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Executive Summary because they exhibited dominant narrowband
interference components:

Background. (a) the complex samples generated from the

data from one of the segments was better fit by aThis report and two companion reports have been two-state Gaussian mixture model than by a Gaussian

derived from the chapter on detection theory prepared distribution,
for the High Gain Initiative (HGI) report. The two
companion reports, "Detection Processing for (b) the distributions of the complex samples
Undersea Surveillance" (Confidential) and "Adaptive for two of the segments were not significantly different
Locally Optimum Processing for Interference from Gaussian distributions, and
Suppression from Communication and Undersea
Surveillance Signals" focus on detection processing. (c) the phase could be modeled as uniform on
"Detection Processing for Undersea Surveillance"
summarizes the status of detection processing for (-co l and the real and imaginary components of the
undersea surveillance at the time of the initiation of the complex samples modeled as independent for all three
HGI program and deals primarily with adaptive segments.
filtering. It summarizes the cumulation of many years The simulations of power variations due to target
of effort in the field by J. Zeidler and others. "Adaptive motion led to statistics which were better modeled by
Locally Optimum Processing for Interference either a to-statisthree-state better mod e
Suppression from Communication and Undersea either a two-state or three-state Gaussian mixture
Surveillance Signals" is the cumulation of work by J. model than by a Gaussian distribution. Often the data
Bond, S. Hui, D. Stein, and others on adaptive locally was nearly as well fit by a two-state model as by a
optimum processing for interference suppression and three-state model. In addition, the two-state models
of V. Broman on target tracking. This report exhibited consistency over a track traversing multiple
summarizes the results of statistical analyzes of convergence zones and the model parameters formed
power variations due to target motion obtained through two clusters.
simulations and actual data power variations collected
during a HGI experiment. The analysis involved fitting Conclusions.
the power variation data by Gaussian mixture models.This work was primarily accomplished by D. Stein for Nearby shipping can sometimes be well modeled by a
the HGI program. Gaussian mixture model. The mixture nature of thestatistics can be attributed to changing modal

Introduction. interactions due to target motion.

Gaussian mixture models, and a particular class of Characterization of Interference
mixture models known as Middleton Class A Noise Statistics
Models, have been widely investigated to model the
acoustic noise generated by distant shipping. In this Introduction.
report, we discuss the use of Gaussian mixture
models to describe the noise generated by a nearby Information processing for ocean basin surveillance
ship. The investigation consists of an analysis of requion proctin f ocean basin the
selected HGI hydrophone experimental data to requires the detection of submarine lines in thedetermine its statistical characteristics and of presence of interference. The interference can be
sitermulatios ofatisthe poweariationspcter nd at abroadband or narrowband, originating from surfacesim ulations of the power variations expected at a s i r fi ,m rn ie ro e n w v s hhydrophone within the deep sound channel due to the ship traffic, marine life, or ocean waves. The
motion of a source relative to the hydrophone. optimum detection processing is known when theinterference can be well-modeled as stationary

Summary of Results. Gaussian noise. A number of powerful processing
techniques that provide improved detection

The following results were obtained for three half-hour performance over traditional processing are available

segments of experimental hydrophone data selected when the interference is non-Gaussian. The
broadband component of ocean noise is usually
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well-modeled by Gaussian noise. The above of interest. Under these conditions, the signal-to-
considerations led us to focus our attention on the noise ratio at the output of the beamformer of the high
analysis of narrowband interference, presumably gain array is expected to be quite dynamic. To see
arising from ships, to determine the time scales over why this might be the case, consider a surface ship
which the statistics can be modeled as stationary and moving at 15 knots through an area whose cross-
also to determine the likelihood that the narrowband section is determined by beam width and by the width
interference is non-Gaussian. of a convergence zone. At 10 convergence zones,

roughly 300 nautical miles, the convergence zone
The Atlantic and Pacific ocean basins may each would have a width of about 3 miles, while the arc
contain several thousand ships, say 3000, at any length associated with a 5-degree beam (roughly 1/10
given time. Suppose that the high gain array forms a radian) would be about 30 miles. A merchant ship
100 or more beams, so that possibly 30 to 60 ships could pass through the beam-convergent zone area in
are within a horizontal beam. For a matched field as little as 12 minutes and as much as 2 hours.
beamformer, the interferences of significant level
occur at convergence zone ranges from the spatial cell Mohnkern (1989) has studied the effects of interferer
of interest, reducing the number of ships generating motion on Bartlett and Minimum Variance
significant interference to about one-tenth of the Distortionless Response (MVDR) beamformers for
number of ships in the beam. Furthermore, the ships horizontal arrays using plane wave propagation. For
are of different types, having different equipments and Bartlett beamforming, he finds that the time-averaged
from different countries with different electrical main lobe response is broadened and under some
systems, so that narrowband lines from only a few conditions reduced and that the nulls are blurred. For
ships, if any, would be expected to interfere with the MVDR beamforming he finds that the main lobe is
detection of a narrowband signal of interest in a similarly affected and that moving interferers are
particular beamformer spatial cell. Each of these associated with multiple-rank submatrices of the
ship-generated interfering lines would, in general, be spatial cross-spectral matrix. The details depend on
expected to arrive with time varying power, because of the speed of the interferers, array geometry, and the
the variation in propagation conditions. On some amount of data used to estimate the spatial
occasions, a particularly strong interfering source on cross-spectral matrix. In this report, we present
another beam may impact performance on the beam simulation results to show the impact of ship motion
being considered. In any case, it is reasonable to on received power at a vertical array for selected
suppose that for a high gain array, two different cases spatial cells presumed to contain a target of interest.
are likely to occur; first, no single narrowband
interferer dominates the background noise, and The motion of the interferers limits the amount of data
second, a few narrowband interferer's dominate the available that may be used to estimate a spatial
background noise (Heitmeyer, Davis, and Yen, 1985). cross-spectral matrix to a time interval for which the
In the first case, it is reasonable to expect that the interference may be modeled as stationary.
background noise will be Gaussian-like. In the Unfortunately, this time interval tends to decrease with
second case, it is reasonable to suppose that the increasing array size, while the amount of data
background noise will be changing rapidly due to required to estimate the spatial cross-spatial matrix
changing propagation conditions to the array from increases. For an array of n sensors, the maximum
these few dominating sources of the background likelihood estimate of the spatial cross-spectral matrix
noise. A reasonable model for this second case is a requires 2n independent identically distributed data
Gaussian mixture model; mixture models points from each hydrophone so that the expected
(Titterington, Smith, and Mackov, 1985) are discussed output signal-to-noise ratio using estimated spatial
later. cross-spectral matrix is not less than one-half that

achieved from a priori knowledge of the spatial
Consider the case of a single dominating interferer cross-spectral matrix (Reed, Mallett, and Brennan,
and a target of interest as shown in figure 1. The 1974).
interference arises from a ship whose acoustic energy
couples into the deep sound channel and whose The motion of the interferers causes the interference
location is such that the propagation paths connecting in the beamformer outputs to be nonstationarity and
it with the high gain array passes through a submarine thus impacts detection processing. Mixture models
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have been studied to model nonstationary interference s --
in communications and undersea surveillance (Baker p(lzl1) = k 2 e k

and Gualtierotti, 1986. 1988, to appear; Berry, 1981; A 21T(T
Vastola, 1984; Powell and Wilson, 1989). For these
models, adaptive locally optimum processing Noise Statistics for a Moving Interferer.
techniques have been developed. The theory and
implementation of this processing constitutes the next In this subsection, we show by simulation that
subsection of this report. Middleton (1966,1967,1977, multi-state Gaussian mixture models can be used to
1983,1984, 1991) and Middleton and Spaulding (1983, describe interferer statistics at the output of a vertical
1986) pioneered these efforts by determining array when the source of the interference is moving
particular classes of mixture models that are derived relative to the array. For a billboard array, these
from statistical models of the source locations of the simulations address the properties of interferers
interference relative to the receiver. In these models, located within the same horizontal beam as the signal
the Middleton Class A, B, and C models, the mixture of interest. Similar results for interferer statistics at the
parameters are related to general statistical properties output of a hydrophone located near the center of the
of the interference sources. Bouvet and Schwartz deep sound channel are discussed in appendix B.
(1988, 1989) have fit broadband ocean noise data with
the Middleton Class A noise model. These efforts The applicability of a Gaussian mixture model to
have involved fitting time domain noise data by a interference generated by multiple moving ships
Gaussian mixture model. In this report, we extended follows readily from the applicability of a Gaussian
these efforts by investigating the suitability of modeling mixture model for interference generated by a single
narrowband ocean noise data in real-time in the moving ship. In particular, if X1 ,X 2, ... , X. are
frequency domain by Gaussian mixture models. independent Gaussian mixture random variables and

Z=X1 +X 2 +... +X,, then
Gaussian mixture models are generalizations of
Middleton noise models. A Guassian mixture model is MI M2 m,

defined as follows. Suppose that the indices pz(x) = (21r)-T Y ... I PlkP2k2 ... PnkRP(X),
{1,2,...,M) of the complex samples zl,Z2, ... ,ZM can k 1=1 k2=1 k,=I

be partitioned into S disjoint sets M 1 , M 2, ... , MS with w2
the following properties: 1 2 2

p(x) = e 2(o k]*o02 +...+a )

Mk (Tk + ~2 2 + G 2.

(a) Jrn-im - exists and equalsPk > 0 --k" + GYk2 + n..
U--. M when

for k=-1,2, ..., S with mk the number of the samples m. 2

with indices from the set {1,2,...,.M4} in Mk; Px,(x) - le p, e
J2-r kj=l Ckiki

(b) the real and imaginary components of the with
interference for the samples contained in the set Mk M,
have identical zero-mean distributions with variance Xp.P, = 1 andpk, > O, 1 < k 5_ mi, for 1 :_ i5 _m.I a 2 for k= 1.2 , ..... S w ith a2 < Cy2 < ... < Cy . k,

This result follows by induction on n using the fact that
If these distributions are zero-mean Gaussian the distribution of the sum of two zero-mean
distributions, the mixture model is called a Gaussian independent random variables is the convolution of
mixture model, which is completely described by the their distributions with zero mean and variance the

parameter set {pl , 0 1, ... ,Ps, CFs}. The parameter Pk sum of their variances.
is called the k-th state probability and the parameter2 Simulations were performed to approximate the
(I is called the k-th state variance. The probability received power fluctuations from a moving continuous
density function for the normed square of a complex wave (23.804 Hz) interference source. Figure 2
random variable described by a Gaussian mixture shows the interferer-source-receiving array geometry
model is a sum of exponentials
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for the simulations. The geometry is described by an a ship with a radial velocity of 5 meters/second (10
interfering ship with horizontal range r(t) from a knots) traverses in 13 seconds. The receiving array
vertical array, an interfering surface ship modeled as a was modeled as consisting of 200 hydrophones, one
discrete source at depth d,, and a vertical array every 10 meters, extending from a depth of 10 meters
consisting of hydrophones at depth d. The interfering to a depth of 2000 meters. The length of the vertical
ship source is modeled as moving with fixed radial array corresponds to the length of the MDA array.

velocity away from the array so that r(t) = ro + vt, The received pressures from the moving interference
where time starts at 0 and re is the initial distance source at 10 meters depth were beamformed by a
from interfering ship source to the array and v is its Bartlett beamformer to characterize the interferer
radial velocity. The simulations are designed to power fluctuations at the output of the beamformer for
examine the properties of the ship interference as a moving interferer. A beamformer spatial cell is
received by the hydrophones or for specified vertical characterized by the depth of the cell and its range
beamformer spatial cells. The beamformer spatial from the vertical array of hydrophones. Results were
cells are chosen to represent cells of interest for the obtained for four spatial cells at a depth of 100 meters
detection of a submerged submarine, and ranges of 434, 450, 464, and 470 kilometers.

These cells are located between convergence zones 7
A range invariant normal mode model was used to and 8 at approximately 434 and 496 kilometers. For
propagate radiated power from the interferer source to each cell, the interference power was calculated as
the receiving array. The inputs to this model are
ocean depth, water density at the source depth p(ds),(vr -.. 2
water sound speed profile, and sound speed profile in 101Oglog -

the sediment. The sound speed profiles chosen for VO 0V
the simulations are shown in figures 3 and 4 These
sound speed profiles were derived from with i 0 the steering vector for the spatial cell and iVr
measurements at the MDA array site, and the depth of the steering vector for the interferer at range r and
the ocean was chosen as 5190 meters, which is the depth 10 meters. In particular,
depth at the MDA array.

The modal functions and horizontal wave numbers ad= (p(r(t), di, d),p(r(t), d2 , d)...,p(r(t), d200, d,
were calculated using Kraken C (Porter 1992) and the and
pressure field is calculated using the equation -= (r(t), d1 , dt),p(r(t), d2 , d1),...,p(r(t), d2oo, d,)

ix with

p(r(t),d, d) d, 4d), dk = 10+ 10(k- 1) metersafork= 1,2,..., 200
18- r-if-t p (d., Zdst, = 10 meters, and

where d, = 100 meters.
M1

Z(-(t), d, d,) Z ,m(ds)Zm-(d)e ) The Bartlett beamformer results are presented in
k r~lfigures 5a, b, c, and d. Beam patterns with distinct

with Z, the m - th modal function, k, the m - th peaks at roughly convergence zone spacing (figures
horizontal wave number, and M the number of modes. 5a, b, and c) occurred if the range of the cell was
In this equation, the pressure field is represented by a within 30 kilometers of a convergence zone, while a
complex number. Ninety-eight modes are used for more complicated pattern, as shown in figure 5d, was
these calculations to capture the significant produced for other cells.
propagation features.

The observed power at the hydrophone level and at
To study the short-term power fluctuations at the the output of a Bartlett beamformer attributable to a
receiving array that occur as an interference source moving interferer is likely to be nonstationary on a
moves, the pressure field was calculated in increments timescale greater than the time required by the source
of 0.065 km from a range of 10 km to a range of 876 to move about 10 kilometers (one-sixth of a
km. The range increments correspond to the distance convergence zone). The power may vary by more
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than 20 dB over half-hour segments. The periods of 450, 464, and 470 kilometers, respectively. The
the oscillation are variable and depend upon the range abscissa is the horizontal distance between the
of the interferer from the array, the position of the ship vertical array and the first point of each of the data
relative to convergence zones, and the array sets. Figures 6a through 9a present the significance
configuration. Note that figure 5 presents the power levels of the Kendall-Mann tau test for the random
fluctuations due to a single moving source. For real variable 128 sample average of norms squared and
data, the noise power fluctuations would probably be the Kolmogorov-Smirnov two-sample tests tor
reduced by the presence of background noise. As a stationarity by compa. ing the distribution of the first
result, the dynamic range of the noise and, in half of the samples with the distribution of the second
particular, the ratio of high-state variance to low-state half of the samples; figures 6b through 9b show the
variance for a Gaussian mixture model depends on significance levels of the Kolmogorov-Smirnov
the interference-to-background noise ratio. It follows one-sample test for the one-state and two-state
that the dynamic range of actual beamformed data Gaussian mixture model distribution (see appendix A
would be less than the estimates obtained from our for a description of the statistical tests). Figures 6
simulation results for a vertical array. through 9 show the estimates of the high-state to

low-state variance and the low-state probability of the
The predicted beamformed interferer power levels best two-state fit of the data obtained using the EM
from the moving interferer source at a depth of 10 algorithm. Figure 10 shows the joint probability
meters were also used to assess as a function of time density function of the low-state probability and the
whether the power levels could better be described as ratio of the high-state to low-state variance for the
arising from a one-state or two-state Gaussian mixture two-state mixture model parameters that best describe
model. (We extend the use of the mixture model the interference data for the four spatial cells.
terminology to include a one-state Gaussian mixture
model, by which we mean a Rayleigh distribution.) To The multistate nature of the frequency domain
simulate a Rayleigh channel, the amplitudes were beamformed interference is implied by the low
multiplied by independent unit variance complex significance levels shown in figures 6b through 9b of
Gaussian random variables. In particular, if the test for the one-state Gaussian mixture model
{A , A 2,..,A.) is a set of amplitudes, the data (significance levels were truncated at 1 0-3, and in
subject to statistical analysis were some plots all values were at or below this value).
{ZI =A ICi,Z2 =A 2C2 , ... , Zn = A Cn 1, where Also, the significance levels of the two-state Gaussian
C 1, C2, ..., c. are independent complex random mixture model distribution are generally lower for the
variables with a zero-mean unit variance circular beamformed data than for the hydrophone data. This
Gaussian distribution. As a result, the data are locally can be verified by comparing figures 6 through 9 with

circular Gaussian and the resulting assessment figure B-3 of appendix B.
determines if the amplitude fluctuations are best
captured by a single-state or a multiple-state Gaussian The dynamic range of the frequency domain
mixture model. beamformed data is generally higher than for the

hydrophone data. Generally speaking, only two

Statistical analysis was performed for four spatial cells successive 10-kilometer estimates are described by

as the source moved from 350 to 450 kilometers from nearly the same mixture model, indicating that the
the array. Similar results for a source moving away interference should be modeled by a given Gaussian
from a hydrophone are presented in appendix B. mixture model for periods of time not exceeding the
Models were fitted using the Expectation and time for the interferer to move to or away from the
Maximize (EM) algorithm (Zabin and Poor, 1989, receiving array by more than 30 kilometers.
1990, 1991; Powell and Wilson, 1989), as described in
appendix A, to 128 successive beamformer The Kolmogorov-Smimnov one-sample test significant
amplitudes with 50% overlap. The amplitudes were levels tended to decrease as the variance ratiosmultiplied by independent unit variance complex increased. See appendix A for a description of thisGaussian random variables to emulate complex and other statistical tests used to evaluate modelGaussiamls Thedm vreults tof thematiicanlysex distributions. The absolute values of the correlationssamples. The results of the statistical analysis a are 0.25, 0.20, 0.38, and 0.72 for the data in figurespresented in figjures 6 thro ugh 9 for spatial cells at a1 ,12 13 an 14 re p ci ly I s e t on fth
depth of 100 meters and ranges from the array of 434, 11, 12, 13, and 14, respectively. Inspection of the
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2 y
cumulative distributions suggests that often a three or (O a,,
more state Gaussian mixture model would fit the data 2 obtained by using the EM algorithm for the
segments having large dynamic ranges better than a oL UL
two-state model. Examples of such distributions are beamformed data. The surprising result is the high
shown later in this subsection. This observation led us percentage of cases in which the best three-state
to investigate the applicability of three-state mixture model probability was between 0.4 and 0.6 as shown
models to the simulated moving interferer data. in figure 19b. Analysis was conducted to cluster the

parameter data for the three-state model. The
Figures 11 and 12 present histograms of the analysis did not reveal the strong clustering of model
significant levels of one-state, two-state, and parameters for the three-state models as exhibited for
three-state models compared to the empirical the parameters of the two-state models. The best
distributions of the data for the Chi-squared test and defined cluster (12 %) of joint model parameters
the Kolmogorov-Smimov one-sample test, occurred for low state probability between 0.1 and 0.2,
respectively. Figure 13 presents a histogram of the the middle-state probability between 0.36 and 0.55,
average differences (L2 norms) between the the high-state to low-state variance between 64 and
one-state model and the two-state model, the 2048, and the high-state to middle-state variance
one-state model and the three-state model, and the between 4 and 64 . The next best defined cluster
two-state model and the three-state model. These (9 %) of joint model parameters occurred for low-state
histograms reveal that the two-state and three-state probability between 0.2 and 0.3, the middle-state
models often lead to distributions that differ. probability between 0.3 and 0.6, the high-state to

low-state variance between 64 and 1028, and the
Figures 14 through 18 show five examples of the high-state to middle-state variance between 4 and 32.
one-state model, two-state model, and three-state
model cumulative probability functions compared to The simulations suggest that a multi-state Gaussian
the empirical cumulative probability function for the mixture model may better characterize the interferer
beamformed data. Figures 14 and 15 illustrate cases power fluctuations over a half hour than does a
when the two-state model fit and three-state model fit one-state model. The simulations for a hydrophone
to the beamformed data are nearly the same and quite (described in appendix B) and a vertical array indicate
different, respectively. The three-state fit is clearly that mixture models should apply to both, with the ratio
better than the two-state fit for the data presented in of high-state to low-state variance greater for the
figure 15. Figure 16 shows a worse case fit for the beamformed output interference power than for the
one-state model with the lowest significance level for hydrophone output interference power.
the Chi-squared test. Note that the tail of empirical
distribution falls off much slower than the tail of the MDA Noise Statistics.
one-state fit leading to a high Chi-squared test score
and correspondingly low significance level. This Frequency domain statistics were obtained by
distribution is well fit by the three-state model and not spectrally processing selected segments of
well fit by a two-state model. Figure 17 shows a hydrophone data collected during the MDA
worst case fit for the two-state model according to the experiment. Three half-hour segments of hydrophone
Chi-squared test; the three-state fit, which is nearly data for specific Fourier transform frequency bins
the same as the two-state fit, is also poor. Figure 17 •ontaining dominant narrowband lines, presumably
illustrates a distribution that requires more than three ship-generated, were selected for detailed analysis.
states to be well fit. Figure 18 presents the data for a In addition, the data were surveyed for all frequencies
worst case three-state fit according to the to establish the frequency of occurrence of bins
Kolmogorov-Smimov one-sample test. These exhibiting two-state Gaussian mixture characteristics
examples illustrate the great variety of cases that and to determine the correlation of statistics between
arose fitting the frequency domain beamformed adjacent frequency bins. Hydrophone data were used
interference levels from a moving ship. for the analysis because these data are easier to

survey than beamformed data for the presence of
Figure 19 summarizes the probabilities of occurrence dominant narrowband interference.

of the three-state model parameters PL,PM,PH,
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The selected hydrophone data were Fourier transform with 50% overlap and a Han, iing window.
transformed with a frequency resolution that This transformation has a frequency resolution of
represents a reasonable choice for the resolution of a C -36 Hz and results in about 130 complex Fourier
matched field beamformer. The results obtained for coefficients for each frequency for a half-hour of time
hydrophone data should be relevant because matched series data.
field beamforming is a linear process. In addition, the
simulations presented in the previous subsection and Figures 26, 27, and 28 present scatter plots of the real
appendix B indicated that Gaussian mixture and imaginary components of the complex Fourier
characteristics, albeit with slightly different mixture coefficients for the selected frequencies of the
parameters, should be observed for hydrophone segment A, B, and C hydrophone data, respectively.
outputs as well as for the beamformer outputs. The figures indicate that the real and imaginary

components of the samples can be treated as
The three half-hour segments of MDA data were uncorrelated random variables. Figures 29 and 30
collected on day 193 during the hours 0140 to 0740. present histograms of the amplitudes of the complex
These segments, hereafter referred to as segments A, Fourier coefticients and the phases of the complex
B, and C, were selected because their data exhibited sample phases, respectively, for the selected
high levels of narrowband 'rterference as shown in frequency data for segments A, B, and C. It is difficult
figures 20, 21, and 22. Segment A spans 0140 to to conclude from figure 29 whether a given data set is
0210, segment B spans 0440 to 0510, and segment C best fit by a one-state or multiple-state Gaussian
spans 0710 to 0740 zulu time. Frequency bins with mixture model. Figure 30 indicates that the phase is
spikes near 24 Hz were analyzed in dWtail. The bins better modeled by a uniform distribution than by a
chosen for segments A, B, and C have frequencies of single value or several discrete values of phase.
23.914, 23.951, and 23.804 Hz , respectively. The
interference levels in these bins are presumably The initial statistical analysis of the frequency domain
dominated by acoustic energy from ships. Note that hydrophone data was structured to determine if the
the large spike seen at 24 Hz in figure 22 is one of the data for the selected frequencies for segments A, B,
signals generated as part of the MDA experiment. and C were stationary. The statistical tests, which

are described in appendix A, also addressid the
The likely interferer sources for the selected segments suitability of modeling the frequency domain
were further characterized by beamforming the narrowband interference samples by a circular
hydrophone data by using a modal beamformer. This Gaussian distribution. The results of these tests are
beamformer processes the vertical component of the summarized in table 1.
incoming wavefront as described in the previous
subsection (Bartlett beamformer) and the horizontal The results of applying the Kendall-Mann tau tests to
component as a plane wave. Figures 23, 24, and 25 A, B, and C segments indicate that sometimes the real
show the sum of mode powers as a function of and imaginary component Fourier coefficient means
bearing for segment A at a frequency of 23.914 Hz, and variances for the selected interferer frequency bin
for segment B at a frequency of 23.950 Hz, and for seem to contain trends and sometimes not. In
segment C at a frequency of 23.804 Hz. These general, the results are not conclusive, and only two
figures indicate a dominant beam and several tests, lack of trends in the means of the real
prominent beamformer side lobes. The side lobes components of the Fourier coefficients of segment A
exist because of the hydrophone geometry of the and lack of trends in the means of the imaginary
MDA receiving array. Figure 23 indicates a ship on a Fourier components of segment C, had high
bearing of -690, figure 24 a ship on a bearing of 1180, significance levels. Three times the significance levels
and figure 25 a ship on a bearing of -30. are below 0.10, indicating trends in the means of the

real Fourier coefficients of segment C, variances of
The hydrophones chosen were the ones most the real Fourier coefficients of segment A, and
strongly ensonified by the selected narrowband variances of the real coefficients of segment C. All
sources. The chosen hydrophones were 21, 8, and these results are explained by supposing that at times
11, for segments A, 8, and C, respectively. The time the narrowband interference had a frequency close to
series data were collected at 150 samples per second that of the center frequency of the Fourier bin for
and transformed by using a 4096-point fast Fourier
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Table 1. Statistical Test Summary of Suitability or Single State Gaussian Mixture Model for Selected Data
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which the data are being analyzed and as a result spectra of segment B. Thus, segment C is more likely
slowly changing Fourier transform coefficients. to exhibit modal interference effects than segment B.

The Kolmogorov-Smimov two-sample test was used Given that the segments were fairly Gaussian-like,
to test the hypothesis that the distributions of the real and the earlier results that when in doubt the best
and imaginary components of the complex Fourier mixture model is the one with the fewest states, we
coefficients were stationary by comparing the decided to fit the selected hydrophone frequency
distribution of the first half of the samples with the domain data with two-state mixture models. An
distribution of the second half of the samples. A lack important additional consideration was that the mixture
of stationarity Is indicated for the distributions of real model parameter estimation technique needed to give
components of the Fourier coefficients for segment C reasonable results for sample sizes around 130.
and for the imaginary components of segment B.

The EM procedure was used to estimate two-state
The Kolmogorov-Smimov test was also used to Gaussian mixture parameters for the selected
compare the empirical distributions of the real and frequency data for segments A, B, and C. In addition,
imaginary components of the Fourier coefficients with the EM procedure was used to fit the selected
Gaussian distributions, and the distributions of the frequency data for segment C. Table 2 summarizes
normed squares of the complex samples with an the two-state mixture model parameters obtained in
exponential distributions. The comparisons of the this way and table 3 summarizes the three-state
distributions with Gaussian distributions resulted in mixture model parameters obtained in this way.
significance levels between 0.41 and 0.79 without
accounting for the estimation of the Gaussian Table 2. Two-state Gaussian mixture model
distribution parameters, which would lower the parameters for selected hydrophone data.
significance levels. Thus, both the real and imaginary
components of the Fourier coefficients for all three Segment
segments of data are close to Gaussian. The most A B C
striking result for the comparison of the complex
Fourier coefficients is that the distribution of segment
C data is definitely not an exponential distribution of PL 1.00 1.00 0.47
norms squared (significance level 0.004), while
segments A and B data had significance levels of 0.60 PH 0.00 0.00 0.53
and 0.61, respectively. This result indicates that
segment C might provide an example of a narrowband 2

interferer whose frequency domain samples could be 97 269 108

better modeled by a multistate Gaussian mixture 2
model than a one-state Gaussian mixture model. C; 97 269 327

Consider figure 31 for a suggestive mechanism for the ar2 0 0 520
data of segment C being better fit by a multistate

mixture model than for a single state. The results
presented in figure B-3 of appendix B show that The Kolmogorov-Smimov one-sample test and the
amplitude oscillations consistent with a mixture model Chi-squared test were used to compare the two-state
may occur in hydrophone data dominated by reception mixture model distributions to the distributions of the
of a narrowband signal from a moving ship because of data for segment and resulted in significance levels of
the interaction between different modes. Figure 31 0.86 and 0 as compared with 0.004 and 0 for the
presents the mode spectrum of the segment B and C exponential distribution of norms squared. Thus, the
data for bearings of 1270 and -30, respectively, the segment C data is better fit by a two-state Gaussian
directions from which the most power arrived for the mixture model than a one-state mixture model. The
selected frequencies for the three data sets. Note data are slightly better fit, as expected, by a three-
that the modal structure of segment C differs from that. state mixture model, as indicated by an increase
of segment B in that there are two peaks in the mode
spectrum of segment C and single peaks in the mode
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Table 3. Three-state Gaussian mixture model with high probability in the low state, while the
parameters for hydrophone data Segment C. remainder of the time successive samples remain with

high probability in the low state for a few states at a

PL 0.34 time. Observe that the ratios of high-state to low-state
variance would decrease if the data were processed

PM 0.61 after averaging the power over as few as 6 samples.
PH 0.05 Figure 33b suggests that about 80% of the samples

C; 2 92 are either assigned with reasonable probability to
either the low state or the high state of a two-state

CT• 360 model.

aH 1998 Narrowband ship lines are likely to occupy adjacent

frequency bins for the frequency resolutions of the
Fourier transforms used to obtain the selected
frequency data for segments A, B, and C. This

of the Chi-squared test level of significance to 0.005. feature is of interest, because it allows adjacent
However, the Chi-squared test result indicates the frequency bin data to be used to construct a noise
segment C data might be better fit by a mixture mode model for the interference of the middle bin and in this
with more than three states. These conclusions are way to obtain presumably signal-free noise samples.
borne out by the distribution shown in figure 32. The To gain some understanding of how applicable
one-state model distribution does not fit either tail of Gaussian mixture models might be to modeling
the empirical distribution. The two-state and narrowband interference, all frequency bins for
three-state model distributions fit th the tate ode segment C data were fit by a two-state model. The
empirical distribution better than the one-state model results are summarized in figure 34. Of particular
distribution, but neither fits the middle of the empirical interest is that several adjacent bins to that of the
distribution very well. selected frequency for segment C, 23.804 Hz, are

better fit by a two-state model than a one-state model.
We briefly considered how close the probabilities given The significance levels presented in figure 34b use the
in table 3 would be to those with the relationships Kolmogorov-Smirnov one-sample test with
predicted by a three-state approximation to a significance levels uncorrected for parameters
Middleton Class A noise model. Toward this end, we estimated. In particular, we call the readers attention
found the value of A for which PL = eA, PM = AeA, to the data presented in figures 34c and d. Figure 34
andpH = I - e-A -Ae-A gives the best least squares also indicates several other frequency bins for which

fit to the state probabilities presented in table 3. The the interference might better be modeled by a
result is A = .84 for whichpL - .43, PM = .36, and multiple-state model than by a one-state model.

PH = .21. Next, we fixed the low-state variance and
the total variance, and minimized the total least Summary.
squared error as a function of the middle-state
variance for the resulting distribution. This leads to The real and imaginary components of the Fourier2  92, 0 2  C2 transforms of distant shipping noise can be modeled

L s 92, = - 642, and GH = 372. If we impose the by independent Gaussian distributions. Underwater
additional condition that the middle-state variance is acoustic interference generated by individual ships can
between the other two variances we obtain be modeled by Gaussian mixture models.22 2

lai = 92 and a. =a = 543. The best three-state
model fit is quite different from a three-state Simulations were conducted to predict received
approximation to the Middlleton Class A noise model. narrowband energy from a moving source by a

hydrophone located in the deep sound channel or by a
Figure 33 summarizes the salient features of the vertical array located in the deep sound channel.
low-state membership function (low-state probability) These simulations indicated that the interplay between
for the two-state model best fitting segment C. Figure ship movement and propagation mode interaction
33a shows that on two occasions, samples 20 through leads to the received energy being better modeled by
46 and samples 98 through 130, all the samples were a multiple-state Gaussian mixture model than by a

10



one-state Gaussian mixture model. Usually the zones. Three three-state model parameter values did
interference is well modeled by a two-state or not cluster as much as the parameter values of the
three-state Gaussian mixture model, with rare two-state models. Given that related mixture models
occurrences of time periods during which the were manifested in both the hydrophone and
simulated data would be better modeled by a beamformed simulation data and that MDA
Gaussian mixture model with more than three states. hydrophone data were more accessible than MDA

hydrophone data processed through a matched field
The EM algorithm was used to obtain the best beamformer, we decided to verify the simulation
estimates of the two-state and three-state parameters results by analyzing three half-hour segments of MDA
that best fit the simulated hydrophone, the simulated hydrophone data. These segments were chosen to
beamformer output, and the MDA hydiophone output contain narrowband data, presumably from a single
interference data. The distributions obtained by using source. Analysis of the selected segments of data
the EM estimated parameter values were then indicated that one of the three was well described by a
compared to the empirical distributions. The two-state Gaussian mixture model, while the
consistency of the results obtained indicates that the remaining two exhibited Gaussian statistics. Thus,
EM algorithm could be used to obtain Gaussian one of the three selected MDA hydrophone data sets
mixture model parameter estimates from real exhibited Gaussian mixture characteristics. The
hydrophone or beamformer output data. reader should not be concerned that two of three did

not exhibit strong mixture characteristics, for the
The two-state mixture model parameters that best simulations only addressed ship interference for ship
model the simulated beamformer output power levels ranges from the hydrophone or vertical array for which
clustered about two parameter vectors. The analysis there would be significant modal interference. Distant
shows that two distinct two-state mixture Gaussian ships would not be expected to exhibit such modal
power as the ship traverses multiple convergence interference.
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APPENDIX A
MIXTURE MODEL ESTIMATION AND COMPARISON

This appendix discusses techniques that we used to estimate the parameters of two-state and three-state mixture
models and the statistical techniques we used to compare the estimated distributions obtained with the empirical
distributions of the data.

Parameter Estimation Techniques.

Four techniques for estimating the parameters of a mixture model with a fixed finite number of states were
considered: (1) the method of moments technique, (2) the minimum distance technique, (3) the maximum
likelihood technique, and (4) the expectation and maximize (EM) technique. The EM technique was chosen
because it was the only estimation technique of the four that can provide accurate estimates of mixture
parameters for either a two-state or three-state mixture model given around 100 samples (Zabin and Poor,
1989,1990,1991; Powell and Wilson, 1989). The references in this appendix are listed at the end of the body of
this report.

The EM technique is an indirect way of finding the maxima of the likelihood function (Dempster, Laird, and Rubin,
1977). We describe how it can be used to estimate Gaussian mixture parameters. Given an S state Gaussian
mixture model and N data samples {zj I 1 5 NJ, the main difficulty in estimating the mixture model parameters
is that the partitioning of samples zj by states is unknown. Let a denote the S mixture model parameter set

9!P2, 02 , '...,ps, a1, which is to be estimated from the data samples.

A description of the EM technique involves two likelihood functions, an incomplete log likelihood function
L({zj} lIa) and a complete log likelihood function CL({(zj,sj)} Ia) defined as follows:

N

L({zj} la) = _lnp(zjlot)
j=1

and
N

CL({(zj,sj)} lo) =•Inp((zj,sj)la)

where p(zjl a) is the probability of zj occuring given a and p((zj, sj)la) is the probability
of zj occuring in state sj, the state containing it, given Cc.

The EM technique constructs a famil!, of estimates of the vector a:

ai, a2, ... , a., ... , where an = (Pnn, CyPp, G2,2, ... ,Pn., 2

One estimate is obtained for each initial set of parameters and then the best estimate of the parameters after
Iteration of the EM process is chosen as the estimate of the parameters. In particular, given the parameter vector
estimate an the parameter estimate an1 +, is constructed as follows:

Step 1. Select a set of initial parameter vectors that span reasonable models for the data being fitted.
(This step becomes increasingly difficult as the number of parameter values increases and places a practical limit
on the number of states in the mixture model for which the technique can be used to estimate state parameters.)
Choose a vector a I from the set of initial parameter vectors to be recursively refined to a candidate estimate of ax

A-I'



Step 2. Given the estimate ao,,z = 12,..., calculate the conditional probabilities of the

states given zj and oa, :
p(si = klz=, a.) p(zjIsj = k, a,.)p.,k

h..1 p(zj Isj = h, cz.)p,,..

where
tI

p(zjsj=h, an) -------e 2 ,* for I <h<_S.

Step 3. Construct a,,, by setting

N

p..•,=t Yp(sj = klzj , (x.) for I < k S S

and
N Iz.I2

,=- ' -•Xp(sj = k - 1, an) for 1 < k< S.
N-1 

2p,,+Ik.

Step 4. Discontinue the estimation process after the successive estimates cease to change significantly,
draw a new parameter vector from the set of initiai parameter vectors, and start a new estimation process to
refine it.

Step 5. Calculate L({z1 } 1a) for each of the final estimates obtained by refining the different initial
parameter vectors. Take as the best estimate of the parameter vector the final estimate which maximizes
L({zj}I a).

For a Gaussian mixture model ao+. is a maximum or saddle point of the expected value of the complete
likelihood function

N S

ECL(c•,,) = Y, ln(p((zj, sj = k) a,,+i))p(sj = klzj, an).
j=1= k-

Wu (1983) has shown under conditions that hold for estimating Gaussian mixture models, that a sequence of
estimates of the expected value of the complete likelihood function converges to a saddle point or local maximum
of the incomplete likelihood function L(a). When this is the case, a good approximation of the best parameter
vector can be obtained by selecting the vector that maximizes the incomplete likelihood function from the
parameter vectors obtained using the EM algorithm for a well-chosen set of initial parameter vectors.

The above technique can easily be applied to the estimation of the best two-state Gaussian mixture model. For
this case, the number of parameters can be reduced in the following way. The Fourier coefficients {zj } are
normalized so that the normalized coefficients have a mean norm squared value of 2. In addition, the search
need only be made over PL, the low-state probability, and over Y2' the low-state variance, since the

2 L

and thethigh-statetvariancece, sincePthe

high-state probability PH = I -pL. and the igh-state varance CH . Furthermore, both the
PH

low-state probability and low-state variance are constrained to values between 0 and I for the normalized data.
The EM algorithm can be used to search for the best two-state model by initiating searches for each pair of
parameter values (PL, OL) in ((.0, . 1) , 5), (.1, .9), (.5,A.1), (.5, .5), (.5, .9), (.9,A.1), (.9, .5), (.9, .9)1. This
was the approach taken to fit data by a two-state Gaussian mixture model whenever the EM algorithm was used.

A-2



Computer simulations were used to characterize the performance of the EM algorithm as described to determine
2

two-state Gaussian mixture model parameters as a function of N, PL and p LL. For each PL in { 0.01, 0.05,
2CL

0.1, 0.2, 0.4, 0.8. 0.9, 0.95, 0.99), p in [ 1.6, 6.25, 25, 100),and N in (16, 31, 62, 125, 250, 500, 1000), 100
sets of data were generated and the mean squared errors in the estimated parameters PL and a were
calculated.

Figures A-la and lb present mean square error estimates of PL and r2 as a function of sample size
N for a Gaussian mixture models with two fairly distinct states, PL = 0.4 and p = 6.25. These curves
indicate that even for N = 16, the EM procedure could estimate the state parameters with less than 8% error.
Figures A-2a and 2b present mean square estimates for PL and a as a function of PL for p = 6.25
and N= 125, while figures A-3a and 3b present them as a function of p forpL = 0.4 and N= 125. Observe
that the estimation process leads to reasonable estimates (10% or less mean square error in the parameter
estimated) for 125 samples provided the low-state probability is greater than about 0.20. Fi.,,re A-4, based on
data compiled from all of the simulations discussed here, indicated that 90% of the time fewer than 50 iterations
were required for convergence.

The best two-state Gaussian mixture model parameters can be used to initiate a search for the best three-state
Gaussian mixture model. The two-state process results in the parameter set {P2,L, 2 ,Li2,,2H for

normalized data with variance 1. Any three-state fit would lead to a new middle state with probability P3,m and
variance (2A with Y2L < F3.5 _ 2af and low-state and high-state parameter set (P3L, 34, P3,1, 3.H

with 0<P3P2,,2 < GC2,L- where <C, is the minimum norm square of any of the samples, and

:, C3,2 g C;2 . The number of initial parameter vectors was further reduced by choosing state probabilities
and variances in a manner consistent with the data.

C F 2 i t h C y 2 < C 2 < C 2

Given 3N, with -<3M - a2,H andP3,M with 0 <P3,M < I partition the samples into sets SL, SM, and
SH. Let S denote the set of samples from which the model is to be estimated. Order the norms of the elements
of S from low to high and let SM consist of the 100p3,W of the elements of S with norm squares closest to 3.

Let SL consist of the elements of S with norm squares less than or equal to the norm squares of the elements of
SM and let SH consist of the remaining elements of S. Then let P3,. be the number of elements in SL divided by
the number of elements in S and let 3jL be the average value of the norm squares of the elements in SL; let
P3H be the number of elements in SH divided by the number of elements in S and let a2, be the average
value of the norm squares of the elements in SH. We choose three values of the middle state variance and
three values of the middle state probabilities to obtain 8 initial parameter estimates to estimate three-state
parameter vectors using the EM algorithm given a two-state model of the data. The three variances were

2 2 CF y ; 7yA = .8 r + .2, 'H' =.5 = . ad2 .2 2 3 + .8Hj; the three low-state probabilities3 ~~ .21L 2 3 4H, and 5f .2 +r 5.8
were 0.2, 0.5, and 0.8. This initialization procedure was used to estimate three-state Gaussian mixture model
parameters whenever the EM algorithm was used to obtain such estimates.

Simulations were conducted to determine the ability of the EM algorithm to distinguish between a circular
Gaussian distribution and a two-state Gaussian mixture model. This was accomplished by determining the
distribution of the two-state mixture parameters when the input data were drawn from a circular Gaussian
distribution. For Gaussian noise, either the probabilities of one of the states should be near zero, or the ratio of
the variances should be near 1. Figure A-5a shows the parameters estimated for 1280 sets of 130 samples
drawn from a zero-mean unit variance circular Gaussian distribution. Figures A-5b, c, and d are the cumulative
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distributions of the ratio of the estimated variances for those points in figure A-5a satisfying
0.1 •PL S 0.9, 0 .2 <PL 5 0.8, and 0.3 <-PL •- 0.7, respectively. These plots can be used to estimate certain

2

joint probabilities such as P(_. _> 4 and 0.2 P-pL <0.8) =(0.05)(0.136) = 0.0068 for Gaussian input.
2CFL

Monte Carlo studies were also done to determine the distribution of the two-state mixture model parameters when
the input data were obtained from a sinusoid in white Gaussian noise. The Fourier transform of such data in the
frequency bin containing the signal is the sum of noise data, which has a zero-mean circular Gaussian density
and a complex sinusoid. For different choices of the amplitude and precession rate of the complex sinusoid,
1280 independent sets of 130 samples were generated, and the EM algorithm was run on these data. Figures

2A-6a, b, and c show the distribution of the estimated variance ratio -- and low-state probability PL for
(TL

signal-to-noise ratios of 1.8, 4.8, and 7.8 dB, respectively, and a precession rate of 0.5n rad/(FFT sample). This
precession rate corresponds to the signal frequency lying midway between two center frequencies of the FFT and
using a window with 50% overlap in the calculation of the FFT. The precession rate had very little impact on the
distribution of the estimated parameters in this study.

Figure A-5 suggests that for a set of 130 samples having a Gaussian distribution, the EM algorithm is unlikely to
2 2

estimate the Gaussian mixture parameters PL and -- satisfying 0.2 <PL < 0.8 and > 4. Figure A-6
L L

suggests that the EM algorithm is unlikely to estimate a significant amount of mixing in successive Fourier
coefficients of a sinusoid in Gaussian noise. Furthermore, as the signal-to-noise ratio increases the estimated
parameters of the successive Fourier coefficients of the signal-plus-noise process stabilize at values that indicate
essentially no mixing.

Statistical Tests to Compare Interference Models.

Statistical tests were selected to characterize the various features of the complex samples of interference data.
In particular, statistical tests were selected to determine the suitability of modeling the interference data statistics
by a spherical Gaussian distribution or as a Gaussian mixture distribution. These tests were used to analyze
simulated data and MDA hydrophone data. This section briefly describes the statistical techniques that are used
in our discussion of information processing.

Both spherical Gaussian and Gaussian mixture models require that the real and imaginary baseband sample
components are zero-mean and identically distributed. The two models are distinguished by the fact that for a
Gaussian model the statistics are stationary and for a Gaussian mixture model nonstationary. Therefore,
statistical tests were selected to evaluate the hypotheses that the real and imaginary baseband sample
components of narrowband interference are stationary, independent, and have Gaussian distributions, and that
the real and imaginary parts are independent of each other. If these conditions hold and the variance of the real
part is equal to the variance of the imaginary part, the probability distribution of the complex interference samples
is a spherical Gaussian distribution. In addition, statistical tests were selected to determine whether the
interference data were best described by either a one-state, two-state, or three-state Gaussian mixture model.

The Kendall-Mann tau test (Baker, 1976; Bradley, 1968; Kendall and Gibbons, 1990) was used to determine the
presence of trends in the mean and variance of the interference data. This test is an application of the Kendall
rank correlation test. It is used to evaluate the independence of two time series of real numbers by searching for
a relationship in the ordering by magnitude of the two time series. Each time series is assumed to consist of
independent, identically distributed data. (The present description assumes that each time series is without ties,
i.e. xi * xj and yi *yj for i •j. See Kendall and Gibbons (1990) for the modifications necessary to cover the
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case of possible ties.) The Kendall rank correlation test evaluates the hypothesis that the two time series
{xi I1 < i M Ni} and {yj1 I: • i : NJ consist of independent identically distributed data.

The Kendall rank correlation test statistic is formed by ordering the pairs (xi,yi) according to the magnitude of
the x coordinate from its'smallest value to its largest value. Let {(xi^,yi^)} = {(xi,y1 ) I I _ i Al Nl with xi^ < xp
if PA <jA. For each iA, let Ie denote the number of indices rA> jA with yj^ < yj^ and Ti^ denote the number of

2(T-I) N N
indices/A > iA with y, >ye, . Then the test statistic is S = N - where T = I Ti= and I JA If the

*N(N- 1)'i~
time series {x, 1i i N} and fyj I I S: i _ NJ are independent, then the distribution of S is independent of their

2(2N+ 5)distributions and approaches a zero-mean normal distribution with variance 9N(N- 1) The Kendall rank

correlation test can be used for sample sizes larger than 30. The Kendall-Mann tau test is applied to a single
real-time series {yIi :5 i < NJ by setting xi = i and applying the Kendall rank correlation test. Applied in this
manner, the Kendall-Mann tau test detects trends in the mean of the elements of {yi 115 i < N). Applied to the
real-time series { lyi I I1 < i A7 N1, it detects trends in the variances of the elements of { Iy, I 1 • i _ NJ.

The Kolmogorov-Smimov two-sample test was used as an additional test of the stationarity of the real and
imaginary interference data, and it was used to test the equality of the distributions between the real and
imaginary components of the complex valued interference samples. If {xi l <_ i _ N} and {vyii I _ i < N} are
two time series, the two-sample test measures the equality of the distributions of {xi 1 _• i _ NJ and
{y, II < i < NI based on the maximum of the absolute value of the difference between their cumulative
distributions (Baker, 1976; Bradley, 1968). The resulting stationarity test for a real-valued {xj 11 _ i 5 NJ is the
Kolmogorov-Smimov two-sample test applied to {xi 1 1 5 i _ M) and {xj 1M+ 1 • i <_N}, where M is the

greatest integer less than or equal to ýý. Assuming that the two distributions are identical, the distribution of the

statistic is independent of the distribution of the random variables and is given by an infinite sum, which is
commonly approximated by its first few terms (Press et al., 1988; Wilks, 1962).

The Kolmogorov-Smimov one-sample test was used to compare empirical distributions with fixed distributions,
e.g., the Gaussian and the exponential distributions. The statistic is the maximum of the absolute value of the
difference between the hypothetical cumulative distribution and the empirical cumulative distribution. The
distribution on the statistic is similar to that of the Kolmogorov-Smimov two-sample test (Press et al, 1988).

The Chi-squared test (Press et al, 1988) was also used to compare empirical density functions and model density
functions. This test requires that the data be placed in bins. The statistic is formed by summing (over all bins) the
normalized square of the difference between the expected number of data points in each bin, based on the
theoretical distribution, and the realized number in each bin. The normalization factor is the expected number of
data points per bin. Assuming that the theoretical distribution is correct, as the number of samples goes to
infinity, the distribution of the statistic approaches a Chi-squared distribution on B-r-1 degrees of freedom, where
B is the number of bins into which the data are divided and r is the number of parameters estimated from the
data. The level of significance obtained for the Chi-squared accounts for the number of estimated distribution
parameters. The level of significance obtained for the Kolmogorov-Smirnov one-sample test does not account for
the number of estimated distribution parameters; correction factors are available for the Kolmogorov-Smirnov
one-sample test for special cases (Stephens, 1974).
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APPENDIX B
Moving Target Hydrophone Interference Statistics

In this appendix, we present simulation results for a moving target using the Kraken C (Porter, 1992) modal
model to calculate the received interference power at a hydrophone. (References in this appendix are listed atthe end of the body of this report.) The geometry governing these simulations is that shown in figure 2 of the body
of this report for a hydrophone located near the middle of the deep sound channel.

We begin our investigation of the impact of interferer motion on received interferer statistics by examining time
series of pressure amplitudes for a 10-meter-deep interference source and for a receiving hydrophone of 800
meters. The interference source is above the deep sound channel and the receiving hydrophone is well within
the deep sound channel as can be seen from an examination of figure 3 of the body of the report. The pressure
amplitudes are normalized so that 0 dB corresponds to the average received power for the time series of
pressure amplitudes for the interferer source at ranges between 10 km and 876 km from a receiving hydrophone
at a depth of 800 meters. The results are presented in figure B-1 for four -elected range intervals to illustrate the
manner in which the fluctuations change as a function of range. The rate and the magnitude of the fluctuations
depend on the range of the source. The fluctuations at the hydrophone arise from modes of different wave
numbers beating against each other. At longer ranges, the energies in the higher modes are reduced through
bottom interaction, as can be seen from an examination of figure B-2, which presents mode amplitudes for the
interference source at different ranges from the receiving hydrophone. As a result, fewer modes beat against
each other as the range increases and the fluctuations tend to be slower the more distant the interferer from the
hydrophone.

Figure B-3 shows the results of the statistical tests and the estimated Gaussian mixture parameters for a source
at a depth of 10 meters and the receiving hydrophone at a depth of 800 meters. The amplitude of the pressure
data as the source moves from 60 to 375 kilometers was segmented into sets of 128 contiguous samples,
representing 27.5 minutes of data for a ship moving at 10 knots, and the sets were overlapped by 50%. The
abscissa is the horizontal distance between the hydrophone and the first point of each of the data sets. Figure
B-3a presents the significance levels of the Kendall-Mann tau test for the random variable 128-sample average
of norms squared and the Kolmogorov-Smimov two-sample tests for stationarity by comparing the distribution of
the first half of the samples with the distribution of the second half of the samples. Figure B-3b shows the
significance levels of the Kolmogorov-Smimov one-sample test for the one-state and the two-state Gaussian
mixture model distributions.

The significance levels for the Kolmogorov-Smimov one-sample test shown in figure B-3b are based on the
distribution of the test scores assuming that parameters have not been estimated. The significai ce levels after
adjustment for parameter estimation are lower than those indicated in figure B-3b. However, for the idealized
simulation results presented here, it was not deemed necessary to perform a more careful and calculationally
demanding statistical analysis of the fit between these data and two-state Gaussian mixture models based on the
Cramer-Von Mises and Anderson-Darling goodness-of-fit tests with significance levels adjusted for parameter
estimation (Darling, 1955; Stephens, 1974,1976; Sukhatme, 1972).

A two-state Gaussian mixture model is characterized by ratio of its high-state variance y, to its low-state
2variance aL1 and its low-state probability PL and these are the estimated parameters for the two-state Gaussian

mixture model plotted in figures B-3c and d. Note that the ratio of high-state to low-state variance is plotted in
figure B-3c on a log base 2 scale. The joint probability density function for the low-state probability and the ratio of
high-state to low-state variance is shown for the estimates for two-state Gaussian mixture parameter for a moving
interferer in 10 kilometer steps from 350 to 500 kilometers. The selected data span a convergence zone located
at 372 kilometers.
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A single two-state mixture model with parameters PL = 0.5 and variance ratio between 4 and 8 provides a good
fit to most of the selected hydrophone data as shown in figure B-4. A second two-state mixture model occurs
around 10% of the time with a high-state to low-state variance ratio exceeding 32. Figure B-3c indicates that the
higher variance ratio mixture model applies to at most two successive samples, that to a period of time roughly
corresponding to the period of time requifed for the interferer to move 12 kilometers toward the receiving
hydrophone.

Figure B-3a suggests that the amplitude fluctuations at the hydrophone output caused by the source motion can
often be better described by a two-state Gaussian mixture model than by a one-state model. However, the ratio
of high-state to low-state variance is only 6 dB for the most commonly occurring mixture model.

The simulated hydrophone data were also compared to the three-state model with parameters obtained using the
EM model. The initial parameter vectors were obtained from the best estimate of the two-state parameters for
the data being fit as described in appendix A. The time histories of the three-state levels of significance exhibited
similar properties to those exhibited for the two-state time histories of levels of significance so that these histories
are not presented. Instead, we focus on comparing the significant levels for comparisons of the data with
one-state, two-state, and three-state Gaussian mixture models and determining the L2 norms of the differences
between the one-state and the two-state fits, the one-state and the three-state fits, and the two-state and
three-state fits to the data. Recall that for two vectors x = (x1 ,x 2, ... ,xn) andy = (yl,y2, ... ,yn), ilie L2 norm of

the difference is simply the Euclidean distance lx-yl1l2 = X(x, -y) 2 .

Histograms of the significant levels for the Chi-squared test and the Kolomogorov-Smimov one-sample test
comparing the empirical data with one-state, two-state, and three-state Gaussian minure models are presented
in figures B-5 and B-6, respectively. The relationship between levels of significance and test scores differ for the
three cases as shown in figure B-6. The different relationships occur because the number of degrees of freedom
for the Chi-squared test depends on the number of states for the mixture model, 23 for a one-state model, 21 for
a two-state model, and 19 for a three-state model. The Chi-squared test significant levels tend to be very low
(left-most bin shown in figure B-5) nearly 80% of the time for a one-state model, 17% of the time for a two-state
model, and 1% for a three-state model. Thus either a two-state or three-state model fits nearly all the data better
than a one-state as already discussed, while some of the time a three-state model fits the data better than either
a one-state or a two-state model. Figure B-7 presents a histogram of the L2 norms of the differences between
the models obtained that best fit the data. This data shows that more than 80 percent of the time, the two-state
and three-state fits lead to nearly the same probability density functions.

Figure B-8 summarizes the probabilities of occurrence of the three-state model parameters
Cy2 2PLPM~PP, M2, -2, obtained using the EM algorithm for the hydrophone data. A few three-state models do

PLPP,2' 2'
CYL Lf

not predominate the three-state models that best fit the hydrophone data, unlike for the two-state models. The
surprising result is the high percentage of cases in which the best three-state model probability was between 0.4
and 0.6 as shown in figure B-8b. This means that a large percentage of samples formerly in the low and high
states fall into the middle state, while the middle-state to low-state variance clustered about 3 and the high-state
to low-state variance about 6, so that the dynamic range as measured by the difference between the variances of
the low and high states did not dramatically increase when the data was fit by a three-state model from when it
was fit by a two-state model.
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