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DETECTION PERFORMANCE OF POWER-LAW PROCESSORS FOR RANDOM

SIGNALS OF UNKNOWN LOCATION, STRUCTURE, EXTENT, AND STRENGTH

INTRODUCTION

This technical report is the third of a series of four NUWC

technical reports by this author, covering the following topics:

(a) modified generalized likelihood ratio processors,

(b) generalized likelihood ratio processors,

(c) power-law processors, and

(d) optimum processing,

respectively. Topic (a) was completed in [1], resulting in a

substantial compilation of receiver operating characteristics for

the breakpoint modification considered there. Topic (b) was

addressed in [2], again resulting in numerous receiver operating

characteristics that quantify the performance of the modification

called the sum-of-M-largest processor. The overall goal of the

extended investigation is to determine classes of processors

that perform at or near optimum levels of performance and that

can be easily realized, analyzed, and assessed, even in these

situations of scant knowledge about the detailed signal

characteristics. The reader should be familiar wit), the earlier

material before undertaking the current analyses and results.

In this report, we will derive the form of the optimum

processor in this environment, and then simplify it to the point

of realizing an alternative simple robust processor, namely tie

class of power-law processors. This power-law class will not

require or use information such as the average signal-to-noise
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ratio per bin, S, or the number of bins, M, occupied by signal

(when present); this is consistent with the fact that such

information is not available in practical applications anyway.

Some previous results on the performance of power-law pro-

cessors, topic (c), have been reported in [3] and [4]. However,

they considered detection of a Gaussian burst signal in Gaussian

noise, whereas our input datL have exponential probability

density functions. Also, they did not consider very small values

of M/N, where N is the total number of search bins in which the

signal could lie; we will address cases of M varying all the way

from M = 1 to M = N = 1024. Their processor was arrived at in an

ad hoc fashion, whereas ours is derived as an approximation to

the optimum processor. Finally, they did not compare the

performance of their power-law processors with any absolute bound

on performance; we will undertake and complete that latter task

in a future technical report treating topic (d) mentioned above.

Although the previous authors couched their signal as a

contiguous burst of M samples in time [4; page 210, above (1)],

they never used this fact for deriving an optimum processor, nor

in the ad hoc processor they adopted. Thus, their results

actually apply to the broader class of signals whose occupancy

pattern in time (or frequency) is completely unknown. The

optimum processor for contiguous bursts would utilize this

contiguous knowledge and perform significantly better by virtue

of being able to reduce the size of the search problem

considerably. This case of increased signal information is not

addressed here in this technical report either.

2
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PROBLEM DEFINITION

The search space consists of N (frequency) bins, each

containing independent identically-distributed noises of unit

power. Thir ituation is presumed to be accomplished by an

earlier normalization procedure. The number N is under our

control and is always a known quantity. When signal is absent,

hypothesis H0 , the probability density function of each of the

bin output noises is completely known.

When signal is present, hypothesis H1 , the quantity M is the

actual number of bins occupied by the signal; this is frequently

an unknown parameter. The quantity L is the actual set of bins

occupied by signal, when signal is present; for example, if

M = 4, then we might have for the occupied set, L = (2,3,7,291,

meaning that bins 2,3,7,29 have signal in them. This quantity

is always unknown in our investigation. Finally, the quantities

ISnI are the actual average signal powers in the n-th bin in

occupied set L, when signal is present; these average signal

powers are unknown. We shall presume here that all the actual

signal powers per bin are equal to a common (unknown) value S in

the occupied set of bins L, and zero elsewhere.

3
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PROBABILITY DENSITY FUNCTIONS OF INDIVIDUAL BIN OUTPUTS

We now specify the detailed character of the probability

density functions of the input data, namely p0 and pl, under

hypotheses H0 and Hl, respectively. In both hypotheses, the bin

outputs or observations I Xn ) are taken as the squared envelopes

of the outputs of (disjoint) narrowband filters subject to a

Gaussian input random process; alternatively, the observations

can be interpreted as the magnitude-squared outputs of a fast

Fourier transform sub-ect to a Gaussian input process. It is

assumed that these bin outputs (random variables) IxnI are

statistically independent of each other, which is consistent with

a frequency-disjoint requirement.

Since the bin output noise has been normalized at unit level.,

the probability density function of the n-th observation xn is,

under hypothesis H0 , an exponential of the form

q 0 (un) = exp(-un) for un > 0 , 1 S n S N . (1)

On the other hand, when signal is present, hypothesis H,

with signal power S per bin, the density of xn is changed to

ql(un) = a exp(-a Un) for un > 0 , n E L , (2)

where we have defined the strength parameter

1
= 1 + S (3)

Observe that the actual signal power per bin, S, can also be

4
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interpreted as the actual signal-to-noise power ratio per bin,

since the noise power per bin has been normalized at unity.

PROBABILITY DENSITY FUNCTIONS OF THE SET OF OBSERVATIONS

The probability density function governing the complete

observation IXn I under hypothesis H0 follows from (1) and the

statistical independence of (Xn I as

N
PO(ul,...,UN) = I exp(-u n)] (4)Sn=l

Under hypothesis H1 , the signal can land in any set of M

disjoint bins, out of the total of N search bins. This results

in a itotal number of possibilities K = (NIM), the latter quantity

being the binomial coefficient. Furthermore, each set occurs

with equal probability 1/K. Thus, there are K occupancy sets,

each of size M, namely ILki for 1 s k S K. The probability

density function governing the observation I xn I is therefore

Pl(Ul,...,N [! F ja exp(-aUn)J F7Texp(-Un)II (5)

plul..,N) K -2un) [_ c' fl1Lk= nET, niLk

where we used (1) and (2).

5/6
Reverse Blank
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DERIVATION OF OPTIMUM PROCESSOR

We initiate the investigation of optimum signal processing

and detection by presuming, for the time being, that the number

of bins, M, occupied by signal (when present), and the common

average signal power per bin, S, are both known, but that the

specific locations, L, of the bins occupied by signal are

completely unknown. This will enable us to derive the optimum

processor in this environment.

Then, we will simplify this complicated time-consuming

likelihood ratio procedure, eliminating the dependence on the

parameters M and S in the proce; , this is consistent with the

practical situation, where these parameters are unknown. The

resulting approximations will turn out to yield the class of

power-law processors, which will occupy most of the succeeding

analysis and performance prediction.

The likelihood ratio for observation {xnj is, from (4) and

(5), the random variable

LR 0(X1...XN) =a-- [F•t, exp(xnil - a])1j

PO(xl,.....N) ,kn ncLk

1M K
= a = exp Xk , (6)

k=1 k

where we have defined

wE 1 - a = +S XkE for 1 k S K= M (7)
ncLk

7
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The likelihood ratio test is therefore

K
> exp H Xk < v , (8)
k=1

where v is a fixed threshold. The likelihood ratio test

indicates to compute all K possible linear sums IXkI in (7), each

of size M, weight each by corron value w, exponentiate each term,

and sum over all the possible K sets. For large N, the integer K

is very large; then, (8) is a very time-consuming impractical

prescription and requires knowledge of S, which is very unlikely.

SPECIAL CASES

As a special case, for M = 1, then K = (Nil) = N, and (7) and

(8) reduce to

N
_expwx < v . (9)

n=l

This optimum processor can be easily realized if S is known; it

can also be readily simulated in order to determine its

performance.

At the other extreme, for the special case of M = N, then

K = (NIN) = 1, and (7) and (8) become

N N >
exp(w = x > v or equivalently, • x v (10)

n=1 n=1nn

where the latter v is a different threshold value, of course.

8



TR 10751

This processor, called the energy detector, does not require

knowledge of S or M. It has already been analyzed, and recei-,er

operating characteristics have been obtained [1; pages 21 - 22

and 81 - 90].

QUADRATIC SIMPLIFICATION OF LIKELIHOOD RAT IO TEST

In an attempt to simplify the likelihood ratio test (8),

suppose we approximate exponential function exp(x) by quadratic

function a + A x 2 over the range of typical arguments x likely to

be encountered. The quadratic does not emphasize the very large

arguments as much as the exponential does, but it does give more

importance to larger arguments than a linear function would.

(The cubic alternative a + A x3 will be considered below.)

When we substitute the quadratic approximation into (8),

there follows

K (a + 2 X2) = K a + A H2  K X2

k=1 k=l k= k

The corresponding approximate likelihood ratio test is therefore

simply

Q KZ X~ 2 > (12)Q2 L- ý k < v ,12
k=l

where we have discarded all the data-independent factors that we

can. A very important feature of test (12) is that knowledge of

9
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average signal power per bin, S, is not required ior itz

realization. However, knowledge of M is still requirc-d for test

(12). Also, K can be too large to make test (12) praztical.

hIi order to simplify (12) further, we expand each and every

linear sum Xk in (12) in terms of its part icular M componerts x

according to set Lk in (7). We also define the data power sum

T V _X~, AP(13)
nml

where v need not be integer. Then, atter some manipulation,

expansion of (12) yields the identity

-= (1) (a T2 + b T2) , (14)

where coefficients

N-M M-1
a = - =-I ; a + b 1. (15)

For M = 1, a is 1, while b is zero; thus, Q2 in (14) is then

composed solely of the quadratic sums of the data IXn}, namely

T2; see (13). Conversely, for M = N, a is zero, while b is I;

that is, Q2 in (14) is then converted over to the square of a sum

of linear terms in the data Ixn} , namely T1 . In between these

two extreme val'es of M, the changeover in the data-dependent

part of Q2 is linear in M for both coefficients a and b, as

indicated by (15). Thus, there is a smooth transition in Q2 in

(14), from using only squared terms to using only linear terms in

the data Ix }, as M varies from 1 to N.

10
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CUBIC SIMPLIFICATION OF LIKELIHOOD RATIO TEST

On the other hand, if we use the cubic function a + A x3 as

an approximation to the exponential function exp(x), then (8) can

be developed as follcws:

K exp ! X a + 3 X a + 3 K
k-i k= (16)k-1 k-l k=l

The corresponding approximate likelihood ratio test is then

K X3 v. 
(17)

k=1

Although simpler than original test (8), test (17) still requires

too many terms to make it practical.

Again, as above, we substitute for each term Xk in (17), its

linear composition (7) in terms of data Ixn ], and expand out all

the cubic terms. The result is, after considerable manipulation,

the identity

N31= M- a T3 + b T2 TI + c T , (18)

where coefficients

N-M N-2M M-1 N-M M-1 M-2
a = NIN_ b=3N-_N2, cw N-_ N-2 (19)

For M 1, we have a = 1, b = 0, c 0; thus, sum Q3 in

(18) is then composed solely of cubic terms in the data (xn],

11
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according to T3 in (13). Conversely, for M - N, we find a - 0,

b - 0, c - 1; that is, sum Q3 is then converted over to the cube

of a sum T 1 involving only linear terms in the data IXn 1. In

between these two extreme values of M, the changeover in the

data-dependent part of Q3 is quadratic in M for all three

coefficients a, b, c. Coefficient b reaches its peak at

! - (N+I)/2, with a value approximately 3/4, while c is about 1/4

there. A list of values of the coefficients a, b, c at select

values of M is given below. We always have a + b + c = 1, as may

be verified from (19).

VALUES OF COEFFICIENTS

M a b c

1 1 0 0

N-4 3
N-i N-i

N 3 N 1N-4
2 4N-I 4N-1

N+1 1 -1 3 N-1 1 N-3
2 -2 T(max) N-2

3 -N 2 /8 (min) 9 N(N-4/3) 9 (N-4/3)(N-8/3)(N-I)(N-2) 16 (N-I)(N-2) 16 (N-I)(N-2)

N 0 0 1

12
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OBSERVATIONS ON DATA PROCESSING

The cubic-approximation results in (18) and (19) show that

the optimum processor indicates a gradual transition from

emphasis on cubed data, through squared data, to linear data, as

M is increased from 1 to N. Coupled with the similar result for

the quadratic approximation in (14) and (15), this suggests that

one should consider the use of sum T. in (13), for general v, as

the decision variable and as a possible candidate for near-

optimum processing as M varies.

It should be observed that some rather drastic approximations

have been adopted in the extraction of T. as a candidate decision

variable. First, the exponential function in (8) has been

replaced by either a quadratic or a cubic function. Then, the

resulting terms have been expanded out and collected in a

particular power form. Finally, the behaviors of the

coefficients of these power forms have been used in a heuristic

fashion to deduce the power-law processor.

The best choice of v is an open question at this point,

as is the specific degradation incurred by resorting to the

approximation T. as the decision variable, instead of using the

optimum likelihood ratio test (8). Analytical and/or simulation

comparisons of (8) and T. must be conducted in order to ascertain

the exact degradations in performance that accompany the various

alternative approximations to the optimum likelihood ratio test,

and to determine the best value(s) of v to use for minimum

degradation.

13
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The use of power sum T in (13) as the decision variable is

very attractive from a computational viewpoint. It involves only

N calculations, not K, which are extremely simpoe if v is an

integer, like 1 or 2 or 3. Other intermediate (non-integer)

values of v would take longer. Also, no knowledge of M or S is

required to realize the approximate likelihood ratio test

N X >
TV<v. (20)

n-i

This is called the cl&ss of power-law processors, and will be the

major topic of numerical investigation here.

For v - 1, the power-law processor cor:esponds to the energy

detector [1; pages 21 - 22]. On the other hand, as v - -, power-

law processor (20) tends towards the maximum processor; that is,

the performance of (20) tends towards that of maxlxl,...,xN).

This maximum processor has already been thoroughly analyzed and

quantified in the study on the sum-of-M-largest processor in [2],

when M - 1 there.

The power-law nature of test (20) emphasizes the stronger

samples in the given data Ixn} over the weaker ones, in making

its decision about signal presence or absence when the occupied

set of bins, L, is completely unknown; recall that the data Ixn)

can be interpreted themselves as power quantities, being the

envelope-squared outputs of narrowband filters. Also, in keeping

with optimum test (8), approximate test (20) reaches its decision

based upon a combination of all the data values Ixn 1, and not

upon a maximum of some subsets of the data.

14
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ANALYSIS OF POWER-LAW PROCESSORS

We are interested in the performance of power-law processor

(20) when the statistics of the input data (xn} are given by (1)

and (2). The specific results for v = 1 are given by [1; pages

21 - 22 and 81 - 90], while Trhe case of \v - -, that is, the

maximum processor maxfxl,...,XN}, is treated in [2; (30) - (33)

and tables 1 and 2].

QUADRATIC-LAW PROCESSOR

In Lhis subsection, we consider the special case of v = 2,

for which we have the test

N N >
z E T2 L= n 2 E Yn < v (21)n=l n=1

Under hypothesis H1, the characteristic function of the

individual random variable yn is

f(•) exp(iyn) = expix i&x = 2 du a exp(- au + i~u 2  =
y n n

0

- (l+i) w forZ > 0, (22)

where we used (2) and the error function w(z) of complex argument

[5; chapter 7]. An alternative expression for this character-

istic function, in terms of the real auxiliary functions f and g

defined in [5; 7.3.5 & 7.4.22 and 7.3.6 & 7.4.23], is given by

15



TR 10751

f ) " a If I + i g for t > 0 (23)
-- (2n&) (2n&)

To complete the characteristic function, we have f y(0) = 1 and

f y(-&) - f () , to complement the results in (22) and (23).

The characteristic function of yn under hypothesis H0 is

obtained from (22) or (23) by setting average signal power S

equal to 0, that is, by setting strength parameter a equal to 1;

denote it by f (0). Then, using the independence of input data
y

fxn ) in sum (21), the characteristic function of decision

variable z under H0 is

o 0l) • (24)

On the other hand, the characteristic function of z under HI

is gi~ven by

N-M
f () = f f ()) , (25)zy y

where M is the actual number of bins containing signal. At this

point, we have all the results we need in order to compute false

alarm and detection probabilities of the quadratic-law processor

in (21). The numerical method we employ, here and in the future

sections of this report, is the accurate and efficient fast

Fourier transform procedure for going directly from a given

characteristic function to its exceedance distribution function,

as given in [6].

16
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The false alarm probability,

Pf M Prob(z > vH0), (26)

obtained through use of (22) and (24), is plotted versus

threshold v in figure 1, for total search sizes N = 64, 128, 256,

512, 1024. The corresponding receiver operating characteristics

for N - 1024 and for

M - 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (27)

with average signal power per bin S (in decibels) as a parameter,

are given in appendix A in figures A-i through A-12,

respectively. The detection probability, defined as

Pd ' Prob(z > VHl), (28)

was obtained by use of (22) and (25).

Since these results used a very accurate computer routine for

the complex error function w(z), the false alarm probabilities in

the 10-6 range are accurate, and the receiver operating

characteristics are accurate over the complete range plotted.

These plcts enable us to ex:tract the required signal-to-nois-e

ratio per bin to realize a specified level of performance, such

as Pf - 10-3' Pd - 0.5. For example, figure A-i for N = 1024 and

M - 1 indicates that we must have the large value S - 14.8 dB,

whereas figure A-12 for N - 1024 and M - 1)24 requires the much

smaller value S - -9.4 dB, since the number of occupied bins, M,

is so much larger.
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CUBIC-LAW PROCESSOR

Here, we consider the case of power law v = 3 in test (20),

namely

z T 3 = n >n 3v (29)
n=l n=

Under hypothesis H1 , the characteristic function of an individual

random variable yn is

00f (t) exp(iEy T = exp -1iX 3 ) J du a exp(- au + iu 3
ynn

0

a V + dr exp-&r 3 - a if3r - i a fr&k0 (0
- 2 2 - 2j frŽ, (0

0

where we used (2). In order to obtain the latter integral form,

we moved the contour in the u-plane to the radial line with angle

n/6 radians and then made the change of variable u = r exp(in/6).

The characteristic function of yn under H., denoted by f 0 (,
n y

follows from (30) by setting a = 1 (S = 0), and the character-

istic function of decision variable z in (29) is again given by

form (24). The lack of any computer routine for the complex

function of & in (30) caused us to adopt the following numerical

procedure. Integral (30) with a = 1 (S = 0) was accurately

evaluated on the fine grid ý = 0(.001)3 and stored. These values

were then used in (24) to evaluate the characteristic function of

z under hypothesis H0 , for values of N = 64, 128, 256, 512, 1024.
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The numerical procedure in (6] was then employed to compute the

false alarm probability, with the results given by figure 2. The

curvature in the results at the 10-6 level are accurate, and are

due to the cubic rule in (29).

The detection probability Pd could also have been obtained in

a similar fashion, by using (30) with strength parameter a < 1

(S > 0). However, since we are generally interested in detection

probability values in the neighborhood of 0.5 to 0.9, it was

decided to avoid the bookkeeping, and to instead directly

simulate test (29) for signal powers S > 0. Th3 results for

N = 1024, and for the same M values as listed in (27), are given

in figures B-i through B-12 respectively, in appendix B. Each of

these plots utilized at least 10,000 'idependent trials of random

variable z in (29); thus, the receiver operating characteristics

are very stable except for very small Pd values of no practical

interest. There is sufficient stability to be able to accurately

determine required signal-to-noise ratios to operate in the

desired 0.5 to 0.9 range of detection probabilities.
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GENERAL POWER-LAW PROCESSOR

The case of general power v > 1 in power-law test (20) is of

interest here. That is, the decision variable is now

N N
z =ZZn< v . (31)

n=l n=1

Under hypothesis H0 , the characteristic function of individual

random variable yn is, upon use of (!),

f(•) 0 exp(i•yn) = exp i•xnV = du exp(-u + i~u•) V
y n n

0

= exp(i)n dr exp[-&rV - exp(•)r] . (32)

0

Here, we moved the contour in the u-plane to the radial line

with angle n/(2v) radians and then made the change of variable

a = r exp(in/(2v)). Since v > i, the integral on r in (32) has

more rapid decay than the integral on u; in addition, the

oscillation of the integrand is constant with r, whereas it

continually increases in the u integral.

The only case of (32) that was numerically investigated here

was the choice v = 2.5; the reason for this selection will be

seen later. The characteristic function in (32) was accurately

numerically evaluated on the fine grid [ = 0(.00113 and stored.

These values were then used in (24) to evaluate the

characteristic function of z in (31) under hypothesis H0 , for
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values of search size N = 64, 128, 256, 512, 1024. The numerical

procedure in (6] was then employed to compute the false alarm

probability, with the results given by figure 3. The only

additional quantity required for [6] is the mean of decision

variable z under hypothesis H0 , which is given by

z N x n N f du exp(-u) u = N r(v+1) (33)

0

and which equals N Vn 15/8 for v = 2.5.

The detection probability Pd for power-law test (31), with

v = 2.5, was simulated for signal powers S > 0. The results for

N = 10.4, and for the same M values as listed in (27), are given

in figurets C-i through C-12 respectively, in appendix C. Each of

theue plots utilized at least 10,000 independent trials of random

variable z in (31); thus, the receiver operating characteristics

are very stable except for very small Pd values of no practical

interest. There is sufficient stability to be able to accurately

detennine required signal-to-noise ratios to operate in the

desired 0.5 to 0.9 range of detection probabilities.
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COMPARISON OF POWER-LAW PROCESSORS

The compilation of 36 receiver operating characteristics in

appendices A, B, C, for v = 2, 3, 2.5 respectively, prompts us

to condense this information for easier interpretation and

accessibility. To accomplish this, we define a low-quality

operating point Pf= 10-3' Pd = 0.5 and a high-quality operating

point Pf = 10- 6 , Pd = 0.9. We then read off the curves in the

appendices the values of signal power S(dB) which are required to

realize these two levels of performance. These results are

listed in tables 1 and 2, and are plotted in figures 4 and 5 for

the low-quality and high-quality operating points, respectively,

fox, M ranging over the set of values 1, 2, 3, 4, 8, 16, 32, 64,

128; 256, 512, 1024. The values of the power-law considered are

v = 1, 2, 2.5, 3, -. The results for v = I and v = - come from

[2; pages 40 - 41]. The ordinate, M S in decibels, in figures 4

and 5 is actually the total signal power required in order to

achieve the specified performance level. This total quantity is

more meaningful and it condenses the range of ordinate values to

a more manageable regime.

It is immediately seen that the best value of v, to achieve

minimum average signal power per bin S, varies with the number of

occupied signal bins, M. For convenience, we confine the

following discussion to the low-quality operating point depicted

in figure 4. For example, if M = 1, the best value for v is =,

although v = 3 is only 0.4 dB poorer. On the other hand, if

M = 1024, the best v is 1, but v = 2 is only 0.5 dB poorer. In
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between these extreme values of M, the best v sweeps through all

the intermediate values as M changes. This behavior is consistent

with the earlier observations based upon approximations Q2 in

(14) and Q3 in (18). Figures 4 and 5 constitute a numerical

confirmation of the tenuous approximations that were employed in

deriving (14) and (18), and in arriving at power-law test (20).

The reason for considering power-law value v = 2.5 is now

clear from looking at the low-quality operating point results in

figure 4. When M, the number of bins occupied by signal, is

completely unknown, the best compromise value for v is 2.5. This

particular power-law processor performs about 1 dB poorer than

the best in its class at the extreme values M = 1 and M = 1024;

however, for intermediate values of M, it is close to the best in

this class of processors.

On the other hand, for the high-quality operating point

results in figure 5, perhaps the best power-law value is near

v = 2.25. Numerical results for this cc•se were not run; they can

be found upon use of (32) and (33). However, for analytic

simplicity and ease of practical realization, the quadratic-law

processor v = 2 is recommended.

When the results in figures 4 and 5 are compared with the

corresponding results for the modified generalized likelihood

ratio processor in [1] and the sum-of-M-largest processor in

[2; pages 42 - 48], the corresponding lower envelopes of required

signal power are very close over the entire range of M from I to

N = 1024. That is, the best performer in each class of

processors requires about the same amount of signal power to
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achieve the same level of performance.

However, there is one outstanding attribute of the power-law

class that highly recommends it over the earlier two classes of

processors, namely the modified generalized likelihood ratio

processors [1] and the sum-of-M-largest processors [2]. The

power-law processor, with v fixed at value 2.5, does not need to

know the value of M in order to perform near its best level. At

the low-quality operating point for example, it loses no more

than 1.2 dB with regard to the best level found thus far,

regardless of the unknown value of M, the number of occupied

signal bins. There is no need to guess at a breakpoint, x0 , or a

number of terms, M, to use, as there was with the earlier

processors; these choices could never be made intelligently

without knowledge of M in the earlier processors.

This relative independence of the power-law class on M is a

truly remarkable result and certainly could not have been

anticipated from the debatable manipulations employed in arriving

at the power-law class of processors. However, the question is

still open as to the ultimate level of performance that can be

attained by the optimum processor in this environment. That is,

we would like to have an absolute lower bound on the curves in

figures 4 and 5. This would tell us how good or bad the

power-law class is, and whether we should bother to try to find

yet another class of processors that performs still better. That

problem is topic (d) mentioned previously on page 1; it has been

solved and will be the subject of a future NUWC technical report

[7] by this author.
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Table 1. Required S(dB) for N - 1024, Pf = 10-, Pd = 0.5

v 1 2 2.5 3

1 21.53 14.8 13.8 13.2 12.77

2 17.71 11.8 10.7 10.2 10.11

3 15.70 10.3 9.3 8.9 8.90

4 14.34 9.3 8.4 8.05 8.14

8 11.17 7.2 6.4 6.2 6.59

16 8.09 5.1 4.6 4.4 5.28

32 5.05 3.0 2.7 2.7 4.15

64 2.03 0.8 0.75 1.0 3.12

128 -0.98 -1.4 -1.3 -0.9 2.17

256 -3.99 -4.0 -3.6 -3.0 1.27

512 -7.00 -6.7 -6.1 -5.3 0.39

1024 -10.01 -9.4 -8.7 -7.8 -0.48

Table 2. Required S(dB) for N 1024, Pf = 10 -6' Pd = 0.9

v 1 2 2.5 3

M

1 31.81 24.0 23.2 23.0 22.92

2 24.85 18.1 17.3 17.1 17.29

3 21.73 15.6 14.75 14.7 15.09

4 19.77 14.1 13.3 13.3 13.82

8 15.61 11.0 10.4 10.5 11.45

16 11.94 8.3 7.95 8.2 9.70

32 8.56 6.0 5.8 6.2 8.31

64 5.34 3.7 3.8 4.3 7.17

128 2.22 1.4 1.7 2.5 6.18

256 -0.85 -1.0 -0.45 0.6 5.31

512 -3.89 -3.6 -2.8 -1.4 4.53

1024 -6.91 -6.3 -5.3 -3.6 3.81
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SUMMARY

The class of power-law processors is characterized by raising

each observed data point, xn, to the v-th power and summing over

all the data points from 1 to N, regardless of the (unknown)

value of M, the number of bins occupied by signal. The power-law

processor can be regarded as a rough approximation to the optimum

processor operating in this environment, trying to detect a

signal without any structure.

The required threshold settings for achieving false alarm

probabilities in the range down to 10-6 have been presented in

figures 1, 2, 3 for power values v = 2, 3, 2.5, respectively.

The receiver operating characteristics have been determined and

plotted, for these same values of power v, in appendices A, B, C

respectively, for a wide range of values of M. These results

allow for accurate extraction of required signal-to-noise ratios

to achieve a specified level of performance, as measured by the

false alarm and detection probabilities.

One of the most surprising and pleasant results of this study

is the discovery that the power-law processor with v = 2.5

performs near optimum, even without any knowledge of the number

of occupied bins M, or the average signal power per bin, S. This

conclusion has been drawn only upon the numerical example of

N = 1024, and for probabilities Pf'Pd in the range between the
-.3

low-quality operating point 10 ,0.5 and the high-quality

operating point 10-6,0.9. Additional ranges of numerical values

have yet to be investigated.
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The results in figure 5, for the required total signal power

to achieve a specified level of performance, indicate an

interesting behavior. Namely, there is a best division of the

total power into approximately M = 4 or 5 bins, at which point

the power-law processors with v = 2.5 or 3 will achieve the

specified performance w.ith the minimum value 19.3 dB. However,

this situation may not be achievable in the typical practical

passive application where M, the number of occupied bins, is not

under the receiver's control.

The greatest shortcoming of the results in this report is

that the signal powers per bin have all been assumed equal in the

occupied signal bins, with value S. An extension to allow for

unequal arbitrary signal powers per bin, fSn), is clearly

necessary and is underway. The power-law class will be the

initial and primary candidate for signal detection in this

situation. Also, a bound on performance, based perhaps on an

argument analogous to that in [7], will be required to determine

how close the power-law class is to optimum.
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APPENDIX A. RECEIVER OPERATING CHARACTERISTICS FOR v = 2

The decision variable z for this case is given by (21) as

N
2 > v . (A-i)

2 n=1 n

The characteristic functions of z under hypotheses H0 and H1 are

given by (24) and (25), respectively, in conjunction with (22).

The strength parameter a = (I + S)1, where S is the average

signal power per bin. Twelve values of M, the number of bins

occupied by signal, have been considered; they are

!M = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (A-2)

and the corresponding receiver operating characteristics are

plotted in figures A-i through A-12, respectively. The curves

are labeled by the parameter S(dB), which is equal to

10 logl 0 (S). Thus, S(dB) can be interpreted as the required

signal-to-noise ratio per bin in decibels. The total search

size, N, is kept fixed at value 1024 for all these plots.
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APPENDIX B. RECEIVER OPERATING CHARACTERISTICS FOR v = 3

The decision variable z for this case is given by (29) as

NT3 = T x3 >(B1
3 < v (B-i)

n=1

The characteristic functions of z under hypothesis H0 is given by

(24), in conjunction with (30) for a = 1. The exceedance

distribution function of z under hypothesis HI was determined by

simulation with at least 10,000 independent trials; this yields

the curves of Pd versus threshold v. Ten different values of

average signal power per bin, S, were run. Also, twelve values

of M, the number of bins occupied by signal, have been

considered; they are

M = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (B-2)

and the corresponding receiver operating characteristics are

plotted in figures B-i through B-12, respectively. The curves

are labeled by the parameter S(dB), which is equal to

10 logl 0 (S). Thus, S(dB) can be interpreted as the required

signal-to-noise ratio per bin in decibels. The total search

size, N, is kept fixed at value 1024 for all these plots.
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APPENDIX C. RECEIVER OPERATING CHARACTERISTICS FOR v = 2.5

The decision variable z for this case is given by (31) as

N
v 'n < v , (C-l)

n=1

where we now take rower v = 2.5. The characteristic functions of

z under hypothesis H0 is given by (24), in conjunction with (32).

'he exceeda.tce distribution f'nction of z under hypothesis H1 was

determined by simulation with at least 10,000 independent trials;

this yields tY-ý curves of Pd versus threshold v. Ten different

values of average signal power per bin, S, were run. Also,

twelve values of M, -he number of biyls occupied by signal, have

been considered; they are

! = 1, 2, 3, 4, 8, ]6, 3K, 64, 128, 256, 512, 1024, (C-2)

and the corresponding receiver operating chaiacteristics are

plotted in figures C-I through C-12, respectively. The curves

are labeled by the parameter S(dB), which is equal to

10 logl 0 (S). Thus, S(dB) can be interpreted as the required

signal-to-noise ratio per bin in decibels. The total search

size, N, is kept fixed at value 1024 for all these plots.
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