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Executive Summary

Background.

This report and two companion reports have been
derived from the chapter on detection theory prepared
for the High Gain Initiative (HGI) report. The two
companion reports, "Detection Processing for
Undersea Surveillance" (Confidential) and "Adaptive
Locally Optimum Processing for Interference
Suppression from Communication and Undersea
Surveillance Signals" focus on detection processing.
"Detection Processing for Undersea Surveillance”
summarizes the status of detection processing for
undersea surveillance at the time of the initiation of the
HGI program and deals primarily with adaptive
fitering. It summarizes the cumulation of many years
of effort in the field by J. Zeidler and others. "Adaptive
Locally Optimum Processing for Interference
Suppression from Communication and Undersea
Surveillance Signals" is the cumulation of work by J.
Bond, S. Hui, D. Stein, and others on adaptive locally
optimum processing for interference suppression and
of V. Broman on target tracking. This report
summarizes the results of statistical analyzes of
power variations due to target motion obtained through
simulations and actual data power variations collected
during 3 HGI experiment. The analysis involved fitting
the power variation data by Gaussian mixture models.
This work was primarily accomplished by D. Stein for
the HGI program.

Introduction.

Gaussian mixture models, and a particular class of
mixture models known as Middleton Class A Noise
Models, have been widely investigated to model the
acoustic noise generated by distant shipping. in this
report, we discuss the use of Gaussian mixture
models to describe the noise generated by a nearby
ship. The investigation consists of an analysis of
selected HGI hydrophone experimental data to
determine its statistical characteristics and of
simulations of the power variations expected at a
hydrophone within the deep sound channel due to the
motion of a source relative to the hydrophone.

Summary of Results.

The following results were obtained for three half-hour
segments of experimental hydrophone data selected

because they exhibited dominant narrowband
interference components:

(a) the complex samples generated from the
data from one of the segments was better fit by a
two-state Gaussian mixture model than by a Gaussian
distribution,

(b) the distributions of the complex samples
for two of the segments were not significantly different
from Gaussian distributions, and

(c) the phase could be modeled as uniform on
(—x, 7] and the real and imaginary components of the
complex samples modeled as independent for all three
segments.

The simulations of power variations due to target
motion led to statistics which were better modeled by
either a two-state or three-state Gaussian mixture
model than by a Gaussian distribution. Often the data
was nearly as well fit by a two-state model as by a
three-state model. In addition, the two-state models
exhibited consistency over a track traversing multiple
convergence zones and the model parameters formed
two clusters.

Conclusions.

Nearby shipping can sometimes be well modeled by a
Gaussian mixture model. The mixture nature of the
statistics can be attributed to changing modal
interactions due to target motion.

Characterization of Interference
Statistics

Introduction.

Information processing for ocean basin surveillance
requires the detection of submarine lines in the
presence of interference. The interference can be
broadband or narrowband, originating from surface
ship traffic, marine life, or ocean waves. The
optimum detection processing is known when the
interference can be well-modeled as stationary
Gaussian noise. A number of powerful processing
techniques that provide improved detection
performance over traditional processing are available
when the interference is non-Gaussian. The
broadband component of ocean noise is usually




well-modeled by Gaussian noise. The above
considerations led us to focus our attention on the
analysis of narrowband interference, presumably
arising from ships, to determine the time scales over
which the statistics can be modeled as stationary and
also to determine the likelihood that the narrowband
interference is non-Gaussian.

The Atlantic and Pacific ocean basins may each
contain several thousand ships, say 3000, at any
given time. Suppose that the high gain array forms
100 or more beams, so that possibly 30 to 60 ships
are within a horizontal beam. For a matched field
beamformer, the interferences of significant level
occur at convergence zone ranges from the spatial cell
of interest, reducing the number of ships generating
significant interference to about one-tenth of the
number of ships in the beam. Furthermore, the ships
are of different types, having different equipments and
from different countries with different electrical
systems, so that narrowband lines from only a few
ships, if any, would be expected to interfere with the
detection of a narrowband signal of interest in a
particular beamformer spatial cell. Each of these
ship-generated interfering lines would, in generai, be
expected to arrive with time varying power, because of
the variation in propagation conditions. On some
occasions, a particularly strong interfering source on
another beam may impact performance on the beam
being considered. In any case, it is reasonable to
suppose that for a high gain array, two different cases
are likely to occur; first, no single narrowband
interferer dominates the background noise, and
second, a few narrowband interferer's dominate the
background noise (Heitmeyer, Davis, and Yen, 1985).
In the first case, it is reasonable to expect that the
background noise will be Gaussian-like. In the
second case, it is reascnable to suppose that the
background noise will be changing rapidly due to
changing propagation conditions to the array from
these few dominating sources of the background
noise. A reasonable model for this second case is a
Gaussian mixture model; mixture models
(Titterington, Smith, and Mackov, 1985) are discussed
later.

Consider the case of a single dominating interferer
and a target of interest as shown in figure 1. The
interference arises from a ship whose acoustic energy
couples into the deep sound channel and whose
location is such that the propagation paths connecting
it with the high gain array passes through a submarine

of interest. Under these conditions, the signal-to-
noise ratio at the output of the beamformer of the high
gain array is expected to be quite dynamic. To see
why this might be the case, consider a surface ship
moving at 15 knots through an area whose cross-
section is determined by beam width and by the width
of a convergence zone. At 10 convergence zones,
roughly 300 nautical miles, the convergence zone
would have a width of about 3 miles, while the arc
length associated with a 5-degree beam (roughly 1/10
a radian) would be about 30 miles. A merchant ship
could pass through the beam-convergent zone area in
as little as 12 minutes and as much as 2 hours.

Mohnkern (1989) has studied the effects of interferer
motion on Bartlett and Minimum Variance
Distortioniess Response (MVDR) beamformers for
horizontal arrays using plane wave propagation. For
Bartlett beamforming, he finds that the time-averaged
main lobe response is broadened and under some
conditions reduced and that the nulls are blurred. For
MVDR beamforming he finds that the main lobe is
similarly affected and that moving interferers are
associated with multiple-rank submatrices of the
spatial cross-spectral matrix. The details depend on
the speed of the interferers, array geometry, and the
amount of data used to estimate the spatial
cross-spectral matrix. In this report, we present
simulation results to show the impact of ship motion
on received power at a vertical array for selected
spatial cells presumed 10 contain a target of interest.

The motion of the interferers limits the amount of data
available that may be used to estimate a spatial
cross-spectral matrix to a time interval for which the
interference may be modeled as stationary.
Unfortunately, this time interval tends to decrease with
increasing array size, while the amount of data
required to estimate the spatial cross-spatial matrix
increases. For an array of n sensors, the maximum
likelihood estimate of the spatial cross-spectral matrix
requires 2n independent identically distributed data
points from each hydrophone so that the expected
output signal-to-noise ratio using estimated spatial
cross-spectral matrix is not less than one-half that
achieved from a priori knowledge of the spatial
cross-spectral matrix (Reed, Mallett, and Brennan,
1974).

The motion of the interferers causes the interference
in the beamformer outputs to be nonstationarity and
thus impacts detection processing. Mixture mcdels




have been studied to model nonstationary interference
in communications and undersea surveillance (Baker
and Gualtierotti, 1986, 1988, to appear; Berry, 1981;
Vastola, 1984; Powell and Wilson, 1989). For these
models, adaptive locally optimum processing
techniques have been developed. The theory and
implementation of this processing constitutes the next
subsection of this report. Middleton (1966,1967,1977,
1983,1984, 1991) and Middleton and Spaulding (1983,
1986) pioneered these efforts by determining
particular classes of mixture models that are derived
from statistical models of the source locations of the
interference relative to the receiver. In these models,
the Middieton Ciass A, B, and C models, the mixture
parameters are related to general statistical properties
of the interference sources. Bouvet and Schwartz
(1988, 1989) have fit broadband ocean noise data with
the Middleton Ciass A noise model. These efforts
have involved fitting time domain noise data by a
Gaussian mixture model. In this report, we extended
these efforts by investigating the suitability of modeling
narrowband ocean noise data in real-time in the
frequency domain by Gaussian mixture models.

Gaussian mixture models are generalizations of
Middleton noise models. A Guassian mixture model is
defined as follows. Suppose that the indices
{1.2....,.M} of the complex samples z;, 22, ...,Zp can
be partitioned into S disjoint sets M, M>, ..., M5 with
the following properties:

. Mg .
(a) A]{l_t}‘l“ o exists and equals p; > 0
for k=1,2, ..., S with m; the number of the samples

with indices from the set {1,2, ..., M} in M,;

(b) the real and imaginary components of the
interference for the samples contained in the set M,
have identical zero-mean distributions with variance
30} fork=12,.., S with 6} <063 <...< 03 .

If these distributions are zero-mean Gaussian
distributions, the mixture model is called a Gaussian
mixture model, which is completely described by the
parameter set {p,, O‘f, s DSy 0'§} . The parameter p;
is called the k-th state probability and the parameter
o2 is called the k-th state variance. The probability
density function for the normed square of a complex
random variable described by a Gaussian mixture
model is a sum of exponentials

S FHLS
pllzlt) =X Bhre i,
k=1 chk

Noise Statistics for a Moving Interferer.

In this subsection, we show by simulation that
multi-state Gaussian mixture models can be used to
describe interferer statistics at the output of a vertical
array when the source of the interference is moving
relative to the array. For a billboard array, these
simulations address the properties of interferers
located within the same horizontal beam as the signal
of interest. Similar results for interferer statistics at the
output of a hydrophone located near the center of the
deep sound channel are discussed in appendix B.

The applicability of a Gaussian mixture model to
interference generated by multiple moving ships
follows readily from the applicability of a Gaussian
mixture model for interference generated by a single
moving ship. In particular, if X;,X>,...,X, are
independent Gaussian mixture random variables and
Z=X1+Xo+..+X,, then

a ™ M my
pz(x)=Qn)7? X 3 ... X PPy Pk PX),
k=1 k=1  kn=I
where
B 2
p (x) = 1 e 2(°fk|’°§12""’°:k,,)
2 2 2
‘/0',,[l +0%, +...+ 0y
when
. 2
1 . | %02 )
px,(x) = 2 Pug—e ™
Jzn k,‘=l le'
with

le,*,.:landp,-ki >0,1<k;<m;,for1 <i<m.
k:

This result follows by induction on n using the fact that
the distribution of the sum of two zero-mean
independent random variables is the convolution of
their distributions with zero mean and variance the
sum of their variances.

Simulations were performed to approximate the
received power fluctuations from a moving continuous
wave (23.804 Hz) interference source. Figure 2
shows the interferer-source-receiving array geometry




for the simulations. The geometry is described by an
interfering ship with horizontal range r(¢) from a
vertical array, an interfering surface ship modeled as a
discrete source at depth d;, and a vertical array
consisting of hydrophones at depth d. The interfering
ship source is modeled as moving with fixed radial
velocity away from the array so that r(¢) = ro +vt,
where time starts at 0 and ¢ is the initial distance

from interfering ship source to the array and v is its
radial velocity. The simulations are designed to
examine the properties of the ship interference as
received by the hydrophones or for specified vertical
beamformer spatial cells. The beamformer spatial
cells are chosen to represent cells of interest for the
detection of a submerged submarine.

A range invariant normal mode model was used to
propagate radiated power from the interferer source to
the receiving array. The inputs to this model are
ocean depth, water density at the source depth p(d;),
water sound speed profile, and sound speed profile in
the sediment. The sound speed profiles chosen for
the simulations are shown in figures 3 and 4 These
sound speed profiles were derived from
measurements at the MDA array site, and the depth of
the ocean was chosen as 5190 meters, which is the
depth at the MDA array.

The modal functions and horizontal wave numbers
were calculated using Kraken C (Porter 1992) and the
pressure field is calculated using the equation

1 e%
1,d, d,) =
p(r(t),d,d,) = P
where

M
Z(r(t),d, ds) = 21 Zn(ds)Zn(d)

with Z,, the m —th modal function, k,, the m —th

horizontal wave number, and M the number of modes.
In this equation, the pressure field is represented by a
complex number. Ninety-eight modes are used for
these calculations to capture the significant
propagation features.

Z(r(1),d, ds).

1_ ikwrtt

To study the short-term power fluctuations at the
receiving array that occur as an interference source
moves, the pressure field was calculated in increments
of 0.065 km from a range of 10 km to a range of 876
km. The range increments correspond to the distance

a ship with a radial velocity of 5 meters/second (10
knots) traverses in 13 seconds. The receiving array
was modeled as consisting of 200 hydrophones, one
every 10 meters, extending from a depth of 10 meters
to a depth of 2000 meters. The length of the vertical
array corresponds to the length of the MDA array.

The received pressures from the moving interference
source at 10 meters depth were beamformed by a
Bartlett beamformer to characterize the interferer
power fluctuations at the output of the beamformer for
a moving interferer. A beamformer spatial cell is
characterized by the depth of the cell and its range
from the vertical array of hydrophones. Results were
obtained for four spatial cells at a depth of 100 meters
and ranges of 434, 450, 464, and 470 kilometers.
These cells are located between convergence zones 7
and 8 at approximately 434 and 496 kilometers. For
each cell, the interference power was calculated as

with Vo the steering vector for the spatial cell and v,
the steering vector for the interferer at range r and
depth 10 meters. In particular,

Vo = (p(r(1), d1,ds), p(r(t), d2, dy), ..., p(r(D), d200, ds,
and

3" = (p(r(t)’dh d')’p(r(t)’ dZvdt)s -'-9p(r(t)’ d200) dl)
with
diy =10+ 10(k— 1) meters fork=1,2,...,200

ds =10 meters, and

d, = 100 meters.

The Bartlett beamformer results are presented in
figures 5a, b, ¢, and d. Beam patterns with distinct
peaks at roughly convergence zone spacing (figures
5a, b, and ¢) occurred if the range of the cell was
within 30 kilometers of a convergence zone, while a
more complicated pattern, as shown in figure 5d, was
produced for other cells.

The observed power at the hydrophone level and at
the output of a Bartlett beamformer attributable to a
moving interferer is likely to be nonstationary on a
timescale greater than the time required by the source
to move about 10 kilometers (one-sixth of a
convergence zone). The power may vary by more




than 20 dB over half-hour segments. The periods of
the oscillation are variable and depend upon the range
of the interferer from the array, the position of the ship
relative to convergence zones, and the array
configuration. Note that figure 5 presents the power
fluctuations due to a single moving source. For real
data, the noise power fluctuations would probably be
reduced by the presence of background noise. As a
result, the dynamic range of the noise and, in
particular, the ratio of high-state variance to low-state
variance for a Gaussian mixture model depends on
the interference-to-background noise ratio. It follows
that the dynamic range of actual beamformed data
would be less than the estimates obtained from our
simulation results for a vertical array.

The predicted beamformed interferer power levels
from the moving interferer source at a depth of 10
meters were also used to assess as a function of time
whether the power levels could better be described as
arising from a one-state or two-state Gaussian mixture
model. (We extend the use of the mixture model
terminoiogy to include a one-state Gaussian mixture
model, by which we mean a Rayleigh distribution.) To
simulate a Rayleigh channel, the amplitudes were
multiplied by independent unit variance complex
Gaussian random variables. In particular, if
{A1,A42,...,A,} is a set of ampliiudes , the data
subject to statistical analysis were

{zi1 =A1c1,22 =A2C2, ..., 20 = AnCn }, Where
C1,C2,...,Cn are independent complex random
variables with a zero-mean unit variance circular
Gaussian distribution. As a result, the data are locally
circular Gaussian and the resulting assessment
determines if the amplitude fluctuations are best
captured by a single-state or a multiple-state Gaussian
mixture model.

Statistical analysis was performed for four spatial cells
as the source moved from 350 to 450 kilometers from
the array. Similar results for a source moving away
from a hydrophone are presented in appendix B.
Models were fitted using the Expectation and
Maximize (EM) algorithm (Zabin and Poor, 1989,
1990, 1991; Powell and Wilson, 1989), as described in
appendix A, to 128 successive beamformer
amplitudes with 50% overlap. The amplitudes were
multiplied by independent unit variance complex
Gaussian random variables to emulate complex
samples. The results of the statistical analysis are
presented in figures 6 through 9 for spatial cells at a
depth of 100 meters and ranges from the array of 434,

450, 464, and 470 kilometers, respectively. The
abscissa is the horizontal distance between the
vertical array and the first point of each of the data
sets. Figures 6a through 9a present the significance
levels of the Kendall-Mann tau test for the random
variable 128 sample average of norms squared and
the Kolmogorov-Smirnov two-sample tests tor
stationarity by compaing the distribution of the first
half of the samples with the distribution of the second
half of the samples; figures 6b through 9b show the
significance levels of the Kolmogorov-Smirmov
one-sample test for the one-state and two-state
Gaussian mixture model distribution (see appendix A
for a description of the statistical tests). Figures 6
through 9 show the estimates of the high-state to
low-state variance and the low-state probability of the
best two-state fit of the data obtained using the EM
algorithm. Figure 10 shows the joint probability
density function of the low-state probability and the
ratio of the high-state to low-state variance for the
two-state mixture model parameters that best describe
the interference data for the four spatial cells.

The multistate nature of the frequency domain
beamformed interference is implied by the low
significance levels shown in figures 6b through 9b of
the test for the one-state Gaussian mixture model
(significance levels were truncated at 10~3, and in
some plots all values were at or below this value).
Also, the significance levels of the two-state Gaussian
mixture model distribution are generally lower for the

beamformed data than for the hydrophone data. This

can be verified by comparing figures 6 through 9 with
figure B-3 of appendix B.

The dynamic range of the frequency domain
beamformed data is generally higher than for the
hydrophone data. Generally speaking, only two
successive 10-kilometer estimates are described by
nearly the same mixture model, indicating that the
interference should be modeled by a given Gaussian
mixture modei for periods of time not exceeding the
time for the interferer to move to or away from the
receiving array by more than 30 kilometers.

The Kolmogorov-Smirnov one-sample test significant
levels tended to decrease as the variance ratios
increased. See appendix A for a description of this
and other statistical tests used to evaluate model
distributions. The absolute values of the correlations
are 0.25, 0.20, 0.38, and 0.72 for the data in figures
11, 12, 13, and 14, respectively. Inspection of the




cumulative distributions suggests that often a three or
more state Gaussian mixture model would fit the data
segments having large dynamic ranges better than a
two-state model. Examples of such distributions are
shown later in this subsection. This observation led us
to investigate the applicability of three-state mixture
models to the simulated moving interferer data.

Figures 11 and 12 present histograms of the
significant levels of one-state, two-state, and
three-state models compared to the empirical
distributions of the data for the Chi-squared test and
the Kolmogorov-Smimov one-sample test,
respectively. Figure 13 presents a histogram of the
average differences (L2 norms) between the
one-state model and the two-state model, the
one-state model and the three-state model, and the
two-state model and the three-state model. These
histograms reveal that the two-state and three-state
models often lead to distributions that differ.

Figures 14 through 18 show five examples of the
one-state model, two-state model, and three-state
model cumulative probability functions compared to
the empirical cumulative probability function for the
beamformed data. Figures 14 and 15 illustrate cases
when the two-state model fit and three-state model fit
to the beamformed data are nearly the same and quite
different, respectively. The three-state fit is clearly
better than the two-state fit for the data presented in
figure 15. Figure 16 shows a worse case fit for the
one-state model with the lowest significance level for
the Chi-squared test. Note that the tail of empirical
distribution falls off much slower than the tail of the
one-state fit leading to a high Chi-squared test score
and correspondingly low significance level. This
distribution is well fit by the three-state model and not
well fit by a two-state model. Figure 17 shows a
worst case fit for the two-state model according to the
Chi-squared test; the three-state fit, which is nearly
the same as the two-state fit, is also poor. Figure 17
illustrates a distribution that requires more than three
states to be well fit. Figure 18 presents the data for a
worst case three-state fit according to the
Kolmogorov-Smirnov one-sample test. These
examples illustrate the great variety of cases that
arose fitting the frequency domain beamformed
interference levels from a moving ship.

Figure 19 summarizes the probabilities of occurrence
of the three-state model parameters p.,puy,pH,

2 2
C—‘;, -c—'z"obtained by using the EM algorithm for the
6., O

beamformed data. The surprising result is the high
percentage of cases in which the best three-state
model probability was between 0.4 and 0.6 as shown
in figure 19b. Analysis was conducted to cluster the
parameter data for the three-state model. The
analysis did not reveal the strong clustering of model
parameters for the three-state models as exhibited for
the parameters of the two-state models. The best
defined cluster (12 %) of joint model parameters
occurred for low state probability between 0.1 and 0.2,
the middle-state probability between 0.36 and 0.55,
the high-state to low-state variance between 64 and
2048 , and the high-state to middle-state variance
between 4 and 64 . The next best defined cluster

(9 %) of joint model parameters occurred for low-state
probability between 0.2 and 0.3, the middie-state
probability between 0.3 and 0.6, the high-state to
low-state variance between 64 and 1028, and the
high-state to middle-state variance between 4 and 32.

The simulations suggest that a multi-state Gaussian
mixture model may better characterize the interferer
power fluctuations over a half hour than does a
one-state model. The simulations for a hydrophone
(described in appendix B) and a vertical array indicate
that mixture models should apply to both, with the ratio
of high-state to low-state variance greater for the
beamformed output interference power than for the
hydrophone output interference power.

MDA Noise Statistics.

Frequency domain statistics were obtained by
spectrally processing selected segments of
hydrophone data collected dunng the MDA
experiment. Three half-hour segments of hydrophone
data for specific Fourier transform frequency bins
~ontaining dominant narrowband lines, presumably
ship-generated, were selected for detailed analysis.

In addition, the data were surveyed for all frequencies
to establish the frequency of occurrence of bins
exhibiting two-state Gaussian mixture characteristics
and to determine the correlation of statistics between
adjacent frequency bins. Hydrophone data were used
for the analysis because these data are easier to
survey than beamformed data for the presence of
dominant narrowband interference.




The selected hydrophone data were Fourier
transformed with a frequency resolution that
repraesents a reasonable choice for the resolution of a
matched field beamformer. The results obtained for
hydrophone data should be relevant because matched
field beamforming is a linear process. In addition, the
simulations presented in the previous subsection and
appendix B indicated that Gaussian mixture
characteristics, albeit with slightly different mixture
parameters, should be observed for hydrophone
outputs as well as for the beamformer outputs.

The three half-hour segments of MDA data were
collected on day 193 during the hours 0140 to 0740.
These segments, hereafter referred to as segments A,
B, and C, were selected because their data exhibited
high levels of narrowband ‘~terference as shown in
figures 20, 21, and 22. Segment A spans 0140 to
0210, segment B spans 0440 to 0510, and segment C
spans 0710 to 0740 zulu time. Frequency bins with
spikes near 24 Hz were analyzed in detail. The bins
chosen for segments A, B, and C have frequencies of
23.914, 23.951, and 23.804 Hz , respectively. The
interference levels in these bins are presumably
dominated by acoustic energy from ships. Note that
the large spike seen at 24 Hz in figure 22 is one of the
signals generated as part of the MDA experiment.

The likely interferer sources for the selected segments
were further characterized by beamforming the
hydrophone data by using a modal beamformer. This
beamformer processes the vertical component of the
incoming wavefront as described in the previous
subsection (Bartiett beamformer) and the horizontal
component as a plane wave. Figures 23, 24, and 25
show the sum of mode powers as a function of
bearing for segment A at a frequency of 23.914 Hz,
for segment B at a frequency of 23.950 Hz, and for
segment C at a frequency of 23.804 Hz. These
figures indicate a dominant beam and several
prominent beamformer side lobes. The side lobes
exist because of the hydrophone geometry of the
MDA receiving array. Figure 23 indicates a shipon a
bearing of -69°, figure 24 a ship on a bearing of 118°,
and figure 25 a ship on a bearing of -3°.

The hydrophones chosen were the ones most
strongly ensonified by the selected narrowband
sources. The chosen hydrophones were 21, 8, and
11, for segments A, B, and C, respectively. The time
series data were collected at 150 samples per second
and transformed by using a 4096-point fast Fourier

transform with 50% overlap and a Hanning window.
This transformation has a frequency resolution of

¢ 36 Hz and results in about 130 complex Fourier
coefficients for each frequency for a haif-hour of time
series data.

Figures 26, 27, and 28 present scatter plots of the real
and imaginary components of the complex Fourier
coefficients for the selected frequencies of the
segment A, B, and C hydrophone data, respectively.
The figures indicate that the real and imaginary
components of the samples can be treated as
uncorrelated random variables. Figures 29 and 30
present histograms of the amplitudes of the complex
Fourier coefticients and the phases of the complex
sample phases, respectively, for the selected
frequency data for segments A, B, and C. It is difficult
to conclude from figure 29 whether a given data set is
best fit by a one-state or multipie-state Gaussian
mixture model. Figure 30 indicates that the phase is
better modeled by a uniform distribution than by a
single value or several discrete values of phase.

The initial statistical analysis of the frequency domain
hydrophone data was structured to determine if the
data for the selected frequencies for segments A, B,
and C were stationary. The statistical tests, which
are described in appendix A, also addressad the
suitability of modeling the frequency domain
narrowband interference samples by a circular
Gaussian distribution. The results of these tests are
summarized in table 1.

The results of applying the Kendall-Mann tau tests to
A, B, and C segments indicate that sometimes the real
and imaginary component Fourier coefficient means
and variances for the selected interferer frequency bin
seem to contain trends and sometimes not. In
general, the results are not conclusive, and only two
tests, lack of trends in the means of the real '
components of the Fourier coefficients of segment A
and lack of trends in the means of the imaginary
Fourier components of segment C, had high
significance levels. Three times the significance levels
are below 0.10, indicating trends in the means of the
real Fourier coefficients of segment C, variances of
the real Fourier coefficients of segment A, and
variances of the real coefficients of segment C. All
these results are explained by supposing that at times
the narrowband interference had a frequency close to
that of the center frequency of the Fourier bin for




Table 1. Statistical Test Summary of Suitability of Single State Gaussian Mixture Model for Selected Data
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which the data are being analyzed and as a result
slowly changing Fourier transform coefficients .

The Kolmogorov-Smimov two-sample test was used
to test the hypothesis that the distributions of the real
and imaginary components of the complex Fourier
coefficients were stationary by comparing the
distribution of the first half of the samples with the
distribution of the second half of the samples. A lack
of stationarity is indicated for the distributions of real
components of the Fourier coefficients for segment C
and for the imaginary components of segment B.

The Kolmogorov-Smimov test was also used to
compare the empirical distributions of the real and
imaginary components of the Fourier coefficients with
Gaussian distributions, and the distributions of the
normed squares of the complex samples with an
exponential distributions. The comparisons of the
distributions with Gaussian distributions resulted in
significance levels between 0.41 and 0.79 without
accounting for the estimation of the Gaussian
distribution parameters, which would lower the
significance levels. Thus, both the real and imaginary
components of the Fourier coefficients for all three
segments of data are close to Gaussian. The most
striking result for the comparison of the complex
Fourier coefficients is that the distribution of segment
C data is definitely not an exponential distribution of
norms squared (significance level 0.004), while
segments A and B data had significance levels of 0.60
and 0.61, respectively. This result indicates that
segment C might provide an example of a narrowband
interferer whose frequency domain samples could be
better modeled by a multistate Gaussian mixture
model than a one-state Gaussian mixture model.

Consider figure 31 for a suggestive mechanism for the
data of segment C being better fit by a muitistate
mixture model than for a single state. The results
presented in figure B-3 of appendix B show that
amplitude oscillations consistent with a mixture model
may occur in hydrophone data dominated by reception
of a narrowband signal from a moving ship because of
the interaction between different modes. Figure 31
presents the mode spectrum of the segment Band C
data for bearings of 127° and -3°, respectively, the
directions from which the most power arrived for the
selected frequencies for the three data sets. Note
that the modal structure of segment C differs from that
of segment B in that there are two peaks in the mode
spectrum of segment C and single peaks in the mode

spectra of segment B. Thus, segment C is more likely
to exhibit modal interference effects than segment B.

Given that the segments were fairly Gaussian-like,
and the earlier resuits that when in doubt the best
mixture model is the one with the fewest states, we
decided to fit the selected hydrophone frequency
domain data with two-state mixture models. An
important additional consideration was that the mixture
model parameter estimation technique needed to give
reasonable results for sample sizes around 130 .

The EM procedure was used to estimate two-state
Gaussian mixture parameters for the selected
frequency data for segments A, B, and C. In addition,
the EM procedure was used to fit the selected
frequency data for segment C. Table 2 summarizes
the two-state mixture model parameters obtained in
this way and table 3 summarizes the three-state
mixture model parameters obtained in this way.

Table 2. Two-state Gaussian mixture model
parameters for selected hydrophone data.

Segment
A B o
pL 1.00 1.00 0.47
pH 0.00 0.00 0.53
ol 97 269 108
c? 97 269 327
o} 0 0 520

The Kolmogorov-Smirnov one-sample test angd the
Chi-squared test were used to compare the two-state
mixture model distributions to the distributions of the
data for segment and resulted in significance levels of
0.86 and 0 as compared with 0.004 and 0 for the
exponential distribution of norms squared. Thus, the
segment C data is better fit by a two-state Gaussian
mixture model than a one-state mixture model. The
data are slightly better fit, as expected, by a three-
state mixture model, as indicated by an increase




Tab'!a 3. Three-state Gaussian mixture model
parameters for hydrophone data Segment C.

0.34
0.61
0.05
o: 9N
o, 360
63 1998

of the Chi-squared test level of significance to 0.005.
However, the Chi-squared test result indicates the
segment C data might be better fit by a mixture mode
with more than three states. These conclusions are
borne out by the distribution shown in figure 32. The
one-state model distribution does not fit either tail of
the empirical distribution. The two-state and
three-state model distributions fit the tails of the
empirical distribution better than the one-state model
distribution, but neither fits the middle of the empirical
distribution very well.

We briefly considered how close the probabilities given
in table 3 would be to those with the relationships
predicted by a three-state approximation to a
Middleton Ciass A noise model. Toward this end, we
found the value of A for whichp; = e™, py =Ae™,
and py = 1 —e™ — Ae™ gives the best least squares
fit to the state probabilities presented in table 3. The
result is 4 = .84 for which p; = .43, py = .36, and

Px =.21. Next, we fixed the low-state variance and
the total variance, and minimized the total least
squared error as a function of the middie-state
variance for the resulting distribution. This leads to

0,2, =92, 0',2” =642, and 6}, =372. If we impose the
additional condition that the middle-state variance is
between the other two variances we obtain

62 =92 and 62, =6% = 543. The best three-state
model fit is quite different from a three-state
approximation to the Middlleton Class A noise model.

Figure 33 summarizes the salient features of the
low-state membership function (low-state probability)
for the two-state model best fitting segment C. Figure
33a shows that on two occasions, samples 20 through
46 and samples 98 through 130, all the samples were

with high probability in the low state, while the
remainder of the time successive samples remain with
high probability in the low state for a few states at a
time. Observe that the ratios of high-state to low-state
variance would decrease if the data were processed
after averaging the power over as few as 6 samples.
Figure 33b suggests that about 80% of the samples
are either assigned with reasonable probability to
either the low state or the high state of a two-state
model.

Narrowband ship lines are likely to occupy adjacent
frequency bins for the frequency resolutions of the
Fourier transforms used to obtain the selected
frequency data for segments A, B, and C. This
feature is of interest, because it allows adjacent
frequency bin data to be used to construct a noise
model for the interference of the middie bin and in this
way to obtain presumably signal-free noise samples.
To gain some understanding of how applicable
Gaussian mixture models might be to modeling
narrowband interference, all frequency bins for
segment C data were fit by a two-state model. The
results are summarized in figure 34. Of particular
interest is that several adjacent bins to that of the
selected frequency for segment C, 23.804 Hz, are
better fit by a two-state model than a one-state model.
The significance levels presented in figure 34b use the
Kolmogorov-Smirnov one-sample test with
significance levels uncorrected for parameters
estimated. In particular, we call the readers attention
to the data presented in figures 34c and d. Figure 34
also indicates several other frequency bins for which
the interference might better be modeled by a
multiple-state model than by a one-state model.

Summary.

The real and imaginary components of the Fourier
transforms of distant shipping noise can be modeled
by independent Gaussian distributions. Underwater
acoustic interference generated by individual ships can
be modeled by Gaussian mixture models.

Simulations were conducted to predict received
narrowband energy from a moving source by a
hydrophone located in the deep sound channel or by a
vertical array located in the deep sound channel.
These simulations indicated that the interplay between
ship movement and propagation mode interaction
leads to the received energy being better modeled by
a multiple-state Gaussian mixture model than by a

10 °




one-state Gaussian mixture model. Usually the
interference is well modeled by a two-state or
three-state Gaussian mixture model, with rare
occurrences of time periods during which the
simulated data would be better modeled by a
Gaussian mixture model with more than three states.

The EM algorithm was used to obtain the best
estimates of the two-state and three-state parameters
that best fit the simulated hydrophone, the simulated
beamformer output, and the MDA hydiophone output
interference data. The distributions obtained by using
the EM estimated parameter values were then
compared to the empirical distributions. The
consistency of the results obtained indicates that the
EM algorithm could be used to obtain Gaussian
mixture model parameter estimates from real
hydrophone or beamformer output data.

The two-state mixture model parameters that best
model the simulated beamformer output power levels
clustered about two parameter vectors. The analysis
shows that two distinct two-state mixture Gaussian
power as the ship traverses multiple convergence

zones. Three three-state model parameter values did
not cluster as much as the parameter values of the
two-state models. Given that related mixture models
were manifested in both the hydrophone and
beamformed simulation data and that MDA
hydrophone data were more accessible than MDA
hydrophone data processed through a matched field
beamformer, we decided to verify the simulation
results by analyzing three half-hour segments of MDA
hydrophone data. These segments were chosen to
contain narrowband data, presumably from a single
source. Analysis of the selected segments of data
indicated that one of the three was well described by a
two-state Gaussian mixture model, while the
remaining two exhibited Gaussian statistics. Thus,
one of the three selected MDA hydrophone data sets
exhibited Gaussian mixture characteristics. The
reader should not be concerned that two of three did
not exhibit strong mixture characteristics, for the
simulations only addressed ship interference for ship
ranges from the hydrophone or vertical array for which
there would be significant modal interference. Distant
ships would not be expected to exhibit such modal
interference.

11°
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APPENDIX A
MIXTURE MODEL ESTIMATION AND COMPARISON

This appendix discusses techniques that we used to estimate the parameters of two-state and three-state mixture
models and the statistical techniques we used to compare the estimated distributions obtained with the empirical
distributions of the data.

Parameter Estimation Techniques.

Four techniques for estimating the parameters of a mixture model with a fixed finite number of states were
considered: (1) the method of moments technique, (2) the minimum distance technique, (3) the maximum
likelihood technique, and (4) the expectation and maximize (EM) technique. The EM technique was chosen
because it was the only estimation technique of the four that can provide accurate estimates of mixture
parameters for either a two-state or three-state mixture model given around 100 samples (Zabin and Poor,
1989,1990,1991; Powell and Wilson, 1989). The references in this appendix are listed at the end of the body of

this report.

The EM technique is an indirect way of finding the maxima of the likelihood function (Dempster, Laird, and Rubin,
1977). We describe how it can be used to estimate Gaussian mixture parameters. Given an S state Gaussian

mixture model and N data samples {Zjll <j < N}, the main difficulty in estimating the mixture model parameters
is that the partitioning of samples z; by states is unknown. Let o denote the S’ mixture model parameter set
{p1,6%,p2,6%,...,ps, 62}, which is to be estimated from the data samples.

A description of the EM technique involves two likelihood functions, an incomplete log likelihood function
L({zj}la) and a complete log likelihood function CL({(z,-,s,-)}la) defined as follows:

N
L{z}lo) = 2; Inp(z;lor)
and d
N .
CL({(zj,5)}o) =§lnp((z,-,s,-)la) .
F

where p(zj|cz) is the probability of z; occuring given o and p((zj,s,-)la) is the probability
of z; occuring in state s;, the state containing it, given .

The EM technique constructs a familv of estimates of the vector ac:

2 2 2
01, 02, ey Oy ..y WhETE O = (D1, 0713 Pn2, 25 3P0 Ons)-

One estimate is obtained for each initial set of parameters and then the best estimate of the parameters after
iteration of the EM process is chosen as the estimate of the parameters. In particular, given the parameter vector

estimate o, the parameter estimate .41 is constructed as follows:

Step 1. Select a set of initial parameter vectors that span reasonable models for the data being fitted.
(This step becomes increasingly difficult as the number of parameter values increases and places a practical limit
on the number of states in the mixture model for which the technique can be used to estimate state parameters.)

Choose a vector &t from the set of initial parameter vectors to be recursively refined to a candidate estimate of o
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Step 2. Given the estimate o, n = 1,2, ..., calculate the conditional probabiiities of the

states given z; and ot,:
p(zj|sj =k, 0n)Pnx

2;11 p(ZjISj = h’ an)pn.h

p(s; = klz;,a) =

where
i
P(zjlsj=h,0tn)= 12 e = for1 <h<S.
2RC,
Step 3. Construct L, by setting
Datik = N2 z,p(s, klzj, o) for 1 <k<S
and
o =L |z,| p(s~=ki::~oc)for1<k<S
NS eyt TR

Step 4. Discontinue the estimation process after the successive estimates cease to change significantly,
draw a new parameter vector from the set of initiai parameter vectors, and start a new estimation process to
refine it.

Step 5. Calculate L({z;} |0t) for each of the final estimates obtained by refining the different initiai
parameter vectors. Take as the best estimate of the parameter vector the final estimate which maximizes

L{z} o).

For a Gaussian mixture model O,; is a maximum or saddle point of the expected value of the complete
likelihood function

ECL@m)=3 3 In(p((z}, 55 = B)lotn))p(s; = klz,~, Otn).
1 k=t
Wu (1983) has shown under conditions that hold for estimating Gaussian mixture models, that a sequence of
estimates of the expected value of the complete likelihcod function converges to a saddle point or local maximum
of the incomplete likelihood function L{0). When this is the case, a good approximation of the best parameter
vector can be obtained by selecting the vector that maximizes the incomplete likelihood function from the
parameter vectors obtained using the EM algorithm for a well-chosen set of initial parameter vectors.

The above technique can easily be applied to the estimation of the best two-state Gaussian mixture model. For
this case, the number of parameters can be reduced in the following way. The Fourier coefficients {z;}are
normalized so that the normalized coefficients have a mean norm squared value of 2. In addition, the search
need only be made over p,, the low-state probability, and over Gi, the low-state variance, since the

: : 1-pL0]
high-state probability py = 1 —p, and the high-state variance 6% = P Furthermore, both the

low-state probability and low-state variance are constrained to values between 0 and 1 for the normalized data.
The EM algorithm can be used to search for the best two-state model by initiating searches for each pair of
parameter values (p.,0.) in {(.1,.1),(.1,.5),(.1,.9),(.5,.1),(.5,.5),(.5,.9),(.9,.1),(.9,.5),(.9, 9)}. This
was the approach taken to fit data by a two-state Gaussian mixture model whenever the EM algorithm was used.
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Computer simulations were used to characterize the performance of the EM algorithm as described to determine
2

c .
two-state Gaussian mixture model parameters as a function of N, p; and p = —‘;’- For each p, in {0.01, 0.05,
c

L
0.1,0.2, 0.4, 0.8, 0.9, 0.95, 0.99), pin { 1.6, 6.25, 25, 100},and N in {16, 31, 62, 125, 250, 500, 1000}, 100
sets of data were generated and the mean squared errors in the estimated parameters p; and oi were
calculated.

Figures A-1a and 1b present mean square error estimates of p; and Gf as a function of sample size

N for a Gaussian mixture models with two fairly distinct states, p; = 0.4 and p = 6.25. These curves
indicate that even for N = 16, the EM procedure could estimate the state parameters with less than 8% error.
Figures A-2a and 2b present mean square estimates for p, and ci as a function of p, for p = 6.25

and N = 125, while figures A-3a and 3b present them as a function of p for p; = 0.4 and N=125. Observe
that the estimation process leads to reasonable estimates (10% or less mean square error in the parameter
estimated) for 125 samples provided the low-state probability is greater than about 0.20. Fig.ure A-4, based on
data compiled from all of the simulations discussed here, indicated that 80% of the time fewer than 50 iterations
were required for convergence.

The best two-state Gaussian mixture model parameters can be used to initiate a search for the best three-state
Gaussian mixture model. The two-state process results in the parameter set {p, ., 0‘% L P2H, 6’2’ J,,} for
nomalized data with variance 1. Any three-state fit would lead to a new middle state with probability ps» and
variance 62 u With VH 'L <ol MS< H 4 and low-state and high-state parameter set{ps. , o3 1> P34, ol 1}
with0 < pu, < pu, 6% < 6§ LS c% L» where 62, is the minimum norm square of any of the samples, and

c, LS c‘3 MS 0'3 - The number of initial parameter vectors was further reduced by choosing state probabilities
and variances in a manner consistent with the data.

Given 63 w with o3 LS o2 M S o] 4 and pay with 0 < p3y < 1 partition the samples into sets S, Sy, and
Su. Let S denote the set of samples from which the model is to be estimated. Order the norms of the elements
of S from low to high and let Si consist of the 100p3 4 of the elements of § with norm squares closest to 0'§ M-
Let S, consist of the elements of S with norm squares less than or equal to the norm squares of the elements of
Swx and let Sy consist of the remaining elements of S. Then let p3,. be the number of elements in S, divided by
the number of elements in S and let 0’§ 1 be the average value of the norm squares of the elements in S ; let
P34 be the number of elements in Sy divided by the number of elements in S and let 63 4 be the average

value of the norm squares of the elements in S;;.  We choose three values of the middle state variance and
three values of the middle state probabilities to obtain 8 initial parameter estimates to estimate three-state
parameter vectors using the EM algorithm given a two-state model of the data. The three variances were

63, =802, +.203,, 63, =.503,+.503,, and 63 ,,=.2 63, +.803,: the three low-state probabilities
were 0.2, 0.5, and 0.8. This initialization procedure was used to estimate three-state Gaussian mixture mode!
parameters whenever the EM algorithm was used to obtain such estimates.

Simulations were conducted to determine the ability of the EM algorithm to distinguish between a circular

’ Gaussian distribution and a two-state Gaussian mixture model. This was accomplished by determining the
distribution of the two-state mixture parameters when the input data were drawn from a circular Gaussian
distribution. For Gaussian noise, either the probabilities of one of the states should be near zero, or the ratio of
the variances should be near 1. Figure A-5a shows the parameters estimated for 1280 sets of 130 samples
drawn from a zero-mean unit variance circular Gaussian distribution. Figures A-5b, ¢, and d are the cumulative
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distributions of the ratio of the estimated variances for those points in figure A-5a satisfying
01<p: <09, 02<p,.50. 8 and 0.3 < p; < 0.7, respectively. These plots can be used to estimate certain

joint probabilities such as P(—— 24 and 0.2 <p, <£0.8)=(0.05)(0.136) = 0.0068 for Gaussian input.
°'L

Monte Carlo studies were also done to determine the distribution of the two-state mixture model parameters when
the input data were obtained from a sinusoid in white Gaussian noise. The Fourier transform of such data in the
frequency bin containing the signal is the sum of noise data, which has a zero-mean circular Gaussian density
and a complex sinusoid. For different choices of the amplitude and precession rate of the complex sinusoid,

1280 independent sets of 130 samples were generated, and the EM azlgorithm was run on these data. Figures

(o]
A-6a, b, and ¢ show the distribution of the estimated variance ratio —'2"- and low-state probability p,, for

oL
signak-to-noise ratios of 1.8, 4.8, and 7.8 dB, respectively, and a precession rate of 0.5% rad/(FFT sample). This
precession rate corresponds to the signal frequency lying midway between two center frequencies of the FFT and
using a window with 50% overlap in the calculation of the FFT. The precession rate had very little impact on the
distribution of the estimated parameters in this study.

Figure A-5 suggests that for a set of 130 samples having a Gaussian distribution, the EM algorithm is unlikely to
2 2

. . . OH e Oy .
estimate the Gaussian mixture parameters p, and —-satisfying 0.2 <p, <0.8 and —->4. Figure A-6
o O
suggests that the EM algorithm is unlikely to estimate a significant amount of mixing in successive Fourier
coefficients of a sinusoid in Gaussian noise. Furthermore, as the signal-to-noise ratio increases the estimated
parameters of the successive Fourier coefficients of the signal-plus-noise process stabilize at values that indicate
essentially no mixing.

Statistical Tests to Compare Interference Models.

Statistical tests were selected to characterize the various features of the complex samples of interference data.
in particular, statistical tests were selected to determine the suitability of modeling the interference data statistics
by a spherical Gaussian distribution or as a Gaussian mixture distribution. These tests were used to analyze
simulated data and MDA hydrophone data. This section briefly describes the statistical techniques that are used
in our discussion of information processing.

Both spherical Gaussian and Gaussian mixture models require that the real and imaginary baseband sample
components are zero-mean and identically distributed. The two models are distinguished by the fact that for a
Gaussian model the statistics are stationary and for a Gaussian mixture model nonstationary. Therefore,
statistical tests were selected to evaluate the hypotheses that the real and imaginary baseband sample
components of narrowband interference are stationary, independent, and have Gaussian distributions, and that
the real and imaginary parts are independent of each other. If these conditions hold and the variance of the real
part is equal to the variance of the imaginary part, the probability distribution of the complex interference samples
is a spherical Gaussian distribution. In addition, statistical tests were selected to determine whether the
interference data were best described by either a one-state, two-state, or three-state Gaussian mixture model.

The Kendall-Mann tau test (Baker, 1976; Bradley, 1968; Kendall and Gibbons, 1990) was used to determine the
presence of trends in the mean and variance of the interference data. This test is an application of the Kendall
rank correlation test. it is used to evaluate the independence of two time series of real numbers by searching for
a relationship in the ordering by magnitude of the two time series. Each time series is assumed to consist of
independent, identically distributed data. (The present description assumes that each time series is without ties,

i.e. x; #x; and y; # y; for i # j. See Kendall and Gibbons (1990) for the modifications necessary to cover the
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case of possible ties.) The Kendall rank correlation test evaluates the hypothesis that the two time series
{xil1 i< N} and {y;l1 < i< N}consist of independent identically distributed data.

Trpe Kendall rank correlation test statistic is formed by ordering the pairs (x;, y;) according to the magnitude of

the x coordinate from its smallest value to its largest value. Let {(x;»,yin)} = {(xi, y,-)|1 <i< N}with xpr < xjr

if i* < j”. For each i, let I;» denote the number of indices j~ > i* with y;» < y;» and T;» denote the number of

. A A 2T- y y

indices j~ > i* with y» > y;» . Then the test statistic is S = ﬁf?v"%’ where T= Y, Tinand I = Z Iin. lfthe
- in=1 =)

time series {xill <i< N} and {y,-ll <i < N} are independent, then the distribution of S is independent of their

22N +59)

——————. The Kendall rank

ONN-1)" °

correlation test can be used for sample sizes larger than 30. The Kendall-Mann tau test is applied to a single

real-time series {y,ll < i < N} by setting x; = i and applying the Kendall rank correlation test. Applied in this

manner, the Kendall-Mann tau test detects trends in the mean of the elements of {y,-| 1 <i< N}. Appliedto the

real-time series {|y.-| |1 < i< N}, it detects trends in the variances of the elements of {ly,-l l1 <i< N}

distributions and approaches a zero-mean normal distribution with variance

The Kolmogorov-Smirnov two-sample test was used as an additional test of the stationarity of the real and
imaginary interference data, and it was used to test the equality of the distributions between the real and
imaginary components of the complex valued interference samples. If {x;|1 <i <N} and {y;|1 <i <N} are
two time series, the two-sample test measures the equality of the distributions of {x;/1 <i < N}and

{y,ll < i< N} based on the maximum of the absolute value of the difference between their cumulative
distributions (Baker, 1976; Bradley, 1968). The resulting stationarity test for a real-valued {x;|1 <i <N} is the
Kolmogorov-Smimov two-sample test applied to {x;|1 <i < M} and {x;IM+ 1 <i <N}, where M is the

greatest integer less than or equal to % Assuming that the two distributions are identical, the distribution of the

statistic is independent of the distribution of the random variables and is given by an infinite sum, which is
commonly approximated by its first few terms (Press et al., 1988; Wilks, 1962).

The Kolmogorov-Smimov one-sample test was used to compare empirical distributions with fixed distributions,
e.g., the Gaussian and the exponential distributions. The statistic is the maximum of the absolute value of the
difference between the hypothetical cumulative distribution and the empirical cumulative distribution. The
distribution on the statistic is similar to that of the Kolmogorov-Smimov two-sample test (Press et al, 1988).

The Chi-squared test (Press et al, 1988) was also used to compare empirical density functions and model density
functions. This test requires that the data be placed in bins. The statistic is formed by summing (over all bins) the
normalized square of the difference between the expected number of data points in each bin, based on the
theoretical distribution, and the realized number in each bin. The normalization factor is the expected number of
data points per bin. Assuming that the theoretical distribution is correct, as the number of samples goes to
infinity, the distribution of the statistic approaches a Chi-squared distribution on B-r-1 degrees of freedom, where
B is the number of bins into which the data are divided and r is the number of parameters estimated from the
data. The level of significance obtained for the Chi-squared accounts for the number of estimated distribution
parameters. The level of significance obtained for the Kolmogorov-Smirnov one-sample test does not account for
the number of estimated distribution parameters; correction factors are available for the Kolmogorov-Smirnov
one-sample test for special cases (Stephens, 1974).
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APPENDIX B
Moving Target Hydrophone Interference Statistics

In this appendix, we present simulation results for a moving target using the Kraken C (Porter, 1992) modal
model to calculate the received interference power at a hydrophone. (References in this appendix are listed at
the end of the body of this report.) The geometry governing these simulations is that shown in figure 2 of the body
of this report for a hydrophone located near the middle of the deep sound channel.

Wae begin our investigation of the impact of interferer motion on received interferer statistics by examining time
series of pressure amplitudes for a 10-meter-deep interference source and for a receiving hydrophone of 800
meters. The interference source is above the deep sound channel and the receiving hydrophone is well within
the deep sound channel as can be seen from an examination of figure 3 of the body of the report. The pressure
amplitudes are normalized so that 0 dB corresponds to the average received power for the time series of
pressure amplitudes for the interferer source at ranges between 10 km and 876 km from a receiving hydrophone
at a depth of 800 meters. The results are presented in figure B-1 for four celected range intervals to illustrate the
manner in which the fluctuations change as a function of range. The rate and the magnitude of the fluctuations
depend on the range of the source. The fluctuations at the hydrophone arise from modes of different wave
numbers beating against each other. At longer ranges, the energies in the higher modes are reduced through
bottom interaction, as can be seen from an examination of figure B-2, which presents mode amplitudes for the
interference source at different ranges from the receiving hydrophone. As a result, fewer modes beat against
each other as the range increases and the fluctuations tend to be slower the more distant the interferer from the
hydrophone.

Figure B-3 shows the results of the statistical tests and the estimated Gaussian mixture parameters for a source
at a depth of 10 meters and the receiving hydrophone at a depth of 800 meters. The amplitude of the pressure
data as the source moves from 60 to 375 kilometers was segmented into sets of 128 contiguous samples,
representing 27.5 minutes of data for a ship moving at 10 knots, and the sets were overlapped by 50%. The
abscissa is the horizontal distance between the hydrophone and the first point of each of the data sets. Figure
B-3a presents the significance levels of the Kendall-Mann tau test for the random variable 128-sample average
of norms squared and the Kolmogorov-Smimov two-sample tests for stationarity by comparing the distribution of
the first half of the samples with the distribution of the second half of the samples. Figure B-3b shows the
significance levels of the Kolmogorov-Smimov one-sample test for the one-state and the two-state Gaussian
mixture model distributions.

The significance levels for the Kolmogorov-Smimov one-sample test shown in figure B-3b are based on the
distribution of the test scores assuming that parameters have not been estimated. The significar ce levels after
adjustment for parameter estimation are lower than those indicated in figure B-3b. However, for the idealized
simulation results presented here, it was not deemed necessary to perform a more careful and calculationally
demanding statistical analysis of the fit between these data and two-state Gaussian mixture models based on the
Cramer-Von Mises and Anderson-Darling goodness-of-fit tests with significance levels adjusted for parameter
estimation (Darling, 1955; Stephens, 1974,1976; Sukhatme, 1972).

A two-state Gaussian mixture model is characterized by ratio of its high-state variance Gf, to its low-state

variance O'f_ and its low-state probability p, and these are the estimated parameters for the two-state Gaussian
mixture model plotted in figures B-3c and d. Note that the ratio of high-state to low-state variance is plotted in
figure B-3c on a log base 2 scale. The joint probability density function for the low-state probability and the ratio of
high-state to low-state variance is shown for the estimates for two-state Gaussian mixture parameter for a moving
interferer in 10 kilometer steps from 350 to 500 kilometers. The selected data span a convergence zone located
at 372 kilometers.
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A single two-state mixture model with parameters p; = (.5 and variance ratio between 4 and 8 provides a good
fit to most of the selected hydrophone data as shown in figure B-4. A second two-state mixture model occurs
around 10% of the time with a high-state to low-state variance ratio exceeding 32. Figure B-3c indicates that the
higher variance ratio mixture model applies to at most two successive samples, that to a period of time roughly
corresponding to the period of time required for the interferer to move 12 kilometers toward the receiving
hydrophone.

Figure B-3a suggests that the amplitude fluctuations at the hydrophone output caused by the source motion can
often be better described by a two-state Gaussian mixture model than by a one-state model. However, the ratio
of high-state to low-state variance is only 6 dB for the most commonly occurring mixture model.

The simulated hydrophone data were also compared to the three-state model with parameters obtained using the
EM model. The initial parameter vectors were obtained from the best estimate of the two-state parameters for
the data being fit as described in appendix A. The time histories of the three-state levels of significance exhibited
similar properties to those exhibited for the two-state time histories of levels of significance so that these histories
are not presented. Instead, we focus on comparing the significant levels for comparisons of the data with
one-state, two-state, and three-state Gaussian mixture models and determining the L2 norms of the differences
between the one-state and the two-state fits, the one-state and the three-state fits, and the two-state and

three-state fits to the data. Recall that for two vectors x = (x;, X2, ...,X,) and y = (y1, 2, .-., V), e L2 norm of

n
the difference is simply the Euclidean distance Ix- y| | >= |20 — yi?.

=1

Histograms of the significant levels for the Chi-squared test and the Kolomogorov-Smirnov one-sample test
comparing the empirical data with one-state, two-state, and three-state Gaussian mirture models are presented
in figures B-5 and B-6, respectively. The relationship between levels of significance and test scores differ for the
three cases as shown in figure B-6. The different relationships occur because the number of degrees of freedom
for the Chi-squared test depends on the number of states for the mixture model, 23 for a ore-state model, 21 for
a two-state mode!, and 19 for a three-state model. The Chi-squared test significant levels tend to be very low
(left-most bin shown in figure B-5) nearly 80% of the time for a one-state model, 17% of the time for a two-state
model, and 1% for a three-state model. Thus either a two-state or three-state model fits nearly all the data better
than a one-state as already discussed, while some of the time a three-state model fits the data better than either
a one-state or a two-state model. Figure B-7 presents a histogram of the L2 norms of the differences between
the models obtained that best fit the data. This data shows that more than 80 percent of the time, the two-state
and three-state fits lead to nearly the same probability density functions.

Figure B-8 summarizes the probabilities of occurrence of the three-state model parameters
2

PL:PM;PH, 1’;’—-, 2—%’-, obtained using the EM algorithm for the hydrophone data. A few three-state models do

L YL
not predominate the three-state models that best fit the hydrophone data, unlike for the two-state models. The
surprising result is the high percentage of cases in which the best three-state model probability was between 0.4
and 0.6 as shown in figure B-8b. This means that a large percentage of samples formerly in the low and high
states fall into the middie state, while the middie-state to low-state variance clustered about 3 and the high-state
to low-state variance about 6, so that the dynamic range as measured by the difference between the variances of
the low and high states did not dramatically increase when the data was fit by a three-state model from when it
was fit by a two-state model.
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