
AD-A285 876 Ln,,ersa,
IhI Californiia

Evaluating the Trade-offs
in Partial-Order Planning

Algorithms
Craig A. Knoblock

USC(Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292-6695

Qiang Yang
University of Waterloo

Computer Science Department
Waterloo, Out., Canada N2L 3G1

May 1994
ISIVRR-94-381

oTIC

ELECTE
NO i.1994

........

94.. 33907 "° " ""

INFORMATION4 11 3
SCIENCES 310/822-1511

INSTITUTE)
4676 Admiralty WayMatna del RewCajomia 90292-6695

Evaluating the Trade-offs
in Partial-Order Planning

Algorithms
Craig A. Knoblock

USC/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292-6695

QiangYang
University of Waterloo

Computer Science Department
Waterloo, Ont., Canada N2L 3G1

May 1994
ISIRR-94-381

DTIC
NTt ELECTE 0

A-3cesion For

DTIC T AB
Unannounced
J !S tific a tio n "IN

*y.

Di tri bon/Sc i ;; io;............ 'i---- ------
Availability Codes

Avail and/or
Dist Special

In proceedings of the Canadian Artificial Intelligence Conference
Baniff Alberta Canada, May 1994

! !- RII

Pt -I bui den for tisa collection of Inlorniton Is estimated to average I hour per response, Including the Urns for reviewing Instructions, "earching exiting data
soume. nd akdanin th dat nedeAand oemlatno n reviewing the Collection of Information. Send comments rgdigthis burden stlimted or any

Gumsec of olco of Inforavlm Includ aredcn iabure 10 Washington Headquarters Sevcs Dietoae o Infornuation Operations
en Reorw 1215 Jefferson Davis #49hway, Suite I a87 :ZA'2==0.4a,sd toteOfie of managemnent and Budget. Paperwork Reduction Projec (0104-018a)

Weah'IngsDC 2O01112

1. AGENCY USE ONLY (Leave blAwk) I2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IMay 1994 IResearch Report
4. TITLE AND SUBTITLE 5. FUNING NUMBERS
Evaluating the Trade-offs in Partial-Order Planning Algorithms F30602-9 1-C-008 1

6. AUTHOR(S)
Craig Knoblock Qiang Yang
USCtISI University of Waterloo
4676 Admiralty Way Computer Science Department
Marina del Rey, CA 90292 Waterloo, Ont., Canada N21. 31

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON
REPORT NUMBER

USC INFORMATION SCIENCES INTTT RR-381
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

9. SPONSORINGIMONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORINGIMoNrrORN
Rome Laboratory ARPA AGENCY REPORT NUMBER

Griffiths AFB 3701 Fairfax Drive
Rome, NY Arlington, VA 22201

11. SUPPLEMENTARY NOTES

Proceedings of the Canadian Artificial Intelligence Conference, Baniff Alberta, Canada, May 1994

12A. DISTRIBUTIONIAVAILABIUITY STATEMENT 12B. DISTRIBUTION CODE

UNCLASSIFIED/UNLDIIED

13. ABSTRACT (Miumn 200 words)

Most practical partial-order planning systems employ some form of goal protection. However, it is not clear from previous work what the trade-
offs are between the different goal protection strategies. Is it better to protect against all threats to a subgoal, some threats, or no threats at all?
In this paper, we consider three well-known planning algorithms, SNLP, NONLIN, and TWEAK. Each algorithm makes use of a different goal-
protection strategy. Through a comparison of the three algorithms, we provide a detailed analysis of different goal protection methods, in order
to identify the facts that determine the performance of the systems. The analysis clearly shows that the relative performance of the different
goal-protection methods used by the systems, depends on the characteristics of the problems being solved. One of the main determining factors
of performance is the ratio of the number of negative threats to the number of positive threats. We present an artificial domain where we can

* control this ratio and show that in fact the planners show radically different performance as the ratio is varied. The implication of this result for
someone implementing a planning system is that the most appropriate algorithm will depend on the types of problems to be solved by the plan-
ner.

14 SUBJECT TERMS 15. NUMBER OF PAGES

partial-order planning, goal protection, algorithms, TWEAK, SNLP, NONLIN 9

16. PRICE CODE

17. SECU1RITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCL.ASSIFIED UNCLASSIFIED UNLIIMlTD

NBN 7540-01-00 Standard Form 298 (Rev. ".9)
Prescribed by ANSI Std. Z39-18

I 298-102

JERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documei* auon Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is Important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Block 2. Report Date. Full publication date Denotes public availability or limitations. Cite any
including day, month,a nd year, if available (e.g. 1 availability to the public. Enter additional
Jan 88). Must cite at least the year. limitations or special markings in all capitals (e.g.NOFORN, REL, ITAR).
Block 3. ype of Report and Dates Covered.

State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."
Block 4. Title and Subtitle. A title is taken DOE - See authorities.
the part of the report that provides the i NASA - See Handbook NHB 2200.2.
meaningful and complete information. Wh, o NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number, and Block 12b. Distribution Code.
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Leave blank.
in parentheses. DCE - Ener DOE distribution categories
Block 5. Funding Numbers. To Include contract fr~m thq Standard Distribution for
and grant numbers; may include program Urclassiid Scientific and Technical

element numbers(s), project number(s), task Rppoets
number(s), and work unit number(s). Use the NASA - Leave blari.
following labels: NTIS - Leave blank.

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most

Element Accession No. significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report
report. If editor or compiler, this should follow
the name(a). Block 15. Number of Pages. Enter the total
Block 7. Performing Organization Name(s) and number of pages.
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price
Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.-19. Security Classifications. Self-
performing the repor. explanatory. Enter U.S. Security Classification in
Block 9. Sponsoring/Monitoring Agency Names(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory UNCLASSIFIED). If form contins classified

Block 10. Sponsoring/Monitoring Agency information, stamp classification on the top and

Report Number. (If known) bottom of the page.

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
Information not Included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of ...; To be abstract. Enter either UL (unlimited) or SAR (same
published in... When a report is revised, Include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Evaluating the Tradeoffs in
Partial-Order Planning Algorithms*

Craig A. Knoblock Qiang Yang
Information Sciences Institute University of Waterloo

University of Southern California Computer Science Department
4676 Admiralty Way Waterloo, Ont., Canada N2L 3G1

Marina del Rey, CA 90292 qyang@logos.uwaterloo.ca
knoblock@isi.edu

Abstract and Weld, 1992; Minton et al. 1991], but little has been

Most practical partial-order planning systems done in comparing different partial order planners them-

employ some form of goal protection. How- selves. There are a variety of design decisions that must

ever, it is not clear from previous work what be made in order to build a general planner. This pa-
the tradeoffs are between the different g - per focuses on one of these design choices - the choice

protection strategies. Is it better to protect of a protection strategy. In particular, we compare the

against all threats to a subgoal, some threats, protection strategy employed in three basic planning al-
or no threats at all? In this paper, we con- gorithms, SNLP, NONLIN and TWEAK.

sider three well-known planning algorithms, On the surface, the three planners are quite different.
SNLP, NONLIN, and TWEAK. Each algorithm However, on a careful examination one can finu .'- they
makes use of a different goal-protection strat- mainly differ in which conditions they protect. During
egy. Through a comparison of the three al- planning, an inserted plan step can interact with previ-
gorithms, we provide a detailed analysis of ously inserted steps. If a goal is achieved by one plan
different goal protection methods, in order to step, then later it could be threatened by other steps.
identify the factors that determine the per- A goal is protected by removing all threats by impos-
formance of the systems. The analysis clearly ing additional constraints on a plan whenever a threat
shows that the relative performance of the is detected. Among the three planners, TWEAK protects
different goal-protection methods used by the nothing, NONLIN protects against all negative threats,
systems, depends on the characteristics of the and SNLP protects against both negative and positive
problems being solved. One of the main de- threats.
termining factors of performance is the ratio
of the number of negative threats to the num- The use of goal protection in SNLP prevents the plan-
ber of positive threats. We present an artifi- ner from generating redundant plans and thereby could
cial domain where we can control this ratio potentially reduce the size of the search space. However,
and show that in fact the planners show radi- enforcing the goal protection has a cost. In this paper,
tally different performance as the ratio is vat- we show that none of the planners is always a winner. In
ied. The implication of this result for some- some domains our planner based on TWEAK greatly out-
one implementing a planning system is that performs both a planner based on NONLIN and SNLP.

the most appropriate algorithm will depend In other domains, SNLP and NONLIN perform much bet-
on the types of problems to be solved by the ter than TWEAK. The challenge is to identify the fea-
planner. tures of the domains where each planner is expected to

perform well, so that practitioners can balance the pro-

1 Introduction tection methods based on the application domain.

There has been a great deal of work recently on com- In the following sections, we first review the three al-
paring total and partial order planning systems [Barrett gorithms. Then we present an analysis of the algorithms

to identify their relative merits. We also report on two
*The irat author is supPored by Rome Laboratory of critical domain features that have the greatest impact

the Air Foree Systenms Command and the Defense Advanced on the performance of the planners. Finally, we present
Research Projects Agency under contract no. F30602-91-C- empirical results on an artificial domain to support the
0061. The second author is supported in part by grants from analysis.
the Natural Science and Engineering Research Council of
Canada, and ITRC: Information Technology Research Cen-
tre of Ontario. The views and conclusions contained in this
papae a the author's and should not be interpreted as repre-
senting the oclal opinion or policy of DARPA, RL, NSERC, 'For -onvenience we will simply refer to them as TWBAK
rrR.C, or any person or agency connected with them. and NONLm.

.... .. I- m m m im III IIIII II m

2 Comparison of the Algorithms * Remove the threat by adding ordering con-
straints and/or binding constraints using pro-

This section presents the SNLP, TWEAK, and NONLIN motion, demotion, or separation. For com-planning algorithms. First, we present the SNLP algo- pleteness, all ways of resolving the threat

rithm based on the algorithm descriptions of McAllester

and Rosenblitt's Find-Completion algorithm [McAllester must be considered.

and Rosenblitt, 1991] and Barrett and Weld's POCL al- - Promotion: 0' = OU{ak-<sj}, B' = B
gorithm [Barrett and Weld, 1992]. We start with this - Demotion: 0' = OU{si-<sh}, B' = B
algorithm because we can build on the elegant algo- - Separation:
rithm description and implementation provided in pre- 0' OU{ei-<sr}U{sk-<sj}. Let q be
vious work. Then, we describe the changes necessary the effect of 8k that threatens p and let
to transform the SNLP algorithm into algorithms that P be the set of binding pairs between
implement NONLIN [Tate, 1977] and TWEAK [Chapman q and p. B' = BUo-, where a- E {a 1 0
1987]. a = noncodesignate(s)Ucodesignate(P -

s), where s C P A s 0 }.
2.1 The SNLP Algorithm * Recursive invocation:

In the planning algorithms that we consider below, we SNLP((S, 0', B'), T - {t}, G, L)
follow the notations used by Barrett and Weld [Barrett 3. Goal selection: Let p be a proposition in G, and
and Weld, 1992]. A plan is a 3-tuple, represented as let Sneed be the step for which p is a precondition.
(S, 0, B), where S is a number of steps, 0 is a set of le O be th steor whc p is a e itin.
ordering constraints, and B the set of variable binding 4. Operator selection: Let sAd be an existing
constraints associated with a plan. A step consists of a step, or some new step, that adds p before S
set of preconditions, an add list, and a delete list. The If no such step exists or can be added then =-
binding constraints specify whether two variables can be track. Let L' = LU{Sadd - Sneed}, S' =
bound to the same constant or not. SU{Sadd},O' = OU{Sadd-<Sneed}, and B' =

The core of SNLP is the recording of the causal links BU the set of variable bindings to make Sadd add •
for why a step is introduced into a plan, and for protect- p. Finally, update the goal set: G' = (G - (p})U
ing that purpose. If a step S, adds a proposition p to preconditions of Sadd, if new. For completeness,
satisfy a precondition of step Sj, then Si _P Sj denotes all ways of achieving the step must be considered.

the causal link. An operator S1 is a threat to Si - Sj if 5. Threat identification: Let T' = {t J for every
S, can possibly add or delete a literal q that can possi- step sh that is a positive or negative threat to a
bly be bound to p. For convenience, we also refer to the causal link sa - si E L', t = (si, S. - + S)}.
pair (Sh, Si - SI) as a threat. In addition, we define an 6. Recursive invocation:

operator SA to be a positive threat to Si 4 Sj, if Sk can SNLP((S', 0', B), T', G', L').
possibly be between Si and Si, and S, adds a literal q I
that can possibly be bound to p. Likewise, S1 is a neg- 2.2 The NONLIN Algorithm
ative threat if it can possibly be between Si and Sj, and SNLP is a descendant of NONLIN [Tate, 1977, so the al-
deletes a literal q that can possibly be bound to p. gorithms are quite similar and differ mainly in which

The following algorithm which is an adaptation of threats they protect against and how they perform sep-
McAllester and Rosenblitt's Find-Completion algorithm aration. These two differences stem from the added con-
[McAllester and Rosenblitt, 1991] and Barrett and straints on SNLP that are used to ensure systematicity.
Weld's POCL algorithm [Barrett and Weld, 1992], has NONLIN also provides some additional capabilities such
been shown to be sound, complete, and systematic as hierarchical task-network decomposition, but these
(never generates redundant plans). Let the notation capabilities are orthogonal to the point of this paper and
codesignate(R) denote the codesignation constraints im- are not considered. 0
posed on a set of variable pairs R. For example, if The first change to the SNLP algorithm is in the threat
R = {(mi, yi) I i = 1, 2, ... k}, then codesignate(R) = identification step. In contrast to SNLP, only the negative
{zi = i% 1 i = 1,2, k}. Similarly, noncodesignate(R) threats are added to the list T:
denotes the set of non-codesignation constraints on a Threat identification: Let TV = {t I for every step
set R of variable pairs. The parameters of the algorithm s that is a negative threat to a causal link s .-* s E L,
are: S=Steps, 0=Ordering constraints, B= Binding con- = +
straints, G= Goals, T=Threat, and L=Causal links. t = (ak, Si " S,)}0

The second change is that to perform separation,
Algorithm sNLP((S, 0, B), T, G, L) there is no requirement that promotion, demotion and

1. Termination: If G and T are empty, report suc- separation are made mutually exclusive. In this case,
cess and stop. separation simply entails that one or more of the possi-

2. Declobbering: A step sa threatens a causal link ble bindings are forced not to codesignate, but imposes

si -P si when it occurs between si and s, and it no ordering constraints.

adds or deletes p. If there exists a threat t E T such 'The possible binding constraints are mutually exclusive,
that t is a threat between a step s and a causal since systernaticity requires that the search space is parti-
link s -P-+ aj E L, then: tioned into non-overlapping parts.

0

Separation: 0' = 0. Let q be the effect of ek ever, this does not mean that TWEAK is less efficient
that possibly codesignates with p and let P be the set than SNLP, since in many cases, TWEAK Will explore
of binding pairs between q and p. B' = BUo-, where fewer nodes. In the next section, we consider the ma-
0' E {a I a = noncodesignate(e), where e E P}. jor factors that affect the search space, and present a

As we will see in the experimental results section, the complexity analysis of the three algorithms.
differences in performance of goal protection methods
employed by SNLP and NONLIN are relatively minor. 3 Analyzing the Algorithms

2.3 The TWEAK Algorithm 3.1 Algorithm Complexities

The primary difference between TWEAK and the two Let eb be the effective branching factor and ed the ef-
previous algorithms is that instead of building explicit fective depth of the search tree. In both algorithms, eb
causal links for each condition established by the plan- is the maximum number of successor plans generated ei-
ner, TWEAK uses what is called the Modal Truth Crite- ther after step 2, or after step 5, while ed is the maximum
non [Chapman 19871 to check the truth of each precondi- number of plan expansions in the search tree from the
tion in the plan. This difference results in four changes initial plan state to the solution plan state. Then with
from the SNLP algorithm and only three changes from a breadth-first search, the time complexity of search is
the NONLIN algorithm. The differences are in termina- O(eb'd* Td),
tion, separation, goal selection, and threat identification.
Each of these are discussed in turn. where T, . is the amount of time spent per node.

Since TWEAK does not maintain explicit causal links We next analyse the complexity of the algorithms by
for each precondition, it must test the truth of all of the fleshing out the parameters eb, ed and T,.. In this
preconditions in the plan to determine when the plan analysis, let P denote the maximum number of precon-
is complete. It does this using the Modal Truth Crite- ditions or effects for a single step, let N denote the total
ron check [Chapman 1987]. This algorithm takes O(n') number of operators in an optimal solution plan, and let
time, as compared with the 0(1) time termination rou- A be either the SNLP, NONLIN, or TWEAK algorithm.
tine of SNLP. We will refer to the algorithm that imple- To expand the effective hranching factor eb, we first
ments the Modal Truth Criterion as mtc. This algorithm define the following additional parameters. We use
returns true if a given plan is complete and otherwise re- b-new for the number of new operators found by step
turns a precondition of some step in the plan that does 4 for achieving p, bold for the number of existing op-
not necessarily hold. erators found by step 4 for achieving p, and rt for the

Termination: If mtc((S, 0, B)) is true, report suc- number of alternative constraints to remove one threat.
cess and stop. The effective branching factor of search by either algo-

Similar to NONLIN, there is no requirement that all of rithm is then
the separation constraints are mutually exclusive. Thus, eb = max{(bew + b-odA), t.})
TWEAK uses the same method for separation as NONLIN.

Separation: 0' = 0. Let q be the effect of si since each time the main routine is followed, either step 2
that possibly codesignates with p and let P be the set is executed for removing threats, or step 3 -6 is executed
of binding pairs between q and p. B' = BELY, where to build causal links. If step 2 is executed, rt successor
or E {a aI = noncodesignate(e), where e E P}. states are generated, but otherwise, (b.new + b.old)

Since TWEAK does not maintain an explicit set of successor plan states are generated.
causal links, there is no explicit record of which pre- Next, we expand the effective depth ed. In the solu-
conditions much be achieved. Thus, goal section is done tion plan, there are N * P number of (p, Se ,d) pairs,
using the aue algorithm. The atc returns a precondition where p is a precondition for step Sneed. Let A be the
of a step in the plan that is not necessarily true. fraction of the N * P pairs chosen by step 3. For each

Goal Selection: Let p be the precondition of step pair (p, Sneed) chosen by step 3, step 5 accumulates a
Sneed returned by the atc procedure. set of threats to remove. Let t A be the number of threats

Finally, unlike both SNLP and NONLIN, TWEAK makes generated by step 5. Finally, let v be the total number
no attempt to protect all of the previously established of times any fixed pair (p, Sneed) is chosen by step 3.
preconditions against either negative or positive threats. Then we have
TWEAK does, however, ensure that at each step all neg-
ative threats to the most recently built causal link are edA = fA * N * P * tA * VA.
removed. However, after a precondition is established A summary of the parameters can be found in Table 3.1.
and threats are removed, it can be clobbered again. In For SNL , each pair (p, S) must be visited exactly
such a ease, TWEAK will have to re-establish the condi- F or e p = Pnd must = viso, ealy
tion. once. Therefore, f,,IP = and vonlp - 1. Also, SNLP

Threat identification: Let In, = Sadd - S examines every causal link in the current plan in step
Tea do t4. Thus, in the average case, the amount of time per

which is the causal link constructed in step 4. Let T' = node is half of the total number of links in the solution
{tlfor every step Sk that is a negative threat to I.W, plan, i.e., N * P/2. Thus, the average time complexity
t = (.,, for SNLP is:

As we stated above, the atc routine for the termina f
tion check is more expensive than that for SNLP. How- 0(max(b-new + b-odmp, ?t.,,)NP*t--

' , * N * P).

eb effective branching factor
eT effective search depth

T,4o average time per node
N total number of operators in a plan
T total number of preconditions per operator

7A fractiOn of (p, Sa pairs examined by algorithm A
VA average number of times a (p, pair is visited by A
tA average number of threats found by A at each node
rt average number of ways to resolve a threat by A

bne average number of new establishers for a precondition
_oT4d average number of existing (or ol) establisers for a preconiion

Table 1: Parameters used in complexity analysis.

NONLIN's behaviour is similar to SNLP in that each 4 Domain Features and Search
pair (p, Sned) must be visited exactly once. Therefore, Performance
f..,i, = 1 and v..1i. = 1. Also similar to SNLP, NON-
LN examines every causal link in the current plan in The analysis in the previous section can be used to pre-
step 4. The difference between NONLIN and SNLP is that dict the relative performance of the three planning al-
NONLM resolves only negative threats. This means that gorithms in different types of domains. An important
in general NONLIN will have a smaller t value. The aver- feature of a domain that determines the relative per-
age time complexity for NONLIN is: formance of any two algorithms is the ratio between
O(max(b-new + - * P) the number of positive threats and number of negative

threats. The ratio is an important factor in differentiat-
In TWEAK, ft.,.h < 1, and can be much smaller than ing the algorithms because the major difference between

one since TWEAK does not build explicit causal links for any two algorithms is the way they handle positive and
every precondition. If many preconditions already hold, negative threats. Among the three algorithms, TWEAK
then the number of chosen preconditions by step 3 in only avoids some negative threats, SNLP protects against
TWEAK could be much smaller than the total number of all positive and negative threats, and NONLIN protects
preconditions in the solution plan. Since TWEAK does against all negative threats but not the positive ones. G
not protect any past causal links, a precondition can be
visited twice. Therefore, t...h >_ 1. ttCek, on the other 4.1 Predictions
hand, should be much smaller than t,.,p and t..ii , The major difference between the algorithms manifest
since TWEAK only declobbers for the most recently con- themselves in the execution of Step 1, the termination
structed causal link, and only negative threats are con- subroutine, and Step 4, threat detection. To see their ef-
sidered. Thus the number of threats is much smaller. fect on search efficiency, let t+ denote the average num- S
Finally, TWEAK uses MTC to check the correctness of a ber of positive threats, and let t- be the average number
plan, resulting a complexity per node to be O((N * P)S). of negative threats detected by Step 4 of SNLP. Let R
Overall, the complexity of TWEAK is: denote the ratio of t- to t+: R = L. In this section we

O(max(b-new + b ?t,....h)
m * Tt,..wk predict the performance of the three planning algorithms

where m = ft.., * N * P * tt.. 5k * vtSwe and teat = based on the value of R.

(N * P).
In the next section, we discuss how these parameters Case 1: R (1

change with certain domain features. Since SNLP resolves all positive threats, it imposes
more constraints on a plan. Thus, on the average an

3.2 Systematicity SNLP plan is more linearly ordered than either a TWEAK
sNLP is systematic, which means that no redundant plans plan or a NONLIN plan. A more linearly ordered plan
are generated in the search space. In contrast, neither has a smaller number of existing establishing operators
TWEAK nor NONLIN are systematic. However, a plan- for a given precondition, and thus a smaller branching 0
ner that is systematic is not necessarily more efficient. factor. Thus, the branching factor of SNLP is likely to be
The systematicity property reduces the branching factor the smallest among the three, and that for TWEAK is the
by avoiding redundant plans. However, systematicity is largest due to its conservative stand in resolving threats.
achieved in SNLP by protecting against both the negative When t+ is relatively large, the total number of
and positive threats, which increases the factor t, a mul- threats t resolved by SNLP is large, which in turn in-
tiplicative factor in the exponent. Thus, sNLP reduces creases SNLP's search depth. Also, for both NONLIN and 0
the branching factor at a price of increasing the depth SNLP, a causal link has to be built for every precondition
of search. Therefore, one can get a systematic, but less in a plan, a behavior that fixes a lower bound on their
efficient planning system. search depths. With many positive threats in a plan, a

precondition is more likely to be achievable by an ex- state. In addition, we also added extra operator effects to
isting step. Therefore TWEAK will be able to skip many create threats in planning. The difficulty of the problems
more preconditions corpared to NONLIN and SNLP. Thus in this domain can be increased by increasing the number
the search depth of TWEAK will be much less than both of goal conditions and the total number of threatt
NONLI and SNLP, and the search depth of NONLIN will
be smaller than SNLP because it does not resolve positive (defstep :ation Ail :precond Ii :equals
threats.

As R decreases below one, the branching factor for :add {P; Ij+l if i < n+; Io if i = n - I and n+ > 0}
TWEAK and NONLIN increase, while the search depth for :delete {Ii-, if 0 < i < n-;I,-, if i = 0
SNLF increases. The time complexity for the former go and n- > 0}'

up polynomially, while for the latter it goes up exponen-
tially. Moreover, the depth of NONLIN is greater than (defstep :action Ai 2 :precond Pi :equals {}
the depth of TWEAK. Therefore, we predict that when :add {Gi; P+l if i < n+; Po if i = n - 1 and n+ > 0}
R< 1 TWEAK will perform better than NONLIN, which :delete {Pi-1 , if 0 < i < n-; P,,- if i = 0
in turn will perform better than SNLP. and n- > 0})

Case 2: R -- I
As with the previous case, the additional constraints We used this artificial domain to run a set of experi-

imposed by SNLP and NONLIN over TWEAK imply that ments to compare the performance of the different plan-

SNLP will have a smaller branching factor then NON- ners. In these experiments we simultaneously varied the
LIN, and NONLIN will have a smaller branching factor number of positive and negative interactions, such thatthan TWEAK. However, the difference in the number of the total number of interactions remained the same, but

threats t resolved by TWEAK, SNLP, and NONLIN will be the ratio R changes from zero to infinity; the number

reduced since there are fewer positive threats and more of negative interactions increased from 0 to 9 while the

negative threats. The reduced number of positive threats number of positive interactions decreased from 9 to 0.

will reduce the depth for SNLP and NONLIN and the in- Below, we present the results of our empirical tests on

creased number of negative threats increases the chance different points of the spectrum of as defined by the ratioR.
that TWEAK will be forced to revisit the same precon- In the experiments, each problem was run in SNLP
dition/step pair. As a result, the performance of the [Barrett and Weld, 1992], a version of NONLIN and a
different planners could be very close and will depend version of TWEAK that were modified from SNLP. The
on depth and branching factors for the problems being problems were solved using a best-first search on thesolved. rbeswr ovduigabs-is erho h

solution size in order to fairly compare the size of the
Case 3: R > 1 problem spaces being searched by each system. All the

TWEAK is likely to have the largest branching factor problems were run on a SUN IPC in Lucid Common Lisp
because every time a negative threat occurs, all existing with a 120 CPU second time bound. For each value of
and new operators are considered as establishers again, ratio R, we ran the systems on 20 randomly generated
This effect increases the factor b.old for TWEAK, result- problems. The points shown in the graphs below are an
ing in the effective branching factor for TWEAK being average of the 20 problems.
greater than both SNLP and NONLIN. Also due to its
resolution of positive threats, a SNLP plan is likely to be 4.2.1 Branching Factor
more linearized than a NONLIN plan, thus the branching The branching factor results are shown in Figure 1.
factor of SNLP will be smaller than NONLIN. Most of our predictions for branching factors are observ-

Each negative threat creates a chance for TWEAK to able in the figure. For example, due to its conservative
revisit the same precondition/step pair. Since in the stand in resolving both positive and negative threats,
R > 1 case, there is a large number of negative threats, SNLP imposes the most constraints onto a plan, and as a
the number of times each precondition is visited, vt,..A, results it generally has the lowest branching factor. Also,
is likely to increase. Since TWEAK is expected to have as the number of negative threats increases, which con-
a larger branching factor and depth greater than both strains the possible plans, the branching factor decreases
SNLP and NONLIN, when R> I TWEAK is expected to to one.
perform the worst. SNLP will outperform NONLIN slightly However, there are a few surprises shown in the fig-
due its smaller branching factor. ure. When R < 1, we had predicted that TWEAK would

have a larger branching factor than SNLP and would be
4.2 Empirical Results similar to NONLIN. This prediction cannot observed from
In order to verify our predictions by comparing SNLP, the figure. In order to explain this effect we have broken
NONLIN and TWEAK on problems with different ratios of the branching factor into the two parts described in the
negative and positive threats, we constructed an artificial analysis, the establishment branching factor and the de-
domain where we could control the value of R. In this clobbering branching factor, which are combined to form
domain, each goal can be achieved by a subplan of two the overall branching factor. These graphs are shown in
steps in a linear sequence. Each step either achieves a Figures 2 and 3. As shown in the graphs, the smaller
goal condition or a precondition of a later step. The than expected branching factor for TWEAK is due to a
preconditions of the first step always hold in the initial smaller than expected establishment branching factor.

0
1.9

k 1.8 "'W' 1.2 .. . o ..." .. -"

, 4 1.8 S SNLP---o0 NCUIN-~
u 1.7. ~ TWEAK-

.7

1.6

1.5 NONLINo *.. ' " ."""
-, TWEAK'-

1' 0.6

* 1.3 A- A
0 0.4

'~ 1.2 u
1.1.2

0

-_ 14 0 _.
0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0 0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 3/1 9/0

R = (negative interactions / positive interactions) R = (negative interactions / positive interactions)

Figure 1: Comprison of the Average Branching Factor Figure 3: Comprison of the Average Declobbering
of each of the Algorithms Branching Factor of each of the Algorithms

54

0

1.9.4.2.2 Depth

1 , The comparison of the search depths is shown in Fig-
.. "ure 4 and they are as predicted. The only apparent dis-

1.7 crepency is that the difference between SNLP and TWEAK
S .should be larger when R < 1. However, the graph is

V . 6 a bit misleading in this case because it includes prob-
- "" lems that could not be solved within the time bound by

1.5 ... ---- *, • NONLIN and SNLP and so it underestimates their search
depth.

1.4 SNLP >"

* 1.2 I. l4-P --- "
r-. . 5.4iD -.-- "
,.i 1.3 TWTAK EK -

A 40

S~1.2 bNL
A - 35 NOM~IN-- -

* 1.1 A TWEAK--

,,,,,"30

0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0
0/9 1/89 25

R (negative interactions / positive interactions) . .,

Figure 2: Comprison of the Average Establishment 2 20 . ..
Branching Factor of each of the Algorithms

15

Careful analysis of the data shows that this dis- . 10
crepency with the predictions is due to the assumption
that the branching factor is uniform across an entire 5
problem-solving episode. In fact, where there are many
positive interactions, TWEAK quickly narrows in on a 0

plan and reduces the establishment branching factor. In 0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0
contrast, because both SNLP and NONLIN build explicit R = (negative interactions / positive interactions)

causal links and resolve more threats they spend more Figure 4: Comprison of the Average Depth of each of
time in the early plan formation stage when the branch- the Algorithms
ing factor is higher. Thus overall, $NLP and NONLIN
expand a larger part of the search space that has a The overall search depth is composed of a number of
large branching factor, while TWEAK uses it ability to factors described in the analysis, which includes the frac-
exploit positive threats to rapidly traverse that part of tion of the preconditions considered, the average number
the search space. of times each precondition is visited,a and the average

-.4

number of threats detected by each algorithm. Figure 5
shows the fraction of preconditions considered. This > 1.16

number should be one for both SNLP and NONLN but 1.14 1 --.

agin the graphs are distorted by the fact that these two IN .
systems did not complete all of the problems within the o 1.12 " ,m
time lmit. In that case, there ar -. number of precon- .. #
ditions of operators that had s, I yet been considered. ' 1.1
Note that for most of the ,roblems, TWEAK only ex- 0
panded roughly 60-80% of the preconditions and as the it 1.08
problems had fewer positive interactions, it was forced .06
to expand more and more of the preconditions.

6)r
bi 1.04

.. 1.02

0.8 0.98

* 0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0
0

.a = (negative interactions / positive interactions)
,4 0.6 Jgure 6: Comprison of the Average Number of Times
reach Precondition is Visited by each of the Algorithms0 SaLp -

$, 0.4
0.

0

o 0.2 1.2

U I SLP-

UUI U

.
0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0

R = (negative interactions / positive interactions) 0 0.8S

Figure 5: Comprison of the Average Fraction of Precon- "
ditions Considered by each of the Algorithms e 0.6

Figure 6 shows the average of number of times each
precondition is visited. As predicted, SNLP and NONLIN 0 0.4 ,

visit every precondition exactly once, while TWEAK Vis- W
its some preconditions more than once. As the number 0.2
of negative interactions increase, the value for TWEAK
increases because it does not protect the conditions that
have already been achieved. 0

Figure 7 shows the average number of threats detected 0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0
by each of the systems. The fact that SNLP detects a R = (negative interactions / positive interactions)
much larger number of threats than both NONLIN and Figure 7: Comprison of the Average Number of Threats
TWEAK comes as no surprise. However, the fact that the Detected by each of the Algorithms
number of threats detected by NONLIN is less than the
number detected by TWEAK when R < I was not pre-
dicted by the analysis. This appears to be due to the fact
that the negative threats that NONLJN protects against
impose additional ordering constraints on the plan and it does outperfrom SNLP it is dramatically worse than
a more linearly ordered plan has fewer potential threats. TWEAK. This effect should lend credibility to the protec-

tion against positive threats as used in SNLP. Although
4.2.3 Average CPU Time protection of positive threats seemed clumsy when R is

The average CPU time for solving problems in the small, when the number of negative threats is relatively
artificial domain is shown in Figure 8. The result fits large the protection method used by SNLP imposes more
exactly with our predictions. One thing to note is that constraints on a plan. The resulting plans in SNLP's
no system performs absolutely the best throughout the search space are more linear due to the additional con-
entire spectrum defined by R. Another is that although straints. The computational advantage of dealing with
NONLDN did well as compared to SNLP when R is small, it a more linear plan compansates for the loss of efficiency
is never significantly better than SNLP. In the case where due to the protection of positive threats.

120 .cantly better than SNLP and NONLIN in the opposite case.

120 XThe implications of these results for someone building a

practical planning system is that the most appropriate

100 goal protection strategy depends on the characteristics
'", of the problem being solved. This paper provides an im-

I....portant step in building useful planners by identifying a
g0 S"LP- ',.. feature of planning domains that has a major impact on

I . the performance of different planning algorithms.

o 60 ' References

40" [Barrett and Weld, 1992] Anthony Barrett and Dan
40 ,Weld. Partial order planning: Evaluating possible

"' efficiency gains. Technical Report 92-05-01, Univer-

20 sity of Washington, Department of Computer Science
and Engineering, 1992.

IN I [Chapman 1987] David Chapman Planning for Con-
0 junctive Goals. Artificial Intelligence, volume 32, pp.
0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0 333-377, 1987.

R = (negative interactions / positive interactions)Figure 8: Comprison of the Average CPU Time of each [Korf, 1987] Korf, R.E., "Planning as Search: A Quan-
of the Algorithms titative Approach," Artificial Intelligence (33), 1987,65-88.

[Oren et al., 19921 Oren Etsioni, Steve Hanks, Daniel

5 Related Work and Conclusions Weld, Denise Draper, Neal Lesh, and Mike
Williamson. An approach to planning with incom-

As we stated in the introduction, little work has been plete information, submitted for publication, Univer-
done on comparing different partial order planners. An sity of Washington, Department of Computer Science
exception is the work by Kambhampati[Kambhampati, and Engineering, 1992.
1993; Kambhampati, 1992], who (concurrently with our [McAllester and Rosenblitt, 1991] David McAllester
work) carried out a set of experiments to test the merits and David Rosenblitt. Systematic nonlinear plan-
of different partial-order planners. In that work, a pair of ning. In Proceedings of the 9th AAAI, Anaheim, CA,
partial-order planners MP and MP-I are proposed that 1991.
build upon SNLP and NONLIN by making use of multiple
contributors to achieve a precondition. Experiments in [Minton et al. 1991] Steve Minton, John Bresina, and
a set of closely related domains were conducted, and the Mark Drummond. Commitment strategies in plan-
resulting comparison of SNLP, NONLIN, TWEAK, MP, and ning: A comparative analysis. In Proceedings of the
MP-I show that MP-I outperforms all of the rest, and 12th IJCAI, Sydney, Australia, 1991.
that NONLIN in one test performed much better than [Pednault, 1986] Edwin P.D. Pednault Toward a Math-
both SNLP and TWUAK(Figure 8, [Kambhampati, 1993]). ematical Theory of Plan Synthesis. Ph.D. Thesis,

Contrasting Kambhampati's results to ours, we note Department of Electrical Engineering, Stanford Uni-
that the former is based on a fixed domain. Our results versity, Stanford, CA, 1986.
dearly demonstrate that varying the ratio R of positive [Kambhampati, 1992] Subbarao Kambhampati. Multi-
to negative threats experienced by a planner, almost any Contributor Causal Structures for Planning: A For-
comparison result can be obtained; when R e 1 the malisation and Evaluation. Arizona State University,
comparison results should be dramatically different from technical report ASU-CS..TR-92-019, July 1992.
that when R > 1. Thus, it is not surprising that one
can find a domain, with a specific R value, where SNLP [Kambhampati, 1993 Subbarao Kambhampati. On the

and/or TWEAK perform worse than NONLIN. From this Utility of Systematicity: Understanding Tradcoffs

perspective, the work by Kambhampati can be seen as between Redundancy and Commitment in Partial-

orthogonal to ours; while we search for domain features ordering Planning. Proceedings of 13th IJCAI,

by which to determine the relative performance of each Chambery, France, 1993, 1380-1387.
system, Kambhampati looks for the best planner on a [Tate, 19771 Austin Tate Generating Project Networks.
single point in the spectrum of features. IJCAI77, pp. 888-893, 1977.

In summary, we have presented a detailed compari- [Wilkins, 19881 David Wilkins. Practical planning: ez-
son of the goal protection strategies used in the SNLP, tending the classical Al planning paradigm. Morgan
NONLDI, and TWEAK planning algorithms. The analy- Kaufmann, CA, 1988.
sis provides a foundation for predicting the conditions
under which different planning algorithms will perform [Yang et al. 1991] Qiang Yang, Josh Tenenberg, and
well. As the results show, SNLP and NONLIN performs Steve Woods. Abstraction i nonlinear planning.
better than TWEAK when the ratio of negative threats University of Waterloo Technical Report CS 91-65,
to positive threats is large, and TWEAK performs signifi- 1991.

