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ABSTRACT

A study was conducted on the corrosion behavior of an
AerMet 100 steel and a 300M steel. This study included
investigations of stress corrosion racking (SCC), immersion
corrosion, salt spray corrosion, anu humidity corrosion of
k'oth steels. For the SCC investigation, double cantilever
beam (OCB) specimens were employed, and for the immersion,
salt spray, and humidity corrosion investigations, sheet
specimens were used.

The SCC rate is less and the threshold stress intensity for
stress corrosion (KiJsC) is greater in the AerMet 100 steel
(33 ksi*inA1/2) than in the 300M steel (19 ksi*inA1/2),
indicating better SCC resistance of the AerMet 100 steel. In
the AerMet 100 steel, the stress corrosion crack grows along
an intergranular and transgranular path in the diree:tion of
forging deformation. The immersion corrosion and salt spray
corrosion rates of the AerMet 100 steel is 33 - 40% and 13 -
20% of those for the 300M steel, respectively. Evidence of
humidity corrosion is not detectable in the AerMet 100 steel
within the employed test period 110 days, whereas it is
substantial (2.0413 mpy or 0.0447 mdd) in the 300M steel.

The overall results indicate that the AerMet 100 steel is
superior to the 300M steel with respect to the corrosion
resistance as well as the mechanical properties.
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INTRODUCTION

Cat':ier-based aircraft landing gear and other components
demand corrosion resistant and tough materials in order to
achieve higher performance and greater reliability at minimum
life-cycle cost. Because of its high ultimate tensile
strength, 300M steel was accepted as the standard material for
landing gear. However, its corrosion resistance is poor and
its fracture toughness is low. Consequently, it is highly
susceptible to catastrophic failure by environment assisted
cracking and fracture, and it is not suitable for advanced
carrier-based aircraft landing gear.

Recently Car-penter Technology Corp. developed AerMet 100,
a nickel-cobalt alloy steel strengthened by carbon, chromium,
and molybdenum. This steel has an outstanding combination of
high fracture toughness, KIC, exceeding 110 ksi*inA1/2, and
high tensile strength, 280 -. 300 ksi. Since its mechanical
properties surpass those of the 300M steel, it has a great
potential for application to aircraft landing gear and other
fracture critical components. A typical example is its
selection as the material for F/A-18E/F &ircraft landing gear.
However, its corrosion behavior was not fully understood.
This study was initiated to characterize the corrosion
behavior. The characterization efforts included clarification
of stres6 corrosion cracking, immersion corrosion, salt spray
corrosion, and humidity corrosion of AerMet 100 steel. For
comparison, an idertical study was concuirently performed for
300M steel.

EXPERIMENTAL PROCEDURE

1. Materials and Specimen

One of the two specimen materials, an AerMet 100 steel
forging, was supplied by Carpenter Technology Corp. in the
form of a 4.25 in. dia. round bar. Its chemical composition
is given in Table 1.

Table 1. Chemic 1 2ompos.tion of AerMet 100 Steel Bar (wt %)

.230 .03 .03 .003 .0009 3.03 11.09 1.18 .01 13.44

.005 .009 BalL _
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This bar was cut into specimen blanks slightly larger than
respective specimens. These blanks were subjected to th'
NAWCADWAR-modified heat treatment: 1625°F solution treatment
for 1 hour, oil quenching, refrigeration in liquid nitrogen
for 1 hour, and 900OF aging for 5 hours. The resultant plane
strain fracture toughness, KIC, was measured to be 115
ksi*inA1/2 in the C-R orientation and 127 ksi*in^l/2 in the L-
R orientation, respectively. The microstructure is shown in
Fig. l(a).

The other specimen material, 300M steel, had a form of 1
in. x 1 in. rod and its nominal chemical composition is as
follows.

Table 2. Chemical Composition of 300M Steel Rod (wt %)

C Mn Ni Si Cr Mo V Fe
.43 .75 1.80 1.60 .83 .40 .08 Bal

The rod was austenitized at 1600 0 F, oil-quenched, and double-
tempered at 575 0 F. The microstructure is shown in Fig. 1(b).

The blanks of both steels were machined into rcspective
specimens by the method of elctro discharge machining. The
double cantilever beam (DCB) specimen for the stress corrosion
cracking test and the square sheet specimen for the immersion,
salt spray, and humidity corrosion tests are shown in Fig. 2.
The square sheet specimen had two small notches at a corner,
where a nylon line was fastened. The nylon line was used to
suspend the speciwen in the respective test environments. All
specimen surfaces were polished with abrasive papers,
subjected to ultrasonic cleaning in acetone, and dried. The
specimen corner with notches and a nylon line was covered with
red micromask to prevent localized corrosion of the area.

2. Test Environments

For the stress corrosion cracking and immersion corrosion
tests, an aqueous 3.5% NaCl solution of pH 7.3 was employed
at room temperature. For the humidity corrosion test, an
atmosphere of 100% relative humidity and 120OF was maintained
with vapor from distilled water in a humidity chamber. For
the salt spray test, an aqueous 5% NaCI solution of pH 5.5 was
atomized by compressed air of 12 psi in a fog chamber. The
fog chamber was maintained to hold its temperature at 95°F,
itj relative humidity at 95 - 98%, and its salt solution
collection rate at 1.2 mL/hour.
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3. Testing

a. Precracking and Loading of DCB Specimen

The SCC test w~th a DCB specimen is a constant crack
opening displacemenL test with stress intensity decreasing for
increasing crack length. The KISCC is defined as the stress
intensity at crack arrest.

DCB specimens were precracked by fatigue cycling to
initiate a crack 0.068 in. beyond the chev-:on notch and then
bolt loaded. The load was provided by two opposing bolts
inserted across the notch with a steel ball between the bolts
to give uniform loading. The following equation was used to
determine the stress intensity values as a function of c-ack
length a.

KI = (ED F3)h/L4 ý_H 1 (a/H) + 0.67 3 23

where

E modulus of elasticity
H : half-width of the specimen
D : deflection of specimnen arms at the load line
a : crack length, defined as the distance from the center

of the loading bolts to the crack tip

With this equation, the starting stress intensity was
determined to be 49 ksiwin^I/2.

b. Environmental Exposure

(i) Stress Corrosion Cracking Test

DCB specimens were continuously immersed in an aqueous
3.5% NaCl solution at room temperature. They were removed
from scolution at periodic intervals, and crack lengths were
measured visually on each surface with a traveling optical
microscope. The crack lergth versus time data were used to
determine crack growth zate, da/dt. A stress intensity valute
was calculated for each measured crack length, and da/dt vs.
stress intensity war plotted.

(ii' Immersion, Humidity, and Salt Spray Corrosion Tests

Prior to environmental exposure, each square specimen
was weighed and its dimension was measured to permit accurat-e
calculation of the exposure area. Subsequently, specimens
were suspended in an aqueous 3.5% NaCl solution at room
temperature for the Immersion corrosion riest, in a humidity
chamber of 100% relative humidity and 120O°F for the humidity
corrosion test, and in a tog chamber of atomized aqueous 5%
NaC1 solutior and 95OF for the salt spray corrosion test,
respectively. Specimens were rem:)ved from the corrosive
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environments after each ;f the preset exposure periods. The
exposure periods were 10 - 101 days for the immersion
corrosion test, 110 days for the humidity corrosion test, and
17 - 208.5 hours for the salt spray corrosion test. Specimens
were cleaned in a solution of 1000 ml hydrochloric acid, 20 g
antimony trioxide, and 50 g stannous chloride to remove
corrosion products, dried, and weighed. From the weight loss
and the exposure period, the corrosion rate was determined.

c. Metallography

After stress corrosion cracking test, the cracked portion
of the DCB specimen was cut, mounted, mechanically polished,
etched in Picral, and examined under an optical microscope.

RESULTS flND DISCUSSION

1. Stress Corr:osion Cracking

The variation of crack length with time of exposure to an
aqueous 3.5% NaCl solution is shown for the AerMet 100 steel
specimens of L-R and C-L orientations and a 300M steel
specimen of T-L orientation in Fig. 3. The initial crack
growth and the final crack length are much greater in the 300M
steel than in the AerMet 100 steel. In the AerMet 100 steel,
the crack plane orientation, L-R or C-L, results in little
difference in the crack growth behavior, except an incubation
period prior to the initial crack growth in the C-L
orientation.

The plots of crack growth rate, da/dt, vs. stress
intensity, KI, are presented for the aforementioned specimens
in Fig. 4. The KISCC values are determined to be 33 and 19
ksi*inAl/2 for the AerMet 100 and 3COM steels, respectively.
Furthermore, the crack growth rate is much greater for a given
stress intensity in the 300M steel than in the AerMet 100
steel. A comparison in terms of KISCC values and SCC growth
rates clearly shows that the SCC resistance of the AerMet 100
steel is superior to that of the 300M steel in an aqueous 3.5%
NaCI solution. Previously, a lower KISCC value, 21
ksi*in^1/2, was reported by Atrens (1) for an AerMet 100 steel
tested in a 3.5% NaCl solution. Prior to the Atrens' SCC
test, the steel had been solution treated at 1625 0 F, air
cooled, refrigerated at -108 0 F, aged at 900 0 F, and air cooled.

During the fatigue precracking in air, the crack grew
straight from the notch tip in the longitudinal direction of
the DCB specimens of both AerMet 100 and 300M steels.
However, in the AerMet 100 steel, as soon as the SCC growth
started in an aqueous 3.5% NaCI solution, the crack deviated
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and grew in the transverse direction of the specimen, Fig. 5.
The crack deviation occurred in both smooth-faced and side-
grooved specimens. The side groove had a depth of 10% of the
specimen thickness and could nct stcp the crack deviation.
Crack deviation was also observdble during the later stage of
the SCC growth in the 300M steel. Optical microscopy
examination of the crack at an overetchec specimen surface
showed that the crack deviated and grew primarily along one of
the parallel ghost lines, Fig. 6. The ghost lines (2, 3)
indicate the principal direction of deformation during the
prior forging. Lighter etching of the specimen revealed a
microstructure and a crack path, which is intergranular and
transgranular with respect to the prior austenite grains, Fig
7. From this observation, it is evident that in the AerMet
100 steel the SCC growth takes place along an intergranular
and transgranular path in the direction of forging
deformation.

2. Immersion and Humidity Corrosion

The immersion corrosion rates in an aqueous 3.5% NaCl
solution, expressed by the reduction rates of specimen size
and weight, and their variation with exposure time are shown
for the AerMet 100 and 300M steels in Fig. 8. The immersion
corrosion rate of the AerMet 100 steel is 33 - 40% of that for
the 300M steel. This indicates that the AerMet 100 steel has
better resistance, to immersion corrosion than the 3COM steel.
The immersion corrosion rate is greatest at the initial stage
of corrosion and it decreases with exposure time for both
steels.

In a humidity chamber of 100% relati%?e humidity and 120 0 F,
the AerMet 100 steel specimens did not show any detectable
corrosion in 110 days. On the other hand, the 300M steel
specimens showed noticeable corrosion with size reduction rate
of 2.0413 mils per year (mpy) ard weight reduction rate of
0.0447 milligrams per square decimetre per day (mdd).

3. Salt Spray Corrosion

The corrosion rates in a salt spray chamber of atomized
aqueous 5% NaCl solution, expressed by the reduction rates of
specimen size and weight, and their variation with exposure
time are shown for the AerMet 100 and 300M steels in Fig. 9.
The salt spray corrosion rate of the AerMet 100 steel is 13 -
20% of the rate for the 300M steel. As for the immersion
corrosion, the salt spray corrosion rate is greatest at the
beginning of the exposure and it decreases with time.
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SUN.ARY

1. The corrosion behavior of an AerMet 100 steel and a 300M
steel was characterized. The characterization effort included
clarification of stress corrosion cracking, immersion
corrosion, salt spray corrosion, and humidity corrosion.

2. The AerMet 100 steel has superior corrosion resistance,
compared to a 300M steel.

3. With DCB specimens in an aqueous 3.5% NaC! solution, the
KISCC values of the AerMet 100 and 300M steels are determined
to be 33 and 19 ksi*inAi/2, respectively. Under the employed
SCC condition the crack in the AerMet 100 steel grows along
an intergranular and transgranular path in the direction of
forging deformation.

4. The immersion corrosion and salt spray corrosion rates of
the AerMet 100 steel are 33 - 40% and 13 - 20% of those for
the 300M steel, respectively.

6. In a humidity chamber, the AerMet 100 steel is not
corrodible within the employed test period of 110 days. But
the 300M steel is susceptible to humidity corrosion, and its
rate is 2.0413 mpy or 0.0447 mdd.
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(a)

(b)

Fig-Lre 1. Microstructures of AerMet 100 and 300M Steels
(a) AerMet 100 Steel
(b) 300M Steel
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