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DETECTION PERFORMANCE OF POWER-LAW PROCESSORS FOR RANDOM
SIGNALS OF UNKNOWN LOCATION, STRUCTURE, EXTENT, AND STRENGTH

INTRODUCTION

This technical report is the third of a series of four NUWC
technical reports by this author, covering the following topics:

{a) modified generalized likelihocd ratio processors,

(b) generalized likelihood ratio processors,

(c) power-law processors, and

(d) optimum processing,
respectively. Topic (a) was completed in [1], resulting in a
substantial compilation of receiver operating characteristics for
the breakpoint modification considered there. Topic (b) was
addressed in [2], again resulting in numerous receiver operating
characteristics that quantify the performance of the modification
called the sum-of-M-largest prorcessor. The overall goal of the
extended investigation is to determine classes of processors
that perform at or near optimum levels of performance and that
can be easily realized, analyzed, and assessed, even in these
situations of scant knowledge about the detailed signal
characteristics. The reader should be familiar with the earlier
material before undertaking the current analyses and results.

In this report, we will derive the form of the optimum
processor in this environment, and then simplify it to the point
of realizing an alternative simple robust processor, namely tne
class nf power-law processors. This power-law class will not

require or use information such as the average signal-to-noise
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ratio per bin, S, or the number of bins, M, occupied by signal
(when present); this is consistent with the fact that such
information is not available in practical applications anyway.
Some previous results on the performance of power-law pro-
cessors, topic (c), have been reported in [3] and [4]). However,
they considered detection of a Gaussian burst signal in Gaussian
noise, whereas our input datc have exponential probability
density functions. Also, they did not consider very small values
of M/N, where N is the totel number of search bins in which the
signal could lie; we will address cases of M varying all the way
from M = 1 to M = N = 1024. Their processor was arrived at in an
ad hoc fashion, whereas ours is derived as an approximation to
the optimum processor. Finally, they did not compare the
performance of their power-law processors with any absolute bound
on performance; we will undertake and complete that latter task
in a future technical report treating topic (d) mentioned above.
Although the previous authors couched their signal as a
contiguous burst of M samples in time ([4; page 210, above (1)],
they never used this fact for deriving an optimum processor, nor
in the ad hoc processor they adopted. Thus, their results
actually apply to the broader class of signals whose occupancy
pattern in time (or frequency) is completely unknown. The
optimum processor for contiguous bursts would utilize this
contiguous knowledge and perform significantly better by virtue
of being able to reduce the size of the search problem
considerably. This case of increased signal information is not

addressed here in this technical report either.
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PROBLEM DEFINITION

The search space consists of N (frequency) bins, each

containing independent identically-distributed noises of unit

: power. Thir s;ituation is presumed to be accomplished by an
earlier normalization procedure. The number N is under our
control and is always a known quantity. When signal is absent,
hypothesis Hy, the probability density function of each of the
bin output noises is completely known.

When signal is present, hypothesis Hy, the quantity M is the
actual number of bins occupied by the signal; this is frequently
an unknown parameter. The quantity L is the actual set of bins
occupied by signal, when signal is present; for example, if
M = 4, then we might have for the occupied set, L = {2,3,7,29},
meaning that bins 2,3,7,29 have signal in them. This quantity L
is always unknown in our investigation. Finally, the quantities
{§n} are the actual average signal powers in the n-th bin in
occupied set L, when signal is present; these average signal
powers are unknown. We shall presume here that all the actual
signal powers per bin are equal to a common (unknown) value $ in

the occupied set of bins L, and zero elsewhere.
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PROBABILITY DENSITY FUNCTIONS OF INDIVIDUAL BIN OUTPUTS

We now specify the detailed character of the probability
density functions of the input data, namely Py and Py under
hypotheses Hj and Hy, respectively. 1In both hypotheses, the bin
outputs or observations {xn} are taken as the squared envelopes
of the outputs of (disjoint) narrowband filters subject to a
Gaussian input random process; alternatively, the observations
can ke interpreted as the magnitude-squared outputs of a fast
Fourier transform sub’ect to a Gaussian input process. It is
assumed that these bin ohtputs (random variables) {xn} are
statistically independent of each other, which is consistent with
a frequency-disjoint requirement.

Since the bin output noise has been normalized at unit level,
the probability density function of the n-th observation X is,

under hypothesis Hy, an exponential of the form

qo(un) = exp(-un) for u, >0, 1 <ns<N. (1)

On the other hand, when signal is present, hypothesis Hyo

with signal power S per bin, the density of X, is changed to
ql(un) = a exp(-a un) for u >0, nelL, (2)
where we have defined the strength parameter

= (3)

Observe that the actual signal power per bin, S, can also be
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interpreted as the actual signal-to-noise power ratio per bin,

since the noise power per bin has been ncrmalized at unity.

PROBABILITY DENSITY FUNCTIONS OF THE SET OF OBSERVATIONS

The probability density function governing the complete
observation {x,} under hypothesis H, follows from (1) and the
statistical independence of (x,} as

N
Po(uy,-+eruy) = T Tlexp(-u )] . (4)

n=1
Under hypothesis H,, the signal can land in any set of M
disjoint bins, out of the total of N search bins. This results
in a iotal number of possibilities K = (N|M), the latter quantity
being the binomial coefficient. Furthermore, each set occurs
with equal probability 1/K. Thus, there are K occupancy sets,
each of size M, namely {L,} for 1 < k < K. The probability

density function governing the observation {x,} is therefore

K
Py(uy,-eesug) = ¥ [g TTta exp(-au )} T Ttexp(-ui] . (5)
171 N k=1 'K ner " ongL n
Alk k

where we used (1) and (2).

5/6
Reverse Blank
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DERIVATION OF OPTIMUM PROCESSOR

We initiate the investigation of optimum signal processing
and detection by presumiag, for the time being, that the number
of bins, M, occupied by signal (when present), and the common
average signal power per bin, S, are both known, but that the
specific locations, L, of the bins occupied by signal are
completely unknown. This will enable us to derive the optimum
prccessor in this environment.

Then, we will simplify this complicated time-consuming
likelihnod ratio procedure, elim‘nating the dependence on the
parameters M and S in the proce: ; this is consistent with the
practical situation, where these parameters are unknown. The
resulting approximations will turn out to yield the class of
power-law processors, which will occupy most of the succeeding
analysis and performance prediction.

The likelihood ratio for observation {x 1] is, from (4) and

(5), the random variable

_ pl(xll'°°lxN) 1 ﬂ
IR = 5 oy D K2 i [I:I[exp(x [1 - ani|
M K
= % a %;; exp[w Xk] , (6)

where we have defined

1%}
2

(£
n
s
1
o
i
—
+
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]
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The likelihood ratio test is therefore

X

%;; exp{g xk] Z v, (8)

where v is a fixed threshold. The likelikood ratio test
indicates to compute all K possible linear sums {xkl in (7), each
of size M, weight each by common value w, exponentiate each term,
and sum over all the possible K sets. For large N, the integer K
is very large; then, (8) is a very time-consuming impractical

prescription and requires knowledge of S, which is very unlikely.

SPEC.AL CASES
As a special case, for M = 1, then K = (N|1) = N, and (7) and

(8) reduce to

exp(w xn) : v . (9)

=

n

This optimum processor can be easily realized if S is known; it
can also be readily simulated in order to determine its

performance.

At the other extreme, for the special case of M N, then

K = (N|N) = 1, and (7) and (8) become

’ (10)

1=
o

o’

AV
<

o]
]
bt

xn] v , or equivalently,

[=

exp(g
n=)

where the latter v is a different threshold value, of course.
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This processor, called the energy detector, does not require
knowledge of S or M. It has already been analyzed, and receiver
operating characteristics have been obtained [1; pages 21 - 2¢

and 81 - 90].

QUADRATIC SIMPLIFICATION OF LIKELIHOOD RATIO TEST

In an attempt to simplify the likelihood ratio test (8),
suppose we approximate exponential function exp(x) by quadratic

2 over the range of typical arguments x likely to

function a + B x
be encountered. The quadratic does not emphasize the very large
arguments as much as the exponential does, but it does give more
importance to larger arguments than a linear function would.
(The cubic alternative a + B8 x3 will be considered below.)

When we substitute the quadratic approximation into (8),

there follows
K K 2 .2 2 &K 2
E exp[w X ] = E [c + B w™ X ] = Ka+ 8 w E X’ . (11)
k=1 =Tkl k= = "k - %=1 'k

The corresponding approximate likelihood ratio test is therefore

simply
K
— 2 >
Q2=§ :xk<vl (12)

where we have discarded all the data-indeperdent factors that we

can. A very important feature of test (12) is that knowledge of
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average signai power per bin, S, 1is not required for i1ts
realization. However, knowledge of M 1s still required for test
(12). Also, K can be too large toc make test (12) practical.

In order to simplify (12) further, we expand each and every
linear sum xk in {12) 1n terms of its particular M components x.

according to set Lk in (7). We also define the data power sum

N
- A\
T, El__ X . (13)
n=]
where v need not be integer. Then, atter some manipulation,

expansion of (12) yields the identity

0, = [g:%] (a T, + b TL{) , (14)
where coefficients
a+b=1. (15)

For M = 1, a 15 1, while b is zero; thus, Q2 in (14) is then
composed solely of the quadratic sums of the data ix_ 1, namely
T2; see (13). Conversely, for M = N, a is zero, while b is 1;
that is, Q, in (14) is then converted over to the square of a sum
of linear terms in the data {xn}, namely T;. In between these
two extreme valuass of M, the changeover in the data-dependent
part of Q, is linear in M for both coefficients a and b, as
indicated by (15). Thus, there is a smooth transition in Q2 in
(14), from using only squared terms to using only linear terms in

the data {xn}, as M varies from 1 to N.

10
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CUBIC SIMPLIFICATION OF LIKELIHOOD RATIO TEST

On the other hand, if we use the cubic function a + B x3 as

an approximation to the expcnential function exp(x), then (8) can

be developed as follcws:

-~

K . 3,3 385 3
%:; exp[g xk] & %:; [a + 8w xk] =Ko+ B w %:T Xy - (16)

The corresponding approximate likelihood ratio test is then

S-S
Q=) X V- (17)
k=1
Although simpler than original test (8), test (17) still requires
too many terms to make it practical.
Again, as above, we substitute for each term X, in (17), its
linear composition (7) in terms of data {xn}, and expand out all

the cubic terms. The result is, after considerable manipulation,

the identity
-1}
0, = (ﬂ_i) [a T, +b T, T +c Ti] , (18)

where coefficients

0
=
X
{
—
=
[
N

N-M N-2M M-1

a = —=

§-1 §-2 (19)

A
!
[
=
{
58]
2
1
[
Z
|
N

o
i
(8]
r
I
0
y
r
P

For M = 1, we have a = 1, b 0, ¢ = 0; thus, sum Q3 in

(18) is then composed solely of cubic terms in the data [xn],

11
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according to T3 in (13). Conversely, for M = N, we find a = 0,

b =40, ¢ = 1; that is, sum Q3 is then converted over to the cube
of a sum Tl involving only linear terms in the data 1xn}. In
between these two extreme values of M, the changeover in the
data-dependent part of Q, is quadratic in M for all three
coefficients a, b, c. Coefficient b reaches its peak at

M = (N+1)/2, with a value approximately 3/4, while c¢ is abcut 1/4
there. A 1list of values of the coefficients a, b, ¢ at select

values of M is given below. Ve always have a + b + ¢ = 1, as may

be verified from (19).

VALUES OF COEFFICIENTS

M a b c
1 1 0 0
N-4

2 N-1 N-1 0

N 0 3 N 1 N-4

) 7 N-1 4 N-1
N+1 1 -1 3 N-1 1 N-3

2 2 N-2 7 N2 (max) 1 N2
3y -N2/8 nin) <2 _N(N-=4/3) 9 (N-4/3)(N-8/3)
3 -1y (n-2) 16 (N-1)(N-2) 1 (N-1)(N=2)
N 0 0 1

12
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OBSERVATIONS ON DATA PROZESSING

The cubic-approximation results in (18) and (19) show that
the optimum processor indicates a gradual transition from
emphasis on cubed data, through squared data, to linear data, as
M is increased from 1 to N. Coupled with the similar result for
the quadratic approximation in (14) and (15), this suggests that
one should consider the use of sum Tv in (13), for general v, as
the decision variable and as a possible candidate for near-
optimum processing as M varies.

It should be observed that some rather drastic approximations
have been adopted in the extraction of T, as a candidate decision
variable. First, the exponential function in (8) has been
replaced by either a quadratic or a cubic function. Then, the
resulting terms have been expanded out and collected in a
particular power form. Finally, the behaviors of the
coefficients of these power forms have been used in a heuristic
fashion to deduce the power-law processor.

The best choice of v is an open question at this point,
as is the specific degradation incurred by resorting to the
approximation T, as the decision variable, instead of using the
optimum likelihood ratio test (8). PAnalytical and/or simulation
comparisons of (8) and Tv must be conducted in order to ascertain
the exact degradations in performance that accompany the various
alternative approximations to the optimum likelihood ratio test,

and to determine the best value(s) of v to use for minimum

degradation.

13
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The use of power sum T, in (13) as the decision variable is
very attractive from a computational viewpoint. It involves only
N calculations, not K, which are extremely simp'e if v is an
integer, like 1 or 2 or 3. Other intermediate (non-integer)
values of v would take longer. Alsc, no knowledge of M or S is

required to realize the approximate likelihood ratio test

Tvsgi]_,'l‘x"iv. (20)
This is called the class of power-law processors, and will be the
major topic of numerical investigation here.

For v = 1, the power-law processor coriesponds to the energy
detector [1; pages 21 - 22). On the other hand, as v *~ w, power-
law processor (20) tends towards the maximum processor; that is,
the performance of (20) tends towards that of max[xl,...,xN}.
This maximum processor has already been thoroughly analyzed and
quantified in the study on the sum-of-M-largest processor in [2],
when M = 1 there.

The puwer-law nature of test (20) emphasizes the stronger
samples in the given data {x ]} over the weaker ones, in making
its decision about signal presence or absence when the occupied
set of bins, L, is completely unknown; recall that the data [xn]
can be interpreted themselves as power quantities, being the
envelope-squared outputs of narrowband filters. Also, in keeping
with optimum test (8), approximate test (20) reaches its decision
based upon a combination of all the data values [xn}, and not

upon & maximum of some subsets of the data.

14
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ANALYSIS OF POWER-LAW PROCESSORS

We are interested in the performance of power-law processor
(20) when the statistics of the input data [xn] are given by (1)
and (2). The specific results for v = 1 are given by [1l; pages
21 - 22 and 81 - 90), while the case of v = », that is, the
maximum processor max{x,,...,xgl, is treated in [2; (30) - (33)

and tables 1 and 2].

QUADRATIC-LAW PROCESSOR

In :chis subsection, we consider the special case of v = 2,

for which we have the test

N _ A
z = T2 = E_ x, = E_ Yo ¢V (21)
n=1 n=1

Under hypothesis Hyo the characteristic function of the

individual random variahle Y, is

fy(&) = exp(liyn) = expii{xii = J du a exp(- au + i£u2) =

8

0
3 e
= (1+41) a [5%] w[g ?ii%gl for ¥ > 0, (22)

where we used (2) and the error function w(z) of complex argument
[5; chapter 7]. An alternative expression for this character-

istic function, in terms of the real auxiliary functions f and g

defined in [5; 7.3.5 & 7.4.22 and 7.3.6 & 7.4.23), is given by
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a

] a
£ (E) = a |=F [f[ ]+ig[_ ]] for £ > 0 . (23)
Y [22) (2nE)” (2rE) 7

To complete the characteristic function, we have fy(O) = 1 and
fy(-i) = fy({)*, to complement the results in (22) and (23).

The characteristic function of Y, under hypothesis Hy is
obtained from (22) or (23) by setting average signal power S
equal to 0, that is, by setting strength parameter a equal to 1;
denote it by f;(i). Then, using the independence of input data
{xn] in sum (21), the characteristic function of decision

variable z under Ho is
N
o o
£208) = (£28)) . (24)

On the other hand, the characteristic function of z under Hl

is given by

£ (5) = [fg(a)}N_! [fy(a)]! , (25)

where M is the actual number of bins containing signal. At this
point, we have all the results we need in order to compute false
alarm and detection probabilities of the quadratic-law processor
in (21). The numerical method we employ, here and in the future
sections of this report, is the accurate and efficient fast
Fourier transform procedure for going directly from a given

characteristic function to its exceedance distribution function,

as given in [6].

16
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The false alarm probability,

P, = Prob(z > vlno) . (26)

obtained through use of (22) and (24), is plotted versus
threshold v in figure 1, for total search sizes N = 64, 128, 256,
512, 1024. The corresponding receiver operating characteristics

for N = 1024 and for
M=1,2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (27)

with average signal power per bin S (in decibels) as a parameter,
are given in appendix A in figures A-1 through A-12,

respectively. The detection probability, defined as

P, = Prob(z > V|H1) , (28)

d

was obtained by use of (22) and (25).

Since these results used a very accurate computer routine for
the complex error function w(z), the false alarm probabilities in
the 1076 range are accurate, and the receiver operating
characteristics are accurate over the complete range plotted.
These plcts enable us to extract the required signal-to-nois>
ratio per bin to realize a specified level of performance, such
as Pg = 10_3, Py = 0.5. For example, figure A-1 for N = 1024 and
M = 1 indicates that we must have the large value S = 14.8 dB,
whereas figure A-12 for N = 1024 and M = 1124 requires the much

smaller value S = -9.4 dB, since the number of occupied bins, M,

is so much larger.

17
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CUBIC-LAW PROCESSOR

Here, we consider the case of power law v = 3 in test (20),

namely
z =T, = EN x3 = EN > v (29)
3 n Yn < )

Under hypothesis Hy, the characteristic function of an individual
random variable Y, is

(-

exp(liyn) = expii{xii = J du a exp(- au + iEu3) =

£,(%)

@
= a [2—§—i J dr exp[-Er -a—r-ia %} for £ 2 0, (30)
0

where we used (2). In order to obtain the latter integral form,
we moved the contour in the u-plane to the radial line with angle
n/6 radians and then made the change of variable u = r exp(in/6).
The characteristic function of y under H,, denoted by f?((),
follows from (30) by setting a = 1 (S = 0), and the character-
istic function of decision variable z in (29) is again given by
form (24). The lack of any computer routine for the complex
function of { in (30) caused us to adopt the following numerical
procedure. Integral (30) with a =1 (S = 0) was accurately
evaluated on the fine grid & = 0(.001)3 and stored. These values
were then used in (24) to evaluate the characteristic function of

z under hypothesis Hy, for values of N = 64, 128, 256, 512, 1024.
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The numerical procedure in [6] was then employed to compute the
false alarm probability, with the results given by figure 2. The
curvature in the results at the 10_6 level are accurate, and are
due to the cubic rule in (29).

The detection probability Py could also have been obtained in
a similar fashion, by using (30) with strength parameter a < 1
(S > 0). However, since we are generally interested in detection
probability values in the neighborhood of 0.5 to 0.9, it was
decided to avoid the bookkeeping, and to instead directly
simulate test (29) for signal powers S > 0. Th= results for
N = 1024, and for the same M values as listed in (27), are given
in figures B-1 through B-12 respectively, in appendix B. Each of
these plots utilized at least 10,000 ‘ndependent trials of random
variable z in (29); thus, thé receiver operating characteristics
are very stable except for very small Pd values of no practical
interest. There is sufficient stability to be able to accurately
determine required signal-to-noise ratios to operate in the

desired 0.5 to 0.9 range of detection probabilities.
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GENERAL POWER-~LAW PROCESSOR

The case of general power v > 1 in power-law test (20) is of

interest here. That is, the decision variable is now
N v N >
2z = 1v = E x, = E Yo <V - (31)

Under hypothesis HO, the characteristic function of individual

random variable is, upon use of (1),
yn

o) - i ; =
fy({) E exp(lEy ) exp 1£x I du exp(-u + itu” )

@

= exp[ ) J dr exp[ -ty - exp[2 ) r] . (32)
0

Here, we moved the contour in the u-plane to the radial line
with angle n/(2v} radians and then made the change of variable
a = r exp(in/(2v)). Since v > 1, the integral on r in (32) has
more rapid decay than the integral on u; in addition, the
oscillation.of the integrand is constant with r, whereas it
continually incrcases in the u integral.

The only case of (32) that was numerically investigated here
was the choice v = 2.5; the reason for this selection will be
seen later. The characteristic function in (32) was accurately
numerically evaluated on the fine grid § = 0(.001)3 and stored.
These values were then used in (24) to evaluate the

characteristic function of z in (31) under hypothesis Hy, for
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values of search size N = 64, 128, 256, 512, 1024. The numerical
procedure in [6] was then employed to compute the false alarm
probability, with the results given by figure 3. The only
additional quantity required for [6] is the mean of decision
variable z under hypothesis Hy, which 1s given by

= _ oV e v
z-an N

du exp(-u) u = N I'(v+l) , (33)

oOt— g

and which equals N vVrn 15/8 for v = 2.5.

The detection probability Py for power-law test (31), with
v = 2.5, was simulated for signal powers S > 0. The results for
N = 10’4, and for the same M values as listed in (27), are given'
in figures C-1 through C-12 respectively, in appendix C. Each of
theve plots utilized at least 10,000 independent trials of random
variable z in (31); thus, the receiver operating characteristics
are very stable except for very small Py values of no practical
interest. There is sufficient stability to be able to accurately
determine required signal-to-noise ratios to operate in the

desired 0.5 to 0.9 range of detection probabilities.
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COMPARISON OF POWER-LAW PRCCESSORS

The compilation of 36 receiver operating characteristics in
appendices A, B, C, for v = 2, 3, 2.5 respectively, prompts us
to condense this information for easier iunterpretation and
accessibility. %o accomplish this, we define a low-quality
operating point Pe = 10“3, Py = 0.5 and a high-guality operating
point Py = 10'6, Py = 0.9. We then read off the curves in the
appendices the values of signal power S$(dB) which are required to
realize these two levels of performance. These results are
listed in tables 1 and 2, and are plotted in figures 4 and 5 for
the low-guality and high~quality operating points, respectively,
for M ranging over the set of values 1, 2, 3, 4, 8, 16, 32, 64,
128, 256, 512, 1024. The values of the power-liaw considered are
v=1, 2, 2.5 3, . The results for v =1 and v = « come from
[2; pages 40 - 41). The ordinate, M S in decibels, in figures 4
and 5 is actually the total signal power required in order to
achieve the specified performance level. This total quantity is
more meaningful and it condenses the range of ordinate values to
a more manageable regime.

It is immediately seen that the best value of v, to achieve
minimum average signal power per bin S, varies with the number of
occupied signal bins, M. For convenience, we confine the
following discussion to the low-quality operating point depicted
in fiqgure 4. For example, if M = 1, the best value for v is =,

although v = 3 is only 0.4 AB poorer. On the other hand, if

M = 1024, the best v is 1, but v = 2 is only 0.5 dB poorer. In
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between these extreme values of M, the best v sweeps through all
the intermediate values as M changes. This behavior is consistent
with the earlier observations based upon approximations Q, in
(14) and Q3 in (18). Figures 4 and 5 constitute a numerical
confirmation of the tenuous approximations that were employed in
deriving (14) and (18), and in arriving at power-law test (20).
The reason for considering power-law value v = 2.5 1s now
clear from looking at the low-quality operating point results in
figure 4. When M, the number of bins occupied by signal, is

completely unknown, the best compromise value for v is 2.5. This

particular power-law processor performs about 1 dB poorer than
the best in its class at the extreme values M = 1 and M = 1024;
however, for intermediate valves of M, it is close to the best in
this class of processors.

On the other hand, for the high-quality operating point
results in figure 5, perhaps the best power-law value is near
v = 2.25. Numerical results for this ccse were not run; they can
be found upon use of (32) and (33). However, for analytic
simplicity and ease of practical realization, the quadratic-law
processor v = 2 is recommended.

When the results in fiqures 4 and 5 are compared with the
corresponding results for the modified generalized likelihood
ratio processor in [l1] and the sum-of-M-largest processor in
[2; pages 42 - 48], the corresponding lower envelopes of required
signal power are very close over the entire range of M from 1 to
N = 1024, That is, the best performer in each class of

processors requires about the same amount of signal power to
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achieve the same level of performance.

However, there is one ocutstanding attribute of the power-law
class that highly recommends it over the earlier two classes of
processors, namely the modified generalized likelihood ratio
processors [l1] and the sum-of-M-largest processors [{2]. The

power-law processor, with v fixed at value 2.5, does not need to

know the value of M in order to perform near its best level. At

the low-quality operating point for example, it loses no more
than 1.2 dB with regard to the best level found thus far,

reqardless of the unknown value of M, the number of occupied

signal bins. There is no need to guess at a breakpoint, X,, Or a
number of terms, M, to use, as there was with the earlier
processors; these choices could never be made intelligently
without knowledge of M in the earlier prccessors.

This relative independence of the power-law class on M is a
truly remarkable result and certainly could not have been
anticipated from the debatable manipulations employed in arriving
at the power-law class of processors. However, the question is
still open as to the ultimate level of performance that can be
attained by the optimum preccessor in this environment. That is,
we would like to have an absolute lower bound on the curves in
figures 4 and 5. This would tell us how good or bad the
power-law class is, and whether we should bother to try to find
yet another class of processors that performs still better. That
problem is topic (d) mentioned previously on page 1; 1t has been

solved and will be the subject of a future NUWC technical report

[7} by this author.
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Table 1.
1
M
1 21.53
2 17.71
3 15.70
4 14.34
8 11.17
16 8.09
32 5.05
64 2.03
128 -0.98
256 -3.99
512 ~7.00
1024 -10.01

14.8
11.8
10.3
9.3
7.2
5.1
3.0
0.8
-1.4
-4.0
-6.7
-9.4

TR 10751

Required S(dB) for N = 1024, Pe

13.8
10.7
9.3
8.4
6.4
4.6
2.7
0.75
-1.3
-3.6
-6.1
-8.7

13.2
10.2
8.9
8.05
6.2
4.4
2.7
1.0
-0.9
-3.0
-5.3
-7.8

12.77
10.11
8.90
8.14
6.59
5.28
4.15
3.12
2.17
1.27
0.39
-0.48

Table 2. Required S(dB) for N = 1024, P, = 10 7, Py = 0.9

- W N e
o

W
SN

128
256
512
1024

31.81
24.85
21.73
19.77
15.61
11.94

8.56

5.34

2.22
-0.85
-3.89
-6.91

24.0
18.1
15.6
14.1
11.0
8.3
6.0
3.7
1.4
-1.0
-3.6
-6.3

2.5

23.2
17.3
14.75
13.3
10.4
7.95
5.8
3.8
1.7
-0.45
-2.8
-5.3

28

23.0
17.1
14.7
13.3
10.5
8.2
6.2
4.3
2.5
0.6
-1.4
-3.6

22.92
17.29
15.09
13.82
11.45
9.70
8.31
7.17
6.18
5.31
4.55

3.81
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SUMMARY

The class of power-law processors is characterized by raising

each observed data point, x , to the v-th power and summing over
all the data points from 1 to N, regardless of the (unknown)
value of M, the number of bins occupied by signal. The power-law
processor can be regarded as a rough approximation to the optimum
processor operating in this environment, trying to detect a
signal without any structure.

The required threshold settings for achieving false alarm

6 have been presented in

probabilities in the range down to 10~
figures 1, 2, 3 for power values v = 2, 3, 2.5, respectively.
The receiver operating characteristics have been determined and
plotted, for these same values of power v, in appendices A, B, C
respectively, for a wide range of values of M. These results
allow for accurate extraction of required signal-to-noise ratios
to achieve a specified level of performance, as measured by the
false alarm and detection probabilities.

One of the most surprising and pleasant results of this study
is the discovery that the power-law processor with v = 2.5
performs near optimum, even without any knowledge of the number
of occupied bins M, or the average signal power per bin, S. This
conclusion has been drawn only upon the numerical example of
N = 1024, and for probabilities Pe,Py ir the range between the
low-quality operating point 10-3,0.5 and the high-quality
6

operating point 10 °,0.9. Additional ranges of numerical values

have yet to be investigated.
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The results in figure 5, for the required total signal power
to achieve a specified level of performance, indicate an
interesting behavior. Namely, there is a best division of the
total power into approximately M = 4 or 5 bins, at which point
the power-law processors with v = 2.5 or 3 will achieve the
specified performance with the minimum value 19.3 dB. However,
this situation may not be achievable in the typical practical
passive application where M, the number of occupied bins, is not
under the receiver’s control.

The greatest shortcoming of the results in this report is
that the signal powers per bin have all been assumed equal in the
occupied signal bins, with value S. An extension to allow for
unequal arbitrary signal powers per bin, (8,1, is clearly
necessary and is underway. The power-law class will be the
initial and primary candidate for signal detection in this
situation. Also, a bound on performance, based perhaps on an
argument analogous to that in [7}, will be required to determine

how close the power-law class is to optimum.
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APPENDIX A. RECEIVER OPERATING CHARACTERISTICS FOR v = 2

The decision variable z for this case is given by (21) as

(A-1)

N
]
-3
N
[
3
It HZ
[y
el
jo BN S )
AV
<

The characteristic functions of z under hypotheses Hy and H; are
given by (24) and (25), respectively, in conjunction with (22).

1, where S is the average

The strength parameter a = (1 + S)~
signal power per hin. Twelve values of M, the number of bins

occupied by signal, have been considered; they are
M=11,2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (A-2)

and the corresponding receiver operating characteristics are
plotted in figures A-1 through A-12, respectively. The curves
are labeled by the parameter S(dB), which is equal to

10 loglo(§). Thus, S(dB) can be interpreted as the required
signal-to-noise ratio per bin in decibels. The total search

size, N, is kept fixed at value 1024 for all these plots.
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APPENDIX B. RECEIVER OPERATING CHARACTERISTICS FOR v = 3

The decision variable z fcr this case is given by (29) as

(B-1)

N
n
uﬁ
]
=
Duw
AV
<&

The characteristic functions of z under hypothesis Hj is given by
(24), in conjunction with (30) for a = 1. The exceedance
distribution function of z under hypothesis k, was determined by
simulation with at least 10,000 independent trials; this yields
the curves of P4 versus threshold v. Ten different values of
average signal power per bin, S, were run. Also, twelve values
of M, the number of bins occupied by signal, have been

considered; they are
M=1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (B-2)

and the corresponding receiver operating characteristics are
plotted in figures B-~1 through B-12, respectively. The curves
are labeled by the parameter S(dB), which is egual to

10 loglo(g). Thus, S(dB) can be interpreted as the required
signal-to-noise ratio per bin in decibels. The total search

size, N, is kept fixed at value 1024 for zll these plots.
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APPENDIX C. RECEIVER OPERATING CHARACTERISTICS FOR v = 2.5
The decision variable z for this case is given by (31) as

N v >
z=T =5 " x° 2v, (c-1)

n=1 ©° <

where we now take rower v = 2.5. The characteristic functions of
z under hypothesis Hjy is given by (24), in conjunction with (32).
“he exceeda.«ce distribution £ nction of 2z under hypothesis H, was
determined by simulation with at least 10,000 independent trials;
this yields tke curves of P4 versus threshold v. Ten different
values of average signal power per bin, S, were run. Also,
twelve values of M, *“he number of bins occupied by signal, have

been considered; *they are
M=1, 2, 3, 4, 8, 16, 3., €4, 128, 256, 512, 1024, (C-2)

and the corresponding receiver operating characteristics are
plotted in figures C-1 through C-12, respectively. The curves
are labeled by the parameter S(dB), which is equal to

10 1oglo(§). Thus, S(dB) can be interpreted as the required

signal-to-noise ratio per bin in decibels. The total search

size, N, is kept fixed at value 1024 for all these plots.
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