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NOMENCLATURE
iBold type indicates a vector.)
C = Cost
GCBWT = General Care Bed Wait Time
ICBWT = Intensive Care Bed Wait Time
LABT = Laboratory Time
n = Number of replications of the computer simulation.

PM = Presentation Metho

Sy; = Standard deviation of Y,
Sty = Value of standard deviation of Y;; predicted for X;.

T

Time

X

Generic input parameter setting of the simulation.
Xj = A particular input parameter setting, i.

XRAYT = X-Ray Time

Y = Generic simulation output measure,

Y, = Simulation output measures. corresponding to Xj.
Y

ij = Jth element of the simulation output measures Yj.

Yij = Value of Y;; predicted for X;.




1.0 INTRODUCTION

1.1 Problem Statement

The interactions and relationships among components of most real world systems
are too numerous and complex for a human to recognize, much less understand. Thus,
simplifications or approximations of systems, called models, are used to examine problems
associated with the design, operation. maintenance, or modification of systems. Many of
these models are implemented as computer simulations that accurately reflect much of the
detailed interactions and activities of the components of the system. Essentially these
computer simulations are mechanisms for converting system input parameters into output

- (1\*
measures.t -t/

According to Box and Draper, there are two basic approaches to building a model
of a system: mechanistic and empirical.(® In the mechanistic approach, enough is known
about the system to develop an explicit representation that tries to mimic its operation or
processes. When the necessary information of the physical mechanism of the system is not
known, then an empirical model that relies only on the observations of the inputs and
outputs of the system can be constructed if there is enough observational data on the real
system. For large, complex systems it is usually necessary to combine both approaches in
order to realistically model the system. The development and use of both types of
modeling approaches are depicted in Figure 1. As can be seen in Figure 1, the main
difference between the two approaches is in the creation or development of the model,

rather than the operation of the completed models.

*Parenthetical references placed superior to the line of text refer to the bibliography.




Development of the model.

SYBTEM

MODEL
OUTRPUT

EMPIRICAL
MODEL

SYSTEM OQUTPUT

USED WHEN OPERATING THE MODEL
Figure 1 Mechanistic and Empirical Modeling Approaches

Mechanistic models are generally preferred over empirical models because of the
clear and apparent connections to the real system. However, a major drawback to many
mechanistic models is that they can be extremely slow to operate, thus requiring

tremendous amounts of computer resources.

Consider a fairly common situation where a slow but accurate mechanistic
computer simulation model of the system exists and there is very little observational data
of the real system. One approach to resolving this situation would be to build an empirical
model using the data from the real system. However the lack of real system data would
probably produce a poor empirical model. Another approach would be to take advantage
of the existing mechanistic computer simulation to obtain data for use in developing an
accurate and fast operating empirical model. In this approach the empirical model is
actually a metamodel (i.e., a model of the computer simulation model), rather than a direct

model of the system.




For more than twenty years, metamodels based primarily on response surface
techniques, have been used to examine computer simulations. Most response surface
methods currently use linear regression to build empirical models of computer
simulations.(}) The central idea of this research is to use Artificial Neural Networks
(ANN) to construct the empirical model of the computer simulation, since ANN are
essentially capable of performing non-parametric, nonlinear regression.*)  Figure 2
shows the metamodeling approach and terminology for the regression and ANN empirical

models.

First, obtain simulation data ...

MECHANISTIC
COMPUTER

Qutput
SIMULATION

then, develop an empirical model using observed simulation data.

Simulation independent l
Input = Variable EMPIRICAL
C—"—>( REGRESSION Predicted Value
Simulation Dependent MODEL
Output = Variable

EEmTTTT

Simulation .
Input Stimulus EMPIRICAL
ANN Response
Simulation MODEL
Output -  Target

Figure 2 Constructing Metamodels of Computer Simulations

While beyond the scope of this dissertation, the ultimate goal is to use ANN
approximations in lieu of mechanistic computer simulations in performing such complex
and time consuming advanced tasks as simulation 'optimization,’ sensitivity analysis. and

simulation aggregation/reduction. In order to attain this goal, it is necessary to study and




understand the limitations and strengths of ANN approximations to perform the most
elementary, yet fundamental, tasks of simulation. Computer simulations are used to

perform the following basic tasks:

To predict the output measure of a system for a given input parameter setting.

To determine the output measure's average value and variance for a given input
parameter setting.

To determine if the output measure for a given input parameter setting is
significantly different than a specified value of interest to a decision maker.

To determine sensitivity of the output measure to change in the input parameters.

The problem that this dissertation addresses is how to perform these basic
simulation tasks with ANN approximations of a computer simulation rather than
performing these tasks directly with the computer simulation. This dissertation provides
the foundation for using ANN approximations of a computer simulation to perform

advanced simulation tasks.

1.2 Importance of Computer Simulation

Computer simulation has been identified in surveys as the most widely used tool of
industrial engineers and management scientists (3> Computer simulation has several
advantages over other techniques for examining systems. Often computer simulation is
the only means for examining a real world system. Sometimes, this is due to the size and
complexity of the system, since some systems cannot be accurately represented by an
analytical mathematical model. On other occasions, this is due to the fact that the system

does not exist or the conditions under which the system will operate are too dangerous,




costly or infrequent to permit direct experimencation with the system. Examples include
the United States space station, conducting nuclear war, and designing the tunnel under
the English Channel between England and France. Other advantages of simulation include
the ability to have complete control over the experimental conditions and to study system

operation over long time horizons.\®

There are a wide variety of application areas such as the military, service
industries, manufacturing organizations, and transportation companies throughout the
world that make extensive use of computer simulations. For example in the military,
computer simulations are used to conduct training for individual soldiers in tanks and
aircraft, examine operation plans and force structures. as well as to evaluate future
weapons systems.(7) The main reason these computer simulations are being used is that
they provide realistic results and, in many cases, provide them at a lower cost than

alternative approaches.

1.3 Problems with Computer Simulations

Simulation models often are expensive to develop and use, in terms of personnel,
time, and other resources. Sometimes too much confidence is placed on the results of a
computer simulation simply because these results were produced by a large, very detailed
computer program. Computer simulation models also have the opposite type of problem:
the results are not accepted because decision makers consider the large, detailed computer
program to be a 'black box.' Additionally proper interpretation of computer simulation

output usually requires training and experience in using statistical methods to prevent




people from doing such things as interpreting the results of one replication of a stochastic

simulation as being ‘the answer."®)

Simulation is typically considered a 'means of last resort’ due to the cost of
building, verifying, validating, and using siinulation models. Hillier and Lieberman
succinctly state: "... simulation is 4 slow and costly way to study a problem."* The longer
it takes to run a computer simulation on a particular computer platform, the more difficult
it is to perform the necessary checks involved with verifying and validating the computer
simulation. Another problem is that these simulations can grow so large that they exceed
the memory capacity of the computers, or the commercial modeling languages. that are
available to the users of the simulation. Even after expending the resources to obtain a
valid model, slow response time or large memory requirements, caused by the complexity
of the computer simulation, can prevent, or seriously impede, such activities as performing
quick turn-around studies, sensitivity analyses, model aggregation, and simulation

‘cptimization’.

1.4 Need for Better Approximations to Computer Simulation Models

For more than 30 years, computer simulation medels have been used to predict
how systems would perform under certain conditions. Many of these models have been
accepted as valid representations of the underlying system because the model accurately
reflects the behavior of the system as it operates over time. Over the past several years. in
combination with response surface methods, these models have also been used, not only to

predict the behavior of a system for a given set of input parameters. but also to prescribe




the input parameter settings that would result in good or ‘optimal’ output values of the

model with respect to the particular problem of concern.

However, because of the detailed information that is necessary for precise
prediction over time, it is difficult to find 'optimal’ solutions to these predictive models.
What makes it so difficult to 'optimize’ a predictive model is that they are usually
computationally expensive and have a very large number of possible solutions in the input
parameter space. In 1989, Jacobson and Schruben state that "Although there has been a
significant amount of research in the area (simulation optimization), no general approach
has been developed into an efficient and practical algorithm."(9 This situation still holds
five years later. Thus, there is a need to reduce the computational burden of computer
simulations to permit identification of good solutions for designing, operating, and

maintaining large, complex systems.

Typically, computer simulation 'optimization’ is currently conducted through
response surface methodologies (RSM) using regression model approximations of the
computer simulation. The regression model approach in RSM has been used successfully
for such purposes as performing sensitivity analyses within a limited region of the input
parameter space, determining constraint satisfying solutions, and simulation
'optimization'.(11) The regression model approach has not been used to perform global
estimation or approximation. The regression model approach has typically been limited to
fiist- and second-order regression models.(12) Myers, Khuri and Carter state: "There
appears to be some need for the development of non-parametric techniques in RSM.

Most of our analytic procedures depend on a model. The use of model-free techniques




would avoid the assumption of model accuracy or low-order polynomial approximations

and, in particular, the imposed symmetry associated with a second-degree polynomial."(!3)

The possible approaches to solving the problems caused by the computational
burdens of computer simulations are to obtain more powerful hardware, rewrite the
computer simulation to be more computationally efficient, or to develop a small and/or
fast approximation to the computer simulation. In many cases, the first and second
approaches have already been taken or were impractical due to a lack of capital funds or
the ability of available simulation programmers. In addition, if a computer simulation has
achieved a high degree of user acceptance due to extensive verification and validation
efforts, there is a certain amount of reluctance to make significant modifications to the
computer simulation. Thus, the third approach, approximating computer simulations,

needs to be examined.

As Simon puts it, "When our goal is prescription rather than prediction, then
we can no longer take it for granted that what we want to compute are time series. ...
But facts must be faced. Intelligent approximation, not brute force computation is still
the key to effective modelling."(14

1.5 Using ANN to Approximate Computer Simulations

One possible non-parametric approach, which is the focus of this research, is to
have an artificial neural network "learn what the computer simulation knows" by training
on the inputs and outputs of the computer simulation. As Padgett and Roppel state:

"Neural networks in all categories address the need for rapid computation, robustness, and




adaptability. Neural models require fewer assumptions and less precise information about

the systems modeled than do some more traditional techniques."(!5)

The idea of using an ANN to approximate a computer simulation may initially
seem routine to researchers with an extensive background in neural networks. The reason
for such an assessment is that there are many examples of researchers using computer
simulations in order to obtain data to train their networks.(16:17.18) The majority of these
cases involved research in modifying or developing new ANN methodologies, techniques,
or procedures. Thus, instead of expending valuable time and effort to obtain data from a
real system, these researchers obtained their data from computer simulations that were
built with the sole purpose of "feeding" an ANN. However, while it might be fairly trivial
to build a computer simulation to provide training data to an existing ANN, this does not
mean that it will be easy to build an ANN that will be able to receive and learn the

relationships of an existing, complex stochastic computer simulation.

ANN have been used quite extensively to perform function approximation.
However, computer simulations of the type examined in this dissertation are more difficult
to approximate. There are three major differences between using ANN to approximate
stochastic simulations and using ANN to perform ordinary function approximation. First,
due to the stochastic nature of the computer simulation, a given set of inputs yields
different outputs, thus compounding training. Second, training and testing data are
computationally expensive to generate, and therefore must be leveraged. Third, training
and testing data are usually designed; i.e., are not randomly chosen from the problem

domain.(19
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While the largest payoffs for a computer simulation approximation tool are likely
to be in the complex areas of simulation optimization, sensitivity analysis, and model
aggregation, it is necessary that a solid foundation be established for using the
approximation tool, either in lieu of, or in conjunction with, the computer simulation.
Therefore, it is essential to know how to use the approximation tool to perform the most

rudimentary computer simulation tasks.

The major contribution of this dissertation is that it provides an empirically based
methodology and discusses the capabilities, limitations, advantages and disadvantages, for
using ANN approximations of computer simulations to perform the basic simulation tasks
of prediction and comparison of alternatives. An additional contribution is the
development of the foundation for using ANN approximations of computer simulations for

performing advanced simulation tasks.

1.6 Overview of the Dissertation

This dissertation contains eight chapters and three appendices. Chapter 1 provides
a general introduction to the problem of approximating computer simulations with
Artificial Neural Networks. A detailed literature review of computer simulation,
approximation theory, and approximation approaches is given in Chapter 2. The research
issues, methodology and tools used to conduct the research are detailed in Chapter 3.
Chapters 4 and 5 cover the description, experiments, results and lessons learned from the
problem used to develop the baseline Artificial Neural Network metamodel approach.
Chapter 6 delineates the baseline ANN metamodel approach. Chapter 7 provides the

results of applying the baseline ANN metamodel approach on a demonstration problem,
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specifically a simulation of an emergency department. Chapter ¥ contains the summary
and conclusions derived from the research effort as well as areas for potential future

research. The appendices and bibliography follow Chapter 8.

1.7 Restrictions of the Research

Since the focus of this research effort is on developing a tool that could be used to
approximate a computer simulation, it is assumed that the topology of the internal
relationships and procedures within the computer simulation have been determined and
will not be modified (i.e., the computer simulation to be approximated has already been
finalized, verified, and validated). Therefore, this research did not address problems
associated with building computer simulation models. Nor does it deal in detail with
problems of verification and validation of computer simulation models. Further, it is
assumed that only the values of the input parameters that are provided to the computer

s:mulation can be changed.

The prediction of output values will only be done for those output values
determined at the termination of the simulation. Predicting a series of values of the output

measure over time is a subject for future research efforts.

This research only examined terminating, stochastic, discrete-event computer
simulations. A description of these terms is provided in Chapter 2. This research focused
on the type of computer simulation typically used for addressing industrial
engineering/management science/systems analysis problems. However, this same

approach should be generalizable to other areas.
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This research uses feedforward, multi-layered, fully connected artificial neural
networks trained via the backpropagation learning algorithm. The reasons for having

chosen such a network paradigm are discussed in Chapter 3.

1.8 Summary

This chapter provides an introduction to the problem of interest. Specifically, it
presents an overview and demonstrates the need for approximating computer simulations
with artificial neural networks. A brief discussion of the topics of computer simulation
and its importance, modeling approaches, and the fundamental idea of using the results of
a computer simulation to provide data for building ar empirical model of a system are
also provided. An overview of the dissertation document is provided as well as a

discussion of the restrictions of the research effort.




2.0 LITERATURE REVIEW

2.1 Computer Simulation

Simulation has been defined by Pegden as: "the process of designing a model of a
real system and conducting experiments with this model for the purpose of understanding
the behavior of the system and/or evaluating various strategies for the operation of the
system."(20) Just about anything can be simulated on a computer. Computer simulations
range from models of simple mathematical functions, such as y = sin(x)+4x, to complex

models of the universe.

There are various ways that computer simulations can be classified. Law and
Kelton provide a way to categorize computer simulations using four dichotomous

characteristics:(21)

(1) Deterministic versus Stochastic. Deterministic simulations provide a unique
solution for a given input, no matter how many replications are performed, whereas the
stochastic simulation contains probabilistic elements, and therefore provides only an

estimate of the output variable.

(2) Static versus Dynamic. A static simulation is a representation of a system
where time does not have an impact, while a dynamic simulation is affected by the passage

of time within the simulation.
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(3) Discrete versus Continuous, or Mixed. This is a characteristic of dynamic
computer simulations. In discrete simulations, the variables can change only at specific
points (at most a countably infinite number of points) in time, whereas in continuous
simulations, the variables change continuously (i.e., without a break or jump between
values) over time. A mixed simulation contains some variables which are discrete and

some which are continuous.

(4) Terminating versus Non-terminating. This is a characteristic of dynamic
computer simulations. A terminating simulation is one where there exists a natural
termination criteria for the system that is being simulated. A non-terminating simulation
does not have a natural termination criteria and so analytical or heuristic methods are used

to determine when to stop the simulation.

To a great extent the answer to the question "what is computer simulation?”
depends on the respondent. Each area of specialization such as aeronautics, chemistry,
economics, nuclear engineering, medicine, physics, or warfare has its own repertoire of
computer simulation models that are used in research and applications. Due to the
characteristics of the problems in each area, certain types of models will perform better
than others and will, therefore, tend to dominate a field of specialization. For instance, in
the fields of operations research, systems analysis, and industrial engineering, which
developed concurrently with the use of computers, Quade states "... simulation is the
process of representing item by item and step by step the essential features of whatever it
is we are interested in... ."(22) Thus, researchers in these fields tend to think of computer
simulations as mechanistic models of systems. In this dissertation it is assumed that the

term coimputer simulation means a mechanistic, stochastic, dynamic, discrete, terminating
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simulation since the majority of simulations in the field of industrial engineering are of this
type. Discrete-event models are by implication dynamic as well as discrete. Thus, this
research considers mechanistic, discrete-event, stochastic, terminating computer

simulations.

In the past, many organizations had the luxury of making decisions on the basis of
studies of long duration, and thus, the computer simulation models that were used in
conducting these long duration studies did not need to be very fast. This situation was
especially pronounced for examinations of very large and complex systems such as rain
forests, space stations, and military operations. Today, with more managers becoming
comfortable with the use of computers and computer simulation models, as well as the
increasing pressures of global competition, there is a greater demand to have results from
computer simulations in a shorter amount of time.(23-28) If the computer simulation is too
slow, as can typically be the case when portions of the simulation employ large Monte
Carlo modules to generate responses, then the results may not be available in time to assist

the decision maker.

Computer simulations are also used to perform sensitivity analysis for large
complex systems.(?%) Sensitivity analysis means being able to answer the "what if"
questions that a decision maker might ask concerning the issues that are being
investigated. This typically requires making many different runs and replications of each
variation of the input parameter settings. Thus, if the computer simulation is siow, the
amount of sensitivity analysis that can be performed will be limited. Sensitivity analysis of

computer simulations currently can be very expensive.(®)
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Computer simulation models for very large, complex systems are sometimes
constructed by building a series of models for different system components, usually called
modules, and then linking them together to form an aggregate model of the system. While
each of the individual modules might perform quite effectively. the aggregate model might
be very slow and possibly exceed the memory requirements of the computer. Thus, there
is a need for model reduction techniques to make the larger and more computationally

expensive modules more efficient.(30:31)

Over the past several years, computer simulation models have also been used, not
only to predict the behavior of a system for a given set of input parameters, but also to
prescribe the input parameter settings that would result in "optimal" output values of the
model with respect to the particular problem of concern.(32) It should be noted that what
is meant by an "optimal” solution in the context of simulation is really closer to a
"superior” solution rather than the "best" solution interpretation typically found in the field
of optimization. However, because of all the detailed information necessary for precise
prediction over time, it is difficult to find optimal solutions to these models. Just as
humans become overloaded with information about the real world when it is necessary to
predict the behavior of such systems, these computer simulation models may be processing

too much irrelevant information when it comes to prescribing solutions to posed problems.

2.2 Artificial Neural Networks

A neural network is a computational mechanism that achieves power and flexibility
through the use of parallel and sequential processing elements. The field of neural

networks is also known as parallel distributed processing or connectionism.(33) The initial
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focus of neural networks was, and the work of many current researchers is, on developing
artificial structures that model the actual operation of a biological brain. Many other

research efforts, including this one, make no claims about their neural networks reflecting
features of how the brain actually operates. To emphasize the distinction, the latter group

of networks are referred to as artificial neural networks (ANN).

The earliest work in neural networks was reported in 1943 by McCulloch and Pitts
who developed networks which today are called "McCulloch-Pitts nets.” While these nets
are very simple by current standards, the noted mathematician John von Neumann proved
that redundant McCulloch-Pitts nets can perform arithmetic calculations with high
reliability, but not necessarily as efficiently as traditional sequential computing
algorithms.3) Currently, there are many different kinds of neural networks with various
architectures and learning algorithms that are used for many different purposes in a wide
variety of applications.(35:36) Cheng and Titterington provide an excellent discussion of
neural networks from a statistical perspective by examining the similarities and differences

between traditional statistics and artificial neural networks.(37)

It should be noted that in the field of neural networks the term "computer
simulation” has typically been used in two different ways. The more prevalent use is to
indicate a software implementation of an ANN on a sequential processing computer to
distinguish it from a hardware implementation on a parallel processing computer or
chip.(3® A secondary use is to describe one of the mechanisms for obtaining data to test
an ANN methodology, technique, or structure. This is typically done when it is difficult or
impossible to obtain real world data. This secondary interpretation is closer to the manner

in which the term "computer simulation" is used in this research.
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Even though there seems to be a wide variety of objects that claim to be artificial
neural networks with differing terminology, the following definition appears to encompass
most, if not all, of the various artificial neural networks. An artificial neural network can
be defined as a directed graph consisting of nodes (or units) that are connected in some

manner with the following properties(3):

I. Each node i has an associated state variable with activation level, Aj.
2. Each connection between nodes i and j has a real-value weight, wj;.
3. Each node i has an associated real-value bias, V;j.

4. Each node i has a transfer function, (A}, wjj, Vy.

The transfer function is usually non-linear and is used to determine A the new
state variable, based on the summation of all inputs into node i: the state, Aj, of all nodes
connected into node i; the weights, wjj, of the connections coming into node i: and the
bias of node i, V;. Thus, Aj=1t(Aj, wjj, V). A depiction of a typical node which in this
example has two inputs is given in Figure 3.40) The activation level for the node in Figure

3 is given in equation 2-1.

2 @2-1)
Ai= t(( Zwij XAj)+Wi0 XVi)
1
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While there is very little that an individual node can do, by combining many
different nodes, ANN are capable of approximating complex functions. The nodes of an
ANN are typically placed into one of three types of layers. The input layer only receives
stimuli or information from outside the network. The output layer is used to provide
results from the network. The hidden layer(s) is used to permit different operations to be
performed on the data. The hidden layer derives its name from the fact that it is invisible
to the world outside of the network. In other words, the hidden layer neither receives nor
transmits any information directly outside of the network. Some types of ANN do not
use a hidden layer of nodes. If, for all layers of the network, all the nodes in one layer of
the network are connected to all the nodes in the succeeding layer of the network. then the
network is called a fully connected neural network. Following the convention used in
Zurada, only the hidden and output layers are counted when describing the number of
layers in the network.(4!) For example, a network with an input layer, two hidden layers

and an output layer would be referred to as a three layer network.

One way to characterize networks that are organized into layers is with regard to

the direction of the flow of information between the layers of the network. If the flow of
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information about the state of the node cannot be fed back to itself either directly or
indirectly through other nodes, then the network is called a feedforward network.
Otherwise. the network is called a feedback network.(*2) Figure 4 graphically depicts a

fully connected, multi-layered, feedforward ANN (43)
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Figure 4 Typical Feedforward ANN

Researchers have developed many different approaches for “teaching” an ANN to
"learn" the relationship between the inputs and outputs of a system. The outputs of the
system are typically re.crred to as "targets” in the connectionist literature. In the situation
called "supervised learning,” input and target pairs of data are available for the system of
interest. The data is shown (i.e., provided) to the network one pair at a time to provide
an opportunity for the network to "learn” the relationship that exists between the input
and target data. In this research, a training point consists of both the input vector and the

corresponding target vector. The information about the outside world is provided to the
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ANN through the activation values of the input and output nodes (i.¢.. through the A;).
The knowledge of the network is stored in the weights of the network (i.e., in the wij)-
Typically, a network starts in a randomized state of initial weights and is trained iteratively

until reaching an "intelligent" state.

A very popular, nearly "standard"”, training mechanism is called "backpropagation”
or the "generalized delta rule.” First developed by Werbos(#4) and publicized widely by
Rumelhart and McClelland,*3) the generalized delta rule is usually used for feedforward,
fully-connected networks and is divided into two stages. In the first stage of training, as is
depicted in Figure 5, one input data vector is presented to the input nodes of the network,
and processed in a forward direction through the network with the states of the nodes
being passed from one node to the next until the output nodes have newly assigned state
values or activation levels, called the response vector. The response values of the output
nodes are then subtracted from the corresponding target values, resulting in an error value

associated with each output node.

The second stage of training, depicted in Figure 6, propagates the squared error
from each output node backwards through the network, and adjustments are made to the
weights and thresholds of the network using gradient descent to reduce the size of the
total squared error of the network.(#>) Selecting a new training point and applying both
training stages to the new training point continues until the training stoppage criteria is
achieved. Typical training stoppage criteria include convergence for all of the training
data to less than a pre-specified error level or after performing a pre-determined, large

number iterations through the training data.
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Once the training is concluded, a check on the generalizability of the truined ANN
is usually performed by testing another set of data, distinct from the training set, using the
weights determined by the training procedure. This test is conducted in the exact same
way as the first stage of training, but consists of only one pass through the network, as
depicted in Figure 7. The input data is provided to the network and the activations are
propagated only one time for each input data vector and the resulting response is

compared to the target to obtain the error of the ANN on each test point.

Finally, as is depicted in Figure 8, the trained network is used in an operational
mode to obtain predicted responses to input vectors for which target vectors are not
available. This is similar to testing the network in that there is only one pass for each

point in the data set. However, in this case there are no target vectors to use to determine

the accuracy of the ANN.
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This research used the backpropagation method of training feedforward, fully
connected ANN for the following reasons. First, several researchers have already
successfully used these networks for performing arbitrarily well the task of approximating
continuous functions and have shown that they are in fact “universal approximators.”“#6-34)
Second, the widespread availability of software for performing backpropagation will
enable computer simulation researchers unfamiliar with ANN to quickly and easily use and
apply the results of this research effort. Third, it has been shown that backpropagation is
equivalent to the Robbins-Munro stochastic approximation procedure for solving the
nonlinear least squares regression problem.®) Fourth, the focus of this research is not on
finding the "best" ANN for approximating computer simulations, but on determining how

to use ANN to approximate computer simulations and discovering the advantages,
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disadvantages and limitations of such an approach. Therefore, to emphasize that this is
not a study of ANN methodology, but rather a study of how to use ANN to approximate
~omputer simulations, a well-accepted, conceptually easy to understand, "standard,” ANN

‘hat may not be the most efficient at continuous function approximation was used.

There are two major drawbacks of the backpropagation algorithm that have caused
researchers to examine alternative training procedures. The first problem is possible
convergence to local minima rather than the global minimum of the error surface and the
second problem is computational expense and the consequent time to train using
backpropagation.5) It was once conjectured that backpropagation trained networks
would always converge to the global minimum. It has been shown that this is true in many
practical applications but there are cases when they do converge to local minima because
it is essentially a gradient descent procedure.(5®) One of the reasons that backpropagation
is computationally expensive is that the network architecture, in terms of the number of
hidden nodes, is determined on a trial and error basis. Much of the research has been
directed at examining various methodical procedures. One approach used in this research
is to start with the smallest possible network, train that network, add another node to the
network, and repeat the process until performance begins to worsen. This simple
approach and other more sophisticated techniques such as adding or trimming hidden
nodes during training are discussed by Hush and Horne.5”) Other researchers have
developed such modifications to the traditional backpropagation training algorithm as
Quickprop,3®) RPROP, 5% Double BackProp,(%9 and others based on sophisticated non-

linear optimization procedures. (61-65)




Other neural network approaches to function approximation have also been
developed. One of the most promising of these alternatives to backpropagation is Radial
Basis Function (RBF) neural networks. Poggio and Girosi have published several articles
on Radial Basis Function artificial neural networks that have the best approximation
property for continuous multivariate function approximation.31.32.66) However, there is
no guarantee that these networks will also have the best approximation property for
discrete multivariate functions. Also the RBF neural networks are not nearly as well
known as the backpropagation neural networks. For these reasons the RBF neural
networks are not examined in this research. They do appear to hold promise especially in

their ability to provide confidence interval estimates for their responses. (67

This research used networks with two hidden layers even though it has been shown
that one hidden layer networks can approximate any continuous function.(®8.99) However,
one hidden layer networks may require an infinite number of nodes to be able to
approximate a given function. In contrast, two hidden layer networks do not require the
assumption of the availability of an infinite number of hidden nodes(7") and those networks

can solve most real world approximation problems with only the two hidden layers.(TD)

According to Padgett and Roppel: "A neural network can be thought of as an
advanced simulation technique incorporating ideas from many fields and capitalizing on
modern-day parallel processing and microelectronics capabilities."(15) Since there are
researchers who are examining the use of the neural network techniques for performing
simulation,(72) it is obvious that issues such as when should the ANN approach be used to

directly perform the simulation and when should the ANN technique be used to
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approximate another simulation model, will arise. This research will provide information

that will be helpful in addressing these types of issues.

Four examples in the literature have been found where an ANN was constructed
for the purpose of approximating or estimating the results of a computer simulation
model. The first example, by Fishwick, found that a backpropagation trained neural
network was not as effective as a regression model in approximating a deterministic
computer simulation. However, it should be noted that the author appears to have only
trained one network and did not change any of the default settings of the neural network
software package used in the research.(73) In the second example, Pierreval and
Huntsinger examined the issue of whether the data used to train neural networks as
metamodels of computer simulations should be factorial design points or randomly
generated points. While randomly generated points seemed to produce better networks in
terms of generalizability to test set data, it appears that this was due mostly to the fact that
the random training sets were larger than the factorial design training sets.(74)

In the third example, Badiru and Sieger reported good results when using a neural

network trained on economic models.(75)

In the fourth example, Hurrion showed that "it is possible to fit a neural network
to model the generalized response of parameter changes in a visual interactive
simulation."(76) The simulation was a stochastic, discrete event, terminating model of a
train depot developed as a demonstration of "visual interactive simulation."(’” A random
number of trains arrived at the depot each day to receive coal and the depot remained
open until all of the trains had departed the depot. The output from the simulation was the

length of time the depot remained open each day.




Hurrion conducted two experiments in approximating the simulation of a coal
depot with a backpropagation trained fully connected feedforward artificial neural
network. The first experiment was designed to show that a simulation could be
approximated by a neural network. Five different input factors were chosen with each
factor having three different levels. The simulation was replicated nine times at each of
the 35 (i.e., 243) design points and the mean and variance, of the time the coal yard
remained open was calculated over the nine replications. The 99% lower and upper
confidence limits for each of the design points were also calculated. Artificial neural
networks were then constructed to try to approximate the simulation results of mean,
lower confidence limit and upper confidence limit of the time the coal yard was open.
The network architecture that was able to learn the relationships between the input factors
and the output responses had five input nodes, one for each of the input factors, thirty
hidden nodes in each of two hidden layers, and three output nodes. The output nodes
corresponded to the mean and the two confidence limits. The result for the training set
was that the neural networks predicticn of the mear always fell within the original
simulation's 99% confidence intervals. In addition, the mean predicted by the neural
network for a test set of six different combinations of input parameters that were not
included in the training set, also fell within the 99% confidence intervals of the original
simulation. The test set was small in comparison to the training set and all of the values
were internal to the values included in the training set. This experiment showed that "it is
possible te fit a neural network to obtain the general response of a simulation's output

over a wide range of input factors."(78)

Hurrion also demonstrated an incremental approach of building a series of neural

network approximations to a computer simulation, where each neural network
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approximation was used to guide the selection of future points for simulation and addition
to the training set. One purpose of this demonstration was to show that the neural
network approximation could be used as a tool for facilitating the interaction between the
developer and client of a computer simulation model by providing very quick replies to

"what if" questions posed by the client.(76)

In addition to using ANN to approximate the output of a system for a given set of
input parameter values, some work has demonstrated the potential for using ANN to
performing inverse mappings (i.., for a given set of system output measures predict the
corresponding system input values).(79-81) In one case, an approach using
backpropagation trained ANN to learn the inverse of the simulation of a manufacturing
facility job shop was demonstrated.(82) In this example, the simulation had three input
parameters that were varied and four output measures that were generated by the
simulation. The three input parameters were the number of resources in each of three
separate work centers of the job shop. The four output measures were mean tardiness

time, mean flow time, mean resource utilization and workload completion time.

Two neural network architectures were used to learn the inverse of the simulation.
Both neural networks had four input nodes corresponding to the output measures of the
simulation and three output nodes correspending to the input parameters for the
simulation. One network had one hidden layer of eight nodes and the other network had
one hidden layer of fifteen nodes. The approach consisted of starting with a small initial
training set of five (output, input) training pairs. Once the network learned the small
training set, the network was used to predict the inputs to the simulation that would

generate a set of desired output measures.




The simulation was then run at the predicted input parameter settings to obtain
another observation of simulation output measures. The inputs generated by the ANN and
the new outputs from the simulation were then added to the training set and used to train a
new neural network. This iterative procedure continued until the outputs from the
simulation that used the inputs generated by the ANN matched the desired outputs of the

simulation.

The preliminary results of this example showed that the approach has promise
since both of the networks showed improvement in the output measures of the network-
predicted input parameter settings of the second iteration over the first iteration of the
procedure. As Chryssolouris et al. point out, the procedure of using computer simulations
to provide the data for training artificial neural networks has the potential for reducing the
number of simulations required when using simulation to support manufacturing system

design.(82)

One example was found in the literature in which an artificial neural network was
used to replace a portion of the rule base of a discrete event computer simulation.(83) A
portion of the expert system module of the U. S. Army's Combined Arms and Support
Task Force Evaluation Model (CASTFOREM) was used off-line to train an ANN to make
classification decisions. The decision that the ANN was trained to make was when the
Orange forces should withdraw when being attacked by the Green forces. The inputs to
the ANN were the number of Orange losses, number of Green losses, and the distance
between the two forces. The output of the ANN was a classification of either to withdraw
or not withdraw. The ANN was trained with the backpropagation training procedure and

demonstrated that ANN can be made as reliable as current artificial intelligence symbolic




31

methods. A second type of ANN was added to the model to permit the network to learn
from the experience of the decisions made during the operation of the computer
simulation. The second ANN had the same architecture as the first ANN with the addition
of a goal node and goal sub-nodes. The goal that was used in this example was to
maximize the difference between the Orange losses and the Green losses. An
unsupervised training algorithm was used to permit the network architecture to adapt to
the information provided by additional replications of the computer simulation. An
unsupervised training process does not require a teacher that knows what the outputs
should be for the training inputs. This example demonstrates that artificial neural

networks could be used to develop "adaptive simulations."(#4)

A final application of ANN that is of relevance to this dissertation is the use of
neural networks as ¢~ ~llers. Much work has been done using actual system data to
develor neural network controllers on systems as diverse as robots, automobiles, aircraft,
space stations and manufacturing plants.(85-87) One group of researchers used neural
networks trained on computer simulations to develop heuristic rules for scheduling a
flexible manufacturing system.(88) One conceptual paper by Wan and Cochran, without
any experimental results, outlines an approach to develop a controller for a system using a

simulation of the system and a neural network approximation to the simulation.(®9)

2.3 Metamodels

A metamodel is a "model of a model."(°? Blanning first used the term to refer to
models of decision models and discussed computer simulation decision models as

examples where metamodels could be used to perform sensitivity analyses.(®1.92) Earlier,




Meisel and Collins had used the term "repro-model” to refer to a mode!l of a mode! and
described repro-modeling as the “process of developing an approximation to. or
condensation of, a complex (sometimes dynamic) computer-based model."®% It appears
that metamodel has superseded repro-model as the commonly used term for a model of a
model. On the basis of thirty experiments, Friedman and Pressman demonstrated the
usefulness and applicability of metamodels in simulation analysis.(%) Pratt and Mize
discuss a methodology developed for using metamodel of simulations of manufacturing
systems.(93) Yu and Popplewell provide a summary review of the research that has been

done in the field of simulation metamodels.(¥6)

Some researchers define a metamodel as a "regression model of the actual
simulation model."®7) While it is true that the most popular technique used in
metamodeling simulations is linear regression, there are alternative ways of developing a
model of a model. In particular, this dissertation explores the use of artificial neural
networks as metamodels of computer simulations. Barton discusses the state-of-the-art in
metamodeling and provides an excellent review of several alternative metamodeling
methods. He suggests the following criteria which might prove useful in choosing from

among competing metamodeling techniques:(3)

I. The ability to gain insight from the form of the metamodel.
2. The ability to capture the shape of arbitrary smooth functions based on observed
values which may be perturbed by stochastic components with general distributions.

3. The ability to characterize the accuracy of fit through confidence intervals, etc.

4. The robustness of the prediction away from observed (x,y) pairs.

5. The ease of computation of the metamodel.

6. The numerical stability of the computations, and consequent robustness of
predictions to small changes in the parameters defining the metamodel.

7. The existence of software for computing the metamodel, characterizing its fit,
and using it for prediction.




It is assumed that the goal in metamodeling is to obtain a function f. that will
transform model inputs, X, into model outputs, Y, with a certain amount of error, g, as

depicted in equation 2-2.

Y =£(X)+¢ (2-2)

While some work has been done with predicting multiple output measures of
computer simulations,(®) the typical approach has been to develop separate metamodels
for each element of the simulation output measure vector.(3) Thus, for the discussion in
this section, equation 2-3 which has the output measure, y, and the error of the
approximation, €, as scalars, will be used, rather than equation 2-2 which has the output

measure and error as vectors.

y=f(X)+¢ (2-3)

2.3.1 Linear Regression

Due to the popularity of linear regression, many researchers have come to think of
metamodels as "models of simulation models, which express the input-output relationship
in the form of a regression equation."®? Since linear regression is a sound, well
established statistical method, there are many textbooks that have detailed derivations of
the relevant equations and formulas. Only the basic elements of polynomial multiple linear
regression are discussed here. The notation and the derivation of the regression equations
found in this section are based on Draper and Smith.(!%) In regression, there are two
types of variables: the independent or predictor variables (X) and the dependent or

response variable (y) that are related by the equation 2-3.
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Suppose there are n observations of pairs (x;,y;) with m elements in each vector x;
and that there are k power functions Z;(x;) of the independent variables. For example, for
a first-order regression equation, the power functions would be Zn(x;) = I, Z,(x;) = x;;,
Zy(X;) = X3, .--» Zpy(X;) = X;p,. For higher order regression equations, the power functions
might be (x;;)2, (x;;)3, or (x;;)%(x;3). The regression problem is to find the values of the
coefficients B that provide the least squared error to the solution of the syvstem of
equations given in equation 2-4. The corresponding matrix form of the svstem of
equations is given in equation 2-5, where Y is an (n x 1) column vector. Z is an (n x k)
matrix, B is a (k x1) column vector and € is an (n x 1) column vector. The regression
solution to thec= equations is given in equation 2-6. It should be noted that the reason this
is called linear regression is that the equation is linear, not in terms of the predictor
variables, but in terms of coefficients of the equation. Also, it is called multiple regression

because there is more than one independent variable.

k
¥;= ZBPXZp(xi) +€; Fori=1,2,...., n (2-4)
=]
Y = ZB+e (2-5)
B=(z'z)'z'Y (2-6)

The standard assumptions made in regression are that the errors have a mean of
zero and a common variance and that the errors are not correlated with each other. (101)
The assumption that the errors will have a common variance is often invalid when

approximating computer simulations. While not totally effective, weighted least
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squares(192) or transformations of the dependent variable!1"3) are sometimes used when the
assumption of common variance cannot be made. Additionally, a typical assumption is
made that the errors are distributed normally with mean of zero and a common variance.
This final assumption permits the construction of confidence intervals for the coetficients
of the model as well as for the predictions of the model. In those cases where normality of
errors cannot be assumed, an alternative approach is to use the generalized linear model
which assumes that the errors come from any family of exponential distributions rather

than restricting them to the normal distribution.

While there are many strengths of polynomial regression models, there are also
some weaknesses. Low-order polynomials have a very limited number of surface shapes
that can be approximated, while high order polynomials have the tendency for errors to
increase rapidly as the independent variables are movcd away from an observation used to

build the regression model.(3)

The field of regression is continuing te grow and expand as evidenced by work in

such areas as nonlinear regression(!™.103) and nonparametric regression. (196.107)

2.3.2 Response Surface Methodology (RSM)

Using the term metamodel to mean a "model of a model" is relatively new.
However, the most popular metamodel approach of using low-order linear regression
models in response surface methods (RSM) was formally developed in 1951 by Box and
Wilson to optimize the yield of chemical processes through a series of physical
experiments.(!08) Since then response surface methods have been extended to include

using regression models to optimize computer simulations. The purpose of RSM s to find




the levels of the experimental factors that will yield the best value of the response or
output of a system. The response surface methodology with computer simulation basically

entails a repetitive process of performing the following steps:(199)

I. Conduct a set of designed experiments that finds the output response value by
running the computer simulation at various levels of the input parameters for multiple
replications.

2. Approximate the relationship between the input parameters and the output
measures in the current region of interest with a model of the system. Typically. the
approximating models have been first-order regression models.

3. Find a direction in the input parameter space of the model that yields improved
solutions (e.g., in the direction of the gradient, if trying to maximize the response).

4. Move in the direction of improved response and return to Step 1. If there is no
direction of improved response, then develop second-order regression models to obtain a
more accurate characterization of the response surface. Use this second-order regression

equation is to determine if the found region is a locally optimal.

For optimizing computer simulations with single output measures, first-order
regression models are good tools for determining the direction of search in response
surface methods because they can be developed very quickly and it is very easy to
determine the direction of improvement once the model is developed. Although most of
the work in RSM has been with optimizing one dimensional output measures, some work
has been done on optimizing computer simulations with multiple output measures.(192)

Improved results have been reported when using different variance reduction techniques
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such as combining common random numbers and antithetic variates in response surface

methods. (12.110,111)

A good approximation in RSM is needed only in a small region of interest since the
regression models are constantly being replaced as the search for the optimum progresses
across the input space. Hood and Welch provide an excellent description and example of

using RSM with computer simulations.(112)

2.3.3 Taguchi Models

Just as with response surface methods, the Taguchi method was not originally
developed to be used with computer simulations, but with physical systems.(113) Taguchi
developed a very successful method of designing quality into products that was easier to
understand and use by practicing engineers. The Taguchi method using direct physical
experiments is well documented.(114.115) Recently, the Taguchi method has been
successfully used in system design with computer simulation experiments.(116-119) At the
core of Taguchi's method is the precept that rather than try to eliminate the sources of
variability in product performance the focus should be on trying to develop products that
are not sensitive to the effects of uncontrolled variation. The Taguchi method uses the
same model as equation 2-4 and assumes the errors of the models have a mean of zero
(i.e., E(§) = 0). Instead of assuming that the variance of the errors is a constant however,
it assumed that the variance depends on the value of the independent variables
(i.e., Var(g;) = 0'2(Xi)). Taguchi incorporates the information about the variance of the
system by introducing equation 2-7 where the Y is the sample average and the s2 is the
sample variance over the multiple observations at each combination of the independent

variables.
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-2 k
10* log[E(yé)] = 2 VpXxZp(x) (2-7)

p=1

The other variables in equation 2-7 are described in the section on linear
regression. Under Taguchi's approach, it is expected that some independent variables, x,
will have small coefficients of 'Yp in equation 2-7 and large coefficients of
B in equation 2-5. Those independent variables with small coefficients of gamma are
termed "insensitive to noise." By adjusting the remaining independent variables to
maximize the left side of equation 2-7, the analyst can then set the independent variables
to produce the desired minimimum or maximimum of the response in equation 2-5.(3.120)
The Taguchi approach provides an alternative framework to traditional design of
experiments and response surface methods, within which neural network metamodeling

can be used.
2.3.4 Approximation Theory

This established field of mathematics is concerned with problems associated with
approximating continuous, multivariate functions whose values are known at a finite
number of points. This requires determining the values of a fixed number of parameters
W, so that an approximating function, F(X,W), provides the best' approximation or
estimation to the desired function, f(X).(012) Often the approximating function F(X,W) is
a linear combination of basis functions, g;(X), for example F(X,W) = Za;xg;(X), where
the a; are real valued constants. This approach is used in many of the classical methods of
approximating functions including polynomial approximation, spline approximation, kernel
based approximation, and Fourier methods.(122) These and other classical methods suffer

from the need to correctly specify the functional form of the model that will be used in the
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approximation procedure. In most cases the correct functional form of the model depends
on the data observed from the function. Also, many of the methods assume that the

observed function values are correct (i.e., there is no noise in the data).

The computer simulations examined in this research are stochastic and so they are
not strictly functions. Many of the simulations found in the industrial engineering
literature are of systems with discrete, rather than continuous, input values. In addition, a
linear combination of basis functions can be implemented efficiently via a three layer,
artificial neural network, where each basis function is represented by a node in the hidden
layer of the network.(123) For these reasons, the approaches used within the field of
approximation theory were not explored further for application to approximating

computer simulations.

2.4 Summary

This chapter provides a survey of the literature concerning the topics involved in
this dissertation. The chapter contains discussion of the broad areas of computer
simulation, metamodels and artificial neural networks each of which are relatively new
fields of research beginning in the 1940s, 1960s and late 1980s, respectively. The history
of each of these fields as well as the definitions of key terms and a review of the literature
relevant to this research are covered. The field of computer simulation is shown to be
quite wide in its scope and applicability to many diverse disciplines. The limitations of
computer simulations for performing studies quickly. sensitivity analyses, and optimization
of systems are delineated. The discussion of artificial neural networks includes a detailed

exposition of the backpropagation training methodology and several examples of other




researchers using ANN in conjunction with computer simulations. The discussion of
metamodels includes the history and terminology of metamodels, regression, response

surface methodology and approximation theory.

40
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3.0 RESEARCH METHODOLOGY, ISSUES AND TOOLS

3.1 Methodology of Research

The general research methodology of this dissertation is to develop an approach to
approximating computer simulations using ANN. This is done in two stages. First,
investigating issues through experimentation on a computer simulation of a relatively
simple engineering system. The second stage is to demonstrate the approach on a
computer simulation of a much more complex engineering system. Seven tasks were

defined and are discussed below.

3.1.1 Basic Research Tasks

The first task was to identify the issues that need to be considered for any generic
approach to approximating discrete event, stochastic computer simulations and the
specific issues that might be unique to an artificial neural network (ANN) approach. A

listing of the identified issues is provided in Section 3.2.

The second task was to obtain detailed computer simulation models of two real
world systems that were representative of the types of problems typically examined using
terminating, stochastic, discrete-event computer simulations in the field of industrial
engineering. The first system examined was a relatively simple inventory system. This
system was selected to be able to make comparisons to the problem used in Chapter 12,
"Experimental Design and Optimization" by Law and Kelton.(124) This system was
analyzed in-depth in order to gain insight into how to approximate a computer simulation

with an ANN model. In this manner, the first system was used as a problem for




42

developing the methodology for approximating computer simulations with ANN. The
description of the system and its computer simulation are presented in Chapter 4. The
second system examined in this research was the emergency department of a large
teaching hospital. This system is representative of large, complex systems and was used as
a research demonstration problem to examine issues of "scale-up™ and applicability of the
methodology tc "real world" problems. The description of the system and its computer

simulation are presented in Chapter 7.

The third task was to develop, build, and use simplified representations of the
development problem computer simulation model based on the ANN techniques. A series
of experiments was performe-d on a two-input parameter version of the inventory system
simulation. These experiments considered various ways of presenting the output of the
simulations to the ANN and predicting multiple outputs. The detailed description and

results of these experiments are also presented in Chapter 4.

The fourth task was to use the ANN approximations of the inve' *ory system in
place of the original computer simulation model to perform basic computer simulation
tasks of prediction and comparison of alternatives. Part of this task was to compare the
results of the ANN approximation to a second-order multiple linear regression model
approximation. The second-order multiple linear regression model was used for
comparison purposes since it is the highest order regression model typically used in
Response Surface Methods. The final set of experiments used ANN approximations to
make predictions and prediction intervals for the four input parameter inventory system

simulauon are discussed in Chapter 5.




The fifth task was to develop a methodology for approximating computer
simulations with ANN, based on the results of the experiments on the development

problem. The resulting approach is presented in Chapter 6.

The sixth task was to apply the approach of ANN approximation of computer
simulations to the demonstration problem (i.e., emergency department system). The
results of applying the ANN approximation approach to the demonstration problem are

also provided in Chapter 7.

The final task was to synthesize the lessons learned from performing the basic
simulation tasks with ANN approximations to computer simulations to provide a
framework for using ANN approximations to perform more complex simulation tasks such
as sensitivity analysis, simulation "optimization,” and model aggregation/reduction. These

results are discussed in Chapter 8.

3.1.2 Assumptions and Restrictions of the Research

Since the focus of this research effort was to develop a tool that could be used to
approximate a computer simulation, it was assumed that the topology of the internal
relationships and procedures within the computer simulation were determined and would
not be modified (i.e., the computer simulation to be approximated has already been
finalized, verified, and validated). Consequently, this research did not address problems
associated with buildirg computer simulation models. It was assumed that only the values

of the input parameters that were provided to the computer simulation could be changed.




The prediction of output values was only done for those values determined at the
end of the simulation. Predicting intermediate results of the output measures over time is

a subject for future research efforts.

This research only examined terminating, stochastic, discrete-event computer
simulations. A description of these terms is provided in Chapter 2. This research focused
on the types of computer simulations typically used for addressing industrial
engineering/management science/sysiems analysis problems. However, this same

approach could be utilized and should be fruitful in other areas.

Feedforward, multi-layered, fully connected artificial neural networks trained via
the backpropagation learning algorithm were used in this research. Specifically, the basic
backpropagation method popularized by Rumelhart, Hinton and Williams(45) for training

feedforward, fully connected ANN was used for the reasons specified in Chapter 2.

This research used a comprehensive, one-step, experimental design for selecting
the points to be simulated and subsequently used for developing approximations to the
computer simulation. An alternative approach, which was not used in this research, is
sequential experimental design which incorporates information about the responses of the
simulation from preliminary design points to guide the selection of subsequent design
points. The sequential experimental design approach is typically preferred when
conducting computer simulation sensitivity analysis and when using response surface
methods.(125) The work in this research addresses how to do the comprehensive

experimental design and the first step in the sequential experimental design.
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3.2 Research Issues

The following research questions were identified for consideration and/or experimentation:

How should the simulation output data be presented to the ANN during training?’

How many outputs should be predicted by a single network?

Can the ANN predict the descriptive statistics commonly used in computer
simulations (e.g., mean, variance, minimum, maximum)?

What should the network architecture be for the ANN?

How many different combinations of the input parameters (i.e., experimental
design points) should be used during training”

How many replications of the computer simulation of each combination of the
input parameters should be used during training?

How well does the ANN approximation perform in making predictions of
simulation output measures’

How well does the ANN approximation perform in making prediction intervals of
simulation output measures?

How does an ANN approximation compare with second-order multiple regression

approximations of computer simulations?

3.3 Research Tools

Two commercial products were used extensively in this research:
SIMAN/CINEMA® and BrainMaker®. A description of each of these tools and a

discussion as to why they were selected is provided below.
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3.3.1 SIMAN/CINEMA Simulation Language

SIMAN/CINEMA has been developed by Systems Modeling Corporation of
Sewickley, PA, as a general-purpose simulation modeling language with additional
features that make it very useful for modeling manufacturing systems. The SIMAN
(SIMuiation ANalysis) portion of the package is used to create the actual simulation while

the CINEMA portion is used to provide an animation of the simulation.(126)

A simulation language as opposed to a programming language such as FORTRAN
or Pascal was chosen for use in this research since the majority of work in the simulation

of industrial engineering applications uses higher-level simulation languages.

The SIMAN simulation language was chosen for use in this research for the
following reasons. SIMAN was one of the first major simulation languages available for
use on microcomputers, and it is used extensively in the industrial engineering and
manufacturing fields.(126) SIMAN operates on a wide variety of computer platforms, and
the programs are compatible across the different classes of computers. Hence, SIMAN is
available to many researchers who might be interested in pursuing this research. It is
possible to model almost any kind of system using SIMAN, due to its ability to utilize the
two major approaches used in discrete-event simulation: the event-scheduling approach
and the process interaction approach. SIMAN is relatively easy to use, and has a good
debugging facility. Another reason for selecting SIMAN/CINEMA is the ability to use
CINEMA to animate the simulation for the purpose of verifying and validating computer
simulations. SIMAN also employs Zeigler's theoretical concepts about systems by placing
the system information into two separate component frames of the simulation.(127) The

physical elements of the system and their interconnections comprise a functional
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description of the system in a "model” frame. The input parameters and the data
associated with the conditions under which the simulation is to be conducted are placed in
an "experiment” frame.(!28) This feature greatly assists in performing research experiments
by insuring that changes to the input parameters do not alter the processing steps of the

simulation.

The SIMAN package used in this research was SIMAN IV with runtime processor
version 1.3. The CINEMA package used in this research was CINEMA 1V version 1.2.

The simulations were all run on a 486/33mhz personal computer under DOS 5.0.

The SIMAN model and experiment frames for the research development problem

(i.e., the inventory system) are contained in Appendices A and B, respectively.

3.3.2 BrainMaker Neural Network Computing Package

BrainMaker is a commercial software product from California Scientific Software
of Nevada City, CA for backpropagation neural networks. Unlike some of the other
commercially available products that permit a wide variety of different artificial neural
network paradigms, the BrainMaker product has concentrated exclusively on the
backpropagation method of training ANN. As a result, BrainMaker is a very flexible and
widely accepted platform for use in performing research on artificial neural network issues
and problems concerning backpropagation training of ANN. One of the major differences
between standard backpropagation and BrainMaker's backpropagation, is that BrainMaker
uses a smoothing factor (usually called momentum) to provide a means of performing
exponential smoothing for the inputs used in training the ANN. Another difference is that

BrainMaker only attempts to learn a particular training point if it is not within the pre-
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specified tolerance of its intended target. The other major difference is that standard
backpropagation only terminates when all of the training outputs are within the pre-
specified tolerance of their rargets. BrainMaker can also be instructed to terminate

training when a pre-specified number of passes through the data have occurred.'12)

BrainMaker was selected for use in this research for the following reasons. First, it
is a widely available and accepted product, so that other interested researchers can
examine, verify and continue this research effort. BrainMaker has been extensively tested
and has been found to correctly implement the backpropagation training algorithm. The
graphical user interface for BrainMaker is very user-friendly. The ability to conduct
training and testing in batch mode using DOS batch files also permits training hundreds of
ANN in a systematic and efficient manner. BrainMaker has several flexible stopping
criteria options: 1) either the MAE (Mean Absolute Error) tolerance on all or a pre-
specified proportion of input vectors; 2) train until reaching a pre-specified number of
presentations; 3) train and save. This last option permits postprocessing of the training
results in order to find the best trained network. A final reason for using BrainMaker was
the ability to automatically generate "C" code for the trained network for use in future
optimization and direct integration with database and spreadsheet programs. The
BrainMaker software package used in this dissertation was BrainMaker Professional
version 2.53. All cases of training and testing using Brz:anaker were performed on 386

and 486 personal computers under DOS 5.0.

The derivation of the backpropagation method of training is well documented in

the literature and is not repeated here.(43-130.131) The essential elements of the
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backpropagation method of training as implemented in the BrainMaker software used in l

this research are described here for a fully connected feedforward network.t132)

Inivalization Step: All weights, w;;, which is the weight of the connection going

from node j to node 1, are initialized to random values between -8.0) and 8.0. Training
tolerance (Tol = 0.1), maximum training cycles (Max Cycles=99999), training rate or
gradient step size (1} = 1.0) and smoothing factor (i = .9) are set, where the values in the
parentheses indicate default values. Also to count the number of training cycles, an
internal counter variable is initialized to zero (i.e., Training Cycles = 0)). To determine
how many training points have not been learned to the desired tolerance, a counting
variable is set to zero (i.e., Number Bad = ()) The transfer function is selected with the
logistic function given in equation 3-1 as the default with 3 = 1.0. The training and test

data are scaled to the interval [0,1].

t(x)= (3-1)

(1+e7P%)

Step 1. Feed input vector values forward through the network one luyer at a time
from the input layer to the output layer to obtain activations at each node and the response
vector values. A training point, (Ip, Tp), is selected from the training set of size P. The

formulas for calculating the input layer, hidden layer, and output layer activations are

given in equations 3-2, 3-3, and 3-4 respectively. Note that Ri(p) is the response of the ith
output node for the pth training point. The fan-in of a node includes all of the arcs that

come into the node.
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Aipr=Lp (3-2)
Ai(Pr=t( ¥ wixA(pN+wioxVj) (3-3)
je fan—in
node i1
Ri=Ai@)=t(( 3  wijxAj(p)+wioXVj) (3-4)
._jfan—in
I\ node '
Step 2, Compute the squared error, E(p), for training point p according to the
formula given in equation 3-5 where J equals the number of output nodes.
_13 2 (3-5)
E(p=x _Zl(Tj(p)-—Rj(p))
J:‘.

If E(p) > Tol, then this pattern has not been learned to the desired tolerance level
and the variable Number Bad is set equal to Number Bad + | and proceed to Step 3.

If E(p)< Tol, then this pattern was learned to the desired tolerance so go to Step 5.

Step 3. Calculate the error signals for all output and hidden nodes, beginning at
the output layer and working backward through the network, one layer at a time. The
error signals are calculated for the output nodes with equation 3-6 and for the hidden

nodes with equation 3-7.
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3j(m=Rj(M*x(I-Rj(P)x(T;j(p)~Rj(m) (3-6)
imMm=Ajpx(I-A, 2 (Bi(p) X wij (3-7

. _ Jfan—out
'E{node i

Step 4. Once all of the error signals for each of the hidden and output nodes are
calculated in Step 3, the weights between each of the nodes are adjusted using the
formulas in equations 3-8 and 3-9. If an exponential smoothing factor is used then

equations 3-8 apd 3-10 are used to adjust the weights. A wy;(p) is defined as the change

to the weight from node j to node i as a result of pattern p.

Wij = Wij + AW;i(p) (3-8)
Awij(p) =Nx8i(P)x A j(p) (3-9)
Awij(p=n x[((l—-u)xai(p)xAj(p))+(prWij(p_|))] (3-10)

Step 5. If p <P, then return to Step 1 and select the next training point. If p =P,
then go to Step 6.

Step 6. Check the stopping criteria. If Number Bad = 0, then all training points
have been learned to the desired training tolerance and so training should stop.
If Number Bad > 0, then at least one training point has not been learned to the training

tolerance. Let Training Cycles = Training Cycles +1. If Training Cycles < Max Cycles,
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then go to Step 1 and begin another training cycle with the first training point, otherwise
stop.

The adjustment to the weights in Step 4 occurs as each training point is presented
to the network in what is known as pattern training. To implement true gradient descent
on the squared error surface would require the summation of the amount to change the
weights for each of the training points with the actual change only being made at the end
of each training cycle or epoch, in what is known as batch training. While BrainMaker has
an opticn to perform training in this manner, it was not used in this research since it is
more likely to become trapped in a local minimum of the error surface and it typically

results in an increase in training time.(133)

3.4 Summary

This chapter provides an overview of the research issues and the methodology
used to conduct the research in this dissertation. The research issues were developed and
refined throughout the researc:; effort. The methodology for conducting the research was
to use an inventory computer simulation to perform a series of experiments in building
ANN metamodels in order to develop a baseline ANN metamodel approach and to then
demonstrate the use of the approach on a more complicated computer simulation, namely
of an emergency department. Detailed discussion is included on the assumptinns and
restrictions of the research which are initially stated in Chapter 1. Specific details are
provided on the two commercial software packages used to perform the iresearch,
SIMAN/CINEMA and BrainMaker. The SIMAN/CINEMA package was used to perform
the stochastic computer simulations for the research problems. The BrainMaker package

implements backpropagation training on feedforward artificial neural networks.
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4.0 DEVELOPMENT PROBLEM - INITIAL EXPERIMENTS IN
APPROXIMATING AN (s,S) INVENTORY SYSTEM

The approach taken in this research was to use a simple, yet realistic, model of a fairly
complex engineering system as a testbed for various methods to approximate computer
simulations using artificial neural networks. This chapter covers the initial experiments
performed in approximating the computer simulation of an (s,S) inventory system with
ANN. Using this particular system permitted the focus to be on developing the
methodology of ANN approximation of computer simulations and not on computer

simulation issues.

4.1 Description of the (s,S) Inventory System

The system used as a development problem in this dissertation was taken from
Chapter 12 "Experimental Design and Optimization" by Law and Kelton.(139) The system
is a probabilistic lot size-reorder point system, an (s,S) inventory system where s = reorder
point quantity, and S = order up to quantity, with a time horizon of 120 months. It is
difficult to obtain optimal solutions for these types of systems.(135) While progress has
been made in developing algorithms for determining optimal policies of certain infinite
time horizon versions of the (s, S) inventory problems, computer simulation is still
necessary for examining many of the possible variants of the (s, S) inventory problem.(136)
Law and Kelton constructed a series of first- and second- order regression model
approximations, or metamodels, of a computer simulation of the inventory system. By
increasing the number of data points, they were able to demonstrate that the metamodels

could provide increasingly accurate approximations of the computer simulation.
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The inventory system is representative of companies that sell a single product, with
the problem of deciding how many items to obtain from their supplier in each of the next n
months in order to minimize the total cost of the inventory system. There are several
input and output parameters associated with this system. The input parameters of the
simulation of the system include the following:

= reorder point,

S = order up to quantity,

I = inventory level,

Z =reorder quantity,

d = S-s = reorder quantity when I =,

D = size of demands,

tq = time between demands,

to = time between order decisions,

t, = time lag for delivery,

k = setup cost,

i = incremental cost per item ordered,

h = holding cost,

u = underage cost (cost of having to backlog orders),

n = time horizon for analysis purposes.

In Law and Kelton's sample problem, the parameters s and d were the only
parameters that were treated as decision variables. The remaining input parameters were
treated as uncontrollable factors and were assumed to be fixed at constant values. The
following section describes the settings used for these nuncontrollable factors, in Law and

Kelton and in this dissertation.
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The initial inventory level was set at I, = 60. In this system it is assumed that the
company receives demands for its products on a periodic basis with the time between
demands, t,, distributed exponential with a mean of 0.1 month. The size of each demand,

D is distributed according to equation 4-1.

with probability %
with probability X

P (4-1)
with probability X

with probability %

S W o -

The time between order decisions, t,, is one month. A stationary (s,S) policy is
used to decide how much to order at the beginning of each month. In other words, given
» that I is the inventory at the beginning of the month, then the amount to order for that

month, Z, is determined by equation 4-2.

S-1 iflcs
= 4-2)

0 ifI2s

In this system, the company determines each month whether or not it should place
an order, and if so, how much to order. If an order is placed, then the time it takes for the
order to arrive at the company, t;, is distributed uniformly between 0.5 and 1 month. The
total order cost is equal to k +iZ. In this problem k = $32 and i = $3. The holding cost
per item per month held in inventory is given as h = $1. The underage cost is given as u =
$5 per item per month in backlog (i.e., on order). The underage costs include such items
as extra bookkeeping costs and loss of goodwill costs. The planning horizon or time that
the system would operate under the various strategies of operating the inventory system

was set at n = 120 months.
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Some of the relevant output measures that could be calculated for this system,

over the planning horizon, include:

Average total cost (C),

Average ordering cost,

Average holding cost,

Average shortage cost,

Average inventory level,

Minimum inventory level,

Maximum inventory level.

Law and Kelton used the computer simulation of the inventory system to obtain
estimates of the output measure, average total cost per month (C) for various settings of
the decision variables s and d. Since Law and Kelton used the inventory system to discuss
the process of experimental design, they labeled the average total cost as R (for response

of the computer simulation).

4.2 Computer Simulation of the Inventory System

The inventory system computer simulation used in this dissertation was written in
the SIMAN simulation language for the reasons discussed in Chapter 3. Output statistics
of different input parameter settings from a computer simulation can be categorized as
either independent or dependent observations. In simulation, independent observations
have been used quite widely due to the applicability of straightforward statistical tests for
comparing alternatives. Dependent observations have been used for the purpose of

vaiance reduction. One frequently used technique for producing dependent observations
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is the common random number approach, one component of which is to use the same
starting point in the same random number streams for each input parameter setting in a
simulation run. Using the common random number approach would probably provide a
more stable, but less robust, set of observations from the computer simulation since the
variance is typically reduced. However, this research examined only the independent
observations approach. One way that independent observations are obtained is to select
different starting points in the same random number streams for each input parameter
setting. In this research, independent observations for each input parameter setting were
obtained by selecting the random number streams and running the simulation program
through all of the desired replications by having the computer simulation iteratively read
the input rarameter settings from an external file. In this way the random number stream
was never reset to the original starting point and thus created independent observations for
all the replications of all of the input parameter settings. In some cases, due to memory
restrictions of the computer, additional replications were made using different random
number streams in order to preserve independence between the replications made for each
input parameter setting. The same procedure was followed for all of the experiments
performed in this research. For illustrative purposes the SIMAN computer programs and
external data files that were used to produce the independent observations for this section

are provided in Appendix A in Figures A1 through A3.

Validation of the SIMAN computer simulation was performed by comparing the
output from the SIMAN simulation to the results given by Law and Kelton. Since Law
and Kelton only provided the output of single simulation replications, a direct statistical
comparison of the two is not possible. However, Law and Kelton did report the results of

building first-and second-order regression models on multiple replications for different
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input parameter settings. The approach used to validate the SIMAN simulation model of
the inventory system was to build the same first- and second-order regression models on
the SIMAN simulation data and compare the regression results to those found in Law and

Kelton.

The two sets of input parameters given in Table 1 were simulated and used to build
regression models. Each parameter setting consisted of a different combination of values
of the input parameters s and d. The output measure of system performance, that was
provided by the simulation, was the 120 month average, of monthly total cost, C. The
SIMAN simulation results, where C is the average of C over ten replications, as well as

the two input parameter settings for data sets A and B, are provided in Table 1.

Table 2 shows the regression models that were used by Law and Kelton to develop
metamodels of the computer simulation. The Law and Kelton and SIMAN simulation
results of ten replications of data set A, the first four input parameter settings from Table
1, were approximated using the first-order multiple linear regression model given in Table
2. The second-order multiple linear regression model in Table 2 was used to model the
simulation results of five replications (from Law and Kelton) and ten replications (from
SIMAN) of data set B, the second set of 36 input parameter settings from Table 1. Itis
not clear why Law and Kelton used only five replications at the 36 input parameters when
all of the rest of their examples used ten replications. To maintain consistency between
the models of the two data sets, ten replications were used in this dissertation for each
model. The regression model results for the SIMAN data for data sets A and B are

provided in Tables 3 and 4, respectively.




Table 1 SIMAN Simulation Results for Data Sets A and B

s d C
reorder | order Cost
point | quantity
Data Set A 20 10 136.56
20 50 120.81
60 10 145.20
60 50 149.01
s d C S d C
reorder | order Cost reorder | order Cost
point | quantity point | quantity
Data Set B 0 5 233.17 60 S 140.34
0 20 175.69 60 20 144.49
0 40 147.69 60 40 145.52
0 60 137.36 60 60 151.42
0 80 134.14 60 80 158.92
0 100 136.28 60 100 167.97
20 5 147.41 80 5 161.40
20 20 124.25 80 20 163.70
20 40 119.73 80 40 165.50
20 60 122.65 80 60 172.46
20 80 127.06 80 80 179.13
20 100 135.84 80 100 188.19
40 5 127.13 100 5 181.54
40 20 127.02 100 20 184.18
40 40 126.49 100 40 185.19
40 60 131.86 100 60 191.47
40 80 140.30 100 80 200.84
40 100 148.64 100 100 207.93

Table 2 Regression Models Used For Each Data Set

DATA SET REGRESSION MODEL
A Cost = by + by*s + by*d + error
B Cost = by + by*s + by*d + byp*s*d + b11*52 + b22*d2 + error

59
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Table 3 Regression for Data Set A Using SIMAN Simulation Results
Multiple R Square| -~ Q.89
R Square 0.80
Adjusted R Square 0.39
Standard Error 9.78
Observations 4
df Sum of Mean F P-Value
S Squares Square
Regression 2 375.10 187.55 1.96 0.45
Residual 1| 9573 95.73
Total 3 470.83
Coefficients| Standard |t Statistic{ P-value | Lower |Upper
Error 95% | 95%
Intercept 123.95 13.17 941 0.00 | -43.42 1291.31
S 0.46 0.24 1.88 0.16 -2.65 | 3.57
d -0.15 0.24 -0.61 0.58 -3.26 | 2.96
Table 4 Regression for Data Set B Using SIMAN Simulation Results
Multiple R Square
R Square 0.78
Adjusted R 0.75
Square
Standard Error 13.94
Observations 36
df Sum of Mean F P-Value
Squares Square | _
Regression 20916.50 4183.30 | 21.535 {4.15E-09]
Residual 5827.49 194.25
Total 35 26743.99
Coefficients| Standard |t Statistic | P-value | Lower |Upper
Error 95% | 95%
Intercept 189.40 9.22 20.54 |4.15E-21} 170.57 |208.23
s -1.51 0.26 -5.72  |1.83E-06{ -2.05 | -0.97
d -1.18 0.30 -3.95 0.0003 | -1.79 | -0.57
sd 0.010 0.00 480 |2.91E-05{ 0.005 |0.014
s2 0.014 0.00 6.17 |4.65E-07| 0.010 | 0.019
d2 0.007 0.00 2.59 0.0141 | 0.001 | 0.012
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As can be seen from Tables 3 and 4 both models have approximately the same
multiple R square values. The regression models in Tables 3 and 4 were built using the
averages of the 10 replications at each data point. The same results in terms of the model
coefficients result if the individual replications are used instead of the averages. However,
in the regression model built on individual replications, the apparent goodness of the
model increases due to a more significant F statistic caused by an increase in the degrees
of freedom. In summary, the models provided by regression are the same for both

averages and individual replications.

TABLE 5 Estimates of Regression Model Coefficients

DATA |SIMULATION REGRESSION MODEL
SET |DATA 7
A [SIMAN Cost = 123.95+0.46s-0.15d
A |LAW &KELTON _|Cost = 125.37+0.445-0.22d
B__|SIMAN Cost = 189.40-1.515-1.18d+.010sd+.014s%+.007d2
B |LAW &KELTON _|Cost = 188.51-1.495-1.24d+.010sd+.014s+.007d>

A summary of the regression results for each model in Table 2 is provided in Table
5 for both SIMAN and Law and Kelton simulation data.(!37) There is close agreement in
the coefficients of the regression equations for the SIMAN simulation data and the Law
and Kelton simulation data for both data sets A and B. As can be seen from Tables 3 and
4, the 95% confidence intervals for each of the regression coefficients of the SIMAN data
contain the regression coefficients obtained by Law and Kelton. Thus, for a Type 1 error
of a = 0.05, we do not have enough evidence to reject the null hypothesis that the SIMAN
and Law and Kelton regression models are the same. This indicates that the SIMAN
computer simulation models used in this research provide results that are similar to those

produced by the computer simulations developed by Law and Kelton.
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It should be noted that the last three values in the equation for Law and Kelton for
data set B in Table 5 are mislabeled in the Law and Kelton textbook.(134) This can be seen
by solving for the minimum of the function. The minimum value for the function in the
textbook is found at s = 148 and d = - 42. By making the changes found in the table, in
row D*, the minimum value is found at s = 29 and d= 68. These changes are also
consistent with the contour diagrams of the function found in textbook and in Figure 9a

discussed below.

Figure 9 shows three surface and contour plots of the space formed by s, d and
cost as determined by direct simulation, a regression metamodel and an ANN metamodel.
Figure 9a shows the surface plot and a contour plot of 420 equally spaced points on the
(s,d) grid with the height of the surface and the contour lines representing the cost for
each combination of s and d as determined by ten replications of direct simulation. This is
basically the target that the metamodels are attempting to approximate. The regression
model approximation to the target from Table 5, which was built on the 36 data points of
set B, is shown in Figure 9b. As can be seen in Figure 9b, the model is smoother and has
values that are too low in the lower left hand corner and values that are too high in the
upper right hand corner. An artificial neural network approximation built on the same 36
data points of set B, is shown in Figure 9c. Visually, it appears that the ANN metamodel
captures the essence of the surface better than the regression metamodel. In addition, the
mean absolute error of the ANN evaluated at all 420 test points is 3.20 while the MAE is

8.64 for the regression model.(13%)
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4.3 Experiments with Two Simulation Input Parameters

This set of experiments consisted of two different experiments. The first
experiment consisted of predicting a single simulation output, mean cost. The second
experiment predicted four typical descriptive statistics produced by computer simulations

(i.e., mean, standard deviation, minimum, maximum).

The simulation of each input parameter setting consisted of operating the inventory
system for a period of 120 months, or ten years of simulated time. The statistics used in
these two experiments are calculated on the basis of the 120 months of operating the
inventory system within each replication. Thus, at the end of each replication over the 120
months there is a minimum cost month, a maximum cost month and it is possible to
calculate the average monthly cost and the standard deviation of the monthly costs.
Finally, for each input parameter setting, multiple replications are performed and each of

the relevant statistics are captured for each replication.

The purpose of these experiments is to examine the manner and the amount of
simulation data to use in training an ANN to predict typical computer simulation outcome
measures. One obvious way was to use just the average output values of the computer
simulation replications at each input parameter setting. This seemed to eliminate
information that the ANN might be able to take advantage of in building a better model of
the computer simulation. Thus, the opposite extreme of using all of the simulation
replications was also considered. Preliminary experiments showed that unlike regression,
ANN metamodels built using averaged replication data performed differently than ANN
built on individual replications. Concern about the effect of extreme points in the

simulation data led to consideration of additional methods which used only the fifty
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percent of the data that was nearest to the mean value. Finally, combinations of using

averages and replications were also considered.

Specifically, five different methods of presenting simulation data to ANN were
examined. The methods ranged from presenting all the individual replications to just the
averages of the replications. The five presentation methods were:

Presentation Method 1 - Average output of all simulation replications.

Presentation Method 2 - All simulation replications and the average of all
simulation replications.

Presentation Method 3 - Half of the simulation replications nearest to the average
and the average of all simulation replications.

Presentation Method 4 - All simulation replications.

Presentation Method 5 - Half of the simulation replications nearest the average.

For each presentation method, the effect of increasing the number of simulation
replications was examined. The number of replications of the computer simulation used

for each input parameter setting wasn=1,2,3,4,5,6,7, 8,9, 10, 15, 20, and 25.

The input parameter settings that were used to obtain data from the computer
simulation to train the ANN for these experiments are shown in Table 6. As can be seen
from Table 6, only two input parameters were allowed to vary: s and d. For illustrative
purposes, the results of the computer simulation for each of the combinations of the input
parameters shown in Table 6 for Experiment 1 and Experiment 2 for the average of 25

replications are provided in Appendix A, Table Al and Table A2, respectively.
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Table 6 Training Input Parameter Settings for Experiments 1 and 2

Input Parameter Combinations of Training Input Parameter Settings |
S 20 40 60 80 20 40 60 80
d 20 20 20 20 40 40 40 40
s 20 40 60 80 20 40 60 80
d 60 60 60 60 80 80 80 80

The data used to test the ANN was obtained by running the computer simulation at
the input parameter settings shown in Table 7. The test data was used to examine the
ability of the ANN to generalize to previously unseen examples. The test set consisted of
points that were completely internal to the training set and points that were completely
external to the training set. The third grouping that was evaluated was the combination of
all of the internal and external points. It was assumed that the average of the outputs of
500 replications for each input parameter setting of the test set from the computer
simulation were the "right" answers. The metric for comparison purposes was the mean
absolute error (MAE) of the difference between the outputs of the ANN and the computer
simulations "right"” answers. The test set "right" answers are provided in Appendix A,
Tables A3 and A4, for experiments 1 and 2 respectively. A graphical portrayal of the

location of the various training and test sets is given in Figure 10.

Table 7_Testing Input Parameter Settings for Experiments 1 and 2

Data Set Input Combinations of Testing Input Parameter
Parameter Settings
Internal S 30 |50 |70 |30 {50 |70 |30 |50 |70
9 points d 30 |30 |30 |50 |50 |50 |70 |70 |70
External s 10 |50 190 |10 |90 |10 |50 |9C
8 points d 10 |10 }10 |50 |50 {90 |90 |90
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Figure 10 Training and Testing Points for Experiments 1 and 2

4.3.1 Experiment #1: Presentation Methods of Qutput Measures

The purpose of this experiment was to determine if there was a prefeired way of
presenting the replications of the computer simulation output measures as training data to
ANN whose purpose was to predict a single simulation output. The SIMAN computer
simulation of the system described in Section 4.2 was approximated by an ANN model
using five dif’ 2rent methods of presenting the training data. The five methods of
presenting the computer simulation output data, C the average monthly cost, during the

training of the ANN are shown in Table 8. The average cost over n replications used in
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presentation methods 1, 2 and 3 is defined in equation 4-3.
n
2. Cik@)
Cix= .lin__ (4-3)

Table 8 Methods of Presenting Simulation Output Data to ANN (Training Data)

Presentation Method | Input: | Output:
PM1 Sp dk Ej,k averaged over n replications
PM2 S dk Ej,k averaged over n replications
& Cj k() for each replication, i.
PM3 S dk _Cj,k averaged over n replications
& Cj k(i) for the n/2 nearest replications toq’k
PM 4 sj dk | Cj k(i) for each replication, i.
PM'5 5 dk Cj,k(i) for the n/2 nearest replications toEj,k
sj, dk represents a specific input parameter setting.
n varied from 1 up to 25.

For this experiment, a total of 59 distinct ANN were trained, 13 for presentation
method 4, 12 for presentation methods 1 and 2, and 11 for presentation methods 3 and 5.
However, the tables and figures showing the results for experiment 1 show 13 ANN for
each presentation method, for a total of 65 ANN. The reason is that when the number of

replications is only one, then the average is the same as individual replications and thus the
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network for one replication from presentation method 4 was used as the network for one
replication for all five of the presentation methods. Similarly the network for two
replications from presentation method 4 was also used as the network for two replications

for presentation methods 3 and 5.

All networks were fully connected and were constructed with two input nodes,
two hidden layers with two nodes each, and one output node as shown in Figure 11. The
learning rate was 1.0 and the smoothing factor was 0.9. Training continued until the
network deemed a response as correct to within a training tolerance of 0.1 or 5000 passes

through the entire data set. See Figures A4 and AS.
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Figure 11 Schematic of ANN Used for Experiment 1

All of the ANN converged to the training tolerance of 0.1 for all of the
presentation methods in experiment 1. The results of experiment 1 are summarized in
Appendix A, Table A7. Figures 12 through 15 are based on the information provided in
Table A7.
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Figure 12 shows the results of evaluating the trained ANN on the training set. As
can be seen from Figure 12 the values of MAE for the training set fall between S and 10.
It appears that adding additional replications only improves the performance of

presentation methods 2 and 4 when the training tolerance is fixed at a specified level.
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Figure 12 Training Set Results for Experiment 1

As can be seen in Figure 13 there is a cost associated with the improvement in the
MAE for the networks trained using presentation methods 2 and 4. The cost is the
increase in the number of presentations, or time required for the backpropagation

algorithm to terminate the training process.
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Figure 13 Presentations Required to Terminate Training for Experiment 1

The next group of charts, Figures 14 through 16, show the benefit of increasing
the number of replications that are used for each training point on the ability of the trained
ANN to perform on the test set. These figures show the results of testing each of the
networks trained with the 5 different presentation methods. Figure 14 shows the results of
the internal test set, Figure 15 shows the results of the external test set and Figure 16
shows the results of the combined test set. As can be seen in Figure 14, the ANN
performance on the internal test set is between 5 and 10 MAE and from Figure 15, the
results on the external test set are between 11 and 14 MAE. Obviously, and expectedly,
the ANN are able to predict the computer simulation output values better for points that
are internal to the training set rather than external to the training set. Thus we can say that
ANN perform better as interpolating mechanisms rather than extrapolating mechanisms.
The ANN performance on the combined test set ranges between 8 and 12 as can be seen
in Figure 16. All three of the Figures 14, 15, and 16, indicate that presentation methods 2

and 4 do better than presentation methods 3 and 5 which did better than presentation
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method 1. The conclusion from this experiment is that for a fixed value of the training
tolerance with all networks converging to that training tolerance. it is better to use all of
the replications of the data (presentation methods 2 through 5) rather than just the
averages (i.e., presentation method 1). An additional conclusion is that ANN should be
used with caution when performing extrapolations beyond the data on which they were
trained. It also appears that there is very little difference between presentation methods 2
and 4 or between presentation methods 3 and 5. Thus from this experiment it appears that
including the average along with the individual replications provides very little difference

in learning the relationship between the inputs and outputs of the computer simulation.
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Figure 14 Internal Test Set Results for Experiment 1
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Figure 16 Combined Test Set Results for Experiment 1
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4.3.2 Experiment #2: Predicting Descriptive Statistics Typically Produced by
Computer Simulations (Mean, Standard Deviation, Min and Max)

The major difference between experiment 1 and experiment 2 is that experiment 2
used the ANN to predict three additional aspects of the desired measure of effectiveness.
Both experiment 1 and 2 predict the mean value of the cost of operating the inventory
system for 120 months. Experiment 2 also predicted the standard deviation, minimum and
the maxunum value of the cost for the same time period. These measures of cost are
typical outputs provided by most computer simulation packages as the output of a single
replication of the simulation. An example of the training data used for experiment 2 is the
averages (i.e., presentation method 1) of the four different aspects of cost for 25
replications which is given in Table A2 of appendix A. The distinction between the
internal, external and combined test points was examined in experiment 1 but was not
considered in experiment 2. The only test set examined in experimeut 2 was the combined

test set which is provided in Table A4 in Appendix A.

For this experiment, a total of 59 different ANN were developed. All networks
were fully connected and were constructed with two input nodes, two hidden layers with
ten nodes each, and four output nodes. These networks have five times as many hidden
nodes as were used in experiment 1, because it is a much harder problem to learn four
outputs than to learn one output. Initial trials with a varying number of hidden nodes in
each hidden layer yielded 10 hidden nodes per layer as a good starting point for this
particular problem. Each input node corresponded to one of the input parameters (s, d),
and each output node corresponded to one of the output parameters (mean, standard
deviation, minimum, maximum). The learning rate was 1.0 and the smoothing factor was

0.9. Training continued until the network deemed a response as correct to within a
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training tolerance of 0.1 for each of the four outputs or 5000 passes through the entire

data set (See Figures A6 and A7).

The only presentation method to have all of the networks converge to the training
tolerance of 0.1 for experiment 2 was the first presentation method. The results of
experiment 2 are summarized in Appendix A, Table A8 for the training sets and Table A9
for the test set. The charts in Figures 17 through 25 are based on the information
provided in Tables A8 and A9. The results in Tables A8 and A9 suggest, as was seen in
experiment 1, that there is very little difference between presentation methods 2 and 4 or
between presentation methods 3 and 5. Therefore, the figures showing the results for

experiment 2 do not include presentation methods 4 and 5.

The results of the network evaluations of the training set for the various number of
simulation replications for presentation methods one, two and three for the mean, standard
deviation, minimum value, and maximum value of cost are shown in Figures 17, 18, 19
and 20, respectively. From these graphs it appears that there is some interference taking
place between the various output measures that the neural networks are trying to learn. It
appears from the fairly random nature of the Mean Absolute Error (MAE) for mean cost
and minimum value of cost as seen in Figures 17 and 19 that this experiment has produced
ANN that are not very consistent even for very small changes in the number of replications
used to develop the ANN. This erratic behavior occurs for all of the presentation methods
including the converging presentation method 1. The MAE for the outputs of standard
deviation of cost and maximum value of cost as shown in Figures 18 and 20 are much
moze stable. An examination of the root mean square error (RMSE) for these measures in

Table A7 and A8 in Appendix A, show that RMSE is much larger than MAE for the
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standard deviation and maximum value of cost. This indicates that some of the errors are

very large for these measures.
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Figure 17 Training Set Results for Experiment 2 for Mean Cost

30 -
25 1
20 + —=— pPM 1
g 15 1 —0— PM 2
10+ * PM3
0 , — , ; :
0 5 10 15 20 25

Number of Simulation Replications

Figure I8 Training Set Results for Experiment 2 for Standard
Deviation of Cost




79

30 T
251
07 —*—PM)
< —o—
S PM 2
¢ PM 3
0 T + —— + {
0 5 10 15 20 25
Number of Simulation Replications
Figure 19 Training Set Results for Experiment 2 for Minimum Value of Cost
07
25 1
207 —=—PM 1
[* T}
g 15 1 —DO— PM2
10 + —*— PM3
5 I % R r .
0 — —+ 4 +— —
0 5 10 15 20 25

Number of Simulation Replications

Figure 20 Training Set Results for Experiment 2 for Maximum Value of Cost

The amount of presentations (i.e., the number of training patterns shown to the
network) required to terminate training for experiment 2 are given in Figure 21. It should
be noted that the scale for Figure 21 differs considerably from the scale used on Figure 13

which is the corresponding figure from experiment 1. Many more presentations of the
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data were needed to termir .1ning in experiment 2 than it did in experiment 1. In
addition, many of the networks actually did not a hieve the desired tolerance of 0.1 for all
four of the output measures but instead terminated training by reaching the training
termination criteria of 5,000 presentations of the data set to the ANN. Presentation
methods 2 and 4 have more data than presentation methods 3 and 5, which have more
data than presentation method 1. Consequently, they are correspondingly higher in terms

of the number of presentations of data to the ANN -ring the training phase. Presentation

method 1 was the only method that consistentt, .+ _ged to the training tolerance of 0.1.
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Figure 21 Presentations Required to Terminate Training for Experiment 2

The results for the test set of the three presentation methods for the mean,
standard deviation, minimum, and maximum value of cost are given in Figures 22, 23, 24,
and 25, respectively. The first observation that can be made from these figures is that in

the vast majority of cases the largest error for all four of the measures of cost is found

]
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with presentation method 1. There does not appear to be much of a difference in the
performance of presentation methods 2 and 3. The second observation is that the erratic
performance of the ANN in predicting mean and minimum cost that was present in the
training data is also present in the testing data. Comparing the appropriate charts (i.e.,
Figure 17 versus 22, Figure 18 versus 23, Figure 19 versus 24 and Figure 20 versus 25),
it is apparent that there is a larger degradation in the performance of networks on testing
data compared to training data for mean value and minimum value of cost than for the

standard deviation and maximum value of cost.
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Figure 22 Test Set Results for Experiment 2 for Mean Cost
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Figure 25 Test Set Results for Experiment 2 for Maximum Value of Cost

Experiment 1 and 2 both used ANN to predict mean cost of operating the
inventory system for 120 months. The direct comparison of the results from these two
experiments on predicting the mean value of cost for presentation methods 1,2 and 3 is
made in Figures 26 through 28 for the training set and in Figures 29 through 31 for the
test set. The only truly valid comparison that can be made between the first two
experiments is with presentation method 1, since it was the only presentation method that
converged to the training tolerance in both experiments. It is apparent from Figures 26
through 28 that the approach used in experiment 1, having the ANN predict just one
output, is much more stable for the training set than the approach used in experiment 2,
which had the ANN predict four different outputs. It is also apparent from Figures 29
through 31 that the approach used in experiment 1 is much more stable for the test set
than the approach used in experiment 2. Thus, it appears from these results that trying to
predict single outputs only performs better than the multiple output approach when the
number of simulation replications is large. The reason this has occurred is that, even

though the training tolerance was the same for this measure of cost for both experiments 1
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and 2, the networks for experiment 2 had to meet the training tolerance for an additional
three measures. Since the single output ANNs all converged for all five presentation
methods, it appears that there is room for additional training to take place by just reducing
the training tolerance below 0.1. On the other hand, the multiple output ANN from
experiment 2 did not consistently converge within the allowable 5,000 runs through the
training data. Therefore, it appears that there would be little advantage to reducing the
training tolerance below 0.1 when training on multiple outputs without lengthening the

maximum number of epochs.
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Figure 26 Comparison of Experiment 1 and Experiment 2 Training Set
Results for Predicting Mean Value of Cost (C) for Presentation Method 1
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Since stable predictors are preferable to unstable predictors, in general, the main
conclusion to be derived from experiments 1 and 2 is that the approximation of multiple
simulation output measures should be done with one ANN for each output measure, rather

than one ANN for all of the output measures.

A second conclusion is that the method used in these two experiments for selecting
the best network for each presentation method and set of training data is inadequate. In
these experiments, it appeared that presentation methods 2 and 4, which used all of the
simulation replications, produced better ANN. However, these presentation methods also
did not consistently converge in experiment 2 and terminated training at an arbitrary
predetermined number of runs (5,000 in this case) through the training data. This arbitrary
stopping point is 5,000 steps away from a randcm starting point on the error surface that
the ANN is trying to minimize and as a result may not be very close to the minimum error.

While the lack of convergence in experiment 2 may have been due to trying to predict four
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different output values, the following discussion shows that it could be due to another
problem. That is, by virtue of the stochastic nature of computer simulations, there are
different values produced by the computer simulation for the outj ut of a specific
combination of input parameter settings. For any given set of trainiug data, there is at
least one input parameter setting that has the largest difference between its multiple
outputs, say MAXRANGE. If the desired training tolerance is smaller than
MAXRANGE/2 then the network will fail to converge if all of the simulation output
replications (i.e., presentation methods 2 or 4) are used as the training set. Thus, even
though in these first two experiments presentation methods that use all of the replicated
data did better than the presentation method that used the averages, it is quite possible that
for a particular training tolerance level the presentation methods could not converge. The
result would then be the final network, which in a sense is just a random point on the path
from the starting point to the minimum on the error surface. There is no guarantee that
such a point would be a very good point. In addition, if the training tolerance is small
enough, it is possible for presentaiion method 1 to not converge within a pre-specified

number of runs through the training data.

One way to avoid this problem is to pick a particular architecture for the ANN, use
the termination criterion of "maximum number of runs" and write the results of the
training performance to a file after each run through the training data. A search through
the training results file will determine which run through the data produced the network
with the best performance on the training set. Training without testing would then be
conducted for thc number of runs required to reach the best network. This procedure will
be referred to as "best net training" and is used throughout the remainder of the

dissertation. Another procedure that is similar is called "test and save” in which the
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network is tested at pre-specified intervals and the networks are saved to individual files.
If the networks are saved after each training run through the data, then the networks
resulting from "best net training" and "test and save training" will be the same. Using the
"test and save" training procedure does not require a second training session to obtain the
weights of the best network. However, with the "test and save" procedure, it takes a lot
of time to write the individual networks to different files, it takes a lot of memory to hold
all of the files, and if the interval between testing networks is larger than one, then there is
no guarantee of finding the best network. For these reasons "test and save" was not used

in this research.

Further, adding just one example of the average value to the training set did not
seem to help the learning process (i.¢., presentation method 2 seemed to perform almost
exactly like presentation method 4 and presentation method 3 seemed to perform almost
exactly like presentation method 5). Therefore, presentation methods 2 and 3 were not
considered in the remainder of the dissertation work. Also, presentation method 5 was
bounded by presentation methods 1 and 4 in the sense that the networks createa by
presentation method 5 produced MAE that fell consistently between the MAE produced
by networks developed using presentation methods 1 and 4. Therefore, presentation

method 5 was not considered in the remainder of the dissertation.

One possibility of future research is to examine various increases in the number of

copies of the mean value being added to the training set.
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4.4 Synopsis of Conclusions from Initial Experiments on Inventory System

The following conclusions were derived from the experiments conducted in this

chapter.

1. ANN should be used to perform interpolations rather than extrapolations from

the raining set.

2. Adding the additional data point of the average value of the output for each
parameter setting provides little if any benefit in developing ANN. That is, there appears
to be very little difference between presentation methods 2 and 4 or between presentation

methods 3 and 5.

3. Itis better to have several ANN, each predicting only one computer simulation

output measure rather than having one ANN that is used to predict several measures.

4. There is insufficient evidence from these preliminary experiments to suggest
that any one of the presentation methods is definitively better than the rest. The
presentation method that tended to be the quickest (presentation method 1) and the
presentation method that tended to produced the most accurate ANN (presentation

method 4) will be considered in the remaining experiments.

5. The method used in experiments 1 and 2 for selecting the best ANN can be
improved. Rather than limiting the possibilities to a "converged to the training tolerance"
or a "reached raining termination criteria” network, the results after each run through the

training set should be saved. Searching through the resultant file would enable the "best
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trained net" to be found. Retraining the initial network without testing and writing results
to a file would permit the "best trained net" to be obtained. This is called the "best net

training" approach to training ANN.

4.5 Summary

This chapter contains a discussion of the (s,S) inventory system which is used as a
vehicle for developing an approach to building ANN metamodels of computer simulations.
A three dimensional visual comparison between adirect simulation, a second-order
regression metamodel, and an ANN metamodel demonstrated that for this problem the
type of regression models used in response surface methods are not as accurate as ANN
metamodels. The two experiments discussed in this chapter used two input parameters, s
and d, and one output measure, cost. The first experiment examined various methods of
presenting the simulation data to ANN. The result of the first experiment is that the
networks trained on all of the individual replications of the computer simulation performed
better than networks trained on just the average values or on half of the data closest to the
averages. The second experiment examined the issue of predicting multiple outputs with
one ANN or predicting with several ANN, each of which predicts a single output. By
comparing the results of the ANN developed in the first and second experiments it is
apparent that there is a confounding of learning is taking place when trying to predict
multiple outputs with one ANN. The conclusion to be drawn is that it is better to develop
separate networks when trying to predict multiple outputs. The final result of the
experiments discussed in this chapter is the development of the "best net training"

approach to developing ANN metamodels.




5.0 DEVELOPMENT PROBLEM - FINAL SET OF EXPERIMENTS IN
APPROXIMATING AN (s,S) INVENTORY SYSTEM

The experiments in this chapter examine the ability of the ANN approximation
method to handle increased model complexity in terms of the nurnber of input parameters.
To increase the complexity of the inventory model, the “controllable” input parameters k
(setup cost) and u (underage cost) were added to the existing model with the other
"controllable" input parameters of s (reorder point) and d (reorder quantity). This chapter

focuses on estimating both the mean cost and variance of mean cost of inventory plans.

Most users of discrete event stochastic simulations are interested in estimating
both the expected value and the variability of that expected value for specific combinations
of values of input parameters. In stochastic simulation, the expected value (arithmetic
mean) and the variance can be calculated as a by-product of multiple simulation runs. In a
neural network metamodel of the type proposed in this research, outputs are deterministic,
i.e., there is no attempt to replicate the stochastic aspects of the simulation. However, it is
desirable to calculate a measure of the variability, as well as the expected value, for any
particular response. Using the expected value and variance together allows for the
construction of statistical prediction and confidence intervals for any system output. The
capability to estimate both expected value and variance is provided by estimating each by a
separate metamodel. Thus, for a given combination of input values, one neural network
metamodel estimates the mean cost of the inventory plan, while another neural network

metamodel estimates the variance of the mean cost.
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5.1 Experiments with Four Simulation Input Parameters

The following experiments (3 through 6) were performed with the four input
parameter inventory computer simulation. First, the number of hidden nodes needed to
predict the simulation output is determined in experiment 3. In experiment 4 the mean
cost of the (s,S) inventory system is predicted using ANN and is used to examine the
radeoffs between increasing the number of replications and increasing the number of data
points. In experiment 5 the variance of the mean cost of the (s,S) inventory system is
predicted using neural networks. In experiment 6 the ANN metamodels are used to make

prediction intervals for the cost of the (s,S) inventory system.

For this experiment, and all subsequent experiments, the only presentation methods
used were presentation method 1 (average of output data) and presentation method 4 (all
individual replications). In this problem mean cost is calculated, for each particular input
parameter setting, according to equation 5-1 and the variance of the mean cost, also called
the squared standard error, is calculated according to equation 5-2, for ten replications.

10
2.Ci

Mean= C = ‘ill-a— (5-1)

10 s
2.(¢i—0)
i=1

var(C) = (se)’ =——;’T—— (5-2)

The data used to train and test the ANN for the experiments on the 4 input

parameter inventory system simulation was obtained using the SIMAN computer
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simulation programs given in Appendix B, Figures B1 and B2. This simulation is identical
to the one used for the 2 input parameter inventory system except that the code was
modified to accommodate the larger number of input parameters. In these experiments a
reparameterization of the factor u was used to prevent having unreasonable combinations
of u and k. The reparameterization was to let w = k/u. In the 2 input parameter inventory
computer simulation the parameter k was always at the value $32 and the input parameter

u was always equal to the value $5 (and so the parameter w was 32/5, or 6.4).

The values of the four input parameters selected for training and testing neural
networks are shown in Table Y. Using ten values of s, ten values of d, five values of k and
five values of w, a total of 2,500 different combinations of input parameter values were
simulated ten times to obtain a total of 25,000 replications of training data. To examine
the tradeoffs of more data points versus additional replications, the training data was
divided into smaller non-disjoint sets. Table Y shows several sets of values for each
parameter. The parameter s, has three sets of values, one set of size 2, one set of size 4
and one set of size 10. Similarly, d, k and w have three, four, and four sets of values
respectively. Thus, there are 144 (3x3x4x4) combinations of the different sets of values of
the input parameters. Table 10 shows the thirteen combinations of the sets of training
input parameter values that were considered in the experiments involving the 4 parameter
inventory system computer simulation. Each training set is a subset of any training set that
is below or to the right of it in Table 10. The one exception to this rule is training set J,
since it is a combination of training sets E and I, each of which contains the training set A,
with one of the two sets of training set A removed. Training set J was included to
examine the advantage of having detailed information about each input parameter without

the disadvantage of having very large amounts of data, as is the case with training set M.
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Table 9 Training and Testing Values for 4 Input Parameter Inventory Simulation

Input Parameter/ | Number of Parameter Values
Data Type Values
8
train 2 20 80
train 4 20 40 60 80
train 10 20 27 33 40 47 S3 60 67 73 80
test 5 10 30 50 70 90
a
train 2 20 80
train 4 20 40 60 80
train 10 20 27 33 40 47 53 60 67 73 80
test 5 10 30 50 70 90
k
train 2 16 80
train 3 16 48 80
train 4 16 32 64 80
train 5 16 32 48 64 80
test 6 8 24 40 56 72 88
W
train 2 4 17
train 3 4 10.5 17
train 4 4 8 13 17
train 5 4 8 10.5 13 17
test 6 3 6 9 12 15 18
s = reorder point d = reorder quantity
k = setup cost w = parameterization of u-underage cost, where w = k/u

Table 10 Training Sets for 4 Input Parameter Inventory Simulation

Number of Values of 2 values of s 4 values of s 10 values of s
Input Parameters 2 values of d 4 values of d 10 values of d
2 values of k A (16) D (64) 1 (400)
2 values of w
3 values of k B (36) F(144) K (900)
3 values of w
4 values of k C (64) G (256) L (1600)
4 values of w
5 values of k E (100) H (400) M (25000
S values of w

J (484) = E+I-A

(Numbers in parentheses in the table indicate the number of points in the training set)
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Due to computer memory restrictions, the computer simulation program was run
in separate batches of 10 replications for the training data and 20 replications for the
testing data. To obtain independent replications. the random number streams shown in
Table B1 were used for the different batches. To reproduce the computer simulation
results from SIMAN that were obtained in this research would require putting the input
data in an ASCII file in the same order that is shown in Table B2 in Appendix B. In Table
B2, all of the parameters begin with the smallest values. The first three parameters are
then held fixed and the values for parameter w are increased from the smallest to the
largest value. Then k is increased to its next highest value and the process is repeated to
the parameter w. This iterative process is repeated for all values of k, and then all values
of d and then all values of s. The process is repeated until all possible combinations are
achieved. The results of the first 90 data points for the 10 replications of the training set
are shown in Table B2. All of the data for the training sets was obtained by running the
simulation on training set M, and then dividing the results appropriately to form the other
training sets. An example of one of the training sets, specifically training set A, is shown
in Table 11 with the results of 10 replications of the computer simulation in terms of the
mean cost and the variance of the mean cost. Training set A is a 24 design which is the
standard full factorial design used in traditional response surface methods. Other more
sophisticated designs such as Box Behnkin and star point designs may be more
appropriate if optimization of the response surface is the goal. Training set F is shown in
Table B3 in Appendix B. Training set Fis a 32x 42 design. The data has been shuffled in
both Table 11 and Table B2 for ANN training purposes. M, the largest training set is a
102 x 52 design.




Table 11 Example of 4 Parameter Inventory Training Set - (Training Set A)

Training Input Parameters Qutput Values of Cost
Data Point S d k w C Var(C)
1 20 80 80 17 140.277 0.953
2 80 80 80 17 192.377 0.664
3 20 80 80 4 161.124 6.490
4 30 80 30 4 192.633 0.618
5 20 80 16 17 118.079 0.210
6 80 80 16 17 175.904 0,737
7 20 80 16 4 121.533 0.772
8 80 80 16 4 176.024 0.397
9 20 20 80 17 161.961 2.011
10 80 20 80 17 200.964 2.681
11 20 20 80 4 217.053 11.277
12 80 20 80 4 202.047 2.943
13 20 20 16 17 98.33 0.921
14 80 20 16 17 152.539 0.579
15 20 20 16 4 109.109 0.534
16 80 20 16 4 153.05 0.425
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The test sets for these experiments were constructed using the combinations of the

test set parameter values for each of the input parameters given in Table 9. There are 900

(5x5x6x6) points in the entire test set. Each point in the test set can be categorized in

terms of the number of parameters whose values are beyond the range of any of the

parameter values in the training sets. The result is a division of the test set into the five
groups of data listed in Table 12. An example of the input parameters for a test set and
the simulation results of mean cost and variance of the mean cost, are given in Table 13
for the test set with all four values of the input parameters external to the training set.

Test set 0, from Table 12 is a wholly interpolative test set. The results of the simulation

runs for the test set with O parameters external to the training sets are shown in Table B4

in Appendix B.
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Table 12 Subdivisions of Test Set for 4 Parameter Inventory Simulation

Test Set Number of Points in Test Set
(Number of parameters with value
external to training set values)

0 144
1 336
2 292
3 112
4 16

TOTAL 900

Table 13 Test Set with 4 External Values for 4 Parameter Inventory Simulation

Testing Input Parameters ()utput Values of Cost
Data Point s d k w C var(C)
1 10 10 8 3 115.13 2.06
2 10 10 8 18 87.92 0.71
3 10 10 88 3 518.13 100.11
4 10 10 88 18 219.77 6.19
5 10 90 8 3 118.09 0.62
6 10 90 8 18 111.30 0.51
7 10 90 88 3 216.72 19.20
8 10 90 88 18 143.18 1.57
9 90 10 8 3 151.95 0.33
10 90 10 8 18 151.84 0.25
11 90 10 88 3 230.04 0.50
12 90 10 88 18 230.01 0.62
13 90 90 8 3 188.05 0.49
14 90 90 8 18 188.03 0.49
15 90 90 88 3 207.83 0.63
16 90 90 88 18 207.92 0.72

A traditional backpropagation training algorithm was used with a smoothing
factor and a unipolar sigmoidal transfer function as given in equation 3-1, with a training
tolerance of 0.02. For some prediction problems it is difficult for the ANN to achieve very

high values or very low values of the target output due to the undershoot phenomenon.
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The default setting for the range of normalization of both the inputs and outputs in the
BrainMaker package is to use the minimum and maximum values observed in the training
data. In these experiments, the test data extends beyond the range of the training data
both in terms of inputs and outputs. Thus, for this research the range of normalization for
the input values was extended so that the minimum value was set at 10% of the range
lower than the minimum value of the train and test sets combined and the maximum value
was set at 10% of the range higher than the maximum value of the train and test sets
combined. For instance, for the input parameter s, the training set values had 4 minimum
of 20 and a maximum of 80, while the test set had a minimum of 10 and a maximum of 90.
Since the range of the combined train and test sets was 80 (90-10), BrainMaker used a
minimum value of 2 (10 - .1 x 80) and a maximum value of 98 (90 + .1 x 80) to scale the
input parameter s. The factor of 10% of the range beyond the minimum and maximum
values found in the test set was used after several trials using factors of 0%, 10%, and
20%. Similar trials were conducted to examine the factor to use for the output values
with the result that a 10% factor for adjusting the minimum and maximum of the mean
cost of operating the inventory system performed best. For predicting the variance of the
mean the factor used to adjust the range of the inputs remained at £10%, but the target
output used 10% lower than the minimum and 20% higher than the maximum since these
values yielded the best results. The remainder of these experiments used these

adjustments to the scaling factors for both the inputs and outputs of the ANN.

5.2 Experiment 3: Determining the Number of Hidden Nodes Needed to
Predict the Simulation Qutput Measure

In this experiment the ANN architecture has four input nodes, two hidden layers

with a varying number of nodes, and a single output node. The objective of this
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experiment was to determine how many nodes to use in the hidden layers. In this
experiment training sets A and M from Table 10 were used. These training sets were the
smallest and largest training sets, with 16 and 25(X) data points respectively. A total of six
ANN were developed using these two training sets. Two of the ANN were developed
using the mean and the individual replications of training set A. Four of the ANN were
developed using the mean and the individual replications of training set M with two of

these ANN using shuffled data and two of them using unshuffled data.

Each of the networks in this experiment were trained for 50 epochs. The networks
were evaluated after each epoch, and the one which performed best on the training set was
saved as the final trained network. The average number of epochs required to reach the

minimurm training error was 26.

The results on the test set in terms of Mean Absolute Error for the ANN trained on
the unshuffled data of set M are shown in Figure 32. As can be seen in the figure, the
best number of hidden nodes is five for both the averages and individual replications.

After this initial experiment, it was clear that the number of hidden nodes that would work
best for this data was between 2 and 10, and so, the succeeding examinations of the
number of hidden nodes was restricted to this range. After examining Figure 32, it
became apparent from the erratic behavior of networks trained on individual replications
that the ANN might have better and more stable performance if the training data was
shuffled for such a large training set. The results for data set A and the shuffled and
unshuffled data set M are provided in Figures 33 and 34. Figure 33 shows that all three of
the ANN trained on averages achieved the smallest MAE with five hidden nodes. Figure

34 shows that two out of three achieved the smallest MAE with five hidden nodes and the

e
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other achieved the smallest MAE with four hidden nodes for the ANN trained on
individual replications. In addition, Figures 33 and 34 show that shuftling the data
improves the results by reducing the test set MAE and for the individual replications,
providing more stable performance. In all six cases good performance in terms of MAE

was achieved using five hidden nodes.

Based on these results the following ANN architecture is used in the remaining
experiments of predicting cost with the four input parameter inventory simulation: four
input nodes, two hidden layers of five nodes each, and a single output node. In addition,
since it was observed that the networks trained on data set A achieved their best level of
performance at 50 epochs. which was the maximum number of epochs for this experiment,

succeeding experiments increased the maximum number of epochs to 75().
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Figure 32 Results of Experiment 3 for Training Set M (Unshuffled Data)
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Figure 33 Results of Experiment 3 for ANN Trained on Averages (PM 1)
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Figure 34 Results of Experiment 3 for ANN Trained on Individual Replications
(PM 4)
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5.3 Experiment 4: Predicting Mean Cost of the (s,S) Inventory Simulation

In this experiment the training data was presented to the network using
presentation method 1 and presentation method 4. All 13 of the training sets shown in
Table 10 were used to develop ANN to predict the cost of operating the inventory system.
Each set of training data was also organized into three different subsets: the first two
replications comprised the first subset, the first six replications made up the second subset,
and finally, all ten replications were used in the third subset. Thus, a total of 78 (2x13x3)

ANN were constructed for this experiment.

Each of the networks in this experiment were trained for 750 epochs. The
networks were evaluated after each epoch, and the one which performed best on the
training set was saved as the final trained network. The average number of epochs
required to reach the minimum training error was 418 epochs for the networks trained on
averages and 253 epochs for the networks trained on individual replications. Due to the
larger individual replication data sets, this translated to an average number of
presentations of each input data point to reach the best trained network of 418 for the
networks trained on averages and 1,743 for the networks trained on individual
replications. Several networks were trained to 7,500 epochs and in each case the best

network was achieved within the first 750 epochs.

5.3.1 Examining Four Input Dimension ANN Results on a 2 Dimensional Surface

Before examining the results of this experiment, the following discussion compares
how well the ANN trained using four dimensional input predicts the two dimensional
surface of the ten replications of 420 points of direct simulation shown in Figure 9a. It

should be noted that all 420 points plotted in Figure 9a had the same values for the
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parameters k and w. The parameter k was set to 32 and the parameter w was set to 6.4.
The closest values in training set F to these settings are with k equal to 16 or 48 and w
equal to 8. Also there are only 16 different values in the (s,d) space in data set F. Table
14 compares the regression and ANN metamodels developed with the 36 points from
Chapter 4, shown in Figures 9b and 9c respectively, with the ANN metamodel developed
on the individual replications of training set F. Based on the three criteria of mean
absolute error, maximum absolute error and variance of error, the ANN developed on
training set F outperformed the regression developed with 36 points but did not do as well
as the ANN developed with 36 points. Figure 35 shows the predictions made by the
neural network developed for this experiment using the ten individual replications of data
set F. In spite of the sparseness of the training data and its dissimilarity with the test set,
the plot of predicted values for the ANN trained on the individual replications of wraining
set F appears to be reasonably close to the direct simulation plots of 420 points shown in
Figure 9a and appears to be at least as good as the plot constructed using the regression

on 36 points shown in Figure 9b.

Table 14 Comparison of Chapter 4 and Chapter § Networks

Metamodel Method Regression ANN ANN
Training Set Chapter 4 | Chapter 4 | Chapter 5
Set B Set B Set F
Total Number of Training points 36 36 144
Number of Different (s,d) Training 36 36 16
Points
MAE (Entire Test Set) 8.64 3.20 5.09
Maximum Error (Entire Test Set) 52.15 12.02 52.02
Variance of Error (Entire Test Set) 33.71 4.64 32.66
MAE (Internal Points) 9.00 3.12 3.21
Maximum Error (Internal Points) 23.33 8.29 9.57
Variance of Error (Internal Points) 2491 4.09 4.57
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Figure 35 Surface Plot of Mean Cost Based on Training Set F

5.3.2 Results of Experiment 4

The training sets of average values had the advantage of being smaller and typically
converged more quickly in terms of the total number of data presentations to the network
than the training sets of individual replications. The plot in Figure 36 shows that all but
one of the individual replications training sets took longer to reach the best trained
network than for those nets trained on the average of the ten replications. Similar results

were found for the nets trained on two and six replications.
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Figure 36 Number of Presentations of the Training Data To Reach the Best Trained
Network in Experiment 4 for Training Sets Based on 10 Replications

One might expect to get the same results for predicting the mean cost of the
inventory policies of the test set data from both types of presentation methods, except that
the replication training would take much longer. This, in fact, did not happen. There
were fundamental differences in the performance of the networks, depending on the
method used to present the information to the networks during training. The individual
replications networks were more consistent in their ability to accurately predict total cost
for the test set. Initially this seemed counterintuitive. For the individual replications case,
training could not expect to reach a pre-specified training tolerance for all points since for
each training point there are ten (for the ten replication case) identical input vectors, each
with a different target output. Thus, if the training tolerance is larger than halif the
distance between the minimum and maximum output values for a particular set of input
parameter values, it will be impossible to correctly learn all ten of the outputs for that

particular input parameter setting.
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The output of the computer simulation for cost of the inventory system ranged in
value from 88 to S18. The average cost of all the points in the test set was 159. Figures
37, 38 and 39 show the networks trained on individual replications typically doing much
better than the networks trained on averages. All of the figures show the results in
alphabetical order of the training sets which are also in non-decreasing order of the size of
the training set. Figure 37 shows the results for the entire test set, while Figure 38 shows
the results for the test set consisting of all points with either zero or one value external to
the training sets and Figure 39 shows the results for all test points with either two. three or

four values external to the training sets.

As can be seen in Figure 37 only two of the networks, training sets E and K,
perform better with averages than with individual replications. Also as the number of
data points is increased the MAE decreases except for training sets E and 1. It is likely
that training sets E and I do poorer than networks trained on fewer data points because
they have too much information on some inputs. This can be seen by examining the data
sets in Table 10. Training set E might have too much information about the parameters k
and w. and not enough information about parameters s and d, while training set I might
have too much information about the parameters s and d and too little information about

parameters k and w.

The results in Figure 38 indicate that for a more interpolative test set, all training
sets with at least as many points as training set F (144 points) do better than those trained
on fewer than 44 points. For this test set, networks trained on averages only do better

than networks trained on individual replications for data sets E and K.
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It is expected that the less extrapolation is performed the better the ANN
metamodels performance will be. With the exception of training sets A and B, all of the
ANN metamodels do much better at predicting the mostly internal points of test sets with
0 or 1 external factors in Figure 38 than they do at predicting the test sets with two, three
or four factors external in Figure 39. It should also be noted that the reduction in test set
error resulting from additional data points is much greater for the interpolative test set
than for the extrapolative test set. The reduction from training set A to training set M is
approximately 75% (from 16 MAE to 4 MAE) in Figure 38 and is approximately 25%
(from 16 MAE to 12 MAE) in Figure 39.

The results for the more extrapolative test set indicates that it takes considerable
more training data to obtain a definitive reduction in the test set error than it did for the
interpolative test set. Figure 39 shows that improvement occurs when the training set is at

least as large as training set K (900 points). For this extrapolative test set, networks
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trained on averages only do better than networks trained on individual replications for data

set K.

For all of the test sets it appears from Figures 38 and 39 that networks trained on
very little data (Training Sets A, B and C) or on a lot of data (Training Sets L or M) are
not much different for the two data presentation methods. However, for the training sets
from D through K there does appear to be a difference between training on averages and

training on individual replications.

The result of increasing the number of replications at each point is shown in
Figures 40 through 43. Figures 40 and 41 show the results for presentation method 1
(averages) with the entire test set and the test set with O factors external, respectively.
Similarly, Figures 42 and 43 show the results for presentation method 4 (individual
replications). All four of the figures demonstrate that training neural networks is a
stochastic versus a deterministic process. Figures 40 and 41 show that there is not much
benefit to increasing the number of replications when training on the averages. Figures 42
and 43 indicate that there is a slight benefit to increasing the number of replications when
training the ANN is based on individual replications. For other problems the effect of
additional replications could be much more pronounced. These results indicate that for
this problem there is much more variability between the input data points than there is
within the replications performed at a particular data point. It should be noted that the
error on the purely interpolative test set as shown in Figures 41 and 43 is quite small for
both presentation methods once sufficient data points (at least 144 points with data set F)

are provided as the training set.
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5.4 Experiment 5: Predicting the Variance of Mean Cost of the Four Parameter
Inventory Simulation

This experiment is designed to predict the variance of the mean cost of operating
the inventory system as predicted by the computer simulation. Note that variance as well
as the mean of the computer simulation model output changes over the response surface
of the simulation model. The change in the variance of the mean as the parameters s and d
are changed is shown graphically in Figure 44. This plot of simulation output of vanances
is comparable to the plot in Figure Ya of the simulation output of mean cost. The plot in
Figure 44 is based on one observation of the variance of the mean of 10 replications at
each of 420 points discussed in Chapter 4. Since the plot in Figure 44 is based on only
one observation from the computer simulation at each of the 420) points, it is expected that
the surface in Figure 44 is much more irregular than the shape of the true surface of the

variance of the mean.
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Figure 44 Surface Plot of Variance of Mean Cost Based on Direct Simulation
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5.4.1 Examining Four Input Dimension ANN Variance Resuits on a 2 Dimensional
Surface

Figure 45 shows the predictions made by the neural network developed using the
individual replications of data set F that correspond to the direct simulation results shown
in Figure 44. It should be noted that the variances plotted in Figure 44 are based on 10
replications at the 420 points described in Chapter 4. All of the points had the same
values for the parameters k and w. The parameter k was set to 32 and the parameter w
was set to 6.4. The closest values in training set F to these settings are with k equal to 16
or 32 and w equal to 8. Also there are only 16 values in the (s.d) space. In spite of the
sparseness of the training data and its dissimilarity with the test set the plot of predicted
values for the ANN trained on the individual replications of training set F appears to

mimic the surface of the simulation response.

VARIANCE

Figure 45 ANN Predictions of Variance using Training Set F




5.4.2 Results of Experiment §

Separate networks were used to estimate the variance of the expected cost
prediction of the computer simulation of the inventory system. The networks had the
same architecture and the same training strategy of those in experiment 4. The target
output of the simulation was s2/n as defined in equation 5-2, i.e.. the sample variance
divided by the number of replications in the set. In this experiment the number of
replications used to develop the variance of the mean was 10. Other statistics also could
have been used such as the standard error (i.e.. square root of the variance of the mean),
sample variance (i.e., the number of observations times the variance of the mean), or the
sample standard deviation (i.e., the square root of the sample variance). Because the
confidence intervals used in analyzing the results of computer simulations are calculated
using square root of the variance of the mean, it was appropriate to use it in this research.
Since the number of replications used to calculate the variance of the mean was always
ten, the interpretation of the networks trained on this data is that they would estimate the

variance of the mean with a sample size of ten.

In experiment 4 networks trained on data sets A, B, C, and D appeared to not have
enough data while those trained on data sets E and I appeared to have too much of one
type of data. Networks trained on sets F, G, H, J, K, L, and M appeared to do well. To
reduce the workload but still be able to consider the advantage of adding additional data
points, only three of the training sets were used in succeeding experiments. Data set F
was chosen as the smallest data set that realized good performance. Data sets H and K
were selected since they added the most information possible to data set F in terms of the
input parameters s and d for set H and the input parameters k and w for set K. Examples

of the initial networks and the best trained networks are at Figures B6 and B7,

e ———————————————————————
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respectively. An example of the data (Set F) used to train the networks on the variance of
the miean is shown in Table B3 under the column Var(C). The data used to test the ANN
is described in Table 12. The test set values for the variance of the mean were obtained by
averaging the variance of the mean of ten different sets of ten replications each. The
variance of the mean of each set of ten replications was calculated using equation 5-2.
Two of the test sets described in Table 12 are provided in this dissertation. The simulation
results for the tes* set with () factors external is at Table B4 under the column Var(C).
The simulation results for the test set with 4 factors external is at Table 13 under the

column Var{C).

The range of the variance of the mean was from 0.03 to 48.93 with an average
value over the 900 points of the entire test set of 1.64. After experimenting with various
combinations of distances to extend the scaling range on the outputs, the best combination
found was 10% of the range lower than the minimum value and 20% of the range higher

than the maximum value.

Each of the networks in this experiment were trained for 750 epochs. The
networks were evaluated after each epoch, and the one which performed best on the
training set was saved as the finui trained network. The number of epochs required to
reach the minimum training error for each of the training sets is shown in Table 15. The

average number of epochs required to reach the minimum training error was 424 epochs.

The results of training and testing the three networks on the variance of the mean
are shown in Table 15. From these results it is apparent that there is not much gained by

increasing the number of data points from training set F to either training set H or training

EEEEE——,
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set K. The percentage of the average MAE of the networks trained using these datu sets
to the mid-range value of the variance of the mean test set is 40% (100*0.66/1.64). This
indicates that predicting the variance is a difficult problem. The variance predictions did
not suffer much when going from the training set to the testing set, indicating good
generalization ability. The results on the various subsets of the test set are shown in Table
16. In addition to the performance of the ANN metamodels, the result of one adc:-tional
set of ten replications of direct simulation of the test set points are also provided in Tables
15 and 16. As can be seen in Tables 15 and 16, the ANN metamodels typically produced
better results than the ten replication of direct simulation. As the number of input
parameters that are external to the training set increases, the mean absolute error of the
ANN metamodels increase as shown in Table 16. In addition, the mean absolute error of
the estimate provided by ten replications of direct simulation on the test points also
increases as the number of input parameters increases. This indicates that the variance of
the mean is more difficult to predict for the points where the number of external input

parameter values is large.

Table 15 Results for Training and Entire Test Sets for Variance Prediction

Training Set Number of Epochs Until | Training | Entire Test

Best Trained ANN MAE Set MAE

(900 pts)
F 545 0.46 0.67
H 648 0.61 (.65
K 79 (.53 ().66
Average 424 0.53 0.66
Direct Simulation - - 0.80

10 Replications
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Table 16 MAE Results for Test Subsets for Variance Prediction

Training Set Test Set Number of Factors External
0 1 2 3 4

F 0.23 0.40 0.71 1.67 2.63

H 0.15 0.32 (.69 1.89 2.66

K 0.25 0.35 0.79 1.67 1.73

Average 0.21 0.35 0.73 1.75 2.34

Direct Simulation 0.27 0.44 0.76 1.43 9.63
of 10 Replications

For comparing the difficulty of developing metamodels of the mean to developing
metamodels of the variance of the mean, the results for predicting the cost with the same
training sets that were used to predict the variance of the mean are shown in Table 17. As
can be seen by comparing the results from Table 15 and 17 there is much more variability
between the MAE of the different ANN metamodels for predicting cost than for predicting
variance. While the size of the error is larger for predicting cost than for predicting
variance the percentage of the error to the average value in the test set is much smaller for
the cost metamodels than for the variance of the mean metamodels. The average MAE of
the networks trained using these data sets to the average value of the cost test set is
5.31% (100*8.45/159). The results for the subsets of the test set shown in Table 18
indicate that the direct simulation of ten replications does better than the ANN
metamodels especially as the number of external parameters in the test set increase. This
reinforces the previous observations that ANN metamodels perform interpolation fairly

well but may not extrapolate very well.
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Table 17 Results for Training and Entire Test Sets for Cost Prediction

Training | Presentation | Number of Epochs Until | Training | Entire Test Set
Set Method Best Trained ANN Set MAE | MAE (900 pts)
F PM1 152 6.61 11.59
Averages
F PM 4 5% 3.97 6.51
Replications
H PM 1 73 5.59 11.03
Averages
H PM 4 240 3.66 6.66
Replications
K PM1 340 2.80 6.41
Averages
K PM 4 11 4.78 8.49
Replications
Average - 145.7 4.57 8.45
Direct 10 - - 0.86
Simulation| Replications

Table 18 MAE Results for Test Subsets for Cost Prediction

Training | Presentation Test Set # of Factors External
Set Method
0 1 2 3 4
F PM 1 4.62 7.37 13.96 2291 41.83
Averages
F PM 4 2.25 4.04 7.37 14.39 27.02
Replications
H PM1 6.31 7.22 12.52 21.04 36.54
Averages
H PM 4 1.70 3.69 7.61 15.90 31.71
Replications
K PM 1 1.90 3.48 7.18 15.41 30.35
Averages
K PM 4 247 5.37 10.20 18.10 30.99
Replications
Average - 3.21 5.20 9.81 17.96 33.07
Direct - 0.72 0.75 0.94 1.14 1.27
Simulation




5.5 Experiment 6: Comparing Prediction Intervals from Direct Simulation with
those Developed from ANN Approximations of the Computer Simulation

To evaluate the overall pexformance of the neural network metamodels, the neural
network estimates of total cost and of the variance of total cost were combined using
equation 5-3 to form neural prediction intervals. Prediction intervals are similar to
confidence intervals but instead of predicting how often the true mean would fall in an
interval they predict how often an observation from the distribution would fall in the
interval. While prediction intervals are not used by the simulation community as often as
confidence intervals are used, they do provide an efficient means of comparing the
accuracy of the intervals developed by the ANN with the intervals developed by direct
simulation. The prediction intervals were constructed for each of the 900 test vectors
using the neural network predictions for the mean and variance of the mean. In addition
similar prediction intervals were constructed directly from 10 additional simulation

replications made at each test vector.

Prediction Interval = C+ tg’l_%xJVar(E)x]O =Ct ty -4 s (5-3)

(Note that s is the estimate of the standard deviation of cost.)

The simulation generated prediction intervals were compared with the neural
generated prediction intervals by using 100 additional simulation replications at each test
point and counting the number of these which fell into each interval. If the simulation
prediction interval or the neural prediction interval were perfect, then a number of
replications equal to the confidence level would fall within the interval, with equal
numbers falling on either side of the interval. For example, an 90% prediction interval (o=
0.05) should include 90 of the 100 replications with 5 replications falling above the

interval and 5 replications falling below the interval, for each test point.
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The results for the estimation of the variance of the mean cost for training sets F,
H and K are given in Table 14 and the results for the estimation of the mean cost for the
same training sets are given in Table 15. While the neural network prediction intervals
were not ceurate as those generated by the simulation, in many instances they were
quite re.. ..able. The goodness of the prediction intervals was more dependent on the
quality of the neural prediction of total cost, than that of the prediction of variance for this
problem. The networks which did poorly for estimation of total cost, also made poor
prediction intervals, as might be expected. In general, these were the networks traincd on
mean value, rather than individual replications. Therefore, it is critical that the networks
estimating both the mean value of the simulation and the variance be validated and verified
as strongly as possible, before proceeding to building prediction intervals. Table 19 shows
the results of the 100 replications averaged over the 144 points of the interpolative test set

(no external values) for 90%, 95% and 99% confidence levels.

Table 19 Prediction Interval Results for Test Set 0

Train | Conf. ANN - Replications Neural Nets - Mean Simulation Intervals

Level | Low | Interval | High | Low | Interval | High | Low | Imterval | High
90 1.4 83.0 15.6 §{ 39.9 57.4 27 | 5.6 88.9 5.5
95 0.4 91.3 8.3 | 29.3 69.5 1.2 | 2.7 94.3 3.0
99 0.0 98.9 1.1 | 10.8 89.1 0.1 0.6 98.8 0.7
90 4.6 82.3 13.1 | 64.0 33.8 22 | 5.6 88.9 55
95 2.1 90.6 7.3 | 55.8 430 1.2 | 2.7 94.3 3.0
99 0.2 98.6 1.2 | 34.6 65.2 02 | 0.6 98.8 0.7
90 12.1 83.2 4.7 3.0 89.2 78 | 5.6 88.9 55
95 6.0 91.5 2.5 1.2 95.6 32t 2.7 94.3 3.0
99 0.7 99.0 0.3 | 0.1 99.7 0.2 | 0.6 98.8 0.7

TR R R R 1S

Two further observations from Table 19 can be made. First, the neural network
intervals are not likely to be correctly centered. That is, they are biased upwards or

downwards. Since the prediction intervals themselves are symmetric, this is an effect of




122

the prediction of the total cost estimate being too high or too low. Second. the neural

network prediction intervals improve as the confidence level increases (and the interval
widens). This happens because the estimates of the neural network for total cost. while
not always accurate, are close to the target. As the interval widens, the neural network

metamodel becomes very similar to the simulation itself for constructing interval estimates.

To examine the effect of extrapolation, Table 20 shows the results of training set F
where the network was trained on individual replications. Test sets () through 4 results are
shown for the network and for the simulation prediction interval at a 95% confidence
level. Of course, since the simulation is generated directly, there is no extrapolation.
However, the neural network estimates monotonically suffer as more extrapolation is
required. This highlights the danger of using metamodels for extrapolation, especially
when more than one parameter is being extrapolated. Similar results were obtained for

training sets H and K.

Table 20 95% Prediction Interval Results for Training Set F (Replications)

Test Neural Nets - Replications Simulation Intervals
Set Low Interval High Low Interval High
0 0.4 91.3 8.3 2.7 94.3 3.0
1 3.0 81.0 16.0 2.6 93.5 3.8
2 7.2 67.3 25.5 3.1 93.9 3.1
3 13.3 514 35.3 2.8 93.5 3.7
4 18.3 373 44.0 1.8 94.9 34
All 5.5 73.7 20.7 2.8 93.8 3.4




5.6 Synopsis of Conclusions from Experiments 3 through 6

It has been shown that a combined expected value/variance neural network
metamodel approach can be successful for establishing prediction intervals of discrete
event simulations. For this problem, training on the individual replications yielded more
precise predictions of expected values at the expense of longer training times (the size of
the training set for replications is ten times the size of the training set for means). It
probably would be possible to improve the variance metamodel by using sets of
replications for estimating the variance at each point; i.e., instead of a single estimate of
variance based on ten replications, one could take ten estimates based on 100 replications
(10 sets of 10). This approach would be considerably more expensive in terms of training
data requirements. Another approach that would not require as much training data is the
technique used in cross validation with test sets. As an example, generate 11 observations
and form all 11 possible subsets of size ten. Then determine the variance of each subset
and take the average value of the 11 variances of the subsets and use the average value of
the variances as the training data. A third approach would be to use more than one sample
size when developing the variance of the mean estimates. For example, generate 10
observations, and form all possible subsets of size 2, 3, 4,...,10. Calculate the sample
variance of the mean for each of the subsets and then determine the average variance of
the mean for all subsets of the same size. If the average variance of the mean is similar
regardless of how many observations are in the sample, then use all of the data with the
original input parameters. If the average variance of the mean is quite different as one
changes the size of the sample, then the ANN would require an additional input, the size
of the sample used to calculate the variance of the mean. While this study was promising
clearly more work needs to be done on the trade-offs of precision and computational

effort when using neural networks as simulation metamodels.
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In most cases the networks trained on averages performed much worse than their
replication counterparts. One conjecture as to why this happens is the effect of extreme
values. The calculated mean of the ten replications gives equal probability mass (0).10) to
each replication. A replication representing an extreme outcome will strongly influence
the mean. The neural network does not necessarily mimic mean value behavior. Gradient
descent (the backpropagation training algorithm) will move to the error surface location
which best suits the majority of the observations. The network may find weights which
better reflect the true mean by ignoring (or partly ignoring) the extreme replication.
Certainly, replication training gives more information to the network, since none of the
simulation data is discarded. In fact it is an open research issue as to what neural
networks are attempting to learn when being trained on individual replications. One
interesting question to consider is whether networks trained on individual replications are

learning the mean, a trimmed mean, or the median.

An additional intriguing idea is to train separate networks to learn the quantiles of
simulation output rather than just the mean and variance of the mean. In this way a family
of ANN could be used to produce the distribution of the simulation output as opposed to
just producing the mean and variance of the simulation output. If it is possible to obtain
the distribution of the simulation output then it would be possible to capture the stochastic
nature of the simulation. This would be important if one were trying to replace a
computationally expensive module in a larger computer simulation in which the stochastic

behavior of the module is necessary for interaction with the rest of the larger simulation.




5.7 Summary

Four experiments using a four input parameter version of the (s.S)
inventory simulation were examined in this chapter. The experiments included
determining the number of hidden nodes to use in predicting the cost of the
inventory system, predicting the mean cost of the inventory system, predicting the
variance of the mean cost of the inventory system and building prediction intervals
for the mean cost of the inventory system. The results of determining the number
of hidden nodes shows that there tends to be a pattern to the mean absolute error
of the test set as the number of hidden nodes in each of the two hidden layers is
increased. The pattern of the test set MAE is that it starts to decrease until hitting
a minimum value and then continues to increase. This might initially seem
counterintuitive since more learning capability is added to the ANN as the number
of hidden nodes is increased and so one might expect the error to continually
decrease. While the error for the training set does tend to continue to decrease as
the number of hidden nodes is increased the inherent danger in doing so is that the
network is memorizing the training set data and then does a poor job at
generalizing to points that it has not been trained on. Thus, the result of this
experiment shows that with too few hidden nodes the ANN doesn't have enough
learning power and that if it has too many hidden nodes the ANN can learn the
training data too well in a process typically termed overtitting the data. This result
indicates the need to have a procedure for finding the best number of hidden nodes

to use in developing an ANN metamodel of a computer simulation.

The remaining experiments show that ANN procedure extends quite easily

from two input parameters to four input parameters and as is shown visually is
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Section 5.3.1 without much lost in terms of accuracy. Neural network metamodels
were built for both the mean cost and the variance of the mean cost. As was
observed in Chapter 4, the networks constructed using individual replications
ty