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1 Introduction

A variety of problems in continuum mechanics require the solution X of a linear
algebraic equation of the form

AX + XA = (A, H). (1.1)

Here A, X, and H are second-order tensors (i.e., linear transformations) cn a two- or
three-dimensional inner product space V, and 4(A, H) is an isotropic function of A
and H which is lincar in H.

For example, consider a smooth motion with deformation gradient F.' By the
polar decomposition theorem, F has the unique multiplicative decompositions

F = RU =7 VR, (1.2)

where the proper orthogonal tensor R. is the rotation tensor, and the symmetric,

positive-definite tensors U and V are the right and left stretch tcnsors. Let C and B
denote the right and left Cauchy-Green tensors:

C = FTF= U 2 and B =FFTI' V 2 . (1.3)

Let the stretching tensor D and the spin tensor W denote the syvmletric and skew
parts of the velocity gradient L:

L=D+W, D=svmL= L (L+L T ), W=skwL= I(L--L T ). (1.4)

0

For any tensor field A, let A denote the material time derivative of A, and let A
denote the Jaumann rate of A:

:= A+AW-WA. (1.5)

Then the niaterial time derivatives of the stretch tensors are related to the imaterial
time derivatives of the Cauchy-Green tensors by the equations

UU +± U= C and Vv+ V' V (1.6)

The materia! time derivative of the left stretch tensor is related to the velocity gradient
by the equation

VV + VV = V2I.'r + LV 2 , (1.7)

and the Jaumann rate of the left s0 etch terisor is related to the stretching tVnsor by
the equation

VV + VV = V 2D + DV 2 . (1.8)

"We use the notation and terrinnology of Trwesdell and Noll [1]; cf also Wang and 'ru,'sddl [21,

Gartin [31, and Truesdeil [41.



The material time derivative of the right stretch tensor is related to the tensor
DR = RTDR by the equivalent equations

UUJ + UU = 2UDRU and U-'lb + tJU-1 = 2DR. (1.9)

The stretching tensor is related to the Jaumann rate of the left Cauchy-Green tensor
or its inverse by the equivalent equations

BD + DB = Iý aid B-D + DB- 1 = -(B-1) 0 . (1.10)

The skew tensor fl = RRT is related to the velocity gradient by the equation

V0Z + V = LV - VLT, (1.11)

and the difference of W and fl is related to the stretching tensor by the equation

V(W - f2) + (W - Z)V = VD - DV. (1.12)

The tensor equations (1.6)-(1.12) have been studied by various authors; cf.
Leonov [5], Sidoroff [6], Dienes [7], Guo [8], Hoger and Carlson [9], Hoger [10],
Mehrabadi and Nernat-Nasser [11], Stickforth and Wegener [12]. and Guo, Lehmann
and Liang [131. These equations are of the general form (1.1) with A = V, U, U-1,
B, or B-1, and with O(A, H) of the form

H, A2HT+ HA2 , A2H + HA2 , AHA, HA- AHT, AH-HA. (1.13)

In particular, for the kinematics appiications discussed above, the coefficient tensor A
in (1.1) is symmetric and positive-definite. These restrictions on A will be assumed
for the present discussion only. They guardntee that a solution X exists and is unique.
Indeed, relative to any principal basis {e,} for A, the components of X are given by
the simple formula

XAj , (1.14)

where a, is the (necessarily positive) eigenvalue of A corresponding to e,, and t,
are the components of O(A, H) relative to {e,}. Observe that X is symmetric (resp.
skew) iff O(A, H) is symmetric (resp. skew). Of course, to actually compute X by
means of (1.14) we musL first determine the eigenvalues and eigenvectors of A.

For problems in which the eigenvalues and eigenvectors of A are not of primary

1nterest, it may be more useful to express X directly in terms of the tensors A and
H. Explicit solutions of the this type have been derived by the authors cited above.
For example, Sidoroff [6] an, Guo [8] obtained the following solution of the tensor
equation

AX + XA=H (1.15)
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for the case where H (and hence X) is skew and dim V = 3:

(IA IIA - IIIA)X = (IA - IIA) H - (A2H + HA 2). (1.16)

Here IA, II", and IIIA denote the principal invariants of A, and the requirement
that A be positive-definite guarantees that IAIIA - I"iA is positive. Sidoroff and Guo
arrived at this solution by first deriving a formula for the axial vector of X in terms

of the axial vector of H and then converting this intermediate result to its equivalent
tensor form (1.16). Hoger and Carlson [9] obtained the following solution of (1.15)
for arbitrary H when dim V = 3:

2IIIA,(IAIIA - IIIA)X = IAA 2 HA2 A' 1- (A2(HA + AHA2 )

+ (IAIIA - iIkA) (A 2H + HA2 )

+ (IA + IliA) AHA - I2IIA(AH + HA)

+ [I2r + IIA(IAIIA - IIIk)] H. (1.17)

Since equations of the form (1.16) and (1.17) are said to be displayed in direct no-
tation, we will refer to such equations as direct formulas for X or direct solutions

of (1.15). By a general direct solution of (1.15) we mean a solution, such as (1.17),
which is valid for any tensor H.

Although the component formula (1.14) is easily derived and is independent of
the dimension of V, the derivation of direct formulas for X is nontrivial, and the
complexity of these formulas increases rapidly with the dimension of V.2 For example,
when dim V = 2 the solution of (1.15) for skew H is3 IAX = H, which is substantially
simpler than its three-dimensional counterpart (1.16). Also, observe that there is no
apparent simplification of the direct formula (1.17) when H is skew; in particular, it
is by no means obvious that (1.17) and (1.16) are equivalent for skew H. By utilizing
Rivlin's [17] identities for tensor polynomials in two variables, Hoger and Carlson [9]
were able to convert (1.17) to a form which does indeed collapse to (1.16) when H is
skew.

This paper is devoted to the derivation and applications of direct solutions of
the tensor equation (1.1) in three dimensions. Clearly, for any function 4(A, H) we
can obtain a direct solution of (1.1) by replacing H with $(A,H) in (1.17) or in

any other general direct solution of (1.15). The resulting formulas will typically be
more complicated thE: the direct solution of (1.15) from which they were obtained,

2Cf. the direct solutions of (1.15) obtained by Smith [14], Jameson [15], and Miller [16]. Their
formulas are valid for arbitrary dimensions, but the complexity of these iormulas is such that they
would seem to be useful only for dimV < 3 or 4. Also, compare Hoger and Carlson's [9] solutions of
(1.15) in two and three dimensions, and Mehrabadi and Nemat-Nasser's [11] solutions of (1.19) in
two and three dimensions.

3This solution is a special case of the second of two general direct solutions of (1.15) obtained by
Hoger and Carlson [9] in two dimensions.
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although subsequent applications of the Cayley-Hamilton theorem or Rivlin's [17]
identities may yield substantial simplifications in some cases. One of the goals of
this paper is to develop methods which yield these sinmpler formulas more directly.
Another goal is to derive the skew solution (1.16) and other simple solutions of (1.1)
for skew 41(A, H) without resorting to intermediate results in terms of axial vectors
or to the more complicated general direct solutions.

The paper is organized as follows. In Section 2 we study the fourth-order tensors
LA, MA, and NA characterized by the conditions

X=LA[H] = AX+XA=H, (1.18)

X=MA[H] • AX+XA=AH-HA, (1.19)
X=NA[H] • AX+XA=A 2H-2AHA+HA 2 . (1.20)

Then X is the solution of the tensor equation (1.1) iff X = LA[b(A, H)]. In partic-
ular, MA[H] = LA[AH - HA] and NA[H] = LA[A 2H - 2AHA + HA2]. Conversely,
when 4(A, H) has one of the forms in (1.13), we show that there are simple relations
for LA[@(A,H)] in terms of MA[H], MA[symH], or NA[H]. The utility of these
relations is due to the fact that direct formulas for MA[H] and NA[H] are simpler
and easier to derive than general direct formulas for X = LA[H] such as (1.17). The
results in Section 2 are independent of the dimension of the inner product space V.
Furthermore, unlike the component formula (1.14), these results are valid for any
tensor A with the property that (1.15) has a unique solution X for any given H.
Such a tensor A is necessarily nonsingular but need not be symmetric or definite,

In Sections 3-7 we assume that dim V = 3. Section 3 contains various tensor
identities which will be utilized in the sequel. These include Rivlin's [17] identities
for tensor polynomials in two variables as well as some new identities which follow
from FMvIin's. In Section 4 we consider (1.15) with X and H restricted to the set
T(A) of all tensors K such that tr (ARK) = 0 (n = 0, 1,2). We obtain necessary and
sufficient conditions for the existence of a unique solution in T(A) (the possibility of
other solutions outside T(A) is not excluded here), and we derive direct formulas for
this solution. When A is symmetric these formulas are valid for any skew tensor H;
in particular, w, recover the formula (1.16) of Sidoroff and Guo. These results do not
require that A be nonsingular; some applications for which A might be singular are
discussed below. Section 4 concludes with the derivation of necessary and sufficient
conditions for the existence of a unique solution X of (1.15) with H unrestricted.
The proof utilizes the results for the special case where X and H belong to T(A). In
Section 5 we use the results in Sections 3 and 4 to derive direct formulas for MA[H]

and NALHI for arbitrary H; these formulas, together with the relations for LA in
terms of M4, or NA obtained in Section 2, are in turn used to derive direct formulas
for LA[H] which are valid for arbitrary H. Then direct formulas for LA[4(A, H)] with
Sas in (1.13) follow from these results and the identities in Section 2. In Section 6
we derive equations (1.6)-(1.12) and apply our results to the solution of these and
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related equations arising in the kinerratics of continua. In Section 7 we discuss some
additional kinematic formulas which can be obtained from various transformations
of the results in Section 6. Although some of the algebraic and kinematic formulas
derived in this paper have been obtained previously by other authors, the derivations
given here are new, and we derive many new formuis as well.

Additional Applications

The general results in Sections 2-5 should prove useful for other problems in
mechanics which lead to tensor equations of the form (1.1). Some of these problems
are listed below.

1. Direct formulas for the derivatives of the stretch and rotation tensors with
respect to the deformation gradient: Here A = U or V, and 4(A, H) has some of
the forms listed in (1.13) as well as

AH + HTA, HA + AHT, AH - HTA. (1.21)

This problem is the subject of a follow-up paper [18]; cf. also Wheeler [19] and Chen
and Wheeler [20] for a different approach to this problem. For a hyperelastic material,
the results in [18]-[20] also yield direct formulas for the first Piola-Kirchhoff stress
tensor in terms of the derivative of the strain energy function with respect to the
right stretch tensor U; cf. also Hoger [21], where this problem has been solved using
Hoger and Carlson's [9] formula (1.17).

2. Direct formulas for one work-conjugate stress tensor in terms of another, or for
a work-conjugate stress tensor in terms of the Cauchy or first Piola-Kirchhoff stress
tensors (cf. Guo and Man [22]): Here A = U or V, and D(A,L1) has some of the
forms listed in (1.13) as well as

m

AH, HA, ZAm'rHAr-1. (1.22)
r=1

3. The kinematics and dynamics of rigid bodies (cf. Truesdell [4, §1.10, 1.13]
and Scheidler [23]) and pseudo-rigid bodies (cf. Cohen and Muncaster [24]): Here
the symmetric tensor A is either the current or the referential Euler tensor. If the
mass is not confined to a single plane then A is positive-definite (Segner's Theorem).
However, the results in Theorem 4.1 also apply when the mass is confined to a single
plane, in which case A is singular.

4. Traction boundary value problems in finite elasticity: For A symmetric and H
and X skew, the tensor equation (1.15) arises in connection with Signorini's expansion
and Stopelli's theorems; cf. Wang and Truesdell [2, §7.2, 7.4]. For these applications
the astatic load tensor A may be singular; the results in Section 4 are applicable in
this case provided that the load system does not possess an axis of equilibrium.

5. Stability analysis of systems of ordinary differential equations: The tensor
equation ATY + YA = G arises in the construction of quadratic Liapunov functions;

5



cf. Hahn [25, Ch. 4] and Gantmacher [26, §5.5]. At the end of Section 2 we show how
general direct solutions of this equation can be obtained from general direct solutions
of AX + XA = H.

2 The fourth-order tensors LA, MA, and NA

Let Lin denote the set of all linear transformations (or second-order tensors) on
the finite-dimensional real inner product space V. Sym and Skw denote the subspaces
of Lin consistilg of all symmetric and skew tensors, respectively. Psym denotes the
set of all symmetric and positive-definite tensors. The identity tensor is denoted by
I, and AO := I for any tensor A. Unless specified otherwise, A, G, H, X, and Y
denote arbitrary tensors. We assume that Lin is equipped with the inner product
"*" defined in terms of the trace function by H. G := tr (HTG), where HT denotes
the transpose of H.

By a fourth-order tensor we mean a linear transformation from Lin into Lin. The
image of H E Lin under a fourth-order tensor K is denoted by K[H]. In this section
we study the properties of the fourth-order tensors LA, MA, and NA discussed in the
Introduction. To facilitate the statement and proof of some of these properties, we
introduce the fourth-order tensors BA and CA:

BA[X]:=AX+XA and CA[X]:=AX-XA. (2.1)

It is easily verified that BA and CA commute; indeed,

CABA = BACA = CA2 . (2.2)

Clearly, CA is singular for every tensor A. Let Lin* denote the set of all A E Lin
such that B, is nonsingular, or, equivalently, such that the equation AX + XA - H
has a unique solution X for any given H. From the discussion in the Introduction we
know that Psyin C Lin*. Necessary and sufficient conditions for A E Lin* in terms of
the principal invariants of A or in terms of the characteristic roots of A are discussed
in Section 4. For this section we need only the following elementary results.

Proposition 2.1 The following conditions are equivalent:

(1) A E Lin*;
(2) AT E Lin*;
(3) QAQ- 1 E Lin* for every nonsingular tensor Q;
(4) A is nonsingular and A- 1 E Lin*.

Proof: The equivalence of (1) and (2) follows from the equivalence of the equations
AX + XA = H and ATXT + XTA`T = HT. Sirp'larly, the equivalence of (1) and (3)
follows from the equivalence of the equations AX + XA = H and

(QAQ- 1 )(QXQ-') + (QXQ-1)(QAQ-') = QHQ-.

6



Now suppose that A, and hence AT, is singular. Then there are nonzero vectors u
and 'v such that Au = 0 and ATv = 0. Therefore,

BA[u 0 v] = (Au) ® v + u ® (At'v) = 0.

Since a 0 v 0 0, BA is singular and hence A V Lin*. Thus A E Lin* =*, A is
nonsingular. That A e Lin* •' A- 1 E Lin* follows from the equivalence of the
equations AX + XA = H and A-IX + XA-1 = A-IHA-l. Hence, (1) implies (4).
Conversely, if A-' E Lin* then A = (A-')- 1 E Lin*. 0

Proposition 2.1 shows that nonsingularity of A is necessary for A E Lin*; as we
will see iv Section 4, it is not sufficient. For the remainder of this section we assume
that A E Lin*. Unless specified otherwise, no additional restrictions are imposed
on A. We denote the inverse of BA by LA:

LA := (BA')- (2.3)

Then BA[XN = H iff X = LA[HI, which is equivalent to the statement (1.18). If I
denotes the fourth-order identity tensor, then

LABA = BALA = 1, (2.4)

which is equivalent to the relations

LA[AH + HA] = ALA[H] + LA[H]A = H. (2.5)

If A is symmetric, then from (2.1), it foll'-,,s that BA, and hence its inverse LA, maps
symmetric tensors to symmetric tensors and skew tensors to skew tensors.

The fourth-order tensor MA is defined by

MA := LACA = CALA, (2.6)

where (2.6)2 follows by multiplying (2.2), on the left and right by LA and then using
(2.4). From (2.1)2 it follows that (2.6) is equivalent to the relations

MA[H] = LA[AH - HA] = ALA[H] - LA[H]A. (2.7)

By replacing H with AH - HA in (1.18), we see that (2.7), is equivalent to the
statement (1.19). From (2.6), (2.2), and (2.4), we obtain the relations

MABA = BAMA = CA = LACA2 = CA7 LA. (2.8)

By (2.1) we see that (2.8) is equivalent to the relations

MA[AH + HA] = AMA[H]-i- MA[HIA = An - HA
= LA[A 2H - HA 2] = A2LA[H] -- LA[H]A 2 . (2.9)

7



If A is symmetric, then AH - HA is symmetric (resp. skew) if H is skew (resp.

symmetric). Hence, by (2.7), and the commncnt following (2.5), we see that if A is

symmetric then "A maps symmetric tensors to skew tensors and skew tensors to
symmetric tensors.

"The fourth-order tensor NA is defined by

NA MACA = CAMA = LA (CA) 2 = (CA) 2 LA, (2.10)

where (2.10)2-4 follow from (2.6). Since

(CA) 2 [H] = A2H - 2AHA + HA2 , (2.11)

(2.10) is equivalent to the relations

NA[H] = MA[AH - HA] = AMA[H] - MA[H]A

= LA[A 2 7i - 2AHA + HA 2 ]

= A2LA[H] + LA[H]A 2 - 2ALA[H]A. (2.12)

By replacing H with A2H- 2AHA + HA2 in (1.18), we see that (2.12)3 is equivalent

to the statement (1.20).

Proposition 2.2 Let SA denote the set consisting of the fourth-order tensors intro-

duced above:
SA := {BA, CA, LA, MA, NA). (2.13)

Then any two tensors in SA commute, and each tensor KA E SA has the following

properties:

KA[AII-A2] = AIKA[H]A 2 , if A1 and A 2 commute with A, (2.14)

KQAQ-1[QHQ- 1 ] = QKA[H]Q-1, for any nonsingular tensor Q. (2.15)

In particular, KA[H] is an isotropic function of A and H which is linear in H, and

KA[A'HA-] = AmKA[H]An, for any integers m and n. (2.16)

Proof: That SA is commutative follows from (2.2), (2.4), (2.6), (2.8), and (2.10).
The easiest way to establish the other properties is to first prove them for the ten-

sors BA and CA, and then use the definitions (2.3), (2.6), and (2.10) to prove the
corresponding results for LA, MA, and NA. We prove (2.14) and leave the proof
of (2.15) to the reader. It is easily seen that (2.14) holds for KA = BA or CA.

To prove (2.14) for KA = I-A, apply LA to BA[AIXA 2] = AlBA[X]A 2 to obtain

A 1XA 2 = LA[A1BA[X]A 2], and then set X = LA[H]. To prove (2.14) for KA = MA,

use the fact that (2.14) holds for KA =ý CA and LA:

MkA[AIHA 2] = LA[CA[AIHA 2]] = LA[AICA[HIA 2]

= AjLA[CA[H]]A 2 = AjMA[H]A 2 .

8



The proof of (2.14) for KA = NA is similar. 0
The equations (2.7) give two expressions for MA[It] in terms of LA, A, and IH.

Alternate expressions are

MA[H] = H-2LA[HAI=H-2LA[H]A

= 2LA[AH] -- H = 2ALA,[H] -- H. (2.17)

The relations (2.17)1,3 follow from (2.7), and (2.5); for exanple,

MA[HI = LA[AH - HA] = LA[AHl + HA -- 2HA]

= LA[AH + HA]- 2LA[HA] = H- 2LA[HA].

Then (2.17)2,4 follow from (2.17)1,3 and (2.16) with KA = LA.

Proposition 2.3 The fourth-order tensor LA can be expressed in terms of the fovrth-
order tensor MA by the formulas

LA[H] = L(H - MA[H])A.-= !-A-' (H + MA[H]). (2.18)

Similarly, LA can be expressed in terms of NA by the formulas

LA[H] = !(A-'H + HA-1 - A-'NA[H]A-1)
= I-A-1(AH +HA - NA[H])A-1. (2.19)

Proof: (2.18) follows from '2.17). Then from (2.18) we have

LA[H] = ¼(A-'H + HA-' + A-IMA[H] - MA [H]A"'),

and from (2.12) we have

A-1MA[II]-- MA[H]A-1 = A~'(MA[H]A- AMA[H])A-1
= A-'(-NA[HI)A-'. 0

Now suppose that by some means we have obtained a direct solution of the tensor
equation (1.19), or, equivalently, a direct formula for MA[H], which is valid for any
tensor H. As we will see in Section 5, such formulas are relatively simple and easily
derived when dirnV = 3. Then direct formulas for LA[H] which are vaid for any
tensor H follow from (2.18).4 Alternatively, we can use the relations (2.12)1,2 and
the direct forr.ulas for MA&[H] to obtain direct formulas for NA[Il], and then use
(2.19) to obtain direct formulas for LA[H] which are valid for any H. In any of these
formulas we can, of course. replace the A-' terms by a polynomial in A via the

"4For the tensor equation ATX + XA = H (H symmetric), BarnAt and Storey [27] obtained a
relation analogous to (2 .18 )1; cf. their equations (1.2), (2.1), and (2.2). Their relation is equivalent
to (2.18), when both H and A are symmetric. They did not obtain direct solutions.
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Cayley-Hamiltou theorem. These techniques will be used iM Sec'ion ý; to gen:rate
direct formulas for LA[H] iin three dimensions.

By (1.18) with H --+ f(A,H), the unique solution X of the tensor efquation
AX + XA = *(AH) is given by X = LAJO(A, H)]. If O(A, H) is an isotroplic
function of A and H which is linear in H (in particular, if #(A, H) has one of the
forms in (1.13), (1.21), or (1.22)), then by (2.15) it follows that X is also an isotropic
function of A and H which is linear in H. When *(A, H) = AH -- HA, this solution
can also be written as X = MA[Hj. As we will see in Section 5, for arbitrary H the
direct formulas for MA[H] are much simpler than the direct formulas for LA[H], which
should not be too surprising in view of the method described above for generating
the latter formulas. For other functions *(A,H) in the list (1.13), the existence
of relatively simple direct formulas for X is due to the fact that there are simple
expressions for LA[4ý(A,H)] in terms of MARHI, MA[sym H], or NA[H]. We derive
these identities below. Similar results hold for 4(A, H) of the form (1.21) and (1.22);
cf. Scheidler [18].

Consider the case 4(A, H) = AHA, i.e., the tensor equation

AX + XA = AHA. (2.20)

Alternate expressions for the solution X = LA[AHA] are given by the following
identities:

LA[AHA] = ALA[H]A = LA-i[H]

= ½A(H .- MA[H]) = ½(H + MA[H])A

= 4(AH + HA- NA[H]). (2.21)

(2.21)1 follows from (2.16); then (2.21)3,4,5 follow from (2.18) and (2.19)2. To obtain
(2.21)2, observe *hat (2.20) is equivalent to the tensor equation

A- 1X + XA-1 = H, (2.22)

and that the solution of (2.22) is X = I-A-' [H]. For A E Psym and H E Sym, rela-
tions equivalent to some of those in (2.21) were observed by Mehrabadi and Nemat-
Nasser [11]5 and Cohen and Muncaster [24, Ch. 6].6 Our derivations above and in

5in their analysis of the tensor equation (1.9)2 for LI, Mehrabadi and Nemat-Nasser obtained
relations which, for symmetric A and H, are equivalent to the relations LA-, [HA = ½(H + MA [H])A
and LA-I [H] = ¼(AH + HA -NA [H]); cf. equations (8.8), (8.12), (8.13), and (8.16) in their paper.
They also derived a direct formula for MAT[H in three dimensions and used this formula, together
with the latter of the two relations above, to obtain a direct solution of (1.9)2; cf. (6.12), in this
paper, which we will obtain by essentially the same technique. However, our derivation of direct
formulas for MA[H] in Section 5 differs substantially from the method used in [11].

6Cohen and Muncumter considered a tensor equation of the form A-X + XA- 1 + c(tr X)A- 1

G, where A E Psym is the referential Euler tensor and G is symmetric. This equation arises in
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the next paragraph differ from theirs; in particular, we do not rely on the symmetry
of A or H.

Compared with (2.21)2, the formula for MA-1 in terms of MA is much simpler:

MA-1 = -MA. (2.23)

Indeed, from (1.19) we see that X = MA[H] iff A-'X+XA-' = A' (-H)--(-H)A-
if" X = MA-, [-H]. Note that some of the identities in (2.21) can also be obtained
by replacing A with A-' in (2.18) and (2.19) and then using (2.23) and (2.12).

For the case 4i(A, H) = A2H + HA2 , we have the identities

LA[A 2H + HA2] = A2LA[H] + LA[H]A 2

= 2LA[H]A2 + AH- HA = 2A 2 LA[H]- AH + HA

= AlH - MA[H]A = HA + AMA[H]

= 1(AH + HA +NA[HI). (2.24)

(2.24), follows from (2.16); then (2.24)2,3 follow from (2.9). (2.24)4,5 follow from
(2.24)2,3 and (2.18). Finally, (2.24)6 follows from (2.12)4 and (2.21)5, or from (2.24)4,5
and (2.12). Next, consider the case @(A, H) = A2HT+ HA2 . By applying LA to the
identity

A'HT+ HA2 = A2(sym H) + (sym H)A2 + A2(-skw H) - (-skw H)AF

and then using (2.9) with H -+ -skw H, we obtain the identity

LA[A 2HT+ HA 2 ] = LA[A 2(symH) + (symH)A2 ]

+ (skw H)A - A(skw H). (2.25)

Alternate expressions for LA[A 2HT + HA2] follow from this and (2.24) with H --

sym H. In particular, we have

LA[A 2HT + HA2 ] + A(skw H) - (skw H)A

= A(symH) - MA[symH]A =(symH)A + AMA[symH]

= ½(A(symH) + (symH)A + NA[symH]). (2.26)

Finally, for the case k(A, H) = HA - AHT, we have the identity

LA[HA - AHr] = skwH -- MA [sym H]. (2.27)

the analysis of gyroscopic motions of pseudo-rigid elastic bodies. On multiplying this equation by
A and taking the trace of the result we may solve for tr X and reduce the original equation to the
form (2.22) with H = G- c(2 + 3c)-'tr (GA). Then their equations (6.3.12), (6.3.14), and (6.3.16)
are equivalent to our relation LA-, [H] = 1(H + MA[H])A. They did not obtain direct formulas for
MA[H] or LA-, [H].
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This follows from the identity

HA - AHT = -A(sym H) + (symH)A + A(skw H) + (skw H)A,

(2.5) with H --, skw H, and (2.7), with H --+ sym H.
We conclude this section with a result mentioned in the introduc ion in connection

with Liapunov functions for systems of differential equations.

Proposition 2.4 The tensor equation ATY + YA = G has a unique solution Y for
any given G iff A E Lin*. If A E Lin*, then X = Cm,,ne,nA, HAn is a general
direct solution of AX + XA = H iff Y = Z,,,, cm,,(A T )' GA- is a general direcr
solution of ATY + YA = G. Here m and n are integers, the sums are assumed to be
finite, and the coefficients c,,n may depend on A but not on H or G.

Proof: We use the well-known fact that AT and A are similar, i.e., there is a
nonsingular tensor S such that AT = SAS- 1 . Let Y = SX and G = SH. Then the
equations AX + XA = H and ATY + YA = G are equivalent, and the results of the
proposition follow. 0

Since AX + XA = H iff X = LA[H], Proposition 2.4 can be used to transform
the general direct formulas (5.6) and (5.17)-(5.20) for LA[HI in three dimensions into
general direct solutions Y of ATY + YA = G. This proposition cannot be applied
to the general direct formulas (5.22), (5.28), and (5.33) since some of the coefficients
in these formulas depend on H.7

3 Some tensor identities in three dimensions

The derivations of the results in Sections 4-7 utilize various identities involving
one or two second-order tensors and their principal invariants. For convenience we
have collected most of these identities in the present section. With the exception of
some comments at the end of Section 4, for the remainder of this paper we assume that
the underlying inner product space V is three-dimensional. Unless specified otherwise,
the tensors A and H are arbitrary.

The principal invariants of A are denoted by 1 A, HA, and Hll, and its charac-
teristic roots (in the complex field) are denoted by a,, a2, a3 . Then

3

det (xI- A)= X 3 - Ax2 + IAX- IIIA = (x-a,), (3.1)
i=i

'If in Proposition 2.4 we allowed the coefficients Cm,n in the formula for X to depend on H,
say cm., = 6m,(A, H), then since H = S-IG it follows that the coefficients in the corresponding
formula for Y would depend not only on A and G but also on the tensor S in the similarity
transformation AT = SAS-'.
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where (3.1), holds for any real number x, (3.1)2 holds for any complex x, and

1A = tr A = a, + a 2 + a 3 , (3.2)

"IIA = 12 (1A IA2) = aja 2 + a2a3 + a3aa, (3.3)

"HIA = det A =aIa2a3 . (3.4)

The characteristic root aj is real iff aj is an eigenvaluc of A. The second and third
moments8 of A are

IA2 = I2-21A=a2 + a2+ a, (3.5)
IA3 = IA3 - HAMA~ + MIA = a3a + a3 + a. 336

The Cayley-Hamilton theorem implies that

A3 = IAA 2 - IIAA + INA'I. (3.7)

The adjoint of A is the tensor

adj A := A2 - IA + IIAI = IIIA- 1 , (3.8)

where the expression on the right is valid only when A is nonsingular.
Since the expression IxA -A occurs frequently in the sequel, we introduce a special

symbol for it:

A := IA'- A. (3.9)

Then

Ik, = 21 A and A = IAI-Al . (3.10)

Expressions for the determinant of A in terms of A are
"A = IA ITA - I"-A ( - IA)

= (a, + a2 )(a 2 + a3)(a 3 + a). (3.11)

(3.11)1,3 follow from (3.1) with x = IA, and (3.11)2 follows from (3.6)1. (3.11)3 also
follows from the fact that the characteristic roots of A are 9 a, + a 2, a 2 + a3 , a3 + a,.
If A is nonsingular, then from (3.8)2, (3.3)1, and (3.11)1, we obtain10

"HA = IIAIA-, and III"' = IIIA(IAIA-, - 1). (3.12)

'Cf. Ericksen [28, §38].
9 For any scalar polynomial p(x), the characteristic roots of the corresponding tensor polynomial

p(A) are p(a,); cf. Theorem 3, p. 84, in [29]. By choosing p(x) = IA - ax it follows that the
characteristic roots of AL are IA - ai = a1 + ak for distinct ij, k.

'0 Cf. Stickforth [30].
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Expressions for the second principal invariant t, A in terms of A are
"IIA = 1+IA (31A - IA,) = IA, + 3VIA

- (a, + a2)(a 2 + a3 ) + (a2 + a3 )(a3 + a 1 ) + (a3 + a,)(a1 + a 2). (3.13)

By replacing A with A in (3.8) azd using (3.9), (3.10)1, and (3.13)1, we obtain the
following expressions for the adjoint of A:

adj i = A2 + II"I = IIIAA-, (3.14)

where the expression on the right is valid only when A is nonsingular. 11 Let

AA I' -IA = IA2 +IIA=', ~(IA'+IA2) = 'IA.'

- j[(a, + a 2)2 + (a 2 + a3 )2 + (a3 + al)2]. (3.15)

This invariant appears in the direct solution (1.16) of Sidoroff and Guo and also in
several other formulas in the sequel. Observe that 2 AA is the second moment of .

The following identities are due to Rivlin [17]:

A2HA2 = IIAAHA - IIIA(AH + HA)

+ IA2HA 2 + aA•HA + IIIAIAHI. (3.16)
A2HA + AHA2 = IAAHA - IIIAH(2 +A+ HII .IH, (3.17)

+ IAHA 2 + aAHA+"AH (.7

A2H + HA2 + AHA = IA(AH + HA) - IIAH
(A 1 ) A+ ci~) 1,(318

+ IH' + A2 H A ,H (3.18)

where

a( ,)= IIIA IH -- IIAIAH IAA2 H (3.19)
'AA,H = I2 A- I.IAH = -IAAH, (3.20)

~AH = IA IAIH = -IAH (3.21)

S= A2 - IAIAH + "IAH = I(.djA)H (3.22)

The first expressions in (3.19)-(3.22) are the ones given by Rivlin [17]; the second
expressions follow easily from these and (3.7)-(3.9). From (3.9), (3.15)1, and (3.18),
we obtain the identities

AHHA = AHA - IA(AH + HA) + I21-, a(1) A+ a(°) 1. (3.23)
-(A 2H + HA2) + AAH + IAL2 + A,H + A,!H.

"1 The identities (3.10), (3.11)1, (3.13)1, and (3.14)2 were observed by Guo [8]. Various authors
have observed one or both of the identities (3.11)1,3, often unier the assumption that A E Psym.
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We define the subspace T(A) of Lin as follows:

'T(A) {H E Lin: tr H = tr (AH) = tr (A2 H) - 0}. (3.24)

In particular. every tensor H E T(A) is deviatoric, It ih easily verified that T(A) =
T(A). By the Cayley-Hamilton theorem, H E T(A) iff tr(AkH) = 0 for every
nonnegative integer k; if A is nonsingular then H E T(A) iff tr (AkH) = 0 for every
integer k. For any tensor L, let P(L) denote the suibspace of Lin consisting of all
polynomials in L. Then T(A) = 7P(AT)'-, the orthogonal complement of the subspace
of all polynomials in AT. Since tr (SH) = 0 for every symmetric tensor S and skew
tensor H, it follows that

Skv c T(A) = P(A)-L, VA E Sym. (3.25)

More generally, suppose that there is a basis {ej, e2, e3 } of V consisting of eigenvectors
of A: Ae, = ajej (i = 1,2,3). Equivalently, A = a;e1  ® ei, where {ei} is the
reciprocal basis of {e,1. Let Hij = ei. Ilej denote the components of the tensor H
relative to {ei}. If the eigenvalues of A are distinct, then H e T(A) iff Hi1 = H22 =

H3 = 0. If a1 :/ a 2 = a 3 , then H E T(A) iff H11 = 0 and H122 +H33 = 0. Finally,
a, = a2 = a3 =: a iff A = al iff T(A) is the set of all deviatoric tensors.

When H E T(A), the identities (3.16)-(3.18) and (3.23)2 simplify substantially
and can be used to obtain other useful identities. The results are summarized in

Proposition 3.1 Ti e following identities hold for any tensor A and any
H E T(A):

A2HA 2 = IIAAHA - IIIA(AH + HA), (3.26)

A2HA + AHA2 = IAAHA - IIIAH, (3.27)

A2H + HA2 + AHA = IA(AH + HA) - IIAH, (3.28)

(adj A)H(adj A) = IIIA(IAH - AH - HA), (3.29)

and

AHA = AH - (AH + HAF), (3.30)

,A(AH+HA)Ak = fIIH, (3.31)

(adj A)H(adj A) = IIIX(AH + HA). (3,32)

If A is nonsingular then (3.31) and (3.32) are equivalent. If A is nonsingular then
(3.29) is equivalent to the identity

IIIAA- 1 HA-' = IAH - AH - HA. (3.33)

If A is symmetric then (3.26)-(3.32) hold for any skew tensor H. If A is symmetric
and nonstngular then (3.33) holds for any skew tensor H.
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Proof: (3.26)-(3.28) and (3.30) follow immediately from (3.16)-(3.23) and the defi-
nition of T(A). Then (3.8) and (3.26)-(3.28) yield (3.29) and (3.33). To prove (3.31),
replace H with AH + HA in (3.23), and use (3.27), (3.28), and (3.11)1. Similarly,
(3.32) follows from (3.14)1, (3.26), (3.28), and (3.11)1. Since T(A) = T(A), (3.32)
can also be obtained by replacing A with A in (3.29) and using (3.9) and (3 .10)1. If
"A is nonsingular then adj A, = IIIAA- 1, in which case (3.31) and (3.32) are easily
seen to be equivalent. The statements for symmetric A follow from these results and
(3.25). 0

The identity (3.31) is the key to our construction of simple direct formulas for
LA[H] when H E T(A).1 2 Note that since tr(Ak(A'HAn)) = tr(Ak+m+nH), for
any nonnegative integers m and n we have

A"HAn -A"HA" ET(A), VA,HE Lin; (3.34)

and if F E T(A) then any linear combination of terms of the form AmHAn belongs
to T(A). In particular, for H E T(A) each of the expressions in Proposition 3.1
belongs to T(A). We conclude this section with a result which will be utilized in the
proof of Theorem 4.1.

Proposition 3.2 AHA = 0 for each H E T(A) iff A = u 0 v for some vectcrs
u andY. Similarly, AHA = 0 for each H E T(A) iff A = 1(u.v)I- u 9v for
somL vectors u and v. In both cases, T(A) is the set of all tensors H such that
tr H = v.Hu = 0.

Proof: The "if" part of the first result is straightforward. Conversely, suppose that

AHA = 0, VH E T(A). (H)

Then A is singular. Now in general, A has rank zero or one iff A = u 9 v for some
vectors u and v. Hence, it suffices to show that if A has rank two then (*) leads to a
contradiction. Since A(b®c)- (b®c)A E T(A) for any vectors b and c (cf. (3.34)),
(*) implies that

A2b ®ATc=Ab®(AT)2c, Vb,cEV. (M)

If A has rank two, we may choose c so that ATc # 0 and (AT) 2c # 0. Then (t)
implies that for every vector b there is an a 7/ 0 such that A(Ab) = A2b = aAb.
Then a is an eigenvalue of A, and it is not hard to show that a is independent of b,
so that A2 = aA. If P := IA then p2 = P. Hence, A = aP for some projection

12The identities (3.30)--(3.32) were derived in Scheidler (23] by the method.s u&ed here but under
the assumption that A is symmetric. A major special case of (3.31) was obtained independently
and by a different method by Chen and Wheeler [20]. For symmetric A, they showed that (3.31)
holds for any H such that e He = 0 for every eigenvectot of A. The set of all such H coincides
with T(A) when A has three distinct eigenvalues but otherwise is properly included in T(A).
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P of rank two. Then there is a basis {ei} of V with reciprocal basis {ei} such that
P = e 2 ® e2 + e3 ® e 3, in which case (*) implies that H 2

2 = H3
3 = H 2

3 = H32 = 0
for each H E T(A). But from the comments preceding Proposition 3.1, we see that

H E T(A) if H 1
1 = 0 and H22 = -H 3

3 -# 0, which is a contradiction. Finally, note
that since T(A) = T(A) for any tensor A, we have AHA = 0 for each H e T(A) iff

AHA = 0 for each H E T(A) iff A = u®v iff (cf. (3.10)) A = !(u.v)I- u0v. 0

4 Existence and uniqueness of solutions.
Direct solutions in T(A)

Here, as in the previous section, we do not require that A E Lin*, i.e., that the
equation AX + XA = H has a unique solution X for every H E Lin. Instead, in
Theorem 4.1 and Proposition 4.2 we determine necessary and sufficient conditions for
the existence of a unique solution as well as simple direct formulas for this solution
when X and H are restricted to the subspace 'T(A). These results are then used in the

proof of Theorem 4.2, which gives necessary an2d sufficient conditions for A E Lin*.
We begin with the following result which is utilized in the proofs.

Proposition 4.1 If X E T(A) then AX + XA e T(A); i.e. B_ maps T(A) into

itself. Conversely, if A is nonsingular and AX + XA E T(A), then X E T(A). In
particular, kerBA C T(A) if A is na)nsi-tgular.

Proof: The first part is jnst a special case of the result stated after (3.34). Con-
versely, suppose that A is nonsingular and AX + XA E 'T(A). Then

2tr(Ak+IX) = tr(Ak (AX + XA)) = 0 for any integer k, so that X E T(A).13

Finally, X E ker RA iff AX + XA = 0 E 1(A). 0

Theorem 4.1 The following conditions are equivalent:

(1) M, :A 0;
(2) The restriction of BA to the subspace T(A) is nonsingular;
(3) For each H c T(A), the equation AX + XA = H has exactly one solution

X E T(A) (the possibility of other solutions outside of the subspace T(A) is
not excluded).

When 111A # 0, direct formulas for the solution X E T(A) are

IIIAX = AHW = AHA - IA(AH + HA) + IAH
= AAH- (A2H + HA2). (4.1)

If A is symmetric with IllA # 0 and if H is skew, then (4.1) is the only skew soluiion
ofAX + XA = H.

"I1f we dropped the assumption that A is nonsingular then we could only conclude that
tr(Ak+IX) = 0 holds for nonnegative k, which does not imply trX = 0.
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Proof: From the first part of Proposition 4.1, we see that (2)€€(3). From (3.31)
with H --4 X, we have

.AA[XIA = A(AX + XA)A = 1IIX., VX E T(A). (*)

If II'A j4 0, then by (*) it follows that the conditions X E 'T(A) and BA[X] = 0 imply

X = 0. Hence, (1)=ý-(2)€•(3); and (3), together with (*), implies AHA = IIIAX, i.e.,
(4.1)1. Then (4.1)2,3 follow from (3.23), and (3.30). If A is symmetric and H is skew
then AHAk is skew. Since Skw C T(A), and since (4.1) is the only solution in T(A),
it follows that (4.1) is the only solution in Skw. It remains to show that (3) implies
(1). Suppose that (3) holds and that I"iA = 0. Then by (*), it follows that AHA = 0
for each H E T(A). Hence, by Preposition 3.2, we must have A - 2(u. v)I- u 0 v
for some vectors u and v, in which case H E T(A) iff tr H = v Hu = 0. But
then for any vector w orthogonal to u, the tensor H := u 0 w belongs to T(A) and
satisfies AH + HA = 0, wbich contradicts (3). Hence III, must be nonzero. C1

Recalling the definition (3.15) of AA, we see that (4.1)3 is the direct solution (1.16)
obtained by Sidoroff [6] and Guo [8] under the assumptions A E Psym and H E Skw.
Various necessary and sufficient conditions for III"• A 0 follow from the results in the
previous section and are summarized in

Proposition 4.2 The following conditions are equivalent:

(1) IxI #0; (2) A is nonsingular;
(3) IAIIA # "'A; (4) I' # IA,;

(5) 1A is not an eigenvalue of A; (6) a, + a, # 0, Vi # j E {1,2,3}.

Since any nonreal characteristic roots of A occur in a complex conjugate pair, from
(6) we see that if A has a characteristic root with nonzero real and imaginary parts
then III,& # 0. Also note that A may be nonsingular even if A is singular. Indeed,
from (6) we see that the conditions

a,=0, a2 #0, a3 #0, a2 +a 3 #0 (4.2)

are sufficient for III' # 0, and that if a, = 0 then the other conditions in (4.2) are
necessary for IIIA # 0. It follows that if A is nonsingular then the null space of A
has dimension at most one.

By combining the above results, we obtain

Theorem 4.2 The following conditions are equivalent:

(1) A E Lin'; (2) A and A are nonsingular;
(3 ) IIIA# 0 and IIIA # 0; (4) IAIIA# IIIA # 0;
(5) IMlA#OandlAIA-, I#; (6) a,+ajO0, Vi,jE{1.2,3};
(7) neither 0 nor IA is an eigenvalue of A.
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Proof: The equivalence of (2)-(7) follows from Proposition 4.2 and (3.12)2. That (1)
implies (2) follows from Proposition 2.1 and Theorem 4.1. Conversely, if (2) holds then
by Proposition 4.1 and Theorem 4.1 we have ker BA C T(A) and ker BAnT(A) = {0},
respectively. Hence, kerBA = {0}. 0

From (4) of Theorem 4.2 we see that A E Lin* if A is nonsingular and deviatoric.
From (6) we see that A E Lin* if the characteristic roots of A have positive real parts
(e.g., A E Psym), or if the characteristic roots of A have negative real parts (e.g.,
-A E Psym), or if A has a nonzero eigenvalue and a characteristic root with nonzero
real and imaginary parts.

The only part of Theorem 4.2 that carries over (with obvious modifications) to
arbitrary dimensions is the equivalence of (1) and (6). This result is a special case of

Theorem 4.3 14 Let V be a real or complex inner product space of dimension N.
Let A 3 E Lin have characteristic roots ai and bi (i = 1,...,N). Then the tensor
equation BX + XA = H has a unique solution X for any given H iff bi + aj : 0 for
each i,j E {1,...,N}.

When V is a real N-dimensional inner product space and B = A or AT, the condition
bi + aj $ 0 reduces to a, + aj $ 0. As in the three-dimensional case, this condition
can also be expressed in terms of the N principal invariants of A, which we denote
by I(')= trA, I('),... I(N)= detA. Let 1"0) -1, let I)= 0 if k <0 or k > N,

and let AH denote the N x N matrix whose element in the ith row and jth column
is (-1)'I('-j. The matrix A,. (or its transpose) is known as the Hurwitz matrix
associated with A. Observe that det An is a polynomial in the principal invariants
of A; in particular, det AH = IIIA(IAIIA - IIIA) when N = 3. For arbitrary N,
a, 4- aj ' 0 for each i,j E {1,...,N} iff det AH # 0. This follows immediately from
the identities

detA, = (.-1)N(N+i)/22-N]J(a, +aj)

- (-1)N(N++)/ 2(detA) ]J(aj+a,); (4.3)
i<j

cf. Hahn [25, §2.6,2.7] and Gantmacher [26, §5.6,5.7].

"1 4Most of the proofs in the literature deal only with the special case where V is the vector space
of N-tuples of complex numbers and A, B, 11, and X are complex N x N matrices; cf. Gantmacher
[29, §8.3], Bellman [31, §12.13], Jacob and Polak [32], and Feintuch and Rubin [33] for four different
proofs. These proofs utilize the fact that every characteristic root of A is an eigenvalue of A; hence,
they do not carry over directly to a real vector space. However, the corresponding theorem for real
matrix equations and, consequently, the general theorem stated above, can be obtained from the
result for complex matrix equations.
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5 Direct formulas for LA, MA, and NA

in three dimensions

In this section we assume t,.ai A E Lirt* and V is three-dimensional. Then from
Theorem 4.1 and (1.18) it follos :hi•,t for each H E T(A),

IlIA-A[k!] = AHA

= AHA - IA(AH + HA) + I2H

= AAH- (A 2H + HA2 ); (5.1)

in particular, these formulas hold whenever ±A E Psym and H E Skw, in which case
LA[H] is skew. For arbitrary H, all of the direct formulas for LA[H], MA[H], and
NA[H] derived below will be obtained from (5.1)1,2, the results in Sections 2 and 3,
and the fact that AH - HA E T(A) for each A, H E Lin, which is just a special case
of (3.34). This last fact allows us to replace H with AH - HA in (5.1).

By replacing H with AH - HA in (5.1), and using MA['T] = LA[AH - HA] and
A = IAI - A, we obtain

III hMA[H] -. A(AH- HA)A = A(H. - .H)A
= A(AHA) - (AHA)A = (AHA)A - A(AHA)

= AHj 2 - 2Hk (5.2)

for any tensor H. Similarly, from (5.1)2 with H -+ AH - HA, we obtain

IIIAMA[H] = A2HA - AHA 2 + IA(HA2 - A2H) + IA2(AH - HA). (5.3)

A lengthier derivation of this result follows by replacing H with AH - HA in (5.1),3;
this yields some A3 terms which can be reduced by means of the Cayley-Hamilton
theorem (3.7). Mehrabadi and Nemat-Nasser [11] obtained (5.3) by repeated appli-
cations of the Cayley-Hamilton theorem.

In view of (1.19), the direct formulas (5.2) and (5.3) yield a variety of direct
solutions X = MA [H] of the tensor equation AX+XA = AH-HA, H arbitrary. In
particular, if A and H are symmetric then MA[H] is skew, and we have the alternate
formulas

IIIAMA[H] = 2skw(AiAHA)= 2skw(AHA 2)

= 2skw (A2HA - IA2H + IA2AH) (5.4)

and

-IIlAtfl1[H] = 2skw(AHAA)= 2skw(A 2HA)

= 2skw (AHA2 - IAHA2 + I2HA) (5.5)
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Next, we derive direct formulas for LA[H] and NA[It] for arbitrary H. From
(2.18) and (5.2)1, we obtain

2LA[H] = [H + -A,(HA - AH)AJ A-'
"'IA

= HA-' + +/--A(H - AHA-1)A

= A-' [H + 1"iA H - HA)A]

= A-'H + +-A(H - A--'HA)A. (5.6)

Other formulas for LA[H] follow from (2.18), (5.2)2-5, and (5.3)-(5.5). In particular,
if A and H are symmetric then LA[H] is symmetric, and

L1] H + 1!skw(A 2Hj., A I

=A,-' 1 + "-Askw(kHA2) (5.7)

Alternate expressions for LA[H] follow by substituting (3.8)2 for A-'.
Since NA[H] = MA[AH- HA] = MA[HA- AH], by replacing H with AH- HA

in (5.2), and replacing H with HA - AH in (5.2)2, we obtain

IIIANA[H] = A(A 2H + HA2 - 2AHA)A
= A2(AHA) + (AHA)A 2 - 2A(AHA)A
= A(A 21 + HA 2 - 2AHA)A
= A 3 iA + AHA 3 - 2A 2 HA 2 . (5.8)

Another expression for NA[H] can be obtained by using A = ,IA - A in (5.8)1,
expanding, and then using (3.7) to reduce the A3 terms. Similarly, we can reduce the
A,3 terms in (5.8)4 by (3.7) with A --+ A. The results are

IIIANA[H] = -2A 2HA 2 + 21A(A 2HA + AHA2 ) - 2IIAHA

+ FA(AH + HA) - 2 IAIIIAH
= -2. 21HA 2 + IA(A 2HA + AHA 2 ) - 21IAAHA

+ IIIAtAH + HA), (5.9)

where alternate expressions for II, are given by (3.13), and

FA = IAIIA + IIA = 11IA + 21II1,. (5.10)
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By using Rivlin's identities (3.16) and (3.17) in (5.9)1, we obtain

IIDANA[H] = -4IIAAHA + (IAIIA + 3111A)(AH + HA) - 4 IAIIIAII
-2 (a(�()A2 + A "'A1A HI)7 (5.11)

where a(2) and al), are given by (3.20) and (3.21), and

*7A = IA/ + AAIAH + "'AIH. (5.12)

Finally, by using Rivlin's identity (3.18) in (5.11), we obtain

IIIAkNA[H] = 411A(A 2H + HA2) - 3I1IA(AH + HA) + 4 (IIA2 - IAIIIA) H(2 2+q(1) A " 0 (5.13)

where

7(2) 1 A2 -- IAIAH + 2 11AIH, (5.14)

(71) = -IAIA2 H+ TIAIAH +(IIIA- 2IAIIA)IH, (5.15)
0) - 2 IIAIA2H + (IIIA - 2 IAIIA)IAH + (2II1A - IAIIIA) 'H (5.16)

7A,H -

In the remainder of this section we derive some additional formulas for LA[H]
for arbitrary H. By sutstituting the formula (5.9), for NA[H] into (2.19), and then
using (3.23)1, we obtain

211IALA[H] = AHA - IA(AH + HA) + IIAH

+ IAIIIAA-I HA-1 - IIIA(A- 1 H + HA- 1 )
= AHA + IIAH

+ IAIIIAA,-HA- 1 - IIIA(A-'H + HA- 1 ). (5.17)

The direct formula (5.17), (with If'A and Ilj replaced by the equivalent expres-

sions (3.11), and (3.13)1) was stated without proof by Leonov [5] and Stickforth
and Wegener [12] for the case A E Psym and H E Sym.' 5 !f we use the relation

IIIAA-1 = adj A in (5.17), we obtain

211HALA[H] = AHA - IA(AH + HA) + IIAH

+ - (adj A)H(adj A) - (adj A)H - H(adj A)
"'IA

= AHA + IIAH

+ I(adj A)H(adj A) - (adj A)H - H(adj A). (5.18)

"t5Leonov attributes the resu!t to L. M. Zubov. Stickforth and Wegener refer the reader to some
lecture notes by Stickforth.
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If the formula (3.8)2 for IIIA-1 is substituted into the last term in (5.17)1, we obtain

2IIILA[H] = AHA - (A 2H + HA2) + AA- + IAIIIA-A HA-1. (5.19)

The formulas (5.18)2 and (5.19) aie due to Mfiller [16] and Jameson [151, respectively.16

By using (3.8) in (5.19) or (5.18), and expanding, we obtain

2IH.AIIIALA[H] = IAA2 HA2 - I12 (A2HA + AHA 2) + III] (A2H + HA2 )

+ (IU + lIA) AHA - I2I[A(AH + HA) + OAH, (5.20)

w here 
2 + I I A

w r= IA2IIA + IIAIIII.+ = 1 +IIA

= IIAI + IAIIIA- IAIIIIA . (5.21)

In view of (1.18) and (3.11)1, this is the direct formula (1.17) of ttoger and Carlson
[9];17 cf. also Smith [14].11

Substitution of Rivlin's identities (3.16)-(3.18) into (5.20), together with (3.23)1,
yields

IIIkLA[H] = AHA - IA(AH + HA) + I2H
+#A(2)A2 + /3A()A + Q()I

= A-1iAL + a (2)A2 + 0(l) A + 3(0?H1, (5.22)

where

A(2) (IAIA2H 121AH + IIIAIH) =A TA-1H -TH

- III (-IAIAAH ± II'AIH) = 'AA-'H' (5.23)

l*4Liller and Jameson obtained direct solutions of the tensor equation BX+XA = H for arbitrary
dimensions. Muller's formula is quite complicated. For the case B = AT, both authors simplified
their general results, and Jameson listed the corresponding formulas in two and three dimensions.
For B = AT and dimV = 3, the formulas of Miller and Jameson are equivalent to those obtained
irom (5.18)2 and (5.19), respectively, via Proposition 2.4; they reduc- to (r I'8)2 and (5.19) when
A is symmetric. Their general formulas (f(r A and P unrela,-d) also reduce to (5.18)2 and (5.19)
when B = A.

"17Hoger and Carlson showed that (1.17) is asolution of AX + XA = H for any tensor H and any
tensor A such that LVA(IA RA - 'HA) 0 0. They established uniqueness of this solution when A is
also symmetric.

"8 For symmetric H, Smith obtained a direct iolution of the tensor equation ATX + XA = H
for arbitrary N = iimV. This solution has the form (det AN)X = n=1 cm,n(AT)"
where Ali is the Hurwitz matrix associated with A (cf. Section 4), aný the coefficients cm,n are
complicated polynomials in the principal invariants of A involving cofactors of Aj. Smith gave
explicit expressions for these coefficients when dimaV z 2,3,4. For dimV = 3, his formula is
ecuivalent to the one obtained from (1.17) via Proposition 2.4; this formula reduces to (1.17) when
A is symmetric.
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2PIAH _ m [ H + ('A - liA) XA,, + &3IH]IIIA

-JAH + 21AIH - I'IA-H = IAH - IAIAA.-'H, (5.24)

2/3,H = 'HA (IIIAIA2H + IAIAH + I3AIH)

=-AIAH + "I'AA-,H IIIA(IAI.,2H - IA-IH), (5.25)

and

ý, = IA(IIIA- IIA)A= (2IIA- IAIA), (5.26)

#A = IAH.A - IA II.A = AIA -

= IA 2• I -' IIIAA- IIAIIIA. (5.27)

From (5.22) and (3.23)2, we also have

IIIALA[H] = -(A 2H + HA 2) + AAH
+A(2)A2 + •(1)HA + 1(°,)1 (5.28)

where
2%) -t A(! 1 (IAIA2i _ IA21AK + -FAIM)

Ilia

1= W- (-IAIAH + FAIH) = 'H + I'AA-H,, (5.29)

2 = A( 7,) 1 [-I2IAH + (IA + IHiA) !AH - IAIIAIH]

= IAH - IA2'A-H = -(IAH + IAIj-LH), (5.30)

2-yA,H 7IA(AAH- IiaIA -AH

=' _IAIAH + rAIA-IH = IIIA(IA-'H + IAIA-2H)., (5.31)

rA is given by (5.10), and

yA = itArA - IA1IIA =IAIIh' - IIIAAA

= IAIIA - IA IIIA + II4IIIA. (5.32)

The direct formula (5.28) with the expressions (5.29)3, (5.30)2, and (5.31)3 for Y( H is
due to Sidoroff [6].19 The direct formula (5.28) with the expressions (5.29)1, (5.30)I,

and (5.31), for ( was obtained by Hoger and Carlson [9] by essentially the same
method as used here, i.e., from the direct formula (5.20) and Riviin's identities. Hoger

"1For A E Psym, Sidoroff derived (5.1)3 for skew H and (5.28) for symmetric H and then combined

these to obtain (5.28) for arbitrary H. He noted that (5.28) yields a solution of AX + XA = H for
any tensor A such that HIIA,(IAHA - Ml-A) $ 0, but did not establish uniqueness for this case.
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and Carlson observed that (5.28) collapses to the formula (5.1)3 of Sidoroff and Guo
when A E Psyrn and H is skew. Indeed, for any A E Lin* and any (E T(A), we see
that (5.22) and (5.28) collapse to (5.1)1,2 and (5.1)3, respectively. The direct formulas
(5.6), (5.7), and (5.17)-(5.20) do not have this property.

From (5.22)2 and the identity A2 = j 2 + 2 IAA - I2I, we obtain
IIIXIA[H] = x (H 4 ilHI) A - Y(?HA + b(l) I

(H + #A(2HI) 1)A+ -•- -A, + b I1 (5.33)

where
26(o) a (o) = II(

2r(IH -- i--A A,• H AI IA-1. , (5.34)

26(1 _ 1,,A (AIA7H + SAIAH + IIAbAIH)

IAIAH + bA/A-1H, (5.35)

and

S= "IA, =-(IAAA-+ ,A) = -3 (21A + IA), (5.36)

ýA = 1A + ýA = IA(IIIA - A)= IA(IAAA + 2 HIA)

= IA(IA- IIHA + 2IIA). (5.37)

Also, by (5.23) and (5.30), we have

.-AH zA:. A,H + ½'2H. (5.38)

We conclude this section by considering the special case where A and H are

time-dependent tensors with H related to A, its time rate of change A., and some

time-dependent tensor Z as follows:

H =A 4- AZ- ZA; (5.39)

cf. (6.4) and (7.14). Then tr(p(A)H) = tr(p(A)A), where p(A) is any polynomial

in A. In particular, we have

IH = IA '=A Ikn"A ='i., (5.40)

IA H = IAA =2 i]Al I.iA, A- fIA, (5.41)

IA2H = IA2L - A•A 'A'A - VAL, (5.42)

I(adjA)H = I(djA)A = I'A, I-'H = /A-' = IHA/IlA. (5.43)

These identities yield alternate expressions for the coefficients in the direct formulas

(5.22), (5.28), and (5.33) for LA[H] and for the coefficients in the identities (3.16)--

(3.18) and (3.23)2.
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6 Applications to kinematics of continua

In this section we apply the preceding results to the derivation of some kinematic
formulas for a material undergoing a smooth motion in three-dimensional space. By
taking the material time derivative of the relations U 2 = C and V2 = B, we obtain
the tensor equations (1.6) for U and V. Hence,

UJ=Lu[,C] and Vr=Lv[]B]. (6.1)

A variety of direct formulas for t in terms of (C and U, and for Vr in terms of 1B and
V, follow from (6.1) and the direct formulas for LA[H] in Section 5. In particular,
the formulas that follow from (5.20) and (5.28) are due to Hoger and Carlson [9].

By differentiating B = FFT and using the relation between the velocity gradient
and the material time derivative of the deformation gradient,

F'= LF, (6.2)

we obtain the following formulas for the material time derivatives of B and B-i:

B = LB + BLT and - (B- 1 ) = B- 1 BB-' = B- 1 L + LTB-. (6.3)

Then (6.3), (1.4), and the definition (1.5) of the Jaumann rate yield the tensor equa-
tions (1.10) for D. Hence,

D = LB[]N = -LB-1 [(B-')°]. (6.4)

A variety of direct formulas for D in terms of AI and B, or in terms of (B-1 )' and B- 1,
follow from (6.4) and the direct formulas for LA[H] in Section 5. In particular, the
formulas which follow from (6.4) and (5.17), are due to Leonov [5], and the formula
which follows from (6.4), and (5.28) is due to Sidoroff [6]. Also note that the identities
(5.40)-(5.43) can be used in the expressions for the coefficients in the direct formulas
for D which follow from (6.4), (5.22), (5.28), and (5.33).

Let LR denote the rotated velocity gradient:

LR := RTLR = DR + WR. (6.5)

Here DR and WR denote the rotated stretching and spin tensors:

DR := R T DR = symLR and WR:= RTWR = skw LR. (6.6)

By difft 1entiating C = FTF and using (6.2), (1.4)2, F = RU, and (6.6)1, we obtain

C= 2FTDF = 2UDRU. (6.7)
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This, together with (1.6),, yields the tensor equations (1.9) for U. Hence,

U0 = 2 Lu [UDRU] = 2 Lu-1 [DR]. (6.8)

Although direct formulas for UJ in terms of DR and U follow from (6.8) and the
direct formulas for LA[HI in Section 5, we can obtain simpler formulas by using the
identities (2.21). Indeed, from (6.8) and (2.21) we obtain the following relations for
the material time derivative of U:

UJ = U(DR - Mu[DR]) = (DR - Mu[DR])U
= •(UDR + DRU - Nu[DaI). (6.9)

Then a variety of direct formulas for U follow from (6.9)1,2 and the direct formulas
(5.2)-(5.5) for MA[H]. In particular, we have

0 = [DR + -1-V(UDR - DRU)U] U

= [DR+ .1-1(UDRaU2 - f2DRU)] U

= DR + 2Vskw (UDRU2) U. (6.10)

Some of the formulas which follow from (6.9)3 and the direct formulas for NA[H] in
Section 5 are

2U = UDR + DRU + I/-- (2UDnU - U 2DR - DtU2)U, (6.11)

and
IIIoU = U 2 DRU 2 

- IU(U 2DRU + UDRU 2) + IIOUDRU

- IIIu(UDR + DRU) + IuIIIuDR
= 211UUDRU - 2111u(UDR + DRU) + 2 1uIIIuDR

+ uv''(2) U,2 (3 rlt! U + IIIu a('), I
= UDRU + 77U + "' U,DR 1

= -21Iu(U 2DR + DRU 2) + 2H11D(UDR + DRU)
.(2) UT2 (1) (

+ 2 (IuIIIu - IIv])DR + "7U,DRU2 + "U,DRU + 77UDýRI1, (6.12)

where the c(i) are defined by (3.19)-(3.22) and the i7(i are defined by (5.12) and
(5.14)-(5.16). The direct formulas (6.12)1,3 were obtained by Mehrabadi and Nemat-
Nasser [11].20 The formula (6.12)3 was also derived by Guo, Lehmann, and Liang
[13]. Now for any integers m and n,

U- = RTV'R and U-DRU" = RT(V-DV-)R. (6.13)
2°Their formula corresponding to (6.12), contains a misprint; flu should be replaced with MIu

in the last term of their formula.
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By use of (6.13) we may convert (6.10)-(6.12) to formuas for U in terms of D, V,
and R. When this conversion is applied to (6.12)1, we recover a formula obtained by
Hoger [10].

From (1.6)2, (6.3)1, and B = V 2 , we obtain the tensor equation (1.7) for V.
Hence,

V= Lv[V2LT + LV 2]. (6.14)

Direct formulas for V in terms of L and V follow from (6.14) and the direct formulas
for LA[H] in Section 5; in particular, the formula for V obtained from (5.17), is
due to Stickforth and Wegener [12]. However, simpler formulas can be obtained by
using the identities (2.26). Indeed, from (6.14), (2.26), (1.4), and (1.5), we obtain the
following relations for Jaumann rate of V:

0

V = VD- Mv[D]V = DV + VMv[D]

= J(VD+DV+Nv[D]). (6.15)

These relations can also be derived as follows. From (1.7) and (1.4), we have

VVr + VV = V2D + DV2 - V2W + WV2. (6.16)

But this is easily seen to be equivalent to the tensor equation (1.8) for V. Hence,

V = Lv[V 2D + DV 2], and the identities (2.24) yield (6.15). A variety of direct
formulas for the Jaumarnn rate of V follow from (6.15)1,2 and the direct formulas for
MA[H] in Section 5. In particular, we have

III4(V - DV) = VV(VD - DV)V

= V(VDV 2 -V 2D)V)
= Vskw (VDV 2). (6.17)

Some of the formulas which follow from (6.15)3 and the direct formulas for NA[H] in
Section 5 are

2V = VD + DV + 1 V(V 2 D + DV 2 - 2VDV)V, (6.18)

and
IJV 4  = -V 2DV 2 + Iv(V 2DV + VDV2 ) - IIvVDV

+ IvIIv(VD + DV) - IvIIIvD
= V 2DV 2 + Iv(V 2DV + V¢DV 2) - IIVVDV + IvIIlIVD

=-2IIvVDV + ('v"Iv + IIIv)(VD + DV) - 2IvIIIvD

?V,D-- -- 1 ,V - Mva() I

= 21v(V2D + DV 2) - IIIV(VD + DV) + 2(IIV - IvHIIv)D
(2J ) V 2 _ (1) V ý(•!D I (6.9
V,DV- - V,D- VD (6.19)
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The formula (6.19)4 was obtained by Guo, Lehmann, and Liang [13].
Next, we derive direct formulas for the skew tensors

0 := ART= -RRT = RORRT (620)

and
OR := RTR = -fRTR = RTOR. (6.21)

Then direct formulas for it follow from the relations

it = OR = R],l. (6.22)

By differentiating the polar decompositions (1.2) and using (6.2), (6.20)1, (6.21)1, and
the fact that V = VrT and U .= UT, we obtain the formulas

V= LV- Vn = VLT + OV (6.23)

and
j - (LR - OR)U = U(LT + eR), (6.24)

where
LT (LR)T = RTLTR = DR - WR. (6.25)

Observe that (6.23)2 and (6.24)2 are equivalent to the following equations for the skew
tensors 0 and OR:

Vn+nV =L and UnRO+RU=LR, (6.26)

where

L. := LV-VLT=2skw(LV)
= DV-VD+WV+VW, (6.27)

and

L4 LU- ULT = 2skw(LRU) =RTLR

= DrU - UDR + WRU + UWR. (6.28)

In particular, (6.26), with 1 given by (6.27), is the tensor equation (1.11) for f.
From (6.26) it follows that

12 Lv[L] and OR = Lu[LR]. (6.29)

Note that the tensor equation (6.26)2 can also be obtained by multiplying the terms
in (6.26), on the left by RT and on the right by R, and then using U = RTVR,
(6.21), and (6.28). Similarly, (6.29)2 also follows from (6.29), by using (2.15) with
K = L, A = V, and Q = RT. Since L and LR are skew, direct formuJas for S1 and
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fl] follow from (6.29) and the direct formulas (5.1) for LA[H]. In particular, for f1
we obtain

1Ik fn = VLV V=LV - Iv(VL + LV) + IVL

= AV - (V 2 L + LV 2 ) = Avt - (BL + LB). (6.30)

Various expressions for the invariant AV follow from (3.15); in particular, we have

Av := IV- Iv = IB + IIV= .(I + IB). (6.31)

The direct formula (6.30)3 for 11 is due to Guo [8]. The formula (6.30), was obtained
recently by Chen and Wheeler [20].21

From (6.30) and (6.27) we see that ft depends on L and V, or, equivalently, on
D, W, and V. Since W and fl are both tensor measures of material spin, one might
expect the dependence of f2 on W to be of a simpler form than its dependence on D
and V. This turns out to be the case, although it is not obvious from the formulas
(6.30). Instead, we use the identity (2.27), together with (6.29)1, (6.27)1, (1.4), and
(2.23), to obtain the relations

fl = W-Mv[D] = W + Mv-i[D]. (6.32)

(6.32), may also be obtained as follows. From the expression (6.27)3 for L, we see
that (6.26), is equivalent to the tensor equation (1.12) for W - Q;22 then by (1.1.9) ",e
have W - 0 = Mv[D]. From (6.32), and the direct formulas for MA[H] in Section 0,
it follows that

IIVc(O - W) = V(DV - VD)V = 2skw((VDVV)

= V(VD - DV)V= V 2DV - VDV 2 = 2skw (V 2DV)

= VDV2 - V 2DV + Iv(V 2 D - DV 2 ) + I,;(DV - VD)

= 2skw (VDV2 - IvDV2 + I2DV). (6.33)

Since W is skew, we may also obtain (6.33), from (6.30)j, the expresssion (6.27)3
for L, and the identity (3.31). From (6.27)-(6.29) we see that results analogous to

211 had also derived (6.30), prior to seeing their paper. Chen and Wheeler [20] first derived a direct

formula for DFR, the derivative of the rotation tensor with respect to the deformation gradient,
and then obtained (6.30), irom the relations R = DFR[F] and F = LF. Although they did not
solve any tensor equations in deriving their formula for DFR, they did utilize a special cabe of the
identity (3.31); cf. the footnote in Section 3.

"12The tensor equation (1.12) was stated (without proof) by Green [34] arid derived by Green and
Mclnnis [35]. In beth papers it was noted that detV # 0 and stated (without proof) that this
condition implies that (1.12) may be solved for S) -W in terms of V and D, but no solutions were
given. The tensor equations (1.7), (1,11), and (1.12) were derived by Dienes [7]. He obtained the
solution w = w + V•-z of (1.12), where w, w and z are the axial vectors of n), W, and DV -- VD,
respectively, but did not obtain an explicit fo-rmnula (cf. (3.14)) for V'-
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(6.30)-(6.33) and (1.12) also hold for SIR. They may be obtained from (6.30)-(6.33)
and (1.12) by the replacements

V -U, B-C, - 1--+ f1R, fL a, W--*WR, D- DR. (6.34)

Hoger [10] derived (6.33)6 by substituting her formula for UJ into the identity

12 - W = RU-1YURT - D, (6.35)

which follows from (6.24)2. Stickforth and Wegener [121 derived a formula equivalent
to (6.33)7 by substituting their formula for V into the identity

ft = V-'LV - V-1V, (6.36)

which follows from (6.23)1. Our derivation of (6.33)6 is closer in spirit, though different
in detail, to that of Mehrabadi and Nemat-Nasser [11]. They derived the analog of
the tensor equation (1.12) for na and solved this equation to obtain the analog of
(6.33)6 for 12R; they also, Ac.ed the corresponding result for f2.23

A variety of additi,,v 1 formulas for V and U can be obtained by substituting the
formulas (6.30) for Q into (6.23), and by substituting the analog of (6.30) for OR into
(6.24). In partic~ular, the formulas for V and U which follow from (6.30)3, (6.23)1,
and (6.24), ar.e due to Guo rS], and the formula for V which follows from (6.30), and
(6.23), was obtained by Chen and Wheeler [20]. From (6.15)1,2 and (6.32)1, or from
(6.23), (1.4), and (1.5), we obtain the following simple expressions for the Jaumann
rate of V in terms of D, P - W, and V:

0
-r . VD + (11- W)V = DV - V(0 - W)

= 1[VD + DV + (P - W)V - V(12 - W)]

= sym[(D + 12--W)'V]. (6.37)

By substituting the formulas (6.33) into (6.37), we recover the formulas (6.17) and
(6.18). Similarly, from (6.9)1,2 and the analog of (6.32), for f2R, or directly from
(6.24) and (6.5), wc see that

1(1 = [DR - (12. - Wk)]U = U(DR + fIR - WR)

= ½[UDR + DRU + U(4R - WR) - (f2R - WR)U]

= sym[U(DR+ftR-WWR)]. (6.38)

The formulas (6.38)1,3 were obtained by Mehrabadi and Nernat-Nasser [11]. By sub-
stituting the analog of (6.33) for f2R - Wil into (6.38), we recover the formulas (6.10)
and (6.11).

23 Equations similar to (1.12) arise in the kinematics of elastic-plastic deformations based on the
multiplicative decomposition of the deformation gradient into elastic and plastic parts; cf. Nernat-
Nasser [36, 37] and Obata et al. [38].
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7 Additional kinematic formulas

If the deformation gradient F is known then the Canchy-Green tensors C = FTF
and B = FFT are easy to calculate, whereas the stretch tensors U = -/ and
V = v1B•are generally more difficult to compute since they involve a tensor square
root. Hence, for some applications it might be useful to have direct formulas similar
to those in Section 6 but involving C or B instead of U or V. To this end we utilize
a formula for the square root of a symmetric, positive-definite tensor due to Ting [39]
and Stickforth [30]:24

IIIV -- - B2 + AvB + IvlIfvl, (7.1)

with an analogous formula for U in terms of C. Recall that Av is given by (6.31),
and note that

IIv = "(IV'2 -II), lIly = V"HI•B, Il IvIIv - •Wv. (7.2)

Thus if we wish to express V solely in terms of B and its principal invariants, we
need an explicit formula for IV in terms of the principal invariants of B. In three
dimensions this formula is rather complicated. 25 Of course, given B one could also
compute the eigenvalues bi of B and then compute the coefficients in (7.1) from the
eigenvalues V/ of V. In any case, by substituting (7.1) or its analog for U into the
direct formulas in Section 6, we obtain corresponding formulas in terms of B or C.
The scalar coefficients in these new formulas are more complicated and involve the
principal invariants of U1 or V; cf. Hoger and Carlson [9], where direct formulas were
obtained for U in terms of C and C, and for V in terms of B and B. Here we list
only the simplest of the results which can be derived by this procedure, namely the
formula for 0 - W obtained from (7.1) and (6.33)6:

IllV(0• - W) = BDB 2 - B2DB + Iv2(B 2D - DB 2) + ev(DB - BD)

= B3(DB - BD)3 - 2IvIIV(DB - BD)

= B(BD - Df3)f3 - 2IvIIIVi(BD - Df3)

= 2skw (3 2Df3 + 2IvII1VDB), (7.3)

where
S= Iv(Iv - 211V)= Iv (vIB + 2 vIII (7.4)

and
B3 = 12I-B. (7.5)

"24This result follows from the Cayley-Hamilton theorem. An equivalent formula, but with more

complicated expressions for the coefficients, had been obtained by Hoger and Carlson [40].
s5Cf. Hoger and Carlson [40], Sawyers [41], and Stickforth [30].
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The formulas (7.1)-(7.5) also hold with the replacements (6.34).
In our derivation of (6.33) we utilized the relation (6.32), for F0. By using (6.32)2

instead, we find that (6.33) and (7.1)-(7.5) hold under the replacements

1 +-+ W, V -+ V- 1, B --- B- 1 , (7.6)

and that the analogs of (6.33) and (7.1)-(7.5) obtained via the replacements (6.34)
hold under the replacements

fIR ++WR, U --+ U-1, C --+ C-'. (7.7)

For a nonsingular tensor, say A, let the corresponding letter iD sans serif type

denote the distortional part of A:

A := IIIjj'1 /3 A; (7.8)

then detA = 1. The distortional parts26 F, U, V, B, and C of F, U, V, B, and C
are unaffected by the dilatational part of the deformation, that is, by the value of
det F = det U = det V. Note that the polar decompositions (1.2), the relations (1.3)
for the Cauchy-Green tensors, and the formulas (7.1)-(7.2) and their analog for U
and C, also hold with the replacements

F --+F, U -+U, V --+V, B --+B, C- C. (7.9)

For any tensor H let
Ho := H - 1IH1 (7.10)

denote the deviatoric part of H, so that IH0 = 0. Since the rate of change of volume
per unit volume, or rate of dilatation, is given by

(det F)'/det F = IL = ID, (7.11)

the deviatoric part Do of the stretching tensor D is unaffected by the rate of dilatation;
hence, Do is a measure of the rate of change of shape or rate of distortion. Note that
the relations (1.4), (6.5), (6.6), and (6.25) also hold with the replacements

D-+ Do, L -4L 0 , LR--,(LR)O, DR -(DR)o. (7.12)

Now it is intuitively obvious that R, and thus 0, should be unaffected by the rate of
dilatation. Indeed, from (6.33) we see that the spherical part of D, ,'IDI, cancels out,
so that D can be replaced with Do. Likewise, we expect that fl should be unaffected
by the dilatational part of the deformation. Indeed, on using V - 1111/3 V in (6.33) we

26 These tensors have found useful applications in the constitutive theory of hyperelastic ma-
terials (cf. Ogden [42, Ch. 7], Rubin [43], and Charrier et at. [44]) and elastic-plastic materials
(cf. Willis [45]).
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see that the IIJv terms cancel out, so that V can be replaced with V. In the same way
we find that the formulas (6.26)-(6.33), (7.1)-(7.5), (1.11), (1.12), and the formulas
for fl and fl1 obtained via the replacements (6.34), (7.6), or (7.7), also hold with
the replacements (7.9), or with the replacements (7.12), or with both replacements
together. In general, the other formulas in Section 6 fail to hold with just one of the
replacements (7.9) or (7.12). However, all of the formulas in Section 6 as well as the
formulas (1.2)-(1.12) and (7.1)--(7.5) hold when the replacements (7.9) and (7.12) axe
made together. 27 There are essentially two ways to show this. We can either use
(7.11) to show that F = LoF, and then proceed as in the derivation of the original
results, that is, by differentiating the polar decompositions F = RU = VR. Or we
can start from the original results and convert them by using (7.11), the relations

V = IIIv 1 /3V - 1 IDV and B = III• 11 3B -_ IDB, (7.13)

and their analogs for U and C, which follow from (7.8) and (7.11).
Since ID0 = 0 and IIIu = XIIy = "'B = IIC = 1, there is some simplification in

some of the direct formulas which follow from the replacements (7.9) and (7.12);28
if the motion is isochoric then these simplifications hold for the original formulas as
well. We consider one example here. From (6.4) with the replacements (7.9) and
(7.12), we have

Do = LB[BI = -LB-I[(B-1)°]. (7.14)

These relations and the direct formulas which follow from (5.17), were observed by
Leonov [5]. From (7.14)1, the direct formula (5.33)2, the identities (5.40)-(5.43), and
the fact that I"'B = 0, we obtain the following formulas for the deviatoric stretching
tensor in terms of the Jaumann rate of the distortioral part of B:

IIIBDo = 9(B - 1/01I)B + /•,2B, (7.15)

where
0 0

18, = trB = trB = IB, 02 = tr(BB) = tr(BB) = IBIB - /IB. (7.16)

The polar rate29 of a tensor field A is defined by

A :A ftA - OAA=R(RTAR)-RT

= +A( - W)- (n -- W)A. (7.17)

27Several of these results have been noted by Mehrabadi and Nemat-Nasser [11].
"'Cf. the formula for 0 obtained by Mehrabadi and Nemat-Naassr [11, (8.18)].
"2'There are a variety of names uked in the mechanics literature for this invariant rate. Here

we follow Dienes [46], who was motivated by the fact that the rotation tensor R in the definition
ft := RRT arises from the polar decomposition of the deformation gradient.
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In particular,
S= RuRT and l=RCRT. (Y.18)

By settiag A = V in (7.17)3 and using the formulas for V and f - W in Section 6,
we can obtain a variety of direct formulas for V. However, it is simpler to note that

by (7.18),, (6.13), and (2.15), direct formulas for V in terms of V and one or more
of the tensors D, W, L, and f are given by (6.8)-(6.12), (6.24), and (6.38) with the
replacements

t U--+V, U--- V, DR--D, LR--+-L, WR--W, OR --+ f. (7.19)

Also, (7.18)2 and (6.7) yield the the simple formula B = 2VDV, which was derived
by different means by Dienes [7].

Finally, we note that direct formulas for the material time derivatives of U-1,
V-1, V-1, and U-1, and for the Jaumann and polar rates of V-1 and V-1, follow
from the results in this and the previous section and the identities

(A-')= -A-'AA-', (A-') = -A-',A-', (A-')* =-A-1AA-,

which hold for any tensor field A.
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