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Executive Summary and Networking NRaD 6.2 Block managed by Reeve
Peterson (NRaD) beginning in 1992 and to undersea

Background. surveillance through the funding of the High Gain
Background._ _ Initiative (HGI) 6.2 program coordinated by Robert

This report and two companion reports have been Hearn (NRaD). Adaptive locally optimum processing
derived from the chapter on detection theory prepared has a long academic history beginning with the work of
for the High Gain Initiative (HGI) report. The two David Middleton on Statistical Communication Theory
companion reports, "Detection Processing for prior to 1960 and this history and other related workoutside of that described above is discussed in the
Undersea Surveillance" (Confidential) and "Gaussian od of th reor
Mixture Models for Acoustic Interference" have a
undersea surveillance focus, while this report applies Introduction.
to both communications and undersea surveillance.
"Detection Processing for Undersea Surveillance"
summarizes the status of detection processing for Adaptive locally optimum processing applies when the
undersea surveillance at the time of the initiation of the signal is dominated by the interference and is effective
HGI program and deals primarily with adaptive when the non-Gaussian component of the interference
filtering. It summarizes the cumulation of many years dominates the Gaussian component. We develop the
of effort in the field by J. Zeidler and others. theory for discrete samples of the baseband
"Gaussian Mixture Models for Acoustic Interference" representation of a communication signal (or multiplebaseband representations of wideband signals) or the
summarizes the results of simulation and the modeling analytical representation of an acoustic signal.
of actual data collected during a HGI experiment by Practical algorithms have been derived under the
Gaussian mixture models. To a large extent, it assumptions that the interference component of the
summarizes work accomplished by D. Stein. This discrete samples is independent from sample-to-
report is the cumulation of work by J. Bond, S. Hui, D. sample and the signal has known phase structure or
Stein, and others on adaptive locally optimum the al he un known phase structure orprocessing for interference suppression and of V.thsinlasukonpsetrcr.FrteBroman on target tracking. former case, the algorithms involve the calculation offirst derivatives of the probability density functions of
Initial work related to the work presented in this report amplitudes and phase (or symmetric-phase
by one of the authors (J. Bond) was on the Non-linear differences) and for the latter case, the algorithmsbyaptie oesors (ONA. ro g was ontheNoninvolve the calculation of second derivatives of theAdaptive Processor (NONAP) program and wasprbbltdesyfucinofaltdsadphe
funded by SPAWAR 153 beginning in 1986. A parallel probability density functions of amplitudes and phase
program seeking alternatives to NONAP called the (or symmetric-phase differences).
Adaptive Locally Optimum Detection (ALOD) program We have identified three approaches to the
was also funded by SPAWAR beginning in 1989. deveientif pr ace lo tTheoretical work by Per Kulstam (Paircom Inc.) and development of practical adaptive locally optimum
Hank Schmidt (Technology Services Incorporated) on processing: (a) model the interference statistics by athe NONAP and ALOD programs also provided parametrized family of probability density functionsthue nsigs and te proras son adpied and estimate the parameters in real-time from the datavaluable insights into the work on adaptive locally and calculate the corresponding adaptive locally
optimum processing presented in this report. The first optimum transformation of the data, (b) model the
results expounded in this report were obtained by J. interference statistics as above and identify a family of
Bond and T. Schlosser during 1988 and 1989 under interference s c o i a fioNRaD Independent Enginneering Development (lED) candidate models for the interference, compare the
fuaInependenthiearl wor Devuedopn the use f real-time statistics with each of the stored distributionsfunds. All of this early work focused on the use of to identify the best match and then process the data
adaptive locally optimum processing for interference accordingly, and (c) build an implicit model of the
suppression from Very Low Frequency/Low Frequency interference statistics using the real-time data and
bandspread communication signals used forprcsthsaleacodny.Temeil
submarine communications. The theory was process the samples accordingly. The material
extended to other frequency bands and other presented in this report reduces to practice all three of
waveforms through funding by the Communications
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Summary of Results. obtained by replacing the second order signal terms
by signal variances and using only the quadratic term

The technical results contained in this report include: of the Taylor expansion.
(a) formulas for optimum processing of

complex samples when the signal has known and Amplitude and phase algorithms are obtained uy
unknown phase structure, converting from inphase/quadrature to polar

(b) formulas for optimum processing of coordinates and assuming that the sample amplitudes
complex sample amplitude, phases, and symmetric and phases are uncorrelated. Amplitude and phase
phase-differences when the signal has known and processing then become parallel processes. For
unknown phase structure, wideband signals, the signal can be recovered from a

(c) formulas for the optimum processing of the symmetric phase-difference, so that the
frequency domain representation of the signal preprocessing step to remove interference
samples when the signal is narrowband, sample-to-sample phase correlation by replacing the

(d) explicit formulas for processing samples phases by symmetric phase-differences leads to
when the statistics are modeled by either non-central effective phase processing for many cases when
or central mixture models for which the parameters processing of phase itself would be ineffective.
are estimated or implicit,

(e) processing gain over traditional processing The recognition that the use of the Gaussian kernel
bounds and estimates in terms of model parameters representations of the probability density function of
for the above algorithms when the statistics are amplitudes and symmetric phase-differences could be
modeled by either non-central or central mixture viewed as making use of an implicit non-central
models, Gaussian mixture model, provides the key to unifying

(f) comparisons of processing gain bounds algorithms discovered for communications and
and estimates with performance estimates obtained algorithms developed for undersea surveillance using
through simulations for two- and three-state mixture central Gaussian mixture models. We obtain
models, processing gain bounds defined by the ratio of the

(g) simulation results for averages of the deflection of the adaptive locally optimum processing
transformed samples, and detector deflection and the deflection for the traditional

(h) results for the loss of performance due to detector in terms of the mixture model parameters.
target motion for processing at the output of a We verified through simulations that for two-state and
beamformer. three-state mixture models, performance measured by

deflecticn and performance defined by probability of
Summary of Approach. detection for a specified probability of false alarm are

highly correlated.
Central to our approach is the maximization of the
deflection of a detector. The form of the detector Finally, we examined the performance of line detectors
maximizing deflection is obtained through use of the obtained by averaging of sample detector values. For
Cauchy-Schwartz inequality and is the likelihood ratio. traditional undersea surveillance applications, when
A Taylor's expansion of the probability density the processing is used after beamforming, this is

function of signal plus noise about signal zero is used closely related to "eye integration" used to detect the
to express the probability density function of the signal presence of narrowband signals in time histories of
plus noise in terms of the probability density function Fourier coefficient magnitudes represented by a grey
of noise alone. If the signal has known structure, the scale display as a function of frequency (abscissa) and
optimum detector is dominated by the linear terms in time (ordinate). For HGI arrays with spatial cells, the
the Taylor's expansion and practical algorithms are spatial resolution of the array will be high and it is
obtained by replacing the signal by the signal divided desirable to replace "eye integration" by automated
by its norm and using only the linear term of the Taylor processing. For this situation the average detector is
expansion; if the signal has unknown structure, it is an upper bound for obtainable performance and we
reasonable to suppose that the mean values of the obtained some preliminary results on the degradation
real and imaginary components of the signal are zero of performance due to unknown target motion for
and as a result the quadratic terms of the Taylor's several candidate tracking algorithms.
expansion dominate and practical algorithms are
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Conclusion. 1978; Whalen, 1971), but it requires knowledge of the
signal plus noise and noise only probability densities

Simulations and processing of real data indicate that The probability density function of noise is difficult to
adaptive locally optimum processing can provide obtain from observed signal-plus-noise samples
significant gains over traditional processing. A unless the signal is dominated by the noise.
satisfactory theory now exists that leads to practical
algorithms to implement this processing for many A minimax approach can be used to account for
communication and undersea surveillance uncertainty in the class of distributions that describe
applications. the noise statistics. Such an approach is based on

the designation of a cost function and classes of
Adaptive Locally Optimum possible noise densities and signal-plus-noise

densities. The Bayes or Neyman-Pearson criteria can
Processing. be used to define a cost function, and the E

-contaminated class of densities is often used
Middleton (1960) developed a statistical (Kassam and Poor, 1985; Poor, 1988). The minimax
communication theory that addressed, among other algorithm selects the detector that minimizes a
topics, optimum ways to detect weak communication maximum cost over the classes of density functions.
signals in the presence of non-Gaussian interference. For example, whereas the matched filter implements a
His original theory addressed the estimation of a likelihood ratio for known signals in stationary

communication signal from the probability density independent Gaussian noise (Berry, 1981; Poor,
function of received signal plus interference. Later 1988), the correlator-limiter is the minimax detector for
Middleton (1966, 1967, 1977, 1983, 1984, 1991) and a known signal in stationary independent noise with a
Middleton and Spaulding (1983, 1986) extended the distribution belonging to the class of E-contaminated
theory to include communication and undersea mixture distributions with a nominal Gaussian
surveillance applications by introducing Gaussian distribution (Kassam and Poor, 1985; Poor, 1988).
mixture models. Another minimax approach, perhaps more common, is

to minimize the maximum cost (or risk) over the class
Within a general statistical detection framework, the of prior probabilities (Whalen, p 135, 1971).
decision of whether a signal is present or not is usually
based on the likelihood p,(Z) More prosaic techniques are also related to optimalpn(Z) detection. One such technique is the use of various
numerator is the probability density function for kinds of clippers or automatic gain controls in military
vectors of complex samples z containing signal plus radios, designed to reduce the impact of impulsive
noise and the denominator is the probability density noise or interference on the reception of
function for vectors of complex samples z containing communication signals (Blachman, 1964, 1971 a,
noise alone. For many applications, the challenge in 1971b, 1982, 1992; Arnstein 1991, 1992). Theseimplementing optimal processing is to obtain an techniques are especially effective for very low
etimlee optieal rceind istign sanpe t frequency (10 to 30 kHz) and low frequency (30 to 60
estimate of p. (z) given a received signal sample that kHz) communications, when environmental noise
may contain signal as well as noise. Techniques exist dominated by lightning generated interference can beto solve this problem when the signal is stronger than well modeled as an additive sum of Gaussian noise
the noise. However, these techniques are of little
interest in surveillance because the signals would be and high-power short-duration pulses.
detected by using traditional techniques. One of the most common approaches to obtaining

estimates of the probability density function for signalsAmong the approaches to implement detection plus noise is to relate this probability density function
algorithms are those using the likelihood ratio, to the one for noise alone under the assumption that
approximationsrto the likelihood ratio, minimax criteria, the signal is weaker than the noise. This theory is ofand nonparametric techniques. A test for the interest for detecting communication signals in the
presence of signal based on the likelihood ratio presence of jamming and for detection of masked
provides the maximum probability of detection at a submarine lines in undersea surveillance. The
given false-alarm rate (Poor, 1988; Poor and Thomas,
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optimum processing techniques developed under the B for a discussion of the Middleton Class A noise
assumption that the signal is weaker than the noise is model. The Middleton class A noise model is
known as adaptive locally optimum processing especially appropriate for the detection of
techniques. communication signals in impulsive interference, and

has been suggested for modeling underwater acoustic
The basic idea leading to tn, various locally optimum noise by Middleton.
processing techniques ,.V to expand p,,,(z) in a Taylor
series expansion about s = 0. By using this Bouvet and Schwartz (1988, 1989) compare the
expansion, one obtains an approximation for the performance of the likelihood ratio detector derived

Pn+s(Z) from a two-state Gaussian mixture model, the
likelihorl ratio PR(z) that is valid when s is small. matched filter, and the correlator-limiter, for detection

The application of adaptive locally optimum processing of known signals in shipping noise measured at sea.

to a particular problem entails (1) estimating the They showed that the performances of the matched

probability density function and (2) calculating the filter and the correlator-limiter are similar and th6
transformation of the data to determine the presence likelihood ratio detector based on a Gaussian mixture
tnoaoof the dataal. to drieflysuvete the reencey model provides improved performance at some
of the signal. We briefly survey the different locally false-alarm probabilities and signal-to-noise ratios.
optimum algorithms that have been developed. Baker and Gualtierottio (1986, to appear) have

The different algorithms arise from the different ways developed likelihood ratio detection algorithms for a

of modeling the signal and the noise. There are three general class of signals in circularly invariant noise,

general approaches to modeling the noise: which generalizes the Gaussian mixture model.

parametric, nonparametric, and model fitting. The These generalized Gaussian mixture models play a

parametric and nonparametric techniques are central role in our theory of adaptive locally optimum

discussed in detail for various mixture models of the for signals of unknown structure.

noise in this section. The model fitting technique offers
an alternative approach. The information required to or the norerc proach, n empia md
implement it is developed through an analysis of the of the interference probability density function isparameter estimation techniques, constructed from samples of the interference. The

techniques for estimating the probability density

Parametric estimation proceeds by assuming that the function include fitting polynomials to histograms,

probability density function of the noise is from a using kernel representations, and obtaining the

family of probability density functions described by a estimates from finite differences of quantiles of

finite set of parameters. Given the data, the ordered samples (which represent an estimate of the

parameters are estimated from the data and in this cumulative probability function of the samples).

way a probability density function is chosen to Recently, both the Air Force and Navy have funded
represent the samples. The appropriate extensive efforts to investigate the implementation of
transformation of the data samples can then be adaptive locally optimum processing techniques incalculated from the chosen probability densityadpielclyotmmrcsintchqusn
function. military radios. Both of these efforts focused onreal-time estimation of the probability density function,

Middleton studied probability density functions, called motivated by the consideration that jamming signals

Gaussian mixture models, that are described by may have structure with very general statistical

infinite sums of Gaussian distributions. The family of properties that are under the control of an adversary.

probability density functions is described by either two The Air Force effort was undertaken by Hazeltine

or three parameters. Given these parameters, the Corporation for Rome Air Development Center

optimum transformation of the received (RADC) (Murphy, Tilley, and Torre, 1990) and the

signal-plus-interference-plus-noise samples to Navy effort was initiated by Johns Hopkins University

estimate the signal can be calculated. In particular, Applied Physics Laboratory (JHU/APL) (Higbie, 1988).

Middleton (1966, 1967, 1977, 1983, 1984, 1991) and The Air Force effort focused on processing the real
Middleton and Spaulding (1983, 1986) haveMiddeto an Spuldng (983 196) aveand imaginary components of the baseband samples
formulated adaptive locally optimum detectors based ad imaina ponento the biseba sp
upon Middleton's class A noise model. See appendix
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received signal samples, This is a very natural of received signal plus noise or noise only with the
approach to describe the statistics and obtaining a stored probability densities.
differentiable probability density function from which
the likelihood function can be calculated. Their work Schloz and Giles (1990, 1992) and Schloz (1991,
involved a general theory of how best to fit a 1992) implemented the model approach by obtaining a
polynomial to various probability density functions and family of candidate distributions of the received signal
the performance achievable by using adaptive locally plus interference and noise by preprocessing data
optimum processing. samples representative of the channel for which the

processing is to be used. Then the distribution of
An alternative approach to estimating statistics for successive blocks of samples of the received signal
time domain processing has been developed for the plus interference ard noise are compared to each of
Navy by Higbie (1988). He estimates the probability the candidate distributions in real time and the
density function of amplitudes and phase-differences processing of these samples is based on the best
by finite difference of quantiles of the cumulative match. This approach is easy to implement in a
probability density functions of sample amplitudes and digital receiver with substantial processing capability
phase-differences. He obtains the quantiles by sorting and memory, because the distribution comparisons
a block of successive received signal baseband can be done in parallel and the parameters describing
sample amplitudes and phase-differences according to the optimum processing stored in memory.
their magnitudes. The algorithm is a sliding block
algorithm with the samples used symmetrical around Adaptive locally optimum processing could be
the sample being transformed. Laboratory tests of effectively used before beamforming, for moderate or
the algorithms have shown that the techniques provide short-range surveillance applications involving few
better detection performance for bandspread hydrophones, because in these cases the
communications signals in the presence of wideband interferer-to-signal ratio at the hydrophone level and at
interference than any previously implemented the beamformer output level will often be slightly
techniques. different. In contrast, for ocean basin surveillance,

many of the interfering signals that might mask
Another family of locally optimum processing surveillance signals of interest would not stand out
techniques has been developed by Bond (1991) and from the general background noise at the hydrophone
Bond and Hui (to appear) as a Navy effort. Bond and level, precluding the use of the adaptive locally
Hui developed their algorithms from kernel optimum processing.
representations of probability density functions and
studied the resulting algorithms from an analytical Adaptive locally optimum processing techniques could
point of view. Bond found that processing amplitudes be used after a time domain beamformer and before
and phases, as well as phase-differences, could be spectral analysis. For a frequency domain
quite effective. His adaptive locally optimum beamformer, the output could be transformed back to
processing, like that of Higbie, does not require that the time domain or processed in the frequency
the probability density function of the noise be domain. The noise statistics depend on the
described by a few parameters. bandwidth of the frequency domain representation

when transformed back to the time domain in the first
The model approach uses preprocessing to identify case and the frequency resolution of the spectral
typical probability density functions describing the analysis in the second case. The noise statistics of
statistics of signal plus noise that might be received, the beamformed data for a particular interferer also
A family of these density functions is then selected depend on the propagation modes of the interferer
and stored along with the optimal processing to use for signal to the receiving array. For a matched-field
each case. The incoming samples are then processed beamformer, the transformation back to the time
to obtain the best match between their density function domain may not always be feasible because the
and a stored density function. The samples are then frequency dependence of the beamforming.
processed by using the processing associated with the Motivated by these considerations, we developed
stored density function that best fits the incoming data.. adaptive locally optimum processing techniques
In this approach, the probability of detection is suitable for processing either time domain or
conditioned on the comparison of the empirical density frequency domain signals.
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In the subsequent sections, we present an integrated equivalently the length of (xjvj), by
theory of adaptive locally optimum processing suitable + = .2
for processing beamformed time domain and 'X 

+  
-i (Xi, = j

frequency domain data. We proceed from first
principles by showing how maximizing the deflection, a A common starting point for the development of
natural measure of detector performance (defined adaptive locally optimum processing algorithms for
below), leads to likelihood ratios. Imposition of the processing time domain and frequency domain
smal signal hypothesis allows the likelihood ratios to beamformer outputs is provided by considering the
be evaluated in terms of derivatives of the probability maximization of the deflection for sequences of
density function of interference and noise. These samples. A powerful idea in furlional analysis is to
formulas involving derivatives applied to various optimize a functional on a space of functions (Rudin,
interference models lead to algorithms for processing 1973). It often turns out that the optimal function has
the data. Our treatment includes both parametric and many other desirable properties. We have found this
nonparametric modeling of the interference. Formulas to be the case for deflection and make use of it
for first-order and second-order detectors are throughout this subsection to obtain many useful
described depending on whether the signal has known adaptive locally optimum processing results. In the
or unknown structure. The performance of the various next subsection we relate deflection to probability of
algorithms is then established by analysis and line detection for a given probability of false alarm.
simulation.

Def'action measures (in noise standard deviation
Deflection and Likelihood Ratios. units) how different the expected values of the

detector is for signal plus noise and noise alone. The
A unified treatment of nonlinear processing for time deflection of a detector is a natural extension of
domain and frequency domain beamformed data is detector output signal-to-noise for cases when the
obtained by treating received signal samples as expected value of the detector under noise alone may
complex numbers. For time domain outputs, the be nonzero. Even though deflection for a particular
complex samples are obtained by replacing the real detector only involves second-order statistics,
signal with its analytical signal. The analytic signal is maximization of deflection over a class of functions
mathematically determined from the real signal by involves all the moments of the probability density
using the Hilbert transform (Papoulis, 1977). If s(t) is functions of signal plus noise and noise alone.
the signal and 1(t) is its Hilbert transform, then
Sa(t) = s(t) + is(t) is the analytic signal. In Suppose u is any real-valued detection variable.
communication systems, the signal is often modulated Then the deflection 8(u) of t, is
by a fixed frequency after reception and then highpass 8(u) = E.+s(u) - E.(u)
filtered. In either case, the analytic signal is often a.(u)
called the baseband representation with the real part where E,+5(u), E,(u), and o'.(u) denote the
called the in-phase component and the imaginary part expected value of the detection quantity for signal plus
called the quadrature component of the baseband noise, the expected value of the detection quantity for
sample. Some authors call samples of the analytic noise, and the standard deviation of the detection
signals complex samples. quantity for noise, respectively. It can happen that

the detection problem is trivial, for example if the
Throughout this section, the input to the nonlinear known distributions of signal plus noise and noise only
processing algorithms are complex samples of either do not intersect or if the noise is zero. We preclude
an analytic signal or complex Fourier coefficients. We these cases throughout this section by assuming that
adopt the following notation. Let zj denote the j-th the deflection exists and is finite for the signal plus
complex sample with xj and yj denoting its in-phase noise and noise only samples and by assuming that
and quadrature components, respectively, and pn(x,y) does not vanish except on a set with
z, = xj - iy1 denote the complex conjugate of zj. The probability 0.

complex number xj + iyv also can be represented as a For the time being, we restrict our treatment to
vector (xj,yj). We define the norm of xj + iyj, or real-valued detectors D R2 

- R, that is to
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real-valued functions of pairs of real numbers which with equality if, and only if, for some c # 0.
are the real and imaginary components of complex D(xy) pPn(XY)
samples of the analytical signal. Furthermore, we ( (xy) = c
assume that the detectors D are functions with finite Vpn(XY)

deflection. Our strategy is to see how much we can or equivalently,

learn about the functional form of a detector D(x,y) b)(x,y) = C Pn+s(x,y)

with finite deflection by imposing the condition that it Pn(XY)
maximizes the absolute value of the deflection. The Note that the deflection is independent of c * 0 and
information available about the noise is the probability the constant 1 and we can conclude that

density function pn(x,y) =p(zln). Calculation of the D(x,y) = P.+s(X,Y)

expectation of D given that it contains signal and P.(x,y)
noise requires the probability density function is also a detector which maximizes deflection,

P.+s(X,Y). hereafter referred to as an optimum detector.

We first obtain the form of the detector that maximizes If s = a + ib and the samples consist of signal plus

deflection. Let D be a detector with finite deflection additive noise, then Pn+s(X,Y) =p.(x - a,y - b). If we
and let D(x,y) = D(x,y) - E.(D(x,y)). It is clear assume that the signal is small, a Taylor's expansion
andm thtdefiniion of he deflction tatIt(D)=ea(/^) can be used to express this latter probability in terms
from the definition of the deflection that 8(D) = 8D) ofp(y)adiservte:of p, (x,y) and its derivatives:

and E,,(D(x,y) = 0. The square of the denominator pn(x - ay - b)
of the deflection is simplyA2Dx') = S ,=xy)p"(x'y)dXdy" =p.(x,y) + [-ap(xY) a  ap(xY) b]

a2 (D(X, y)) f1 JR2 [_)P(, ax ay
The Cauchy-Schwartz inequality provides the I a 2P(XY) 2 +2 a2 P(,Y).ab a 2p(xy) 2
mechanism to determine the functional form of the 2 ax2 axay + y2

optimal D(x,y). In its general form, the Cauchy- + higher order terms in a and b.

Schwartz inequality applies to any measure g. and for
finite integrals defined by the measure The optimum detector D(x,y) given the signal a + ib

(ffgd.) 2 < (fId.)(fg2dp) is, up to second-order terms,

with equality if and only if f= cg for some constant c. D(x,y) = p ap(xY) a

We have Pn(XY) ax
En+ (D(x,y))- E. (b(x,y)) apf(xY) 1 a2P'(xY) 2

= D(x~y)[p.+.(x~y) -p.(x,y)]dxdy b.xy +y I .xy x

=f L2(Pn(XY) ay 2p,(x, y) ax 2

and letting Ap(x,y) = Pf+,(XtY)P(XY), y) ab +-1ta(x"Y) b2

]p(X,y) p.(X,y) axay 2 p.(x,y) ay 2

(J R 2 b(x,y)[p,,+,(x,y) -p.(x,y)]dxdy) 2  We call the sum of the first-order terms in the above
detector the first-order detector and the sum of the
second-order terms the second-order detector.

D Y12

= f, 2  (x'y) p (x'y) We next consider the case when the signal is not fixed

but is given by s = X+ iY, where X and Y are random
< [o2(D(x,y))][ J2 [Ap(xy)]2 dxdy]. variables. It can be shown, by using techniques similar

Therefore, R to the known signal case, that the optimum detector

A2(D) r [p"+s(XY) -p"(Xy)] 2  still has the form D(x,y) = P.+.(X,Y) - 1 and the
f 2 p.(x,y) terms of the form amb" in the Taylor series expansion

7



should be replaced by the expected values E(X" Y"). 11 2p(xkYk) a
If X and Y are independent, then a" and b " can be +2X kp(xyk) x 2

replaced by the m - th moments of X and Y,
respectively. In particular, if X and Y are independent V I a 2p(xkY) akb
and identically distributed with zero mean and variance +Y

0 2, the optimum detector has, up to second-order k=- p y "

terms, the form + N a2p
D) 2p.(X,y) 2p.(Xy) +- (x,,y 2

1n , [ + ]. 2 --. = p(xk,y ) -y k ' '

which is a constant times the line detector.
The detector output for a number of samples, say Therefore, the line detector is optimum for
combie, which need not be independent, can be independent samples. The performance of the line
combined to give a new detection quantity detector is discussed later in this section. The

I- D(xk,,yk). remainder of this subsection treats first-order and
NT second-order detectors.

We call this multisample detector the line detector in
anticipation of its use to detect narrowband signals of Amplitude and Phase Processing.
interest in ocean basin surveillance. For a sequence
of independent samples, the probability density For many applications, it is more natural to model the
function is the product of the probability density amplitudes and phases of complex samples than their
functions of each sample: real and imaginary components. Let A = jxT+y2

p (xl,y ,X2,Y2, ...,XN,YN) and 0 = arg(x + iy)be the amplitude and phase of the
=P(X1,)P(X2,Y2) ... P(XNY). sample z = x + iy. The phase 0 should be assigned

We have to avoid discontinuities of 21c, which is always
l possible ifNA > 0. The process of assigning phase in

P(X1,Y1)P(X2,Y2)...P(XN,YN) a continuous manner is known as phase unwrapping
(Oppenheim and Shafer, 1989; Tribolet, 1977).

xa(p(x1 ,Y )p(x2,y2)...p(XN,yN)) Hereafter, we assume that all phases are unwrapped
olk phases because for some of the processing algorithms

discussed later it is important to avoid unnecessary
1 p(x,,y,) discontinuities in the phase.

p~~xh~yA) aX,, p(A)erp()ith
_(XhYh) aXk Suppose p(xy)= - q(O) , where p(A)is the

I Dp(x,,yk) probability density function of the amplitudes A of the
- i complex samples z, and q(0) is the probability

p(x,,,y,) aX, density function of the phases 0 of the complex

Thus, the optimum detector D(z1 ,Z2, ...,ZN) given samples z. Note that the factor A is necessary so

the sample vector (z1 , z... ZN) with independent that p(x,y) is a probability density when p(A) is a

z ,z2, ..., zis up to second-order terms, probability density and when q(0) is a probability
density because

iD~izz... N I 1 p(xk,yk) 2

k- P(XkYk) ax 0a, _ R p(x,y~dxdy = o7Jop(A )p.0)dAd0.

N I p(xk,yk) It is quite informative to express the optimum detector
-i p x (y,) -y "bk in terms of the partial derivatives of p(A) and q(0)

k--I P(Xk,,Y) ay that we obtained previously in terms of p(x,y). The

8



algebra is simpler if we introduce p(A) = p(A)
aA x c)A Y V0

Observe that "7x = A' -y A-'x - and [1_j ~~ ~ aTA Y A x A2 2 -'P (X _Y) + a 2p ( x 'y )  - 2 a2P(X'Y)

b = X. We next calculate the partial derivatives [ x 2  Jx~y Jy2  -

occurring in the fist- and second-order detectors. xa + by) 2 P (A) t-ya +_2 __

(P(xy) + A A p(A) A A-(A)Lxx =  (A)ALq(0) +,(A)[q'(O) ],+ -ya +xb )2 q11 (0)
A A 2q(O)

a ( ' [fi'(A) Y Iq() + (A)[q'(O)-L , 2 1 
_ (y2 2bAp(x,y) = A A2  + 2 (xy(a -b2)+ab(Y-x)) p (A) q(O))

2 A3  A k(A) q(O)
a2p(X,y) X2 ~"A.-+ 'A)Y-q E'A) fI "(A) P '(A)

px2 A 2  A (0) The quotients - and are related to p(A)
p(A)(A) p(A)

+2bY(A)A][ q '( 0 )  ] and by the following relations:
A A2p(A)

+_ ) k'A) = pt(A) I+fi(A)[qn(O)z + q/&(O)], j A) DA A

A4  A4  p(A) p(A) A
and

2P(xY= [(A) - xY b'()(0) 
1$"(A) = P"(A) 2 [P (A) 1]

-Y X A 2  A )3  p(A) p(A) A p(A) A
2 - 2

A3 We make the following observation about the
2 x first-order and second-order detectors for a small

+ (A)[qn(O): + (- )q'(0)], signal. When a small signal is present, the linear terms
and A A are expected to dominate the second-order and

higher-order terms so that the optimum detector is
2p(Xy)2 2 closely approximated by the terms involving only first

__px,_) = [fi(A)_2 +l V(A)-X-]q(O) partial derivatives. Indeed, for the case of uniform
y 2  A 3  phase when the probability density function factors

+2 (A) Y - ][q() ]into probability density functions of amplitude and
A 2 Aphase, the second-order term has expected value 0

A- q(0)], with signal present up to fourth-order signal terms, in
A4  A 4  contrast to the linear term which has nonzero

expected value with signal terms of second order. An
The first-order detector is outline of the argument follows.

y ) +bbp(x,y)} Observe that

1P~(XY japP(x-a +by-b)
P(A)q(0) ax ay I

p,+.,(x, y) '-p ,(x - a. - b)

xa+by '(A) -ya+xb q'(O)y
A "j f(A) A2  -q( " =P(C(x-a)2 +(y-b)2 )q(arctan--a

and the second-order detector is = (A ax + by bx - ay

()q(0
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The amplitude processing can be viewed as
ax) +by pAbx - ay consisting of a first step

IZkIA2 zk-> g( IZk I)i ,where the "nonlinearity'

= [t(A) - (a cos 6 + b sin O)f'(A ))] g( Izk I) is used to "weight" the samples, followed by a
second signal reconstruction step:

bcosZ-asinkx[q(0) A s )q'(0)] (IzI)-yTk -Z (Izk I)Re[ Iz lk
Nowwe ae rady o caculte Ik IIZk I IS;

Now, we are ready to calculate Similarly, the phase processing can be viewed as a
two-step process: weighting the samples and

E.+s[D2 (x,y)] reconstructing the signal. The real part contains all the

aA signal information, so taking the real part is a natural

E,+-[(a )2 + ( bx-ay)2p(A) thing to do in either the amplitude or phase
_A p(A) A Ap(A) processing. Note further that the amplitude E :se

the expected value of the second-order terms under processing naturally complement each other,
th supto ht ()=1Bymkn ueolh amplitude processing depends on the projectior of the

t2e asignal onto the received signal-plus-interference

fact that E[D2 (x,y)I = 0, baseband sample and phase processing depends on
the projection of the signal onto the received

E, s[D 2(xy)] = signal-plus-interference baseband sample rotated
counterclockwise by 900.

-[f[(aos sn p(A) AS for in-phase and quadrature quantities, the above

[ 0 s 0) p (A) result can be extended to unknown signals by
+(b cos 6- a sin 0)1 (A) replacing the various powers of a and b with the

AfitA) moments of the real and imaginary parts of the

x(a cos 0 + b sin O),'(A)AdOdA = 0 desired signal.

because2n We have seen that the optimal detectors for amplitude
I' [(a cos 0 + b sin 6) 3d6 = 0 and phase involve projections of the signal onto the

and received signal and the received signal rotated

f'2n [(a cos 6 + b sin 0)(b cos 6 - a sin 0)2dO = 0. counterclockwise by 900. Considerable insight intoadaptive locally optimum processing is gained by

We now give a geometric interpretation of the first- characterizing the signal information contained in

order detector. Recall that the first-order detector has these projections. Toward this end, consider a

the form: baseband sample z = u + n + s with u and n
p(A ) +by )q() "-ay + bx structured and random components of the noise,

S(A )( + q(O) ( respectively. The structured component of the noiseD|(xy) A A qt t  A is often referred to as interference, while the random
component is referred to as noise.

Call the operation in the first term of the above sum
amplitude processing and the second term phase The amplitude and phase of a complex baseband

processing. Let s = a + ib and z = x + iy. Then sample z can be decomposed into vector components

(ax + by)IA and (-ay + bx)IA are the projections of s parallel and perpendicular to the interferer vector u as
onto z and z-L = iz, respectively. Note that shown in figure 1, provided that the signal and noise
ax+ by = Re[ s] and -+ lbx Zs*] are much less than the interferer. Let sn and s.L

A IzI A s denote the projections of the vector s onto the vector u
where s = a + ib and z = x + iv. Let and the vector u rotated counterclockwise by 90a and
g(A) = k'(A) p'(A) I a )(n) let nii and n.Ldenote the projections of the vector n

p(A) -= - 4.A and h(O) q(O) onto the vector u and the vector u rotated counter-
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clockwise by 900. Let S11,SL, NI1 , and N.L denote s, +e "i(s) s; sj -e' 2 ,(s) s;

the real numbers defined by S ll = SiI 2i- Ii and 2 Is)'1U , inB 2 Isj I
S " nil = Ni-- 1-, and n.l = N.---, where respectively. The undesirable term

UL denotes the vector u rotated counterclockwise by e '2 J(s) s s

900. Then Irl - luI+s 1 I+NI and 2: 1 is small comparedwith the
S± N± z, inB 2 S10=0+ - +- -, where 0 denotes the phase of d t -si.

ul lldesirable term I -, provided the phase of L?
the interferer. z, in B 2 sjl i

is uncorrelated with the phase of s3, a technical
Each of the projections of the signal contains half of s
the available information on the signal. This follows condition that is usually met, and the number of chips

from the fact that spreading a bit is at least 10, another condition that is

s + e'20(s*) s - e'2(s*) traditionally far exceeded by existing bandspread
slI = and sL = - communication signals. This same argument applies

2 2 to a narrowband signal whose structure is known
where s* is the complex conjugate of s. For a when the interference has phase that can be modeled
known signal, if good estimates of both s II and s.L are as random. This is one reason why detection
available, their sum provides a good estimate of the techniques developed for communications have
signal up to its magnitude. In some cases, adaptive application to undersea surveillance.
locally optimum processing of amplitudes may be
successful, while that of phases is unsuccessful, and For a signal of unknown structure, there is no question
in other cases processing of phases may be of recovering the signal. However, it may still be of
successful, while that of amplitudes is unsuccessful. considerable interest to detect its presence, such
For a known signal, if a good estimate of either would be the case in the frequency domain when the
slI or s.L is available, the signal can also be recovered phase of succesive complex Fourier coefficients for a
if the output is despread for a bandspread signal, given frequency cannot be estimated and it is
spectrally analyzed for a narrowband signal, or desirable to decide whether there is a narrowband
beamformed. In each of these cases, the signal signal present at that frequency. However, even for
processing following adaptive locally optimum the case of unknown signal, it is still of interest to
processing separates the desired signal term s from perform both amplitude and phase processing, if
the undesired signal distorting term s*e"20 because of possible, because amplitude processing provides

the presence of . energy proportional to the projection of the signal onto
the received vector. For a signal vector rotating

As an example, let us consider direct sequence around the interferer, this leads to a detector output

bandspread communications in some detail. The over time with periods indicating the presence of the

known signal detection by correlation in this case is signal separated by periods in which it does not

called despreading. This constitutes the situation for appear. Successful processing of phase tends to fill

which most of the theoretical work on adaptive locally in the segments when the signal does not manifest

optimum processing for communications has been itself after amplitude processing.

applied. Let s be the spreading sequence (the signal
of known structure). Let B denote a set of successive From our discussions above, we see that the
baseband samples of the received signal associated processing of phase uses information about thewith a given bit. Then despreading consists of the projection of the signal onto the interferer rotated
with aple correlation: counterclockwise by 900 and, therefore, depends on
complex sample the relative phases of the signal to the interferer

zj . component (or the dominant noise component when
zj in B interferer is not present). Furthermore, for the phase

Observe then that the outputs of the amplitude and decomposition, signal phase and noise phase divided
phase algorithms after despreading are by amplitude are approximated by the projection of the

signal vector onto the dominant interferer vector
rotated counterclockwise by 90 . For this reason, the

11



performance of phase processing is always somewhat Fourier frequency bin is nearly the same as the
dependent on received signal baseband amplitude frequency of a received narrowband signal received in
statistics. Another consideration related to amplitude a single mode. In this case the signal component of
and phase processing is that the processing is nearly the complex Fourier coefficient can be modeled as a
optimum when the interferer is much stronger than the fixed unit vector of unknown phase times an unknown
desired signal. However, in many cases, an constant.
interferer-to-signal ratio of two is sufficient for the
processing to be more effective than traditional For a signal of known structure, we have seen in the
processing. When applicable, it is always better to previous sections how the optimum detector can be
perform both amplitude and phase processing. implemented given a probability density function of the

interference. We have also discussed the
Signal Models. implementation given the probability density functions

of interferer amplitude and phase under the
Different models for the signal lead to different assumption that they are independent. We now briefly
processing algorithms. We discuss the following: discuss the unknown signal structure case.

(a) signal of known structure and unknown
received power, and Signal of Unknown Structure and Uniform Phase.

(b) signal of unknown received power and
independent amplitude and uniform phase. In this case, -k is assumed unknown. To

ISkI
Case (a) includes processing bandspread implement the optimum detector, we replace
communication signals and the use of spectral ak by E(ak) = 0, bk by E(bk) = 0,a by E(a),
analysis to detect a narrowband signal of unknown
frequency. For bandspread signals, when each bit is akbk by E(akbk), and bk by E(b ). In addition, if the
spread by a known chip sequence, the timing of the amplitude and phase of the signal are assumed
received signal and the internally stored chip independent, a natural assumption for signals with
sequence is aligned through the process of uniform phase, the following hold
synchronization. Synchronization is usually done E(a2 ) = E(Isk 12 COS 2 q/k) = I!-,(iskJ 2),
through processing of known bits. Information bits 2
are detected by correlation over the bit duration of the E(akbk) = E(ISk 12 cos Xik sin '1lk) = 0, and
received signal with the stored chip sequence for that E(b2 ) = E(ls 12 sin2i1k) = -E(IsI2).
time interval. Thus case (a) applies to those adaptive 2
locally optimum processing techniques used to detect In any case, the only natural way to implement the
bandspread communication signals. For detecting a second-order detector is to treatthe unknown nonzero
narrow band signal by using spectral analysis, we can parameters as equal. With the above assumption,
view the Fourier transform as the simultaneous the second-order detector, with c = 1
correlation of the received signal with a family of 2E(Is12)'
candidate signals of known structure. In this sense, reduces to
case (a) applies to locally optimum processing of time 1 a2p(Xy) + 2p(X,y)
domain signals that are then spectrally analyzed to p(X,y) +x2  y2
detect the presence of narrowband signals. which can be implemented given that an estimate of

Case (b) applies, in particular, to the detection of the probability density function p(x,y) is available.

broadband signals through energy detection. For such If in addition, the interferer is assumed to have
signals, it is reasonable to suppose that the phase is independent amplitude and phase and the phase
uniformly distributed on (-r, t] and as a result the uniform, the second-order detector becomes
mean values of the real and imaginary signal
components are zero. Case (b) can be reduced to P"(A) P)(A) P"(A) l(P(A) l
case (a) for the detection of the presence of a p()+ -^( P" A (pl(A)
narrowband signal for which the center frequency of a h(A) Ah(A) p(A) A p(A) A
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Narrowband Nonzero-Mean Frequency Domain The argument presented for a signal of known
Signal. structure can then be applied with Sk = (u., v.,) and

with mn chosen as the value leading to the maximum
If adaptive locally optimum detection is to be applied in N
the frequency domain, and the desired signal is value of the line detector I D.(xy). In
narrowband and stable, this information can be used Nk-
to reduce the general detector for frequency domain particular, for independent amplitude and uniform
signals to two cases that correspond closely to the two phase, the second partial derivatives term of the
cases already discussed fo- time domain signals. One detector has expected valued zero-order up to fourth-
case occurs when the center frequency of the Fourier order in the signal strength, while the detector given
transform frequency bin containing the signal and the here has nonzero expected value with second-order
frequency of the signal are very nearly the same, so terms in signal strength.
that the Fourier coefficient of the signal is nearly
stationary. In this case, the signal can be modeled by Narrowband Zero-mean Frequency-domain Signal.
a unit vector u times the expected value of the signal
magnitude. The second case occurs when the There are two ways that this case can occur; one way
complex Fourier coefficient of the signal rotates is that the signal vector is rotating around the origin at
around the origin so that during the detection interval a fixed rate. This case is not of much interest to us,
the expected values of the real and imaginary for presumably the center frequency of the Fourier bin
components of the signal can be taken as zero. We containing the signal will have frequency quite close to
treat the nonzero-mean case in this subsection and that of the signal, and as long as the integration time is
the zero-mean case in the next section. not too long, the above case will occur. The other

way is that the signal vector can be modeled as having
Let the signal vector be approximated by (u, v)Is&I random phase. In either case, the signal can be

treated as unknown as in the second case considered.with (u, v) an unknown, but fixed, unit vector. Let tetda nnw si h eodcs osdrd
w (u ,, v,) 1a m ow be a set of unit vectors In addition, the linear partial derivative terms have
corresponing t m equally sacet oanis veton zero expected value when a signal is present.
corresponding to equally spaced angles between

0 and ic. After the processing, the magnitude of the Summary on Signal Modeling.
result is the quantity examined to determine the
presence of the narrowband signal so that -(u, v) and
(u, v) would provide the same performance. Then, The signal model can be taken as either of known
this case is reduced to the signal of known structure structure or of unknown structure. Furthermore, for
case as follows. Let processing independent amplitudes and uniform

N phases, the two cases are complementary. For the
D(x ,YI...,xN, yN) = max I D,(Xk,Yk) , known structure signals, the detector given by the first

where V Ik partial derivative terms dominates the detector, while

N N for the unknown signal case, the detector given by the
v Dm(xy) = [ 1 P(Xk,yk) second partial derivatives dominate.

N A7 N k-- p(xk,yk) ax u.
N I For processing frequency domain beamformed data,

+ Yxy~ VrnI the natural approach is to perform processing under
k- p(xIk,yk) ay both assumptions and add the results. In this

manner, regardless of which assumption on the
is a line detector. A minimal set of unit vectors to received signal, nonzero-mean real or nonzero-mean
implement the above detector would be imaginary part, or zero mean real and zero-mean

imaginary parts, best describe the signal, and
{ (um, vm) 1 < m <54} depending to some extent on the interference first and

second partial relative magnitudes, the combined
{(lo), (0,1), 1,l), ---- (1,-1)}. processing should improve detection of the signal.
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Interference Models. which the results are surprising, have important
applications to undersea surveillance, and are new.

In the following section, we discuss the adaptive
locally optimum algorithms that arise for different One-state Amplitude Model.
interference models for the cases of signals of either
known structure or unknown structure. We first Suppose that a small signal is received in the
discuss the case of Gaussian noise to show that the presence of a large constant amplitude interferer and
adaptive locally optimum processing reduces to modest levels of Gaussian noise. Suppose further
traditional processing. We then show that appropriate that successive sample signal components are
preprocessing can sometimes transform a baseband uncorrelated and independent of the sample interferer
sample to a quantity, still containing a recoverable components. Consider the amplitude preprocessing
signal term, which is Gaussian even though the step
original sample contains structured interference. This N A.
approach leads to important algorithms for undersea I 2N -,
surveillance, in particular to algorithms that can be 2 ----vk,,

used to detect weak narrowband signals masked by The signal term in the preprocessor output is
stronger narrowband signals of nearly the same N
frequency. The algorithms based on preprocessing Prol (Si)_ I projz,(SJ+k).
can be viewed as special cases of a more general 2N ---Nk._ o
class of adaptive locally optimum processing The desired signal term in this expression depends in
algorithms that are derived from modeling the general on N, the sample rate, and the relative phase
interference plus noise by multistate models. The of the signal and interference. The term
preprocessing is used to assign the samples to an N
interference model with a single state, while for the E_ proj, (sj+k) can be viewed as a signal
more general multistate models, the samples are N k=-NvO
assigned probabilistically to the states. distortion term. This term can be shown to be small

under quite general conditions. We outline the
Gaussian Noise. argument for two cases: (1) random phase angles

between the signal and interference and (2) linear
The simpiest interference model for a real variable x is phase difference between the signal and interference.
that the probability density function of x is The first case usually applies when either the signal or

__ interference is a broadband signal, and the second
p(x) = e 2(2 with a;2 the known variance of case applies when both the signal and interference are

2 a narrowband signals.
the Gaussian noise. For this case,

dln(p(x)) x__ and D = 1 d 2p(x The signal distortion term can be viewed as the
D (x) = dx =a 2  p(x= ) dX2  distance from the origin of a one-dimensional random

walk when the relative phase of the signal andinterference are random. The individual steps are the
and as a result, the first-order detector reduces to a
linear transformation and the second-order detector to projections proj,, k(sj+k). The expected distance

its square up to the constantI from the origin is roughly proportional to the square
a2  root of the number of steps 2N times an average step

size. For the amplitude case, this distance is
When the successive samples contain an interferer
term that is correlated, it is sometimes possible to IPrOj.,A(Sjk)I
remove this correlation by processing appropriate (2N )avg( 2N avgs,
linear combinations of the original samples with the 2N 2 2NI
result that the only interference remaining is Gaussian, because
that is the remaining interference can be modeled by a avg(Iprojzft,(SJ+k)I) = lavglsl.
one-state Gaussian mixture model. We present two 2
examples, an amplitude case and a phase case, for This means that the distortion energy is expected to

be - times the signal energy. Thus, a desire to
2N
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neglect the signal distortion term imposes a mild = k(sin NA]) cos i.
restraint on N. Consider the case when all the weights Thus
are about the same size, then M = 2N. Here, N r4j(
would lead to about 12- /0 distortion, so that N = 4 is pro]j (s1) - X PrO] z,(Silk)

lmt02 2Nk-Nvko
a practical lower limit on the value of N. More i l
generally, for adaptive weight cases, N = 8 is a =Is cosW+Il2N -L(sinNAf)Isl cosy
practical lower limit on the value of N. =projz,(sj)( 1 +2 --- L-(sin NAJ)).

'or the case of constant frequency signal and It follows that N should be taken large enough so that

iterference, the magnitude of the signal distortion the term involving sin NA] can be neglected. In

erm depends on the frequency difference between geerm nvold se cn be let e In

signal and interferer and the sample rate. We exploit general, N should be chosen at least as large as the
the fact that the signal vector rotates around the sampling frequency divided by the difference of the

inteferr vetorat afixd fequecy.The eomtry signal and interferer frequencies, i.e., as the frequencyinterferer vector at a fixed frequency. The geometry resolution of the spectral analysis.

governing this situation is shown in figure 1. The

analysis makes use of the coordinate system defined For circularly distributed Gaussian noise, the variance
relative to the interferer vector. Observe that of the Gaussian noise in the output of the processing
projz,k(sj+k) =proj j*,(Sj+k), where algorithm under discussion is
uj+k = R-kf.(u+k) and lk = R-kf.(sj+k), wheref. is (1 + 2N(-L!)2)var(n) = (1 +

the ratio of the frequency of the interferer to the 2N 2 N
sampling frequency and Rw(u) is a rotation of u with var(n) equal to the variance of the real and

through '41 radians. Next, observe that Uoj+k = uj SO imaginary components of the Gaussian noise

that the projections resulting from the vectors

sj, onto uj are identical to those of sj+k onto U jk. One-state Phase Model.
Let 'denote the angle between sj and uj. Then

rO ) - I _I proj zj(sJ+k) Suppose that the interference has linear phase (that
proj-Ny)2N is, it has constant frequency) and the signal and

V Gaussian noise are uncorrelated. Consider the
Isl cosW--N- I proj J*(Sj+kll), preprocessing step to remove the phase of the

k=- Nv*O int,'rferer phase contribution
Note that A 1J - AkOi = Oj - 2-(ei-k + oj+k)

proj;(sj+ll) = Isl cos(k(f f,) + W), followed by
as seen from figure 2, where f, is the ratio of the 1 N N

signal frequency to the sampling frequency. It follows 0j - '- I Ak 6 = 0,- 2 1 Ok+k.

that Nk- Ilko
N The signal term in this equation involves projections
Y' proju,4, (3+kl ) = onto iz divided by A. For phase processing, the

k--N-ko signal and Gaussian noise after this processing
Y Is I cos(k(fs -f.) + xg). depends on the values of the ratios - as well as N.

k---NjtO j

This last sum can be viewed as an approximation to The signal term in the output of the algorithm is
an integral after adding back in the k = 0 term. Let approximately
Af=f -f and suppose that (2N+ l)Af< 1. Then pro.js) I projz(sk)Aj.

cos + ENocos(k(-)+) , a 2N -,o A

=N cos(tAf+ x)dt

- -[sin(NAf+ Ni) - sin(-NAf+ Ni)]
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The signal distortion term is expected to be small ,01
when the signal-to-interferer relative phase is random. + l -iz
The random walk argument used for the amplitude

Aj If the signal is of known structure, this preprocessing
case still applies provided that the value of - is step is followed by taking the real part of this quantity

uncorrelated with the relative phase Vj. The distortion after multiplication by *--. If the signal is of
estimate using the random walk is as before except Isj I
that the average step is multiplied by the average unknown structure, this preprocessing step is followed

A1  by taking the norm of the quantity.
value of the absolute values of the ratios A ytkn h omo h uniy

Aj+k For a known signal, the amplitude and phase terms

The linear relative phase case, that is the case for provide the projections of the signal onto z and iz.
Thnearrlatsignl padsintefence, ses csoe The signal is reconstructed with distortion dependingnarrowband signal and interference, poses some o ,sali slre hsi motn o

difficulties when the amplitude of the interferer varies on N, small if N is large. This is important for
from sample to sample. However, the case when themeansfromsamle o smpl. Hweve, te cse henthe that clues used to classify signals are preserved by
interferer amplitude is a constant follows as before by the processing.

replacing u by iu in the argument. In particular, we

obtain the approximation The variance of the Gaussian noise increases from

prid (s1)- I proj,, (sf+k) 2a 2 to 2a 2 (1 + -L) as P result of the processing.prj,,s)2N k--NA-*o 2

I 1 This is the minimal variance for any filter of the
=projij (sj)(l +- - (sin NAJ)). complex samples using 2N weights whose sum is 1.

Therefore, the one-state processing represents a
The Gaussian noise variance of the one-state phase nonadaptive implementation of a Wiener filter. See
arth Gssa e n is variaceoBond (1992) for a more general treatment of the

1 f N A. relationship between adaptive locally optimum
[1 + (-)2 (-.L)2lvar(n). processing and adaptive Wiener filtering.

2N k'-N.Wk A +k
This reduces to the estimate of the variance of the If only the one-state amplitude algorithm or the
Gaussian noise for the one-state amplitude algorithm one-state phase algorithm is effective, the insertion
in a constant amplitude interferer, loss, the difference in dB between the output

signal-to-Gaussian noise and input signal-to-Gaussian
This example shows that even though the original noise, for the algorithm used is about 3 dB, because
samples had uniform phase and the processing of the expected signal term energy is reduced by a factor
them under the assumption of independent samples of four while the Gaussian noise variance is reduced
led to no processing gain, a preprocessing step to by a factor of two.
remove the correlation of the interference phases and
then adaptive locally optimum processing (here trivial, The expected output signal-to-noise ratio can be
but in multistate model state to be treated next, not calculated for the second-order one-state detector
so) can lead to considerable processing gains. A -- D 2(A) = (A - g) 2 by using the expansion of the

baseband samples into the amplitude of the interferer
One-state Model Algorithm Performance. plus the projections of the signal and Gaussian noise

onto the interferer:
For a constant amplitude, constant frequency E,+s (D 2(A)) E,+s[(proj.(s) +proj (n )) 2 ]
interferer with the signal and noise satisfying the E.+s [roj2(S)I + E., [proj2 (n)]
assumptions above, the signal can be reconstructed - +

by forming; under the assumption that proju(s) = IsI costo and

A0 - A A1+k] z1  proju(n) = InI cosx with 4 and W independent
(A2 N- 2N jk I random variables whose values are uncorrelated with2N,-N1j, Isl and Inl. Also, E.(D2(A)) = E.[proj2(n))J
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so that Is12
E._+(D 2(A)) - E.(D2(A))= E. [pro(s))] = Isl2. 4

A, A'
Note that Assume that - 1 and 1 l. Treating the
a.2(D 2(,I)) =- Elroj(n)]= E[ InI]E~cos4N,] = 3a' three Gaussian noise terms in the detector as

independent, identically distributed, and independent
using E[ InIl] = E[(n 2 +n) 2] of coordinate system, it follows that4 2 2 4 ,2-_~.+j.)

=E[n,+2n~ny +ny] = 8 "4 , where n, and ny are aT2(D 2(A0)) _ E[(n x 2 )
the real and imaginary components of the Gaussian with nx, ^, and f, zero-mean random variables with
noise n and assuming the relative phase W is variance a 2 . Note that
uniformly distributed. It follows that the signal-to- E[(n, -( + .
noise ratio after the processing is approximately 2

1 2sh2 4ji 16hjj j
(12 E~n-,, + AE+n n )] +TLE[nX6X

s1 2 where a2 is the variance of the real and En4+ ( + - (3 + 6+ 'a +-2 4]2 J3" 2 =[3+±-+±-+ 1•363)a 7(4

imaginary components of the Gaussian noise It follows that for this special case the expected
component of the received signal. signal-to-noise ratio for the symmetric phase-

difference one-state second-order detector is
Consider estimating the expected preprocessor output 2 Is 12
signal-to-noise ratio for the one-state symmetric approximately For most cases, this is
phase-difference model in a similar way to that for 3 ta 2 "
amplitude one-state model. For the second-order probably the best that can be expected from the phase
detector, processing.

AO -> D 2 (AO)A 2 = (AO - X) 2A 2  The insertion loss for the second-order amplitude
under the assumption that € and q are independent algorithm alone is 5.4 dB and for the second-order
random variables whose values are symmetric phase-difference algorithm is 4.1 dB.
uncorrelated with Is I and In I, Combining the results should lead to improved line

E.+s(D 2 (AOj)A 2) -En(D 2 (AOj)A2) detection over either alone by producing a better
S[ ( S)) 2 1, defined line, but it is not clear how to calculate the

where E [(A(proj. , signal-to-noise ratio associated with this noncoherent
here =combining process.A(proj=. (s)) = Isjl cos 41

1...(AjL Is. 1 I Cos .J + j I1 cos~4- 1). Multistate Models for Interference Amplitudes and

2AjrI +-IS+1 Phases.

In general, the expectation on the right-hand side of
the equation depends on signal levels and basebandsample amplitude correlation properties as well as the Gaussian mixture models have been proposed for
relative phase correlation properties for the three modeling ship-generated acoustic noise. Gaussiansuccessive samples j-l, j, and j+l. In practice, the kernel representations of probability density functionfact that the signal component can be small in this have been used to model jamming plus backgroundexpression limits the use of the symmetric phase noise for communications applications. Recall that thedifference algorithm. Gaussian mixture model arises from modeling theinterference plus background noise of the real and
Assume that a n A, imaginary components of the baseband samples as

A,-, = and A 1, independent identical zero-mean Gaussian

Is.-i S = Isl 1, Isj+1I = Isj] , and the relative phases are distributions. Interference states are distinguished by

independent random and uniformly distributed. Then the variance of the Gaussian interference plus noise.

(1 The probability density function for a complex sample
E[(A(projU1 (s))I = IsI21) is obtained by treating the in-phase and quadrature

n o cos + cos samples as independent. We introduce another
x- - )2 dfnd(ICd(p mixture model related to kernel representations of

probability density functions. This model involves
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distributions with nonzero means and we will call it a Pk(X,Y) =p(x)p(y)
noncentral mixture model. 2 -2

2 2 2o 2 _).

Different noncentral mixture models are used to model e e 2(

amplitude and phase or symmetric phase differences.
In this context, the sample amplitudes and phases are The corresponding density functions for A and 0 are
treated as independent and each is then modeled by a A

2

noncentral mixture model. For these models, the A 2,2
interference-plus-noise samples are assumed to pk(A) (e k ) and q(0) = for -1t < 0 </t,
contain deterministic and random components. The ar(
states of the model are determined by the which satisfy pk(x,y) = P(A)q(O).
deterministic interference with the random component A
treated as stationary for modeling. For a noncentral
mixture model of sample amplitudes, the deterministic The probability density function of the sample
interferer is assumed to take on discrete values of amplitudes in the k-th state for a noncentral mixture
amplitude that define the states of the model. The model has probability density function
probability density function of the amplitudes of the 1 (A-IAk)2

samples in a state is a noncentral truncated Gaussian Pk(A) -- e 2o-

distribution with variance after truncation equal to the a
variance of the background noise. where I4k is the mean value of the amplitudes of the

samples in the k-th state. The fact that
Figure 3 presents scatter plots for Gaussian noise A > 0 imposes a constraint on the Gaussian
and a Gaussian noise-plus-CW interferer. The component of the interference in the k-th state, namely
Gaussian noise case represents the scatter of that a, < 4k. This means that the noncentral mixture
complex samples for a typical Gaussian mixture model model is only applicable when the small signal
state, while the Gaussian noise-plus-CW case hypothesis applies for all the discrete values of the
represents the scatter plot of complex samples for a interference.
typical noncentral mixture model state. Observe that
the scatter plots presented in the companion report to The probability density function for the amplitudes of
this report ,"Gaussian Mixture Models for Undersea the samples in an S state mixture model, Gaussian or
Surveillance," for the MDA hydrophone data are noncentral, has the form
closer in appearance to that of Gaussian noise than S
Gaussian noise plus CW interferer. Nevertheless, it p(A) = . pk(A)pk,
seems reasonable to suppose that under some k=-I
conditions acoustic inference might be better modeled where pk(A) is the probability density function of the
by a noncentral model than by a Gaussian mixture amplitudes of the samples in the k-th state
model, and this is one reason the theory of noncentral and Pk is the probability that a sample is in the k-th
mixturc models is discussed. For communication state.
applications, interference is often better modeled by
noncentral mixture models than by central mixture For a noncentral mixture model, the first-order
models. In any case, the discussion of noncentral detector for sample j is
mixture models together with Gaussian mixture
models provides additional insight into the theory of p'(A) + )RezLs) ]
adaptive locally optimum processing for ocean basin p(Aj) A i I sjl
surveillance and for communications. ) I IzJIISJI

The states of a Gaussian mixture model have j[2i(A k)Ajl IzIlsI
probability density =-

and the second-order detector for sample j is
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P11(Aj) I P'(Ai) I uniformly distributed. This is equivalent to modeling
+( - (p + -) the interference as having linear phase at some times

p(A1 ) A1  p(A1 ) Aj and random phase at other times. Another option is to

Imodel symmetric phase differences by a noncentral
=2- [. - 2  I IwYk) mixture model. In this case, the deterministic interferer

a, is assumed to take on discrete values of phase
S difference. These values determine the states of the

+ y (Aj - k)w(J, k) + 2 model and as a result the model would have similar
-a structure to that of a noncentral mixture model for

with amplitudes.
(A-I~k)

2

w(j, k) =Pk e 2°2 A noncentral mixture model for the probability density

1S 2A-2 function of the sample symmetric phase differences in
h-,ph¢ lo-" the k-th state has probability density function

For a Gaussian mixture model, the first-order detector (M-Wk) 2

is pk(AO) =- e

('(Aj) Re[zj s1] S I Re[zjs1] where 4Ltk is the mean value of the symmetric phase
pTAj) ) IS I ki k Isj(A I differences of the samples in the k-th state.

k' Note that, treating the projections of the Gaussian
and the second-order detector is noise onto the interferer vector rotated

counterclockwise by 90° as Gaussian is an

1(A) S A -  1 approximation, which only makes sense if projiun is

p(Aj) k__ -y G2 ] small relative to 0, i.e., that the small signalhypothesis applies to the Gaussian noise term relative
when the first-order detector vanishes. In either case, to the interference as well as to the signal term relative
the weights are to the interference.

A
2
I

J 2o A Gaussian mixture model for the probability density2 function of the sample symmetric phase differences in
w(j, k) =pk- 2, the k-th state has probability density function

S Ph 2o2 e ,k

eh -7 e

The first-order and second-order Gaussian mixture The probability density function of symmetric phase
model detectors can also be viewed as functions of differences in an S state mixture model, either
the complex sample norms. This was the viewpoint Gaussian or noncentral, has the form
for the original derivation of the detectors by Stein, (

Bond, and Zeidler (1993). p(A0) = 2,pk(A0)p,

where Pk(AO) is the probability density function of the
Mixture models for phase are not discussed, since symmetric phase differences of the
rarely would such models provide significant samples in the k-th state and Pk is the probability that
performance other than for a narrowband interferer samples in the k-th state
received with linear phase, which can better be
modeled by a one-state model. A Gaussian mixture For a noncentral mixture model the first,-rder detector
model for symmetric phase differences could model for symmetric phase differences for sample j is
the symmetric phase differences of the interferer
component of the interference plus noise as zero or
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p'(A0J) Re[izjs,] The detectors use a fuzzy set model (Klir and Folger,
p(A% ) Izj1 2 Isj I 1988) of sample amplitudes and symmetric phase

s Re[ zjs, I differences. Each sample zj is assumed to be a

_2-(A0 - gk)w., k)) e member of one and only one state of the model as
a2 ( _ I IZj)1 12 Is1 I shown in figure 4. The model is constructed using

one set of baseband samples to represent
and the second-order detector for sample j is interference. The model is then used to process

another (possibly, the same) set of baseband samples
p"0(A) I to detect a signal in the presence of the interference.

) Due to the presence of Gaussian noise, it is desirable
I( 2 to assign set membership using probabilities. In this

I- ( - 4 sense, the locally optimum processing algorithms
ar k- a2 w jJ2 involve fuzzy set modeling.

with
(A_,,)2 All the detectors described in this subsection can be

e )P 22 implemented in two ways. One way is to assume a
w(j, k) =pk (Aj_,,)2  given model and estimate the parameters of the

2Y2 model. The other way is to correlate an empirical
Xh-s phe 2o, distribution of the interference samples with a

predetermined family of distributions with known
For a Gaussian mixture model, parameters and choose the distribution that has

highest correlation with the empirical distribution as a
h'(0) Rmodel of the interference. The samples used to

jP(A 6j) Izj1 2 IsjI construct the interference model in either of these
S . Re[izjs*] ways could be drawn from frequency bins

w(j, k)) rTa'j edjacent to the bin or two adjacent bins to the bin
k=I0a Iz1l lsjI containing the sample processed for signal. In this

and manner, the samples used to construct the model are
S 12 _signal free. A third way to obtain detectors involves

(( j) (1.[_= - l w(i, k)) 1-- , implicit multistate modeling of the interference. The
"p(Ae 1) Izl=I a_ [ "- Iz1l2' motivation for appr.-ach is the NSE algorithm used by

with several undersea surveillance systems.
=2

-2- Implicit Models.
w(, k)=Pk = k e 22 Noise Equalization Model.

J

IS Ph 2 2o

-- I oh The NSE algorithm is closely related to adaptive
locally optimum processing. The following discussion

For all the mixture models discussed for amplitude and provides motivation for adaptive locally optimum
symmetric phase differences, the weights satisfy the processing algorithms obtained through use of implicit
conditions models.

(a) w(j, k) > 0, k * 0 and The quantity appearing in the Gaussian mixture
(b) Is- w(j, k) = 1. algorithms has the form

Fk zJ) 2 -______ 2
Furthermore, the weights can be interpreted as the Fk(zj) 4 On

probability that the j-th sample belongs to the which can be written as
k-th state modeling the interference. wziI2 ca2n" 2 "2

2 ]2
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The quantity in brackets, used in the NSE algorithm, is to implement and have proven particularly effective for
the predicted signal energy normalized by the communication applications when the interference is
predicted noise variance. The NSE algorithm can be non-stationary.
interpreted using a mixture model in the following way.
The states are defined by a prescribed set of possible Probability density estimation has been widely studied

variances, G 2, ("2 . of the broadband background by mathematical statisticians during the last 20 years
noise. That is, the k-th state has variance 2 (Silverman, 1986). One powerful and efficient
the implicit model is that all the samples Thven approach is to represent the probability density
tae himplicitpndeisnht rall ad iam in a given function as a sum of Gaussian kernels defined by the

state has independent real and imaginary components discrete samples. Gaussian kernels can be used to
with zero-mean Gaussian distributions with variances recursively implement adaptive locally optimum
equal to the variance for the state. Thus the processing algorithms in the following way.
probability density function for state k is

ll2..= 1 2 Suppose that Xj is to be processed using the
PA(Iz =22 e samples {Xj+kI -N< k 5 N,k * 0)and their

Obser tsstatistics. The constant N is chosen depending on the

Observe that p(klzj) = 0 or I is implicitly assumed in stationarity of the interference and the sample rate.
the NSE algorithm. In other words, a sample is Typical values of N are between 8 and 32 when
assigned to one and only one state for the NSE sampling at the Nyquist rate. The Gaussian kernel
algorithm in contrast to the probabilistic assignments estimate of the probability density function is
for the Gaussian mixture model. Thus the NSE (X-X.,)2

algorithm involves sets rather than fuzzy sets. N 20,2

p( I e ),where
The results of the SOSUS noise equalization algorithm 'Mj k*O

are presented to a human on a LOFARGRAM using a
grey scale whose intensity is proportional to the a"2 is the variance of {Xfrk I - N 5 k < N, k * 01.

1zj1 2 _2  Given this representation, the probability density
2 The logarithmic quotient involved in the first-order detector for a signal

tof known structure takes the particularly simple form

scale is used to match the displayed grey scale to the oX k-Xn,4
response characteristics of the human eye. For
broadband noise changing slowly relative to the FFT X Z.,.,(X1 -X+,)e 202

a2  p'(X) 1
samples duration, the omission of the factor LOb. = -______

N 2o02
probably has little impact on eye integration.e

Implicit Noncentral Mixture Models. _-X

The adaptive locally optimum processing techniques aT k--N

developed for communication applications arise out of
an implicit representation of a noncentral mixture where
model. Recall that the assumption of independent (xj-Xd *)2

amplitude and phase leads to parallel processing of 2o2

baseband sample amplitudes and phases. w(j, k) e j

N 2a2

Different adaptive locally optimum processing Yh=-N.ki e
algorithms arise from the different ways of estimating
the true probability density function from the received The probability density quotient involved in the
signal statistics. Many of these algorithms result from second- order detector for a signal of unknown
an implicit representation of a noncentral multistate structure, given that the first-order detector has
mixture model. The resulting algorithms are practical expected value 0, takes the form
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["(X) 1 models. As before, the statistics are estimated

p() _J/ recursively. Suppose that zj is to be transformed
using interference statistics estimated from the

-7N samples{2J+i-N<_ k<_N,k*0}. Consider
--_N(X - Xj*)2I k(l',j + k) estimation of the probability density function by

= T.-NrA. A]j + h)  o p(Izl)= Gj(Izl)),

N k-Nko61

14- X(Xj-Xk) 2 w2, k)- 2.,
a. k--N 2' where Gik(Izl)= 2e with 0;=k2

2 'a; kiha

(XjXfk)2  Note that the above estimation is precisely the
ekjj + k) = e "2 and with the weights Gaussian kernel approximation where the parameters

where kare the variances of the different states. We then
w(j, k) defined as they were for the first-order arrive at the above form by observing that for
detector. z in state k, Iz12 is an unbiased estimator of a2. To

For undersea surveillance applications, it is often avoid numerical difficulties in the actual

desirable to process the sample K3 with noise-only implementation, samples with energy less than a
prescribed level are not used in building the implicit

samples. However, the samples model.
{XjkI - N:5 k: _N, k # 0}would in general contain
signal and noise. When processing frequency domain The first-order detector, that is the detector for signal
data for narrowband signals, we can use samples of known structure, for a nonparametric representation
{Xj+k i - N _ k _ N, k 0 1 from adjacent frequency of the Gaussian mixture model is
and time bins to the one containing the sample to be
processed. The resulting algorithms involve implicit N) G+( IzjI) I r

modeling of the interference statistics forX = A and 2 .2 ]zjlR efzj  I

X= A , respectively. Each sample A+k defines a while the second-order detector, that is the detector

state with ij t =Xjy+9 and variance a2 The for signal of unknown structure, is
probability density function of the samples in a state
j+k is the Gaussian kernel N Iz. 2 A(zI'

(X-IL,k*
2  

I I[ i J04(1j)

pjo(X) =e 2a,2 0-N k k

c j where in either case
The weight w(j, k) is the membership function for the
sample Xj in state j+k viewed as a fuzzy set as Gj+k(lzI)

described earlier and illustrated in figure 4. The G3+k(Izi) = N

weights w(j, k) also have a simple algebraic "-N.kOj(Iz)

interpretation for the first-order detector. Let
w(jj) = 0. Observe that w(j, k) > 0 fork #j and that The technique of probability density estimation that

N uses Gaussian kernels has to be modified slightly to
_XA=]N w(], h) = 1. These conditions exhibit the allow nonparametric estimation of Gaussian mixture

calculation of the gain factor term as a filtering model for symmetric phase differences. As for
operation (Bond and Hui, to appear). squared norms, the statistics are estimated

Implicit Gaussian Mixture Models. recursively. Suppose that A6j is to be transformed
using interference statistics estimated from the

The general technique of probability density samples{AOj~kI - N < k _ N, k 01. Estimate the

estimation by Gaussian kernels has to be modified to probability density function by
allow nonparametric estimation of Gaussian mixture
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N a Gaussian mixture model leads to a fuzzy set model
p(Ae) I ( N Gj+k(AO)) for the resulting detectors as for the kernel algorithms.

where
w 2 Useful information on the way to nonparametrically

] 2 '  estimate a Gaussian mixture model is obtained by
Grk(AO) =e considering

with limly I Gj+k(IzI)
2 = A02. 2N-*- 2N o

To avoid numerical difficulties, samples with
symmetric phase difference less than a prescribed
value are not used in building the implicit model for the identically distributed with probability density function
symmetric phase difference Gaussian mixture model. s 62

p(z) = - -e
The first-order detector, that is the detector for signal k/, (;2

of known structure, for this nonparametric Thenrepresentation of the Gaussian mixture model is lim -L I Gjk(IzI)

IV -- 2N k2,-, 612.
-,ko G 2 )]AORe[izj 2 21 12 Pk 2.2 d

k-Ax aI SjI J J~ R2  i 2e d dW
[ C . .1, k- -, k-

while the second-order detector, that is the detector kw I -
for signal of unknown structure, is 12

N " -2( ,
1
2 ( -e ' )dr

A 2 .2- Jo (re (
k--o 4 Using the substitution u = r2 and interchanging thewhere in either case order of integration and summation, we obtain

AGj+k(AO) 612GGhA(AO) S Gu Od- Nw._, Gj+h(A0) I pk I_ -Le o= d

The probability density function for a Gaussian mixture _ 1 ,Pk Izl
of amplitudes or of symmetric phase differences is .2T I K. 1z'"

modeled for sample zj as a 2N- state model with the I C 3k

states all equally likely so that Pk = - for-N< k < N, k 0. The k-th kernel Gk(IzJ ) or where K,,( .) is the modified Bessel function of the

Gj+k(AOj) is the probability density function for the second-kind order 0 (Gradshyteyn and Ryshik, 1980).
k-th state. For the amplitude case, this probability In an analogous manner,
density function can arise from zero-mean Gaussian
probability density functions of equal variance for the Lrm y G )6-
real and imaginary components of the sample. In this N-,- 2N k-,O 021

context, the variance of these components is simply for
* JIjjk2. Furthermore, if we assume that ^02

p(I 1k) = Gj+k("i) then w(j, k) becomes the probability p(AO) - , .
that Izj I belongs to the k-th state. For the symmetric ;k

phase difference case, the component variance is
In either case, the nonparametric estimation of In either case, the use of the nonparametric

A k Iatechniques transforms
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e 202 into K,( ) Figure 5 shows the relationship p(A) -- 2__ .,p_ 2a, , A > 0.between these two functions. BtthBesl2n("' k-1

function and Gaussian function are symmetric and so We assume that Pk >> Ob, for 1 < k < S. It then
figure 5 shows the functions for non-negative real follows that J-oP(A)dA p(A)dA. We also
numbers. In addition, they have been chosen to have f
unit area for the whole real axis. Since the Bessel assume that the phase is uniformly distributed. In
function Ko tends to infinity as the argument tends to addition, let the signal be of known structure, that is
0, we need to modify the states for the samples with s = (a, b) = a + ib and -i-- is known.
low values to obtain practical algorithms. The ISI
simplest approach is to rank order the samples from
lowest to highest norm and not use the lowest 10% of For the classical correlator,
the samples to construct the implicit model approach
is to rank order the samples from lowest to highest c ) x + by
norm and not use the lowest 10% of the samples to Is =

construct the implicit model. and we have

Processing Gain for Multistate Model Detectors. E.(c(x,y)) = 0 and E,+.(c(x,y)) = Isl.

In this section, we obtain upper bounds and estimates The variance contains a broadband noise component
for the square of the ratios of the deflection of adaptive 2,, the sum of the variances of the inphase and
locally optimum detectors to the traditional detectors. quadrature components of the background noise, and

We call this squared ratio the processing gain for the a component u the interferer wit
firs-orer aaptve ocaly otimm prcesinga component contributed by the interferer with

first-order adaptive locally optimum processing different discrete values of amplitude. Under the
algorithm relative to the traditional processing assumption that the interferer and noise components
algorithm and ratio of deflections processing gain for arinendtadrdalysm ticwehv

second-order detectors. We obtain upper bounds for are = and = sm2 we haat

processing gain for noncentral mixture models of ay a _ 2 t,2+ h

amplitude and symmetric phase differences for signals 2(C(x,y))= -a 2 b2 2
of known and unknown structure and Gaussian ISl2 C SI2 C

mixture models of amplitudes for signals of known and 0"2 = 2  S
unknown structure. We have also obtained estimates = - b + Pk k
of processing gain for the Gaussian mixture models of Tn1
amplitude and conducted simulations to validate the

bounds and estimates. These results relate approximate density function for p(A).
achievable processing gain to mixture model Therefore, the deflection for the classical correlator is
parameters and provide a framework for assessing the 8(c(x,y)) - IS
potential processing gains achievable from the use of CF
adaptive locally optimum processing instead of and its square is simply the signal-to-noise ratio.
traditional processing. Also, note that it isunnecessary to obtain Gaussian mixture model To obtain an upper bound on the processing gain for

unneessry t obain ausian ixtre mdelthe first-order adaptive locally optimum processing
symmetric phase difference processing gain bounds th r e adptive locall oimpressin
and estimates because this case is not of interest for algorithm, we suppose that each sample is assignedocean basin surveillance, to the correct state. This is equivalent to assuming

that the adaptive locally optimum processing is
Processing Gain for a Noncentral Mixture Model effective in completely removing the interference.
First-order Detector. Given the probability density function of amplitudes

Let the probability density function of the amplitudes of I S (A-,2

the noise be p(A) _ pj e 22

24



subject to the constraint that a sample's amplitude 12 +X 2Pkk

must be non-negative. The gain factor for the optimal 2i 2
first-order detector is 2b

s )2 Figures 6a and b present processing gain upper bound
-g (A) -j)pje 202 + contours for a two-state noncentral mixture model

p(A) I j=. A first-order detector for 0 <PL < 1, 0 < lH 5 20,
The I term in the gain factor can be neglected under tLL = 1, and (y2 = 0.5 and ay2 = 2, respectively.

the assumption on A. Indeed, practical experience The curves show that the processing gain is a strong
with algorithms implemented for communication function of the level of the background noise and a
systems has indicated that excellent performance can weak function of the low-state probability.
be achieved by use of the modified gain factor Consider the first-order detector for symmetric phase

g1(A) 1 _(A -I.j)pje- 2- differences modeled by a noncentral mixture model.
p(A) -J/ YA3 - p ' Given the probability density function

whose performance should be quite similar to that of s 1 e-2,
the optimal detector when the small signal hypothesis q A 7 2_i- a
holds for all of the discrete values of the deterministic The approximation is only good when the phaseinterferer amplitudes, the condition required for themodel being analyzed to be applicable. We now contribution of the Guassian noise v to the received
proceed to obtain the processing gain for the signal phase is small, that is

A * _n q(AO)dO = J_ q(AO)dO.
first-order detector D 1 (x,y) = (A) (Re[-.'-.L-])

IZI1 For this density the first-order detector is
associated with this modified gain factor. D1 (x,y) = h1 (AO)(Re[ jftI )

Under the assumption that each sample is assigned to with
the correct state:

AS 
(A- 

E,+,,+,(Di(x,y)) = E,,+ (Di)(x,y)) hi(AO) = ](A0 - Xj)pje 202

=z 1q(A)r2 
3 j

(A)z Is Under the assumption that each sample is assigned to

= E,+,[(Re[ Iz I the correct state as for the amplitude case,

( )s E,,+,+(D 1 (x,y)) = E,,+(D 1 (xy))E.,((proj.(s) +rj()T
E (o.) 2hIn ) = E[h (AO)(Re[ iz S)
E., E (fprou(s) ] T1 = E,,+Re[ h(A)iz

from the earlier discussion of a one-state model for iz[ [sI
amplitudes. Under the added assumption that the
phase of the signal relative to the interferer is = E+.,([proji,.(As) +proji.(An)---)
uniformly distributed, the expected value of the Is1
projection is = S

llsl .Also, n , so that
Als• () = , so that To evaluate this expectation, we assume that the

A ( ] Is12  signal sample j is uncorrelated with signal samples -12 (D I (xy)) -- . It follows that the processing and j+ 1, and that the relative phase of the signal to the
2bn interferer is uniform. Under the former assumption

gain, under the assumptions that each sample is
assigned to the correct state and the relative phase of En+ ([proji.(As)]-L) = E+(proj(s-1 ),
signal to interference has uniform distribution, is
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and under the latter assumption, as for the amplitude I , P ., ts. It follows that the variance of the

case, real components samples in state k is

E,,.s(Lroj.(s)] Q=± Is. Pk cos2 I~v = L2 and the variance of the

However, under the assumption of independence of 2 - 2
the successive samples of the broadband noise interference is given by P2p. Thus
component, the variance of the broadband noise
component increases due to the adjacent noise terms
so that Ia2.(T 2(z)) = --. ,LE[(u +proj~n)4]a. (D ~y)) _31 

42

¥(bx. E .-.. E[u4 + 6u 2prof (n)+proj (n)]
It follows that the deflection squared for the first-order U

detector of symmetric phase differences is I s

1 Is12  4,,[lPk.k+6(YPk k)b, + 3a.J.
U"k=1I  k-1l

3 U 2  It follows that the deflection for the traditional detector
is

There is no traditional phase processing so we use the Is12

same traditional processing deflection value for phase p4= P + 6(-, 1 pkj.2a. + 3a ,.
as for amplitudes. Then the processing gain for W kk

symmetric phase differences depends only on the
amplitude model as defined for the amplitude case To obtain anr approximate upper bound on the
considered in this section. The processing gain for the second-order detector, we assume that each sample
first-order detector of symmetric phase difference is is assigned to the state containing its discrete
then component of interference so that the deflection forl C2 s 2 the multistate detector is the same as for the one-state

I, + 1.1~ Pk4k detector, that is
3 Obn 1 Is 2

Note that due to the assumption that each sample is 2 F3 b2, "
assigned to the correct state, the structure of the It follows that an approximate upper bound for the
symmetric phase model plays no role in the processing gain for a second-order detector when the
achievable processing gain for the symmetric phase interference-plus-noise amplitudes are described by a
difference processing gain. noncentral mixture model is

Processing Gain for a Noncentral Mixture Model S s
Second-order Detector. I I Pkg4 +6 (JdPkP2)b"2 +3 ;.2 F3 02. k . k 6(_.k_, + •

Suppose that the probability density function for the

noncentral mixture model for amplitudes is Figures 7a and b show the above processing gain
s (A-k)2  upper bound contours for a two state noncentral

p(A) =  ~k l 2,e A ,A>O. mixture model for 0 <pL -- 1, 0O 9H < 20, L = I,
2 .( =k-I and 02. = 0.5 and C2 = 2, respectively.

For the traditional processing We have been unable to establish even an

= 1IZ2 -
approximate upper bound for a noncentral distribution

z - T2(z) = - - I of symmetric phase differences second-order detector.
2F2 The difficulty is that the argument used to obtain the

with a2 the total variance of interferer-plus- only results we have for the single state model is
Gaussian-noise real and imaginary components of the inconsistent with the assumption that the symmetric
baseband samples. Note that the interferer phase differences are described by a multistate model.
component takes on discrete values of magnitude A further complication is that it is unreasonable to
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suppose for a multistate symmetric phase difference 2.y2

model that the amplitudes of the interference samples IS 202

described by the model are independent of the state ak, 2_ _

containing the symmetric phase difference. However, DI(x,y) = X2_S 1 2a

we have included the model, because in practice the IS Pk 'e
nonparametric implementation for the symmetric 2nk
phase difference algorithms has proven effective in By the Cauchy-Schwartz inequality:
communications (Bond and Schmidt, to appear) and .,2

further investigation of beamformer output statistics Is 2,+by)2  1 2zqr=l t )2Pk I e - k

may reveal its applicability to ocean basin surveillance. 2 k a na,
This completes our treatment of noncentral mixture D1 (x,y) < _ .2 y2

models of amplitudes and symmetric phase s 202

differences. ,= 2, A

Therefore,
Processing Gain for a Gaussian Mixture Model T e,2
First-order Detector. 82D by) 2  1 2 kDeetr.I(,)EJ-f ,J, (a+ )pk 2..__e k° dxdy

R2  a2  26
Let the probability density function of the noise be = k-- I b k s 12

s e 2o

p(x,y) = 2pk- e o k--I ak k- ak
I 21 k

and let the signal of known structure be
s=(a, b) = a + ib. We can obtain an approximation of (y in the

following way. Instead of applying
First, consider the classical correlator: the Cauchy-Schwartz inequality, use the fact that Pk is

c(x,y) = ax + by an unbiased estimator of p(klz) to obtain an
IsI approximation. Expand the product

We have 2 j-,Y 1 x~2
(1) E.(c(x,y))= 0 D(x,y) = (a )p(kz)
(2) E+,(c(xy)) = Isl [ a k lz)
(3) a2,(c(x'y)) =' _ 2 +Ls2 a2 . and note that the cross-terms are expected to be small

S-a2  IS12 compared to the square-terms. Therefore, it is

reasonable to assume that
Therefore, the deflection for the classical correlator DS(x,y) =  ax +by)2p2(klz)

Scxy)Isl k*=- a

--=a s ax +by 2
and its square is simply the signal-to-noise ratio. Y'( 2 )pp(klz).
Furthermore, the performance does not depend on the k- ak
details of the Gaussian mixture model. Indeed, the
computations only used the fact that the noise had With this approximation,

zero-mean and variance a 2. 82(D)- s ax +  2 2p(zlk) ,z,

Recall that the deflection of the first-order detector S 2

satisfies: =-PLIsl2
8 2(D1 ) =JJR2 D (x,y)p(x,y)dxdy. =; 2

D 1and so the deflection of the first-order detector is
For Gaussian mixture noise, approximately
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real numbers whose sum is 1 such that
I " I Kp2 = k2 . Let PK =P and pt = (1 -p) k

for k# K.
It follows that an upper bound on the processing gain Then
provided by the square of the ratio of the deflections of N
the first-order detector and the correlator is YPk =

S 
'andg1(Ph, 0- .... ,ps,CFs) = Ypk2 . 2n

k--I aTk a;2=XPkay
Note thatk-IS S N., 1 G 2

=() 2  ( p- )2 ^1)~ ' 2 2 r2.( k Pkcjk0-P Pkagk +PKaTK
ki k-l k-1 .k*K

(Lpk-j-)(X pka) =gi(piai,...,ps,as). so that the overall variance is equal to that of the K-th
k-1 k, k-1 state and independent of p. Then

The above formula can be used to obtain a global N 2
processing gain bound for a multistate model in terms HIm I Pk(_)
of a two-state model. The processing gain global P-l1 k- k

bound for any multistate model first-order detector for N a 2  a-2

specified interference variance and specified highest = im{ (1 -p)Pk(-:-) +P(-)} = 1.
state to lowest state variance (a measure of the P--, k-lksK ak ax
dynamic range of interference power) is provided by
the two-state model with these parameters. The Using the estimate obtained earlier for the square of
proof is presented in appendix A. Thus, it is natural to the deflection, we obtain the following estimate for the
investigate two-state Gaussian mixture model processing gain for the detector
first-order detectors to assess how much processing
gain is available. Additional evidence of the central 2 2

role of multistate models with two or three states is . 2
provided by an application of the upper bound k=- oI
obtained here to Middleton Class A noise first-order
detectors. This discussion can be found in appendix Figure 9 presents processing gain contours for a two-
B. state Gaussian mixture model first-order detector.

The contours are for low-state probability 0 <PL < 1
Figure 8 shows the upper bound for processing gain and high-state-to-low-state variance ratios
gl(P1 ,aOp 2 , 2) in decibels as a function of 02, oP2 as1 <5 Cr < 20.

022
Pi and p 2 i. Results are presented for aL

a] Figure 10 presents the differences between the
p with 1 p _20, for which the greatest processing processing upper bounds and processing gain
gain is 7 dB. estimates for a two-state mixture model first-order

detector. These contours estimate the losses in
The lower bound of 1 is sharp if restraints are not processing gain due to use of probabilistic assignment
placed on the state probabilities (either explicitly or of samples to the states of the model, in other words,
implicitly). Consider a multistate model of N > 2 losses encountered because the first-order detector
states. It is then possible to increase the probability assigns the samples to fuzzy sets. These losses
of any internal state (not the lowest or highest might be avoided through exploiting temporal
variance state) while leaving that all of the state correlations between successive samples. Figure 10
variances equal. Let K be the index of the internal suggests that there is a small penalty paid for treating
state whose probability is to be chosen as arbitrarily the interference samples as independent even when
high. Let {jfk I l_ k _ N, k # K) be any set of positive they are correlated.
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process without errors. Both of these assumptions
Processing Gain for a Gaussian Mixture Model underlie the derivation of the adaptive locally
Second-order Detector. processing algorithm under discussion.

Observe that We can also obtain an approximation of oy in the
f p(z) following way. Instead of applying the

E.,[D(z)] f P. ,WP+s(Z) dz Cauchy-Schwarz inequality, we use the fact that Pk is

- p,(z) [ (k) an unbiased estimator of p(klz) to obtain an
f p77z)_ -[.P (z) f__ Wkps(W) dw]dz approximation. Expand the product

s P-(Z) 2k----1kz 2 an! not that thewhere we use convolutional expansion for the [ z( 2 ) 2
distribution of signal plus interference. The last 2 2

expression equals -2 f rP(z 1 Pn(Z) dz + cross-terms are expected to be small compared to the
2 - tp(z) square-terms. Therefore, it is reasonable to assume

2. G2 that
higher order terms in the moments of s, = 2 LD by sta Iz12 202 1(klz)]2
neglecting the higher order terms in the moments of s. [X( -Pk- Izlo G C

E. Dz) (2 S IZ 1 2 -. 2a 2

It follows that E+(()) _ D ) 2(klz )

D -- 2 k=I-S I

To obtain a bound on the variance 0, observe that 2 )2 kp(kz)

S Iz12 2 k2)12
- 2 ) 2 P(z With the above approximation,

k- Izl-a 211 CZ2 0 kk

<SI1- 2 )2 1p(kz) 2 S. IZ1 - g )2 1 2p~zlk=P (z)dz- k (Yk (T, 2 CYoip  P(Z) p z a

k k
by the Cauchy-Schwartz inequality (Halmos, 1957). 4 Pk

Note that equality would hold if all the p(klz) were k_ =1

either 0 or 1, that is, each sample was assigned to the and therefore the deflection is approximately
appropriate state. Finally, 2

2~ Xk

2 S 6zI -2 2 1 p(zl) k
a~, 2 4( 2 -,p P(Z)dz

< I 0 ok p(z) The numerator of the deflection for the traditional
4 Pk detection quantity when the noise is described by a- '" Gaussian mixture model is given by

kl C k 02
Therefore, an upper bound for the deflection of the E+. [ T(z)]= -r-.
adaptive locally optimum processing quantity is given 2

by The variance of the traditional detection quantity for

2 k noise only
=1)2]

In addition, the upper bound obtained is expected to f A2

be fairly sharp since it was obtained by dropping = Pk, f- A 2 2-- 2
high-order terms in the magnitude of the signal and by =, 2 -

supposing that the state assignment process yieldsk-I Y 02n

the same results as a deterministic state assignment
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where the double integral in x and y is replaced by a numbers whose sum is 1 such that
double integral in polar coordinates and 0 (for which P

the integrand is a constant) is integrated out. This _Pk = L
integral can be evaluated using integration by parts to AN N
obtain for k K. Then pk= iand o( 2 2 pk(

s k-- I k

2j 
C; =(y=2 p -- 1. = (1 k k) ( +PKa K K =3a so that the

k-i On

Therefore the deflection for the traditional detection overall variance is equal to that of the K-th state and

quantity is independent of p. Then

NY2
o 1lira I Pk(-q--)I

L 5 -PI- N 2 2

Ilir{ (1 - (_9L)2  ( 2
p.) --- I k=-l*K (3k 2 rK

The upper bound for processing gain, the ratio of the and
deflections, can be written in terms of model a IV 2

parameters alone: HM IP( 2 --)2

g 2(P , a 1 ... p s, 2) P--1 k-- 1 3

S 4 S 4  N 2

Pk( 2 . lim 2{ 1 (1 -P)kk)(2 )+( 4 + k 2 1 =1
k-1 a k  k=I (n

The above formula can be used to obtain a global Using the estimate obtained for the deflection of the

processing gain bound for a multistate model in terms second-order detector, we can obtain an estimate of

of a two-state model. The processing gain global the processing gain for the second-order detector as a

bound for any multistate model second-order detector function of mixture model parameters. This estimate

for specified interference variance and specified is given by
highest-state-to-lowest-state variance is provided by
the two-state model with these parameters. The 2 ( 4

proof is similar to that of the same result for first-order l P -(2 p - 1 .

detectors and is presented in appendix A. Thus it is a& k__ a .F

natural to investigate two-state Gaussian mixture
model second-order detectors to assess how much Figure 11 shows the upper bound for processing gain
processing gain is available. Additional evidence of for the second-order detector for a two-state Gaussian
the central role of multistate models with two or three aH

states is provided by an application of the upper bound mixture model in decibels as a function of PL and ---
obtained here to Middleton Class A noise model (aL

second-order detectors. This discussion can be 2
found in appendix B. for 0 <PL 1 1 and fori 1 E < 20. For this range of

The lower bound of 1 is sharp if restraints are not parameters the upper bound for processing gain is 12

placed on the state probabilities (either explicitly or dB for the second-order detector. Figure 12 shows

implicitly). Consider a multistate model of N > 2 the processing gain estimates for the second-order
detector for the same ranges of parameter values as

states. It is then possible to increase the probability used to obtain the results presented for the processing
of any internal state (not the lowest or highest gain upper bounds. Figure 13 presents contours of
variance state) while leaving all the state variances the difference between the processing gain upper
equal. Let K be the index of the internal state whose bounds and the processing gain estimates. The
probability is to be chosen as arbitrarily high. Let differences shown in figure 13 are estimates of the
{P 11 kI 5 N, k * K} be any set of positive real
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losses due to assignment of samples to states signal level was chosen to illustrate the performance
defining fuzzy sets. of the second-order detector when the validity of the

Taylor's expansion about zero signal, which is used to
Figures 14 and 15 present processing gain estimates derive the detector, begins to be questionable.
and processing gain bounds for a three-state model,
where PL = 0.25, PM =0.5, PH =0.25, OL = 1, aM For each simulation run the statistics are assumed to
varies from 2 to 8, and a11 varies from 8 to 44. This be described by a two-state Gaussian mixture model.
example was chosen to illustrate the processing gain The low-state variance a 2 = 1, while the other mixture
for a class of three-state models shown earlier to arise model parameters, PL and (;H are varied. A basic
from modal interference at beamformer outputs. The unit for a simulation run is a trial consisting of 512
figures show that there is substantial gain in the region samples of the interference. For each trial, the
of middle-state and high-state variances considered average deflection is calculated for the samples
and that processing gain is mainly a function of the without signal and the same samples with signal.
high-state variance. This is because the deflection for Statistics were collected for a minimum of 15 trials to
the second-order detector is almost constant for the allow for the calculation of the mean and standard
range of middle-state and high-state variances deviation of the average deflection for a simulation
considered and the deflection of the traditional run.
detector is heavily influenced by the high-state
variance. The difference between the estimate and Simulations were conducted for the traditional detector
the upper bound for the processing gain varies from and three second-order detector cases:
2.8 to 3 dB. (a) Gaussian mixture model with exact

parameters,
Performance Comparisons Using Deflection. (b) Gaussian mixture model with

predetermined errors in the parameters, and
During the theoretical development of adaptive locally (c) Gaussian mixture model represented by an
optimum processing algorithms suitable for processing implicit mixture model.
interferer Gaussian mixture models for signals of
unknown structure, we have obtained upper bounds The average deflections values are compared with the
and estimates of processing gain and identified analytically obtained upper bound on deflection and
algorithms based on parametric and implicit models of the analytically obtained estimate of deflection as
the interference. In this subsection, the deflections functions of Gaussian mixture model parameters. The
obtained through simulations of the detectors are relationship between single sample detection and false
compared to the analytical results. The simulations alarm and line detection is discussed in the next
address the performance of the second-order subsection: probability of line detection versus
detectors at the sample level. In the next subsection, probability of false alarm is related to the average
we address second order line detector performance. deflection. These results relate average deflection as
We concentrated on establishing results for a measure of performance to traditional descriptions of
second-order detectors for Gaussian mixture models line detector performance by probability of detection
because they have proven applicability to undersea versus probability of false alarm for a given input
surveillance, signal-to-noise ratio.

The signal and interferer models for the simulations Deflection Bounds and Deflection for Known
are baseband models. The simulation baseband signal Parameters.
model is a 10 Hz sinusoid with unit amplitude:

s = cos 20itt+ isin 20,tt. Earlier we obtained an upper bound for the
The baseband sample rate is 128 samples per second-order detector deflection as a function of
second. mixture state parameters. This upper bound

provides the value of deflection for a clairvoyant
The expected values of the real and imaginary detector, that is for a detector with each sample
components of the baseband signal for the second- assigned to the correct state. An estimate of the
order detector are zero and their variances are deflection as a function of mixture state parameters
one-half for the majority of the simulations. This

31



was also obtained. Here, we address the accuracy of locally optimum processing algorithms emphasize the
the estimate of deflection. Detailed results are samples estimated to be in the low states over those
presented for two families of mixture models: (1) estimated to be in the high states. The fuzzy set loss
(2 = 1, y2 = 4, and PL = 0.1,0.2, 0.3, 0.4, and 0.5 is also a function for the simulations under discussion
and (2) 02 I , a2 = 16, and PL = 0.1, .2, 0.3, 0.4, of the low-state probability, decreasing in general from
and 0.5. The mean and standard deviations of thestate probability of 0.10 to about
adt 0.5.lhes fr ad tiadard prevateion ofies 2 dB for a low state probability of 0.50. Figures 21
deflection values for 15 trials are presented in figures and 22 indicate that most of the processing gain can
16 and 18 with corresponding processing gains in be achieved by modeling the interference samples as
decibels presented in figures 17 and 19. independent.

The traditional detector curve would be smooth in Dependency of Processing Gain for Gaussian Mixture
figures 16 and 18 except that the curve is obtained by Models on Model Parameter Errors.
simulation. The upper bounds and estimates of
deflection are calculated from the formulas derived Simulations were conducted to determine the
earlier. The simulation data for the two-state dependency of average deflection for the two-state
Gaussian mixture model second-order detector are Gaussian mixture model on parameter errors.
shown by the curves which are not labeled in figures Simulations were conducted for true two-state
16 and 18. The average deflections obtained are
presented with vertical line segments connecting the Gaussian mixture models given by PL = 0.3, L = 1
average plus and minus one standard deviation of the and CH = 6, 10, and 16. The error sensitivity
15 trials run to obtain the average value of deflection. analysis was performed by supposing that the
Figures 17 and 19 present the processing gains in low-state probability and low-state variance were in
decibels obtained as the difference is decibels of the error, with the overall variance for the model accurate.
deflections for the second-order detector and the The low-state probability was varied from 0.1 to 0.8 in
traditional detector. increments of 0.1 and the low-state variance from 0.5

to 1.75 in increments of 0.25. The contours are
There is very little processing gain available when generated using the contour plot routine of MATLAB.
(7 2 = 1 and 02 = 4 as indicated by figure 17. The Thus the high-state variance is determined from the
estimate seems to be a little optimistic, estimating a supposed low-state probability and low-state variance.
processing gain from less than 0.5 dB to about 2 dB, Figures 23, 24, and 25, present processing gain loss
while the simulations indicate from 0 dB to about 1.25 contours as a function of parameter error for the three
dB. These simulations indicate the adaptive locally high-state variance cases. The figures show that the
optimum processing should not be used for a processing gain achieved by using a two-state
two-state model with high-state to low-state variance Gaussian mixture model is not sensitive to low-state
ratio below 4. The estimate is remarkably accurate variance and low-state probability errors. The

for the case 02 = I and G2 = 16 with the estimates processing gain is nearly flat near the true state.
Indeed, in figure 23, possibly due to statistical

and simulation processing gains differing by less than variations in the estimation of the processing gains,
0.5 dB. For this case the processing gain varies from which are very sensitive to the estimates of deflection
about 3 to 8 dB. for the traditional detector, the maximum processing

Figures 20, 21, and 22 present the average deflection gain was not achieved for the model with exact
values0, 21n ain, 2aresn fuzzy aeagessef n parameters, but rather slightly more gain (0.1 dB) wasvalues, processing gain, and fuzzy set losses, realized for a number of cases with higher low-state

respectively, for OL = I, PL = 0. 1, 0.2, 0.3, 0.4, and probabilities than that for the true parameters within
0.5, and C2 = 4,9, 16, 25, 36, 49, and 64. The the O-dB loss contour. Generally speaking, there is
different line types for the three figures correspond to more sensitivity to the low-state variance. 'n
the same cases. In figure 21, the processing gain is particular, it appears to be better to overestimate the
an increasing function of high-state variance since the low-state variance than to underestimate it.
low-state variance is fixed. Note that figure 20 exhibits
deflection as a function of mainly low-state probability The lack of sensitivity of the processing gain to
and low-state variance. This is because the adaptive low-state probability suggests that modeling the noise
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statistics on adj,ent frequency bins to that containing variance of 1 and high-state variances of 4. Figure 33
the signal for an interferer occupying four or more presents the processing gains corresponding to the
adjacent bins should provide sufficient accuracy to deflections presented in figure 32. Figure 33
support effective adaptive locally optimum processing. indicates that implicit modeling should not be used
The modal propagation effects described in an earlier when the ratio of high-state to low-state variance is 4
section leads to periods of low-state variance, the low or less.
variance values during these periods should be nearly
the same for adjacent frequency bins, while it might be Performance contours as a function of true two-state
expected that the durations and frequency of Gaussian mixture model rC~rmeters were obtained for
occurrence of the periods might vary more, which the second-order detector using for implicit
would lead to the low-state probabilities varying from interference modeling by 32 samples. Figures 34, 35,
frequency bin to frequency bin. and 36 present the average deflection values,

processing gain, and modeling losses for 32 samples,
Dependency of Processing Gain for Gaussian Mixture for a2 = 1, PL =0.1, 0.2, 0.3, 0.4, and 0.5, and H /=
Model on Implicit Model States. 4, 9, 16, 25, 36, 49, and 64. The different line types

for the three figures correspond to the same cases.
For the implicit models, the number of states is the As a result, the different cases can be inferred by
same as the number of samples used to construct the examining figure 35 from the fact that performance
model. The initial trials for implicit models increases with increasing high-state variance.
constructed by using 16, 32, and 64 samples were
conducted for PL = 0.1, 0.2, 0.3, 0.4, and 0.5, cL2 = The implicit model deflection curves shown in figure 34

and C2 = 16 . The simulation approach assures that are ciosely clustered indicating that the performance
the samples used to model the interference are depends mainly on the low-state parameters. The
independent samples. The appropriate way to results presented in figure 34 suggest that the process
interpret the implicit model results is that the number gain penalty shown in figure 35 for implicit modeling by
of samples correspond to the number of independent 32 samples results from the fact that the model
samples of the interference for an implementation of membership function is a Bessel function rather than a
the algorithm. For each trial, new samples were Gaussian distribution. Observe from figure 35 that
selected to construct the implicit model used to obtain use of the implicit model leads to gains except for the
results for the 512 samples drawn from the Gaussian case of high-state variance 4 already discussed.
mixture model distribution. Figures 26, 28, and 30 Figure 36 indicates that provided the probability of the
summarize the deflection results, while figures 27, 29, low state is at least 0.2 (and by inference, but not
and 31 summarize the corresponding processing gain demonstrated, less than 0.8) the implicit modeling loss
results. It is clear from an examination of these is between 1 and 2 dB. We tried constructing implicit
figures that there is some loss of performance for models by including repeats of the state with the
using a model constructed from 16 samples, but very threshold variance (the 10 percentile of the sample
little loss from using a model constructed from 32 norms) for each sample less than equal to the norm.
samples in comparison with 64 samples. Thus an For every case, this modeling approach performed 1
implicit model can be built using about one-fourth the dB or worse than the case for which results have been
number of samples needed to estimate model presented.
parameters using the EM algorithm. The nodeling
loss for 32 samples is less than 1 dB. Thus the Implementation Issues and Summary.
implicit modeling approach provides an a.,ernative to
the EM algorithm. It is clear that the implicit model Adaptive locally optimum second-order detectors are a
can be used to model interference with rapidly natural extension of the noise equalization algorithm
changing statistics. traditionally used to process beamformed ocean

surveillance data. Our analysis suggests that adaptive
Figure 32 presents average deflections with standard locally optimum processing can significantly improve
deviations of the 15 trials used to obtain the averages the detection of signals masked by ship-generated
for implicit models using 32 samples for a low-state interfering lines.
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The main unresolved issue for application of locally The overall scheme for the selection of samples and
optimum processing to ocean basin surveillance is the the processing of the beamformer output data needs
nature of the received narrowband signal and to be decided before implementing the adaptive locally
interference signals. Simulations and hydrophone optimum processing. In particular, the detectors
MDA data indicate that the received narrowband could be implemented using block recursive with or
signals could be better described by a multistate without overlap processing or sample recursive
Gaussian mixture model than a one-state Gaussian schemes. The samples to model the interference to
mixture model. The scatter plots of the hydrophone allow the adaptive locally optimum processing of a
MDA data indicate that the interference is better given sample should probably be drawn in such a way
modeled by a Gaussian mixture model than by a from adjacent frequency and temporal bins that the
noncentral mixture model. Likewise it may be desired signal can occupy two adjacent bins. The
assumed that the signal is normally of unknown total number of samples needed to model the
structure. Given the present state of knowledge, only interference when the EM -1lgorithm is used to extract
the second-order detectors for Gaussian mixture model parameters should be around 100 samples,
models for amplitudes have established relevance to while 32 samples suffice to model the interference
ocean basin surveillance. However, conceptual implicitly.
considerations indicate that first-order and second-
order detectors for noncentral mixture models of The detectors in this subsection were characterized
amplitudes and symmetric phase differences and for independent samples. Averaging these detectors
first-order detectors for Gaussian mixture models for leads to line detectors, whose performance is briefly
amplitudes should be used to complement the addressed in the next subsection. Observe that the
second-order Gaussian mixture model amplitude line detector for a first-order detector involves
processing. coherent integration, while ',at for the second-order

detector involves noncoherent integration. This is a
Additional processing of beamformed data containing another reason why the application of first-order
real signals and interference should be carried oLt, to detectors to ocean basin surveillance should be
determine whether the best general approach to pursued further.
implementing first-order and second-order detectors
for Gaussian mixture models should use the model Line Detection and Classification.
approach or real-time parametric or nonparametric
estimates of the interference. The robustness of the Introduction.
two-state detector indicated that most of the
processing gain for a second-order detector could be
obtained for approximate models. This suggests that Inotessecion e estashd a ninea
a reasonable number of models might suffice as processing of beamformed data could be viewed as a
predetermined candidate models for the received generalization of the NSE algorithm to improvesignal plus interference complex sample amplitudes, detection of signals masked by narrowband
signal plusite e mling apprape aitdes. interference described by multistate Gaussian mixtureTherefore, the modeling approach provides another models. The nonlinear processing treats the
implementation option. frequency domain beamformer output samples as

The results obtained on the characterization of independent. In this subsection, we briefly discuss

interference statistics indicated more complexity of the spatial cell combining techniques suitable for the
detection of narrowband signals (lines). A theory of

received signal statistics than captured by a two-state sctecniqe alored to apive Ay o

or three-state Gaussian mixture model. These results prcese a ied beaforml outu
leave open the possibility that the nonparametric processed matched field beamrformer outputs has yet

leav opn te pssiiliy tht te nnpaamericto be developed. At the present time, the noise
approach, which does not require a priori knowledge of statisticso th e roun te cl oiu

the number of the states of the model, may provide statistics of the background after locally optimum

better performance than the parametric approach. At processing based on Gaussian mixture models have
bte pesenttimane, than resute paetricaptrh A not been characterized for either first or second-orderthe present time, our results suggest that either dtcos ti rbbyraoal otetti
approach provides considerable processing gain over detectors. It is probably reasonable to treat this
traditional processing when narrowband interference ba ;kground noise as Gaussian so that the extensive
masks a signal of interestn work of Bar-Shalom (1988, 1990) provides a starting

point for such an investigation.
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Line detection and classification for undersea detectors. These results provide an upper bound on
surveillance systems is often performed by eye the line detection performance that can be achieved
integration of NSE processed data presented on using interference tracking algorithms.
LOFARGRAMs as described in the introduction and
background subsections. The operators are alerted Upper Bounds for Line Detectors.
to lines of interest by periodic printouts listing lines of
interest by frequency and bearing. We suggest a Upper bounds for line detectors are obtained by
generalization of this approach for high gain arrays to averaging deflection. In a more general context, the
classify lines automatically detected by line tracking results characterize performance when the signal is
techniques such as adaptive line enhancement. tracked perfectly. Given a detector D : R 2 -4 R,

recall that the line detector for a sequence of complex
A classical LOFARGRAM is a three-variable samples z, = x, + iyl,...,zN = XN +.iyN is
presentation, Fourier coefficient magnitude (intensity N
of a pixel), frequency (abscissa), and time (ordinate). 1 ; D(X,Yk). For a given sequence of samples
The fourth variable, bearing, is indicated by the beam N =
output whose output is displayed on the with signal and an equal length sequence of samples
LOFARGRAM. A matched field beamformer output is without signal, and a threshold T, a probability of
a function of these variables as well as range from the detection and probability of false alarm are defined for
array and depth of the source. In addition, due to both the detector and the line detector in a natural
increased resolution in bearing, it is no longer way. Let M >>N be the number of samples in each
reasonable to base detection on the a display of data sequence. Let M. be the number of samples with
from a single beam. Color displays with chrominance signal for which D(x,y) > T and let Fs be the number
and intensity allow the presentation of one additional of samples without signal for which D(x,y) > T. Let
variable than a monochromatic LOFARGRAM. The Mss be the number of subsequences for which the line
challenge is to reduce the number of displayed detector is calculated. Let ML be the number of these
variables to allow an operator to confirm automatic subsequences of samples with signal for which
detections and classify detected lines. N
One approach is to use adaptive line enhancement N yal h

techniques to automatically detect potential lines and these subsequences of samples without signal for
then to structure the database to allow display of the w N

tracked line in a color LOFARGRAM-like display with w -T h
depth suppressed time intensity for a given frequency sample probability of detection and sample probability
(magnitude of Fourier coefficient), chrominance Ms Fs
(depth), bearing (abscissa), and range (ordinate). of false alarm are PSD = -and PSFA="-,
Chrominance would be used to combine information respectively, and the estimates of sample probability
for a certain number of depth bins around the average of line detection and line probability of false alarm are
depth of the line being displayed. Mouse selection of ML FL
a sequence of adjacent bins could be used to activate PLD = -L and PLFA = V- respectively.
temporal histories of any of the displayed parameters Mss
of the line. Figures 37 and 38 are scatter plots of the probability of

sample detection for a probability of false alarm ofDisplay technology is rapidly advancing and so more 10% against the deflection for the traditional detector
sophisticated display technology may soon be and for the two-state Gaussian mixture model

available to allow the operator to assess the a nd -or e detector ssianlow-sta e model

characteristics of a line detected by adaptive line second-order detector for low-state variance 1 and

enhancement processing than described in the high-state variance 6 and 16. The data presented is

previous paragraph. To pursue this subject further, the same data used to generate the contour plots

we have concentrated our attention on processing that presented in figures 23 and 24 of the previous section.
migt b usd t auomaicaly etet lnes Webegin Figures 39, 40, 41, and 42 are scatter plots of themight be used to automatically detect lines. Ween probability of line detection for a false alarm of 10%

this discussion by describing the relationship between against the deflection for the traditional line detector
the detectors discussed in the last section and line for the two-state Gaussian mixture model
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second-order line detector for low-state variance 1 and Gaussian mixture model. In the context of the last
high-state variance 6, 10, 16, and pooled for these subsection, if the use of the EM algorithm to estimate
cases, respectively. The line detection statistics are noise-only statistics from adjacent frequency bins to
obtained from the sample statistics by averaging 128 the bin containing the signal yields a model whose
samples. In each plot, the traditional detector results parameters are approximately correct, the
are presented by asterisks and the adaptive locally performance obtained should be within 1 to 2 dB of
optimum second-order detector by crosses, except for that estimated by the simulations. The simulations
figure 42 where "+" is high-state variance 6 data, 'x' is also address cases in which the signal energy is
high-state variance 10 data, and "o" is high-state comparable or exceeds the low-state variance. For
variance 16 data. For every case the low-state these cases, the derivation of the algorithms as
variance is 1 and the signal variance 0.5 and data are implementations of optimal detectors no longer apply.
presented for all the different model parameter choices However, the algorithms can be quite effective if
to model the underlying two-state Gaussian mixture modified to compensate for the presence of the signal
model. in the processed samples.

Some correlation between probability of detection and The ROC curves were generated in the following way.
deflection is shown in figure 37. For this case, the A two-state Gaussian mixture model was chosen.
adaptive locally optimum processing sometimes Each run consisted of 10,240 independent trials. For
performed worse than the traditional detector and each independent trial, 130 independent samples were
sometimes about 1 to 2 dB better. Figure 38 shows generated for the assumed two-state Gaussian
that by the time that the high state to low state mixture model and the model parameters estimated
variance has reached 16 to 1, the probability of using the Estimate and Maximize (EM) algorithm to
detection and deflection have become more highly obtain a detector for the samples for a signal plus
correlated and the data points for the adaptive locally noise and another 130 independent samples were
optimum processing are separated from a cluster of generated and the model parameters estimated using
data points for the traditional detector. the EM algorithm to obtain a detector for the samples

for noise alone.
Figures 39 through 42 show how highly correlated
probability of line detection and deflection are for the Probability of detection results for different thresholds
data sets under discussion--the correlation is were obtained for four detectors:
independent of parameter error. These figures justify (1) the traditional detector,
using deflection as a criterion for the development of (2) a detector with the processing based on
the detectors. They also clearly indicate the noise-only statistics (the detector obtained in the limit
performance improvements derivable from use of as the signal goes to zero),
adaptive locally optimum processing errors even in the (3) a detector obtained by adjusting state
presence of large modeling errors. membership functions for the presence of signal, and

(4) a detector obtained by adjusting state
A series of simulations was conducted to generate membership functions by locally scaling the estimated
receiver operation characteristic (ROC) curves and noise variance.
soft decision grams for two state Gaussian mixture
model second-order detectors (Stein, Bond, and The traditional detector is an energy detector. The
Zeidler, 1993). The simulations were conducted to detector with processing based on noise only assigns
establish the achievable performance gains using the individual signal-plus-interference samples to the
adaptive locally optimum processing techniques. low and high states of the model based on the norm of
The simulations investigated the performance of the the interference. This detector cannot be achieved in
algorithms using a parametric description of the practice. It is included to provide an upper bound for
interference. The parameters were obtained using the an adaptive locally optimum second-order detector
EM technique. (See appendix B to "Gaussian Mixture when the interference is described by a two-state
Models for Acoustic Inference" for a description of how Gaussian mixture model and the samples have
the EM algorithm was used to provide parameter independent interferer components. The third
estimates.) The interference was assumed to be detector includes an adjustment for the presence of
described independent samples from a stationary signal. The variance of the signal is estimated from
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the difference of the variance of the samples discernible improvement of probability of detection for
processed (with signal added) from the variance of the the adaptive locally optimum detectors over the
noise, which is known by assumption. The variance traditional detector for a given probability of false
of the signal can then be subtracted from the norms of alarm as illustrated by figures 43, 44, and 45.
the samples to adjust the low-state and high-state
membership functions. The fourth detector was For each case, the processing gain increases as the
obtained by scaling the norms for the samples with signal-level to low-state variance decreases, that is as
signal so that their norms provide the same variance the processing becomes more optimal. The figures
as that for the noise only. Both of these detectors indicate the inherent robustness of the second-order
would reduce to the adaptive locally optimum detector detector. It still provides significant processing gain
when the signal energy is small compared with the under signal to interference conditions for which the
low-state variance. derivation of the adaptive locally optimum detector

breaks down. This is not always a feature of adaptive
Probability of detection results were obtained for each locally optimum processing techniques. In particular,
of the four detectors for a signal that was present in for applications when coherent detection of the
one frequency bin for the first 65 samples and then reconstructed signal is required, it is definitely not the
present in the adjacent bins for the next 65 samples. case: signal distortion becomes manifest for a ratio of
This feature was incorporated in the simulations to interference to signal of 2 to 1 (Bond and Hui, to
provide some indication of the robustness of the appear).
techniques when the duration of the signal in any one
frequency bin is unknown. The detectors 3 and 4 Target Tracking.
were implemented based on the estimates obtained
using all 130 samples in each of these bins. It is necessary to combine energies in successive
Probability of false alarm estimates were obtained for temporal beamformer spatial cells to detect signals
each of the thresholds used to generate probability of from a target whose depth is changing , whose range
detection using the noise only samples. from the receiving array, and whose frequency may be

changing from one cell to an adjacent cell. The
ROC curves were generated for various two-state tracking of signals exploits the continuity of the signal
Gaussian mixture models. Figure 43 presents Vie term in the beamformer output. In the last subsection,

0  - 2 techniques were described to exploit interference and
c0 , 1 a the techniques developed ignored temporal correlationa2s of the interference. In general, the correlation among

(b) 1, (c) -s = 0.5, and (d) -- 0.25, the signal component of the sample cannot be
L f ignored. Ignoring correlation of the interference amongrespectively; figure 44 presents the curves for

2 2 2 samples described by a Gaussian mixture model

PL = 0. 2 5 , .1 = 1 0 , and (a)--s = 2, (b) -- = , causes a small proportional performance loss. In
LLL contrast, the correlation of signal in samples usually

c)-2L = 0.5, and (d) .2, rneeds to be exploited for detection and often
c) 2 0 2 necessary for classification.

figure 43 presents the curves for PL = 0. 1, = 4.2 There are two general approaches to combining

2 2 . energy. One approach is to use data base browsing
and (a)- = 7.3, (b) --- = 3.6, (c) --- = 1.8, and techniques to identify potential detections and through

d () L L operator interaction provide the capability to the
2

(d-j-2 = 0.9, respectively. The processing gain operator to obtain an estimate of the probability that

UL (the energies in the operator-designated track would
relative to the traditional detector is independent of the have occurred due to noise alone. A technique
signal energy. Modest processing gains of 4.2, 2.5, similar to this has proved effective for associating
and 1 dB are predicted by the estimated ratio of correlation peaks over time in interarray processing.
deflections obtained in the last subsection for the The other general approach is to process the
cases presented in figures 43,44, and 45, respectively. beamformed data with automatic detection and
Even modest processing gains lead to clearly tracking algorithms and use the algorithms to alert the
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operator to cases of interest. In this approach, the model first-order detector can be used to handle
operator then examines the data using various display nonstationary interference. These techniques can be
options to confirm its interest, used whether the desired signal is broadband or

narrowband. Also, the search for narrowband lines
The development of optimal tracking algorithms for with or without associated broadband features, can be
Gaussian mixture model first or second-order based on use of traditional spectral analysis or
detectors remains to be done. At the present time, the recently developed time-frequency domain analysis
properties of the noise at the outputs of the detectors techniques.
have not been characterized. Tracking techniques
using Markov models of the transitional probabilities The adaptive locally optimum processing can also be
relating t[ xt spatial cell containing the signal to a used after a frequency domain beamformer. A
finite nu of previous spatial cells containing the general theory of these techniques has been
signal cu,. - oe investigated, presented. In particular, we have shown the

Gaussian mixture model second-order detectors to be
A preliminary analysis of the tracking problem has applicable to signals received with constructive and
been conducted. The results are presented in destructive propagation mode interactions.
appendix C. In this analysis, likelihood ratios are
assigned to tracks made up of segments over which The processing of beamformer outputs by different
samples can be coherently combined and models detection algorithms provides different information
movement from one segment to the next using about the signals present, narrowband and broadband.
random walks constrained to result in a net movement In general, it may be helpful to an informed operator to
in some direction. The movement in the chosen provide the capability to present displays of the
direction is analyzed through use of a one-dimensional various detection algorithms side by side, and possibly
model. The one-dimensional model results indicate superimposed using different colors for the displays
positive cell signal-to-noise ratios for the segments being overlaid.
before tracking provides gain over single-segment
detection. In a general context, the algorithms The output of a matched field beamformer consists of
moderatly improve detection over those provided by outputs for three spatial dimensions, a time dimension,
the individual segments and allows for the tracking of and a frequency dimension. For high-spatial and/or
targets from segment to segment, which aids in the high-frequency resolution beamformer outputs, it will
classification of detected targets. usually be necessary to combine energy from different

spatial cells over time to allow for detection of weak
Summary. signals. The algorithms to best accomplish this need

to be developed. The traditional technique of eye
A variety of traditional and recently developed integration may still have a central role in the
information processing techniques have applicability to multidimensional case. The operator could be
processing the beamformed output of large arrays of provided with database browse software, which would
hydrophones. No one technique is the best for all of allow for the display of beamformed output for any
the scenarios which may be of interest. The signal of surface defined in combined spatial, temporal, and
interest may be narrowband, broadband, or broadband frequency space.
with associated narrowband signals, the interference
can be narrowband or broadband. Automated classification algorithms could be

processing the outputs of the beamformer after
Adaptive locally optimum processing can be used to detection processing, to identify signals of interest.
improve detection of signals masked by interference. The operator could examine the thus identified signals
The adaptive locally optimum processing should be of potential interest using the browse feature.
used between a time domain beamformer and spectral
analysis. This allows adaptive locally optimum The information processing analysis has revealed a
processing techniques to be used to cancel central role for adaptive locally optimum processing in
narrowband interferers with slowly varying frequency ocean basin surveillance. The techniques can
and amplitude, whenever they exceed the background substantially improve the detection of weak signals
by 6 dB or more. In addition, the Gaussian mixture masked by other signals.
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Figure 29. Implicit model processing gain for a two-state Gaussian mixture model
second-order detector for 32 samples and high-state variance 16.
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Figure 37. Probabity of detection versus deflection for the two-state Gaussian
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Figure 39. Probabiity of detection versus deflection for the two-state Gaussian
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Figure 40. Probability of detection versus deflection for the two-state Gaussian
mixture model second-order line detector for y2 = 10.
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APPENDIX A
Global Processing Gain Bounds for Multistate Gaussian Mixture Models

In this appendix, we obtain global bounds for the processing gain for multistate Gaussian mixture model
first-order and second-order detectors. The bounds are obtained by relating the processing gain of any three or
more state Gaussian mixture model to the processing gain of a constructed Gaussian mixture model with fewer
states.

We would expect the processing gain achievable for a multistate model for the first-order detector to depend on
the low-state and high-state variances and the overall noise variance. We would like to obtain an upper bound for

a2 = 2 2 2 = 2
the processing gain-subject to aL =-and V PkG_ a Moving energy from a middle state to
outer states should make the distribution less Gaussian-like and increase processing gain, while moving energy
from the outer states to a middle state should decrease processing gain. It is rather easy to make this idea
precise, as we now proceed to do. This suggests that the maximal processing gain is achieved when the
interference is modeled by a two-state model with all the energy in the lowest and highest states, for which
processing gain is determined by the probability of the lower state and the ratio of the variances of the states, that
is, the dynamic range of the interference and the percentage of time with little interference. This, in turn, provides
a model-free criteria for when it is worthwhile to use adaptive locally optimum processing first-order detectors
rather than traditional coherent detection processing.

We can make precise the argument outlined in the previous paragraph by focusing our attention on any three
states of the an N > 2 state model. Suppose the states have probabilities PL, pM, and pH with variances

2 2 2 22 2 2 20 L <aG2 < .ad Let P =pL +PM+PH and a =pLaL +pMaM + PH,. Then, introduce the normalized

probabilities -L = -- ,m = E.-, and f. = - and the normalized variances a = P--a, b =- _02, and
P P P

A =- The conditions on the normalized probabilities define a probability region in three-dimensional
0 2

space as indicated in figure A-1. The probability region lies in the plane passing through the three points
(1, 0, 0), (0, 1, 0), and (0, 0, 1) and within the triangle with these points as vertices. The constant variance

restraint, apL + bfiM + CPH = 1, defines a plane passing through (, 0,0), (0,, 0), and (0, 0, 1). Figure A-1

shows the case when b > 1 and the intersection of the constant variance plane and the probability region is a line
intersecting sides B and C of the probability region triangle; when b < 1, their intersection would result in a line
intersecting sides A and B of the probability region triangle. The lines of intersection can be parametrized by the
low-state normalized probability by using, in succession, two substitutions: (1) pM = I -,-,H and' (2)

PH(C-b) =(I -b) -L(a - b), which is simply rewriting the sum of the state variances times their normalized

probabilities. Equation (2) can be rewritten as PL (b - a) = h1 (c - b) + (b - 1) > b - I because the normalized

probabilities are non-negative. This leads tOPtL > 0 for the geometry of case b < 1 and PL >  for the

geometryof case b > 1. The processing gain g, (p) is a simple function of the low-state probability restricted to
the line of intersection for bozn geometries. It is described by a line with positive slope.

Rewrite the upper bound for processing gain as follows

S 
2  

A2 2 I A I . I
2

Pk' - -L-+PM-"+PH-)+ E P(' T)
k-2I 2k remaining slates a;k

A-1
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2+T+p(-))+ Pk()
C2 a. b b c b remaining states

P2  -(Lc(b - a) + ac +PHa(b - c)) + L p(02)
-, &2 abc remaining sLates -rk

P 
2 .abe ( [c ( b - a ) + (a - b ) a + a c + (b - l)a)+raiig,,,P(-02 | 2

~ ~ bcremaining states y
and we are done because c(b - a) + (a - b)a = (b - a)(c - a) > 0 by the choice of the states.

As for the first-order detector, we would expect the upper bound for the processing gain achievable for a
multistate model second-order detector to depend on the low-state and high-state variances and the overall noise
variances just as it did for the signal of known structure. Once again, we would like to obtain upper and lowerS
bounds on g2(p, a2,...,p, a) subjectto a2 = ()2 = (, and E 2, = a2. As before, moving

k 
-I

energy from a middle state to the outer states should lead to a less Gaussian-like distribution and thus should
increase processing gain, while moving energy from the outer states to a middle state leads to a more
Gaussian-like distribution and thus decreases the processing gain. For the case of a signal of known structure,
the upper bound for processing gain is a linear function of positive slope as a function of the low-state probability
given the constraints. For the case of a signal of unknown structure, the square of the upper bound for
processing gain g2(P) turns out to be a parabolic function opening upwards as a function of the low-state
probability (see figure A-i).

As before, we focus our attention on any three states of the an N > 2 state model. Suppose the states have
probabilities PL, PM, and PH with variances a2 < 02 < y2 Let

A A2 2 2 2 = PL P- PH-
P =PL +PM +PH., =PL0 L +PMoM+PHH, PL =. , PM= . PH -

A P P P
P _(2 P C2 P2a= _- 2 b = . , andc= -a2.2

The conditions on the normalized probabilities define a probability region in three space as indicated in figure A-1.
Figure A-1 shows the case when b > 1, and the intersection of the constant variance plane and the probability

region is a line intersecting sides B and C of the probability region triangle; when b 5 1, their intersection would
result in a line intersecting sides A and B of the probability region triangle. The lines of intersection can be
parametrized by the low-state normalized probability by using in succession two substitutions:
(1) PM = 1-PL--H and (2) PH(c -b) = (1 - b) -pL(a - b). Equation (2) can be rewritten as
PL(b-a) =p(c-b)+(b- I) _b- ]. This leads to PL > 0 for the geometry of case b <I and

PL > b-1.. for the geometry of case b > 1.L- b-a: 
-

For the first factor of the square of the upper bound for processing gain

*Pk 4=P p I . + i L +p H)+ P ( ' )
k -y & aPb 2  PC2 4

k' remaining states G

=p'4- (-aa2  b 2 +b 2  1 ' C2 b Pk( 4
remaining slates Uk
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=P a' b (OLC2 (b2 -a 2 ) +a2 ¢2 +pHa2 (b2 - C2)) + _ Pk(-)=P 4' a~b2c 2 4

a remaining states

A3 n 1 (L(b-a)(c-a)(bc+ba+ac)+a2c 2 +a 2(b+c)(b- 1))+ n) a
=P 4 a2b2C2

(b remaining slates Cyk

_i en b [p(bc+ba+ac)+a2c2 +a2(b+c)(b- I))+D]&4 a2b2c2

G.4

where p = (b -a)(c- a)iL and D = (f 3  an bA ' )).
a0~~ remaining ssates ak

For the second factor of the square of the upper bound for processing gain
kS CFn -~(4 o.4

a 2 2 +PHC) + a2 IPk- - 2 -A 2[ b La +pfb +p )Pk(a-) 1
k-- I an Pan remaining states 0n

4 .4
a 2a)2kC 21

=2[--j4{kL(a2 -b 2 )+b 2 +PH(c -b2)} + A pk-4) ]-1
pan remaining states an

a
- - 4 [2{p + b + c- bc) + E-F,
pan̂  4 4 A 4

where p is as above, E = 2(- Pk) and F

pan remaining states an pan

In preparation for calculations to follow, we need 2+ E- F > 0. Note that

- 4 4" ,N 4,O.

2(--.-)+2 1_ Pk(") 12 2 pk('4 ) - 1 > 1 because/ < land
po.. remaining states an k-l an

Xpkok > (Xpka2 2 = an by the Cauchy-Schwartz inequality.

The coefficients of the normalized low-state probability are obviously positive for both factors of the upper bound
for processinq gain so that the upper bound for the processing gain squared is a parabola opening upwards. It is
then clear that the maximum of the upper bound for processing gain as a function of state probabilities occurs
when one of the probabilities is zero. It follows that an upper bound for an N state model is less than that for an
N-1 state model, and thus by induction for a two-state model. However, more is true, namely, the parabola is
opening up over the allowable values of p so that the upper bound for processing gain is everywhere an
increasing function of the low-state probability for N > 2. We proceed to prove this.

Suppose that b < 1. To show that the critical point of the parabola occurs when p < 0, it suffices to show that the
coefficient of p in the product of the two factors is positive because the coefficient of p2 is positive. To conclude
this, observe that the coefficient of p is a quadratic polynomial in c with the coefficient of c2 given by
2a 2 +2(1 -b)(b+a) >0 and that of c given by (b+a)[2b+E-F+2(b- 1)a]. We proceed by showing
that the critical point of the parabola in c is < 1 and showing that the coefficient p > 0 when c = 1. That the
critical point is as desired follows from 4a 2 + 4(1 - b)(b + a) - (b + a){-2b - E+ F+ 2(1 - b)a) using
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a < b < I and 2 + E- F > 0. For c = 1, the coefficient of p is positive follows from
(2 + E - F)(a + b + ab) + 2a 2b2 + 2D > 0, which can easily be established by directly evaluating the coefficient
of p in the product of the factors before expressing the coefficient as a quadratic in c.

Suppose that b > 1. In this case, it is convenient to introduce f defined by p =P + (b - 1)(c - a) so that the
lower bound on p can be replaced by >i 0. To show that the critical point of the parabola occurs when fi _ 0,
it suffices to show that the coefficient of in the product of the two factors is positive because, as before, the
coefficient of 2 (which is the same as that ofp 2) is positive. To do this we observe that the coefficient of f is
a quadratic in c with the coefficient of c2 given by 2a2 +2(b - 1)(b+a) > 0 and the coefficient of c given by
(b + a)[2(b + a- ab) + E- F]. Since the coefficient of c2 is positive, it suffices to show that the critical point for
the parabola in c is < band showing that the coefficient ofp is positive when c = b. That the critical point is
as desired follows from 2b{2a 2 + 2(b - 1)(b + a)1 > -(b + a)[2(b + a - ab) + E- F], which is equivalent to
4ba2 + (4 - 2a)(b - 1)(b + a) + (b + a)(2b + E - F) > 0, which is clearly true because
2b + E - F > 2 + E - F : 0. It is easy by direct calculation to evaluate the coefficient of when c = b and
show that it is positive by using the same inequality as in the previous sentence.

The argument presented in the last paragraph shows that given any N-state model with N > 2, it is always
possible to construct a two-state model (X1 = ), a 2(X2, and =1k 2 = a2 such that

2, .. p X2 AX, 2 )92(P 1, I) g2IV < 9 1 P2, a2). A global bound for any N-state mixture model of two or more
states is obtained by observing that the constraints completely define the two-state model obtained by the
construction process. The probabilities of the two states can be calculated from p. + (1 -p)0. - .2  Solving2  

2 "2
20.20.2andl- 2 2*Thenp(- )2+(l-)

this equation for p and I -p yields p a 2 and I-p T.2). --. 2" - ( -2
Pa = 2 2  2 2

a- - P)( 22 221 ]((L )2 -1) -[ ]((-L ) -21)C ;- I- ) 0 2 0 2 _ 22C C 2 _ C

LL-HL H L H,,-L a,
+- ) )( a2 _2)0.2(a 2 - + a2), provides a formula for the first factor, while by easy algebra the0L 0H

second factor can be written as 2[p(-L )2 + (1 p)(L 2 - 1 + 2L(a2 2 2 )(a 2 -a 2 ).
a2(2  a;4  L H

These expressions exhibit the upper bound for processing gain for a nontrivial two-state model as positive.
22

Letting a = L andb = a, it follows thata2  a 2 ,

--ab) 1 [[a 2b2 + (I -a)(b- 1)(a+ b)][l + 2(l1-a)(b- 1)]

which shows how the two-state processing gain upper bound depends on the normalized variances.
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APPENDIX B
Processing Gain Bounds for the Middleton Class A Noise Model

In this section, we derive processing gain bounds for the Middleton Class A noise model. To make this appendix
self contained, we recall a few basic facts about the Middleton class A noise model. Middleton's class A noise
model is a Gaussian mixture model with an infinite number of terms. Middleton has aiso introduced noise
models of class B and C. These models describe noise for which the individual noise sources are received at
certain times and not at others. A noise impulse is categorized as class A if it produces a decaying response
from a receiver, the case for undersea surveillance applications, and class B if it produces ringing of the receiver,
and class C if sometimes it causes ringing and other times not, often the case for communications receivers.

Middleton (1977,1983) and Middleton and Spaulding (1983) derive univariate probability density functions for
class A and class B noise, by supposing the noise consists of Gaussian background noise and interference form
discrete sources which are Poisson-distributed in space. (References in this appendix are listed at the end of the

I I -A " -- -

body.) The density function that they obtained for class A noise is given by p(x) = -e --. e

We assume that a 2 = 0 "2 is the variance of the background noise. This probability density function is formulated
for real quantities and we wish to use the noise model to describe complex samples. To do this, we introduce

I'll

the spherically invariant probability density function p(Iz 2) = _- e, A -e 2 and interpret the

parameters of the model as applying to the norms of the samples in place of the real quantities of the original
formulation. In other words, we use the Middleton class A noise model to describe received interference power.

We provide a physical interpretation of the Middleton class A noise model by assuming that each sample belongs
to a single state. The states for the Middleton class A noise model are then determined by the number m of
discrete interference sources active at any given time. In the equation for the probability of the being in the m-th

Atm

state is p.m(A) =e-A  This is the probability that interference generated by m discrete sources is received.

The m = 0 state describes the Gaussian background noise level when the background noise does not contain
interference from any of the discrete sources. The expected number of discrete sources for which interference is
received is A. Middleton calls A the overlap index, which he defines as A = rD, where r is the expected number
of sources whose interference is received per unit time, and D is the expected duration of such a reception. For
this model, the background noise has variance Oa and the expected received noise plus interference power for

the m-th state is given by a.2 = 0 + - with -the expected power received from each interferer. It
A A

follows that the overall noise variance for the model is 02= O+L2.

The processing gain upper bounds obtained for Gaussian mixture models for signals of known and unknown
structure can be extended to Middleton's class A model by an easy limit argument. Let

a2 _a+) +0 ~2 = - - R.(A, F). Then the processing gain upper bound for the Middleton class A noise

0 A A

model and signal of known structure is g, (A, r) = _ pm(A)Rm(A, F), while the processing gain upper bound
M=0

for the Middleton class A noise model and signal of unknown structure is

(A,r)= j__.p,.(A)R2(A,F)1[2 pmRP(A,") i].
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We now show that as A and F tend to infinity, both the first-order and second-order gains tend to 1. In other
words, there is virtually no gain over classical processing when A or r is large. We first consider the case of
g,(A,U) and show that limg 1 (A, ) = l and limgi (A, r) = 1.

A-+-r-400

To prove the first limit, we use Chebychev's Inequality (Guttman, Wilks, and Hunter, 1971, p.94) and some basic
properties of the Poisson distribution (Guttman et a1.,1971, p.116). Recail that Chebychev's Inequality states that
for any probability density function p with mean I and standard deviation a, and any k > 0,
p( IX- g I > ka) < -L. The Poisson distribution with parameter A is given by p(m) = e-AA A, m = 0, 1,2,

V  "M1

The mean and the variance of the Poisson distribution both have value A. Let X(A) be a positive function of A

such that lirA) - 0 and lim- = 0. Examples of such X(A)'s are A 3 and - Then using ChebycheVs
A-+- AA-(InA

Inequality, , e-A-- < .Recall that g1 (A,") = -A"o +T)hM = e " m+A- " Therefore, whenI mA I> .(A) FA M.2(0

(1+ A
" > 0, and using the fact that m+ nA is a decreasing function of m,

m+Ar
1 ) (I+17)A ( (I+")A + 1 (I+U)A

( X2(A) A+X(A)FA+Ar (A-(A)j +AF) X2(A) AU

Now observe from the defining properties of X(A) that the first and last terms of the above inequality tend to 1 as
A -- cc to conclude that limg (A, 17) = 1. Note that in evaluating limg (A, 17), the limit cannot be taken inside

A-+- A--

the sum since lime - A A ' ( +1) = 0 for each m and the sum would then be 0.
A-+- m! m +AU

We next prove that limgI(A,1) = . Observe that lirn (_ +__) = Iand (1 +F)A =1 m -A From the
ri- r-.- m+AF m+AF m +A-'

first equality, observe that limgi (A, U7) = I is true if we formally interchange the sum and the limit. However, as
I-+_

we noted previously, one must be careful that the operation of interchanging the sum and the limit is justified.

From the second equality, observe that is an increasing function of I' when m > A. Therefore,
rn+AU

limg(A,)= Jim Y e - AA" ( +)A+im YeAA (I +F)A eAAm eAANr-.= r- , m m+F + lim] -A  w- ! + Y, =- 1. Note
r +A r-.. > m! m+AU rM m,>A m!

that the first limit on the right converges since there are only a finite number of terms in the sum and the second
limit converges by the Monotone Convergence Theorem (Halmos,1957,103, p. 112, Theorem B).

Consider the gain for the second-order detector. Recall that

g2 (,,F)-[ -A'_'m'i.(1+ F)A )2[2 e-. ((l+AU )211

11-=0M+U IL O m!o i (I +F1)A
From the properties of the Poisson distribution, e -AA m =A and Ye' - (m -A =A.

Therefore, e-A -Am 2 = A 2 + A.

Then

e_-AA'_.(t+AF )2 1 e I +(2F+F 2)
m,=0 M! 'T +F) (1 +F) 2 [_A;=2 M! ,=o M!
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l + F CL(A2 +A)+2F+F2 = 1+
(1 +) LA2 1 (1 +1) 2A

Thus,

A1mm+F)2A +(I+F)2AI.

Clearly, the second term inside the radical tends to I as A or F - -c. The first term inside the
radical can be shown to tend to 1 as A or r -4 -c in exactly the same way as for gI (A, F) and we omit the
details.

We now determine the numbers of terms needed to obtain good approximations of g (A, I) and g 2 (A, F). The
result that we obtain states that for any fixed A and any r, using 24 + I terms in the sum will give very good
approximations.

We first consider g1 (A, F). Recall that Stirling's formula states that

12n )12-(-e)" forn=l1,2.2/-f e)<" < (12n- I ...

Let A > 0 be given. Let N = A if A is an integer and let N= [A] + I otherwise. We have for m > N that

A" A<AANN<AN ,,-v.N( 12N ()N AN 12N . ' eN Im. N.- m!-N. "1 ~) =f2 12- 1 )-;w. When m = 2N,
M. M! fJ2-WL(-)m mn "e2NN

(eN v = (  )2N and when m > 2N, 1"<' = EeNm ,,,+ <eN1N < .Therefore, for
M N ~2 )m)I~ mF7f - e m-2~

inA> 2N, Am- ( 12N N _Le )2N(L).-2,.
m! - M. 12N- I /m- 2 2

HAenc A (m+F)A <AN(I+ FA( 12N e()2N L -2N
Hence I m! m+AF - N N+AF 12N-1 2 -2N~ r/ii 2

<AN (1 +F)A( 12N )() 1...I
- M N+AF 12N- 1 2 F2

and

I AmQ+ r)-4 2 An (1+F)A A "(i +F)A
m m! m+AF =O m! m+AF 2 m! m+AF

AN (I+F)A ( 12N )(F e< 12N )( _L Am(1+A
N. N+AF 12N- 1 2I2N l 2  

1  mA=

Therefore,
A- (I+")A

oil m+AF
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A (I+r)A

g,(AFr) .1 m+Ar 1 2 (L 2Im=og10o_2S2 - in(10) J-2 12N-I12- 1
e -A A ' 

- (0 + lAL . A m (i+r )A

ml i"+AF ml m+AF

For example, a 31-term approximation is within 0.01 dB for 0 < A < 15, and for 60 terms, the approximation is
within 0.00003 dB for 0 < A < 30. Note that the above upper bound is very conservative since we have shown
that the tail of the series is much less than the N-th term alone.

Consider g2(A,F). Recall that g 2(A, F) = Y, e_-A A-'( ((I + )A )][1+ 2 ]IIIA1F m! m1 + (I +I")2A "

Using the exact same computation as before,

10log g 2(A, F)
72N Am'_(I+flA I[1+ 2]

,,V ,+Ar L"+ (--'

= 5log 0((+r',1)2 InO0) 1-( 12N )(_

Figures B-1 and B-2 present processing gain of first-order and second-order detectors for the Middleton class A
noise model. Each figure contains a three-dimensional plot of the gain in decibels and a contour plot of the gain
in decibels. The plots were generated based on the above considerations by using the first 31 terms of the
infinite sums in g, (A, F) and g2(A, IF) for 1 <A < 16 and 0.01 < F' < 0.3.The plots indicate significant gain for
small A and low background noise as expected.

A natural two-state model to approximate the Middleton class A noise model has low state variance equal to 20
and low-state probability e- A . The high-state variance is then determined by enforcing the condition that

2 = a; O2e -A + a ( - e-A), which implies that 2 = (I - e-A)+
0 0 (1 -e-A)

Note that for small A, I - e- A = A and the above 02 is close to the high state variance obtained for the
two-state approximation of the Middleton class A noise model described in appendix A to the companion report
"Gaussian Mixture Models for Acoustic Interference".

For this two-state model and signal of known structure, an uoper bound for the processing gain is

, (A, r) = e-A( _ + e-A)2( + (_ ) "

For this two-state model and signal of unknown structure, an upper bound for the processing gain is
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-Figure B-i. Processing gain of a first-order detector for Middleton class A noise model
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Figure B-2. Processing gain of a second-order detector for Middleton class A noise model
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g2(A,r) = f1(A, r)(2fAA,r)- l) with

f(A, r) = e-A (-+)2 +(1 -e-A)3( 1 +F )2

n I+F(I -e-A)
and

f2(A,F)=e-A( r )2 + 1 (1+r(1 -eA)I~r (I-e-A) I +F

A natural three-state model to approximate the Middleton class A noise model has low-state, middle-state, and
high-state probabilities and variances

-A, 2 -A y2 + - -eA 02 eA_4
e ,aO,Ae , o+ , and I e Ae - , + 1 -e-

For this three-state model and signal of known structure, an upper bound for the processing gain is
h2(A,)=e-('+ r+A e- i+r( - )+(1-Ae-e-A)2( (1 )+

17 I +A17 (I -e-A) T(1 -Ae-A

For this three-state model and signal of unknown structure, an upper bound for the processing gain is

h2(AlF) = if, (A,r)(2f2(A, n)- i) with

f(A,-)=eA( I )2+A3eA( l+r )2+(lAe--4_e--)3((2
I'"1 +AF I e-A) + I(1 -Ae-A--)

and
f2 (A,r) e e-A( Tr)2 + A-le-A( I+A)2 + (I -Ae-A - e-A)-' I -e-) + [I(1 -Ae - -e-) )2.

~ AeA~eAYN~le)+Fle)2
1 +IF I +T' 1 +17

Figures B-3 and B-4 compare the processing gain bounds obtained for the first-order and second-order detectors,
respectively, for the two-state and three-state approximations to the Middleton Class A noise model and the the
31-term approximation of the Middleton Class A noise model. The comparisons are contour plots for abscissa A
and ordinate I" satisfying 0. 1 _< A _ 20 and 0.0 1 _1- < 0.5. The contours are for differences between the
processing gain bounds in decibels. For the range of mixture model parameters surveyed, the upper bounds
were very close for a first-order dstector, less than 0.8 dB for the two-state model and 0.6 dB for the three-state
model, and a comparison of the plots indicates further that they never differed by more than 0.2 dB gain. The
same comparison for the second-order detectors, indicate slightly larger maximum differences for the two-state
and three-state models processing gain bounds than exhibited for the first-order detectors, a maximum of 1.4 dB
for a two-state model, a maximum of 0.8 dB for a three-state model, and a gain of up to 0.6 dB for using a
three-state model instead of a two-state model. To the extent that the upper bounds for processing gain
estimate the achievable processing gains, these results support placing emphasis on fitting actual data with
two-state and three-state mixture models.
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Figure B-3. Comparison of processing gains of
the Middleton class A first-order detector and finite
state approximations.
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APPENDIX C

Performance Loss Due to Target Motion

Introduction.

Detecting quiet targets in a surveillance system typically requires processing that integrates beamformer outputs
over many samples in order to accumulate sufficient signal energy to detect. This integration often requires
tracking for large aperture arrays with fine spatial resolution, because a moving target could travel through
multiple spatial cells during the integration time required for detection. If the target's velocity is unknown, as it
generally is before detection, the integration time has to be limited to the length of time a target is likely to remain
in a single cell unless tracking algorithms or eye integration is used.

Figure C-1 illustrates the need for combining spatial energy for different spatial cells to achieve detection in a
scenario similar to some modeled by the HGI simulator. Figure C-1 displays the cumulative probability
distribution for the number of spatial cell boundaries crossed by a randomly chosen target track over one-half
hour. The target's initial position has a uniform random distribution on a disk of radius 1000 km, with the spatial
cells being 1-degree by 2-km annular sectors, and the velocity distribution is uniform on a disk of radius 28 km/hr.
Depth and frequency are fixed and known. Note that in this example very few targets remain in one cell, and
about half of them cross at least three cell boundaries. This example suggests the need for combining energy for
multiple spatial cells for large surveillance arrays employing matched field beamforming or similar beamforming.

The purpose of th . appendix is to present analysis and simulation results showing the extent to which unknown
target motion degrades achievable detection performance in large surveillance arrays.

One approach to combining energy in different spatial cells is track-before-detect. References to examples
appear in the next few paragraphs. In general, a tracking detector hypothesizes various possible target motions
and evaluates a detection statistic conditioned on each target motion under consideration. When the statistic falls
in a critical region, both the existence of the target and its velocity are reported. Since the number of possible
target motions is huge, tracking detector implementations require a great deal of processing power. Algorithms
based on similar signal and noise models are mainly distinguished by the shortcuts and approximations required
to reduce the processing loads on the computers used to implement the algorithms.

Tracking detector implementations can be grouped in two broad categories: track initiation techniques and
probability map techniques. The former compute detection statistics for potential tracks, which are initiated by
energy peaks crossing a low threshold and are terminated when the track fails some kind of M-oLt-of-N rule
designed to monitor persistence of signal power. Examples include Blostein and Huang (1991), Bruton and
Bartley (1986), Nagarajan, Sharma, and Chidambara (1984), Shensa and Broman (1985), and Broman (1992).
(References for this appendix are listed at the end of the body of the report) These track initiation approaches
are appropriate for low dimensional problems, but they may not scale up to the dimensions of HGI beamformer
outputs. They generally employ complex decision logic and require a good deal of tuning and adjustment of
error-handling heuristics in order to achieve good performance. See for examples Gibbons et al. (1987) and
Struzinski (1978) and the articles referred to therein.

Probability map techniques form detection statistics for a large number of designated possible target motions,
without picking and choosing the motions based on observed signal energies. This approach uses simpler logic,
but can require more processing power than track initiation techniques. On the other hand, the processing
required is highly parallelizable because of its simplicity. The dynamic programming implementations in Kessler
et al. (1988) and Barniv (1985), the bounded hop pixel statistic in Wei, Zeidler, and Ku (1992,1993), and the
random walk approach introduced in this appendix, are examples of probability map schemes. Other comparable
approaches are found in Mohanty (1981), Chen (1989), Cowart, Snyder, and Ruedger (1983) and Porat and
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Friedlander (1990). Most pattern-matching and interactive approaches are also in this category, but are not

considered because their performance depends on the details of the beamformer.

The State Space.

We assume that the inputs to the tracking detector are beamformed, matched field processors, Fourier
transformed and normalized by some kind of noise spectrum equalizer or by an adaptive locally optimum
processing algorithm. Accordingly, at each time step the detector receives an array of spatial cells that may
consist of noise or signal-plus-noise measurements. The spatial cells are parametrized by frequency, discrete
target range from the array, bearing, and depth. Generally, the particular coordinate system used for this state
space depends on the beamforming, but a state space having dimension of at least 4 is likely for an HGI array.

The question arises whether the dimension, or the precise form of the coordinate system of the state space is
important for evaluating the effect of target motion on detection? Intuition suggests that the principal factor
influencing the performance of most tracking detectors is the amount of noise introduced, instead of signal plus
noise, due to the inclusion of measurements from state space cells not containing the target. Uncertainties about
the true target path bring in more noise-only measurements in a higher dimensional space than in a lower
dimensional one because each spatial cell has more neighbors. We suppose that the driving factor is the number
of extraneous noise-only measurements introduced by path uncertainties, and only secondarily the dimension of
the space in which tracking is performed. Accordingly, we focus on the number of cells involved, and for
simplicity's sake perform simulations in one dimension.

Signal Model.

The model chosen for the narrowband signal and the noise for our simulations is chosen to illuminate essential
characteristics of the track-before-detect problem. The results obtained are not expected to depend strongly on
model details. In particular, the structure of the tracking detection algorithm presented is applicable to
measurements for which a likelihood ratio can be computed. In particular, we suppose that the measured signal
and noise is sampled and reported at intervals of TIN seconds, so that for each spatial cell, a window of T
seconds of data can be input into an N-point real Fourier transform.

For simplicity's sake, we assume first that signal energy from each target appears in only one state space bin at
each time step. This requires that the frequency of the signal be centered in its Fourier transform frequency bin
so as not to leak out, and that moving targets jump discretely from one spatial cell to the next in between the T
-second windows. Granted that real targets move continuously between spatial cells, it will become clear later
that failures of this assumption are only a minor problem for the random walk approach introduced in this
appendix. Of course, they could be more serious for other approaches that do not average results from
neighboring spatial cells. The time interval T must be short enough to justify the assumption of a motionless
target in the spatial processing and the assumptions of linear phase and constant amplitude of the signal during
each T-second coherent processing window. Therefore the analysis applies to those cases when an adaptive
locally optimum first-order detector is used to process the beamformer outputs and not to the cases when an
adaptive locally optimum second order detector is used to process the beamformer outputs.

On the basis of this no-leakage assumption, we can now describe in standard terms a detection problem for each
spatial cell, each frequency bin, and each T-second interval. Assume the spectrum equalized noise samples g(t)
at t = nT/N for n = 0, ... , N- 1, have zero mean, unit variance, and independent Gaussian distributions. We
postulate a random sinusoidal signal s(t) = ar cos(21rft + 21r0), where f= kIT for an integer k strictly between 0
and N/2, the phase offset 0 is uniformly distributed on [0, 1). The amplitude factor r is Rayleigh distributed with
parameter a" = 1, and the factor a is known. Then we measure z(t) = g(t) or g(t) + s(t) under hypothesis H0 or
H 1 , respectivelv.
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Modeling the phase offset and the amplitude as constant for exactly T seconds and then changing
instantaneously to new random values for the next T seconds is an approximation that is analytically tractable,
and it allows the phase and amplitude to vary randomly. This is the weakest assumption that can be made on
moving targets and has consequences that we wish to investigate.

In analyses like that in Pryor (1971), processing gain from incoherent averaging is computed based on an
assumption of constant, known signal power. As long as the detector is only thresholding measured energy, this
common assumption is inconsequential, but for a tracking detector, the randomness of the signal power is
important.

Based on the assumptions introduced above, the likelihood functions for the measurement N-vector z is

P(zIHO) = (2)'Ne -  , z(nT/N 2 .Recalling that P(6) = 1 and P(r) = re 2, we find that

P(z, r, 0 IH)- (21i) 2 e Lz(nT/N- e N2Lt0)] 2 re-2 The marginal density function for z can be
computed from these equations directly, with some difficulty. Simplicity is gained by transforming variables as
follows: x = rcos(21cO),y = rsin(2nO),dxdy = 2itrdrdO. Then

(2c)(N+ 2) IIN_ [z.-axco(nn/)asin(2nkn/A)] 2  1 _X2_Y2 -- GP(z, x, yIHl) = (21c-2 e-- 2 n "ces(n/)a2 =p(zHo)(2r)-e-

where we expand the exponent G as follows. Defining N-vectors Ck and Sk, whose n-th components are
cos(2Wtkn/N) and sin(27rkn/N), respectively: G= IIz-axck +ayskll2 -lz1 2 + x 2 +y 2

=x 2 - 2axCk . z+ a2x 211ck l11 +y 2 + 2aysk . z+ a2y211skII 2

(1 +a2llckll2) x acZk-z 2 a 2 (Ck • z) 2

1 +a2l11ckl 2  1 +a2 llCkIj2

+(l+a 2 sk12) + ask*z a 2(SkZ) 2

1 +a2112 I +a2 ISklI2

In this form it is easy to integrate out the x and y dependence to obtain the likelihood ratio:

P(z,x,ylHl) dxdy = 1 !-J e-±Gdxdy

P(zIHo) -1
I a

2
(ckz)

2  
+ a

2
(s'Z)

2

= (1 + 2 a11Ck12)-' 2 (1 +a211sk 112)-"e 2  '+21k111 +2 ,+2,,1t112

Recall that lIck 112 = Is II2 = N and that the k-th coefficient of the discrete Fourier transform of the sequence z is2 a

(k) = z. (Ck - isk). For notational simplicity, let 4(a, N) = 2 +a,2
2

The above expression for 1(z) can then be written 1(z) = (a,N)e(a~ lz *)I . Since a and N are fixed, we

see that the likelihood ratio is a monotone function of the power in the k-th frequency bin.

Next, we determine the distribution of IZ(k) under H0 and H, , and compute the expected signal-to-noise ratio
of the detector inputs. Under H 1 , the signal plus noise case, the measurement vector z = g + axck - aysk
consists of N zero mean Gaussian distributions, so any linear functional of z has a zero-mean GaussianZ.C, _ -Ck Z.S, _ 9'Sk
distribution. In particular, Zk _c IkI +x llck l' IIsII , - aylIskll,

liC [Ck11 lklIIII ISkII
Var( z =1 +a211ck11 2 - 2  and Var__-_k__+a211s_ 12=

a nd N) 2 (a,N)
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Remembering that a Chi-squared random variable with 2 degrees of freedom is just an exponential random
variable with mean 2, we conclude that 12(k) 12 is exponential with mean N( I + -) under H,. We obtain the

2
distribution for I (k) 12 under Ho by setting a = 0. This means the presence of a signal in I(k) 12 changes the
mean of its exponential distribution from N to N( 1 + Na2 /

The signal-to-noise ratio (per frequency bin, not per hertz), including the processing gain due to band pass
filtering, is easy to compute. The signal power is -a2r2 with expected value a2. Letting g denote the vector of N
noise-only inputs, the expected signal power in the kth frequency bin is

IJ(gIcOI ) 2 +  Is II 2

Consequently, the ratio of expected signal power to expected noise power is La2.

Known Path Detection Performance.

A detector based on the Neyman-Pearson criteria employs the likelihood ratio as a test statistic:
1(z) = -j-(a, N)e , O) kI 2, where a and N are assumed known a priori, or else are accurately estimated from
other data.

Now, to obtain a detector for measurements like z, we set a threshold on I Z(k) 12, or on 1(z), or on any other
monotonic function of the likelihood ratio, in order to select the best track. But because of the tracking to be done
below, we need to handle convex combinations of likelihood ratios, and the addition operations involved prevent
our transforming the likelihood ratios nonlinearly, as we might otherwise do by adding logarithms and replacing
products of likelihood ratios by sums of "energies." This is the reason why the tracking detector under discussion
should not be thought of as just "summing energy over time" for an unknown target track.

Assuming a known target path, the likelihood ratio for M successive measurements taken along that path is
-12 a

2

, =Ij(z). The random variable ln(XM) +uMln(I + ) is then equivalent to 2 times the sum of M
exponential random variables with mean one, and it has a F distribution with parameters M and 2/(na2 ). By
reversing the transformation, the distribution for XM can be derived from the Gamma distribution.

We now describe the Neyman-Pearson detection performance of our algorithm for the known path case by
means of these distributions. An important point arises because our surveillance system does not just process M
measurements and then shut down, it continues with the next M. If a system designer doubles M, he not only

doubles the amount of information available at each detection opportunity, but he also halves the number of
detection opportunities per hour. Both effects are significant for system performance. All of our performance
results are formulated in terms of the minimum detectable signal level associated with a given operating point
(PD, PFA), for various path lengths M. In evaluating such a minimum detectable signal level, is it appropriate to
try to fix the probability of false alarm or detection per detection opportunity, when the length of the detection
opportunity itself is being varied? A fair assessment might be based on detections or false alarms per hour
instead of per opportunity.

To help assure that equality of minimum detection signal thresholds implies equal detection performance on
minimally detectable signals, we allow the operating point (PD(M), PFA(M)) to depend on M, and attempt to
formulate an appropriate equivalence condition to relate operating points chosen for different values of M. Our
criteria is that nominally equivalent operating points should generate approximately equal false-alarm rates per
unit time. If, say, we are comparing detectors with path lengths of M = 1, 2, 4, 8, 16 points, then it seems
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appropriate to assume that the 161M detection opportunities occurring in an interval of length 16 are combined
with an "if-any" combiner, which declares a detection if any one or more of the 16/M subintervals declares a
detection. In this case, identical detection statistics for each combined 16-point detector can be guaranteed by
requiring that

[1 -PD(M)]= I -PD(16) and [I -PFA(M)] = I -PA(16).

More generally, we require that [ 1 - PD.FA (M) ]1/M be invariant over M for equivalent operating points.
Checking the consequences of this rule, we see that for small PFA, the false-alarm rate per unit time is

Pr. (M I -[I - PFA(1)] PFA(I)
approximately M M 1 just as desired.

As a specific example, the following PD settings are considered equivalent under this rule:

M 1 2 4 8 16

PD(M) 0.159 0.293 0.5 0.75 0.875

Figure C-2 shows the strength of the minimum detectable signal level in decibels per bin, i.e., 10 log10(c), for a
known path detector achieving PD(1) = 1/2 (or equivalent), given various values of M and PFA(1) (or
equivalent). From the figure we conclude that for fixed PFA (1), the minimum detectable signal level in decibels
seems to be approximately a linear function of log(M), and that the level decreases about 0.5 to 1 dB per
doubling of M. A similar graph, as shown in figure C-3, based on PD(4) = 1/2 and various PFA( 4 ), looks almost
identical, except for the level being shifted 4.2 dB lower.

Figure C-4, by contrast, plots the same minimum detectable signal levels against PFA (A) for a fixed PD(M).
This shows the effect of increasing the path length M, without compensating for the change in the number of
detection opportunities per hour. As expected, the curves are more widely spaced than in figures C2 and C-3,
illustrating the benefits expected from increasing M in a system that is shut down after the first and only detection
opportunity.

Intuition suggests that the minimum detectable level of the tracking detector might be improved to an arbitrary
level by increasing M. This turns out to be false, understood in terms of minimum detectable signal level for fixed
(PD(1),PFA(l)). An approximate limit as M increases without bound can be obtained by means of an
asymptotic expansion (Prof. T. Sellke, Stanford, private communication):

, , , P F A - I

lim cM + 1 (PI-- , where cM is the minimum detectable level. The limit is in terms of the Lambert
M--+- (PD-1)

function W(x), which is defined by x = W(x)ew(x) for x > -le. The limit found in this manner is plotted as the
"'M large" curve in Figure C- 2, where "large" is interpreted to mean M > I/PFA. This curve has a horizontal

asymptote of 5.2 dB for small PFA. It is not known whether this limit is approached monotonically nor that the
limit is a bound for the actual performance, although, this is probably the case. If this were the case, even given
perfect knowledge of the target path there would be a limit to the performance gain obtainable by combining
measurements over time.

Figure C-5 displays the thresholds on a Gamma distribution for PD( 1) = 0.9 and PFA( 1) = 0.5 and various M.
The curves appear linear. If they were linear (and they are not), then the limiting MDS for large M would be A
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the ratio of slopes minus one. Unfortunately, poor numerical conditioning prevents the computation of these

curves for small PFA or large M.

Motion Models and Combining Likelihood Ratios over Spatial Cells.

Most target motion models treat velocity as approximately constant, estimating 2d parameters in a d-dimensional
space, for position and velocity. Normally, either highly accurate measurements or some idea of target mission,
plan, or tactics are required to estimate acceleration. Acceleration estimation may be appropriate in some aircraft
and missile applications, but for undersea surveillance applications it is not considered necessary.

Wei's and Zeidler's (1992,1993) bounded hop motion model is an example of a model estimating only d
parameters. Target velocity is assumed bounded by an a priori maximum speed, but is otherwise free to change
arbitrarily from time step to time step. This approach was previously investigated under the HGI project, and
concerns arose about whether the performance was relevant, mainly because it did not seem to take any
advantage of the consistency in target velocity that one would expect to see for submarines. Accumulation of
likelihood ratio statistics under the assumption of known target velocity requires forming the product of the
likelihood ratios of the measurements at each time step at the predicted position of the target. The following
recursive formula computes the accumulated likelihood ratio at time step M+ 1 and position XM+I , from the
individual likelihood ratios for the measurement at XM+I and the accumulated likelihood ratio from the previous
time step and the previous position: LM+I (XM+L) = JM+1 (XM+I)LM(xM). If the velocity is not known, but only
bounded by B spatial cells per time step, then Wei's and Zeidler's algorithm accumulates a pixel statistic, (which
does not seem to be a likelihood ratio for M > 1) by the following formula: [LM+I (XM+I) =
lM+1 (XM+i) max 10-XM , I LM(XM). Only one likelihood ratio is maintained for each spatial cell at each time
step. Performance results quoted below include results from Wei's algorithm, which are treated as a baseline for
comparison.

Random Walk Paths.

A likelihood ratio statistic with better detection performance than Wei's pixel statistic can be based on a target
motion model of a random walk on a d-dimensional grid, with independent identically distributed increments. The
extra information used is consistency of target velocity over time. A random walk modeling ignorance of target
velocity models the velocity by a distribution with mean zero and substantial variance; a random walk modeling
fairly good knowledge of velocity models the velocity by a distribution with nonzero mean and small variance. The
requirement that the target velocity distribution be discrete and not vary from time step to time step imposes a
lower bound on the variance of the average velocity, but this bound decreases like 1/A and is not onerous.

Let the state space cells be points on a grid in a discrete vector space, XM E Zd. Consider the random
generation of the target path to occurring two stages: first, a starting point and a random walk are chosen, the
walk only roughly determining the average velucity of the target, and second, an instance of that random walk is
chosen to generate the exact path taken by the target. Consider a random walk, W, starting at x I, with
increments, or steps, with density P(Ax), which does not vary over time or space. The initial segments of the
walk are random sequences of points written as wM = (X1 ,X 2 , ",XM), and the expected average velocity of any
segment of the walk is E(Ax)/T.

We accumulate measurement likelihood ratios for a walk ending at XM+I with a formula of the form
LM+I (XM+1, W) = IM+I (XM+I) X.X P(XMIXM+)LM(XM, W). We exclude the possibility of two targets with
crossing paths, i.e., we assume that all the alternatives are exhausted by specifying hypothesis H0 to mean that
no targets exist along any path being considered and hypothesis H, (XM) to mean that exactly one target exists,
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and it is traveling along a path through XM (at the time considered). Let zM(xM) denote the measurement vector
at the spatial cell XM taken in the time window ending at time TM. Then the likelihood ratio IM obtained from a
single measurement is

IM(XM) = P(zM(xM) I H1 (xM))

P(zM(XM)IHo )

Let XM denote either the point, or the event, H, (XM). The event WM is the conjunction of points, or events,
Hi (x1), H, (X2),-, H, (XM). The accumulated likelihood ratio is the sum over all paths which are instances of
W:

Lm~l (x +,, 1 wu P(zM1+(XM+i)'ZM(XM)'
"  'Z1 (XI)' WMIXM+1

LM+1(X,,~+ 1 =

,--I P(z'(x,)IHo)

Expand and rearrange the numerator of this expression to obtain a recursion relation:

-- P(ZM+ (XM+I )IXM+I ) zM (XM),* ,Z(xI), WMIXM+!)

= P(ZM+I(xM+I) IXM+I) I P(XM IXM+1)

XP(ZM(XM)IXM) , P(g'M-I (XM-I), " ",z1 (xI), WM- IXM).

Divide the equations above by the denominator of LM+ (XM+,, 1), I- P(zm(xm)lHo 1H , and substitute in the

transition probability P(xMIXM+1 = P(AX = XM+I -XM) defined by the random walk to obtain

LM+ (xm+, W) = 1M(+) I P(Ax = XM+l - xM)LM(xM, W).
XM

The initial values that start the recursion are Lo(xo, W) = I for all x0 and W. In a practical implementation, one
would set P(Ax) = 0 for all but two or three increment values Ax, so that the sum over XM would involve only two
or three points. But, the presence of addition operations complicates any attempt to manipulate log likelihoods
instead of likelihoods.

One can visualize the relative contribution of the likelihood ratios obtained over time from neighboring spatial cells
by plotting the probability of the random walk passing through each of those cells. Figure C-6 is a surface plot of
the probability at each time step, 1 through 15, of a random walk that ends up in cell 0 at time 16 and that has an
expected velocity of minus one cell per time step. The points in the past history that contribute part of their
likelihood to L 16 (X 16 , W.-1.0) are arranged in a narrow fan shape, the middle of the fan points in the direction of
the expected average velocity of the random walk. The amount each point contributes to the accumulated
likelihood ratio is greatest near the middle of the fan. This averaging of nearby likelihoods is the reason little
difficulty occurs with our random walk algorithm when signal energy leaks out of the spatial cell containing the
true target position.
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Serious attempts at deriving a probability distribution for LM+I (XM+I, W), even under the simplest conditions,
yielded unworkably complex formulas, so results from the unknown path case are obtained from Monte Carlo
simulations. To conduct Monte Carlo simulations, we create an array of likelihoods, one for each spatial cell and
each random walk going through that cell, and update the array recursively at each time step, by applying
equation 1. In order to evaluate the likelihood of a target being in the spatial cell, regardless of how it got there,
we compute a weighted sum of all the likelihoods for that spatial cell, the weights being the prior probability of
each of the randomwalks going through that cell. The increments of each random walk have a density structured
to produce the desired expected velocity and to satisfy continuity conditions. The density on the average velocity
of the random walk is trinomial, but has a bell-shape. A prior Gaussian density on target velocity is approximated
by a mixture of a small collection of these multinomials with the mixture weights the prior probability of the
corresponding random walk. For comparisons with the random walk algorithm, the hop-bound B for Wei's
algorithm is set relative to the prior target velocity distribution at the 2a point.

Signal Gain Degradation for Unknown Path.

Figures C-7a, b, c, and d show the increase in minimum detectable signal level caused by lack of knowledge of
the target path. This is computed from the difference in levels required in Monte Carlo simulations of tracking
detection minus the analytically defined minimum detectable signal level for the known path case. Each figure
shows random walk and Wei's algorithm results for M = 1, 2,4,8, 16. The PD is fixed at PD(4 ) = 1/2 and
log(PFA (4)) is plotted on the abscissa, while level differences in decibels are plotted on the ordinate. Figures
C-7a, b, c, and d differ from each other in the size of the variance of the prior velocity distribution. This
determines the number of neighboring spatial cells a target might travel into during one time step of T seconds.
The figures C-7a, b, c, and d present results for standard deviations of 0.5, 1, 2, and 4 cells per time step. The
results look similar. The level differences depend weakly on PFA, and increase by about 0.5 dB per doubling of
M, for the random walk algorithm, and somewhat more for Wei's algorithm. Figures C-8 and C-9 illustrate the
degradation caused by poor estimates of the prior velocity variance, which err by a factor of 4 and 1/4,
respectively.

Signal Gain from Incoherent Integration.

Figures C-10a, b, c, and d illustrate the signal loss, or gain, i.e. the change in minimum detectable signal level,
caused for an M greater than one. This was computed from the difference in level required in Monte Carlo
simulations of tracking detection for various M less the analytically obtainable level for the case M = 1. Each
figure presents random walk and Wei's algorithm results for M = 1, 2, 4, 8, 16. The PD is fixed at PD(4) = 1/2
and PFA (4 ) is plotted on the abscissa, while leveldifferences in decibels are plotted on the ordinate. The results
presented in figures C-1 a, b, c, and d are for different variances of the prior velocity distribution, as for figures
C-7a, b, c, and d. The crossing of the curves at PFA(4) = 10-2.2 for the random walk, and at PFA (4) = 10 -

for Wei's algorithm, show that weak signals (supporting only large PFA 's) cause trouble for tracking detectors,
and that for the weakest signals setting M = 1 appears optimal. The break even point being higher for the
random walk algorithm is a sign that it is performing more strongly than Wei's algorithm.

A more useful description of the regime of operation in which tracking detection profits for M > 1 can be
displayed in terms of the increase, or decrease, of PFA( 4 ) caused by choosing a path length of M instead of
one, given fixed PD( 4 ) and various minimum detectable signal levels is illustrated in figures C-11 a, b, c, and d.
Observe that the break-even points are near 3.5 dB for the random walk algorithm, and 6 dB for Wei's algorithm.
These break-even points bound the range signal-to-noise ratios for which tracking detection offers a potential
benefit.
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Figure C-l1. Dependence of detector performance on path length.
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*Figure C-1I1. Dependence of detector performance on path length.
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High PD Regime.

The question arises whether the price of not knowing the target velocity is significant for strong signals, or high
values of PD, since the track ought to be evident from the data in such cases. If so, the tracking detector
performance should approach that of the known-path case, given strong enough signals. Figure C-12 illustrates
the change in minimum detectable signal levels from the known path case to the tracking detector case, for
PD(4) = 0.95 and various PFA. The difference is not zero. The increase in levels for the random walk detector
might be attributable to the fact that likelihood ratios for neighboring spatial cells are averaged together whether
the signal is strong or weak, so that some noise-only measurements contribute to the detector. This seems
unavoidable for the present algorithm implementation, because the variance of the velocity of the random walk
has a lower bound imposed by the discretization of target motion.

Summary.

The processing load increases with increasing M depending on the specific tracking algorithm. For Wei's
algorithm, the processing is proportional to 4. For the random walk algorithm, there is an additional processing
load, proportional to Md/2, which depends on the number of random walks required to model possible target
velocities. Chen (1989) examines the signal loss caused by finite discretization of the velocity in a probability
map tracking detector. He shows that for d = 2 the number of velocity cells required to meet a loss constraint
increases as M1, which corresponds to our Md2 rate.

The minimum detectable signal level for the known path case seems bounded as M - co, so that tracking
detectors can gain only a bounded advantage over an if-any combiner, but the bound may be large. In any case,
the loss in level caused by doubling M, which is weakly dependent on the operating point, is a little less than 1 dB
per doubling.

The signal loss caused by lack of knowledge of the target path is approximately - 1og 2(M) dB. This loss is also
weakly dependent on the operating point. The break even point in signal-to-noise ratio, below which a tracking
detector offers no benefit for detection, depends on the detection algorithm employed. Observe that for too weak
a signal the signal cannot be identified among noise peaks that line up by coincidence.
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Figure C-12. Dependence of detector performance on knowedge of track.
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