342 0.2250 -1.5112 -0.5366 -0.1864 -2.1500
0.6122 -1.6502 -1.6662 -0.4304 0.3116 -2.2530 1.0256 1.1166
1.7462 0.0726 -1.5974 4.5234 -4.0726 1.6724 1.4184 -3.0916
1.3740 -1.8884 0.8086 -0.0316 -1.2844 -1.6716 0.6752 1.0392
1.3886 1.6466 -2.7212 -2.7050 -0.9208 -2.2182 0.2442 1.0386

3.6804 -3.1176 -1.0140 2.5936 3.3296 1.2604 -1.9570 2.1126

Figure C5 (Continued) Initial Brainmaker File for Predicting Variance of Mean
Time in the ED



215

input number 1 4
output number 11
hidden 7 7

filename trainfacts ef.fct
filename testfacts ef.tst
filename trainstats fef.sts
filename teststats fef.sta

leamrate 1.0000 50 1.0000 75 1.0000 90 1.0000
learnlayer 1.0000 1.0000 1.0000
traintol 0.0020 0.0020 0.8000 100
testtol 0.0020
maxruns 4853
smoothing 0.9000 0.9000 0.9000
testruns 4853

function hidden I sigmoid 0.0000 1.0000 0.0000 1.0000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.0000
function output sigmoid 0.0000 1.0000 0.0000 1.0000

dictionary input int gen lab xray

dictionary output time

outputfile feftst.out number none number number none 0 0 0
scale input minimum
0.000 0.000 0.000 0.000
scale input maximum
150.00 158.00 72.000 100.00
scale output minimum
-32.41
scale output maximum
397.77

statistics 393093 374111 4853
Figure C6 Trained Brainmaker File for Predicting Variance of Mean Time in the
ED
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weights 4 1 4 7 7 1
2.2360 5.3342 -2.8830 -6.9680 -1.8690
1.8732 2.6390 1.9072 2.6022-5.3666
3.4466 7.8924 0.4372 6.9984 -2.0466

-3.4256 -0.4492 -1.3308 -4.3000 7.4470
1.2484 -7.1686 -5.9622 1.7134 6.9882

-4.5916 -0.1308 3.7824 -0.0594 -3.5102
-0.4242 -0.7612 -1.5626 0.2506 -4.0252

4.7486 -7.9998 5.3914 7.9762 5.9512 3.2930 7.9994 -5.2494
-7.9998 7.9994 7.9994 7.9994 7.9994 -1.9152 -7.9998 7.9994
-2.7824 1.4506 3.5470 -6.3616 -1.5336 -1.6094 -7.9998 -4.3030
-2.3386 -6.4708 1.5282 -7.8610 -1.4908 0.7952 -7.9998 3.1206
-3.9562 -0.9952 1.4812 1.9042 1.2824-5.0970 -7.9998 -7.4362
-2.1220 5.9312 0.8676 0.0552 -1.6574 -2.9076 -7.9998 -5.9224
1.4394 -5.6340 -5.3506 -6.3652 -7.9998 5.2662 7.9994 -4.5742

4.4466 0.2182 7.3350 7.4608 7.9994 7.4916 -7.9998 -6.8534
Figure C6 (Continued) Trained Brainmaker File for Predicting Variance of Mean
Time in the ED
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Table C3 ANN Test Set Results for Mean Time in the ED (T)
Input Parameters Direct Simulation ANN

ICBWT GCBWT LABT XRAYT SIM100 Sim 1 Sim 2 PM 1 PM 4
12 12.64 5.76 8 115.3 118.72 117.84 117.4 114.8
12 12.64 5.76 92 152.7 154.04 151.76 152.6 154.6
12 12.64 66.24 8 123.8 120.20 118.31 124.5 121.6
12 12.64 66.24 92 161.8 159.06 166.63 160.3 162.9
12 145.36 5.76 8 119.6 118.18 122.34 120 118.8
12 145.36 5.76 92 157 155.83 157.39 158.3 159
12 145.36 66.24 8 128.8 133.93 138.41 128.4 124.6
12 145.36 66.24 92 169.5 166.83 169.79 165.2 166.7

138 12.64 5.76 8 119.5 121.13 124.58 119 119.9
138 12.64 5.76 92 156.5 169.53 156.79 163.6 160.6
138 12.64 66.24 8 128.2 122.43 125.99 126.7 126.1
138 12.64 66.24 92 165.7 176.64 173.37 170.5 168
138 145.36 5.76 8 124.8 126.38 128.06 122.2 122.8
138 145.36 5.76 92 164 159.44 170.53 173.2 164.5
138 145.36 66.24 8 132.8 140.13 135.47 131.4 129.9
138 145.36 66.24 92 180.6 182.43 186.43 178.2 171.1

24.75 26.07 11.88 16.5 118.8 115.49 122.28 120.8 119.9
24.75 26.07 11.88 83.5 150.4 158.70 148.85 150.6 152.1
24.75 26.07 60.12 16.5 126.2 125.36 126.55 127.5 124.9
24.75 26.07 60.12 83.5 154.9 158.22 157.56 157.2 159.1
24.75 131.93 11.88 16.5 124.9 136.26 118.45 123.4 122.4
24.75 131.93 11.88 83.5 158.3 153.60 153.14 155.2 155.8
24.75 131.93 60.12 16.5 129.6 124.64 136.11 130.9 127.7
24.75 131.93 60.12 83.5 162.6 159.19 155.57 161.3 162.4
125.25 26.07 11.88 16.5 123.3 126.16 123.67 122.5 123.3
125.25 26.07 11.88 83.5 155.9 157.85 159.36 158.3 157.1
125.25 26.07 60.12 16.5 129.9 127.92 136.58 129.6 128.9
125.25 26.07 60.12 83.5 163 156.84 153.56 164.7 163.6
125.25 131.93 11.88 16.5 127.4 129.39 132.74 125.7 125.9
125.25 131.93 11.88 83.5 162.5 157.09 156.65 165.4 160.4
125.25 131.93 60.12 16.5 136.3 131.54 137.29 133.6 132.2
125.25 131.93 60.12 83.5 170 163.01 164.19 170.8 166.6
37.5 39.5 18 25 125.5 128.98 125.14 125.1 124.3
37.5 39.5 18 75 152.2 141.98 147.15 148.7 149.6
37.5 39.5 54 25 129.6 132.68 131.72 130.8 128.6
37.5 39.5 54 75 153 150.53 149.95 154 154.9
37.5 118.5 18 25 129.3 129.39 127.38 127.5 126.5
37.5 118.5 18 75 150.6 148.51 160.40 152 152.3
37.5 118.5 54 25 134.3 132.82 128.36 133.6 130.9
37.5 118.5 54 75 159.3 166.34 151.87 157.1 157.6
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Table C3(Continued) ANN Test Set Results for Mean Time in the ED (T)
Input Parameters Direct Simulation ANN

ICBWT GCBWT LABT XRAYT SIM100 Sim 1 Sim 2 PM I PM 4
112.5 39.5 18 25 129.1 128.46 131.74 126.7 127.2
112.5 39.5 18 75 150.1 150.60 155.34 153.7 153.3
112.5 39.5 54 25 132 134.01 131.71 132.8 131.9
112.5 39.5 54 75 157 151.49 148.36 158.9 158.6
112.5 118.5 18 25 130.7 132.41 136.47 129.6 129.5
112.5 118.5 18 75 155.8 165.01 153.81 158.3 156.1
112.5 118.5 54 25 136.7 135.96 135.07 135.8 134.4
112.5 118.5 54 75 161 163.55 153.65 163.2 161.1
50.25 52.93 24.12 33.5 132.2 133.54 129.80 130.4 129.5
50.25 52.93 24.12 66.5 145 149.60 148.53 146.6 146.9
50.25 52.93 47.88 33.5 136.4 128.95 139.64 134.4 132.8
50.25 52.93 47.88 66.5 151.9 145.93 157.41 150.4 150.6
50.25 105.07 24.12 33.5 135.2 128.61 136.85 132.3 131.2
50.25 105.07 24.12 66.5 148.2 139.05 137.91 148.8 148.8
50.25 105.07 47.88 33.5 136.5 131.65 147.71 136.3 134.4
50.25 105.07 47.88 66.5 154 147.45 157.15 152.5 152.5
99.75 52.93 24.12 33.5 134.8 140.00 135.41 131.9 131.8
99.75 52.93 24.12 66.5 148.2 145.18 146.61 149.4 149.6
99.75 52.93 47.88 33.5 135.8 134.08 142.91 135.9 135.2
99.75 52.93 47.88 66.5 154.5 150.92 157.50 153.2 153.2
99.75 105.07 24.12 33.5 135.2 147.06 141.10 133.9 133.4
99.75 105.07 24.12 66.5 152 148.09 146.73 152.1 151.3
99.75 105.07 47.88 33.5 140.3 136.64 150.72 138 136.9
99.75 105.07 47.88 66.5 153.1 151.78 162.78 155.7 154.9

63 66.36 30.24 42 140.2 135.60 139.67 136.4 135.6
63 66.36 30.24 58 148.1 151.29 159.34 144.4 144.3
63 66.36 41.76 42 139.5 141.03 142.72 138.3 137.3
63 66.36 41.76 58 146.2 148.93 145.67 146.4 146.1
63 91.64 30.24 42 140.4 132.58 142.12 137.3 136.5
63 91.64 30.24 58 145.1 137.93 147.58 145.5 145.2
63 91.64 41.76 42 139.4 142.40 135.70 139.2 138.1
63 91.64 41.76 58 147.1 152.47 142.56 147.4 146.9
87 66.36 30.24 42 138.7 137.70 138.53 137.2 136.8
87 66.36 30.24 58 146.4 155.15 145.32 145.6 145.6
87 66.36 41.76 42 141.8 148.54 140.33 139.2 138.4
87 66.36 41.76 58 149.4 148.85 144.07 147.6 147.3
87 91.64 30.24 42 136.6 148.30 130.09 138.2 137.6
87 91.64 30.24 58 144.8 148.13 146.34 146.8 146.4
87 91.64 41.76 42 140 142.01 143.44 140.2 139.5
87 91.64 41.76 58 151.8 148.60 146.93 148.7 148.3
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Table C4 ANN Test Set Results for Variance of Mean Time in ED (Var(T))
Input Parameters Direct Simulation ANN

ICBWT GCBWT LABT XRAYT SIM100 Sim I Sim 2
12 12.64 5.76 8 10.16 11.11 11.68 15.62
12 12.64 5.76 92 35.47 104.48 26.42 27.80
12 12.64 66.24 8 16.15 18.97 5.54 13.52
12 12.64 66.24 92 72.86 59.98 54.75 14.68
12 145.36 5.76 8 11.84 5.21 5.77 11.63
12 145.36 5.76 92 27.28 9.64 38.79 24.65
12 145.36 66.24 8 17.62 19.21 29.97 13.10
12 145.36 66.24 92 57.32 52.97 55.70 58.79
138 12.64 5.76 8 12.26 9.22 27.05 14.15
138 12.64 5.76 92 24.44 85.62 25.04 35.79
138 12.64 66.24 8 11.73 16.51 11.11 22.03
138 12.64 66.24 92 44.4 114.29 25.55 55.21
138 145.36 5.76 8 12.47 37.84 17.26 11.63
138 145.36 5.76 92 46.29 32.32 74.07 48.18
138 145.36 66.24 8 13.73 20.42 11.41 28.33
138 145.36 66.24 92 97.96 77.32 133.74 193.00

24.75 26.07 11.88 16.5 11.63 4.35 7.31 20.03
24.75 26.07 11.88 83.5 27.8 40.83 25.76 27.70
24.75 26.07 60.12 16.5 13.73 7.65 8.50 16.15
24.75 26.07 60.12 83.5 25.49 13.59 27.88 16.67
24.75 131.93 11.88 16.5 16.46 17.21 6.56 11.94
24.75 131.93 11.88 83.5 57.11 11.82 30.98 24.02
24.75 131.93 60.12 16.5 15.83 9.93 24.52 14.89
24.75 131.93 60.12 83.5 55.84 4.26 26.52 68.03
125.25 26.07 11.88 16.5 17.62 30.32 9.7,2 16.67
125.25 26.07 11.88 83.5 39.04 61.49 23.61 27.17
125.25 26.07 60.12 16.5 12.15 3.94 17.01 22.55
125.25 26.07 60.12 83.5 40.93 56.25 9.12 37.89
125.25 131.93 11.88 16.5 13.42 15.72 34.68 11.63
125.25 131.93 11.88 83.5 29.8 11.18 25.05 37.99
125.25 131.93 60.12 16.5 18.25 24.50 11.10 25.60
125.25 131.93 60.12 83.5 45.97 29.13 86.56 16.99
37.5 39.5 18 25 17.41 17.10 7.01 23.92
37.5 39.5 18 75 28.33 7.24 29.70 27.28
37.5 39.5 54 25 17.93 10.17 9.66 19.61
37.5 39.5 54 75 38.31 14.35 39.81 19.61
37.5 118.5 18 25 17.72 8.94 19.44 12.78
37.5 118.5 18 75 32.21 19.86 38.38 23.50
37.5 118.5 54 25 20.14 8.00 6.54 17.30
37.5 118.5 54 75 34.74 43.39 39.53 52.38
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Table C4(Continued) ANN Test Set Results for Variance of Mean
Time in ED (Var(T))

Input Parameters Direct Simulation ANN
ICBWT GCBWT LABT XRAYT SIM100 Sim 1 Sim 2

112.5 39.5 18 25 18.04 18.28 8.55 19.40
112.5 39.5 18 75 29.9 13.13 24.25 25.18
112.5 39.5 54 25 14.78 13.81 12.96 22.76
112.5 39.5 54 75 33.89 12.64 10.80 28.64
112.5 118.5 18 25 18.88 10.23 27.18 11.94
112.5 118.5 18 75 61.73 103.70 26.81 29.38
112.5 118.5 54 25 26.86 15.95 13.04 23.60
112.5 118.5 54 75 44.71 43.59 17.59 46.60
50.25 52.93 24.12 33.5 11.94 12.14 13.84 24.86
50.25 52.93 24.12 66.5 19.93 21.64 20.90 26.54
50.25 52.93 47.88 33.5 24.65 13.23 12.51 21.92
50.25 52.93 47.88 66.5 25.91 12.92 100.66 22.13
50.25 105.07 24.12 33.5 21.5 9.50 20.79 15.73
50.25 105.07 24.12 66.5 17.72 9.68 20.77 23.29
50.25 105.07 47.88 33.5 19.51 10.31 39.66 18.77
50.25 105.07 47.88 66.5 34.31 11.60 19.78 31.37
99.75 52.93 24.12 33.5 22.13 9.19 12.47 21.71
99.75 52.93 24.12 66.5 42.3 31.18 17.73 24.97
99.75 52.93 47.88 33.5 15.52 7.75 65.31 22.66
99.75 52.93 47.88 66.5 34.84 39.34 54.84 25.60
99.75 105.07 24.12 33.5 15.94 21.31 17.10 13.84
99.75 105.07 24.12 66.5 39.15 12.71 14.17 24.86
99.75 105.07 47.88 33.5 25.18 12.47 39.05 21.29
99.75 105.07 47.88 66.5 20.98 20.04 53.79 53.95

63 66.36 30.24 42 22.24 25.02 18.76 23.92
63 66.36 30.24 58 39.15 38.49 86.18 24.97
63 66.36 41.76 42 25.6 19.53 19.75 22.66
63 66.36 41.76 58 22.55 14.63 11.69 23.50
63 91.64 30.24 42 24.23 4.99 19.72 19.93
63 91.64 30.24 58 23.18 16.22 21.60 22.97
63 91.64 41.76 42 14.68 11.22 14.48 20.45
63 91.64 41.76 58 20.87 9.09 13.55 23.71
87 66.36 30.24 42 23.39 15.04 12.92 22.87
87 66.36 30.24 58 26.86 84.82 17.91 24.44
87 66.36 41.76 42 29.8 43.30 26.79 22.87
87 66.36 41.76 58 27.7 20.80 24.97 24.34
87 91.64 30.24 42 22.24 18.80 9.53 18.98
87 91.64 30.24 58 32.32 76.16 21.29 23.18
87 91.64 41.76 42 20.87 23.87 30.68 20.77
87 91.64 41.76 58 30.22 16.28 12.78 26.23
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