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Introduction

The acronym LADAR is used here to distinguish optical radar systems that are used to
detect and range hard-body targets from LIDAR systems that detect scattered laser light
from vaiious diffuse molecular and particulate constituents in the atmosphere. Here we
consider a direct-detection (monostatic) LADAR system that emits a burst of short (~10 to
20 ns Q-switched) laser pulses. These pulses are assumed to reflect off a diffuse target and
are subsequently collected by the LADAR, and a range determination of the target is
obtained. Since the forms available in the literature for the detection probability per pulse
are often untenable for practical systems studies, it is of particular concern here to obtain
elementary analytic approximations to the probabilities of Jetection in various
circumstances that are suitable for use in commercially available spreadsheet programs
(v.g.. EXCEL, JAVELIN, or 123). Although the pnmary purpose of this report is 10
obtain results for the probability of detection per pulse. we also present an example of a
target detection algorithm, constructed from multiple pulse staustics, which car be used
increase the overall deteciion probability when the probabihity of detection per pulse. Py, 1s

fow

We consider targets that can be both 1n the near and far field of the receiving aperture and
LADAR systems operating in the small and large photocount regime. Here we assume for
precision that the laser beam spot size at the target is large in comparison to the size of the
target (1.¢.. the transmitted beam does not resolve the target) and the target depth (in the
range direction) is small in comparison to the (longitudinal) coherence length of the
transmitted beam. When light, having a deterministic variauon over space and time (e.g.,
specular reflection from a corner cube or a glint), impinges on a (square-law)

photodetector it can be shown that the resulting photoelectron counts obey Poisson




statistics. That is, we assume here that the probability of observing K photoevents over a
time period that is long compared to the optical period is given by
KL

P(K)=—I(—!-9 ', K=0,1,2.... | ¢9)

where Kj is the mean number of photoevents expected per pulse.! This quantity is given

by
K = (l] E . )

where E; is the mean return integrated signal fluence per pulse (i.e., collected return
energy per pulse), h is Planck's constant, v is the optical frequency, and n is the detector
quantum efficiency. An explicit expression for E is obtained from the LADAR range

equation for a diffuse Lambertian target and a LADAR system with no boresight error or

jitter:2
E = (._EI__J(&)[éL\ I 3
: KAW 7 AR/
where
E; = Transmitted laser energy per pulse
Aspor = Equivalent laser beam spot area at the target

p = Diffuse target refectance
At = Target area, normal to the line-of-sight
R = Propagation range

AR = Receiver clear-aperture area

T = One-way propagation path transmittarice




For propagation through vacuum, T is just the LADAR system optics transmittance. Here,

we assume a laser beam irradiance profile given by

K& =1,exp[- 6/26;] @)

where I, is the beam irradiance for ® = 0. For systems that employ a fixed beam
divergence, we thus have

A, =27(R6,) (5)

Apon
We note that the l/ Je full-angle beam divergence is equal to 26y, and the corresponding
1/€2 full-angle beam divergence equals 2(268g) = 46,. Thus, for example, a beam
characterized here by 8, = Surad corresponds to a beam with a 20urad 1/e2 full-angle
beam divergence. Such a system results in energy returns that are proportional to R, On
the other hand, LADAR systems employing appropriate zoom optics that keep Ag,o =
constant at the target, independent of range, result in energy returns proportional to R™=.
Here we assume uniformly illuminated targets for simplicity. The case of nonuniformly
illuminated targets can be formally included by replacing At in the LADAR range equation
by some effective target area (A)qsr (< At). For example, for a target possessing a
circular cross-sectional area normal 10 the line-of-sight and a LADAR employing a laser

beam spread of Gaussian shape, it can be shown that (A).g = 7rff, where the reduction
factor f = (26 /63) [l—e"':”ws], r is the radius of the target, 61 = rp/R, and 6y is the
1/Je angular laser beam radius. Uniform illumination is obtained for 61 << 8. where

f = 1and (A7) = A1. Although very few optical radar transmitters resolve the target,
this case can be incorporated into the present analysis simply by setting A = Ay in

Eq. (3).




In many cases of practical concern, the return signal is not deterministic, but rather has a
random variation over space and time (e.g., from pulse to pulse). It is now necessary to
treat th= Poisson distribution of Eq. (1) as a conditional probability distribution, the
conditioning being based on knowledge of the probability distribution of the return
integrated (over the receiver collecting aperture) signal fluence. In practice, however, it is
the unconditional probability distribution of photocounts that relates to required system
performance quantities such as the probability of detection. The unconditional probability
distribution is obtained by averaging the conditionai Poisson distribution of Eq. (1) over
the statistics of the return integrated signal fluence. The details of the calculation have

been documented in Reference (3) with the result that

I(K +m) me K™
PK)= ———m 14 o ]t 6
T +1)1"(m)[ SRy (6a)
E[K]=K_ . (6b)
Var[K]=K, + K . (6¢)
m

where E [] and Var [-] denote the expectation value and variance, respectively, I' () is the

gamma function, and m is given by

Ag A, | 7

The first and second term on the right-hand side of Eq. (6¢) is the signal shot-noise and

speckle-noise contribution to the signal variaace, respectively. As discussed in Reference




(3), m can be interpreted as the mean number of independent irradiance correlation cells
(i.e., speckles) contained within the collecting aperture. Examination of Eq. (6) reveals
that the signal statistics depend not only on the mean-signal photoelectron count per pulse,

K, but, in addition, also on the mean number of correlation cells, m, (or speckles)

s
contained within the collecting aperture. Since the signal-count fluctuations increase with
decreasing values of m, it is seen that LADAR system performance generally deteriorates
as the number of speckles decreases with the worst performance obtained form = 1.4 In
addition, it is easily seen from Eq. (6) that the Poisson distribution is an accurate
approximation to the negative-binomial when .n >> K. Thus, for an optically rough
target, the assumption of Poisson signal statistics is justified only when the average number
of signal photoelectrons per spatial correlation cell is much less than unity. For any given

physical situation, both K and m are obtained from Egs. (2) and (7). and the resulits are

used in Eq. (6).

The distribution given by Eq. (6) is known as the negative-binomial distribution. For m
near unity (unresolved targets), a single speckle is contained in the collecting aperture, the
collected energy obeys negative-exponential statistics, and the corresponding photocounts
obey Bose-Einstein statistics. On the other hand, for m >> | (resolved targets), many
speckles are contained within the collecting aperture, and the collected energy distribution
behaves as a delta function centered at the mean value E;. Hence, in the limit m — x,
P(K) must obey Poisson statistics. These analytic features are contained in the negative-

binomial distribution given by Eq. (6).

Figure | is a plot of m as a function of range for a wavelength of 0.532um and a
collecting-aperture diameter of 20 cm. Examination of Figure 1 reveals that for R 2 1.5

Megameters, m ~ 1 for Ay 2 1 m2. As a result, the return-signal photocount is well

N
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Figur~ 1. The parameter m, the mean number of speckles contained within the collection
aperture, for a wavelength of 0.532 microns and a collecting aperture diameter of
0.2m.
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approximated by Bose-Einstein statistics. On the other hand, for R < 0.5 Mm, m >> 1 for
At 2 S m? and hence the signal photocount is well approximated by Poisson statistics if

K <<m.

We now distinguish between the low signal photoelectron count regime, where Ky << 100,
and the high-count regime, where K > 100. In the low photocount regime, the discrete
character of the signal counts is retained whiie for the high photocount regime it is
customary to characterize the collected signal by a continuous distribution of signal current

1, related to the corresponding signal photocount by

LS 8)

.
where q is the electronic charge, and 7 is the reflected return laser signal pulse width.

As an example illustrating the expected value of signal counts per pulse obtained under
various circumstances, we consider the following values of LADAR system parameters:

Er = 0.5 J/pulse, a collector diameter of 20 cm, T2 = 0.5, A = 0.532um, AT =5 m2, p
= 0.4, and n = 0.8. We consider a system that employs a fixed laser beam width as well
as one that keeps a fixed spot at the target, independent of range. The results for K, as
obtained from Eq. (2) are plotted in Figures 2 and 3 as a function of range for various
values of 8g and Agy, respectively. Examination of Figure 2 reveals that, for the
parameters assumed above, the low photoelectron-count regime (K, << 100) is expected for
R 2 0.4 - 1.3 Mm, depending on the value of 6 for the fixed-beam-divergence system.

On the other hand, examination of Figure 3 reveals that for the fixed-spot-on-target case

the corresponding low photocount regime is expected for R > 1.0 - 3 Mm.




Figure 2.
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Figure 3. The mean number of signal photocounts as a function of range for various values

of the laser spot area at the target.




in the second section. we develep elementary analytic expressions, suitable for

commercially available spreadsheet programs, such as JAVELIN, for the probability of

detection including the effects of both unintentional beam boresight error and beam jitter in

the low pho’acount regime. In the third section, we consider the high photocount regime

and develop analytical expressions for the corresponding probability of detection. Finally,

in the Summary, we summarize the approximations of the detection probabilities obtained

here, together with their respective regions of validity. Those readers who want to use

directly the respective approximations, but do not want to get involved with the technical ,

details, can skip io the final results in the Summary.

In order for this report to be as self-contained as possible, we have included a number of
appendices to serve as technical references and document some interesting results that may
not be well known. In Appendix A, we assume a LADAR system with circularly
symmetric Gaussian jitter with a fixed pointing offset and derive the corresponding
probability distribution of intensity. In Appendix B, we show how the general
photoelectron count distribution, given by the negative-binomial probability distribution,
reduces to the Gaussian (i.e., normal) distribution for both large photocounts and speckle
numbers contained within the collecting aperture. In addition, we show how the negative-
binomial distribution reduces to the Bose-Einstein and Poisson distribution in the limit that
the speckle number tends to one and infinity, respectively. In Appendix C, we consider
signal-noise-limited detection for large photoelectron counts and mean number of speckles
near unity and derive the corresponding count distribution and probability of detection. In
this regard, we have derived a possible new and interesting mathematical result involving '
the incomplete gamma function. Finally, in Appendix D, we consider the case of « signal
obeying Bose-Einstein photocount statistics (such as that arising from unresolved targets),
which is immersed in Poisson noise, and derive the photocount probability of signal plus

noise as well as the corresponding probability of detection. In particular, we obtain a

10 L]




closed-form, analytical expressicn for the probability distribution, valid for all values of

signal and noise photocounts.

11




Probability of Detection for Low Photoelectron Counts

Detection Statistics without Pointing Errors

First consider the situation where the mean photocount number K, is small, say less than
ahout 50, For the example considered in the previous section, we have seen that the low
photocount regime 1s expect~d to be obtained for ranges > 1 Mm. For a LADAR system
to be viable in this regime, it is necessary to assume that over a pulse-length, the
background, and/or photodetector, noise 1s much smaller than the corresponding return
signal strength. That is. in the low photocount regime, we assume a (near) quantum-noise-
limited LADAR system. Such physical circumstances may be obtained for a space-based
LADAR system with sufficiently narrow field-of-view and optical bandpass that operates in
the natural environment against a deep space background (i.e., no earth, moon, sun, or
stars in the field-of-view) and with the line-of-sight between the LADAR and the target
having tangent altitudes greater than ~100 km. In addition, it is necessary to employ a
sufficiently low-noise photodetector (e.g.. a cooled photomultiplier or a semiconductor

avalanche photodiode operating above breakdown in the triggered avalanche Geiger mode).

Since in the low photocount regime we assume negligible background and/or detector-
induced noise photocounts over the measurement time of interest, the probability of a
detection, Py, of a single return signal pulse is equal to the probability that at least one
photocount occurs during this time interval. This quantity is just equal to one minus the
probability of obtaining zero counts during this time interval. Hence, from Eq. (6) we

obtain

13




P, =1~ P(0)

=l~(1+—&) , (9)
\ m

where K, is the mean number of signal photoelectron counts expected from the LADAR
pulse, and m is the mean number of speckles of the diffuse reflected pulse contained within

the collecting aperture.

In LADAR systems, where the probability of detection per pulse, Py, is low, target
detection algorithms, constructed from multiple pulse statistics, can be employed to
increase the detection probability. For example, when N independent pulse measurements
are combined. the probabiliity of detecting at least one photocount from a burst of N pulses

is obtained as

PNy =1-(1-P,) =1-P(0)"
B // Ks\er
=1-{1+ ~) (10)

Thus, by combining N independent pulses, the mean photocount K per pulse needed for a
specific detection probability is lowered, and, consequently, for a given K, the acquisition
range is correspondingly extended. Of course, this improvement is at the cost of the

energy to produce the added pulses and the time required to make the measurements.

14




Detection Statistics with Pointing Errors

In general, the effects of pointing errors result in a reduction of target iilumination and a
corresponding decrease in return-signal energy. As a result, the LADAR detection
probability is reduced in comparison to the corresponding value in the absence of pointing

errors. In the following, a fixed angular pointing offset bias and circularly symmetric

Gaussian jiter are assumed.

The quantity Py, given by Eq. (9), represents the detection probability of a single pulse
without any pointing errors, The corresponding probability with beam jitter and offset is
obtained by integrating Py over the mean photocount distribution as a function of the
pointing statistics. That is, with jitter and offset, the mean photocount is now considered

as a random variable, k, with pointing statistics given by (see Appendix A)

Ppl(k)=[azexp(;(azbZ/Z):,(k/K‘)ﬁ-1 Jo(azb F—‘2i"n(k/—I{3), 0<k <K,

=0, otherwise |, (11a)

where circularly symmetric Gaussian jitter statistics are assumed, Jo 1s the Bessel function
of the first kind of order zero, Bp¢ is the (angular) pointing offset, gj is the single-axis
Gaussian jitter standard deviation, and 6y, is the Gaussian laser beam shape standard

deviation.

a=e—0 (11b)




b= (11¢)

Bp is the (angular) pointing offset, o; is the single-axis Gaussian jitter standard deviation,

and B is the Gaussian laser beam shape standard deviation.

The probability of detection of a pulse with pointing errors, denoted by P4, 1s thus

where P4(k) is given by Eq. (9). with Ky replaced by k. and P (k) is given by Eg. (i1).
In general, closed-form solution exists for this integral, although numerical results can be

readily obtained on a digital computer.

One would not expect to design and employ a LADAR system with excessive pointing
offset and jitter. To this end, we have derived an elementary engineering approximation
for Pq valid for 6, /8¢ < 0.5 - 0.75 (or a = 8y/c; > 1.5 - 2), and Op/0p < 1.0. The most

accurate approximation obtained so far that is suitable for spreadsheet programs is given by

Pi = P(K,)

( _ -m
=1 —Ll + K‘} ,
" (13)

16




where

K. = [ kP, (k)dk
0

T T bl 2t Y]
*K’(\?afﬁ)e""{'” ) (14)

L 2\3:"‘1)-

In obtaining the engineering expression given by Eq. (14), we expanded the Bessel
function in Eq. (11) to terms of second order in b, performed the integration over k, and

then exponentialized the result so that the limit of K5 as o; — 0 is identical to the exact

answer; Ks = K, exp[-b2/2].

A comparison of the exact numerical and approximate results are shown in Figures 4
through 9 for a wide range of the parameter values. We note that any practical LADAR
system design would not allow the laser beamn width, 8¢, to be less than both the jitter
standard deviation ; and the offset bias 8. A reasonable design goal would limit both
the ratio oj/Go and Opt to be less than about 1/2 (i.e., a = 2, and b < 0.5). Examination of
Figures 4 through 9 reveals that over a wide range of the parameters m and K, the
approximate analytica! result of Eq. (13) agrees within 10 percent of the numerical result
for botha 22and b < 1. That is, in the range where a LADAR system should be
designed, Eq. (13) represents a good engineering approximation for the probability of

detection in the presence of jitter in the low photocount regime.

17
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Figure 4. Probability of detection for the case wherem = 1.5 and b = 0. The dashed
curves are the exact numerical results, and solid curves are the approximate
numerical results (given by Eq. 13), respectively.
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b=05m=15

Detection Probability

Figure 5. Probability of detection for the case where m = 1.5 and b = 0.5. The dashed
curve is the numerical result, and solid curves are the numerical and approximate

result (given by Eq. 13), respectively.
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Detection Probability

Figure 6. Probability of detection for the case where m = 1.5 and b = 1. The dashed curve
is the numerical result, and solid curves are the numerical and approximate result

(given by Eq. 13), respectively.
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Figure 7. Probability of detection for the case where m = 15 and b = 0. The dashed curve is
the numerical result, and solid curves are the numerical and approximate result

(given by Eq. 13), respectively.




1.000

0.999

0.998

)L

QN

0.90

0.85

0.80

Detection Probability

0.75

0.70

0.28

I

0.26

|

0.24
0.22—
0.20
0.18

0.16

Figure 8. Probability of detection for the case where m = 15 and b = 0.5. The dashed curve
is the numerical result, and solid curves are the numerical and approximate result

(given by Eq. 13), respectively.
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Detection Probability

Figure 9. Probability of detection for the case where m = 15 and b = 1. The dashed curve is
the numerical result, and solid curves are the numerical and approximate result
(given by Eq. 13), respectively.




Probability of Detection for High Photoelectron Counts

Detection Statistics without Pointing Errors

Consider situations where a large number of both signal and noise photocounts per pulse
are expected, such as a space-based LADAR system that views below the horizon.
Following G.odman# and Kingston! we assume that the total non-signal-related noise (i.e.,
background, dark current, thermal, etc) is Poisson distributed. For large photocounts, this
distribution is to a very good approximation Gaussian. As discussed previously, it is
customary in the high photocount regime to deal with currents rather than count number
[see Eq. (8)]. Thus the ac component of thc non-signal-related noise current from the

detection system can be expressed as

|
L 200 (15)

KB + Oﬁk +0h (16)

where Kp is the mean background photoelectron count per measurement interval T (T27).

o3, and o2 are the dark current and thermal noise current variance, respectively.

The probability of false-alarm, Py,, is obtained by integrating Eq. (15) above a

measurement threshold current it. We thus obtain

25




Fu = é{l ) e’f(g%{l&)] ’ (17)

where erf denotes the error function, and the threshold to (non-signal related) noise ratio is

given by

(INR), = - (18) ,
O-n
A curve fit to the numerical inversion of Eq. (17). which 15 accurate to better than 1
percent over the range 10 < Pg, < 102, is given by
(TNR),, = 0.513 - 1.02 log Py, - 0.0539(log P¢,)2 . (19)

For example, a required false-alarm probability of 10-3 requires that the (TNR), ~ 3.1.

We note that Pg, is determined by the non-signal-related noise.

The probabiiity distribution of signal photocaunts is given by the negative-binomial
distribution of Eq. (6). Now for both K, >> 1 and m >> 1, it can be shown that
probability distribution of the signal current distribution is also Gaussian and given by (see

Appendix B)

(20)




where the mean signal current

i - 9K, (21a)

and

. 2
' =Ll (21b) '
T m
The Gaussian probability distribution is a good approximation to the photoelectron

distribution as long as the standard deviation is small compared to the mean. In practice,

this is well statisfied for K¢ = 50-100 and m 2 5-10.

Since both the signal and noise are Gaussian variates. the probability distribution of both

signal plus noise is also Gaussian and given by

. 1 (i-1,)
P.()= —===exp| - ——>—| , (22)
270, p[ 20, }
where
‘ R ered @3)

The probability of detection is obtained by integrating P, above a measurement threshold

current ip. The result is given by




1 i, - iT
= e <+ 3 24
P, [l erf(\/:2 . H : (24)

We note that the probability of detection is a function of both the signai-to-noise ratio
(SNR) and the threshold-to-noise ratio (TNR), where the noise includes the contribution

due to signal fluctuations, as is evident in Eq. (23).

Next we consider the case of K >> 1, but m near unity (< 10). In this case, it is more
useful to return to the discrete counting distribution. Goodman3 has shown that the
probability distribution of the total number (signal plus noise) of photoelectrons ejected

during reception of a return pulse is given by

[ m \expl-n]&  I(K-j+m) [ K, )k '
P.K) [m+K) I(m) ﬁ;r(j+1)r(}(_j+1)n m + K, ’ (25)

where n is the mean number of non-signal-related noise photoelectrons emitted during the
measurement period T (i.e., n = T 6}/ q:). In general, it can be shown by methods
discussed in Chapter 9 of Reference 3 that E[K] = n + K, and Var [K] == n + K, +
KZ/m.

Although suitable for numerical computations on a digital computer, Eq. (25) is not useful
for spreadsheet programs such as JAVELIN. Under certain circumstances, simplification

of E3. (25) can be obtained. For X >> 1 and K, >> n (i.e., signal-noise-limited

detection), it can be shown that (see Appendix C)




___I__Q"__jm - m-) 26
R"(K)_I‘(m)kK: exp|-mK/K, K™, (26)

which is valid for m = 1. This is known as the gamma distribution. Converting to current

and integrating Eq. (26) above a measurement threshold yields the probability of detection

I(m,e,)
P =—2"0s , 27
¢ {(m) @7
where
£ =mL (28)

-—

and I'(a,z) is the complementary incomplete gamma function given by

I(a.2) = j et dt 29)

z

Although no analytical approximation exists for arbitrary m, closed-form expressions can

be obtained for integer m. As a result, we present analytical results for Py for the first few

values of integer m.

m =1,
P, =exp[-i./i,] , (30a)

29




Pd = e—s, (6'2 + l) , (30b)

m = 3;

e® 30

P, = 2 (‘93"'283*2) > (30c)

m = 4;
Pd=e6 (£i+3€§+654+6) ) (30d)

m = §;
P, = 32_4..(,5; +46} + 126 +24e, +24) (30e)

m = 6;
P, = ‘1’20 (&5 + 5¢i + 206 +60¢; +120 +120) . (301)

For noninteger m, it is suggested to smoothly interpolate Egs. (30, a through f) between
successive integers. For larger values of m, the expressions based on the Gaussian
probability distribution of Eq. (22) with o, = o, should apply (see Appendix C). Hence

for m 2 5-10, we can employ Py as given by Eq. (24).

Except for the case m = 1, we have not been able to obtain closed-form expressions for

Pg, for K¢ >> 1, small m and finite n. For m = 1, it can be shown that (see Appendix D)




exp[- (K - n)/K] T(K +1,n)

Bn(K) = K T(K +1)
N exp[—-(K-—n)/Ks]U(K_n) (31)
< :

S

' where U is the unit step function. The probabiiity distribution of signal plus noise current

can thus be expressed as

P,(i)= ex|- (i- )/ ] u(i-i,) . | (32)

S

where 1,(=qn/T) is the mean non-signal-related noise current. The corresponding

probability of detection is now obtained as

P,re | (33)
where the threshold current is now measured relative to the noise floor current i,.
Detection Statistics with Pointing Errors
Just as in the low photoelectron current regime, the most accurate approximation to include

the effects of a pointing offset bias and jitter is to replace the mean signal (ig or K;) by the

corresponcing value obtained by averaging over the pointing error probability distribution

- !g ‘ o ) . -



given by Eq. (11). That is, K (and i, since it is proportional to the signal photoelectron

count) is replaced by Izs (and the corresponding expression for i_s) given by Eq. (14).

We consider the regime where both K and m >> 1. In this case Ed, the detection
probability averaged over the pointing statistics, is obtained from Eq. (24) with i  replaced

by ;s, where

\ ii= { a2 jexp!:— bz(_?_z__]:} | (34)

Figures 10 through 12 show a comparison of the numerical and approximate results for the
detection probabilities as a function of a = 8y/o; for a representative range of parameter

values. In these figures, the (current) SNR and the corresponding TNR are defined as

SNR = —5- (35a)
Osn
and
TNR =L (35b)
asn

Note, in particular, that the noise variance, og,, includes signal fluctuations, in contrast to

the false-alarm probability, which is based on non-signal-related noise only.
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Figure 10. Probabili.y of detection for a large number of photocounts and m is large (2 5-10)
and b =0. The dashed and solid curves are the numerical and approximate result,

respectively.
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Figure 11. Probability of detection for a large number of photocounts and m is large (2 5-10)
and b = 0.5. The dashed and solid curves are the numerical and approximate

result, respectively.

34




SNR =2.0

Z
B 046 TNR=1.7
[o]
& 0.44
S 042
2 0.40
Q
© 038
0.36
~L ~L
oy’ r-\’_,
-~ o
SNR=1.0
TNR = 1.0
| | |
3 4 5 6

Figure 12. Probability of detection for a large number of photocounts and m is large (2 5-10)
and b= 1. The dashed and solid curves are the numerical and approximate result,

respectively.
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Examination of Figures 10 through 12 reveals, as in the low photoelectron count regime,
that the algorithm used here to include the effects of pointing errors is sufficient for use as
an engineering approximation over the design range of a practical LADAR system. We
note that evaluation of the error function may not be compatible with some spreadsheet

programs. If this is the case, use of a global rational approximation to the error function

can be employed, such as6:

erf(x) =1-- (a1 +a,t* + a3t3)e"‘= +ée(x) .

where

le(x)j<25 =107

1
[=—
I+ px

and

p = 0.47047, a, = 0.34802, a, = -0.09587, and a, = 0.74786

Additionally, we consider the case of signal-limited-noise detection where K¢>>1,and m

is near uvity. In this case, we have from Eqs. (27) and (28)

_T(m.en) 6
= (36)

Py =

3




where

em=mL=mI(ifi)) | (37)
1

Is s
and the ratio i_S/ isis given by Eq. (34). For low integer values of m, the results given by

Eq. (30) are to be used with g, replaced by ;m.

Figures 13 through 15 show a comparison of the numerical and approximate results for the
detection probability as a function of 8p/cj form = 1 and a representative range of
parameters. The results for m greater than unity behave similarly. Examination of these

figures reveals that the approximations obtained above are sufficient for engineering

purposes.

Finally, we note, that when N multiple independent measurements are combined, the

probability of detection becomes

PN)=1-(1-P,)" | (38)

where Py is the detection probability of a single pulse.




Detection Probability

Figure 13. Probability of detection for m = 1, b = 0 and both the SNR and TNR are large.
The dashed and solid curves are the numerical and approximate results,

respectively. l.
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Figure 14. Probability of detection for m = 1, b = 0.5 and both the SNR and TNR are large. .
The dashed and solid curves are the numerical and approximate results,

respectively.
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Figure 15. Probability of detection form = 1, b =1 and both the SNR and TNR are large.
The dashed and solid curves are the numerical and approximate results,

respectively.
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‘ ‘ Summary

In this report, we have derived accurate (to within 10 percent), elementary, analytical
expressions for the probabilit_v of detection, l;d , over & reasonable design goal range, of a
monostatic, direct-detection LADAR system in the presence of unintentional pointing
errors. We distinguish between two photocount regimes—iow (K << 100) and high (K
greater than 50-100). As discussed in the second section, in the low photocount regime,
we are primarily interested in signal-noise-limited LADARs. In this regime, we obtain
results for f’d that are valid for resolved targets (m > 10), partially resolved targets (1 <
m < 5-10), and unresolved targets (m = 1). On the other hand, in the high photocount
regime, we obtain results for I_’d, valid for both m ~ |1 and m >> 1 and arbitrary values of
non-signal-related noise. For partially resolved targets, we have not been able to obtain

elementary approximations of I;d except for cases of large values of the (SNR),,,

where

(SNR), == (39)
(v}

is the signal-to-(non-signal-related) noise ratio.

In Table 1, we summarize several of the key parameters used here with a reference to their )
appearance in the body of the paper. For the low photocount regime (K¢ << 100), the

detection probability of a burst of N independent pulses, averaged over the pointing

statistics, 1s given by




Pa(N) = 1~(1+—*)-MN, m=1 | (40)

where

a’ j l( ba’ )2 \
- 2 | 41
* (a2+1 exp{ 2\a’ +1 @h

In Table 2, we summarize the results obtained for I;d in the high photocount regime

(K 2 50-100). For a burst of N independent pulses the probability of detection is given by
Eq. (38).

The approximations for l;d given in Eq. (40) and Table 2 are accurate to within 10 percent
fora = Bp/o; > 2, and b = B,/8g < 1. As such, these results should greatly aid
parametric system modeling of (proposed) LADARs that are employed for both target

ranging and analytical cost engineering modeling of corresponding space defense systems.
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Tuble 1. Definitions of Some ey Parameters and Reference to Their Appearance in the Body
of this Report. The quantities g, t, Bp1, and o; are the charge on the electron, return-signal

pulse-width, angular boresight eiror, and singlc-axis angular jitter standard deviation,

respectively.
EQUATION NO./
PARAMETER VALUE COMMENTS
Ke Mean signai photoelectron 2
count per pulse
ig Mean signal current per pulse gKg/t
m Mean number of speckles 7
contained within the collecting
aperture
8¢ Laser beam angular radius
2 Non-signal related noise current 16
On variance
Pfa Probability of false alarm 17
iT Threshold current Obtained from Eq. (19)
5 Bolci 11b
b 8pt/6o 11c
- m T 28
€m i
s
IE 4 Mean photoelectron count, 14
averaged over the pointing
statistics
]’, d Detection probability per pulse, 12

averaged over the pointing
statistics
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Table 2. Probability of Detection per Pulse, Averaged over the Pointing Statistics in the
High Photoelectron Count Regime. The quantity o is given by Eq. (41).

m Pq COMMENTS
~ 1 |
(unresolved exp [- it/aig) Valid for all values of noise.
targets)
1<m<5-10 Valid 1or (SNR), > 1. For integer
(partially resolved T(m, gm/a) m, use Eq. (30) with g, replaced
targets) "—1:'(";)-— by eq/a.. For noninteger values,

smoothly interpolate between
successive integers

m> 10 1 o —i Valid for all values of og,. Use the
(resolved targets) = 1+¢!'f[ ‘/—’-_ T) rational approximation, given in
25, Sec. IlIB, to the error function in

spreadsheet programs. For a given
opn and Pgy, the threshold current is
obtained from Egs. (18) and (19),

where

- od, (ad
cﬁ‘/q NCE
T m
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Appendix A

Pointing-error Statistics

In this Appendix, we outline the derivation of Eq. (11). We assume circularly symmetric
Gaussian angular jitter statistics with a fixed angular offset bias for the LADAR's pointing
system. Let 6 denote the angle with respect to the direction of the target at which the beam
points at any instant of time. The probability density of 6 being in the range 6 to © + dO is

given by the Rice-Nakagami distribution.6 In the notation used here this distribution is given

by

6* +&* 06
Pm(G):-Oiiexpli— ” ‘"}Io( flj , (A-1)

2 2
) 20] \ G
where I, is the modified Bessel function of order zero, o; is the single-axis angular jitter

standard deviation, and By, is the corresponding offset bias. The corresponding probability

density of irradiance on the target, Ppt(l), can be obtained from Ppt(e) through the relation

dé) . .
Ppt(I) = —d—I— sz(e) : (A-Z)

For a given 0, the irradiance at the target location is given

I(6)=1, exp[— 62/20(2,] ,

from which it follows that




S g ey s e s e

6= -261n[l/1,] , (A-3)

Differentiating Eq. (A-3) with respect to I and substituting this result together with Eq. (A-1)

into Eq. (A-2) yields, after algebraic simplification,

- JRPULV X
P(D)= Ff_f—“J (L) Jo(azb\/ZC’n(I/Io)), 0sI<l
o (A-4)

=0, otherwise

where Jj is the Bessel function of the first kind of order zero, a = 6y/c;, and b = 8,/8y. By
noting that the signal photoelectron count (and corresponding signal current) is directly

proportional to the target illumination, Eq. (11) follows directly from Eq. (A-4).

Although in general no closed form integral exists for Eq. (12), we can, however, obtain an
analytic result for the special case of no boresight pointing error (i.e., b = 0). With P4 given

by Eq. (9), it can be shown that the probability of detection per pulse, averaged over the jitter

distribution, is given by

P, =1-.F [a:,m;l+a:;—Ks/m] : (A-5)

where ,F, (a, b, ¢, :z) is the hypergeometric function (discussed in Chapter 15 of
Reference 6). Numerical results, based on Eq. (A-5), are shown in Figure 4 and 7. In the

limit m — o (i.e., Poisson statistics) Eq. (A-5) yields P, =1~ |F, (az, 1+a’; - K,), where

1F1 (a,b;2) is the confluent hypergeometric function (see Sec. 9.2 of Ref. 5).



Appendix B
The Negative-binomial Distribution:

Some Limiting Cases

First consider the case of large K, and m. Substituting Stirling's approximation (i.e.,

I'(z +1) = V21z**"2e%) for the gamma functions appearing in Eq. (6), we obtain
P == ® (B-1)

s
3

where

fK)=(K +m - 1) n(K +m) - (K + )n(K) - (m - 1) {n(m)

K, + m) | (B-2)

- Kfn(KS A mj -~ mén(
K \ m

s

For large K, we expect that P(K) is peaked near K ~ K. Indeed, differentiating f(K) with

1+m/K

respect to K vyields f'(K) = /n| ————
pect to K yields f(K) (Hm,«s

), where terms of the order 1/K, 1/m, and higher are

neglected.

From the condition f '(K) = 0 we obtain that the maximum value of f is achieved at

(B-3)

B-1




Thus, expanding f(K) in a Taylor's series about K yields to terms of second order

fK)= fK)+(K-K)f(K)+ 4K -K,) f(K.)

2
Y K-K -
:—%fnc'x—-(——-z——s-{l— , (B4)
Ok
where
o =K, + 8 (B-5)

Hence, from Eq. (B-4) and Eq. (B-1), we obtain

(B-0)

Thus, for large Kg and m, the negative-binomial distribution is Gaussian, with the same mean and
variance of the underlying distribution. The corresponding probability distribution of signal
current, Eq. (20), follows directly from Eq. (B-6) since i = qK/1. In particular, we have

o = Var[i]=(q/7)" Var[K] = (g/7) (K, +K:/m) =qi,/r+i>/m, where the mean signal

current iy = qK /1.

An elementary argument involving the Central Limit theorem can be employed to derive

Eq. (B-6) directly. Each of the m independent correlation cells or speckles contained with the

B-2



collecting aperture leads to a photocount distribution that obeys Bose-Einstein statistics with a
riean count kg = K¢/m, and a variance crlz( =kg+ kg = Kg/m+ (Ks/m)z. The total
photocount from the entire collecting aperture is just the sum of the (non-zero) contributions
from each of the m independent correlation cells. The photocount, k, due to a single
correlation cell is of the order K/m. Hence for k to be non-zero, it follows that K must be
large since m >> 1. Thus, for both large m and K we have, by the Central Limit theorem, the

resulting probability distribution approaches the Gaussian distribution with a mean equal to

mk; = K and a variance equal to moﬁ = K¢ + Kg‘/m, in agreement with Eq. (B-6).

Next consider the negative-binomial distribution in the limit m -» 1. In this case, we obtain

from Eq. (6)

] ( K N\ K
P(K)=r—r o] o m=1 B-7
() 1+K<\1+KJ (B-7)

This is known as the Bose-Einstein (or gcometric) distribution. For large photoelectron

counts, we have (K/K, + DK = exp(- K/K), and, hence, Eq. (B-7) becomes

exp(- K/K,) (B-3)

K

$

P(K)~

which is known as the Rayleigh (or negative-exponential) distribution.

OCn the other hand, consider the limit of the negative-binomial distribution as m — =>. From

Eq. (6), we have



CR RSN

Kim—w .

K (B-9)

which 1s the Poisson distribution.

Finally, we show that for large K, the Poisson distribution becomes a Gaussian distribution
with a mean equal to K and a variance equal to the mean. Of course, this result follows
directly from Eq. (B-6). However, since the Poisson distribution 1s interesting in 1ts own right
and plays such an important role in probability and statistics, we give an independent
derivation, that starts directly from the Poisson distribution itself. For large K, we may use

Stirling's approximation for K! and express the Poisson distribution as

P(K) = le

2r

es (B-10)

where

gK)=K+K/nK, -(K+1)mK-K, (B-11)

This function has a stationary point, for large K, at K = K;. Expanding g(K) in a second order

Taylor series about K = Kj yields

B-4




2K

s

gK) = - 3¢nK,

Hence, substituting Eq. (B-12) into Eq. (B-10) yields

exp[— (—K———Q—

)
27K, i 2K,

P(K)=

which is the Gaussian distribution with the variance equal to the mean.

B-5

(B-12)

(B-13)




Appendix C
Signal-noise-limited Detection Statistics

In this appendix, we consider signal-noise-limited detection statistics where the mean number of

signal photoelectrons per pulse K >> 1, and the mean number of non-signal-related noise photo-

electrans is negligible. The negative-binomial distribution given by Eq. (6) is

_T(K+m+1) _nl"‘( _I&)"" ]
P =~ (HKJ 1+ = . (C-1)

For K >> 1, P(K) is nonzero for K large. In chis case, we have

I'K+m-1)=KmlI'(K) ,

and
-K - mK
[1 +—T—) = exp{-» ~'—'-—~]
K! KS
Thus
P(K)z —— ﬂ\m K™ ex | mK (C-2)
S ETm\K, p[ K |

Next we show that {or large K and m the detection probability, Py4, given by Eq. (27) is identical

to that obtained from Eq. (24) in limit n — 0. From Eq. (27), we have

C-1

i o
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P = I(m,me)

¢ T(m)

1 -t g1
= t™ide . C-3
F(m)J e (C-3)

me

For large m, the integrand in Eq. (C-3) is peaked aboutt =m — 1. We now approximate the
integrand in a particular way, by writing it in an exponential form, exp [f(t)], and using a Taylor
series approximation for f(t) near its maximum. (A Taylor's expansion of the integrand itself,

for example, would not be useful if only a few terms are kept.) The integrand of Eq. (C-3) is

(@ o gm-l ot =cxp[(m —1)¢nt - t] ;

50
fity=(m—~1)¢nt-t
m-1

f’(t)=—t—-1, f’=0for t=m-1

= _(m;'l) :
t

then, expanding about t = m - 1 yields

C-2



_(m-1)"" 'exp[-(m-1)] 7 fe l: it-—(m_l)r:ldt

Fa= I'(m) 2(m-1)
_ Jr/2(m-1) (m - 1)m_lexp[—(m ~1)]
I'(m)

(C-4)

(o)

For large m, I'(m) = v/27{(m - 1)(""*) exp[-(m-1)]. Substituting this into Eq. (C-4) yields

el

whicls is identical vo Eq. (24) for Gsn —G‘s K2 /m Thus, in the limit of large m, Eq. (24) and

Eq. (27) are identical for signal-noise-limited detection. In Figure C-1, we have compared these

two expressions for m = 5 and 10. For engineering purposes, use of Eq. (24) for m 2 5 should

be adequate. Incidentally, it follows directly from Eq. (C-3) and (C-5) that

. I, 0O<e<l
im I(mme) y (C-6)
moe Dlm) | ) 1

This interesting result, to the best of my knowledge, has not yet appeared explicitly in the

literature.
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Figure C-1. Signal-noise-limited detection: a comparison of the detection probability as a
function of the signal-to-threshold ratio. The dashed curve is based on Eq. (24) and

the solid curve is based on Eq. (27).




Appendix D
Probability Distribution of a Signal Photoelectron Count Obeying Bose-
Einstein Statistics Immersed in Poisson Noise

Form = 1, Eq. (25) becormes

-K .
1 1 e P!
= —_— ny D-1
P_ (“_ ’)(H ~ ) e ’go T (D-1)

where

B=n(1+K,") . (D-2)

The sum appearing in Eq. (D-1) exists in closed form.8 The result is

K R/
2 %'_=ep I‘(K’-'-l’ B) (D-3)

(K +1)

k4

j=0 v

where I'(a,z) is the complementary incomplete gamma function. Substituting Eq. (D-3) into

Eq. (D-1) yields

(1 + ""l"" -K r K + l,n + A”:‘
P,,.(K)=—ITKK)——exp[n/K,] ( = ‘), K=012,... , (D-4)

which is valid for arbitrary value of the mean photoelectron count, K, and non-signal-related
mean photoelectron count, n. It can be shown for arbitrary K and n that E[K] =K + n and Var

[K]=K;+ K2 +n.
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In Figures D-1 through D-4, we plot P, as a function of K for a representative range of values
of K and n. Except for large photocounts, no further simplication of Eq. (D-4) has been

obtained. For K{>> 1, Eq. (D-4) can be written as

-(K-n)/K
P, (K) ~ —2 [ (K n)/ '15(1(,:1) , (D-5)
where
I'(K+1,n)
G(K, D-6
Kn)=T®+D (b-6)
Following the procedure outlines in Appendix B, it can be shown for large K that
0, K<n
G={%, K=n (D-7)
1, K>n J

That is, G behaves as a unit step-function located at K = n. These features are illustrated in

Figure D-5 for K ~ 1000. Hence,

P =exP[—(K—n)/K’]U(K—n) , (D-3)
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Figure D-1. Probability density of a signal obeying Bose-Einstein statistics immersed in Poisson
noise, where the mean signal count = 1 for various values of the noise count. For
convenience of presentation, a continuous curve is drawn between integer count
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Figure D-2. Probability density of a signal obeying Bose-Einstein statistics immersed in Poisson
noise, where the mean signal count = 10 for various values of the noise count.
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Figure D-3. Probability density of a signal oheying Bose-Einstein statistics irnmersed in Poisson
noise, where the meaa signal count = 100 for various values of the noise count.
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Figure D-4. Probability density of a s:gnal obeying Bose-Einstein statistics immersed in Poisson
noise, where the mean signal count = 1000 for various values of the noise count.

D-4




R S

10

!
08
06 -

n=600 | 800

04

02

| | | | l
600 800 1000 1200 1400
K

Figure D-5. Quantity G(K, n) =I'(K + 1, n)/T(K + 1) for photocounts near 1000 and various

values of n.
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where U is the unit step-function. Thus, in this limit, the probability of signal plus noise photo-
electron counts is a shifted Bose-Einstein distribution, the shift being equal to the mean noise

photocount. The corresponding probability of detection is given by

P = IP,,,(K)dK

Ky

I P (K)dK

n+AKy

= ¢~ MKr/K, (D-9)

v

where AKr is the threshold co int relative to the noise floor count, n. For large counts, where

oile operadonally measurss a current rather than discrete electron counts, the probability of

detection is given by exp(~ i r /is), where it is the threshold current relative to the mean non-

signal related noise current, .;, and i is the corresponding mean signal current. Unfortunately,

other than for m = 1, no analytic closed-form :xpressions have been obtair.ed for Eq. (25).

Finally, consider “he limit of the probability of emission of K signal plus .10ise photoelectrons,
where the mear ' ignal photocount is much less than the corresponding noise photocount (i.e.,
K << n). In this case we may use the asymptotic expansion of the complementary incomplete

gamma function’,

I'(a, z)=e"z""(l+-u+...) . (D-10)
z

D-6




in Eq. (D-4) to obtain

_ (1+K,“)'K rap— n"(1+K,“)K(l+KK,/n)
" 1+K, K!
_[_1 \e"n*(1+ KK, /n) D-11)
1+K, ) K!

_ exp[—(n +K, )](n +K, )K
K!

’

to first order in K. Thus, for Kg << n and arbitrary values of n, the statistics of the total

emission process are Poisson.




TECHNOLOGY OPERATIONS

Tne Aerospace Corporation functions as an "architect-engineer” for national security
programs, specializing in advanced military space systems. The Corporation's Technology
Operadions supports the effective and timely development and operation of national security
systems through scientific research and the application of advauced technology. Vital to the
success of the Corporation is the technical staff's wide-ranging expertise and its ability to stay
abreast of new technological developments and program support issues associated with rapidly
evolving space systems. Contributing capabilities are provided by these individual Technology
Centers:

Electronics Technology Center: Microelectronics, solid-state device physics,
VLSI reliability, compound semiconductors, radiation hardening, data storage
technologies, infrared detector devices and testing; electro-optics, quantu:n electronics,
solid-state lasers, optical propagation and communications; cw and pulsed chemrcal
laser development, optical resonators, beam control, atmospheric propagation, and
laser effects and countermeasures; atomic frequency standards, applied laser
spectroscopy, laser chemistry, laser optoelectronics, phase conjugation and coherent
imaging, solar cell physics, battery electrochemistry, battery testing and evalaation.

Mechanics and Materials Technology Center: Evaluation and characterization of
new materials: metals, alloys, ceramics, pclymers and their composites, and new
forms of carbon; development and analysis of thin films and deposition techniques:
nondestructive evaluation, component failure analysis and reliabiiity; fracture
mechanics and stress corrosion; development and evaluation of hardened components:
analysis and evaluation of materials at cryogenic and elevated temperatures; launch
vehicle and reentry fluid mechanics, heat transfer and flight dynamcs: chemical and
electric propulsion; spacecraft structural mechanics, spacecraft survivability and
vulnerability assessment; contamination, thermal and structural control: high
temperature thermomechanics, gas kinetics and radiation: lubrication and surface
phenomena.

Space and Environment Technology Center: Magnetospheric, auroral and
cosmic ray physics, wave-particle interactions, magnetospheric plasma waves;
atmospieric and ionospheric physics, density and composition of the upper
atmosphere, remote sensing using atmospheric radiation; solar physics, infrared
astronomy, infrared signature analysis: effects of solar activity. magnetic storms and
nuclear explcsions on the earth's atmosphere, ionosphere and magnetosphere: effects
of electromagnetic and particulate radiations on space systems; space instrumentation;
propellant chemistry, chemical dvnamics, environmental chemistry, trace detection;
atmospheric chemical reactions, atmospheric oplics, light scattering, state-specific
chemical reactions and radiative signatures of missile plumes, and sensor out-of-field-
of-view rejection.



