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Introduction

The acronym LADAR is used here to distinguish optical radar systems that are used to

detect and range hard-body targets from LIDAR systems that detect scattered laser light

from various diffuse molecular and particulate constituents in the atmosphere. Here we

consider a direct-detection (monostatic) LADAR system that emits a burst of short (-10 to

20 ns Q-switched) laser pulses. These pulses are assumed to reflect off a diffuse target and

are subsequently collected by the LADAR, and a range determination of the target is

obtained. Since the forms available in the literature for the detection probability per pulse

are often untenable for practical systems studies, it is of particular concern here to obtain

elementary analytic approximations to the probabilities of detection in various

circumstances that are suitable for use in commercially available spreadsheet progiams

(,..g., EXCEL, JAVELIN, or 123). Although the primary purpose of this report is to

obtain results for the probability (if detection per pulse. we also present an example of a

target detection algorithm, constructed from multiple pulse statistics, ,himch -at, be used to

increase the overall detecion probability wkhen the prohabilit, ot detection per pulse. Pd, is

We consider targets that can be both in the near and tar field of the receiving aperture and

LADAR systems operating in the small and large photocount regime. Here Ae assume for

precision that the laser beam spot size at the target is large in comparison to the size of the

target (i.e.. the transmitted beam does not resolve the target) and the target depth Oin the

range direction) is small in comparison to the (longitudinal) coherence length of the

transmitted beam. When light, having a deterministic variation over space and time (e.g.,

specular reflection from a corner cube or a glint), impinges on a (square-la,)

photodetector it can be shown that the resulting photoelectron counts obey Poisson

I



statistics. That is, we assume here that the probability of observing K photoevents over a

time period that is long compared to the optical period is given by

KKP(K) =Ke-K', K =0,1,2.... (1)K!()

where Ks is the mean number of photoevents expected per pulse. ' This quantity is given

by

K, (7Lii E, (2)

where Es is the mean return integrated signal fluence per pulse (i.e., collected return

energy per pulse), h is Planck's constant, v is the optical frequency, and rq is the detector

quantum efficiency. An explicit expression for Es is obtained from the LADAR range

equation for a diffuse Lambertian target and a LADAR system with no boresight error or

jitter: 2

where

S= Transmitted laser energy per pulse

Aspot = Equivalent laser beam spot area at the target

p = Diffuse target refectance

AT = Target area, normal to the line-of-sight

R = Propagation range

AR = Receiver clear-aperture area

T = One-way propagation path transmittance

2



For propagation through vacuum, T is just the LADAR system optics transmittance. Here,

we assume a laser beam irradiance profile given by

I(0,=Io exp[- 01/,1] ,(4

where Io is the beam irradiance for 0 = 0. For systems that employ a fixed beam

divergence, we thus have

AsP°, = 27r(00,)2 (5)

We note that the 1/V/ full-angle beam divergence is equal to 20o, and the corresponding

l1e 2 full-angle beam divergence equals 2(20o) = 400. Thus, for example, a beam

characterized here by 00 = 5prad corresponds to a beam with a 20ýirad l1e 2 full-angle

beam divergence. Such a system results in energy returns that are proportional to R- 4 . On

the other hand, LADAR systems employing appropriate zoom optics that keep Aspot =

constant at the target, independent of range, result in energy returns proportional to R-2.

Here we assume uniformly illuminated targets for simplicity. The case of nonuniformly

illuminated targets can be formally included by replacing AT in the LADAR range equation

by some effective target area (AT)eff (_< AT). For example, for a target possessing a

circular cross-sectional area normal to the line-of-sight and a LADAR employing a laser

beam spread of Gaussian shape, it can be shown that (AT)eff = ntr.f, where the reduction

factor f = (2 0/02.) [I-e-r2eu], rT is the radius of the target, 0T = rT/R, and 00 is the

1/V.ýe angular laser beam radius. Uniform illumination is obtained for 0 T << 0 o, where

f = 1 and (AT)eff = AT. Although very few optical radar transmitters resolve the target,

this case can be incorporated into the present analysis simply by setting AT = Asot in

Eq. (3).

3
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In many cases of practical concern, the return signal is not deterministic, but rather has a

random variation over space and time (e.g., from pulse to pulse). It is now necessary to

treat the Poisson distribution of Eq. (1) as a conditional probability distribution, the

conditioning being based on knowledge of the probability distribution of the return

integrated (over the receiver collecting aperture) signal fluence. In practice, however, it is

the unconditional probability distribution of photocounts that relates to required system

performance quantities such as the probability of detection. The unconditional probability

distribution is obtained by averaging the conditional Poisson distribution of Eq. (1) over

the statistics of the return integrated signal fluence. The details of the calculation have

been documented in Reference (3) with the result that

I(K + m) m F K,-i m
P(K) I L (6a)

F(K + l)F(m) K, +n

E[K] =. K (6b)

K2

Var[K]=K K, +K (6c)
m

where E [.] and Var [.] denote the expectation value and variance, respectively, F () is the

gamma function, and m is given by

ApAr
m I + R2 (7)

The first and second term on the right-hand side of Eq. (6c) is the signal shot-noise and

speckle-noise contribution to the signal vaiance, respectively. As discussed in Reference

4



(3), m can be interpreted as the mean number of independent irradiance correlation cells

(i.e., speckles) contained within the collecting aperture. Examination of Eq. (6) reveals

that the signal statistics depend not only on the mean-signal photoelectron count per pulse,

K., but, in addition, also on the mean number of correlation cells, m, (or speckles)

contained within the collecting aperture. Since the signal-count fluctuations increase with

decreasing values of m, it is seen that LADAR system performance generally deteriorates

as the number of speckles decreases with the worst performance obtained for m = 1.4 In

addition, it is easily seen from Eq. (6) that the Poisson distribution is an accurate

approximation to the negative-binomial when n >> K,. Thus, for an optically rough

target, the assumption of Poisson signal statistics is justified only when the average number

of signal photoelectrons per spatial correlation cell is much less than unity. For any given

physical situation, both K, and m are obtained from Eqs. (2) and (7). and the results are

used in Eq. (6).

The distribution given by Eq. (6) is known as the negative-binomial distribution. For m

near unity (unresolved targets), a single speckle is contained in the collecting aperture, the

collected energy obeys negative-exponential statistics, and the corresponding photocounts

obey Bose-Einstein statistics. On the other hand, for m >> I (resolved targets), many

speckles are contained within the collecting aperture, and the collected energy distribution

behaves as a delta function centered at the mean value E.. Hence, in the limit m -* x.,

P(K) must obey Poisson statistics. These analytic features are contained in the negative-

binomial distribution given by Eq. (6).

Figure 1 is a plot of m as a function of range for a wavelength of 0.5321am and a

collecting-aperture diameter of 20 cm. Examination of Figure 1 reveals that for R _e 1.5

Megameters, m - 1 for AT 2> 1 m2 . As a result, the return-signal photocount is well
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Figuxz" 1. The parameter m, the mean number of speckles contained within the collection

aperture. for a wavelength of 0.532 microns and a collecting aperture diameter of

0.2 m.
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approximated by Bose-Einstein statistics. On the other hand, for R _< 0.5 Mm, m >> 1 for

AT > 5 M2 and hence the signal photocount is well approximated by Poisson statistics if

Ks << M.

We now distinguish between the low signal photoelectron count regime, where Ks << 100,

and the high-count regime, where Ks _> 100. In the low photocount regime, the discrete

character of the signal counts is retained while for the high photocount regime it is

customary to characterize the collected signal by a continuous distribution of signal current

i, related to the corresponding signal photocount by

qK (8)

7-

where q is the electronic charge, and T is the reflected return laser signal pulse width.

As an example illustrating the expected value of signal counts per pulse obtained under

various circumstances, we consider the following values of LADAR system parameters:

ET = 0.5 J/pulse, a collector diameter of 20 cm, T2 = 0.5, k = 0.532.tm, AT = 5 mi2 , p

= 0.4, and -n = 0.8. We consider a system that employs a fixed laser beam width as well

as one that keeps a fixed spot at the target, independent of range. The results for Ks as

obtained from Eq. (2) are plotted in Figures 2 and 3 as a function of range for various

values of 0 0 and Aspot, respectively. Examination of Figure 2 reveals that, for the

parameters assumed above, the low photoelectron-count regime (Ks << 100) is expected for

R _> 0.4 - 1.3 Mm, depending on the value of 00 for the fixed-beam-divergence system.

On the other hand, examination of Figure 3 reveals that for the fixed-spot-on-target case

the corresponding low photocount regime is expected for R _> 1.0 - 3 Mm.

7
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Figure 2. The mean number of signal photocounts as a function of range for various

values of laser beam divergence. Note that the beam angles indicated here

correspond to the 1/J- angular beam radius. The I/e full angle beam

divergence is equal to four times the angles indicated above.
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In the fcnd section. we develop elementary analytic expressions. suitable for

commercially available spreadsheet programs, such as JAVELIN, for the probability of

detection including the effects of both unintentional beam boresight error and beam jitter in

the low pho°•coont regime. In the third section, we consider the high photocount regime

and develop analytical expressions for the corresponding probability of detection. Finally,

in the Summary, we summarize the approximations of the detection probabilities obtained

here, together with their respective regions of validity. Those reader!) who want to use

directly the respective approximations, but do not want to get involved with the technical

details, can skip to the final results in the Summary.

In order for this report to be as self-contained as possible, we have included a number of

appendices to serve as technical references and document some interesting results that may

not be well known. In Appendix A, we assume a LADAR system with circularly

symmetric Gaussian jitter with a fixed pointing offset and derive the corresponding

probability distribution of intensity. In Appendix B, we show how the general

photoelectron count distribution, given by the negative-binomial probability distribution,

reduces to the Gaussian (i.e., normal) distribution for both large photocounts and speckle

numbers contained within the collecting aperture. In addition, we show how the negative-

binomial distribution reduces to the Bose-Einstein and Poisson distribution in the limit that

the speckle number tends to one and infinity, respectively. In Appendix C, we consider

signal-noise-limited detection for large photoelectron counts and mean number of speckles

near unity and derive the corresponding count distribution and probability of detection. In

this regard, we have derived a possible new and interesting mathematical result involving

the incomplete gamma function. Finally, in Appendix D, we consider the case of , signal

obeying Bose-Einstein photocount statistics (such as that arising from unresolved targets),

which is immersed in Poisson noise, and derive the photocount probability of signal plus

noise as well as the corresponding probability of detection. In particular, we obtain a

10
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closed-form, analytical expressien for the probability distribution, valid for all values of

signal and noise photocounts.

11



Probability of Detection for Low Photoelectron Counts

Detection Statistics without Pointing Errors

First consider the situvion where the mean photocount number K, is small, say less than

a.c'ut 50. For the example considered in the previous section, we have seen that the low

photocount regime is expectod to be obtained for ranges • 1 Mm. For a LADAR system

to be viable in this regime, it is necessary to assume that over a pulse-length. the

background, and/or photodetector, noise is much smaller than the corresponding return

signal strength. That is, in the low photocount regime, we assume a (near) quantum-noise-

limited LADAR system. Such physical circumstances may be obtained for a space-based

LADAR system with sufficiently narrow field-of-view and optical bandpass that operates in

the natural environment against a deep space background (i.e., no earth, moon, sun, or

stars in the field-of-view) and with the line-of-sight between the LADAR and the target

having tangent altitudes greater than -100 km. In addition, it is necessary to employ a

sufficiently low-noise photodetector (e.g., a cooled photomultiplier or a semiconductor

avalanche photodiode operating above breakdown in the triggered avalanche Geiger mode).

Since in the low photocount regime we assume negligible background and/or detector-

induced noise photocounts over the measurement time of interest, the probability of a

detection, Pd, of a single return signal pulse is equal to the probability that at least one

photocount occurs during this time interval. This quantity is just equal to one minus the

probability of obtaining zero counts during this time interval. Hence, from Eq. (6) we

obtain

13



P, =1- P(o)

+ Ks)+ , (9)

where Ks is the mean number of signal photoelectron counts expected from the LADAR

pulse, and m is the mean number of speckles of the diffuse reflected pulse contained within

the collecting aperture.

In LADAR systems, where the probability of detection per pulse, Pd, is low, target

detection algorithms, constructed from multiple pulse statistics, can be employed to

increase the detection probability. For example, when N independent pulse measurements

are combined, the probabiliity of detecting at least one photocount from a burst of N pulses

is obtained as

p,(N) I - (I - pd)' - - p(O)

K ) (10)

Thus, by combining N independent pulses, the mean photocount Ks per pulse needed for a

specific detection probability is lowered, and, consequently, for a given Ks, the acquisition

range is correspondingly extended. Of course, this improvement is at the cost of the

energy to produce the added pulses and the time required to make the measurements.

14



Detection Statistics with Pointing Errors

In general, the effects of pointing errors result in a reduction of target illumination and a

corresponding decrease in return-signal energy. As a result, the LADAR detection

probability is reduced in comparison to the corresponding value in the absence of pointing

errors. In the following, a fixed angular pointing offset bias and circularly symmetric

Gaussian jiter are assumed.

The quantity Pd, given by Eq. (9), represents the detection probability of a single pulse

without any pointing errors. The corresponding probability with beam jitter and offset is

obtained by integrating Pd over the mean photocount distribution as a function of the

pointing statistics. That is, with jitter and offset, the mean photocount is now considered

as a random variable, k, with pointing statistics given by (see Appendix A)

PP, (k) = [K,/)J(k/K 1 Y'1 J,(a bJ2n(k/KiC 0•)•

=0, otherwise ,(la)

where circularly symmetric Gaussian jitter statistics are assumed, J0 is the Bessel function

of the first kind of order zero, Opt is the (angular) pointing offset, aj is the single-axis

Gaussian jitter standard deviation, and 00 is the Gaussian laser beam shape standard

deviation.

a = 00 (1ib)O'j

15



b = oý (I Ic)00

opt is the (angular) pointing offset, cj is the single-axis Gaussian jitter standard deviation,

and 00 is the Gaussian laser beam shape standard deviation.

The probability of detection of a pulse with pointing errors, denoted by Pd, is thus

K,

= fPd(k)Pp,(k) (12)

where PRj(k) is given by FA. (9). with K, replaced by k. and Ppt(k) is given by Eq. (i I),

In general, closed-form solution exists for this integral, although numerical results can be

readily obtained on a digital computer.

One would not expect to design and employ a LADAR system with excessive pointing

offset and jitter. To this end, we have derived an elementary engineering approximation

for Pd valid for aJ /00_< 0.5 - 0.75 (or a = 0/o]a -_ 1.5 - 2), and 0 pt/00 _< 1.0. The most

accurate approximation obtained so far that is suitable for spreadsheet programs is given by

PiP, dK,)

(13)

16



where

K, = J kPr,(k)dk
0

•K, •." expi- 2. (14)

In obtaining the engineering expression given by Eq. (14), we expanded the Bessel

function in Eq. (11) to terms of second order in b, performed the integration over k, and

then exponentialized the result so that the limit of Ks as (*y- 0 is identical to the exact

answer; Ks = K. exp[-b 2/2].

A comparison of the exact numerical and approximate results are shown in Figures 4

through 9 for a wide range of the parameter values. We note that any practical LADAR

system design would not allow the laser beam width, 0o, to be less than both the jitter

standard deviation rj and the offset bias Opt. A reasonable design goal would limit both

the ratio oj/00 and Opt to be less than about 1/2 (i.e., a> 2, and b • 0.5). Examination of

Figures 4 through 9 reveals that over a wide range of the parameters m and K_, the

approximate analytical result of Eq. (13) agrees within 10 percent of the numerical result

for both a > 2 and b _< 1. That is, in the range where a LADAR system should be

designed, Eq. (13) represents a good engineering approximation for the probability of

detection in the presence of jitter in the low photocount regime.

17
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Figure 4. Probability of detection for the case where m = 1.5 and b = 0. The dashed
curves are the exact numerical results, and solid curves are the approximate
numerical results (given by Eq. 13), respectively.
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Figure 5. Probabi~lity of detection for the case where rn = 1.5 and b =0.5. The dashed

curve is the numerical result, and solid curves are the numerical and approximate

result (given by Eq. 13), respectively,.
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Figure 6. Probability of detection for the case where m =1.5 and b = 1. The dashed curve

is the numerical result, and solid curves are the numerical and approximate result

(given by Eq. 1.3 ), respectively.
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Figure 7. Probability of detection for the case where m = 15 and b = 0. The dashed curve is

the numerical result, and solid curves are the numerical and approximate result

(given by Eq. 13), respectively.
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Figure 8. Probability of detection for the case where m = 15 and b = 0.5. The dashed curve

is the numerical result, and solid curves are the numerical and approximate result

(given by Eq. 13), respectively.

1W



b=1,m= 15
1.000

0.998 -- KS20

/0.996 /

0,994 -

0.992 I
I

0.990
0.988 I

0.986 -

0.90

# 0.88

0.08

0 . . . . .

0.15

0.15 •

0.14 - i
1 2 3 4 5 6

a

Figure 9. Probability of detection for the case where m = 15 and b = 1. The dashed curve is

the numerical result, and solid curves are the numerical and approximate result

(given by Eq. 13), respectively.
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Probability of Detection for High Photoelectron Counts

Detection Statistics without Pointing Errors

Consider situations where a large number of both signal and noise photocounts per pulse

are expected, such as a space-based LADAR system that views below the horizon.

Following Godman4 and Kingston' we assume that the total non-signal-related noise (i.e.,

background, dark current, thermal, etc) is Poisson distributed. For large photocounts, this

distribution is to a very good approximation Gaussian. As discussed previously, it is

customary in the high photocount regime to deal with currents rather than count number

[see Eq. (8)]. Thus the ac component ot th; -..on-sJgnal-related noise current from the

detection system can be expressed as

* exp -

2go L 2o-nj (15)

whe.re the non-signal noise current variance is given by

T= ±O+k , (16)

where KB is the mean background photoelectron count per measurement interval T (T___ x).

adk and a2 are the dark current and thermal noise current variance, respectively.

The probability of false-alarm, Pfa, is obtained by integrating Eq. (15) above a

measurement threshold current iT. We thus obtain
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21 _7l~tfkT2= )j (17)

where erf denotes the error function, and the threshold to (non-signal related) noise ratio is

given by

(FNR)o = iT (18)
07"n

A curve fit to the numerical inversion of Eq. (17). which is accurate to better than 1

percent over the range 10-5 < Pfa -- 10-2, is given by

(TNR)o = 0.513 - 1.02 log Pfa - 0.0539(log Pfa)2 (19)

For example, a required false-alarm probability of 10-3 requires that the (TNR)o ; 3.1.

We note that Pfa is determined by the non-signal-related noise.

The probabiiity distribution of signal photoc-,)unts is given by the negative-binomial

distribution of Eq. (6). Now for both Ks >> I and m >> 1, it can be shown that

probability distribution of the signal current distribution is also Gaussian and given by (see

Appendix B)

P J ( i --- _-- -- .=, e x p l 2 a ( 2 0 )
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where the mean signal current

SqK ., (21a)

and

*2

+qi, (21b)

r m

The Gaussian probability distribution is a good approximation to the photoelectron

distribution as long as the standard deviation is small compared to the mean. In practice,

this is well statisfied for K. > 50-100 and m _> 5-10.

Since both the signal and noise are Gaussian variates, the probability distribution of both

signal plus noise is also Gaussian and given by

P[i (i) - e) 2  (22)
72ý;77 L 2a-, j

where

Cr = C + n (23)

The probability of detection is obtained by integrating Psn above a measurement threshold

current iT. The result is given by
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Pdi[I+ erf[ 'jT] (24)

We note that the probability of detection is a function of both the signal-to-noise ratio

(SNR) and the threshold-to-noise ratio (TNR), where the noise includes the contribution

due to signal fluctuations, as is evident in Eq. (23).

Next we consider the case of Ks >> 1, but m near unity (•_ 10). In this case, it is more

useful to return to the discrete counting distribution. Goodman 3 has shown that the

probability distribution of the total number (signal plus noise) of photoelectrons ejected

during reception of a return pulse is given by

I m m_ F(K-j-4m) K -1

P~n() =m +K, rF(m) "' F(j + 1)r"(K - ' +1) m+s ' (5

where n is the mean number of non-signal-related noise photoelectrons emitted during the

measurement period T (i.e., n = T2 ay2/q ). In general, it can be shown by methods

discussed in Chapter 9 of Reference 3 that E[K] = n + Ks and Var [K] =- n + K, +
Ks2/m.

Although suitable for numerical computations on a digital computer, Eq. (25) is not useful

for spreadsheet programs such as JAVELIN. Under certain circumstances, simplification

of Eq. (25) can be obtained. For Ks >> 1 and Ks >> n (i.e., signal-noise-limited

detection), it can be shown that (see Appendix C)
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1 m(K)= exp[-mKIKsjKm--I (26)

which is valid for m > 1. This is known as the gamma distribution. Converting to current

and integrating Eq. (26) above a measurement threshold yields the probability of detection

Pd _ F(me) (27)
r~m)

where

E, = m- ,(28)
Is

and F(a,z) is the complementary incomplete gamma function given by 5

F(a, z) ft e-'t- dt (29)

Although no analytical approximation exists for arbitrary m, closed-form expressions can

be obtained for integer m. As a result, we present analytical results for Pd for the first few

values of integer m.

m=l;

Pd =exp[- 'Ti/,] , (30a)
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m=2;

Pd= e-'z(6, + 1) , (30b)

m =3;

P 8 =-(e-- 2+26 3 +2) , (30c)

m=4;

d (e3 +36 +64 +6)(30d)
64

m=5;

pd = 4 +463 + l2e" + 24c, + 24) (30e)24 -

m =6;

'= e- ( + S + 20c' + 60CE + 120c + 120) (30f120

For noninteger m, it is suggested to smoothly interpolate Eqs. (30, a through f) between

successive integers. For larger values of m, the expressions based on the Gaussian

probability distribution of Eq. (22) with asn = CY should apply (see Appendix C). Hence

for m > 5-10, we can employ Pd as given by Eq. (24).

Except for the case m = 1, we have not been able to obtain closed-form expressions for

Psn for K. >> 1, small m and finite n. For m = 1, it can be shown that (see Appendix D)
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P. (K) exp --(K- n)/K F(K + n)
/K, r(K + 1)

exp[-(K-n)/K]U(K-n) (31)
K,

where U is the unit step function. The probability distribution of signal plus noise current

can thus be expressed as

Pm exp[-(I in)Is U(i - i,) (32)

where in(=qn/T) is the mean non-signal-related noise current. The corresponding

probability of detection is now obtained as

PA z e (33)

where the threshold current is now measured relative to the noise floor current in.

Detection Statistics with Pointing Errors

Just as in the low photoelectron current regime, the most accurate approximation to include

the effects of a pointing offset bias and jitter is to replace the mean signal (is or K) by the

correspond-ing value obtained by averaging over the pointing error probability distribution
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given by Eq. (11). That is, Ks (and is, since it is proportional to the signal photoelectron

count) is replaced by Ks (and the corresponding expression for is) given by Eq. (14).

We consider the regime where both K and m >> 1. In this case Pd, the detection

probability averaged over the pointing statistics, is obtained from Eq. (24) with is replaced

by is, where

y -; + x 2-1 (34)

Figures 10 through 12 show a comparison of the numerical and approximate results for the

detection probabilities as a function of a = 00/aj for a representative range of parameter

values. In these figures, the (current) SNR and the corresponding TNR are defined as

SNR-= is (35a)ash1

and

TNR = 1 (35b)
a.

Note, in particular, that the noise variance, ao, includes signal fluctuations, in contrast to

the false-alarm probability, which is based on non-signal-related noise only.
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Figure 10. Probabii4.y of detection for a large number of photocounts and mn is large (5-10)

and b = 0. The dashed and solid curves are the numerical and approximate result,

respectively.
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Figure 11. Probability of detection for a large number of photocounts and m is large (_ 5-10)

and b = 0.5. The dashed and solid curves are the numerical and approximate

result, respectively.
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Figure 12. Probability of detection for a large number of phorocounts and m is large (>Ž5-10)

and b = 1. The dashed and solid curves are the numerical and approximate result,

respectively.
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Examination of Figures 10 through 12 reveals, as irn the low photoelectron count regime,

that the algorithm used here to include the effects of pointing errors is sufficient for use as

an engineering approximation over the design range of a practical LADAR system. We

note that evaluation of the error function may not be compatible with some spreadsheet

programs. If this is the case, use of a global rational approximation to the error function

can be employed, such as6.

erf(x)= 1 - (a~t + at 2 + a3t3)e-& + e(x)

where

jO(x)'j's2.5xit 5

1+F

and

p = 0.47047, a, = 0.34802, a, = -0.09587, and a3 = 0.74786

Additionally, we consider the case of signal-limited-noise detection where Ks >> 1, and m

is near unfity. In this case, we have from Eqs. (27) and (28)

• = J(m,em(.)
Pd F(m) (36)
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where

6?,,, = mi--T.- (37)

and the ratio s i s/is given by Eq. (34). For low integer values of m, the results given by

Eq. (30) are to be used with s.. replaced by sm.

Figures 13 through 15 show a comparison of the numerical and approximate results for the

detection probability as a function of 0o/crj for m = I and a representative range of

parameters. The results for m greater than unity behave similarly. Examination of these

figures reveals that the approximations obtained above are sufficient for engineering

purposes.

Finally, we note, that when N multiple independent measurements are combined, the

probability of detection becomes

Pd(N) =1 -(1- Pd)N , (38)

where Pd is the detection probability of a single pulse.
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Figure 13. Probability of detection for m =1, b =0 and both the SNR and TNR are large.

The dashed and solid curves are the numerical and approximate results,

respectively.
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Figure 14. Probability of detection form = 1, b = 0.5 and both the SNR and TNR are large.

The dashed and solid curves are the numrencal and approximate results,

respectively.
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Figure 15. Probability of detection for m 1, b = 1 and both the SNR and TNR are large.

The dashed and solid curves are the numerical and approximate results,

respectively.
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Summary

In this report, we have derived accurate (to within 10 percent), elementary, analytical

expressions for the probability of detection, Pd, over L reasonable design goal range, of a

monostatic, direct-detection LADAR system in the presence of unintentional pointing

errors. We distinguish between two photocount regimes-low (Ks << 100) and high (K,

greater than 50-100). As discussed in the second section, in the low photocount regime,

we are primarily interested in signal-noise-limited LADARs. In this regime, we obtain

results for Pd that are valid for resolved targets (m > 10), partially resolved targets (1 <

m < 5-10), and unresolved targets (m ; 1). On the other hand, in the high photocount

regime, we obtain results for Pd, valid for both m • 1 and m >> 1 and arbitrary values of

non-signal-related noise. For partially resolved targets, we have not been able to obtain

elementary approximations of Pd except for cases of large values of the (SNR)o,

where

0(SINR)o=-• (39)

is the signal-to-(non-signal.-related) noise ratio.

In Table 1, we summarize several of the key parameters used here with a reference to their

appearance in the body of the paper. For the low photocount regime (Ks << 100), the

detection probability of a burst of N independent pulses, averaged over the pointing

statistics, is given by

41



Pd (N)= 1 - I+ , ! m~ ,(40)
m,

where

(t 
2- 1 ba 2

(41)a = exp2 -)�-� a2+1)j (41)

In Table 2, we summarize the results obtained for Pd in the high photocount regime

(Ks 2t 50-100). For a burst of N independent pulses the probability of detection is given by

Eq. (38).

The approximations for Pd given in Eq. (40) and Table 2 are accurate to within 10 percent

for a = O0/ai > 2, and b = Opt/00 < 1. As such, these results should greatly aid

parametric system modeling of (proposed) LADARs that are employed for both target

ranging and analytical cost engineering modeling of corresponding space defense systems.
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Table 1. Definitions of Some Key Parameters and Reference to Their Appearance in the Body
of this Report. The quantities q, t, Opt, and aj are the charge on the electron, return-signal
pulse-width, angular boresight eiror, and single-axis angular jitter standard deviation,
respectively.

EQUATION NO./
PARAMETER VALUE COMMENTS

Ks Mean signal photoelectron 2
count per pulse

is Mean signal current per pulse qKs/r

m Mean number of speckles 7
contained within the collecting
aperture

80 Laser beam angular radius 4

2 Non-signal related noise current 1 6
variance

Pfa Probability of false alarm 1 7

iT Threshold current Obtained from Eq. (19)

0o/ai 1 lb
b ept/lo 1 Ic

T 28
m m is

Kd Mean photoelectron count, 14
averaged over the pointing
statistics

Pd Detection probability per pulse, 1 2
averaged over the pointing
statistics
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Table 2. Probability of Detection per Pulse, Averaged over the Pointing Statistics in the

High Photoelectron Count Regime. The quantity a is given by Eq. (41).

m Pd COMMENTS

(unresolved exp [- iT/cis] Valid for all values of noise.
targets)

1 < m5 _5-10 Valid lor (SNR)o > 1. For integer
(partially resolved Y(m,m e./la) m, use Eq. (30) with •m replaced

targets) r(m) by sm/a. For noninteger values,
smoothly interpolate between
successive integers

m> 10 11_a'T Valid for all values of c7sn Use the
(resolved targets) 2 rational approximation, given in

Sec. 11113, to the error function in

spreadsheet programs. For a given
an and Pfa, the threshold current is
obtained from Eqs. (18) and (19).

where

U ' r
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Appendix A

Pointing-error Statistics

In this Appendix, we outline the derivation of Eq. (11). We assume circularly symmetric

Gaussian angular jitter statistics with a fixed angular offset bias for the LADAR's pointing

system. Let e denote the angle with respect to the direction of the target at which the beam

points at any instant of time. The probability density of 0 being in the range 8 to 0 + dO is

given by the Rice-Nakagami distribut-ion. 6 In the notation used here this distribution is given

by

P'') 0 xp1 0p (A-i1)

where I1 is the modified Bessel function of order zero, cj is the single-axis angular jitter

standard deviation, and Op, is the corresponding offset bias. The corresponding probability

density of irradiance on the target, Ppt(I), can be obtained from Ppt(0) through the relation

P dO(I) = Ppt(0) (A-2)

For a given 0, the irradiance at the target location is given

1(0) = 1 exp[- 0'/20,]

from which it follows that

A-1

-- T-_e=



o1 (A-3)

Differentiating Eq. (A-3) with respect to I and substituting this result together with Eq. (A-i)

into Eq. (A-2) yields, after algebraic simplification,

I a2 e a~b'12 -1 

0PP() = (.I' J/)a1"' Jo (a J2b2En(I/1lo)),0<1:_ Io (A-4)

= 0, otherwise I

where Jo is the Bessel function of the first kind of order zero, a = 00/aj, and b = 0 pt/00. By

noting that the signal photoelectron count (and corresponding signal current) is directly

proportional to the target illumination, Eq. (11) follows directly from Eq. (A-4).

Although in general no closed form integral exists for Eq. (12), we can, however, obtain an

analytic result for the special case of no boresight pointing error (i.e., b = 0). With Pd given

by Eq. (9), it can be shown that the probability of detection per pulse, averaged over the jitter

distribution, is given by

P, = _- ,F1 [a2,m;l+a2;-Ks/m] , (A-5)

where 2F1 (a, b, c, :z) is the hypergeometric function (discussed in Chapter 15 of

Reference 6). Numerical results, based on Eq. (A-5), are shown in Figure 4 and 7. In the

limit mr -+oo (i.e., Poisson statistics) Eq. (A-5) yields P4 = 1- 1F, (a2, I + a2;- KJ), where

IF, (a,b;z) is the confluent hypergeometric function (see Sec. 9.2 of Ref. 5).

A-2
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Appendix B

The Negative-binomial Distribution:

Some Limiting Cases

First consider the case of large K. and m. Substituting Stirling's approximation (i.e.,

r(z +1) =_ V2_2-zZ+'e-z) for the gamma functions appearing in Eq. (6), we obtain

1

P,((K) = (K) (B-i)

where

f(K) = (K + m - t) {n(K + m) - (K + 4/)en(K) - (m - 4.)fn(m)

K6 K ýnK rn? mn ( K, + inm (B-2)

For large K., we expect that P(K) is peaked near K - Ks. Indeed, differentiating f(K) with

respecttoKyieldsf'(K)=n1 + m/K) where terms of the order 1/K, 1/m, and higher are

neglected.

From the condition f '(K) = 0 we obtain that the maximum value of f is achieved at

K = K (B-3)
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Thus, expanding f(K) in a Taylor's series about Ks yields to terms of second order

f(K) f(K,) + (K - K)f'(K) + +(K - K 2 ,f,"(K3)

a .,(K-K,) 2  (B-4)=- 2cnTr

where

S= K , + - (B-5)
m

Hence, from Eq. (B-4) and Eq. (B-1), we obtain

1 I (K-K):

P(X) - -- exp - - (B-6)
L 2or j

Thus, for large K. and m, the negative-binomial distribution is Gaussian, with the same mean and

variance of the underlying distribution. The corresponding probability distribution of signal

current, Eq. (20), follows directly from Eq. (B-6) since i = qK/'[. In particular, we have

SF. Var[i] = (q/r): Vat[K] = (q/r): (K, + K2 /m) = qi,/r+ i-/m, where the mean signal

current i. = qKýIr.

An elementary argument involving the Central Limit theorem can be employed to derive

Eq. (B-6) directly. Each of the m independent correlation cells or speckles contained with the
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collecting aperture leads to a photocount distribution that obeys Bose-Einstein statistics with a

mean count ks = Ks/m, and a variance a2 = ks + k2 = Ks/m + (Ks//m) 2 . The total

photocoupt from the entire collecting aperture is just the sum of the (non-zero) contributions

from each of the m independent correlation cells. The photocount, k, due to a single

correlation cell is of the order K/m. Hence for k to be non-zero, it follows that K must be

large since m >> 1. Thus, for both large m and K we have, by the Central Limit theorem, the

resulting probability distribution approaches the Gaussian distribution with a mean equal to

mks = K2 and a variance equal to m2/ Ks + KS/m, in agreement with Eq. (B-6).

Next consider the negative-binomial distribution in the limit m -÷ 1. In this case, we obtain

from Eq. (6)

. .. I , m =l (B-7)

This is known as the Bose-Einstein (or geometric) distribution. For large photoelectron

counts, we have (Ks/Ks + I)K z exp(- K/Ks), and, hence, Eq. (B-7) becomes

exp(- K/K,.)K(K (B-8)
K,

which is known as the Rayleigh (or negative-exponential) distribution.

On the other hand, consider the limit of tie negative-binomial distribution as m - oc. From

Eq. (6), we have
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K1

1-- im J K(K.P.,(K)=Km o r L +K1[1+i

K! mK W e-K, ,

K!K

K K• e-K-

K! (B-9)

which is the Poisson distribution.

Finally, we show that for large K, the Poisson distribution becomes a Gaussian distribution

with a mean equal to K, and a variance equal to the mean. Of course, this result follows

directly from Eq. (B-6). However, since the Poisson distribution is interesting in its own right

and plays such an important role in probability and statistics, we give an independent

drivation, that starts directly from the Poisson distribution itself. For large K, we may use

SLirling's approximation for K! and express the Poisson distribution as

L(e)g (K) (B-1O)

where

g(K) = K + K (nK, - (K + -,) (nK - K, (B- 1)

This function has a stationary point, for large K, at K :t Ks. Expanding g(K) in a second order

Taylor series about K = K. yields
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1J

g(K) -,+enIK. - 2K -K2(B- 12)2K,

Hence, substituting Eq. (B-12) into Eq. (B-10) yields

I ____(K -K____)__

P(K)= - exp I- 2K, (B-13)

which is the Gaussian distribution with the variance equal to the mean.
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Appendix C
Signal-noise-limited Detection Statistics

In this appendix, we consider signal-noise-limited detection statistics where the mean number of

signal photoelectrons per pulse Ks >> 1, and the mean number of non-signal-related noise photo-

electrons is negligible. The negative-binomial distribution given by Eq. (6) is

P(K) (K+m+l)(l+ mI-l ,+ ) (C

For KS >> 1, Ps(K) is nonzero for K large. In Nis case, we have

F(K+ -rn1)=Km-IF(K)

and

C1+ - = exp --:

Thus

p~ ~m- K-"-t' exp F K(C-2)

Next we show that .'or large K. and m the detection probability, Pd, given by Eq. (27) is identical

to that obtained from Eq. (24) in limit n -4 0. From Eq. (27), we have
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r(m)

f e-t t'I dt (C-3)

For large m, the integrand in Eq. (C-3) is peaked about t = m - 1. We now approximate the

integrand in a particular way, by writing it in an exponential form, exp [f(t)], and using a Taylor

series approximation for f(t) near its maximum. (A Taylor's expansion of the integrand itself,

for example, would not be useful if only a few terms are kept.) The integrand of Eq. (C-3) is

eQ= t'-'e-'=exp[(m - 1)fnt- t]

so

f(t)=(mr-1)fnt-t

rn-I
f(t)= -L1, f'=Ofor t=rn-1

t

t
2

then, expanding about t = m - 1 yields
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(in- 1)(m" exp[-(m-1)] [-et[-(M - 1 )d rm expi 2( - d1

x (vef[ 2-g (C-4)

For large m, lr(m) = 4V2n(m-1)(m'1) exp[-(m-1)]. Substituting this into Eq. (C-4) yields

Pd =- I +erf ,(C-5)

which is identical to Eq. (24) for a2n =_(2 = K2/m. Thus, in the limit of large m, Eq. (24) and

Eq. (27) are identical for signal-noise-limited detection. In Figure C-1, we have compared these

two expressions for m = 5 and 10. For engineering purposes, use of Eq. (24) foz m _> 5 should

be adequate. Incidentally, it follows directly from Eq. (C-3) and (C-5) that

urn r(m, mE) 1, 0(C.<I)
M -4coY, C =I1 (C-6)
m • • ?m) 0, E > I

This interesting result, to the best of my knowledge, has not yet appeared explicitly in the

literatir.
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Figure C-1. Signal-noise-limited detection: a comparison of the detection probability as a

function of the signal-to-threshold ratio. The dashed curve is based on Eq. (24) and

the solid curve is based on Eq. (27).
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Appendix D
Probability Distribution of a Signal Photoelectron Count Obeying Bose-

Einstein Statistics Immersed in Poisson Noise

For m = 1, Eq. (25) becomes

=. (1 + e-" Y" P (D-1)
IK) K, j.0oj

where

13=n(l + K,-') (D-2)

The sum appearing in Eq. (D-1) exists in closed form. 8 The result is

K j' = e- f(K + 1, P) 
(D-3)

j=0 J! F(K+ 1)

where V(az) is the complementary incomplete gamma function. Substituting Eq. (D--3) into

Eq. (D-1) yields

(1 + •__)xp /K] (K + l,n + ••

P,,(K)= I+K 5 exp[n1K,] K! , K=0,1,2,... , (D-4)

which is valid for arbitrary value of the mean photoelectron count, K., and non-signal-related

mean photoelectron count, n. It can be shown for arbitrary Ks and n that E[K] = Ks + n and Var

[K] = Ks + K2 + n.
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In Figures D-1 through D-4, we plot P., as a function of K for a representative range of values

of K, and n. Except for large photocounts, no further simplication of Eq. (D-4) has been

obtained. For K. >> 1, Eq. (D-4) can be written as

P.. (K) - exp [-(K - n)/'K,]G(K,n) , (D-5)K.

where

G(I,,n)- =r(K + 1,n) (D-6)

F(K + 1)

Following the procedure outlines in Appendix B, it can be shown for large K that

[0, K<n)

G= jY 2, K=nl (D-7)

1, K>nJ

That is, G behaves as a unit step-function located at K =- n. These features are illustrated in

Figure D-5 for K - 1000. Hence,

P. = exp[-(K - n{)1K, ] U(K - n) , (D-8)

K,
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Figure D- 1. Probability density of a signal obeying Bose-Einstein statistics immersed in Poisson
noise, where the mean signal count = 1 for various values of the noise count. For

convenience of presentation, a continuous curve is drawn between integer count

values. 0.10
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Figure D-2. Probability density of a signal obeying Bose-Einstein statistics immersed in Poisson
noise, where the mean signal count = 10 for various values of the noise count.
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Figure D-3. Probability dens-ity of a signal obeying Bose-Einstein statistics immersed in Poisson
noise, where the meai signal count = 100 for various values of the noise count.
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Figure D-4. Probability density of a signal obeying Bose-Einstein statistics immersed in Poisson

noise, where the mean signal count = 1000 for various values of the noise count.
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Figure D-5. Quantity G(K, n) = F(K + 1, n)/l(K + 1) for photocounts near 1000 and various

values of n.
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where U is the unit step-function. Thus, in this limit, the probability of signal plus noise photo-

electron counts is a shifted Bose-Einstein distribution, the shift being equal to the mean noise

photocount. The corresponding probability of detection is given by

1d= f P, (K)dK
Kr

= J P,,(K)dK
F+AKr

- AKr/K, (D-9)
-e

where AKT is the threshold co mt relative to the noise floor count, n. For large counts, where

oue oper;ionally measures a current rather than discrete electron counts, the probability of

detection is given by exp(- i 1./is), where iT is the threshold current relative to the mean non-

signal related noise cur rent, in, and is is the corresponding mean signal current. Unfortunately,

other than for m = 1, no arnalytic closed-form ,;xpressions have been obtair ed for Eq. (25).

Finally, consider be limit of the probability of emission of K signal plus aoise photoelectrons,

where the meax' 'ignal photocount is much less than the corresponding noise photocount (i.e.,

Ks << n). In this case we may use the asymptotic expansion of the complementary incomplete

gamma function5,

F(a,z)e- z az I + . , (D-10)
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in Eq. (D-4) to obtain

(l+Kf)-. el)/K, e--I nK(l+ K),K(1 + KK /n)

I+K, K!

=e 1-'K(I+ • ln (D- 11)
K !

- exp[-(n +K,)](n +K)K

K!

to first order in Ks. Thus, for Ks << n and arbitrary values of n, the statistics of the total

emission process are Poisson.
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TECHNOLOGY OPERATIONS

Tne Aerospace Corporation functions as an "architect-engineer" for national security
programs, specializing in advanced military space systems. The Corporation's Technology
Operadons supports the effective and timely development and operation of national security
systems through scientific research and the application of advaaiced technology. Vital to the
success of the Corporation is the technical staffs wide-ranging expertise and its ability to stay
abreast of new technological developments and program support issues associated with rapidly
evolving space systems. Contributing capabilities are provided by these individual Technology
Centers:

Electronics Technology Center: Microelectronics, solid-state device physics,
VLSI reliability, compound semiconductors, radiation hardening, data storage
technologies, infared detector devices and testing; electro-optics, quantumn electronics,
solid-state lasers, optical propagation and communications; cw and pulsed chemical
laser development, optical resonators, beam control, atmospheric propagation, and
laser effects and countermeasures; atomic frequency standards, applied laser
spectroscopy, laser chemistry, laser optoelectronics. phase conjugation and coherent
imaging, solar cell physics, battery electrochemistry, battery testing and eval.ation.

Mechanics and Materials Technology Center: Evaluation and characterization of
new materials: metals, alloys, ceramics, polymers and their composites, and new
forms of carbon; development and analysis of thin films and deposition techniques;
nondestructive evaluation, component failure analysis and reliabiiity; fracture
mechanics and stress corrosion; development and evaluation of hardened components:
analysis and evaluation of materials at cryogenic and elevated temperatures; launch
vehicle and reentry fluid mechanics, heat transfer and flight dynamics: chemical and
electric propulsion; spacecraft structural mechanics, spacecraft survivability and
vulnerability assessment; contamination, thermal and structural control; high
temperature thermomechanics, gas kinetics and radiation; lubrication and surface
phenomena.

Space and Environment Technology Center: Magnetospheric, aurora] and
cosmic ray physics, wave-particle interactions, magnetospheric plasma waves;
atmospheric and ionospheric physics, density and composition of the upper
atmosphere, remote sensing using atmospheric radiation; solar physics, infrared
astronomy, infrared signature analysis: effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere: effects
of electromagnetic and particulate radiations on space systems; space instrumentation:
propellant chemistry, chemical dynamics, environmental chemistry, trace detection;
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific
chemical reactions and radiative signatures of missile plumes, and sensor out-of-field-
of-view rejection.
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