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1 Introduction

A variety of problems in continuum mechanics require the solution X of a finear
algebraic equation of the form

AX + XA = ®(A, H). (1.1)

Here A, X, and H are second-order tensors (i.e., linear transformations) cn a two- or
three-dimensional inner product space V, and ®(A, H) is an isotropic function of A

and H which is lincar in H.
For example, consider a smooth motion with deformation gradient F.! by the
polar decomposition theorem, F has the unique multiplicative decompositions

F = RU = VR, (1.2)

where the proper orthogonal tensor Ii i1s the rotation tensor, and the symmetric,
positive-definite tensors U and V are the right and left stretch tensors. Let C and B
denote the right and left Cauchy-Green tensors:

C=FTF=U? and B=FFT=V?, (1.3)

Let the stretching tensor D and the spin tensor W denote the symmetric and skew
parts of the velocity gradient L:

L=D+W, D=symL=1(L+LT), W=skwL=4(L-LT). (14)

For any tensor field A, let A denote the material time derivative of A, and let A
denote the Jaumann rate of A:

A=A +AW - WA . (1.5)

Then the material time derivatives of the stretch tensors are related to the material
time derivatives of the Cauchy-Green tensors by the equations

UU+UU=C and VV4+VV =B, (1.6)

The materia! time derivative of the left stretch tensor is reiated to the velocity gradient
by the equation .

VV +VV = VII.T 4 LV?, (1.7)
and the Jaumann rate of the left st:etch teusor is related to the stretchiug tensor by

the equation

VV 4+ VV = V2D 4+ DV?, (1.8)

'We use the notation and terminology of Truesdell and Noli [1]; cf also Wang and Truesdeli (2]
Gurtin [3], and Truesdell [4].




The material time derivative of the right stretch tensor is related to the tensor
Dy = RTDR by the equivalent equations

UU + UU =2UDgU and U-'U 4+ UU-! =2Dy. (1.9)

The stretching tensor is related to the Jaumann rate of the left Cauchy-Green tensor
or its inverse by the equivalent equations

BD+DB=B aud B-'D+DB-!=—(B"). (1.10)
The skew tensor £ = RRT is related to the velocity gradient by the equation
VQ+QV =LV - VLT (1.11)
and the difference of W and 2 is related to the stretching tensor by the equation
VIW-Q)+ (W-Q2)V=VD-DV. (1.12)

The tepsor equations (1.6)-(1.12) have been studied by various authors; cf.
Leonov [5], Sidoroff [6], Dienes [7], Guo [8], Hoger and Carlson [9], Hoger [10],
Mehrabadi and Nemat-Nasser [11], Stickforth and Wegener [12]. and Guo, Lehmann
and Liang [13]. These equations are of the general form (1.1) with A = V, U, U-1,
B, or B!, and with ®(A, H) of the form

H, A’HT+ HA?, A’H + HA?, AHA, HA - AHT, AH - HA. (1.13)

In particular, for the kinematics appiications discussed above, the coefficient tensor A
i (1.1) is symmetric and positive-definite. These restrictions on A will be assumed
for the present discussion ouly. They guarantee that a solution X exists and is unique.
Indeed, relative to any principal basis {e;} for A, the components of X are given by
the simple formula

X, = —‘b—"-—, (1.14)
a, + a,
where a, is the (necessarily positive) eigenvalue of A correspounding to e, and &,
are the components of ®(A, H) relative to {e,}. Observe that X is symmetric (resp.
skew) iff ®(A,H) is symmetric (resp. skew). Of course, to actually compute X by
means of (1.14) we must first determine the eigenvalues and eigenvectors of A.

For problems in which the eigenvalues and eigenvectors of A are not of primary
interest, it may be more useful to express X directly in terms of the tensors A and
H. Explicit solutions of the this type have been de-ived by the authors cited above.
For example, Sidoroff [6] ani Guo [8] obtained the following solution of the tensor
equation

AX +XA =H (1.15)
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for the case where H (and hence X) is skew and dimV = 3:
(Ially = HI\)X = (12 - II,) H - (A*H + HA?) . (1.16)

Here I,, II,, and III, denote the principal invariants of A, and the requirement
that A be positive-definite guarantees that I, [T, — III, is positive. Sidoroff and Guo
arrived at this solution by first deriving a formula for the axial vector of X in terms
of the axial vector of H and then converting this intermediate result to its equivalent
tensor form (1.16). Hoger and Carlson [9] obtained the following solution of (1.15)
for arbitrary H when dimV = 3:

I (I I, — HT\)X = I, A’HA? —I,}(A’HA + AHA?)
+ (InIT, — III,) (A?H + HA?)
+ (12 + HI,) AHA - I,/II,(AH + HA)

+ [L2HA + HA(IW s — II,)) H. (1.17)

Since equations of the form (1.16) and (1.17) are said to be displayed in direct no-
tation, we will refer to such equations as direct formulas for X or direct solutions
of (1.15). By a general direct solution of (1.15) we mean a solution, such as (1.17),
which is valid for any tensor H.

Although the component formula (1.14) is easily derived and is independent of
the dimension of V, the derivation of direct formulas for X is nontrivial, and the
complexity of these formulas increases rapidly with the dimension of V.2 For example,
when dim V = 2 the solution of (1.15) for skew H is® I, X = H, which is substantially
simpler than its three-dimensional counterpart (1.16). Also, observe that there is no
apparent simplification of the direct formula (1.17) when H is skew; in particular, it
is by no means obvious that (1.17) and (1.16) are equivalent for skew H. By utilizing
Rivlin’s [17] identities for tensor polynomials in two variables, Hoger and Carlson [9]
were able to convert (1.17) to a form which does indeed collapse to (1.16) when H is
skew.

This paper is devoted to the derivation and applications of direct solutions of
the tensor equation (1.1) in three dimensions. Clearly, for any function ®(A,H) we
can obtain a direct solution of (1.1) by replacing H with ®(A,H) in (1.17) or in
any other general direct solution of (1.15). The resulting formulas will typically be
more complicated the > the direct solution of (1.15) from which they were obtained,

2Cf. the direct solutions of (1.15) obtained by Smith [14], Jameson [i5], and Miiller [16]. Their
formuleas are valid for arbitrary dimensions, but the complexity of these formulas is such that they
would seem to be useful only for dimV < 3 or 4. Also, compare Hoger and Carlson’s [9] solutions of
(1.15) in two and three dimensions, and Mehrabadi and Nemat-Nasser's [11] solutions of (1.19) in
two and three dimensions.

3This solution is a special case of the second of two general direct solutions of (1.15) obtained by
Hoger and Carlson (9] in two dimensions.




although subsequent applications of the Cayley-Hamilton theorem or Rivlin’s [17]
identities may yield substantial simplifications in some cases. One of the goals of
this paper is to develop methods which yield these simipler formulas more directly.
Another goal is to derive the skew solution (1.16) and other simple solutions of (1.1)
for skew ®(A,H) without resorting to intermediate results in terms of axial vectors
or to the more complicated general direct solutions.

The paper is organized as follows. In Section 2 we study the fourth-order tensors
La, M4, and N, characterized by the conditions

X =LA[H] < AX+XA=H, (1.18)
X =Mu[H] < AX+XA=AH-HA, (1.19)
X =N [H] < AX+XA = A’H - 2AHA + HA?. (1.20)

Then X is the solution of the tensor equation (1.1) iff X = L 5 [®(A, H)]. In partic-
ular, MA[H] = L,[AH — HA] and N, [H] = L, [A?H — 2AHA + HA?]. Conversely,
when ®(A, H) has one of the forms in (1.13), we show that there are simple relations
for Lo[®(A,H)] in terms of M, [H], M, [sym H], or N,[H]. The utility of these
relations is due to the fact that direct formulas for M, [H| and N, [H] are simpler
and easier to derive than general direct formulas for X = L ,[H] such as (1.17). The
results in Section 2 are independent of the dimension of the inner product space V.
Furthermore, unlike the component formula (1.14), these results are valid for any
tensor A with the property that (1.15) has a unique solution X for any given H.
Such a tensor A is necessarily nonsingular but need not be symmetric or definite.
In Sections 3-7 we assume that dim) = 3. Section 3 contains various tensor
identities which will be utilized in the sequel. These include Rivlin’s [17] identities
for tensor polynomials in two variables as well as some new identities which follow
from Eivlin’s. In Section 4 we consider (1.15) with X and H restricted to the set
T (A) of all tensors K such that tr (A"K) =0 (n = 0,1,2). We obtain necessary and
sufficient conditions for the existence of a unique solution in 7(A) (the possibility of
other solutions outside 7(A) is not excluded here), and we derive direct formulas for
this solution. When A is symmetric these formulas are valid for any skew tensor H;
in particular, w. recover the formula (1.16) of Sidoroff and Guo. These results do not
require that A be nonsingular; some applications for which A might be singular are
discussed below. Section 4 concludes with the derivation of necessary and sufficient
conditions for the existence of a unique solution X of (1.15) with H unrestricted.
The proof utilizes the results for the special case where X and H belong to 7(A). In
Section 5 we use the results in Sections 3 and 4 to derive direct formulas for M, [H]
and N, H] for arbitrary H; these formulas, together with the relations for L, in
terms of M, or N, obtained in Section 2, are in turn used to derive direct formulas
for L , [H] which are valid for arbitrary H. Then direct formulas for L o [®(A, H)] with
® as in (1.13) follow from these results and the identities in Section 2. Tn Section 6
we derive equations (1.6)-(1.12) and apply our results to the solution of these and
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related equations arising in the kinemratics of continua. In Section 7 we discuss some
additional kinematic formulas which can be obtained from various transformations
of the results in Section 6. Although some of the algebraic and kinematic formulas
derived in this paper have been obtained previously by other authors, the derivations
given here are new, and we derive many new formui~s as well.

Additional Applications

The general results in Sections 2-5 should prove useful for other problems in
mechanics which lead to tensor equations of the form (1.1). Some of these problems
are listed below.

1. Direct formulas for the derivatives of the stretch and rotation tensors with
respect to the deformation gradient: Here A = U or V, and ®(A,H) has some of
the forms listed in (1.13) as well as

AH +HTA, HA + AHT, AH-HTA. (1.21)

This problem is the subject of a follow-up paper [18]; cf. also Wheeler [19] and Chen
and Wheeler [20] for a different approach to this problem. For a hyperelastic material,
the results in [18]-[20] also yield direct formulas for the first Piola-Kirchhoff stress
tensor in terms of the derivative of the strain energy function with respect to the
right stretch tensor U; cf. also Hoger [21], where this problem has been solved using
Hoger and Carlson’s [9] formula (1.17).

2. Direct formulas for one work-conjugate stress tensor in terms of another, or for
a work-conjugate stress tensor in terms of the Cauchy or first Piola-Kirchhoff stress
tensors (cf. Guo and Man [22]): Here A = U or V, and ®(A, H) has some of the

forms listed in (1.13) as well as

AH, HA, ) A™THA"'. (1.22)
r=1

3. The kinematics and dynamics of rigid bodies (cf. Truesdell [4, §1.10, 1.13]
and Scheidler [23]) and pseudo-rigid bodies (cf. Cohen and Muncaster [24]): Here
the symmetric tensor A is either the current or the referential Euler tensor. If the
mass is not confined to a single plane then A is positive-definite (Segner’s Theorem).
However, the results in Theorem 4.1 also apply when the mass i1s confined to a single
plane, in which case A is singular.

4. Traction boundary value problems in finite elasticity: For A symmetric and H
and X skew, the tensor equation (1.15) arises in connection with Signorini's expansion
and Stopelli’s tkeorems; cf. Wang and Truesdell (2, §7.2, 7.4]. For these applications
the astatic load tensor A may be singular; the results in Section 4 are applicable in
this case provided that the load system does not possess an axis of equilibrium.

5. Stability analysis of systems of ordinary differential equations: The tensor
equation ATY + YA = G arises in the construction of quadratic Liapunov functicns;
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cf. Hahn (25, Ch. 4] and Gantmacher [26, §5.5]. At the end of Section 2 we show how
general direct solutions of this equation can be obtained from general direct solutions

of AX + XA = H.

2 The fourth-order tensors L ,, M,, and N,

Let Lin denote the set of all linear transformations (or second-order tensors) on
the finite-dimensional real inner product space V. Sym and Skw denote the subspaces
of Lin consisting of all symmetric and skew tensors, respectively. Psym denotes the
set of all symmetric and positive-definite tensors. The identity tensor is denoted by
I, and A® := I for any tensor A. Unless specified otherwise, A, G, H, X, and Y
denote arbitrary tensors. We assume that Lin is equipped with the inner product
“ .7 defined in terms of the trace function by H- G := tr (HTG), where HT denotes
the transpose of H.

By a fourth-order tensor we mean a linear transformation from Lin into Lin. The
image of H € Lin under a fourth-order tensor K is denoted by K[H]. In this section
we study the properties of the fourth-order tensors L 5, My, and N, discussed in the
Introduction. To facilitate the statement and proof of some of these properties, we
introduce the fourth-order tensors B, and C,:

BAlX]:=AX +XA and C,u[X]:=AX -XA. (2.1)
It 1s easily verified that B, and C, commute; indeed,

Clearly, C, is singular for every tensor A. Let Lin® denote the set of all A € Lin
such that B, is nonsingular, or, equivalently, such that the equation AX + XA = H
has a unique solution X for any given H. From the discussion in the Introduction we
know that Psym C Lin®. Necessary and sufficient conditions for A € Lin® in terms of
the principal invariants of A or in terms of the characteristic roots of A are discussed
in Section 4. For this section we need only the following elementary results.

Proposition 2.1 The following conditions are equivalent:

(1) A € Lin";

(2) AT € Lin";

(3) QAQ-! € Lin"® for every nonsingular tensor Q;
(4) A is nonsingular and A-! € Lin".

Proof: The equivalence of (1) and (2) follows from the equivalence of the equations
AX + XA = H and ATXT + XTAT = HT. Simrllarly, the equivalence of (1) and (3)
follows from the equivalence of the equations AX + XA = H and

(QAQ™)QXQ™) + (QXQ')(QAQ™') = QHQ™.
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Now suppose that A, and hence AT, is singular. Then there are nonzero vectors u
and v such that Au = 0 and ATv = 0. Therefore,

Balu@v]=(Au)@v+u®(Alv)=0.

Since u ® v # 0, B, is singular and hence A ¢ Lin®*. Thus A € Lin® = A is
nonsingular. That A € Lin®* = A-! € Lin" follows from the equivalence of the
equations AX + XA = H and A—'X + XA-1 = A-1HA-!. Hence, (1) implies (4).
Conversely, if A-! € Lin" then A = (A-1)-1 € Lin*. O

Proposition 2.1 shows that nonsingularity of A is necessary for A € Lin®; as we
will see ir Section 4, it is not sufficient. For the remainder of this section we assume
that A € Lin*. Unless specified otherwise, no additiona! restrictions are imposed
on A. We denote the inverse of B, by L ,:

Then B, [X] = H iff X = L, [H], which is equivalent to the statement (1.18). If |
denotes the fourth-order identity tensor, then

LABA=BALA=I, (24)
which is equivalent to the relations
LA[AH+ HA] = AL, [H]+ L [HJA=H. (2.5)

If A is symmetric, then from (2.1), it foll~+'s that B, and hence its inverse L 5 , maps
symmetric tensors to symmetric tensors and skew tensors to skew tensors.
The fourth-order tensor M, is defined by

MA = LACA'——CALA, (2.6)

where (2.6), follows by multiplying (2.2), on the left and right by L , and then using
(2.4). From (2.1), it follows that (2.6) is equivalent to the relations

Ma[H] = L,[AH — HA] = AL, [H] - L, [H]A. (2.7)

By replacing H with AH — HA in (1.18), we see that (2.7), is equivalent to the
statement (1.19). From (2.6), (2.2), and (2.4), we obtain the relations

By (2.1) we see that (2.3) is equivalent to the relations

Ms[AH + HA] = AM,[H]+M,[HJA = AH - HA
LA[AZH — HA?| = A?L, [H] - L,[H]A?. (2.9)
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If A is symmetric, then AH — HA is symmetric {resp. skew) if H is skew (resp.
symmetric). Hence, by (2.7); and the comment following (2.5), we see that if A 1s
symmetric then M, maps symmetric tensors to skew tensors and skew tensors to

symmetric tensors.
T'he fourth-order tensor N, is defized by

Na := MACA = CaMa =LA (Ca)’ = (Ca)’La, (2.10)
where (2.10),_, follow from (2.6). Since
(CA)[H] = A?H — 2AHA + HA?, (2.11)
(2.10) is equivalent to the relations

NA[H] = Mi[AH - HA] = AM,[H] - M [H]A
= LA[A?H - 2AHA + HA?|
AL, [H] + Lo [H]A? - 2AL, [H]A . (2.12)

By replacing H with AZH —2AHA + HA? in (1.18), we see that (2.12); is equivalent
to the statement (1.20).

Proposition 2.2 Let S, denote the set consisting of the fourth-order tensors intro-

duced above:
Sa = {BA, CasLa, My, NA} . (2-13)

Then any two iensors in Sp commute, and each tensor K, € S, has the following
properties:

Ki[A{HA,] = A KL[H]A,, if A, and A, commute with A, (2.14)
Kqaq-[QHQ"!] = QKL[H|Q™!, for any nonsingular tensor Q. (2.15)

In particular, K,[H] is an isotropic function of A and H which is linear in H, and
KA[A™HA"] = AmK,[H]A", for any integers m and n. (2.16)

Proof: That S, is commutative follows from (2.2), (2.4), (2.6), (2.8), and (2.10).
The easiest way to establish the other properties is to first prove them for the ten-
sors B, and C,, and then use the definitions (2.3), (2.6), and (2.10) to prove the
corresponding results for Lo, M4, and N,. We prove (2.14) and leave the proof
of (2.15) to the reader. It is easily seen that (2.14) holds for K, = B, or C,.
To prove (2.14) for K, = L4, apply Lo to Bo[A;XA,;] = A;B,[X]A; to obtain
A, XA, = Lo[A;BA[X]A,), and then set X = L, [H]. To prove (2.14) for K, = M,,
use the fact that (2.14) holds for K, == C, and L 4: .

MA[AlHAzl = LA[CA[AIHA::]} = La[A,CA[H}A,]
= A LA[CA[H]JA; = A ML(H]A,.
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The proof of (2.14) for K, = N, is similar. O
The equations (2.7) give two expressions for M [H] in terms of L5, A, and H.

Alternate expressions are

= 2L,[AH]-H =2AL [(H]-H. (2.17)

The relations (2.17); 3 follow from (2.7), and (2.5); for example,

Mu[H] = LA[AH - HA] = Lo[AH + HA - 2HA|
= LAJAH +HA] - 2L [HA] = H - 2L, [HA].

Then (2.17), 4 follow from (2.17), 3 and (2.16) with K, =L,.

Proposition 2.3 The fourth-order tensor L, can be expressed in terms of the fourth-
order tensor M, by the formulas

La[H] = {(H-M,[H])A™! = 1A~ (H+M,[H]). (2.18)
Similarly, L, can be ezpressed in terms of N by the formulas

LA[H] = 3YA-'H+HA-! - A-IN,[H]AY)
= 1A-'(AH+HA —N,[H))A"1. (2.19)

Proof: (2.18) follows from {2.17). Then from (2.18) we have
La[H]= YA TH+ HA' 4+ A-'M,[H] - M, [H]A"Y),

and from (2.12) we have

A~ (M [H]A —~ AM, [H))A~!
= ATN(-Nj[H)A™'. O

A-M,[H] - M [H]A

Now suppose that by some means we have cbtained a direct solution of the tensor
equation (1.19), or, equivalently, a direct formula for M, [H], which is valid for any
tensor H. As we will see in Section 5, such formulas are relatively simple and easily
derived when dimV = 3. Then direct formulas for L 5, [H] which are valid for any
tensor H follow from (2.18).4 Alternatively, we can use the relations (2.12), , and
the direct forreulas for M [H] to obtain direct formulas for N [H], and then use
(2.19) to cobtain direct formulas for L , [H] which are valid for any H. In any of these
formulas we can, of course. replace the A-! terms by a polynomial in A via the

4For the tensor equation ATX + XA = H (H symnmetric), Barntt and Storey [27] obtained a
relation analogous to (2.18);; cf. their equations (1.2), {2.1), and (2.2). Their relation is equivalent
to (2.18); when both H and A are symmetric. They did not obtain direct solutions.
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Cayley-Hamilton theorem. These techrmiques will be used i1 Section 3 to generate
direct formulas for L o [H! iv three dimensions.

By (1.18) with H — ®(A,H), the unique solution X of the tensor equation
AX + XA = ®(A,H) is given by X = L, [®(A . H)]. If ®(A H) is an isotropic
function of A and H which is linear in H (in particular, if (A, H) has one of the
forms in (1.13), (1.21), or (1.22)), then by (2.15) it follows that X is also an isotropic
function of A and H which is linear in H. When ®(A H) = AH-- HA, this solution
can also be written as X = M, [H]. As we will see tn Section 5, for arbitrarv H the
direct formulas for M 4 [H] are much simpler than the direct formulas for « 5 [H}, which
should not be too surprising in view of the method described above for generating
the latter formulas. For other functions ®(A,H) in the list (1.13), the existence
of relatively simple direct formulas for X is due to the fact that there are simple
expressions for L, [®(A, H)] in terms of M [H], M, [sym H], or N,[H]. We derive
thesc identities below. Similar results hold for ®(A, H) of the form (1.21) and (1.22);
cf. Scheidler [18].

Counsider the case ®(A,H) = AHA, i.e., the tensor equation

AX + XA = AHA . (2.20)

Alternate expressions for the solution X = L [AHA] are given by the following
identities:

LA[AHA] = ALL[HJA =L, [H]
= LA(H-M,[H]) = }(H + M, [H)A
= L(AH+HA - N,[H]). (2.21)

(2.21), follows from (2.16); then (2.21); , 5 follow from (2.18) and (2.19),. To obtain
(2.21),, observe that (2.20) is equivalent to the tensor equation

A'X +XA-'=H, (2.22)

and that the solution of (2.22) is X = L.~ [H]. For A ¢ Psym and K € Sym, rela-
tions equivalent to some of those in (2.21) were observed by Mehrabadi and Nemat-
Nasser [11]5 and Cohen and Muncaster {24, Ch. 6].6 Our derivations above and in

5In their analysis of the tensor equation (1.9); for U, Mehrabadi and Nemat-Nasser obtained
relations which, for symmetric A and H, are equivalent to the relations L -1 [H] = 1(H+MA[H])A
and Lo -:[H] = L(AH+HA — N [H]); cf. equations (8.8), (8.12), (8.13), and (8.16) in their paper.
They also derived a direct formula for Ma [H] in three dimensions and used this formula, together
with the latter of the two relations above, tv obtain a direct solution of (1.9);; cf. (6.12); in this
paper, which we will obtain by essentially the same techrique. However, our derivation of direct
formulas for M4 [H] in Section 5 differs substaniially from the method used in [11].

6Cohen and Muncaster considered a tensor equation of the form A~!X + XA~! 4 ¢(tr X)A~! =
G, where A € Psym is the referential Euler tensor and G is symmetric. This equation arises in
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the next paragraph differ from theirs; in particular, we do not rely on the symmetry

of A or H.
Compared with (2.21),, the formula for M, -1 1n terms of M, is much simpler:

MA—I = "MA. (223)

Indeed, from (1.19) we see that X = M, [H]iff A-'X+XA-! = A~1(-H)-(-H)A-!
iff X = M,-1[—H]. Note that some of the identities in (2.21) can also be obtained
by replacing A with A-! in (2.18) and (2.19) and then using (2.23) and (2.12).

For the case ¥(A,H) = A’H + HA?, we have the identities

LA[ATH + HA?] = AZL,[H]+ L,[H]A?
= 2L,[H]A’+ AH - HA =2A%L,[H] - AH + HA
= AH-M,[H]A = HA + AM,[H]
= 1(AH +HA +N,[H]). (2.24)
(2.24), follows from (2.16); then (2.24),; follow from (2.3). (2.24),5 follow from
(2.24); 3 and (2.18). Finally, (2.24)s follows from (2.12)4 and (2.21);, or from (2.24), 5

and (2.12). Next, consider the case (A, H) = A’HT+ HA2. By applying I_, to the
identity

A*HT+ HA? = A?’(sym H) + (sym H)A? 4 A%(—skw H) — (—skw H) A?
and then using (2.9} with H — —skw H, we obtain the identity

Li[A’HT+ HA?) = L,[A*(symH) + (sym H)A?)
+ (skw H)A — A(skw H). (2.25)

Alternate expressions for L ,[AZHT + HA?] follow from this and (2.24) with H —
symH. In particular, we have

L A[AZHT 4+ HA?] + A(skw H) — (skw H)A
= A(symH) - M,[symH]A = (sym H)A + AM, [symH]
= 1{a(symH) + (symH)A + N, [sym H]). (2.26)

Finally, for the case (A, H) = HA — AHT, we have the identity

Lo[HA -~ AHT] = skwH -- M, [sym H]. (2.27)

the analysis of gyroscopic motions of pseudo-rigid elastic bedies. On multiplying this equation by
A and taking the trace of the result we may solve for tr X and reduce the original equation to the
form (2.22) witt H = G — ¢(2+ 3¢)"!tr (GA). Then their equations (6.3.12), (6.3.14), and (6.3.16)
are equivalent to our relation Lo~ [H] = (H + Ma[H])A. They did not obtain direct formulas for
Ma[H] or L, -1[H].
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This follows from the identity
HA - AHT = ~A(symH) + (symH)A + A(skw H) + (skw H)A ,

(2.5) with H — skw H, and (2.7); with H —» sym H.
We conclude this section with a result mentioned in the introducion in connection
with Liapunov functions for systems of differential equations.

Proposition 2.4 The tensor equation ATY + YA = G has a unique solution Y for
any given G iff A € Lin®. If A € Lin®, then X = ¥, . cnn A™HAR s a general
direct solution of AX + XA = Hiff Y = L0 AT )"GA" is a gencral direct
solution of ATY + YA = G. Here m and n are integers, the sums are assumed to be
finite, and the coefficients c,,, may depend on A but not on H or G.

Proof: We use the well-known fact that AT and A are similar, i.e., there is a
nonringular tensor S such that AT = SAS-1, Let Y = SX and G = SH. Then the
equations AX + XA = H and ATY + YA = G are equivalent, and the results of the
proposition follow. O

Since AX + XA = H iff X = L,[H], Proposition 2.4 can be used ‘o transform
the general direct formulas (5.6) and (5.17)-(5.20) for L ,[H] in three dimensions into
general direct solutions Y of ATY + YA = G. This proposition cannot be applied
to the general direct formulas (5.22), (5.28), and (5.33) since some of the coefficients
in these formulas depend on H.”

3 Some tensor identities in three dimensions

The derivations of the results in Sections 4-7 utilize various identities involving
one or two second-order tensors and their principal invariants. For convenience we
have collected most of these identities in the present section. With the exception of
some comments at the end of Section 4, for the remainder of this paper we assume that
the underlying inner product space V is three-dimensional. Unless specified otherwise,
the tensors A and H are arbitrary.

The principal tnvariants of A are denoted by I,, II,, and IIl,, and its charac-
teristic roots (in the complex field) are denoted by a,, a;, a;. Then

3
det (zI— A) = 2% — Iyz? + Iz — I, = [[(z - ), (3.1)

§=1

If in Proposition 2.4 we allowed the coefficients ¢y in the formula for X to depend on H,
88Y Cmn = émn(A,H), then since H = S~!G it follows that the coefficients in the corresponding
formula for Y would depend not only on A and G but also on the tensor § in the similarity
transformation AT = SAS—!.
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where (3.1), bolds for any real number z, (3.1), holds for any complex x, and

I, = trA=a,+a;+a;, (3.2)
Iy = (12 - Lg) = aya, + a305 + agay, (3.3)
i, = detA = a,a,a;. (3.4)

The characteristic root a; is real iff a; is an eigenvaluc of A. The second and third
moments® of A are

In = IQ -2l =a’+a?+a?, (3.5)
IA' = IA3—3IAIIA+3IIIA=a?+ag+ag. (36)

The Cayley-Hamilton t.heorem implies that
Al =T1,A? -1, A + III,1. (3.7
The adjoint of A is the tensor
adjA = A’ - [,A + I, 1 =II,A7', (3.8)

where the expression on the right is valid only when A is nonsingular.
Since the expression I,I— A occurs frequently in the sequel, we introduce a special
symbol for it:

-~

A:=II1-A. (3.9)

Then
IL=21A a.nd A"—‘%IAI—A. (310)

Expressions for the determinant of A in terms of A are

HIy = Iy -II, =3 (13- 1x)
= (ay +a;)(az+ a3)(a3 +ay). (3.11)
(3.11), 3 follow from (3.1) with £ = I,, and (3.11), follows from (3.6),. (3.11); also

follows from the fact that the characteristic roots of A are® a, + a,, a, + a3, a; + a;.
If A is nonsingular, then from (3.8),, (3.3),, and (3.11),, we obtain!®

IIA = IIIAIA—l a.nd IIIA = IIIA(IAIA—l - 1) . (312)

8Cf. Ericksen [28, §38).

®For any scalar polynomial p(z), the characteristic roots of the corresponding tensor polynomial
p(A) are p(a;); cf. Theorem 3, p. 84, in [29]. By choosing p(z) = [o — z it follows that the
characteristic roots of A are I —a; = a; + ag for distinct i, j, k.

10Cf. Stickforth [30].
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Expressions for the second principal invariant ¢ A in terms of A are
Iy = IZ+Hx=1(31¢ - La) =Ip + 30,
= (a; +ay)(a; +a3) + (az + a3)(az + @) + (a3 + ay)(a; + a;). (3.13)

By replacing A with A in (3.8) aad using (3.9), (3.10),, and (3.13),, we obtain the
following expressions for the adjoint of A:

adjA = A* + II,1 = II[; A, (3.14)
where the expression on the right is valid only when A is nonsingular.1! Let
Ap = I3 -Hp=Tp+1,=L(I+ 1) = Ly,
= 1i(a; +a3)? + (a; + a3)* + (a3 + ¢,)?]. (3.15)

This invariant appears in the direct solution (1.16) of Sidoroff and Guo and also in
several other formulas in the sequel. Observe that 2A, is the second moment of A.
The following identities are due to Rivlin [17]:

A’HA? = II,AHA - III,(AH + HA)

+ TopA? + oDy A + I Iyl (3.16)
A’HA + AHA® = I,AHA - lI[,H
+ IauA? + Qg A + I Iyl (3.17)
A’H + HA? + AHA = I,(AH+HA)- II,LH
+ IyA? + OQ,)HA + aff‘)ul, (3.18)
where

ol = Haly - HaIaw = ~Insn, (3.19)
aw = Ion - Idan = ~Iian, (3.20)
oy = Iau-Ialu=~Iiy, (3.21)
0‘9\).)}1 = Iy — Indan + Uply = Ingja)u - (3.22)

The first expressions in (3.19)-(3.22) are the ones given by Rivlin [17}; the second
expressions follow easily from these and (3.7)-(3.9). From (3.9), (3.15),, and (3.18),
we obtain the identities
AHA = AHA -I,(AH+HA)+I2H,
= —(AH +HA?) + A H + IyA? 4+ oaQuA + 041, (3.23)

1The identities (3.10); (3.11);, (3.13),, and (3.14); were observed by Guo [8]. Various authors
have observed one or both of the identities (3.11), 3, often unider the assumption that A € Psym.
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We define the subspace 7(A) of Lin as follows:
T(A):={HE€ Lin:tr H=tr(AH) = tr (A’H) = 0} . (3.24)

In particular. every tensor H € T(A) is deviatoric. It iv easily verified that 7(A) =
T(A). By the Cayley-Hamilton theorem, H € T(A) iff tr (A*H) = 0 for every
nonnegative integer k; if A is nonsingular then H € 7(A) iff tr (A*H) = 0 for every
integer k. For any tensor L, let P(L) denote the subspace of Lin consisting of all
polynomials in L. Then 7(A) = P(AT)4, the orthogonal complement of the subspace
of all polynomials in AT. Since tr (SH) = 0 for every symmetric tensor S and skew
tensor H, it follows that

Skw C T(A) = P(A)*, VA eSym. (3.25)

More generally, suppose that there is a basis {e,, e;, e;} of V consisting of eigenvectors
of A: Ae; = a;e; (i = 1,2,3). Equivalently, A = 3_°_ a;e; ® €, where {e‘} is the
reciprocal basis of {e;}. Let H'; = e'- He; denote the components of the tensor H
relative to {e;}. If the eigenvalues of A are distinct, then H € T(A) iff H!, = H?; =
H3;=0. If a; # ay = a3, then He 7(A) iff H!; = 0 and H?, + H3; = 0. Finally,
a, =ay = a3 =:aiff A =aliff T(A) iz the set of all deviatoric tensors.

When H € 7(A), the identities (3.16)~(3.18) and (3.23), simplify substantially
and can be used to obtain other useful identities. The results are summarized in

Proposition 3.1 T!e following identities hold for any tensor A and any
HeT(A):

A’HA? = II,AHA - III,(AH + HA), (3.26)
A’HA + AHA? = I,AHA - III,H, (3.27)
A’H + HA* + AHA = I,(AH+HA)-I,H, (3.28)
(adjA)H(adjA) = II,(I,H- AH -HA), (3.29)
and
AHA = A,H- (A’H+ HA?), (3.30)
A(AH+HA)A = IIH, (3.31)
(adj A)H(adjA) = III;(AH + HA). (3.32)

If A is nonsingular then (3.81) and (3.32) are equivalent. If A is nonsingular thea
(8.29) is equivalent to the identity

IIT,A-'HA"'=I,H- AH - HA. (3.33)

If A is symmetric then (8.26)-(8.82) hold for any skew tensor H. If A is symmetric
and nonsingular then (8.33) holds for any skew tensor H.
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Proof: (3.26)-(3.28) and (3.30) follcw immediately from (3.16)—(3.23) and thc defi-
nition of 7(A). Then (3.8) and (3.26)—(3.28) yield (3.29) and (3.33). To prove (3.31),
replace H with AH + HA in (3.23), and use (3.27), (3.28), and (3.11),. Similarly,
(3.32) follows from (3.14),, {3.26), (3.28), and (3.11),. Since T(A) = T(A), (3.32)
can also be obtained by replacing A with A in (3.29) and using (3.9) and (3.10),. If
A is nonsingular then adjA = IIIAA'l, in which case (3.31) and (3.32) are easily
seen to be equivalent. The statements for symmetric A follow from these results and
(3.25). O

The identity (3.31) is the key to our construction of simple direct formulas for
Lo[H] when H € T(A).}? Note that since tr (A¥(AmHA")) = tr (Ak+m+nH), for
any nonnegative integers m and n we have

A™HA" — A"HA™ € T(A), VA,He€ Lin; (3.34)

and if ¥ € 7(A) then any linear combination of terms of the forin A"HA™ belongs
to 7(A). In particular, for H € T(A) each of the expressions in Proposition 3.1
belongs to 7(A). We conclude this section with a result which will be utilized in the
proof of Theorem 4.1.

Proposition 3.2 AHA = 0 for each H € T(A) iff A = u® v for some vectors
u and v. Similarly, AHA = 0 for each H € T(A) iff A = u-v)I-uQ®v for
som. vectors u and v. In both cases, T(A) is the set of all tensors H such that
trH=v -Hu =0.

Proof: The “if” part of the first result is straightforward. Conversely, suppose that
AHA =0, VHeT(A) (*)

Then A is singular. Now in general, A has rank zero or one iff A = u ® v for some
vectors u and v. Hence, it suffices to shcw that if A has rank two then (x) leads to a
contradiction. Since A(b@c)—(b®c)A € T{A) for any vectors b and ¢ (cf. (3.34)),
(*) implies that

Ab @ ATc = Ab® (AT)?2c, V¥b,ce V. (1

If A has rank two, we may choose ¢ so that ATc # 0 and (AT)2c # 0. Then ()
implies that for every vector b there is an a 3 0 such that A(Ab) = A?b = aAb.
Then a is an eigenvalue of A, and it is not hard to show that a is independent of b,
so that A2 = gA. If P := 1A then P? = P. Hence, A = aP for some projection

12The identities (3.30)-(3.32) were derived in Scheidler [23] by the methods used here but under
the assumption that A is symmetric. A major special case of (3.31) was obtained independently
and by a different method by Chen and Wheeler [20]. For symmetric A, they showed that (3.31)
holds for any H such that e-He = 0 for every eigenvector of A. The set of all such H coincides
with 7(A) when A has three distinct eigenvalues but otherwise is properly inciuded in T(A).
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P of rank two. Then there is a basis {e;} of V with reciprocal basis {e‘} such that
P = e; ® e? + e; ® €3, in which case (x) implies that H?, = H3; = H?; = H% =0
for each H € 7(A). But from the comments preceding Proposition 3.1, we see that
He T(A)if H', = 0 and H?, = —H3; # 0, which is a contradiction. Finally, note
that since 7(A) = T(A) for any tensor A, we have AHA = 0 for each H € T(A) iff
AHA =0foreach He T(A)iff A =u®viff (cf. (3.10)) A = L(u-v)I-u@v. O

4 Existence and uniqueness of solutions.
Direct solutions in 7(A)

Here, as in the previous section, we do not require that A € Lin", i.e., that the
equation AX + XA = H has a unique soluticn X for every H € Lin. Instead, in
Theorem 4.1 and Proposition 4.2 we determine necessary and sufficient conditions for
the existence of a unique solution as well as simple direct formulas for this solution
when X and H are restricted to the subspace 7(A). These results are then used in the
proof of Theorem 4.2, which gives necessary and sufficient conditions for A € Lin".
We begin with the following result which is utilized in the proofs.

Proposition 4.1 I/f X € T(A) then AX + XA € T{A); i.e. B, maps T(A) into
itself. Conversely, if A is nonsingular and AX + XA € T(A), then X € T(A). In
varticular, kerB, C T(A) if A is nonsiugular.

Proof: Thoe first part is just a special case of the result stated after (3.34). Con-
versely, suppose that A is nonsingular and AX + XA € T(A). Then
2tr (AM1X) = tr (A¥(AX 4+ XA)) = 0 for any integer k, so that X € T(A).13
Finally, X € kerB, if A X+ XA =0€7(A). O

Theorem 4.1 The following conditions are equivelent:

(1) HIx #0;

(2) The restriction of B, to the subspace T(A) is nonsingular;

(3) For each H € T(A), the equation AX + XA = H has ezactly one solution
X € T(A) (the possibility of other solutions outside of the subspace T(A) is

not excluded).
When III; # 0, direct formulas for the solution X € T(A) are

IIIiX = AHA = AHA - I,(AH + HA) + IH
= A,H - (A’H + HA?). (4.1)
If A is symmetric with III; # 0 and if H is skew, then ({.1) is the only skew soluiion
of AX + XA =H.

13]f we dropped the assumption that A is nonsingular then we could only corclude that
tr (A*+1X) = 0 holds for nonnegative k, which does not imply tr X = 0.
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Proof: From the first part of Proposition 4.1, we see that (2)«(3). From (3.31)
with H — X, we have

ABLA[X]A = A(AX + XA)A = II;X, VX eT(A). (%)

If IIi gy # 0, then by (*) it follows that the conditions X € T(A) and B,[X] = 0 imply
X = 0. Hence, (1)=>(2)¢(3); and (3), together with (%), implies AHA = IIIzX, i.e.,
(4.1),. Then (4.1), 3 follow from (3.23), and (3.30). If A is symmetric and H is skew
then AHA is skew. Since Skw € T(A), and since (4.1) is the only solution in 7(A),
it follows that (4.1) is the only solution in Skw. It remains to show that (3) implies
(1). Suppose that (3) holds and that IIT; = 0. Then by (*), it follows that AHA = 0
for each H € T(A). Hence, by Preposition 3.2, we must have A = 2(u-v)I-u®v
for some vectors u and v, in which case H € T(A) iff tr H = v-Hu = 0. But
then for any vector w orthogonal to u, the tensor H := u ® w belongs to 7(A) and
satisfies AH + HA = 0, which contradicts (3). Hence III; must be nonzero. O

Recalling the definition (3.15) of A, , we see that (4.1); is the direct solution (1.16)
obtained by Sidoroff [6] and Guo (8] under the assumptions A € Psym and H € Skw.
Various necessary and sufficient conditions for IIT; # 0 follow from the results in the
previous section and are surnmarized in

Proposition 4.2 The following conditions are equivalent:

(1) HIg #0; (2) A is nonsingular;
(3) Inllx # 111, ; (4) IA3 # Ips;
(5) 1, is not an eigenvalue of A ; (6) a; +a; #0, Vi#je {1,2,3}.

Since any nonreal characteristic roots of A occur in a complex conjugate pair, from
(6) we see that if A has a characteristic root with nonzero real and imaginary parts
then Il # 0. Also note that A may be nonsingular even if A is singular. Indeed,
from (6) we see that the conditions

al:O’ 02#0’ 03#01 02-}-(13#0 (42)

are sufficient for Il # 0, and that if a, = 0 then the other conditions in (4.2) are
necessary for III; # 0. It follows that if A is nonsingular then the null space of A

has dimension at most one.
By combining the above results, we obtain

Theorem 4.2 The following conditions are equivalent:

(1) A € Lin"; (2) A and A are nonsingular;

(3) I, #0 and III; # 0; (4) I, 11, # III, # 0;

(5) II, #0 aend I Iz~ # 1, (6) a, +a; #0, Vi,5€{1.2,3};
(7) neither O nor I, is an eigenvalue of A.
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Proof: The equivalence of (2)-(7) follows from Proposition 4.2 and (3.12),. That (1)
implies (2) follows from Proposition 2.1 and Theorem 4.1. Conversely, if (2) holds then
by Proposition 4.1 and Theorem 4.1 we have kerB, € 7(A) and ker B,N7T (A) = {0},
respectively. Hence, kerB, = {0}. O

From (4) of Theorem 4.2 we see that A € Lin® if A is nonsinguiar and deviatoric.
From (6) we see that A € Lin" if the characteristic roots of A have positive real parts
(e.g., A € Psym), or if the characteristic roots of A have negative real parts (e.g.,
—A € Psym), or if A has a nonzero eigenvalue and a characteristic root with nonzero
real and imaginary parts.

The only part of Theorem 4.2 that carries over (with obvious modifications) to
arbitrary dimensions is the equivalence of (1) and (6). This result is a special case of

Theorem 4.3 14 Let V be a real or complez inner product space of dimension N.
Let A B € Lin have characteristic roots a; and b, (: = 1,...,N). Then the tensor
equation BX + XA = H has a unique solution X for any given H iff b, + a; # 0 for
eacht,5 € {1,...,N}.

When V is a real N-dimensional inner product space and B = A or AT, the condition
b; + a; # 0 reduces to a; + a; # 0. As in the three-dimensional case, this condition
can also be expressed in terms of the N principal invariants of A, which we denote
by IV = tr A, I?, ..., 1) = detA. Let IO =1,1et I¥ = 0if k <0or k > N,
and let A denote the N x N matrix whose element in the ith row and jth column
is (=1)71%?. The matrix Ay (or its transpose) is known as the Hurwitz matriz
associated with A. Observe that det A4, is a polynomial in the principal invariants
of A; in particular, det Ay, = Il (IpII, — III,) when N = 3. For arbitrary N,
a; +a; # 0 for each 7,5 € {1,..., N} iff det Ay, # 0. This follows immediately from
the identities

det Ay = (- 1)NNV+1/22-NT](q; + a;)

i<

= (~1)NOV+/2(det A) [[(a; + ;) (4.3)

i<

cf. Hahn [25, §2.6,2.7] and Gantmacher {26, §5.6,5.7].

14Most of the proofs in the literature deal only with the special case where V is the vector space
of N-tuples of complex numbers and A, B, H, and X are complex N x N matrices; cf. Gantmacher
(29, §8.3], Bellman [31, §12.13], Jacob and Polak [32], and Feintuch and Rubin [33] for four different
proofs. These proofs utilize the fact that every characteristic root of A is an eigenvalue of A; hence,
they do not carry over directly to a real vector space. However, the corresponding theorem for real
matrix equations and, consequently, the general theorem stated above, can be obtained from the
result for complex matrix equations.
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5 Direct formulas for L,, M,, and N,
in three dimensions

In this section we assume thui A € Lin* and V is three-dimensional. Then from
Theorem 4.1 and (1.18) it follews that for each H € T(A),

;L[ = AHA
= AHA -I,(AH + HA) + I’H
= A,H- (A’H + HA?); (5.1)

in particular, these formulas hold whenever +A € Psym and H € Skw, in which case
LA[H] is skew. For arbitrary H, all of the direct formulas for L ,[H], M4 [H], and
N4 [H] derived below will be obtained from (5.1); ,, the results in Sections 2 and 3,
and the fact that AH - HA € 7T(A) for each A, H € Lin, which is just a special case
of (3.34). This last fact allows us to replace H with AH — HA in (5.1).

By replacing H with AH — HA in (5.1); and using M["¥] = L,[AH - HA] and
A =I,I- A, we obtain

III;MA[H] = A(AH-HA)A = A(HA - AH)A
= A(AHA) - (AHA)A = (AHA)A — A(AHA)
AHA? - A’HA (5.2)
for any tensor H. Similarly, from (5.1), with H -+ AH — HA, we obtain
III;M, [H] = A’HA - AHA? + I, (HA? - A’H) + I,2(AH — HA). (5.3)

A lengthier derivation of this result follows by replacing H with AH — HA in (5.1)3;
this yields some A3 terms which can be reduced by means of the Cayley-Hamilton
theorem (3.7). Mehrabadi and Nemat-Nasser [11] obtained (5.3) by repeated appli-
cations of the Cayley-Hamilton theorem.

In view of (1.19), the direct formulas (5.2) and (5.3) yield a variety of direct
solutions X = M, [H] of the tensor equation AX+XA = AH-HA, H arbitrary. In
particular, if A and H are symmetric then M, [H] is skew, and we have the alternate
formulas

II;M,[H] = 2skw(AAHA) = 2skw (AHA?)
= 2skw (A’HA - [, A’H + IAH) (5.4)
and

—II;1MA[H] = 2skw(AHAA) = 2skw (A?HA)
2skw (AHA? - [,HA? + IHA) . (5.5)

I
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Next, we derive direct formulas for L ,[H] and N4 [H] for arbitrary H. From
(2.18) and (5.2),, we obtain

1 .
2LA[H] = [H + E—A(HA - AH)A] A-!

1 . .
-1 — - AHA?
HA-! + IHAA(H )A

1 .
- -1 H 4+ —A( -
A [ +HIAA(AH HA)A

1 -
-1H + —A(H - A-'HA)A . .
A-'H + HIAA(H A) (5.6)

Other formulas for L , [H] follow from (2.18), (5.2),_s, and (5.3)-(5.5). In particular,
if A and H are symmetric then L 5 [H] is symmetric, and

1 1 . -]
Hl = - —— 2 i 1
La[H] [2H+ TIT skw (AZHA ,J A

1 1 -
= A-!'|ZH+ —-skw (AHA?)| . .
[2 i w ( ) (5.7)

Alternate expressions for L 4[H] follow by substituting (3.8), for A-1.
Since N [H] = M [AH -HA] = M, [HA — AH], by replacing H with AH-HA
in (5.2), and replacing H with HA — AH in (5.2),, we obtain

HI;NA[H] = A(AZH + HA? - 2AHA)A
= A’(AHA) + (AHA)A? - 2A(AHA)A
= A(A’H+HA?-2AHA)A
= ASHA + AHA3 - 2A?HA?, (5.8)
Another expression for N,[H] can be obtained by using A = I,I - A in (5.8),,

expanding, and then using (3.7) to reduce the A? terms. Similarly, we can reduce the
A3 terms in (5.8), by (3.7) with A — A. The results are

IIGNA[H] = —2A2HA? 4 2I,(A’HA + AHA?) - 2I[; AHA
+TA(AH + HA) — 21, JII,H
= —2AZHA? + I;(A?HA + AHA?) - 2II; AHA
+ III;'AH + HA), (5.9)

where alternate expressions for IT; are given by (3.13), and

Ta = I II0 + I\ = Iil5 + 200 .. (5.10)

21




By using Rivlin’s identities (3.16) and (3.17) in (5.9),, we obtain
INaNAH] = —4II,AHA + (I Il + 311 ,)(AH + HA) — 41, lIl ,\H
-2 (4 A? + A + HaeyT) (5.11)
where a(Az_)H and a(Al?H are given by (3.20) and (3.21), and
&% = ~Ialam + Oalap + HaIy . (5.12)
Finally, by using Rivlin’s identity (3.18) in (5.11), we obtain
HI;NA[H] = 4II,(A’H + HA?) - 3III;(AH + HA) + 4 (II¢ - I, I, H

-2 (1A + 7w A +nul) | (5.13)

where
O = Inm—Ialan+ 2041y, (5.14)
ne = —Ialmn+ Ualan + (Hx — 20101 5) ]y, (5.15)

nou = 2[algn + (s — 20\ I\ an + (2110 = I\IIT\) Iy (5.16)

In the remainder of this section we derive some additional formulas for L 4 [H]
for arbitrary H. By substituting the formula (5.9), for N4 [H] into (2.19), and then
using (3.23),, we obtain

2IlI;LA[H] = AHA-I,(AH+HA)+II;H
+ [N A'HA! - IIT,(A-'H+ HA™)
= AHA +IL,H
+ INJITAATHA! — III[,(A~'H + HA). (5.17)
The direct formula (5.17), (with III; and IIj replaced by the equivalent expres-
sions (3.11); and (3.13),) was stated without proof by Leonov [5] and Stickforth

and Wegener [12] for the case A € Psym and H € Sym.'® If we use the relation
IIT,A-" = adj A in (5.17), we obtain

2II;LA[H] = AHA —I,(AH+HA)+ I,H

I
+ =2 (adjA)H(adj A) — (adj A)H — H{adj A)
I,
= AHA +I,H

I
+ 77-(adj A)H(adj A) — (adj A)H ~ H(adj A) . (5.18)
=44 A

5Leonov attributes the result to L. M. Zubov. Stickforth and Wegener refer the reader to some
lecture notes by Stickforth.
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If the formula (3.8), for III, A~! is substituted into the last term in (5.17);, we obtain
2IIT LA [H]) = AHA — (A’H + HA?) + A ,H + I, III,A-THA'. (5.19)

The formulas (5.18), and (5.19) a1e due to Miiller [16] and Jameson [15], respectively.1®
By using (3.8) in (5.19) or (5.18), and expanding, we obtain
QN IIALAH] = I,A*HA? - 1,2 (A'HA + AHA?) + III; (A*H + HA?)
+ (I + II,) AHA — I2II,\(AH + HA) + o, H, (5.20)
where
= IA‘IIA +IA2HIA—IIAIIIA. (5.21)
In view of (1.18) and (3.11),, this is the direct formula (1.17) of Hoger and Carlson
[9];17 cf. also Smith [14].18
Substitution of Rivlin’s identities (3.16)-(3.18) into (5.20), together with (3.23),,
vields
III;L,A[H] = AHA - IA(AH +HA) + I.H
,H(z) A? + ﬂ A + ,3(0)

= AHA + 8% A? + BUHA + 801, (5.22)
where
1
2ﬂ(2) = ‘I—I-I-A—(IAIAzH - I:IAH‘FIIIAIH) =, Taqg—~ Ty
1
= o= (~Ialxam + g ly) = Iz p-1q (5.23)
I,

1€ Jiiller and Jameson obtained direct solutions of the tensor equation BX +XA = H for arbitrary
dimensions. Miiller’s formula is quite complicated. For the case B = AT both authors simplified
their general results, and Jameson listed the corresponding formulas in two and three dimensions.
For B = AT and dimV = 3, the formulas of Miiller and Jameson are equivalent to those obtained
irom (5.18), and (5.19), respectively, via Proposition 2.4; they reduc- to (I *8); and (5.19) when
A is symmetric. Their general formulas (for A and P unrela’ -d) also reduce to (5.16), and (5.19)
when B = A.

'"Hoger and Carlson showed that (1.17) is 2 solution of AX + XA = H for any tensor H and any
tensor A such that III, (Ialla — I, ) # 0. They established uniqueness of this solution when A is
also symmetric.

18For symmetric H, Smith obtained a direct solution of the tensor equatlon ATX + XA = H
for arbitrary N = dimV. This solution has the form (det Ay)X = E | Em.n(AT)™- lI—IA" L
where Ay is the Hurwitz matrix associated with A (cf. Section 4), and the coefficients ¢, , are
complicated polynomials in the principal invariants of A involving cofactors of A3. Smith gave
explicit expressions for these coefficients when diu)} = 2,3,4. For dimV = 3, his formula is
equivalent to the one obtained from (1.17) via Proposition 2.4; thig formula reduces to (1.17) when
A is symmetric.
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280k = m (121w + (1L ~ IlIA) Inn + BaTu]
= "IAH+2IAIH“IAIA‘1H=IAH_'IAIAA'—l}{v (524)
1
2600 = T —— (M Ipow + Balan + Baln)
== _IAIA]{ + IIIAIA—lu = IIIA(IAIA—QH e IA—IH) y (525)
and
Ba = I\, = HI) = I, (20T, — I, 11,), (5.26)
BA - IIAIIIA - IAQIIIA = IAIIAJ hund IJFIAIIA

From (5.22) and (3.23),, we also have

HI;LA[H] = —(A’H+HA?)+A\H
+ 1O A? + AUHA + AR, (5.28)
where
1
1
= ( IAIAAH'*'FAIH)‘_IH'*'IAIA 1H (529)
IIIA
29\ = [ I ey + (IA + HIA) Ipn— IX IIAIH]
o III
= Ipnug— Ipla-1w = —(Ixg + Iadaa-1u) (8.30)
1
2970q = N (FAIA2H — I\ Iau + 7AIH)
= _IAIAH + FAIA‘lH = IIIA(IA—IH + IAIA‘QH) 3 (531)
T', is given by (5.10), and
YA — IIAPA - IAZIIIA = IAIIAQ - IIIAAA
= I IE = LI, + I 111, . (5.32)

The direct formula (5.28) with the expressions (5.29)3, (5.30),, and (5.31); for 'yA H 18
due to Sidoroff [6].1° The direct formula (5.28) with the expressions (5.29),, (5. 30)1,
and (5.31), for 7‘(")1{ was obtained by Hoger and Carlson [9] by essentially the same
method as used here, 1.e., from the direct formula (5.20) and Rivlin’s identities. Hoger

19For A € Psym, Sidoroff derived (5.1)3 for skew H and (5.28) for symmetric H and then corbined
these to obtain (5.28) for arbitrary H. He noted that (5.28) yields a solution of AX + XA = H for
auy tensor A such that II\(Jalla — IIs} # 0, but did not establish uniqueness for this case.
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and Carlson observed that (5.28) collapses to the formula (5.1); of Sidoroff and Guo
when A € Psym and H is skew. Indeed, for any A € Lin" and any H € T(A), we sece
that (5.22) and (5.28) collapse to (5.1); ; and (5.1);, respectively. The direct formulas
(5.6), (5.7), and (5.17)-(5.20) do not have this property

From (5.22), and the identity A? = A? 4 2, A — I, we obtain

HLAH] = A (H4 4D A — 704 A + 6041
= A(H+A04I) A +0xA + 6041, (5.33)
where
I
260 = A = HIan, (5.34)
: I,
1
2600 = i (6atasnt +8alan + Habaln)
= IAIAH + 5AIA‘1H ) (535)
and
a = HIx—IQ = ~(In0p + 1) =~ (202 + In) (5.36)
ba = I+ PBa=Is(Ilx —6a) = In(IaAp +2111,)
Also, by (5.23) and (5.30), we have
(Al)ll = I B0y + Ly (5.38)

We conclude this section by considering the special case where A and H are
time-dependent teusors withk H related to A, its time rate of change A, and some
time-dependent tensor Z as follows:

H=A+AZ-ZA; (5.39)

of. (6.4) and (7.14). Then tr (p(A)H) = tr (p(A)A), where p(A) is any polynomial
in A. In particular, we have

Iy=1I, =1, Iig=14, (5.40)

Inu=1Ia =3 =10,-1,, (5.41)

Iop = Taaa = Ya = I, - Il (5.42)

Tngiays = Tgiaga = Ma, Incp=Iyop = IIA/1, . (5.43)

These identities yield alternate expressions for the coefficients in the direct formulas
(5.22), (5.28), and (5.33) for L ,[H] and for the coefficients in the identities (3.16)-
(3.18) and (3.23),.
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6 Applications to kinematics of continua

In this section we apply the preceding results to the derivation of some kinematic
formulas for a material undergoing a smooth motion in three-dimensional space. By
taking the material time derivative of the relations U2 = C and V? = B, we obtain
the tensor equations (1.6) for U and V. Hence,

U=Ly[C] and V =Ly[B]. (6.1)

A variety of direct formulas for U in terms of C and U, and for V in terms of B and
V, follow from (6.1) and the direct formulas for L,[H] in Section 5. In particular,
the formulas that follow from (5.20) and (5.28) are due to Hoger and Carlson [9)].

By differentiating B = FFT and using the relation between the velocity gradient
and the material time derivative of the deformation gradient,

F=LF, (6.2)
we obtain the following formulas for the material time derivatives of B and B-1:

B=LB+BLT and -(B-!)=B-!'BB-!=B-'L+LTB-!. (6.3)

Then (6.3), (1.4), and the definition (1.5) of the Jaumann rate yield the tensor equa-
tions (1.10) for D. Hence,

D = Lg[B] = ~Lg- [(B-))7]. (6.4)

A variety of direct formulas for D in terms of B and B, or in terms of (B-1)° and B-1,
follow from (6.4) and the direct formulas for L, [H] in Section 5. In particular, the
formulas which follow from (6.4) and (5.17), are due to Leonov [5], and the formula
which follows from (6.4), and (5.28) is due to Sidoroff [6]. Also note that the identities
(5.40)-(5.43) can be used in the expressions for the coefficients in the direct formulas
for D which follow from (6.4), (5.22), (5.28), and (5.33).

Let Ly denote the rotated velocity gradient:

Lg := RTLR =Dg + Wy . (6.5)

Here Dy and Wy denote the rotated stretching and spin tensors:
Dg = RTDR =symLp and Wp :=RTWR =skwLj. (6.6)
By diff -entiating C = FTF and using (6.2), (1.4),, F = RU, and (6.6),, we obtain
C = 2FTDF = 2UDgzU. (6.7)
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This, together with (1.6),, yields the tensor equations (1.9) for U. Hence,
U = 2Ly[UDRU] = 2Ly~ [Dyg]. (6.8)

Although direct formulas for U in terms of Dy and U follow from (6.8) and the
direct formulas for L 4 [H] in Section 5, we can obtain simpler formulas by using the
identities (2.21). Indeed, from (6.8) and (2.21) we obtain the following relations for
the material time derivative of U:

U = U(Dg -My([Dg]) = (Dg +My[Dg))U
= %(UDR + DgrU - NU[DR]) . (6.9)

Then a variety of direct formulas for U follow from (6.9),,2 and the direct formulas
(5.2)-(5.5) for M [H]. In particula,r we have

7 = D _ — [
U g+ IIIUU(UDR DRU)U] U
[ 1 ~ -
- 2 2
_Dn + IIIg(UDRU -U DRU)] U

Iy

9 ]
= |Dgp+ ——skw (UDRU")] U. (6.10)

Some of the formulas which follow from (6.9); and the direct formulas for N, [H] in
Section 5 are

2U = UDg + DU + —U(2UDR U - U?Dy - Dy U?)U, (6.11)

Ty
and
IIIgU = UDRU? - Iy(UDyU + UDR U?) + II3UDR U
— IIIy(UDg + Dy U) + IyllIyDy
= 2IIUUDRU 2IllIy(UDg + DR U) + 21y IlIyDy
+alPp U2 + 93, U + Hlyalp, I
= —2IIy(U’Dg + DRUQ) + 2llI5(UDg + DR U)
+2(Iy Ty — II)Dg + 15 0, U? + 100 U + 100 I, (6.12)
where the al®) are defined by (3.19)-(3.22) and the nl’) are defined by (5.12) and
(5.14)—(5.16). The direct formulas (6.12), ; were obtained by Mehrabadi and Nernat-

Nasser [11].20 The formula (6.12); was also derived by Guo, Lehmann, and Liang
[13]. Now for any integers m and n,

U™ =RTV™R and UmDgU" = RT(V"DV™)R. (6.13)

2Their formula corresponding to {6.12), contains a misprint; IIy should be replaced with Iy
in the last term of their formula.
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By use of (6.13) we may convert (6.10)~(6.12) to formms'as for U in terms of D, V,
and R. When this conversion is applied to (6.12),, we recover a formula obtained by
Hoger [10].

From (1.6);, (6.3),, and B = V2, we obtain the tensor equation (1.7) for V.
Hence, »

V = Ly[VILT + LV?], (6.14)

Direct formulas for V in terms of L and V follow from (6.14) and the direct formulas
for Lo[H] in Section 5; in particular, the formula for V obtained from (5.17), is
due to Stickforth and Wegener [12]. However, simpler formulas can be obtained by
using the identities (2.26). Indeed, from (6.14), (2.26), (1.4), and (1.5), we obtain the

following relations for Jaumann rate of V:

V = VD -My[D]V = DV + VMy[D]
= L(VD+DV +Ny[D]). (6.15)

These relations can also be derived as follows. From (1.7) and (1.4), we have
VV +VV =V2D 4+ DV? - V2W 4+ WV2, (6.16)

But this is easily seen to be equivalent to the tensor equation (1.8) for V. Hence,

V = Lv[V2D + DV?], and the identities (2.24) yield (6.15). A variety of direct
formulas for the Jaumann rate of V folluw from (6.15); , and the direct formulas for
M4 [H] in Section 5. In particular, we have

Iy (V -DV) = VV(VD-DV)V
= V(VDV?_-VDV)
= Vskw (VDV?). (6.17)

Some of the formulas which follow from (6.15); and the direct formulas for N [H] in
Section 5 are

o 1 . .
2V = VD + DV + —V(V2D + DV? - 2VDV)V , (6.18)
I,
and
III‘-,\O’ = -VIDV? 4 [,(V?DV + VDV?) - II; VDV

+ IyIIy(VD + DV) — Iy IIIyD
= -VIDV2 4 [ (VIDV 4+ VDV?) - [, VDV + Iy 11D
= =20y VDV + (IyIly + IIIy)(VD + DV) - 2Iy IIIyD
—aPpV2 - PV — Iy op T
= 2IIy(V?D + DV?) — [II4(VD + DV) 4 2(II\} — Iy III,)D
=V —nypV - L. (6.19)
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The formula (6.19), was obtained by Guo, Lehmann, and Liang [13].
Next, we derive direct formulas for the skew tensors

2:= RRT = —RRT = RQzRT (6.20)

and

Qg := RTR = —RTR = RTQR. (6.21)
Then direct formulas for R follow from the relations
R=QR=RQ;. (6.22)

By differentiating the polar decompositions (1.2) and using (6.2), (6.20),, (6.21),, and
the fact that V = VT and U = UT, we obtain the formulas

V=LV-VQ=VLT4+QV (6.23)
and _
U = (Lg - Qp)U = U(LL + Qy), (6.24)
where
LT := (Lp)T = RTLTR = Dy — Wjy. (6.25)

Observe that (6.23), and (6.24), are equivalent to the following equations for the skew
tensors §2 and Qg:

VR+QV=L and UQp+QpU=Lg, (6.26)
where
I := LV - VLT = 2skw(LV)
= DV-VD4+WV VW, (6.27)
and

Lg := LRU UL = 2skw (LpU) = RTLR

In particular, (6.26); with L given by (6.27), is the tensor equation (1.11) for £.
From (6.26) it follows that

Q=Ly[L] and Qp =Ly[Lg]. (6.29)

Note that the tensor equation (6.26), can also be obtained by multiplying the terms
in (6.26), on the left by RT and on the right by R, and then using U = RTVR,
(6.21), and (6.28). Similarly, (6.29), also follows from (6.29), by using (2.15) with
K=L,A =YV, and Q = RT. Since L and Uy are skew, direct formulas for §2 and
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Qg follow from (6.29) and the direct formulas (5.1) for L ,[H]. In particular, for £
we obtain

Iy = VLV =VLV-I,(VL+LV)+ L’L
= AyL - (V2L +LV?) = AyL — (BL + LB). (6.30)

Various expreassions for the invariant Ay follow from (3.15); in particular, we have
Ay =1} — Iy = Iy + IIy = L(I\} + Iy). (6.31)

The direct formula (6.30); for £ is due to Guo [8]. The formula (6.30), was obtained
recently by Chen and Wheeler [20].2!

From (6.30) and (6.27) we see that 2 depends on L and V, or, equivalently, on
D, W, and V. Since W and 2 are both tensor measures of material spin, one might
expect the dependence of £2 on W to be of a simpler form than its dependence on D
and V. This turns out to be the case, although it is not obvious from the formulas
(6.30). Instead, we use the identity (2.27), together with (6.29),, (6.27);, (1.4), and
(2.23), to obtain the relations

Q=W —My[D] =W + My [D]. (6.32)

(6.32), may also be obtained as follows. From the expression (6.27); for L, we see
that (6.26), is equivalent to the tensor equation (1.12) for W —£2;22 then by (1.19) e
have W — 2 = My,[D]. From (6.32), and the direct formulas for M [H] in Section o,
it follows that

IIy(— W) = V(DV - VD)V = 2skw (VDVV)

= V(VD-DV)V = V2DV — VDV? = 2skw (V?DV)

= VDV2 - VDV 4 Iy(V2D - DV?) + [}(DV — VD)
2skw (VDV? — I,DV? 4+ [l DV). (6.33)

Since W is skew, we may also obtain (6.33), from (6.30),, the expresssion (6.27);
for L, and the identity (3.31). From (6.27)-(6.29) we see that results analogous to

211 had also derived (6.30); prior to seeing their paper. Chen and Wheeler [20] first derived a direct
formula for DgR, the derivative of the rotation tensor with respect to the deformation gradient,
and then obtained (6.30); (rom the relations R = DpR[F] and F = LF. Although they did not
solve any tensor equations in deriving their formula for DpR, they did utilize a special case of the
identity (3.31); cf. the footnote in Section 3.

23The tensor cquation (1.12) was stated (without proof) by Green [34] and derived by Green and
Mclnnis [35). In beth papers it was noted that detV # 0 and stated (without proof) that this
condition implies that {1.12) may be solved for £} ~ W in termns of V and D, but no solutions were
given. The tensor equations (1.7), (1.11), and (1.12) were derived by Dienes [7]. He obtained the
solution w = w+ V=g of (1.12), where w, w. and s are the axial vectors of 1, W, and DV - VD,
respectively, but did not obtain an explicit formula (cf. (3.14)) for V=1
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(6.30)-(6.33) and (1.12) also hold for Q. They may be obtained from (6.30)-(6.33)
and (1.12) by the replacements

VU, Bo5C, Q- L-oLg, W-Wg, D-—Dg. (634)
Hoger [10] derived (6.33)¢ by substituting her formula for U into the identity
Q- W =RU-'URT - D, (6.35)

which follows from (6.24),. Stickforth and Wegener [12] derived a formula equivalent
to (6.33); by substituting their formula for V into the identity

Q=V-ILV-V-1Vy, (6.36)

which follows from (6.23),. Our derivation of (6.33)g 1s closer in spirit, though different
in detail, to that of Mehrabadi and Nemat-Nasser {11]. They derived the analog of
the tensor equation (1.12) for Qg and solved this equation to obtain the analog of
(6.33)g for §2g; they alsc ucied the corresponding result for £2.23

A variety of additiun | formulas for V and U can be obtained by substituting the
formulas (6.30) for €2 into (6.23), and by substituting the analog of (6.30) for Qg into
(6.24). In particular, the formulas for V and U which follow from (6.30)5, (6.23),,
and (6.24), are due to Guo 8], and the formula for V which follows from (6.30); and
(6.23); was obtained by Chen and Wheeler [20]. From (6.15), , and (6.32);, or from
(6.23), (1.4), and (1.5), we obtain the following simple expressions for the Jaumann
rate of V in terms of D, 2 — W, and V:

O

YV = VD4 (2—W)V=DV-V(-W)

= VD +DV+(Q2-W)V-V(Q-W)]

= sym[(D + 2 - W)V]. (6.37)
By substituting the formulas (6.33) into (6.37), we recover the formulas (6.17) and

(6.18). Similarly, from (6.9); , and the analog of (6.32); for Q, or directly from
(6.24) and (6.5), we see that

U = [Dg - (f2g - Wg)]U=U(Dg + Qp — Wg)
= %[UDR + DRU + U(nn - WR.) - (QR - WR)U]
= sym[U(Dg + Qg — Wg)]. (6.38)
The formulas (6.38), ; were obtained by Mehrabadi and Nemat-Nasser {11]. By sub-

stituting the analog of (6.33) for g — Wy, into (6.38), we recover the formulas (6.10)
and (6.11).
23Bquations similar to (1.12) arise in the kinematics of elastic-plastic deformations based on the

multiplicative decomposition of the deformation gradient into elastic and plastic parts; c¢f. Nemat-
Nasser [36, 37] and Obata et al. [38].
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7 Additional kinematic formulas

If the deformation gradient F is known then the Canchy-Green tensors C = FTF
and B = FFT are easy to calculate, whereas the stretch tensors U = +/C and
V = VB are generally more difficult to compute since they involve a tensor square
root. Hence, for some applications it might be useful to have direct formulas similar
to those in Section 6 but involving C or B instead of U or V. To this end we utilize
a formula for the square root of a symmetric, positive-definite tensor due to Ting [39]
and Stickforth [30]:24

IIgV = —B? + AyB + IyIIIyT, (7.1)

with an analogous formula for U in terms of C. Recall that Ay is given by (6.31),
and note that

Iy = I} - Ip), Ily= /Iy, Iy =1IyIly-I. (7.2)

Thus if we wish to express V solely in terms of B and its principal invariants, we
need an explicit formula for Iy in terms of the principal invariants of B. In three
dimensions this formula is rather complicated.?’ Of course, given B one could also
compute the eigenvalues b; of B and then compute the coefficients in (7.1) from the
eigenvalues \/b; of V. In any case, by substituting (7.1) or its analog for U into the
direct formulas in Section 6, we obtain corresponding formulas in terms of B or C.
The scalar coefficients in these new formulas are more complicated and involve the
principal invariants of U or V; cf. Hoger and Carlson [9], where direct formulas were
obtained for U in terms of C and C, and for V in terms of B and B. Here we list
only the simplest of the results which can be derived by this procedure, namely the
formula for & — W obtained from (7.1) and (6.33):

III{(Q - W) = BDB?-B?DB + I,}(B?D - DB?) 4+ ¢y (DB - BD)
= B(DB - BD)B - 2/, Ill;(DB - BD)
= B(BD - DB)B - 21y Ill;(BD - DB)

= 2skw (B2DB + 2IyIII[;DB), (7.3)
where
ev = Iy(I¥ = 20IIy) = Iy (IVIB +2 IIIB) , (7.4)
and )
B=I1-B. (7.5)

24This result follows from the Cayley-Hamilton theorem. An equivalent formula, but with more
complicated expressions for the coefficients, had been obtained by Hoger and Carlson [40].
23Cf. Hoger and Carlson {40], Sawyers [41}, and Stickforth [30].
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The formulas (7.1)-(7.5) also hold with the replacements (6.34).
In our derivation of (6.33) we utilized the relation {6.32), for . By using (6.32),
instead, we find that (6.33) and (7.1)-(7.5) hold under the replacements

QeW, VoVl BoB-1, (7.6)

and that the analogs of (6.33) and (7.1)~(7.5) obtained via the replacements (6.34)
hold under the replacements

Qp Wy, U-U-l, CoCl. (7.7)

For a nonsingular tensor, say A, let the corresponding letter in sans serif type
denote the distortional part of A:

A:=HIIPA; (7.8)

then det A = 1. The distortional parts2¢ F, U, V, B, and Cof F, U, V, B, and C
are unaffected by the dilatational part of the deformation, that is, by the value of
det F = det U = det V. Note that the polar decompositions (1.2), the relations (1.3)
for the Cauchy-Green tensors, and the formulas (7.1)—(7.2) and their analog for U
and C, also hold with the replacements

F-F, U-U V-V, B-B C-C. (7.9)

For any tensor H let
Hy:=H - 1I4I (7.10)

denote the deviatoric part of H, so that Iy, = 0. Since the rate of change of volume
per unit volume, or rate of dilatation, is given by

(detF)/detF = I = Ip, (7.11)

the deviatoric part Dy of the stretching tensor D is unaffected by the rate of dilatation;
hence, Dy is a measure of the rate of change of shape or rate of distortion. Note that
the relations (1.4), (6.5), (6.6), and (6.25) also hold with the replacements

D—-D,, L—-Lp, Lg—(Lg), Dgr— (Dr- (7.12)

Now it is intuitively obvious that R, and thus 2, should be unaffected by the rate of
dilatation. Indeed, from (6.33) we see that the spherical part of D, %IDI, cancels out,
so that D can be replaced with D,. Likewise, we expect that €2 should be unaffected

by the dilatational part of the deformation. Indeed, on using V = III{/3 Vin (6.33) we

26These tensors have found useful applications in the constitutive theory of hyperelastic ma-
terials (cf. Ogden [42, Ch. 7], Rubin {43}, and Charrier et al. {44]) and elastic-plastic materials
(cf. Willis [45]).
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see that the IIly terms cancel out, so that V can be replaced with V. In the same way
we find that the formulas (6.26)-(6.33), (7.1)~(7.5), (1.11), (1.12), and the formulas
for  and €2y obtained via the replacements (6.34), (7.6), or (7.7), also hold with
the replacements (7.9), or with the replacements (7.12), or with both replacements
together. In general, the other formulas in Section 6 fail to hold with just one of the
replacements (7.9) or (7.12). However, all of the formulas in Section 6 as well as the
formulas (1.2)-(1.12) and (7.1)-(7.5) hold when the replacements (7.9) and (7.12) are
made together.?” There are essentially two ways to show this. We can either use
(7.11) to show that F = LyF, and then proceed as in the derivation of the original
results, that is, by differentiating the polar decompositions F = RU = VR. Or we
can start from the original results and convert them by using (7.11), the relations

V=I5V - HpV and B =I5B - %I;B, (7.13)

and their analogs for U and C, which follow from (7.8) and (7.11).

Since Ip, = 0 and IIly = IIly = Illg = IlIc = 1, there is some simplification in
some of the direct formulas which follow from the replacements (7.9) and (7.12);28
if the motion is isochoric then these simplifications hold for the original formulas as
well. We consider one example here. rrom (6.4) with the replacements (7.9) and

(7.12), we have
D, = Lp[B] = —Lg-[(B~1)°]. (7.14)

These relations and the direct formulas which follow from (5.17), were observed by
Leonov [5]. From (7.14),, the direct formula (5.33),, the identities (5.40)-(5.43), and
the fact that IIlg = 0, we obtain the following formulas for the deviatoric stretching
tensor in terms of the Jaumann rate of the distortioral part of B:

HIgD, = B(B- 13,1)B + 15,8, (7.15)
where
By=trB=t:B=1Jg, B =tr(BB)=tr(BB)=Igig—Ilg. (7.16)
The polar rate?® of a tensor field A is defined by

A = A+AQ-QA =R(RTAR)R"
= A+AQ-W)-(2-W)A. (7.17)

¥TSeveral of these results have been noted by Mehrabadi and Nemat-Nasser [11].

28Cf. the formula for U obtained by Mehrabadi and Nemat-Nasser [11, (8.18)).

29There are a variety of names used in the mechanics literature for this invariant rate. Here
we follow Dienes [46], who was motivated by the fact that the rotation tensor R in the definition
1 := RRT arises from the polar decomposition of the deformation gradient.

34




In particular, _
V =RURT and B=RCRT. (7.18)
By setting A = V in (7.17); and using the formulas for V and 2 — W in Section 6,

we can obtain a variety of direct formulas for V. However, it is simpler to note that

by (7.18),, (6.13), and (2.15), direct formulas for V in terms of V and one or more
of the tensors D, W, L, and € are given by (6.8)~(6.12), (6.24), and (6.38) with the

replacements
UV, UosV, Dg—=D, Ly—L, WegoW, Qp—-Q. (7.19)

Also, (7.18), and (6.7) yield the the simple formula B = 2VDV, which was derived
by different means by Dienes [7].

Finally, we note that direct formulas for the material time derivatives of U-1,
V-1 V-1 and U-1, and for the Jaumann and polar rates of V-1 and V-1, follow
from the results in this and the previous section and the identities

(A1) = —ATAATY, (A7) =-A'AATY, (A7) =-AT'AA,

which hold for any tensor field A.
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