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I. INTRODUCTION 

Prediction of the in-flight motion of projectiles requires the determination of the aero­
dynamic forces and moments that act on the body. These aerodynamic forces and moments 
may be determined by experimental or theoretical means, such as Computational Fluid 
Dynamics. From a computational standpoint, much of the research effort has focused on 
determining the static aerodynamics such as drag and pitching moment. Only a limited 

·number of studies have focused on numerical prediction of dynamic aerodynamic deriva­
tives such as pitch-damping force and moment. In the current research effort, a parabolized 
Navier-Stokes technique has been adapted to predict the pitch-damping force and moment 
using steady coning motion. 

By applying linear flight mechanics theory such as that developed by Murphy,1 it can 
be shown that aerodynamic side force and moment coefficients acting on a projectile in 
steady coning motion can be related to the pitch-damping force and moment coefficients. In 
steady coning motion, the longitudinal axis of the missile performs a rotation at a constant · 
angular velocity about a line parallel to the free-stream velocity vector and coincident with 
the projectile center of gravity (CG), while oriented at a constant angle with respect to the 
free-stream velocity vector. This is shown schematically in Figure 1. The use of steady coning 
motion to determine the pitch-damping aerodynamic coefficients provides an interesting and 
cost-effective approach for determining the aerodynamics that are normally associated with 
unsteady or time-dependent motions. 

Previously, Tabak, Schiff, and Peterson2 examined the aerodynamics of bodies of revo­
lution in coning motion and proposed that the nonlinear aerodynamic forces and moments 
acting on a body performing large amplitude non-planar motions could be composed of four 
characteristic motions: (1) steady angle of attack, (2) pitching motion, (3) rolling motion, 
and ( 4) coning motion. Typically, the linear aerodynamic force and moment formulation 
considers only forces and moments due to the first three motions, and assumes that a non­
planar motion can be described by the vector sum of two independent planar motions. The 
addition of coning motion allows for coupling between planar motions in the nonlinear for­
mulation. Their nonlinear theory also confirms the linear theory result that the side force 
and moment due to coning motion is related to the linear pitch-damping coefficients. 

To provide additional validation for the theory, Schiff and Tobak3 performed wind 
tunnel experiments on a conical body undergoing separate or combined spinning and coning 
motions. Their results showed that at low angles of attack the slopes of the side for:ce. and 
moment with angle of attack normalized by the coning rate were in good agreement with 
predictions of the damping-in-pitch force and moment coefficients obtained using linearized 
theory. They also demonstrated that the Magnus force and moment (variation of side force 
and moment with spin rate and angle of attack) was small; thus, the linear pitch-damping 
coefficients could be determined from the side force and moment due to coning alone. 

Subsequently, Schiff4 computed the supersonic inviscid flow about a conical body un­
dergoing coning motion. To compute the flow around the body in coning motion, Schiff 
made use of a rotating coordinate frame. Within the rotating coordinate frame, the flow 
was steady; thus, the steady Euler equations could be solved. The governing equations were 
modified to include the centrifugal and Coriolis force terms. His computed results com-

1 



pared well with experimental results and with estimates of pitch-damping coefficients using 
a linear theory. Later studies by Agarwal and Rakich,5 and Lin6 also employed rotating 
coordinate frames to compute the supersonic viscous flow about conical bodies in coning 
motion. More recently, Weinacht and Sturek7 performed computations for finned projectiles 
in coning motion to determine the pitch-damping coefficients. 

In each of the previous efforts, the pitch-damping coefficients were determined from 
the side moment due to steady lunar coning motion which required the Magnus moment 
to be neglected. The predictions of the pitch-damping coefficients presented in this report 
were determined from the side moment due to a specific combination of spinning and coning 
motion which allows the side moment due to this motion to be directly related to the pitch­
damping force and moment coefficients. These motions will be defined in more detail in the 
next section. 

In the current report, predictions of pitch-damping for axisymmetric shell were made 
using combined spinning and coning motions. The flow field about these projectiles in steady 
coning motion has been successfully computed using the parabolized Navier-Stokes (PNS) 
computational approach of Schiff and Steger.s The computations are performed in a rotating 
coordinate frame similar to that employed originally by Schiff. Code modification required 
to implement the rotating coordinate frame, including the addition of the centrifugal and 
Coriolis source terms and changes to the shock fitting algorithm, are discussed. From the 
computed flow field, the side moments due to coning motion, spinning motion, and combined 
spinning and coning motion are used to determine the pitch-damping coefficient. Computa­
tions have been performed for two generic shell configurations, a secant-ogive-cylinder (SOC) 
and a secant-ogive-cylinder-boattail (SOCBT). The PNS predictions are made for various 
length-to-diameter ratios and supersonic Mach numbers, and compared with predictions 
made using an Euler code originally reported by Schiff. Results are also presented for a 
series of ogive-cylinder configurations that have been fired through an aerodynamics range 
located at the former Ballistic Research Laboratory.1 Comparison between PNS results and 
range data are made. 

II. THEORETICAL BACKGROUND 

In this section, the moment expansion of a symmetric missile is first introduced. Two 
types of coning motion are described and related to the pitching motion of the missile body. 
Finally, the moments produced by both types of coning motion are related to the various 
moment components in the moment expansion. In particular, the pitch-damping moment is 
related to the side moment due to coning motion. 

1The U.S. Army Ballistic Research Laboratory was deactivated on 30 September 1992 and 
subsequently became a part of the U.S. Army Research Laboratory (ARL) on 1 October 
1992. 

2 



1. Moment Expansion. 

It is common in aeroballistic applications to utilize a missile~ fixed, non-rolling coordinate 
system to describe both the kinematics and the system of forces and moments that act 
on the projectile in flight.! The non-rolling coordinate system affords some simplifications, 
particularly in describing the kinematics. In this report, the primary reason for initially 
describing the aerodynamic moments using the non-rolling coordinate system is the fact that 
the description is well-established. The non-rolling coordinate frame is an orthogonal right­
handed system (x, y, z) centered at the body CG. The x-axis is aligned along the projectile 
longitudinal axis with the positive direction oriented towards the projectile nose. The i-axis 
is "initially" oriented downward with the x - z plane perpendicular to the ground. The 
angular motion of the non-rolling coordinate frame is such that, with respect to an inertial 
frame, the x-component of the coordinate frame's angular velocity is zero. Although the 
time-dependent orientation of the non-rolling frame may be hard to visualize, the non-rolling 
frame is essentially equivalent to the "fixed-plane" coordinate system for small amplitude 
motions. In the fixed-plane coordinate system, the x - z plane remains perpendicular to the 
ground for all time. Further details on these coordinate frames can be found in Reference 1. 

The moment expansion developed by Murphy1 for a symmetric missile in the non-rolling 
coordinate frame is shown in Equation 1. The moment formulation uses complex variables 
to separate the moment components, Cm and Cn, that are oriented along they and z axes, 
respectively. The third moment component, the roll moment, can be handled separately and 
is not of consequence in this study. 

(1) 

In the moment expansion, the pitching moment coefficient, Cma, and pitch-damping 
moment coefficient, Cm

9 
+ 1Cmc., produce moments that are proportional to the complex 

yaw, l, and yawing rate, t', respectively. (In the analysis presented here, there is no need to 
distinguish between pitch and yaw and the terms may be interchanged. The usage follows 
that of Murphy. I) The Magnus moment coefficient, Cnpa' accounts for a side moment due to 
flow asymmetries from a combination of spin and angle of attack. 

Experimental procedures to determine both the pitching and Magnus moments are 
conceptually easy to devise because these moments depend on the angle of attack and not 
the angular rate. For instance, the pitching and Magnus moments can be determined from 
wind tunnel measurements of pitch-plane and side moments on a spinning flight body held at 
a fixed angle of attack. Since this is a steady motion for axisymmetric bodies, computational 
analogs based on steady flow techniques can be easily implemented. In contrast, the fact 
that the pitch-damping moment is produced by the angular rate seems to imply that a 
time-dependent motion is required to produce the moment. One obvious unsteady motion 
that might be considered is a planar constant amplitude pitching motion. Experiments and 
computational approaches can be devised to determine the pitch-damping moment from 
unsteady motions, but this may be an unnecessary complication. It is possible to devise 
motions that still produce an angular rate, but when viewed in the appropriate coordinate 
system, are steady motions. Coning motion represents one such motion. 
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2. Relation Between Coning and Pitching Motions. 

As was discussed previously, in steady coning motion, the longitudinal axis of the mis­
sile performs a rotation at a constant angular velocity about a line parallel to the free-stream 
velocity vector and coincident with the projectile center of gravity, while oriented at a con­
stant angle with respect to the free-stream velocity vector. This is shown schematically in 
Figure 1. In the context of this report, coning motion also requires the center of gravity to 
traverse a rectilinear path at constant velocity. With respect to the non-rolling coordinate 
frame, the vertical and horizontal components of the angle of attack, a and (3, vary in a 
periodic fashion as the projectile rotates about the free-stream velocity vector, as shown in 
Figure 2. However, the total angle of attack, Ot ~ Ja2 + (32 is constant. 

Both of these components of the angle of attack, when plotted as a function of time, 
are sinusoidal, constant amplitude pitching motions that are out of phase with each other 
by one quarter of a cycle, as shown in Figure 3. By decomposing coning motion in this 
fashion, it can be observed that coning motion contains a specific linear combination of two 
orthogonal planar pitching motions. As will be shown later, this particular combination of 
planar pitching motions yields a non-zero angular rate which is a requirement for producing 
the pitch-damping moment. 

The term "steady coning motion" describes the rotation of the longitudinal axis of the 
body about the free-stream velocity vector, but does not completely describe the motion of 
the body. In particular, the projectile may rotate (or spin) about its longitudinal axis. In 
this report, two particular forms of coning motion, steady lunar coning motion and steady 
combined spinning and coning motion, are utilized. The two motions differ in their treatment 
of the angular velocity about the longitudinal axis. 

In steady lunar coning motion, the angular velocity of the projectile results purely 
from the rotation of the projectile about the free-stream velocity vector. This produces a 
component of angular velocity along the projectile axis, which by definition is the spin rate 
of the projectile in the non-rolling coordinate system. The relation between spin rate, p, and 
coning rate, ¢, for the case of steady lunar coning motion is 

. . 
p = </>COS Ot = </>'Y (2) 

In steady combined spinning and coning motion, the angular velocity of the projectile 
consists of the vector sum of two angular velocity vectors. The first vector produces a 
rotation of the projectile's longitudinal axis about the free-stream velocity vector (coning -motion), ¢, and the second produces a rotation of the projectile about its longitudinal axis 
(spinning motion), Pel· In general, there is no requirement for the spin rate to be coupled 
to the coning rate. However, in the context of this report, combined spinning and conin~ 

motion requires that Pel be equal in magnitude but opposite in sign to the component of </> 

along the longitudinal axis, Pel = -¢ cosae. In this case, the total angular velocity of the 
body about the longitudinal axis is zero; hence, the spin rate in the non-rolling coordinate 
system is zero. 

p= 0. (3) 
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By specifying both the coning rate and the spin rate, the projectile angular motion is 
now completely defined. For the particular case of steady lunar coning, the motion can be 
decomposed into a combination of two orthogonal planar pitching motions, plus a spinning 
motion at angle of attack. Likewise, steady combined spinning and coning motion can be 
decomposed into two orthogonal pitching motions. 

Planar pitching motion is clearly a time-dependent motion that produces a time­
dependent flow field about the projectile. Steady lunar coning motion, on the other hand, 
should produce a steady flow field when viewed from the appropriate coordinate frame, such 
as the coning coordinate frame. In the coning frame, the x-axis is aligned with the longitu­
dinal axis of the missile and is identical to the x-axis in the non-rolling frame. The plane 
formed by the x-axis and z-axis in the coning frame is parallel to the pitch plane. The y-axis 
is oriented normal to the pitch plane so that an orthogonal right-handed coordinate system 
is formed. 

For steady lunar coning motion, the coning frame and the body rotate at the same 
angular velocity, thus there is no rotation of the pitch plane with respect to the body. Because 
the boundary conditions in the coning frame do not introduce any time-dependency into the 
problem, when observed from the coning reference frame, the resulting flow field is expected 
to be steady for small angles of attack and for small coning rates. It is important to realize 
that because the coning frame is rotating at a constant angular velocity and because the 
body does not rotate with respect to the coning frame of reference, there is no requirement 
for the body to have any special forms of geometric symmetry (i.e., axisymmetry) for steady 
flow to exist. Steady flow modeling techniques can be applied to determine the flow field 
due to steady lunar coning motion under the constraints that both the coning rate and the 
angle of attack are small. (Clearly, the flow may become unsteady at high coning rates or 
high angles of attack, in much the same way the flow over a body at fixed angle of attack at 
high incidence can become unsteady due to vortex shedding.) 

For the case of steady combined spinning and coning motion, the body will rotate in 
the coning reference frame with a rate of rotation which is proportional to the coning rate, 
(PcJ = -¢> cosat)· This rotation does not produce a time-dependent boundary condition 
for axisymmetric bodies and a steady flow field can exist. However, for non-axisymmetric 
bodies, the rotation of the body in the coning reference frame will produce a time-dependent 
(periodic) boundary condition and flow field. Thus, when combined spinning and coning 
motion is utilized, a steady flow field is only possible for axisymmetric bodies. 

The steady nature of the flow in the coning frame makes the coning frame a desirable 
coordinate system for performing the fluid dynamic computations. Since the coning reference 
frame is a non-inertial system due to the rotation of the coordinate system, the governing 
equations for the fluid dynamics must be modified. Further details on the implementation 
of the rotating frame are provided in the discussion of the computational approach. 

3. Relation Between Side Moment Due to Coning and Pitch-Damping Moment 

To develop the relation between the side moment due to coning motion and the pitch­
damping moment coefficient, it is convenient to resolve the moment components in non-
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rolling coordinates into moment components in the coning coordinate frame. This relation is 
shown below. Here Cm is the in-plane moment coefficient (the moment which causes rotation 
of the body in the plane of the attack of attack), and Cn is the side moment coefficient (the 
moment that causes rotations of the body out of the angle of attack plane). Also shown are 
relations for the complex angle of attack and angular rate. These relations, valid for steady 
coning motion, have been simplified from the general case of arbitrary motion.9 

Cm + iCn - ie-i-yJ,t(Cm + iCn) 

l 
l'= dl 

- d(~) -
l 

(4) 

The moment formulation cast in terms of the in-plane and side moments can be written as 
follows: 

(5) 

The resulting expression for the in-plane and side moments is independent of time for the case 
of steady coning and spinning motions. The in-plane moment (real part) results only from 
the pitching moment, while the total side moment (complex part) consists of contributions 
from the Magnus moment and pitch-damping moment. For each type of coning motion of 
interest in this report, the side moment assumes a particular form depending on the spin 
rate. 

4. Side Moment for Lunar Coning Motion 

As discussed previously, with respect to the non-rolling coordinate system, lunar coning 
motion produces a component of angular velocity along the longitudinal axis of the missile 
which by definition is the spin rate of the projectile (Equation 2). For this type of coning 
motion, the side moment can be written as 

(6) 

The notation can be simplified by noting that the right-hand side of Equation 6 is simply 
the variation of side moment with coning rate, valid for linear variations of side moment with 
coning rate. 

(7) 

This relation is identical to that presented by Schiff and Tobak3 for bodies of revolution. 
Equation 7 relates the variation of the side moment with coning rate, Cn~, to the pitch­
damping coefficient, [Cm

9 
+!Cm,;.], and the Magnus moment coefficient, Cnpa· Assuming that 

the side moment due to coning and the Magnus moment can be determined, this relation 
will allow the pitch-damping coefficient to be determined. 

Despite the fact that lunar coning motion requires that the Magnus moment be de­
termined (or assumed negligible) in order to determine the pitch-damping coefficient, this 

6 



motion is useful. Because the body does not rotate with respect to the pitch plane while 
undergoing coning motion, the flow, when observed in the coning coordinate frame, will 
be steady for axisymmetric and non-axisymmetric bodies. In many cases, particularly in 
supersonic flow, the Magnus moment may be neglected without any appreciable loss of ac­
curacy. This approach has been recently applied to predict the pitch-damping for six-finned 
projectiles. 7 It should be noted that non-axisymmetric bodies with aerodynamic coefficients 
which exhibit a significant dependence on roll angle may need to be treated with a more 
general aerodynamic formulationiO, 11 than is presented here. 

5. Side Moment for Combined Spinning and Coning Motion 

The second type of coning motion discussed here uses a specific combination of coning 
and spinning motions to cause the component of the total angular velocity along the longi­
tudinal axis of the missile to be zero. In other words, both the non-rolling coordinate frame 
and a body fixed coordinate frame will not rotate with respect to each other. Thus, the spin 
rate of the projectile, as observed from the non-rolling coordinates, is zero (Equation 3). 

It should be noted, however, that the coning coordinate frame rotates with respect to the 
non-rolling coordinate frame and the body-fixed coordinate frame. In the coning coordinate 
frame, then, the body appears to perform a spinning motion since the body-fixed coordinate 
system rotates with respect to the coning coordinate frame. The spin rate in the coning 
coordinate frame will be PcJ = -~~. In this report, this motion is called "combined spinning 
and coning motion," because in the coning frame (which is the coordinate frame in which the 
computations are performed), the motion is a specific combination of spinning and coning 
motion. In the coning frame, this motion is a steady motion for axisymmetric bodies only. 
The presence of spin and angle of attack produces a periodic motion for non-axisymmetric 
bodies, thereby eliminating steady flow computational approaches from consideration. 

For this type of coning motion, the side moment can be written as 

(8) 

In this case, the side moment is directly proportional to the pitch-damping moment coef­
ficient. In contrast to side moment due to lunar coning motion (Equation 6), no Magnus 
moment term appears here. Despite the simplicity of this expression, the Magnus effect has 
not been entirely removed from the problem. In the coning frame, the combination of ·angle 
of attack from the coning motion and the spinning motion produce a Magnus-like effect. 
Thus, any approach, whether it be computational or experimental, which uses this motion 
must be capable of modeling both of these effects. For example, a coarse grid CFD compu­
tation which does not resolve the viscous effects sufficiently to properly model the Magnus 
problem will produce pitch-damping results which will be in error by the degree to which 
the Magnus moment is improperly determined. 
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6. Side Force due to Coning Motions 

Similar expressions relating side force due to coning to the pitch-damping force co­
efficient can be developed using the same approach used in analyzing the moments. The 
resulting expressions for the side force coefficients are similar in form to the expressions for 
the corresponding side moment coefficients for both types of motions. 

For the case of lunar coning motion, the slope of the side force with coning rate, Cv.t>, is a 
function of the pitch-damping force coefficient, CN

4 
+ 1CNc. and the Magnus force coefficient, 

Cvpo' 
(9) 

Like the side moment due to lunar coning motion, determining the pitch-damping force 
coefficient from the side force due to lunar coning requires that the Magnus term be ignored 
or determined from another source. 

For combined spinning and coning motion, the slope of the side force with coning rate, 
Cv,p can be directly related to the pitch-damping force coefficient, CN

4 
+ /CNa· 

(10) 

7. Determination of the Pitch-Damping Coefficients. 

The particular approach discussed here for determining the pitch-damping coefficients 
requires that the side force and moment due to coning ( Cv.t> and Cn.t. ) be determined. By 
computing the side force and moment at least two different coning rates, the variation of 
side force and moment can be determined. If steady combined spinning and coning motion 
is used, the pitch-damping coefficients are easily determined because these coefficients are 
directly proportional to the side force and moment due to coning as shown in Equations 8 
and 10. On the other hand, if steady lunar coning motion is used, the Magnus force and 
moment must be determined from another source before the pitch-damping coefficients can 
be determined (Equations 7 and 9 ). Often the Magnus force and moment are small in 
relation to the pitch-damping coefficients and can be ignored when determining the pitch­
damping coefficients from the side force and moment due to steady lunar coning motion. 

Since many projectile and missile applications deal with small amplitude motions, it is 
customary to linearize the equations of motion. Thus, the pitch-damping force and moment 
coefficients often appear as CNq + CNc. and Cm

4 
+ Cma because the cosine of the angle of 

attack, /,is nearly 1. This notation is adopted in the remainder of this report. 

Finally, since the results presented in this report were obtained using steady motions, 
the two types of coning motion are referred to as "lunar coning motion" and "combined 
spinning and coning motion" in later sections of this report with the understanding that 
these are, in fact, steady motions. 
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III. COMPUTATIONAL APPROACH 

Computation of the viscous flow field about the axisymmetric shell configurations was 
accomplished by solving the thin-layer Navier-Stokes equations using a PNS technique. The 
computations were performed in a coordinate frame that rotates at the coning rate of the 
projectile. The fluid flow relative to the rotating coordinate frame does not vary with time, 
allowing the steady (non-time-varying) Navier-Stokes equations to be applied. The solution 
of the steady Navier-Stokes equations can be performed at a reasonable computational cost. 
To implement the rolling coordinate frame, the governing equations were modified to include 
the effects of centrifugal and Coriolis forces. The steady, thin-layer Navier-Stokes equations 
in cylindrical coordinate form are 

(11) 

Here, E, F, and G are the inviscid flux vectors, Sis the viscous flux vector, He and Be are 
inviscid and viscous source terms due to the cylindrical coordinate formulation, and H is the 
source term containing the Coriolis and centrifugal force terms which result from the rotating 
coordinate frame. Each of these vectors are functions of the dependent variables represented 
by the vector qT = (p, pu, pv, pw, e), where p and e are the density and the total energy per 
unit volume, and u, v, and ware the velocity components in the axial (x), circumferential 
(¢),and radial (r) directions. The flux terms are 

pU pV pW 
puU + ~xP puV + 1/xP puW + (xP 

A I 
pvU A I 

pvV + 1/r~>P/r {;-1. pvW + (r~>pfr E=J F=J -J 
pwU pwV +1/rP pwW + (rP 

(e + p)U (e + p)V (e + p)W 
0 

au 
0 

(12) pw mi B( + m2(x 
puw H2 

A I 
2pvw 

A I 8v H-1. H3 He= Jr S=J ffii a~w+ m2(<J>/r -J 
p(w2- v2) H4 
(e + p)w mi B( + m2(r Hs 

ffi3 
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where 

H2 -
H3 -

H4 -

Hs -

0 

;. 1 
Be=-

J 
(13) 

rpn~ sin O't cos at cos 4>- (x- Xc9 )pn~ sin2 
O't + 2nc sin O't cos r/>pv- 2nc sin O't sin ¢pw 

( x - X co )pn~ sin at cos at sin 4> + rpn~ sin2 at cos 4> sin 4> + 2nc cos atpw 

-2nc sin O't cos r/>pu 

-rpn~ sin2 
ll't sin 4>- rpn~ cos2 

ll't + (x- Xc9 )pn~ sin ll't cos ll't cos 4> 
+2nc sin O't sin ¢pu- 2nc cos O'tPV 

(-(X- Xcg)n~ sin2 
O't COS

2 
O't + rn~ sin O't COS Ot COS r/>)pu 

+((x- Xcg)n~ COS Ot sin Ot sin r/> + rn~ sin2 
Ot COS r/>sin r/>)pv 

+( (X - Xcg )n~ sin Ot COS ll't COS r/>- rn~ sin2 
Ot sin2 r/>- rn~ COS

2 Ot)pw (14) 

U U~x 

V - UT}x + VT}q,jr + WT}r 

W u(x + v(q,jr + w(r (15) 
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1 au 1 ov ow 
m2 - 3(Jl + }lt)((x o( + ;:'"' o( + (r o() 

1 Jl Jlt 2 2 2 oa2 1 oq2 
m3 - (-y -1)(Pr + Prt)((x + ((.pjr) + (r)a[ + 2mlli( 

v 
+m2( u(x + -(.p + w(r) 

r 
(16) 

az /P (17) -
p 

q2 - u2 + v2 + w2 (18) 

~x = 1/xe 
TJx = J(re<h- ¢>ere) TJ.p = J(xerc) TJr = J( -xe<f>d (19) 
(x = J(¢>er'1- re</>11) (q, = J( -xer11 ) (r = J(xc¢11 ) 
J = 1/ (xe (</>11rc- ¢>cr11 )) 

The pressure, p, can be related to the dependent variables by applying the ideal gas 
law. 

{20) 

The turbulent viscosity, Jlt, which appears in the viscous matrices, was computed using 
the Baldwin-Lomax turbulence mode}.12 

The thin-layer equations are solved using the PNS technique of Schiff and Steger.8 Fol­
lowing the approach of Schiff and Steger, the governing equations, which have been modified 
here to include the Coriolis and centrifugal force terms, are solved using a conservative, ap­
proximately factored, implicit finite-difference numerical algorithm as formulated by Beam 
and Warming.I3 

Following the approach of Schiff and Steger, the equations are first linearized and placed 
in delta form, where the equations are solved for the difference in the dependent variables 
rather than the variable itself. This set of equations is then factored using the approach of 
Beam and Warming. The following set of equations is obtained. 

[A:~+ (1- a)~~ (a11Bi + iJi + .6/)] ~ij* = RHS (21) 

[~v + (1 -a)~~ ( a,6i- ~e (6,ifi + Ai/))] ~iij = A:!~ii* (22) 

RHS -(A~- A~-1 )4i + a(E~- £~-1 )- [(~xfJ)i+I E;- (~x!J)i E~-1 ] 

-(1- a)~~{ a'~ [TJ~+l(EjJ)i + (fJ.pfr)i+l(FjJ)i + fJ~+1 (GjJ)i) 

+he [c:+1(EfJ)i + ((q,fr)i+1(FfJ)i + (!+I(GfJ)i] 

+iii+ iit- ~e (6,si + s/) + 4>} (23) 

The form _?f ~he _equatio!ls, as well as the notation, is similar to that useAd by SAchiff anAd 
Steger. Here, A, B, C, and Mare the Jacobian matrices of the flux vectors E, F, G, and S. 
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Further details on the definitions of these matrices can be found in Reference 8. The impor­
tant difference here is the addition of the matrices D and ii due to the rotating coordinate 
system. Although the Jacobian matrix, D, can be included in either the circumferential in­
version or the normal inversion, including this term in the circumferential inversion simplifies 
slightly the implementation of the shock fitting boundary conditions. (A listing of the terms 
in the Jacobian matrix, D, is found in the Appendix.) Two additional Jacobian matrices, 
De and Me, appear in these equations and are due to the linearization of the inviscid and 
viscous cylindrical coordinate source terms, He and Sc. 

The computations presented here were performed using a shock-fitting procedure re­
ported by Rai and Chaussee.14 This procedure solves the five Rankine-Hugoniot jump con­
ditions, two geometric shock-propagation conditions, and one compatibility equation to de­
termine the values of the five dependent variables immediately behind the shock, as well 
as the position of the shock. By including the implicit part of the source term due to the 
rotating coordinate frame in the circumferential inversion, the shock-fitting procedure of Rai 
and Chaussee can be used without modification, as long as the correct free-stream conditions 
are specified as shown here in non-dimensional form. 

p 

pu -

pv -
pw 

e -

1 
Moo cos at + rOc sin at cos ¢ 

Moo sin at cos¢ - rOc cos at + ( x - Xcg )Oc sin at sin¢ 

Moo sin at cos</>- (x- Xc9 )S1c sin at cos¢ 

1./bb- 1)) + ~{M! + r2S1~(sin2 at cos2 4> + cos2 at) 

-2r(x - Xcg )0~ cos at sin at sin¢+ (x- Xc9 ?S1~ sin2 at} (24) 

At the body surface, no-slip, constant wall temperature boundary conditions were ap­
plied. For the cases with spin, the circumferential velocity, v, was set equal to the local 
velocity of the body surface due to solid body rotation. 

The computational results presented here were obtained using a grid that consisted of 
60 points between the body and the shock. In the circumferential direction, gridding was 
performed over a 360° sector because of the lack of symmetry from the combination of angle 
of attack, spin, and coning motion. Thirty-six grid points were used in the circumferential 
direction. Grid resolution studies showed virtually no difference in the computed aerody­
namic coefficients as the number of grid points were increased from 36 to 72 circumferential 
points using cylindrical coordinates. (Supplementary calculations showed that grid inde­
pendent solutions required more than 36 points when using Cartesian coordinates.) The 
computations were performed using a Cray X-MP supercomputer and typically required less 
than 20 minutes of CPU time for complete calculation over a single configuration. 

IV. RESULTS 

Computations were performed to determine the aerodynamics of several axisymmetric 
shell configurations in steady coning motion. The first set of predictions is for two generic 
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shell configurations: an SOC and an SOCBT. Calculations were performed over a range of 
Mach numbers and body lengths. The PNS results were compared with Euler code results. 
A second set of results was obtained for a series of ogive-cylinder configurations (Army­
Navy spinner rocket [ANSR]) which were fired through an aerodynamics range located at 
the former Ballistic Research Laboratory. The computational results are compared with the 
aerodynamics determined from the in-flight motion of the projectile. 

1. Results for the SOC and SOCBT 

A schematic of the SOCBT configuration is shown in Figure 4. The SOC is identical 
to the SOCBT configuration except that the boattail is replaced by a cylinder. The PNS 
results were compared with pitch-damping results obtained using the inviscid code developed 
by Schiff.4 Results were obtained for three body lengths (5, 6, and 7 calibers) and a range of 
supersonic Mach numbers. The CG position used in the calculations was located at 60% of 
the body length from the nose. The PNS (viscous) results were obtained using the combined 
spinning and coning motion approach. The Euler (inviscid) results were obtained using lunar 
coning motion, since the spin boundary condition required by the combined spinning and 
coning motion is incompatible with the requirement for zero shear at the body surface in the 
inviscid approach. 

Figures 5 and 6 show the variation of the pitch-damping moment coefficient as a function 
of Mach number for the three body lengths. In the supersonic regime, the pitch-damping 
moment shows a decreasing trend with increasing Mach number. The inviscid results at 
L/ D = 7 show a maximum near Mach 2. The results also show a significant increase in the 
pitch-damping moment with increasing body length. The effect of the boattail is to reduce 
the pitch-damping moment by 20-30% compared with the cylindrical afterbody. 

The comparison of the pitch-damping moment predictions from the PNS approach 
and the Euler approach shows differences of less than 4% across the range of parameters 
considered here. This is not surprising since the pitch-damping appears to be primarily an 
inviscid phenomenon. However, the degree of agreement between the PNS and inviscid code 
is not an absolute indicator of the magnitude of viscous effects since there does appear to 
be some code-to-code variation of the predicted pitch-damping which is on the order of the 
viscous effect. The relevance of these differences is probably not significant, especially in 
light of difficulties in measuring this coefficient experimentally. 

The PNS predictions shown previously were obtained using the combined spinning and 
coning motion. This allowed the pitch-damping force and moment to be determined directly 
from the side force and moment. As mentioned previously, the accuracy of this approach 
depends on the degree to which the Magnus moment is accurately predicted. In earlier 
studies, a numerical capability for determining Magnus force and moment at small angles 
of attack has been already established.ISThis capability is based on the same numerical 
approach as applied here. 

Figures 7 and 8 show predictions of the Magnus moment coefficient for the cylindrical 
and boattailed afterbodies. This coefficient would give the expected differences between 
using lunar coning motion and combined spinning and coning motion to determine the 
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pitch-damping moment. For the cases examined here, the Magnus moment is less than 4% 
of the pitch-damping coefficient. The biggest differences were observed for the boattailed 
configuration, which has a larger Magnus moment and a smaller pitch-damping moment than 
the SOC configuration. Thus, using lunar coning motion and ignoring the Magnus moment 
contribution still yields accurate values of the pitch-damping coefficient for the configurations 
and conditions under consideration here. 

The predicted variation of the pitch-damping force coefficient with Mach number for 
the SOC configuration is shown in Figure 9. These results were obtained from the side force 
due to combined spinning and coning motion. The results show a strong decrease in the 
coefficient with increasing Mach number across the range of parameters examined here. The 
results also show an increase in the coefficient with increasing body length. The PNS results 
are in good agreement with Euler results. 

2. Results for the Army-Navy Spinner Rocket 

Computations were performed for the ANSR series of projectiles. These projectiles 
were fired in an aerodynamics range, and the aerodynamics determined from the projectile 
motion.16 The projectiles consisted of a 2-caliber ogive nose with several different length 
cylindrical bodies, as shown in Figure 10. The total body lengths were 5, 7 and 9 calibers. 
Foi each body length, projectiles were fabricated and fired with three different CG locations. 
This allowed the aerodynamic forces to be determined from the variation of the aerodynamic 
moments with CG location. 

Figures 11 and 12 show the variation of the pitch-damping moment coefficient with CG 
location for the 5-, 7- and 9-caliber bodies at Mach 1.8 and Mach 2.5, respectively. In both 
of the figures, the computed results are compared with the experimental measurements. 
The computational results are considered to be within the accuracy of the experimental 
measurement and are typically bracketed by the experimental data. For each body length, 
computations were performed at each of three CG locations. Since the body rotates about 
the CG, each computation produced a unique flowfield and pitch-damping coefficient. These 
results are displayed by the triangular symbols in both of these figures. As well, once the 
aerodynamics of a given configuration are determined, the CG translation relations1 can be 
applied to predict the aerodynamic coefficients for the same configuration with a different 
CG location. Several of these relations are shown below. 

CNa - CNa 

Cm0 - Cma - ScgCNa 

6Nq +eN.. - CNq +eN .. + ScgCNa (25) 

Cm9 + Cma - Cm9 + Cm.;. - Scg( CNq + CNJ + ScgCma - S~9CNa 
The aerodynamic coefficients for the modified configuration are denoted by the "A", while 
the aerodynamic coefficients for the baseline configuration are shown on the right-hand side 
of the equations. The CG shift, sc9 , is in calibers and is positive for a CG shift towards 
the nose. Using these relations and the predicted aerodynamic coefficients for the middle 
CG position, the variation of the pitch-damping moment coefficient with CG location was 
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determined. This variation is shown in Figures 11 and 12 by the solid line. The difference 
between the pitch-damping moment coefficients predicted from the CG translation relations 
and the pitch-damping moment as determined from the direct computations is less than 
0.1% . This serves as a consistency check for the computational approach, 

It is noted that at both Mach numbers, for the middle CG position of the 9-caliber 
body, there are several experimental data points which deviate from the trend shown by 
the predictions and the apparent trend shown by the experimental data. The cause of this 
deviation is unknown. 

As seen above from the CG translation relations, the pitching moment coefficient varies 
linearly with the CG shift. The slope of the variation is the normal force coefficient slope, 
CNo. By firing projectiles with the same external shape but with different CG positions, the 
normal force can thus be determined from the variation of the pitching moment with CG 
location. A similar approach can be used to determine the pitch-damping force coefficient 
from the variation of the pitch-damping moment coefficient with CG location. Because the 
pitch-damping moment varies in a nonlinear fashion with the CG shift, a modified damping 
moment is defined as 

(26) 

When the left hand side of this equation is plotted as a function of CG shift, the results should 
be a line with slope equal to the pitch-damping force coefficient. For all practical purposes, 
the determination of the pitch-damping force from range firings can only be obtained from 
the variation of the pitch-damping moment with CG locations because the pitch-damping 
force coefficient contributes little to the in-flight motion of the projectile. Hence, direct 
determination is not practical. 

From the CG variation of the pitch-damping moment, the pitch-damping force coeffi­
cient was determined from the experimental measurements. Figure 13 shows the variation 
of the pitch-damping force coefficient with body length for the middle center of gravity loca­
tion. Note that, unlike the normal force coefficient, the pitch-damping force varies with CG 
position. The agreement between the computational predictions and experimental results 
are within the experimental accuracy and show the correct variation with body length and 
Mach number. 

As mentioned previously, the pitch-damping predictions were obtained using the com­
bined spinning and coning motion which allows the pitch-damping force and moment to be 
determined directly from the side force and moment. The expected differences between ap­
plying combined spinning and coning motions, and lunar coning motion are reflected in the 
Magnus moment coefficient. In the current effort, the Magnus force and moment have been 
computed for the ANSR configuration and comparison made with range data obtained from 
the same series of firings as shown in Figures 14 and 15. The computed results were obtained 
for a fully turbulent boundary layer, although there is some evidence from the experimental 
program to indicate laminar flow over a portion of the body, particularly near the nose. 
The computational results are within the scatter of the experiment~} data for most of the 
CG positions although several of the cases show an overprediction by as much as 30-40%. 
The predictions show that determining the pitch-damping coefficient directly from the side 
moment due to lunar coning motion (which requires the Magnus moment to be ignored) will 
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result in errors of less than 5% for this configuration. 

Finally, using the Magnus results discussed here and the side force and moment due to 
lunar coning motion, predictions of the pitch-damping coefficients (Equations 7 and 9) were 
made and compared with the predictions of the pitch-damping coefficients obtained using a 
single calculation utilizing combined spinning and coning motion. The maximum difference 
between the two approaches was less that 0.1% . This demonstrates the lack of coupling 
between the spinning and coning motions over the range of coning rates, spin rates, and 
angles of attack considered here. (It is interesting to note that at higher angles of attack, 
a nonlinear variation of Magnus moment with angle of attack was predicted. Even at these 
angles of attack, no coupling between the coning and spinning motions was observed.) 

V. CONCLUSION 

A computational approach for predicting the pitch-damping coefficients using steady 
coning motion has been successfully applied to several axisymmetric shell configurations. 
Through the use of a combined spinning and coning motion, the pitch-damping force and 
moment have been obtained directly from the side force and moment using a single cal­
culation. This approach does not require that the Magnus force or moment be ignored or 
determi~ed from an auxiliary calculation, as in the case of lunar coning motion. 

The computational predictions for the SOC and SOCBT configurations showed good 
agreement with results obtained with a previously published inviscid code. The results 

·showed an increasing trend in the pitch-damping coefficient with increasing length-to-diameter 
ratio and a decreasing trend in the coefficient with increasing Mach number. The presence 
of the boattail on the projectile produced a significant reduction in the pitch-damping mo­
ment compared with an equivalent length cylindrical afterbody. The predictions of both 
the pitch-damping force and moment coefficients for the ANSR were seen to be in excellent 
agreement with the data obtained from aerodynamic range testing. The computational re­
sults predicted the correct variation in the pitch-damping moment coefficient with changing 
center of gravity location, body length, and Mach number. For each of the configurations 
examined here, the effect of viscosity on the pitch-damping coefficients was small. 

The use of the combined spinning and coning motion is currently being applied to 
time marching codes for the prediction of pitch-damping at subsonic through low supersonic 
velocities. In this velocity regime, it is expected that viscous effects will be of greater 
importance than in the supersonic regime examined here. 
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Figure 1. Schematic of coning motion. 

Figure 2. Coning motion with respect to non-rolling coordinates. 
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Figure 3. Components of coning motion. 
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Figure 4. Schematic of the SOCBT configuration. 
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Figure 5. Pitch-damping moment coefficient versus Mach number for various body lengths, 
SOC configuration. 
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Figure 6. Pitch-damping moment coefficient versus Mach number for various body lengths, 
SOCBT configuration. 
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Figure 7. Magnus moment coefficient versus Mach number for various body lengths, SOC 
configuration. 
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Figure 8. Magnus moment coefficient versus Mach number for various body lengths, 
SOCBT configuration. 
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Figure 10. Schematic of the ANSR. 
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Figure 11. Pitch-damping moment coefficient versus CG location, Mach 1.8, ANSR. 
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LIST OF SYMBOLS 

speed of sound 
pitching moment coefficient 
slope of the pitching moment coefficient with angle of attack 
pitch-damping moment coefficient 
side moment coefficient 
slope of the side moment coefficient with coning rate 
Magnus moment coefficient 
slope of the normal force coefficient with angle of attack 
pitch-damping force coefficient 
projectile diameter 
total energy per unit volume, non-dimensionalized by p00a~ 
flux vectors in transformed coordinates 
source term resulting from rotating coordinate frame 
Jacobian 
characteristic length, typically the projectile diameter 
projectile body length 
free-stream Mach number 
pressure, as used in thin-layer Navier-Stokes equations, 
non-dimensionalized by p00a~ 
spin rate in non-rolling coordinate frame, as used 
in the aerodynamic moment equations and coefficients 
spin rate in coning reference frame 
Prandtl number 
turbulent Prandtl number 
Reynolds number, aoopooD / J.Loo 
radial coordinate, non-dimensionalized by D 
distance downrange 
center of gravity shift, calibers 
viscous flux vector in transformed coordinates 
time 
velocity components in x, y, and z directions, 
non-dimensionalized by a 00 

Contravariant velocities of the transformed Navier-Stokes equations 
free-stream velocity used to non-dimensionalize the coning rate, 
spin rate, and the aerodynamic coefficients 
axial, horizontal, and vertical coordinates with respect to 
the body 
axial location of projectile center of gravity with respect to the 
axial coordinate, x 

Greek Symbols 
a vertical component of angle of attack in non-rolling coordinates 
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Ot 

(3 

I 
I 

Superscripts 
(') 
( ) ' 
C) 

Subscripts 
(oo) 

total angle of attack, .j a2 + (32 
horizontal component of angle of attack in non-rolling coordinates 
ratio of specific heats, as used in N avier-Stokes equations 
cosine of the total angle of attack, as used in aerodynamic 
force and moment formulations 
sine of the total angle of attack 
laminar viscosity 
effective turbulent eddy viscosity 
transformed coordinates in Navier-Stokes equations 
complex quantity representing the components of the sine of the angle 
of attack with respect to the non-rolling coordinate frame 
density, normalized by p00 

circumferential coordinate as measured from vertical axis 
coning rate of projectile 

nondimensional coning rate 
coning rate of projectile, non-dimensionalized by a00 j D 

rate of change with respect to time 
rate of change with respect to space 
quantity is referenced to the non-rolling coordinate frame 

denotes quantity evaluated at free-stream condition 
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APPENDIX 

This appendix provides a listing of the terms in the Jacobian matrix, bi, of the source 
term, H. The superscript, j, denotes that D is to be evaluated at axial station j. The 
components of the Jacobian matrix, b are determined from the source term, H, as follows. 

D _ 8Hm 
mn- 8qn (27) 

The non-zero elements of the Jacobian matrix are shown below. 

D21 - rn~ sin Ot COS Ot COS¢>- (x- Xcg)n~ sin2 
Ot 

D23 - 2nc sin Ot cos 4> 

D24 - - 2nc sin at sin ¢> 

D31 - (X - Xcg )n~ sin Ot COS Ot sin lj> + rn~ sin2 
Ot COS lj> sin¢> 

D32 - 2nc sin at cos 4> 

D34 - 2nc cos at 

D41 - n2 . 2 . ¢> n2 2 ( )n2 . 4> -r c sm Ot sm - r c cos Ot + x - Xc9 c sm Ot cos Ot cos 

D42 2nc sin Ot sin ¢> 

D43 - -2nc cos at 

Ds2 - ( )n2 . 2 2 n2 . 4> - X - Xcg c Slll Ot COS Ot + r c SID Ot COS Ot COS 

Ds3 - (X - Xcg )n~ COS Ot sin Ot sin l/> + rn~ sin2 
Ot COS l/> sin lj> 

Ds4 - ( )n2 . 4> n2 . 2 . 2 4> n2 2 x - Xcg c sm Ot cos Ot cos - r c sm Ot sm - r c cos Ot 
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