

Report No. NAWCADWAR-94001-60

CORROSION BEHAVIOR OF LANDING GEAR STEELS

Eun U. Lee

Air Vehicle and Crew Systems Technology Department (Code 6043) NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION WARMINSTER P.O. Box 5152 Warminstei, PA 18974-0591

29 October 1993

PHASE REPORT

Task Area No. A511-5116F/001-F/3E2130-0000

DTIC QUALITY II JPHOTED 2

Approved for Public Release; Distribution is Unlimited

Prepared for (AIR-530B) NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, DC 20361-0001

9411 1 010

NOTICES

REPORT NUMBERING SYSTE/M — The numbering of technical project reports issued by the Navai Air Warfare Center, Aircraft Division, Warminster is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Functional Department responsible for the report. For example: Report Nn. NAWCALWAR-92001-60 indicates the first Center report for the year 1992 and prepared by the Air Vahicle and Crew Systems Technology Department. The numerical codes are as follows:

2	0	n	F	
-	ັ	-	-	

OFFICE OR DEPARTMENT

- 00 Commanding Officer, NAWCADWAR
- 01 Technical Director, NAWCADWAR
- 05 Computer Department
- 10 AntiSubmarine Warfare Systems Department
- 20 Tactical Air Systems Department
- 30 Warfare Systems Analysis Department
- 50 Mission Avionics Technology Department
- 60 Air Vehicle & Crew Systems Technology Department
- 70 Systems & Software Technology Department
- 80 Engineering Support Group
- 90 Test & Evaluation Group

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

Date: 3/22/94Date: 3/22/94Date: 3/20/94Date: 3/30/94**Reviewed** Cy: sion Head Reviewed By:

Cirector/Duputy Director

	REPORT DOCUMENTATION PAGE						
Public inporting burden for this collection of gathering, and maintaining the data needed. (plictoon of information neighting suggests)	r informatio and coincide ions for vedu	n is distimated to everage " "Cur of rising and reviewing the collection of king this burden. To Washington He	r response, including the time i I information . Seria comments paddy actors Services. (urevitoral	or reasoning ins regarding the b e for informatio	tructions searching existing data source uiden estimate or any other aspect of th n Opprations and Reports, 1215 Jefferso		
1. AGENCY USE ONLY (Leave b)	lank)	2. REPORT DATE 29 October 1993	3. REPORT TYPE	AND DATES	COVERED		
. TITLE AND SUBTITLE		والمتحديث والمتحدين	antinen alle al construction and a second of a	S FUN	DING NUPIBERS		
CORROSION BEHAVIOR OF LANDING GEAR STEELS					sk Area No. 511-5116F/001-F/		
Eun U. Lee				31	2130-0000		
PERFORMING ORGANIZATION: NAME(S) AND ADDRESS(ES) E. PER Air Vehicle and Crew Systems Technology Department (Code 6083) REP NAVAL AIR WARFARE CENTER N AIRCRAFT DIVISION WARMINISTER N PO Box 5152 Massimuter RA 18074.0593					ORMING ORGANIZATION INT NUMBER AWCADWAR-94001-60		
SPONS/MING/MCINTONING A NAVAL AIR SYSTEMS (Department of the Navy Washington, DC 20381-(Visitionalistic, PA 10974-005 (SPONE/Minig/MointOning Acency Name(s) AND ADDRESS(ES) NAVAL AIR SYSTEMS COMMAND (AIR-530B) Department of the Navy Washington, DC 20361-0001				A SPONSORING / MONITORING AGENCY REPORT NUMBER		
2a. DISTRUCTION / AVAILABILIT Approved for Public Rele	v state ease; Di	MENT stribution is Unlimited	anna an	126. DI	TRIBUTION CODE		
				1			
3 ABSTRACT (Maximum 200 wo A study was conduc study included investig corrosion, and humidity (DCB) specimens were	vicis) inted on t pations of y corros e emplo	the corrosion behavior of stress corrosion crac sion of both steels. For yed, and for the immer	of an AerMet 100 s sking (SCC), immers r the SCC investigat rsion, salt spray, and	teel and a sion corros ion, double d humidity	300M steel. This ion, salt spray e cantilever beam corrosion		
3. ABSTRACT (Maximum 200 wo A study was conduc study included investig corrosion, and humidity (DCB) specimens were investigations, sheet sp The SCC rate is less AerMet 100 steel (33 k of the AerMet 100 steel intergranular and trans and salt spray corrosio steel, respectively. Evi employed test period 1	view ted on t pations (y corros e emplo pecime s and th (si*in^1/ el. In the granula on rates idence (0 days	the corrosion behavior of stress corrosion clac sion of both steels. For yed, and for the immer hs were used. The throshold stress inte 2) than in the 300M stress than in the 300M stress of than in the direction of the AerMet 100 steel, the of the AerMet 100 steel of the AerMet 100 steel s, whereas it is substat	of an AerMet 100 s sking (SCC), immers r the SCC investigat rsion, salt spray, and nsity for stress corre- eel (19 ksi*in^1/2), in e stress corrosion ca- of forging deformation el is 33 – 40% and 1 s not detectable in the ntial (2.0413 mpy or	teel and a sion corros ion, double d humidity osion (Kisc ndicating b rack grows on. The in 13 – 20% co ne AerMet 0.0447 mo	300M steel. This ion, salt spray e cantilever beam corrosion (c) is greater in the etter SCC resistance along an imersion corrosion f those for the 300M 100 steel within the id) in the 300M steel.		
3 ABSTRACT (Maximum 200 wo A study was conduc study included investig corrosion, and humidity (DCB) specimens were investigations, sheet sj The SCC rate is less AerMet 100 steel (33 k of the AerMet 100 steel intergranular and trans and salt spray corrosio steel, respectively. Evi employed test period 1 The overall results in corrosion resistance as	view ted on t pations of y corros e emplo pecime s and th sit in 1/ el. In the granula on rates idence of "0 days ndicate s well as	the corrosion behavior of stress corrosion crac sion of both steels. For yed, and for the immer hs were used. The threshold stress inte 2) than in the 300M stress than in the 300M stress of the AerMet 100 steel, the of the AerMet 100 steel of humidity corrosion is s, whereas it is substail that the AerMet 100 st is the mochanical propo	of an AerMet 100 s cking (SCC), immers r the SCC investigat rsion, salt spray, and nsity for stress corre eel (19 ksi*in^1/2), in stress corrosion ca of forging deformation of forging deformation is and detectable in the strest cuperior to the arties.	teel and a sion corros ion, double d humidity osion (Kisc ndicating b rack grows on. The in 13 – 20% c he AerMet 0.0447 me 300M ste	300M steel. This ion, salt spray e cantilever beam corrosion ac) is greater in the etter SCC resistance along an amersion conosion f those for the 300M 100 steel within the id) in the 300M steel. el with respect to the		
ABSTRACT (Maximum 200 wo A study was conduc study included investig corrosion, and humidity (DCB) specimens were investigations, sheet sj The SCC rate is less AerMet 100 steel (33 k of the AerMet 100 steel intergranular and trans and salt spray corrosio steel, respectively. Evi employed test period 1 The overall results in corrosion resistance as 4. SUBJECT TERMS AerMet 100 and 300M Si SCC, Double Cantilever 1	teel, Str Bearn, 1	the corrosion behavior of stress corrosion clad sion of both steels. For yed, and for the immer ns were used. The throshold stress inte 2) than in the 300M stress are throshold stress inte 2) than in the 300M stress at the AerMet 100 steel, the of the AerMet 100 steel of humidity co-rosion is s, whereas it is substat that the AerMet 100 st is the mochanical proper- ress Corrosion Crackin DCB	of an AerMet 100 s cking (SCC), immers r the SCC investigat rsion, salt spray, and nsity for stress corre eel (19 ksi*in^1/2), in a stress corrosion ca of forging deformation of forging deformation is not detectable in the ntial (2.0413 mpy or eel is cuperior to the arties.	teel and a sion corros ion, double d humidity osion (Kisc ndicating b rack grows on. The in 3 – 20% c ne AerMet 0.0447 ma e 300M ste	300M steel. This ion, salt spray e cantilever beam corrosion corrosion corrosion col is greater in the etter SCC resistance along an imersion corrosion f those for the 300M 100 steel within the idd) in the 300M steel. el with respect to the 15. NUMBER OF PAGES		
ABSTRACT (Maximum 200 wo A study was conduc study included investig corrosion, and humidity (DCB) specimens were investigations, sheet sj The SCC rate is less AerMet 100 steel (33 k of the AerMet 100 steel intergranular and trans and salt spray corrosio steel, respectively. Evi employed test period 1 The overall results in corrosion resistance as SUBJECT TERMS AerMet 100 and 300M St SCC, Double Cantilover 1 SECURITY CLASSIFICATION	teel. Str Beam. 1	the corrosion behavior of stress corrosion clac sion of both steels. For yed, and for the immer ns were used. The throshold stress inte 2) than in the 300M stress are the AerMet 100 steel, the of the AerMet 100 steel of humidity co-rosion is s, where as it is substail that the AerMet 100 st s the mochanical proper- ress Corrosion Crackin DCB	of an AerMet 100 s cking (SCC), immers r the SCC investigat rsion, salt spray, and nsity for stress corre- eel (19 ksi*in^1/2), in e stress corrosion ca of forging deformation of forging deformation entites and the stress is not detectable in the natial (2.0413 mpy or eel is cuperior to the arties.	teel and a sion corros ion, double d humidity osion (Kisc ndicating b rack grows on. The in 13 – 20% c he AerMet 0.0447 m e 300M ste	300M steel. This ion, salt spray e cantilever beam corrosion (c) is greater in the etter SCC resistance along an imersion corrosion f those for the 300M 100 steel within the 300 in the 300M steel. el with respect to the 15. NUMBER OF PAGES 15. PRICE CODE		

CONTENTS

	Page
FIGURES	3
ABSTRACT	4
ACKNOWLEDGEMENTS	4
INTRODUCTION	5
EXPERIMENTAL PROCEDURE	5
MATERIALS AND SPECIMEN	5
TEST ENVIRONMENTS	6
TESTING	7
RESULTS AND DISCUSSION	8
STRESS CORROSION CRACKING	8
IMMERSION AND HUMIDITY CORROSION	9
SALT SPRAY CORROSION	9
SUMMARY	10
REFERENCE	10

2

.

.

FIGURES

Figure

- 1. Microstructures of AerMet 100 and 300M Steels
- 2. Specimens
- 3. Stress Corrosion Crack Growth with Time
- 4. Variation of Stress Corrosion Crack Growth Rate da/dt with Stress Intensity $K_{\rm I}$
- 5. Crack at Surface of Fatigue Precracked and SCC Tested Specimen

 (a) AerMet 100 Steel
 - (b) 300M Steel
- 6. Crack in Fatigue Precracked, SCC Tested, and Overetched AerMet 100 Steel Specimen
- 7. Micrograph showing Intergranular and Transgranular SCC Path in AerMet 100 Steel Specimen
- 8. Immersion Corrosion Rates of AerMet 100 and 300M Steels (a) Size Reduction Rate
 - (b) Weight Reduction Rate
- 9. Salt Spray Corrosion Rates of AerMet 100 and 300M Steels(a) Size Reduction Rate
 - (b) Weight Reduction Rate

ABSTRACT

A study was conducted on the corrosion behavior of an AerMet 100 steel and a 300M steel. This study included investigations of stress corrosion racking (SCC), immersion corrosion, salt spray corrosion, and humidity corrosion of roth steels. For the SCC investigation, double cantilever beam (DCB) specimens were employed, and for the immersion, salt spray, and humidity corrosion investigations, sheet specimens were used.

The SCC rate is less and the threshold stress intensity for stress corrosion (K_{ISCC}) is greater in the AerMet 100 steel (33 ksi*in^1/2) than in the 300M steel (19 ksi*in^1/2), indicating better SCC resistance of the AerMet 100 steel. In the AerMet 100 steel, the stress corrosion crack grows along an intergranular and transgranular path in the direction of forging deformation. The immersion corrosion and salt spray corrosion rates of the AerMet 100 steel is 33 - 40% and 13 -20% of those for the 300M steel, respectively. Evidence of humidity corrosion is not detectable in the AerMet 100 steel within the employed test period 110 days, whereas it is substantial (2.0413 mpy or 0.0447 mdd) in the 300M steel.

The overall results indicate that the AerMet 100 steel is superior to the 300M steel with respect to the corrosion resistance as well as the mechanical properties.

ACKNOWLEDGEMENTS

This study was supported by the F/A-18E/F Project, F/A-18E/F Materials Corrosion Characterization, Airtask No. A511-5116F/001-F/3E2130-0000, Work Unit No. A5304B-93.

The author wishes to acknowledge the assistance of Mr. S. Bettadapur of the Naval Air Systems Command (AIR530B) in obtaining funding for this study. The author is also graterue to Carpenter Technology Corp. for providing and heat treating the specimen material, AerMet 100 steel forging.

INTRODUCTION

Carrier-based aircraft landing gear and other components demand corrosion resistant and tough materials in order to achieve higher performance and greater reliability at minimum life-cycle cost. Because of its high ultimate tensile strength, 300M steel was accepted as the standard material for landing gear. However, its corrosion resistance is poor and its fracture toughness is low. Consequently, it is highly susceptible to catastrophic failure by environment assisted cracking and fracture, and it is not suitable for advanced carrier-based aircraft landing gear.

Recently, Carpenter Technology Corp. developed AerMet 100, a nickel-cobalt alloy steel strengthened by carbon, chromium, and molybdenum. This steel has an outstanding combination of high fracture toughness, $K_{\rm IC}$, exceeding 110 ksi*in^1/2, and high tensile strength, 280 - 300 ksi. Since its mechanical properties surpass those of the 300M steel, it has a great potential for application to aircraft landing gear and other fracture critical components. A typical example is its selection as the material for F/A-18E/F aircraft landing gear. However, its corrosion behavior was not fully understood. This study was initiated to characterize the corrosion behavior. The characterization efforts included clarification of stress corrosion cracking, immersion corrosion, salt spray corrosion, and humidity corrosion of AerMet 100 steel. For comparison, an identical study was concurrently performed for 300M steel.

EXPERIMENTAL PROCEDURE

1. Materials and Specimen

One of the two specimen materials, an AerMet 100 steel forging, was supplied by Carpenter Technology Corp. in the form of a 4.25 in. dia. round bar. Its chemical composition is given in Table 1.

Table 1. Chemical Composition of AerMet 100 Steel Bar (wt %)

<u>C</u>	<u>Mn</u>	<u>si</u>	P	5	Cr	Ni	Mo	Cu	Ço
.230	.03	.03	.003	.0009	3.03	11.09	1.18	.01	13.44
A1	Ti	Fe							
.005	.009	Bal							

This bar was cut into specimen blanks slightly larger than respective specimens. These blanks were subjected to the NAWCADWAR-modified heat treatment: $1625^{\circ}F$ solution treatment for 1 hour, oil quenching, refrigeration in liquid nitrogen for 1 hour, and 900°F aging for 5 hours. The resultant plane strain fracture toughness, K_{IC}, was measured to be 115 ksi*in^1/2 in the C-R orientation and 127 ksi*in^1/2 in the L-R orientation, respectively. The microstructure is shown in Fig. 1(a).

The other specimen material, 300M steel, had a form of l in. $x \mid in.$ rod and its nominal chemical composition is as follows.

Table 2. Chemical Composition of 300M Steel Rod (wt %)

С	Mn	<u>Nj</u>	<u>Si</u>	<u> </u>	Mo	<u>v</u>	<u> </u>
.43	.75	1.80	1.60	.83	.40	.08	Bal

The rod was austenitized at 1600° F, oil-quenched, and double-tempered at 575° F. The microstructure is shown in Fig. 1(b).

The blanks of both steels were machined into respective specimens by the method of electro discharge machining. The double cantilever beam (DCB) specimen for the stress corrosion cracking test and the square sheet specimen for the immersion, salt spray, and humidity corrosion tests are shown in Fig. 2. The square sheet specimen had two small notches at a corner, where a nylon line was fastened. The nylon line was used to suspend the specimen in the respective test environments. All specimen surfaces were polished with abrasive papers, subjected to ultrasonic cleaning in acetone, and dried. The specimen corner with notches and a nylon line was covered with red micromask to prevent localized corrosion of the area.

2. Test Environments

For the stress corrosion cracking and immersion corrosion tests, an aqueous 3.5% NaCl solution of pH 7.3 was employed at room temperature. For the humidity corrosion test, an atmosphere of 100% relative humidity and 120° F was maintained with vapor from distilled water in a humidity chamber. For the salt spray test, an aqueous 5% NaCl solution of pH 5.5 was atomized by compressed air of 12 psi in a fog chamber. The fog chamber was maintained to hold its temperature at 95°F, its relative humidity at 95 - 98%, and its salt solution collection rate at 1.2 mL/hour.

3. Testing

a. Precracking and Loading of DCB Specimen

The SCC test with a DCB specimen is a constant crack opening displacement test with stress intensity decreasing for increasing crack length. The KISCC is defined as the stress intensity at crack arrest.

DCB specimens were precracked by fatigue cycling to initiate a crack 0.068 in. beyond the chevron notch and then bolt loaded. The load was provided by two opposing bolts inserted across the notch with a steel ball between the bolts to give uniform loading. The following equation was used to determine the stress intensity values as a function of crack length a.

$$K_{I} = (ED \sqrt{3}) / \left[4 \sqrt{H} \sqrt{(a/H)} + 0.673 \right]^{2}$$

where

- E : modulus of elasticity
- H : half-width of the specimen
- D : deflection of specimen arms at the load line
- a : crack length, defined as the distance from the center of the loading bolts to the crack tip

With this equation, the starting stress intensity was determined to be 49 ksi \times in^1/2.

b. Environmental Exposure

(i) Stress Corrosion Cracking Test

DCB specimens were continuously immersed in an aqueous 3.5% NaCl solution at room temperature. They were removed from solution at periodic intervals, and crack lengths were measured visually on each surface with a traveling optical microscope. The crack length versus time data were used to determine crack growth rate, da/dt. A stress intensity value was calculated for each measured crack length, and da/dt vs. stress intensity was plotted.

(ii) Immersion, Humidity, and Salt Spray Corrosion Tests

Prior to environmental exposure, each square specimen was weighed and its dimension was measured to permit accurate calculation of the exposure area. Subsequently, specimens were suspended in an aqueous 3.5% NaCl solution at room temperature for the immersion corrosion test, in a humidity chamber of 100% relative humidity and 120° F for the humidity corrosion test, and in a fog chamber of atomized aqueous 5% NaCl solution and 95° F for the salt spray corrosion test, respectively. Specimens were removed from the corrosive environments after each of the preset exposure periods. The exposure periods were 10 - 101 days for the immersion corrosion test, 110 days for the humidity corrosion test, and 17 - 208.5 hours for the salt spray corrosion test. Specimens were cleaned in a solution of 1000 ml hydrochloric acid, 20 g antimony trioxide, and 50 g stannous chloride to remove corrosion products, dried, and weighed. From the weight loss and the exposure period, the corrosion rate was determined.

c. Metallography

After stress corrosion cracking test, the cracked portion of the DCB specimen was cut, mounted, mechanically polished, etched in Picral, and examined under an optical microscope.

RESULTS AND DISCUSSION

1. Stress Corrosion Cracking

The variation of crack length with time of exposure to an aqueous 3.5% NaCl solution is shown for the AerMet 100 steel specimens of L-R and C-L orientations and a 300M steel specimen of T-L orientation in Fig. 3. The initial crack growth and the final crack length are much greater in the 300M steel than in the AerMet 100 steel. In the AerMet 100 steel, the crack plane orientation, L-R or C-L, results in little difference in the crack growth behavior, except an incubation period prior to the initial crack growth in the C-L orientation.

The plots of crack growth rate, da/dt, vs. stress intensity, K_I , are presented for the aforementioned specimens in Fig. 4. The K_{ISCC} values are determined to be 33 and 19 ksi*in^1/2 for the AerMet 100 and 3COM steels, respectively. Furthermore, the crack growth rate is much greater for a given stress intensity in the 300M steel than in the AerMet 100 steel. A comparison in terms of K_{ISCC} values and SCC growth rates clearly shows that the SCC resistance of the AerMet 100 steel is superior to that of the 300M steel in an aqueous 3.5% NaCl solution. Previously, a lower K_{ISCC} value, 21 ksi*in^1/2, was reported by Atrens (1) for an AerMet 100 steel tested in a 3.5% NaCl solution. Prior to the Atrens' SCC test, the steel had been solution treated at 1625°F, air cooled, refrigerated at -108°F, aged at 900°F, and air cooled.

Luring the fatigue precracking in air, the crack grew straight from the notch tip in the longitudinal direction of the DCB specimens of both AerMet 100 and 300M steels. However, in the AerMet 100 steel, as soon as the SCC growth started in an aqueous 3.5% NaCl solution, the crack deviated

and grew in the transverse direction of the specimen, Fig. 5. The crack deviation occurred in both smooth-faced and sidegrooved specimens. The side groove had a depth of 10% of the specimen thickness and could net stop the crack deviation. Crack deviation was also observable during the later stage of the SCC growth in the 300M steel. Optical microscopy examination of the crack at an overetched specimen surface showed that the crack deviated and grew primarily along one of the parallel ghost lines, Fig. 6. The ghost lines (2, 3) indicate the principal direction of deformation during the prior forging. Lighter etching of the specimen revealed a microstructure and a crack path, which is intergranular and transgranular with respect to the prior austenite grains, Fig 7. From this observation, it is evident that in the AerMet 100 steel the SCC growth takes place along an intergranular and transgranular path in the direction of forging deformation.

2. Immersion and Humidity Corrosion

The immersion corrosion rates in an aqueous 3.5% NaCl solution, expressed by the reduction rates of specimen size and weight, and their variation with exposure time are shown for the AerMet 100 and 300M steels in Fig. 8. The immersion corrosion rate of the AerMet 100 steel is 33 - 40% of that for the 300M steel. This indicates that the AerMet 100 steel has better resistance to immersion corrosion than the 300M steel. The immersion corrosion rate is greatest at the initial stage of corrosion and it decreases with exposure time for both steels.

In a humidity chamber of 100% relative humidity and 120° F, the AerMet 100 steel specimens did not show any detectable corrosion in 110 days. On the other hand, the 300M steel specimens showed noticeable corrosion with size reduction rate of 2.0413 mils per year (mpy) and weight reduction rate of 0.0447 milligrams per square decimetre per day (mdd).

3. Salt Spray Corrosion

The corrosion rates in a salt spray chamber of atomized aqueous 5% NaCl solution, expressed by the reduction rates of specimen size and weight, and their variation with exposure time are shown for the AerMet 100 and 300M steels in Fig. 9. The salt spray corrosion rate of the AerMet 100 steel is 13 -20% of the rate for the 300M steel. As for the immersion corrosion, the salt spray corrosion rate is greatest at the beginning of the exposure and it decreases with time.

SUMMARY

1. The corrosion behavior of an AerMet 100 steel and a 300M steel was characterized. The characterization effort included clarification of stress corrosion cracking, immersion corrosion, salt spray corrosion, and humidity corrosion.

2. The AerMet 100 steel has superior corrosion resistance, compared to a 300M steel.

3. With DCB specimens in an aqueous 3.5% NaCl solution, the K_{ISCC} values of the AerMet 100 and 300M steels are determined to be 33 and 19 ksi*in^i/2, respectively. Under the employed SCC condition, the crack in the AerMet 100 steel grows along an intergranular and transgranular path in the direction of forging deformation.

4. The immersion corrosion and salt spray corrosion rates of the AerMet 100 steel are 33 - 40% and 13 - 20% of those for the 300M steel, respectively.

6. In a humidity chamber, the AerMet 100 steel is not corrodible within the employed test period of 110 days. But the 300M steel is susceptible to humidity corrosion, and its rate is 2.0413 mpy or 0.0447 mdd.

REFERENCE

1. Andej Atrens: Private Communication.

2. W. Rostoker and J. R. Dvorak: "Interpretation of Metallographic Structures", Academic Press, New York, 1965, p. 17.

3. Annick and Jean Pokorny: Solidification and Deformation of Steels, in "Metallographic Atlas of Iron, Steels and Cast Irons", vol. III, W. B. Saunders Co., Philadelphia, 1967, pp. 50-55.

(a)

(b)

Figure 1. Microstructures of AerMet 100 and 300M Steels (a) AerMet 100 Steel (b) 300M Steel

Crack at Surface of Fatigue Precracked and SCC Tested Specimen (300M Steel) (a Figure 5.

Crack in Fatigue Precracked, SCC Tested, and Overetched AerMet 100 Steel Specimen Figure 6.

(mpy: mils per year, mdd: milligrams per square decimetre per day)

. .

Salt Spray Corrosion Rates of AerMet 100 and 300M Steels Figure 9.

- Size Reduction Rate Weight Reduction Rate (a)

20

.

Distribution List (Continued) Report No. NAWCADWAR 94001-60

Warmister, PA 18974-0591 (20 for Code 6063) (2 for Code 0471) David W. Taylor Naval Ship Research and **Development Center Detachment** Annapolis, MD 21402-1198 Naval Aviation Depot Naval Air Station Code 340 Alameda, CA 94501 Naval Aviation Depot Marine Corps Air Station Code 340 Cherry Point, NC 28533-5030 Naval Aviation Depot Naval Air Station Code 340 Jacksonville, FL 32212 Naval Aviation Depot Naval Air Station Code 340 Norfolk, VA 23511-5899 Naval Aviation Depot North Island Code 340 Pensacola, FL 32508-5300 Naval Aviation Depot Naval Air Station Code 340 San Diego, CA 92135-5112 Monterey, CA 93940

Attn: Dr. E. R. Wood (Code 67)

Aircraft Division

No. of Copies

Distribution List Report No. NAWCADWAR 94001-60

No. of Copies

Naval Air Systems Command
Naval Sea Systems Command
Naval Safety Center
Naval Air Warfare Center
Naval Research Laboratory
David W. Taylor
U.S. Air Force Systems Command
Chief of Naval Research
Defense Technical Information Center
Center for Naval Analysis 1 4401 Fort Avenue P.O. Box 16268 Alexandria, VA 22302-0268

.