
AD-A285 879 pvru

A Component Library Management

System and Browser

John Granacki, Zia Iqbal and Tauseef Kazi

ISI/RR-93 -386

April, 199

SNov 0 1 1994

94...39 12

INFORMA TION 94 11 1 086
SCIENCES 3101822-1511

INSTTUTE~j746 76 AdmiralrY Wa~ IManina del Ren ICalifimrn 90292-66 95

UNIVERSITY OF SOUTHERN CAIJFORNIA X -f INFORMATION SCIENCES INSTITUTE
4676 Admiralty Way Aria del Rey, CA 90292

ISI Research Report

ISIIRR-93-386

April, 1993

A Component Library Management

System and Browser

* John Granacki, Zia Iqbal and Tauseef Kazi

ISIIRR-93-386

April, 1993

0

'iccesiofl For

NTi S (~?I
DTIC

~Codes University of Southern California

Di- t Information Science Institute

4676 Admiralty Way, Marina del Rey, CA 90292

Unclassified/Unlimited

A Component Library Management System and Browser1

FORM APPROVEDREPORT DOCUMENTATION PAGE T NO. om"-,
L . GEC UE NY /.ve/nk |2 RPOT AE FPGE TY j 0AT MBCERO. 7408

PAI o.tbio- burdmn for 8dms eaflct Ion of lsdoimetion is estimated to aerage I hourperZoeI knclu~m t#w Urne for reviewtin ietome seuro0f exUing da
eouma...ianud vask"WiCm ow deta nedd and omoatfn aem MWW conf =bdoiv. Send comummnts e nrding; tti burden esdMotd or any
5 el oftello of WomloIcong d udnt Wa.Nngon Headquerters ServIe, Diectorate for hInon Ogeretoe

and %VAte l~Se~ro wshba.SieI*ol ndt theb Offce of management and Budge, Papeuroic Reductlon Project (070418)
= =b'to.DC 2060&

1. AGENCY USE ONLY (Lsvo blank) L RE. OT DATE 3S. REPORT TYPE AND DATES COVERED

I April, 1993 Research Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Component Library Management System and Browser J-FBI-91-282

C AUTHOR(S)
John Granacki
Zia Iqbal
Tauseef kazi
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATON

REPORT NUMBER

USC INFORMATION SCIENCES INSTITUTE

4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

9. SPONSORINGNMONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTIONAVAILABILITY STATEMENT 12B. DISTRIBUTION CODE

UNCLASSIFIED/UNLIMITED

13. ABSTRACT (Maximum 200 words)

This report describes a component library management system implemented with the OCT database man-
agement system. The library manager consists of a browser which enables the user to search through com-
ponent lists with the help of a friendly graphical user interface. Although commercial library browsing tools
exist (such as Cahners Computer-Aided Product Selection CAPS), these tools do not provide access to
computer-sensible or computer-processable data. This management tool will be linked to FAST (an ARPA-
sponsored electronic parts broker) procurement data, so the tool will not only be able to automatically uti-
lize FAST procurement history data but also the designers can automatically generate electronic orders for
parts and components to FAST. In this report we describe the development of such a tool. First we discuss
the trade-offs of relational database systems and object oriented database systems. Next we present the use
of OCT in our implementation and describe our flexible and extensible browser datastructure. Finally, we
identify the limitations of the current implementation and propose some possible solutions and future work.
14. SUBJECT TERMS IS. NUMBER OF PAGES

Framework 23
Databases
Components 16. PRICE CODE

Library

17. SECURITY CLASSIFICTION 11. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500 landard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (ROP) is used in announcing and cataloging reoprts. It is important
that this Information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is Important to stay within the lines to meet
optical scanning requirements.

Block 1. Aaenc Use Only (Leave blank). Block 12a. DistributionfAvailability Statement.
Block 2. De Full publication date Denotes public availability or limitations. Cite any
Including day, month,a nd year, If available (e.g. 1 availability to the public. Enter additional
Jan 88). Must cite at least the year. limitations or special markings in all capitals (e.g.

_an_8)._Mst ___e__teasttheear.NOFORN, REL, ITAR).

Block 3. Tye of Report and Dates Covered.

State whether report is Interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 -30 Jun 88). Documents."
Block 4. "t1tle and Subtitle. A aken from DOE - See authorities.
the part of the report that p... t% ",a most NASA - See Handbook NHB 2200.2.
meaningful and complete infoia .1 n. When a NTIS - Leave blank.
report is prepared in more than one wlume,
repeat the primary title, add volume number, and Block 12b. Distribution Code.
include subtitle for the specific volume. Pn
classified documents enter the title class,', -iation DOD - Leave blank.
in parentheses. DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical

element numbers(s), project number(s), task Reports.
number(s), and work unit number(s). Use the NASk - Leave blank.
following labels: NTIS - Leave blank.

C - Contract PR - Project Block 13. Asract. Include a brief (Maximum
PE - Program WU - Work Unit 200 words) factual summary of the mostElement Accession No. significant Information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Sub~ect Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects In the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total
Block 7. Performing Organization Name(s) and number of pages.
Address~es) Self-explanatory. Block 16. Price Code. Enter appropriate price
Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.-19. Security Classifications. Self-
performing the repor. explanatory. Enter U.S. Securky Classification In
Block 9. Soonsoring/Monitoring Agency Names(s) accordance with U.S. Security Regulations (i.e.,
nd Address(es). Self-explanatory UNCLASSIFIED). If form contins classified

Information, stamp classification on the top andBlock 10. Sonsodlna/Monitod~na Agency ofmo h ae. (f knwn)bottom of the page.
RoBgrt Numka (If known)
Block 11. SuRIlementary Notes. Enter Block 20. Limitation of Abstract. This block must
Information not Included elsewhere such as: be completed to assign a limitation to the
Prepared In cooperation with...; Trans. of .. ; To be abstract Enter either UL (unlimited) or SAR (same
published In... When a report is revised, Include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older reporL is assumed to be unlimited.

Standard Form 298 Back (Rev. 249)

A Component Library Management

System

John Granacki, Zia Iqbal and Tauseef Kazi

IP USC/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
310.822.1511

S
Abstract

This report describes a component library management system (LMS) that is implemented
with the OCT database. The LMS consists of a user-extensible component library and, a
browser that enables the user to search through component lists with the help of a graphical
user interface. The LMS provides a query mechanism that allows the use, - cearch for
components by attributes and quickly identify parts that meet a design requirement. The
LMS also provides a link between the browser and FAST (an ARPA-sponsored electronic
parts broker) procurement data, so that designers can automatically generate electronic
orders for parts to FASTAlthough commercial library browsing tools exist (such as Cah-
ners Computer-Aided Product Selection CAPS), these tools cannot process the component
data or generate procurement requests. In this report we discuss the trade-offs between
relational database systems and object oriented database system for implementing the LMS
and describe the use of OCT in our implementation. We also present a flexible and extensi-
ble browser datastructure that has been created for rapid on-line access of the OCT compo-
nent library information. Finally, we identify the limitations of the current implementation
and propose some possible solutions and future work.

1.0 Introduction

This report describes a component library and associated library management tools.This
Library Management System (LMS) is being developed primarily to aid the component
search, selection and procurement tasks during the physical design [1] of PCBs (printed cir-
cuit boards) and MCMs (multichip modules). Key features of this system are a flexible user
interface that supports searching component libraries using different attributes and, tools for
component data management, management of design data and the ordering of parts through
the ARPA-sponsored FAST brokerage (FAST is a service accessible by electronic mail for
the procurement of standard electronic components). These tools will reduce the designers
dependence on the current paper-based manufacturers' data books and accelerate the trend

* towards electronic data books. These tools are being developed using the OCT database
tools and the other tools developed as part of the ARPA-sponsored UCB SIERA design sys-
tem and Lager IV [5].

A Component Library Management System 2

The proposed LMS is compatible with a broad range of commercial and university-devel-
oped tools and supports a neutral design style, that is, either text or graphical based system
descriptions.

In this section we discuss the basic motivation for the component library and library man-
agement system and present a brief overview of the LMS. In section 2, the selection of the
database for the component library is discussed and the choice of OCT is justified. Section 3
presents the OCT policy we have developed for the component library to support various
library management functions. In section 4 the details of the implementation of the LMS are
described and in particular we present a data structure that has been developed for efficient
searches of the component database.

1.1 Requirements of the component library

Most CAE/CAD tools are delivered with some form of vendor-supplied library. In addition,
there are vendors like Logic Automation that supply tool-specific libraries. The problem is
that these libraries do not necessarily contain all of the information a designer usually needs
to complete the physical design, the procurement of parts, fabrication and assembly of an
ASEM (Application Specific Electronic Module). Also these libraries are often based on
incompatible representations which makes it difficult to extend and/or update the libraries
while maintaining data consistency.

There is also a cost issue since the commercial libraries are expensive and multiple versions
must be obtained to support tools from different vendors. The specific tool vendors fre-
quently do not make it easy to use their libraries with other vendor's tools; therefore; a user
who has augmented a particular vendor's library is effectively locked into using a particular
vendor's tool set. To solve these library problems, some large corporations have invested
heavily in the development of their own internal proprietary libraries which are tied into
their enterprise-wide management information systems. For cost reasons the proprietary
library solution is not an alternative for small companies and academic researchers.

To solve the above problems, the component library in the proposed LMS has been defined
to allow storage of a large amount of generic part and package information and special tools
are being created to allow users to add data and extend the library. It is expected that
researchers will share information thereby reducing the amount of data capture that any
individual will have to do. In addition to data on standard packaged components, we plan on
including data on bare die that will be needed in the design, manufacturing and assembly of
MCMs.

1.2 Requirements of library management tools

Finding the "best" parts for a design is a tedious and time-consuming task that is often "hit
or miss" and does not produce a part number that can actually be used to order the desired
component. Currently, designers using various design capture tools, (both commercial and
university-developed), do not have any automated tools to aid in searching for components.
An example of a commercial library tool is CAPS (Cahners Computer-Aided Product selec-

A Component Library Management System 3

tion). This is, a system for automated search, and simply replaces the collection of data
books with a collection of CD ROMs and bitmap graphic displays. Since tools like CAPS
do not produce or allow access to computer-readable or computer-processable data, the
engineer must frequently transcribe this information to other tools manually, which is error
prone and, for example, results in ordering on incorrect parts. The problems with incorrect
part numbers often are not detected until the designer actually places the order for the parts,
thus lengthening the development cycle. By creating a database for storage of the compo-
nent library, the proposed LMS allows the computer to directly process component data for
design entry and parts ordering, thereby avoiding manual entry. Furthermore, the definition
of the component database allows the designer to drive the search by using different
attributes as illustrated below in section 1.3. This feature can be used to quickly compare
alternative parts for the same requirement from different manufacturers or in different tech-
nologies.

A second problem in component selection is that designers often have to redesign some or
all of the circuitry because parts are unavailable or their availability impacts the develop-
ment process. Since the proposed LMS provides a link between the component library and
FAST procurement data, the designers can automatically generate electronic RFQs to FAST
early in the design cycle and obtain accurate information about the availability of parts.
This will help avoid costly redesign and decrease the time for the completion and fabrica-
tion of designs.

1.3 Overview of the library management system

A prototype component library and a browser tool have been implemented (Figure 1). The
program is able to read in data from the set of existing libraries (Figure 1). Upon the choice
of a particular library, a multiple column display is presented (Figure 2). The display con-
sists of lists of components and their attributes. The user interface supports selections using
both the keyboard and the mouse. The interface allows the browsing of the complete list of
components in the library. The user can restrict the list of components at any time by select-
ing an entry in any column. For example, by selecting CMOS in the technology attribute
column the user restricts the list of components to only those belonging to the class CMOS.
The restriction by multiple attributes (for example, 'TECH" (technology) and "MFR"
(manufacturer)) further reduces the list to a set of components that have the attribute
selected in each column (see Figure 2). Selecting an attribute highlights the particular selec-
tion and removes the other attributes from the list, components can be unselected by click-
ing again on the highlighted attribute, this rebuilds the lists according to the remaining
selections, thus the user can move forward and backward in the query process till the
desired component has been found. The list of components can be restricted by any attribute
anid by as many attributes as desired until a single component is selected. If a particular
component is selected, its relevant attribute information will be displayed.

Once a component has been selected, procurement can be initiated with a single keystroke.
The selected components will be automatically ordered from the FAST brokerage. The pro-
gram generates an email message for ordering the selected components.

A Component Library Management System 4

---b --- -- -- -- -- - -- -- - -- ---

...................

. . :. g

FIGURE 1. Library selection with the LMS

2.0 Selection of a data base system

To develop the component library and library management system, the first task is to select
an appropriate database system. As discussed below we selected the OCT database and
developed the library management system on top of OCT. To achieve this we defined a new
OCT policy for electronic cor~iponents. The OCT policy is described in section 3 and the
implementation of the library management tools are described in section 4. In this section
we discuss the criteria for selection of the OCT database.

A Component Library Management Systen, 5

.i ..%

..

..

..

---- --- -- -

W-f5-

A opnetLbrr aagmn Sse0

2.1 Comparison of basic data models

Existing data management systems support two basic data models, those based on the rela-
tional data model (RDBMS) and those based on the object-oriented data model
(OODBMS).

The relational data model provides efficient mechanisms for the storage and manipulation
of non-hierarchical data (flat data) that can be tabulated, accessed and modified using high-
level query languages. However the set of structures, opertions and constraints in rela-
tional data is limited and fixed. Consequently, any modification or query operation required
by the applications has to be mapped onto this limited set. As the applications become more
complex, this mapping becomes less intuitive and harder to comprehend. In contrast, the
object-oriented data model provides a natural mapping of concepts to data objects, it is well
suited for CAD applications because CAD databases must deal with the complex relation-
ships between multiple levels of abstraction.

The library application like most CAD applications is data intensive and has complex data
associations (links), attempts to model these complex relationships with the relational data
model result in complex relational functions that incur considerable processing overhead 0
and duplication of data. The need to build these complex relationships from the select and
join primitives seriously degrade performance.Examples of this processing overhead have
been observed in the current implementation of MICON, RACAL REDAC, Visuala [4] and
the Eve DBMS for USC's Advanced Design AutoMation System [6]. The Eve database is
built on top of a commercial relational DBMS. Although Eve successfully models the data
representations for an object-based model, but the performance degradation manifests itself
in slow response times. The developers of Eve plan to reimplement Eve using an OODBMS
to avoid this problem. Hence the OODBMs' ability to model complex relationships is better
suited to this type of application.

2.2 Tables, query mechanisms and performance.

An advantage of the relational database technology is a well developed and standardized
query language. However, the expressive power of the query languages comes with a sub-
stantial performance overhead.

The relational model stores data in the form of tables, and the relationship between two
tables is established in terms of a common key (unique identifier) between the data stored in
the two tables. Hence in order to retrieve information, which pertains to a particular entry in
one table, from another table, searching has to be performed on the other table(s) based on
the common keys and then a join operation is performed to obtain the required information.
These operations lead to performance degradation, especially if the number of tables
involved in the search is large. This problem is exacerbated by the need of CAD applica-
tions to use extensive join and restrict operations.

On the other hand, the approach adopted by object oriented data management systems
allows the storage of the relationships between objects in the form of pointers and hence

A Component Library Management System 7 •

provide a more practical and faster mechanism for data retrieval for these kind of applica-
tions. The concept of object identifiers simplifies the access mechanisms of objects and pro-
vides direct Jnks to the objects through interpolated references (pointer chasing).

2.3 Schema development and maintainability.

The generalization and inheritance properties of the ODBMS's allow the development of a
smaller and better structured schema since the common attributes can be factored out (gen-
eralization). Also modifications in schema are easier to implement in OODBMS' as com-
pared to the RDBMS'.

2.4 Criteria for selecting OCT

For reasons given above we decided to select an OODMS to implement the library manage-
ment system. OCT is a mature object-oriented database product, with available technical
and software support. It is used by other CAD systems like SIERA, Ptolemy, the Lager
toolset (particularly DMoct) and VANDA that are distributed and maintained by Missis-
sippi State University under ARPA-sponsorship. Interfaces exist between OCT and several
commercial tools and databases like Viewlogic's Workview System, Racal Redac's Visuala
system and Harris' Finesse Layout System. Also, C-base system developed to support
design for testability by Professor Breuer at USC has an interface to Lager/OCT for chip
layout.

In designing a library management system with OCT the first task is to define a policy for
storing the component information in OCT - this requires defining an OCT view as dis-
cussed below.

3.0 OCT policy used to implement library management system

Each library is defined as a cell as shown in Figure 3. Examples are a library (cell) of inte-
grated circuit devices, passive components etc. Each cell consists of views which in turn
contain facets. Each "view" contains the components of a particular manufacturer. So if our
part list for a particular library (cell) contains components by ten manufacturers then the
cell "library" would contain ten views. Each view has a contents facet contains all informa-
tion pertaining to a manufacturers parts as described below.

The bag "comps" contains a list of all the components contained in the library by that par-
ticular manufacturer(view).

The OCT-bag "classes" contains a list of different attributes (OCT-bags) which are used to
drive the search process (for example the attributes TECHNOLOGY, GENERIC ID,
GENERIC DESCRIPTION, and PACKAGE in the IC-Component library). Each of these
OCT-bags in turn contain properties that are the values of these attributes, for example the
"tech" OCT-bag would contain OCT-properties like 'TrL", "ECL", "CMOS" etc. These
properties contain the names of their ancestors (OCT-bags) (for example CMOS has a field

A Component Library Management System 8

C Co 1 one0

Manufcture

(view) (view)

content
FIGUE 3.O~r olic of he Lbrar Maagemt)Sse L o heCmoetLbay

A CmpoentLibaryMangemnt ystm 9

containing TECH). This additional feature was incorporated so as to save on the searching
process when setting up the structures for the user interface and the query program. This
replication of ancestral information incurs no additional overhead in storage or memory
space as the minimum size allocated for an OCT-bag or OCT-property is roughly the same,
and typically there would be less than a hundred of these properties for a library of more
than fifty thousand components. The property "num-classes" stores an integer count of the
number of bags attached to "classes". This allows each library to have a variable number of

*0 attributes.

Using the above policy, starting from the facet, the components can be reached either from
the OCT-bag "comps" via the OCT-bag "classes" and OCT-properties "CMOS", 'T'L" etc.
The whole list of the components can be traversed by opening the facets (containing com-

* ponents by manufacturers) for each manufacturer (either simultaneously or one by one) and
processing each manufacturer's lists of components.

3.1 Trade-offs between different OCT policies

* The basic choices that we had in the adoption of the above policy was at the cell level. We
had to decide whether to organize data under one view containing all the information. We
decided to break up the data in views based on a chosen attribute MFR (manufacturers).
The selection was supported by the rationale that the separation by manufacturers provides
a natural partition, each manufacturer generally supplies data about their parts and results in

* a more or less an balanced storage for the bulk of data. The decision to break up data into
different (storage) views also provided the flexibility to work with all data in memory
simultaneously or to work with selected data in memory at a time.

4.0 Details of implementation

This section describes the implementation of a browser tool that services queries from the
user by accessing component information from the OCT database using the policy defined
above.

4.1 Transaction processing vs. bulk processing

We decided to use a query mechanism based on memory resident data that is transferred
from the OCT database when the browser is initialized. We first developed a prototype
based on a hybrid scheme. The hybrid scheme utilizes the OCT data mechanisms for query
purposes and has minimal amount of data in its private data structure therefore the speed of
our query mechanisms was determined by the built-in routines of OCT. We examined the
trade-off between the time required for initialization, individual queries and memory usage
of OCT (Figure 4). The decision to use special data structures for query was driven by the
requirement for fast response times and a desire to use the existing OCT system routines
rather than modify them.

* A Component Library Management System 10

1 800k- 120

12 go-

S8 aj 4C~k.. 60-

~~~50",,,
6

Its 40-~5

4 I -200k 30
2 100k 20 ,

2/ 10-

1k 12k 25k lk r
lk O 25k 50 1lkl1'k 1Sk O
No of Components No of Components No of Components

No of Copennt

- --G jmnlementation w it'h l eftive facets open tatim.
- O T f implementation WI l Iacets open slmulaneoyusly

FIGURE 4. The figure shows the trade-offs between different implementations, Plots show the effect
of increase in the number of components upon performance. The particular results are based on
implementations using the OCT Data Management system.

Plot A shows the effect of increase in the number of components in a library on the memory require-
ments of the system. Clearly slope for the implementation with all facets open simultaneously has a
much higher gradient for the increase in memory requirements with the increase in the number of
components. Hence inspite of speed limitations the selective facet approach has been adopted.

Plot B shows the effect of increase in the number of components over the number of calls to malioc
function which effects the performance when such high number of calls are involved, but the differ-
ence in gradients of the slopes of the two Implementations favor the selective facet scheme when the
fig A and B are considered.

Plot C shows the initialization time of the library management system versus the number of compo-
nents. Main reason behind the high Initialization times Is the sorting scheme and the complexity of
the data structure involved n the process. The data has to be first read into the OCT Data struc-
ture and then transferred into the library manager's data structure, see Section 4.6 for details.

Figure 4 indicates that the implementation, with all data in memory simultaneously,
increases the memory requirements of the system considerably, whereas the implementation
with selective data in memory pays the penalty in the form of performance (time). Due to
these observations we decide to read in the required data into our own data structures for
performance purposes, and thus realize the advantage of enhanced performance and reason-
able memory requirements. We found that a 50,000 component library implemented with

A Component Library Management System 11



all data simultaneously in memory required 16 Mb of memory by the OCT structure itself.
The other accounting information, required for storing and displaying the query results,

O increased the requirements by an additional 4-5 MB. The selective facet open scheme seri-
ously degraded the performance and hence was not considered. In view of the above it was
decided to import the required information into our own data structure and this reduced the
memory requirement to a mere 6.5 MB for a library of comparable size. It was found that
the size of the memory grows linearly with the increase in the number of components. The

* main reason for these saving in memory requirements lies in the fact that custom structures
can dictate the size according to the requirements whereas OCT's generic structures always
allocate the size of the largest possible structure and hence use more space than is actually
required.

* The design of the data structure for on-line queries of the component database is discussed
next.

4.2 Trade-offs between different datastructure types

0 The various choices in terms of datastructures for the development of the query mechanism
for the browser are b-trees, linked-lists and arrays. While an array-based implementation
offers quick traversal time and better initial data structure setup time, the linked-lists are
faster in terms of sorting while still offering reasonable times for traversal and setup. On the
other hand, b-trees have the well-known property that insertion sort can be implemented

0 with an average case complexity of n(log n). Searching techniques are faster with b-trees
but as the trees grow in size, balancing mechanisms have to be employed to maintain the
performance for searching functions. Unfortunately these balancing techniques become
more and more complicated with the increase in size thus limiting the performance. Since
this application involves large amounts of data arranged in small groups, b-trees are not the
ideal candidates.

The nature of queries in the browser application is such that the restrict and intersection
operations are applied rather frequently, which means that the updates on a conventional
structure can take rather long times. The first prototype developed was based on arrays but
we found that in order to implement efficient search mechanisms we needed to add pointer

0 fields to the structure and thus we changed the implementation to a linked-list based struc-
ture containing a number of support structures overlaid on the basic linked-list to aid the
search mechanisms. The use of b-trees for efficient search mechanisms over presorted data
was rejected because our requirements primarily involve restrict operations over multiple
attribute of data. In other words, a typical selection query for a component involves the

* lookup of the component in at least six lists and each query typically involves thousands of
components. This was the primary reason for selecting this hybrid linked-list representa-
tion. The term hybrid here refers to the structure containing more then one primitive data-
structure for the organization of data, that is, the combination of a linked list with an array
structure as described below.

A Component Library Management System 12



4.3 Proposed datastructure

The basic data structure consists of an arrangement of components in a linked-list structure
(Figure 5). This datastructure is composed of a combination of lists and arrays for the orga-
nization of various types of data and also contains indices to enable quick access. Associ-
ated with each component are two arrays of pointers, one pointing to the different attributes
of the component (example its MFR, TECH, PKG etc.) and the other pointing to the next
component (in the list) belonging to that attribute (example next component in the list
belonging to the same MFR, TECH etc.). The attributes (MFR, TECH etc.) are themselves
arranged as an array and contain pointers to the components (stored as linked-lists). Hence
there is a two way link between the components and their attributes which provides easy
mechanisms for navigation through the data, based on a particular attribute, or via the com-
ponent list itself while having access to the different attributes of the component at the same
time.

The main reference to the data structure is the structure named "lib," which contains point-
ers to the various sub structures containing different data (refer Appendix A for detailed
structure). The various fields in the "lib" structure are now described in detail.

The field "name" contains the name of the library which is read in from the cell containing
the information about the library. The next field "class" is a pointer to the structure-array
"libclass" containing the names of attributes (MFR, TECH etc.) and the list of pointers to
components belonging to that attribute. These attributes appear as headings or labels on col-
umns in the user interface display. The field "comps" is a pointer to a linked-list representa-
tion of components sorted on their names. The field "selected_.comps" is a linked-list of
components that are selected by a particular query at a particular instance and changes with
different queries.The entries in this list appear in the user interface under the "Comps
Selected" column. This list is dynamically built (for display purposes) as the queries are
changed by unlinking and relinking pointers. The field "numclasses" stories a count of the
number of classes in the library and the field "num_selected" stores a count of the number
of components selected by the present query. The field "modified" is used as a flag for
determining if the library has been modified since its last opening, if set then the modified
data has to be written back otherwise the program exits without any writeback. The
"indexedcomps" contains a pointer to a linked-list structure indextype-type which con-
tains indices over the component list. "error..str" stores an error message as and when it
occurs. The field "compinput" is reserved for adding components to the library. The
pointer "selected_names" is a pointer to an array of pointers which reference the names of
the currently selected components. This field is exclusively for use by the user interface.

Each element of the structure "libclass" contains a field "name" which stores the name of
the attribute (appearing as a column in the GUI), "numselected" which stores a count of
the number of components selected of that particular attribute, and "list" which points to a
linked-list of structure "classtype" which contains the members of the particular attribute
present in the library.The members of this list appear as column entries in the GUI. The field
"input" is used for addition of a new member in the library. The field "type" refers to the
taxonomy of the class, it can be either hierarchical (taxonomical) or simple, if the type is

A Component Library Management System 13



0w

Ai*,r

6~ L

C)C

G d
jEU

Selectd Comp

El-

A Coponnt ibra Maageent ystm 1



simple it is devoid of any hierarchy and just a plain list, but if the type is taxonomical then it
contains a hierarchy of classes and the user can browse through the hierarchy to select a par-
ticular attribute to further select from within its subclasses. 0

To better understand the difference between the hierarchical and simple taxonomy consider
the following example. Let the column "GENDES" (generic description) contain descrip-
tion of memory parts available in the library. In the case of a hierarchical taxonomy the list
would contain the entries "Memory", "Multiplexer" and "Counter" and the different types
of memory (example the 32k-8bit-Static, 64k-16bit-Dynamic etc.) can be displayed by
selecting Memory from the column. On the other hand if the view is simple then the column
"GENDES" would contain the 32k-dram, 64k-sram etc. together with entries of other types
like 4-1 multiplexer, 8-1 multiplexer, 8 bit-counter etc. Again the field "selectedl_names" is
for the use of the graphical interface, it is a pointer to an array of pointers referencing the
names of currently selected attributes for each column, note that there is a separate array for
each column. This selected name array may have just one entry if a particular attribute has
been selected or it may have multiple entries depending on the status of the query. For
example the component list consists of entries complcompl,comp3,comp4 etc. now sup-
pose under column "GENDES" compl has attribute 32k-8bit ram, and comp2 and comp3
have atributes32k-8bit ram, and 4-linux, now the selection of attribute 32k-8bit ram
restricts the list of components to compl andcomp2, whereas the selection of the compo-
nent comp2 would restrict the column 'GENDES" to the entry 32k-8bit ram. Upon deselec-
tion of comp2 the component list and the attribute lists are restored.

The structure "class_type" contains "name" which has the name of that particular member S
of the particular column(attribute), "type" which points to the name of the column, "comps"
which points to the first component belonging to that particular attribute. The component
information is stored in the structure "comp-Type". The field "n" is a pointer to the next
member of the same attribute (next entry in the column) and "n 1" points to the currently
selected attributes in the column (this list is displayed under the column at a particular
instance of the query). Note that "n" remains static during the query process whereas n I
gets updated based on the query under progress.

The structure "comptype" contains the field "name" which contains the name of the com-
ponent. The field "n" points to the next component "p" points to the previous component,
"n 1" points to the next component in the currently selected list (this list appears under the
column "Comps Selected" in the GUI), again "n" remains static whereas "n I" changes with
the progress of queries. The field "class" points to an array of pointers. This array contains
pointers to the members of column "attributes" (example CMOS of column TECH) to
which the component belongs. Hence the information about a particular component can be
obtained by accessing the members of each of the column (to which the component
belongs) through this array. Similarly the field "nclass" points to an array containing point-
ers to the next component in the lists (of the respective members of the attribute columns)
belonging to the same members (of attribute columns). Hence starting from the structure
"classtype" the first component of the member class-type can be accessed by the field
"comps" in the structure and the subsequent members can be reached by using the pointer
of the index [i] (example 1,2,3 etc. in Figure 5) in the array pointed to by the "nclass" field.

A Component Library Management System 15



The structure "indextype" can be used for indexing upon the list of classes or components,
it contains a union member "node" which can point to either a class-type structure or a
component type structure depending upon the application. The field "n" points to the next
element in the linked-list of structure indexjtype.

4.4 Version & concurrency control.

OCT does not directly support either versioning or concurrency control. Versioning should
be handled by the design tools that interface with this LMS. Also concurrency is not a major
concern for this application since most applications we plan to support are read only. Con-
currency is only an issue when a new library is being created or new component data is
being entered or deleted, or existing component data is being updated or corrected. All

* these activities will be controlled by our LMoct (Library Manager for OCT) facility which
will function much like DMoct in helping the user to manage the library data and will rely
on the UNIX file system's time stamps for versioning and concurrency control.

* 5.0 Current work and suggested future improvements

Work is under way to develop a yet more versatile user interface. Although the browser has
a reasonable response time, there is room for improvement in the initializing time of the
database, a major factor is the sorting required at the opening of the database. This is

* because OCT does not provide a mechanism for storage (retrieval) of data in a presorted
manner. We are also incorporating a hierarchical taxonomy in the browser.

References
[11 Granacki, John J., "Research in Information Science and Technology: Systems

Assembly Core Research," Final Technical Report, USC/lnformation Sciences Insti-
tute, November, 1992.

[2] David S.Harrison, Peter Moore, Rick L. Spickelmier, A. R. Newton, "Data Place-
* ment and Graphics Editing in the Berkeley Design Environment," The proceedings

of the IEEE International Conference on Computer -Aided Design, pp 24-27,
Nov,1986.

[3] Wayne Wolf, "Object-Oriented Programming for CAD," IEEE Design and Test of
Computers, pp. 35-42, March, 1991.

* [4] S. Ahmed, A. Wong, D. Sriram, and R. Logcher, "Object-Oriented database man-
agement systems for engineering: A comparison," Report, Intelligent Systems Labo-
ratory, Department of Civil Engr,1-253,MlT, Cambridge, MA 02139. pp. 27-44,
June, 1992.

[5] Rick Spickelmier and Brian C. Richards, "The OCT data manager," in Anatomy of a
* Silicon Compiler, Robert W Brodersen. eds., pp. 11-24, publication date ......

* A Component Library Management System 16



[6] Ketabchi, M. A., S. Mathur, T.Risch, and J. Chen., "Comparative analysis of
RDBMS and OODBMS: A case study," Proceedings of Compcon IEEE Computer
Society International Conference, San Francisco, CA, February, 1990

[7] H. Afsarmanesh, E. Brotoatmodjo, K. J. Byeon. Alice C. Parker., "The EVE VLSI
Information Management Environment," Proc. ICCAD -89, pp 384-387.

[8] M. A. Breuer et al., "C base 1.0: A CAD Database for VLSI Circuits using Object
Oriented Technology," Proc. ICCAD 88, CS Press, Los Alamitos, CA, order no. 869,
pp 392-395.

[9] Paul McLellanl, "Effective data Management for VLSI Design," 22nd Design Auto-
mation Conference, pp 652-657, paper 40.2, 1985.

[10] Michael R. Blaha, William J. Premerlani and James E. Rambaugh, "Relational data-
base design using an Object-Oriented methodology," Communications of the ACM,
pp 414-427, vol 31, number 4,April 1988.

[11] Granacki, John J., "Printed Circuit Board Fabrication and Assembly Service: User
Guide," USC/Information Sciences Institute, November, 1992.

A Component Library Management System 17



APPENDIX A. Data Structure
1* This is the list of different bags to be used in OCT*/
#define TECHNOLOGY "tech"
#define PACKAGE "pkg"
#define GENERICDESCRIPTION "gendes"
#define GENERIC_ID "genid"
#define COMPONENT _LIST "comps"

* #define MANUFACTURER "mfe'
#define FACETJTYPE "M FR"

#define sgn(x) (xlabs(x))
#define NAME,_LEN 100

typedef struct comp..jype..jype
I
struct classjype-type "*class;
struct comp-type..jype **nclass;

* struct comp-type-type *fl,*p,*fl 1;
char *namae;
I comp-type;

compjtype *get-comp-typeo;

* typedef struct class-.type..Sype

comp...type *comps;
struct class -.type...type *n,*nlI;
char *napae,*type;

* ) class-type;
class...type *getc1astypeo;

typedef struct lib-ype..type

FILE *fd;
comp..Sype *comps,*selected comps;
struct Jib-class

char *nam~e, inputfiNAME-LEN], **selecteo_names, *type;

0 imt num-selected;
classjtype *list;
) (*cas);

char *libnfameerr.orstr[2561;
char compjnputNAMEL.LEN],**selecte&.flames;

0 ~struct indexjtypejtype *indexedcomps;
* mit oid,num...selected,num-classesmodified;

) lib-type;
libjtype lib;

40 A Component Lifarary Management System 18



#define INDEX-LENGTH 100 /*Every next element of the index list points to the
INDEXLENGTH'th component in the lib-.>comps

list*/
typedef struct index-type-type

union node..Sype

Struct class...type-type *class;
struct comp-type..type *comp;

node;
struct index-type-type *fl;
) index-type;

index-..type *get-index-typeo;
char **create -class-name-arrayo,**createsomponent namearrayo;
char *getclassname,..oLtypeo;

A Component Library Management System 19


